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ABSTRACT

Distributed inference has applications in a wide range of fields such as

source localization, target detection, environment monitoring, and healthcare.

In this dissertation, distributed inference schemes which use bounded transmit

power are considered. The performance of the proposed schemes are studied

for a variety of inference problems.

In the first part of the dissertation, a distributed detection scheme

where the sensors transmit with constant modulus signals over a Gaussian

multiple access channel is considered. The deflection coefficient of the pro-

posed scheme is shown to depend on the characteristic function of the sensing

noise, and the error exponent for the system is derived using large devia-

tion theory. Optimization of the deflection coefficient and error exponent are

considered with respