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ABSTRACT  
   

Low Power, High Speed Analog to Digital Converters continues to remain one of 

the major building blocks for modern communication systems. Due to continuing trend of 

the aggressive scaling of the MOS devices, the susceptibility of most of the deep-sub 

micron CMOS technologies to the ionizing radiation has decreased over the period of 

time. When electronic circuits fabricated in these CMOS technologies are exposed to 

ionizing radiations, considerable change in the performance of circuits can be seen over a 

period of time. The change in the performance can be quantified in terms of decreasing 

linearity of the circuit which directly relates to the resolution of the circuit. Analog to 

Digital Converter is one of the most critical blocks of any electronic circuitry sent to 

space. The degradation in the performance of an Analog to Digital Converter due to 

radiation effects can jeopardize many research programs related to space. These radiation 

effects can completely hamper the working of a circuit. This thesis discusses the effects 

of Ionizing radiation on an 11 bit 325 MSPS pipeline ADC. The ADC is exposed to 

different doses of radiation and performance is compared. 
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Preface 

This thesis aims to explore the effects of ionizing radiation on the performance of 

a pipeline analog to digital converter (ADC). Chapter 1 describes the basic architecture 

used for the pipeline. It also includes an explanation of the various blocks used.  

Chapter 2 provides an overview of ionizing radiation effects in CMOS devices. 

Different processes that occur when a CMOS device is exposed to ionizing radiation have 

been explained. For example, the characteristics of a transistor when it is exposed to 

different doses of radiation and how this changed characteristic deteriorates the 

performance of a circuit at macro-level are explained. 

Chapter 3 describes the modeling of ionizing radiation effects on a single NMOS 

transistor. A new model of an NMOS transistor is created when it is subjected to different 

doses of radiation. Ionizing radiation leads to off state leakage. For transistors used as a 

switch in a switched capacitor network; this leakage may decrease the accuracy of a 

circuit.  

Chapter 4 presents the radiation-enabled modeling results along with a conclusion 

for a pipeline ADC. The model captures the circuit response characteristics by 

incorporating a unique methodology for simulating radiation effects at the transistor 

level. 

Chapter 5 gives the conclusion. 
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Chapter 1 

INTRODUCTION TO PIPELINE ANALOG TO DIGITAL CONVERTERS 

 

Pipeline Analog to Digital Converters are widely used and popular architectures 

for sampling rates varying from a few mega samples up to 500-600 mega samples. 

Resolution ranging from eight bits up to sixteen bits can be achieved with this 

architecture with some amount of initial latency. These features and advantages make this 

architecture useful for a wide range of applications including digital receivers, CCD 

imaging, modems, and communication systems, which need high throughput along with 

high resolution [1, 2]. 

 

1.1 Brief Explanation 

As the name suggests, the pipeline architecture consists of many ADC’s in series. 

The input signal is processed by the first stage of the pipeline. A coarse ADC is used to 

quantize the input signal, giving out digital bits hence generating residue voltages. The 

generated residue voltage of the first stage is given as an input to second ADC in the 

pipeline. This second ADC quantizes the signal producing more digital bits along with 

the residue voltage which is given as an input to the next ADC in the pipeline. Hence the 

signal is propagated in a pipeline [1, 2].   
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1.2   Architecture of Pipeline Analog to Digital Converter. 

 

 

Figure1: ADC Architecture 

           Figure 1 shows the architecture used for the pipeline ADC. Eight 1.5 bit double 

sampled gain stages along with a three bit flash stage are used to obtain an eleven bit 

digital output code. There is some amount of initial latency until the time pipeline is filled 

up. Once the pipeline is filled, digital codes are obtained on every clock edge hence 

increasing the throughput. 

1.3 System level design considerations and specifications for the ADC 

 
Many factors have to be considered in the system level design of an 11 bit 325 

MSPS pipeline ADC. Table 1 shows the specifications for the ADC. 
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Table 1: Specifications 

Some of the factors include selecting the architecture of the gain stage depending 

on the latency to be tolerated, power and area specifications. Other factors include 

choosing the correct operational amplifier (Op-Amp) topology, comparator topology, 

scaling of the sampling capacitors, number of channels if time interleaved structure is to 

be used, quantization noise, distortion and sampling frequency.  

 

1.4 General flow of signal in pipeline ADC 

 

Figure 2: Pipeline architecture showing flow of signal 
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 As the front end sample and hold amplifier is not used for this radiation effects 

study, an analog input signal is given directly to the first 1.5 bit gain stage. Figure 2 

shows the general flow of the signal in the pipeline. The input signal is sampled directly 

by the sampling network of the first gain stage and at the same time sampled by the 

comparators. Based on the decision of the comparator, the residue voltage for the next 

stage is generated by the MDAC (multiplying analog to digital converter) of the first gain 

stage. The residue voltage (error voltage) generated by the first stage is very small. The 

second ADC needs to have higher resolution than the previous stage to resolve the input. 

In order to avoid this problem, we make use of the gain stage to keep the signal level for 

the second ADC the same. Since we have gained up the residue voltage of the first stage 

ADC, the second ADC will make the comparison with the same set of reference voltages, 

eliminating the need of a new set of reference voltage values for each stage. Once we 

have filled the pipeline, we will have new set of digital codes on every clock cycle. Once, 

the first ADC in the pipeline quantizes the input signal and generates the residue voltage 

for the next stage, the previous stage becomes available to process the input signal, hence 

increasing the throughput. Delay registers have to be used in order to store the data. First 

1.5 bit gain stage gives the output code in the first clock cycle whereas last stage of the 

pipeline gives the digital code after some latency as the signal is propagated through the 

pipeline. In order to make digital correction logic work, all the digital bits are to be added 

at the same time, hence delay registers are used before the digital correction logic so that 

all the digital codes are received at the correction logic at the same time. 
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1.5 Clocks structure used for the gain stages 

         A non-overlapping clock structure is used for the gain stages. There needs to be 

some amount of non-overlapping period in between the sample and hold phase for the 

switched capacitor network to work. Figure 3 shows the clock waveforms used in the 

design. 

 

    

Figure 3: Clock waveforms [5] 
 

          Delayed version of Φ1 and Φ2 clocks which are Φ1d and Φ2d are used to make use 

of bottom plate sampling technique. This technique prevents any charge dumping onto 

the sampling capacitor when the sampling switch is turned off in the switched capacitor 

network. Both the phases of the clock are utilized in order to double the sampling 

frequency. 

 



6 

 

1.6 Explanation of a Double Sampled 1.5 bit gain stage  

          The 1.5 bit gain stage is an important block in pipeline analog to digital converter. 

The double sampling architecture, which makes use of the Op-Amp sharing technique 

[1], is used in order to effectively double the sampling rate with not much addition in area 

and power. With a single sampling architecture, the Op-Amp is idle in one phase of the 

clock. Twice the speed can be achieved by making use of the phase during which an Op-

Amp is idle. Table 2 shows the specifications required for a 1.5 bit gain stage. 

 

               

                                   Table 2: Specification for the 1.5 bit gain stage 

 

           In the case of a single sampling architecture, the op-amp can be reset to remove 

any parasitic capacitance; whereas in double sampling, we cannot reset the op-amp as it 

is operating in both clock phases. Double sampling leads to an increase in the number of 

switches since an additional sampling network must be added. The schematic shown on 



 

Figure 4 is an example of double 

input and differential output. In 

the input signal and holds it. In the same phase (

input signal into two bits. The two bit digital output with the help of 

phase is then used to control the switches of the MDAC stage of sampling network 1 and 

generates the residue voltage in 

 
Figure 4 Double Sampled 1.5 Bit Gain Stage

 
           Since we are making use of 

samples the input signal in the 

ADCs quantizes the signal to two bits. The two bit digital output with the help of digital 
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is an example of double sampling network. The circuit consists of 

differential output. In the Φ1d phase of the clock, sampling network 1 samples 

the input signal and holds it. In the same phase (Φ1d) one set of flash ADCs 

to two bits. The two bit digital output with the help of digital logic in 

phase is then used to control the switches of the MDAC stage of sampling network 1 and 

generates the residue voltage in the Φ2d phase. 

Double Sampled 1.5 Bit Gain Stage [1, 5] 

Since we are making use of a double sampling technique, the sampling network 2 

the Φ2d phase and in the same phase the second set of flash 

quantizes the signal to two bits. The two bit digital output with the help of digital 

consists of a differential 

d phase of the clock, sampling network 1 samples 

 quantizes the 

digital logic in Φ2d 

phase is then used to control the switches of the MDAC stage of sampling network 1 and 

 

sampling network 2 

second set of flash 

quantizes the signal to two bits. The two bit digital output with the help of digital 
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logic in Φ1d phase is then used to control the switches of the MDAC stage of sampling 

network 2 and generates the residue voltage in Φ1d phase. In this way we are getting the 

residue voltages in both the phases of the clock, which are then sampled by the next 

double sampled 1.5 bit gain stage. A 1.5 bit gain stage needs an inter-stage gain of two. A 

switched capacitor circuit making use of two capacitors is an excellent circuit to realize a 

gain of two.  

           In one phase of the clock, Vin (input voltage) is sampled onto the sampling 

capacitors (C1 and C2). The charge stored on to the capacitors is Vin (C1 + C2). In the 

other phase of the clock, all of the stored charge is transferred on to the feedback 

capacitor C1. The resulting voltage on C1 in phase ɸ1d forms the output voltage as 

shown Figure 4.  

                                          Vin (C1 + C2) = Vout (C1)                                          (1.1) 

                                           Vout/Vin = (1 + C2/C1)                                             (1.2) 

 
           If the value of both the capacitors is kept the same, a gain of two is realized with 

the help of simple switched capacitor network. The network is used in conjunction with 

the op-amp in a negative feedback configuration. In order to achieve the required gain, 

the op-amp has to provide equal and opposite charge to the bottom plate of the feedback 

capacitor C1. This ”flip around” architecture has many advantages when compared with a 

charge redistribution network in terms of gain and bandwidth of the op-amp. 
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                                         Figure 5: Switched Capacitor network [1] 

           The linearity of a gain stage depends on many factors. One of the factors is the 

accuracy of the sample and hold inside each sampling network which in turn depends on 

the linearity of the switch inside that sample and hold. Other factors are offset of 

comparators, as well as gain and bandwidth of the amplifiers. 

           The linearity of the switch in the sample and hold as shown in Figure 5 may be 

adversely affected by ionizing radiation. It has been observed that with increased ionizing 

radiation, the standby current (off-state current) of an NMOS transistor (nFET) can 

increase several orders of magnitude. This effect not only tends to increase the static 

power consumption but also may degrade the functionality of the circuit. Figure 5 shows 

the switched capacitor network which uses transmission gate switch. The switch is not 

able to hold the value at the sampling capacitors due to off-state leakage which comes 

into effect after ionizing radiation exposure. This leads to the generation of incorrect 

residue voltages. These errors may be propagated in the whole pipeline hence decreasing 

the linearity of the ADC. Various mechanisms may be responsible for increased off state 
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leakage including:  1) leakage between source and drain terminals of an nFET (edge 

leakage) and 2) leakage underneath the isolation oxides between the drains and/or sources 

of adjacent nFETs.  

 

1.7 Redundant Signed Digit (RSD) architecture for the 1.5 bit gain stage. 

           In order to avoid errors due to comparator offset, an RSD architecture [1] is used. 

In this architecture, the offset requirements of a comparator are relaxed to a great extent. 

Figure 6 shows the block diagram of the RSD architecurture. This architecture generates 

two digital bits based on the comparison of the input voltage with a reference voltage. 

One bit forms the most significant bit (MSB) and the redundant bit is added with a 

redundant bit of previous stage in the digital error correction logic. In the RSD scheme, 

the input value is compared with a set of comparators where trip points (VH and VL as 

shown in the figure) are set at –Vref/4 (VL) and +Vref/4 (VH), where Vref corresponds 

to the reference voltage used for ADC. 

                                         

                                 Figure 6: Redundant Signed Digit ADC [4]            
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            The following residue voltages (Vres) are obtained with the help of different 

operations performed by switched capacitor network based on the comparator decision.  

Vres = 2(Vin) + Vref for Vin < -Vref/4 [Digital code obtained - 00]                            (1.3)                     

Vres  = 2(Vin) for (–Vref/4 < Vin < +Vref/4) [Digital code obtained - 01]                  (1.4) 

Vres = 2(Vin) - Vref for Vin > Vref/4 [Digital code obtained – 10]                             (1.5) 

Figure 6 shows a typical transfer curve for the RSD applicaton.  

 

Figure 7: RSD Architecture transfer function [4] 
 

           Consider a case where we have small amount of comparator offset, due to 

comparator offset the trip point of the comparator will change. As long as the comparator 

offset is within Vref/4 range, the transfer curve would not go outside the range (denoted 

by the box in Figure 7), hence producing residue voltages within range. 
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1.8 Operational Amplifier (Op-Amp) 

           The Op-Amp is an important block in the working of a 1.5 bit gain stage. Figure 8 

shows the telescopic cascode topology which is implemented in the gain stage. This 

topology is chosen as it has a large bandwidth.  

                                        

Figure 8: Telescopic cascade Op-amp [3, 5] 
 

           High gain of the order of 80 dB is achieved by making use of the cascode structure 

of PMOS transistors. A pair of Bipolar Junction Transistors (BJTs) is used as an input 

transistor differential pair because BJTs have higher transconductance and lower noise 

compared to MOSFETs.    
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1.9 Three bit flash 

          A three-bit flash is one of the most popular architectures, which gives a digital 

output in one clock cycle [1, 2]. It is one of the fastest architecture but the resolution is 

limited to the maximum of six bits.  

                      

Figure 9: Three bit Flash Architecture [1, 2] 
 

Figure 9 shows a block level diagram of a three bit flash which consists of series network 

of comparators. It also consists of a resistive ladder network which provides different 

reference levels to each of the comparator. The input signal is fed to the comparators, 

comparison is done with different comparison points and the thermometer code is 

obtained. Eight line to three line encoder is used to obtain three bit digital output code. 
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           This chapter explains the architecture of pipeline ADC used for the simulation of 

ionizing radiation effects. The effects of the ionizing radiation will be simulated on this 

pipeline architecture. The ADC will be exposed to different doses of ionizing radiation 

and degradation (if any) in the performance will be seen.  
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Chapter 2 

Ionizing Radiation Effects in MOS Devices. 

2.1 Introduction  

          Due to the continuing trend of aggressive semi-conductor scaling, the susceptibility 

of most deep sub-micron technologies to ionizing radiation has reduced. The primary 

reason for less susceptibility is extreme sensitivity of n-channel and p-channel transistors 

to ionizing radiation. Several studies conducted at Naval Research Laboratory in 1964 

showed that the primary mechanisms responsible for MOSFET performance degradation 

were the buildup of positive oxide charge [Not] in the gate oxide region along with the 

creation of interface traps at Si-SiO2 interface [6,7,8]. Reduction in gate oxide thickness 

(tox) and increase in channel and body doping has played an important role in improving 

the inherent radiation hardness of most deep sub–micron technologies. As the oxide 

thickness is scaled, it leads to the reduction of oxide charge trapping in the gate oxides, 

thus improving the radiation hardness [9]. Increased doping reduces the effect of oxide 

trapped charge on the channel surface potential, which also increases resistance to 

ionizing radiation damage. 

          The degrading effects of ionizing radiation on electronic circuits can be mitigated 

by using specializing techniques such as Radiation Hardening by Process (RHBP) and 

Radiation Hardening by Design (RHBD). RHBP has its disadvantages such as low yield, 

higher manufacturing costs, process instability [10]. Due to these disadvantages RHBD is 

typically preferred over RHBP. RHBD includes special layout techniques and design 
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approaches which enables the desired radiation hardness of an electronic circuit to be 

achieved in some technologies.       

 

2.2 Radiation Effects on MOS devices and Circuits                      

           This chapter primarily discusses Total Ionizing Dose (TID) effects on MOS 

devices and circuits. It discusses how and increase in the ionizing radiation dose level 

changes the characteristic of a transistor which may eventually alter the performance of a 

circuit at macro-level. 

 

2.2.1 Total Ionizing Dose: 

          Electron-hole pair (ehp) generation through ionizing radiation is the major cause of 

radiation damage in CMOS devices. The quantity of electron-hole pairs generated is 

directly proportional to the amount of energy transferred to target material [11]. The 

energy per unit mass which leads to the generation of electron-hole pairs is defined total 

ionizing dose. The RAD and GRAY are units which quantify TID. They denote the total 

amount of energy absorbed per unit mass of the target material.  Some minimum amount 

of energy is required for the process of ionization to occur. Experiments revealed that 

amount of energy required to create electron hole pairs in SiO2 is around 17eV +- 3eV 

[12].  

          After the generation of the electron- hole pairs, the transport mechanism of these 

ehps starts within the oxide. A fraction of the ehps generated recombine initially reducing 

the initial density of the total carriers. As the mobility of electrons is much more than that 
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of the holes, they are rapidly swept out of the oxide. The mobility of the holes in the 

oxide is generally of the order of 10-4 to 10-11 cm2 V-1S-1 whereas the mobility of electrons 

is of the order of 20 cm2V-1s-1 [13]. Some of the holes that do not recombine slowly travel 

towards the Si-SiO2 interface causing long term TID effects. 

           The processes that occur after the interaction of ionizing radiation with the target 

material shown in Figure 10 are as follows  

• Electron-hole pair (ehps) generation 

• Recombination of ehps 

• Hole transport 

• Hole trapping (oxide trapped charge) 

 

Figure 10 Processes related to the damage of CMOS devices due to TID [14] 



18 

 

2.3.1 Generation of electron-hole pairs: 

          As mentioned above, the generation of electron hole pairs occurs when ionizing 

radiation interacts with the solid material. For CMOS device, the most sensitive materials 

are the dielectrics (e.g., SiO2) that are in close proximity to an underlying semiconductor. 

The process of ionization generates ehps as photons or particles pass through dielectric. 

The amount of the ehp generated is typically expressed in terms linear energy transfer 

(LET). The unit of LET is MeV-cm2/g. It is function of particle’s mass, energy and 

density of the target solid. Total ionizing does is proportional to the LET of an ionizing 

particle.  

          Total Ionizing Dose (TID) affects lead to the generation of ehps in the target solid 

material. TID gives the total amount of energy deposited on a target material when it is 

placed under the effect of ionizing radiation. The SI unit of TID is Gray (Gy). Rad 

(radiation absorbed dose) is another common unit to quantify TID. One Rad is equal to 

100 ergs of ionizing energy deposited per gram of the target material.  

                                        1 Rad = 100 ergs/gm = 6.24 * 1013  eV/g [15]                       (2.1) 

 

2.3.2 Recombination:   

           Recombination is the process that follows the generation of ehps. After the 

generation of ehps, some fraction of the pairs recombines. The time available for this 

recombination process is very small as the electrons which are having very high mobility 

are very rapidly swept out of the oxide (or other dilectric). Hole yield is the term which is 

used to denote the density of the holes that escape the initial recombination. Hole yield is 
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dependent on the type of particle and the applied electric field. Hole yield is different for 

different types and energies of the incident radiation.  

 

2.3.3 Hole Transport 

           A fraction of the holes that do not recombine can travel towards the interface of 

Si-SiO2 by two major mechanisms. Polaron hopping and multiple trapping are the two 

processes by which holes can transport to Si-SiO2 [16, 17]. The positively charged hole 

can distort the local potential as it moves through the oxide. Polaron hopping is a process 

that occurs between shallow traps states separated by a very small distance, i.e., less than 

1 nm. Figure 11 shows the polaron hopping process that takes place in the oxide. 

 

Figure 11 Polaron hopping process due to applied field [18] 

 

In the phenomenon of multiple trapping, the transport of holes is mediated by traps. 

These processes are found to be highly dispersive in time. 
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2.3.4 Oxide trapped charge: 

           Vacancies of oxygen that exist in a SiO2 layer can trap holes. However it is 

process and field dependent phenomenon. The total amount of oxide charge formed in the 

oxide due to hole trapping can be approximated by the equation [19, 20, 21] 

                                           ∆Not = D * Kg* f y * f ot * t                                                     (2.2) 

where D is the total ionizing dose, Kg is the electron hole pair density for 1 rad of energy 

deposited in Sio2, fy is the hole yield, fot is the hole trapping efficiency, tox is the thickness 

of the oxide. Oxide trapped charge (Not) can alter the threshold voltage, Vt of a CMOS 

transistors. Threshold voltage shifts created by Not is often denoted at ∆Vt and can be 

approximated as [22] 

                                           ∆Vt = (-tox / εox ε0) *q *∆Not                                                    (2.3)                                 

where q is the magnitude of electronic charge, and the product εoxε0 is the permittivity of 

SiO2. As shown in the above equation, positive trapped charge leads to a negative shift in 

the threshold voltage of both the NMOS and PMOS transistors. For the NMOS transistor 

the buildup of positive charge increases its off state current. This increase in the off state 

current affects the functioning of the circuit at macro level. The switched capacitor circuit 

which makes use of a transmission gate switch (having NMOS and PMOS transistors) 

forms an integral part of the 1.5 bit gain stages. If the switch starts leaking in the hold 

phase of the clock due to the buildup of positive charge, we will eventually be sampling 

wrong value on the sampling capacitor which may lead to wrong generation of residue 

voltages which will propagate in the whole pipeline, hence deteriorating the performance. 
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           The effect of Not on the threshold voltage of a PMOS transistor is also a negative 

shift, which means it leads to an increase in the absolute value of Vt. This leads to less off 

state current in a PMOS transistor. Figure 12 shows an increase in the off state leakage 

current of NMOS transistor due to the trapping of positive charge in the gate oxide of a 

transistor. After irradiation, there is a negative shift (green color) in the characteristics of 

an NMOS transistor (Figure 12) showing increase in the leakage current for the same gate 

to source bias 

 

 

Figure 12: Oxide trapping leading to a change in Id vs Vgs characteristics [22] 

           From the equations given above, one may observe that the shift in the threshold 

voltage is directly proportional to the square of the oxide thickness. Thus, as the thickness 
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of the oxide is reduced, there is a less possibility for the formation of charge at the 

interface, thus the amount of the Vt shift will be reduced. 

 

2.3.5 Interface traps 

          The other process that occurs upon exposure to ionizing radiation is the generation 

of interface traps (Nit). These states are formed by the creation of dangling bonds at the 

interface and this state act as a trap for the free carriers in the underlying semiconductor. 

Interface traps lead to an increase in the sub-threshold swing of a transistor. The holes 

generated by the ionizing radiation interact with hydrogen containing defects in the oxide 

and generate H+ ions [23]. The generated H+ ions can drift to the Si-SiO2 interface. 

These protons react and form dangling bonds which are also known as Pb centers. Figure 

13 shows an effect on the characteristic of a NMOS and a PMOS transistor due to 

interface charge trapping. For both NMOS and PMOS transistor, the buildup of Nit 

typically leads to a decrease in the off-state current of a transistor. 
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   Figure 13 Interface trapping leading to a change in transfer characteristics [22] 

 

2.3.6 Field oxide effects 

           It has been shown that generation of Not and Nit leads to a change in the 

characteristics of a transistor. One important change is in the form of Vt-shifts. It has also 

been found that on thinner oxides, these problems are not as significant as Vt-shifts are 

proportional to the square of oxide thickness. The thinner the oxide the smaller the Vt-

shift. In most of the modern CMOS technologies, the gate oxide thickness scales. Hence 

the problem of charge trapping in the gate oxides is no longer a matter of great concern in 

most modern CMOS technologies. 

          Generally, the isolation field oxides in modern CMOS technologies are much 

thicker than the gate oxides and majority of the problems associated with the TID effects 

exist in these thick isolation oxides. 
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           Local oxidation of silicon (LOCOS) and Shallow Trench Isolation (STI) are the 

commonly used isolation oxide techniques in modern CMOS technologies. STI is the 

isolation technique used for technologies below 0.3 um.  

 

Figure 14 Two leakage paths in STI oxides due to TID effects [24] 

           Figure 14 shows the two leakage paths formed due to TID effects. Intra device 

leakage is the leakage which exists between the source and drain terminals of a device 

(Path 1).  It is due to the formation of positive charge at the Si-SiO2 interface which 

forms the minor channel for the flow of current between the source and drain of a 

transistor. The effects due to intra device leakage is observed in NMOS transistors as 

PMOS transistors do not undergo any change as there edges do not turn on when positive 
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charge is trapped. The off state leakage becomes severe for TID doses of 300 krad and 

above. 

          Device to device leakage also referred to as Inter device leakage is another type of 

off- leakage caused by the charge trapped in the STI. The leakage paths arise between the 

source or drain terminal of a NMOS transistor to an adjacent n-well of a PMOS transistor 

or another NMOS source or drain. Figure 15 shows the different leakage paths formed. It 

is caused by the formation of positive charge in the bottom of the STI. 

 

Figure 15 Different leakage paths due to charge trapping in STI [27]  

          Since we know ionizing radiation affects leads to the trapping of positive charge 

along the STI sidewall which decreases the Vt of the transistor and increases the off state 

current. Now we have to model this trapping of positive charge along the sidewall in 

Cadence so that we can simulate its effects on the performance of the ADC.   

 
 
 
 



26 

 

 
Chapter 3 

Leakage Modeling in NFET Switches 

 

          This chapter explains the steps that are used to model leakage in a NMOS transistor 

caused by ionizing radiation exposure. When an NMOS transistor in a transmission gate 

switch is in the on state, it tracks the input. A sampling switch needs to hold the sampled 

value in the hold phase for correct operation. Due to positive charge build-up in the field 

oxide due to ionizing radiation, current leakage between drain and source terminals can 

affect the hold value of the voltage on the capacitor, hence decreasing the linearity of the 

switch. 

 

3.1 Total Dose Modeling Methodology 

           In lieu of experimental irradiation characterization data, a combination of TCAD 

modeling, analytical methods and circuit simulations were used to assess post-irradiation 

degradation of NFET switches and the ADC architecture discussed previously. In this 

chapter we focus specifically on the modeling of degradation in NMOS transistors. 

 

3.2 Device Modeling 

          To model the NMOS transistor from the IBM 8HP process, which is the process 

used in the ADC design, two TCAD structures were constructed using the Silvaco tool, 

ATLAS. The first structure shown in Figure 16 represents a 2-D cross-section of the 

NMOS transistor, cut from drain to source along the transistor channel. The second 



27 

 

structure is also a 2-D cross section of the NMOS transistor, except the cutline is taken 

perpendicularly to the channel. This structure is used to estimate impact of total dose 

effects along the STI sidewalls in NMOS devices. 

          The structures were constructed using all available process information (device 

geometry, tox and doping). Then, utilizing ATLAS device simulation, structures were 

optimized to match the IDS vs. VGS characteristics of a Cadence AMS I-V simulation of 

the IBM 8HP transistors. Once IDS vs. VGS characteristics of the NMOS transistor agree 

with Cadence simulation, the optimized doping profile is used to create the NMOS STI 

sidewall structure. Once the two structures are calibrated, the radiation effects module 

(REM) was employed. REM is a self-consistent field/charge-trapping module, which 

models ionizing radiation-induced transport and non-uniform trapping of charge in the 

oxide. REM simulates the trapped charge build-up in the STI at user-defined dose stress 

step points and bias conditions. Using REM inside of ATLAS allows for a calculation of 

the effect total ionizing dose will have on the gate oxides and the NMOS STI sidewall.  
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Figure 16: Charge trapping along STI sidewall [26] 

 

          It has been discussed in the previous chapter that as the thickness of the gate oxide 

scales in modern CMOS technologies, charge trapping in gate oxide is no longer a big 

problem, and the majority of positive charge gets trapped along the STI sidewall. Figure 

16 shows the buildup of charge along the sidewall. 
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Figure 17: REM simulations showing build up of charge along STI sidewall 

           ATLAS allows structure files to be saved during simulation, containing position-

dependent electrical information. Structure files were saved prior to REM simulated 

irradiation and after each total dose stress step level. The results of TID modeling of the 

NMOS structures following REM simulation reveals no significant shift from pre-

irradiation threshold voltage for as drawn NMOS device. This is expected, as the device 

scaling has nearly-eliminated charge trapping in thin gate oxide [27]. However, charge 

trapping along STI sidewalls, resulting in activation of a “parasitic edge” transistor is an 

on-going concern for NMOS transistors [27]. Figure 17 shows build-up of positive fixed 

oxide charge along the STI sidewall for different radiation doses. Simulations of the 

structure, utilizing ATLAS with REM, reveal significant oxide trapped charge buildup 

along the STI sidewall. Moreover, the density increases monotonically as the dose level 
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is increased (see Figure 17).  From these structure files, a cut-line was obtained adjacent 

to the STI sidewall, in the silicon bulk, allowing extraction of the position-dependent ψs 

at each total dose level. Additionally, position-dependent doping bulk (NA) profile is 

obtained. As we increase simulated total dose and trap significant positive oxide charge, 

the surface potential (ψs) at the Si/SiO2 interface along the sidewall will increase.  This 

effect is shown in Figure 18.  

 

Figure 18: Simulated surface potential along STI sidewalls 

 

          From the surface potential at the interface, position dependent fixed oxide sheet 

charge densities along the STI sidewall can be calculated. 

          The increased off-state current is modeled as a collection of “parasitic edge” 

transistors that conduct current in parallel with the “as drawn” NMOS devices after 

irradiation. As it is a 2-D structure, we must correlate the results of oxide-trapped charge 

buildup in the STI to a corresponding current conduction along the STI sidewall. This 
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was accomplished by: 1) extracting structural electrical information from TCAD 

simulation structures 2) utilizing that information in analytical calculations resulting in 3) 

parameterization of the “parasitic edge” transistor for use in Cadence simulation. 

           The extracted total dose (D) and position (z) dependent ψs (Figure 26) is used to 

calculate the flatband voltage (VFB) using the following equation, valid when no gate bias 

is applied (i.e. VGB=0V) [28] 

         ( ) ( ) ( ) ( ) ( ) ( )( ) tfs zzD
tssFB ezDzzDzDV φφψ
φψγψ

2,,,, −
++=                 (3.1) 

where φt is the thermal voltage, φF(z) is the Fermi potential, γ(z) = 2qεSi NA z( ) Cox z( ) 

and Cox z( )= εox tox z( )=εox 2πz θ
360

. Theta (θ) is defined as the STI sidewall angle. 

Furthermore, position-dependent threshold voltage (VT) can be calculated using the 

equation: 

                                VT D,z( )=VFB D,z( )+2φ f z( )+γ z( ) 2φ f z( )                                    (3.2) 

           Utilizing the equations and the TCAD structures three parameters are now known: 

position-dependent tOX and NA as well as position and total dose dependent VT. 
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Figure 19: Changing Vt along STI sidewall 

  

Figure 19 shows decreasing VT with increasing TID. The primary reason for the decrease 

in VT is the generation of positive charge along the STI sidewall. This decrease in VT 

with increasing TID is the primary the reason for leakage in the NMOS transistor which 

hampers the performance of the circuit at the macro-level. 

 

3.3 Radiation Enabled Circuit Simulation 

           For BSIM4 compact transistor models, VT, NA and tOX can be directly defined for a 

MOSFET. However, all three parameters change along the depth, z. along the STI 

sidewall. Using a similar methodology as previously published, the parasitic edge 

transistor which is formed along the STI sidewall due to ionizing radiation is divided into 

seven incremental “parasitic edge” transistors of nominal gate width Wi=20nm [29, 30]. 

Now, for each of the seven incremental transistors NAi, tOXi and VTi can be determined 
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where VTi is total dose dependent parameter for each incremental transistor. 

 

                

 

Table 3: Incremental tox and Na with increasing sidewall width 

          Table 3 shows the different tox and NA values taken for the seven parasitic edge 

transistors. As we move along the sidewall tox increases and the doping profile NA 

changes along the STI sidewall. In Cadence, a new NMOS device sub-cell is constructed 

that contains the “as-drawn” devices with seven incremental “parasitic edge” transistors 

placed in parallel. Figure 20 shows the transistor level modeling of the seven parasitic 

edge transistors. Voltage controlled voltage sources (VCVS) are used to provide the same 

biasing conditions to parasitic edge transistors as that of the ‘as drawn’ transistor. The 

minimum width required for the parasitic edge transistors is 20 nm and length remaining 

the same as that of ‘as drawn’ transistor. In order to overcome the effects due to narrow 

channel, the minimum width taken for each parasitic edge transistor is 1um. Thus the 

total amount of leakage current due to parasitic edge transistors is divided by the factor 
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(1um / 20nm) of 50 so that we could have the leakage current solely due to the presence 

of parasitic transistors original width. The leakage current obtained as a result of ionizing 

radiation is added to the main ‘as drawn’ NMOS transistor with the help of current 

controlled current source (CCCS). 

 

Figure 20: DGNFET with TID enabled Sub-Circuit 

 

A new BSIM4 model is defined for the “parasitic edge” transistor, with the ability to 

instance NA, tOX and VT parameters for substitution of NAi , tOXi and VTi. Successive 

Cadence AMS simulations that use VTi values at a known total dose stress step level 

effectively simulates radiation damage and leakage in the sub-cell for a given TID level. 

As higher stress steps are reached, many of the incremental transistors conduct significant 

IDS current, as VTi becomes less than the “as-drawn” VT. 

Figure 21 shows the characteristics of newly modified NMOS devices when subjected to 

500 Krad of TID with different biasing across Vds. 
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Figure 21: Increase in the off-state current for 500 Krad for different Vds 

 

          The simulation results show the there is a tremendous increase in the off-state 

current depending on the voltage between the drain and source terminals. If Vds is high, 

off-state current is quite large whereas if the voltage between drain and source terminals 

goes down to 100mV, off-state current is fairly low. 

 

           For the purpose of this thesis, the maximum peak to peak swing tolerable by the 

ADC is 1.2 V P-P differentials. Single ended swing will be 600 mV P-P. Hence the drain 

and source terminals maximum voltage difference in the worst case scenario is 600 mV 

which accounts for a leakage current of around 10 nA between the two terminals. Chapter 

4 gives us the simulation specifications and the circuit level modeling results obtained as 

a result of leakage introduced due to ionizing radiation effects in the NMOS devices. 
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Chapter 4 

Simulation of ionizing radiation effects in an eleven bit pipeline ADC 

 

           A pipeline ADC is composed of several 1.5 bit gain stages in series. The accuracy 

of the pipeline ADC depends on the performance of individual 1.5 bit gain stage. If the 

performance of 1.5 bit gains stage deteriorates it will affect the accuracy of the complete 

pipeline. 

 

4.1 Switched Capacitor Network 

           The switched capacitor network in 1.5 bit gain stage is a very important block 

which determines the linearity of the gain stage. Switches used in the sample and hold 

network of the gain stage needs to be ‘N’ bit linear if the required accuracy of the gain 

stage is ‘N’ bits. If the switches in the sample and hold network of the gain stage are not 

‘N’ bit linear, the gain stage linearity will decrease which in turn will decrease the 

linearity of the whole pipeline. 

 

          A leaky switch in the front end sample and hold is a threat to the accuracy of the 

ADC. Leakage in a switch is tolerable when we move down the pipeline as the required 

linearity decreases by 6 dB for every stage. Linearity of a switch can directly be related to 

the leakage levels in a transistor. High leakage levels correspond to more degradation in 

linearity. 
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           As discussed in the previous chapter ionizing radiation leads to the formation of 

positive charge along the STI sidewall. This trapped charge increases the off state current 

might lead to the wrong voltage values at the sampling capacitors. Modeling different 

amount of leakages in a switch due to different doses of radiation and comparing the 

performance of a gain stage and hence on an eleven bit pipeline analog to digital 

converter with and without leakage is the objective of this thesis. 

 

           The gain stage with and without leaky switch is implemented in the pipeline 

structure and the performance is quantified based on different doses of radiation for the 

given operating specifications. Figure 22 shows the switched capacitor network of the 1.5 

bit gain stage. 

                                       

Figure 22: Switched capacitor network 
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           The amount of leakage current due to ionizing radiation between the two terminals 

in the switch is largely dependent on the difference between drain and source voltage of 

the NMOS transistor when it is in the off state.  

 

          As discussed in the previous chapter, leakage current increases exponentially in the 

off state when drain to source voltage is increased from 0 to 2.5 volts. Simulations were 

performed on the circuit shown in Figure 22. Differential input is applied to the circuit in 

Figure 22. In order to see the drooping effects in the off state of a switch in the open loop 

configuration, a special test condition is created which is not from the required 

specifications. To be able to see maximum amount of degradation, a single ended input 

swing of the magnitude 2.5 volts at a sampling frequency of 5 MHz is applied to 

switched capacitor network. This test condition provides the worst case biasing to the 

switched capacitor network so that maximum leakage can occur through the switch. 

 

           In the sampling phase of the clock (when clock is high and switch is on), the 

switch is tracking the input signal in a perfect manner as shown in Figure 23. When the 

switch is transformed from on state to off state, a test condition which is created increases 

the voltage difference between drain and source terminal in the off state to 2.5 volts so 

that we can have leakage current of the order of 18 uA between the source and drain 

terminals of the NMOS transistor. Sampling frequency is also reduced to 5 MHz so that 

we can have more amount of time for the switch to leak. This large amount of leakage 
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through the switch causes a lot of degradation in the hold phase. The switch is not able to 

hold the value on to the sampling capacitor in the open loop configuration and leaks. 

          Figure 23 shows a major droop in the off state of a switched capacitor network 

when used in the open loop configuration. 

 

 

Figure 23: Test results for a special condition 

 

As we always make use of the circuit in the differential manner, the output voltage when 

taken differentially in the hold phase of the clock is degraded by an amount of 166.6 mV 

which is a very big degradation. 
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          When the same circuit shown in Figure 22 is tested in an open loop configuration 

with a sampling frequency of 162.5 MHz (which is the original specification) and with a 

single ended swing of 600 mV volts, we would not be seeing a big amount of droop in 

the hold phase as the amount of leakage between the two terminals is of the order of 10 

nA and also leakage time available for the switch is also less which will keep the output 

voltage intact in the hold phase of the clock. 

 

4.2 Different sub-blocks affecting performance 

 

           The 1.5 bit gain stage is an integral part of pipeline ADC. If some degradation is 

observed in the working of a switched capacitor network which is an integral part of the 

single 1.5 bit gain stage, it is likely there would be some degradation seen at the whole 

pipeline ADC level as the same 1.5 bit gain stage is repeated in the pipeline ADC.  

 

          The three bit flash which is being used in the backend pipeline do not have any 

switched capacitor network as the input is given directly to the comparators, hence three 

bit flash will behave as expected without any degradation. 

    

         The op-amp, which is an integral part of the 1.5 bit gain stage do not play any role 

in degrading the performance of the circuit. As we have discussed in the previous 

chapters ionizing radiation effects introduces leakage in the NFETs only. There is no 

leakage introduced in the PFETs because their edges do not turn on when exposed to 
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ionizing radiation as their body material is N-type. From the topology of the op-amp as 

already discussed in chapter 1, there is no NFET used in the design. BJT (NPN’s) and 

PFETs are used.  

 

           The digital blocks used in the digital correction logic of the ADC (registers, full 

adders) used in the design do not play any major role in degrading the performance as 

such small amount of leakage due to ionizing radiation do not have any effect on the 

performance of the digital circuits at macro level. 

 

          The comparator is also an important block which could affect the performance of 

the circuit at macro level by giving out the wrong decisions which could hamper the 

complete functionality of the circuit. Ionizing radiation simulations on comparator are 

beyond the scope of this thesis.  

 

4.3 Simulation results for the given specifications 

           For the specifications of the ADC as mentioned in chapter 1, the worst case Vds is 

of the order of 600 mV single ended as peak to peak swing for the ADC is 1.2 Volts. 

Also the sampling frequency is 325 MHz. The leakage current for this Vds is only of the 

order of 9-10 nAmps for the maximum TID of 500 krads. 
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Figure 24: Switched capacitor network implementation in closed loop 

 

            The switched capacitor network is implemented in the closed loop configuration 

along with op-amp in negative feedback as shown in Figure 24. The simulations are 

performed for the given specifications of the ADC. As we know from the structure of the 

clocks as discussed in chapter 1, the non-overlapping period between Φ1d and Φ2d 

which are sampling and hold clocks respectively is 60 ps which is extremely small to see 

any major drooping. In the hold phase (Φ2d) for the network 1 as shown in Figure 24, the 

op-amp is in a closed loop configuration and supplies current of very a high magnitude 

which makes the closed loop system stable. Even if leakage of the order of few nA occurs 

in the switches due to radiation effects, the op-amp high output current nullifies the 

leakage and keeps the output voltage intact. 
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          The same simulations are also performed with the much lower sampling frequency 

of the order of 5 MHz along with doubling the signal swing so that more leakage could 

occur. It was observed that the simulation results with and without leaky switches are 

almost same. The reason being, even if we have very large amount of off time for the 

droop to happen if the frequency is lowered, the non-overlapping period between the two 

clocks is only 60 ps. In the off state, switched capacitor network comes in the closed loop 

configuration as it will happen in all the cases and op-amp will provide large amount of 

current nullifying any degrading affects due to small amount of leakage in the switches. 

Figure 25 shows the simulation results of a single 1.5 bit gain stage with the usage of 

radiation models. We are getting an SFDR of around 64db with the usage of radiation 

models. SFDR number almost remains same even if the leaky switches are removed. 
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Figure 25: SFDR plots for special test condition of 1.5 bit gain stage 

 

           When simulations are performed to calculate the SNDR (Signal to noise and 

distortion ratio) of the 1.5 bit gain stage for different doses of radiation for the actual 

specifications of the ADC as described in chapter 1, no difference in the performance is 

seen for different doses of ionizing radiation as the leakage current is too small to cause 

any major degradation. We will have maximum amount of leakage for the worst case Vds 

of 600 mV which would not be the input pattern always for given sampling frequency 

and for given input bandwidth. Also due to the fact that the RSD algorithm performs 

many different operations of adding and subtracting the reference voltages from the input 
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voltage as explained in chapter 1, we would be passing out the residue voltages to the 

next stage in series which will be much lesser in swing, hence less amount of leakage and 

the integrity of the signal is maintained in the pipeline. 

 

          Figure 26 shows the simulation results of the complete eleven bit pipeline ADC. 

The effective number of bits (ENOB) value is constant for different doses of radiation. 

            

Figure 26: TID vs ENOB plot  

This figure clearly shows that the ADC designed in IBM 8HP 130nm process for the 

given specifications is not prone to performance degradation under the ionizing radiation 

effects. 

 
 



46 

 

Chapter 5 

Conclusion 

 

          A eleven bit pipeline ADC for given specifications is designed in an IBM 8HP 

130nm process for NASA. It is simulated with and without the effects of ionizing 

radiation. A unique methodology is incorporated for simulating ionizing radiation effects 

at transistor level. 

          When the ADC is simulated without any ionizing radiation effects, an ENOB of 

9.7 is obtained. Simulations were performed for different doses of radiation. When an 

ADC is exposed to different doses of radiations ranging from 0 krads to 500 krads, it was 

observed that the increased level of TID doses leads to an increase in the off state leakage 

current of an NFET (which is an integral part of switch) from few nA to 18 uA. The high 

amount of leakage in the switch could be a deteriorating factor in the performance of a 

circuit. It was found that the primary reason for an exponential increase in the leakage 

current is the trapping of positive charge along the STI sidewall region. It was also 

observed that the amount of charge trapped in the gate oxide is very less. Charge trapping 

in gate oxides did not cause any threshold voltage shifts in the gate oxide region. 

Threshold voltage shifts were only observed along STI sidewall which was primarily the 

reason for leakage in the NFET. 
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          When the complete ADC is simulated with the radiation models against the given 

specifications, it was observed that the leakage in the switches of the gain stages were of 

the order of only few nano-amperes. The sampling speed of the ADC was very fast, 

because of which there was no difference in the value of voltage at the sampling 

capacitors with and without leaky switches. Due to the fact that we are sampling the 

correct voltage at the sampling capacitors for all levels of doses, we did not see any 

degradation in the performance of the whole ADC at macro level. 

           There are many other sub-blocks of the ADC like op-amp, different digital blocks 

which are also not susceptible to any performance degradation due of the ionizing 

radiation affects. Simulation results showed almost same ENOB number of 9.7 when an 

ADC is simulated for different doses of radiation 

 

          Hence, we arrive at a conclusion that the eleven bit 325 MSPS ADC fabricated in 

an IBM 8HP process for NASA is a radiation hard design up to a TID level of 500 Krads 

for the given specifications. 
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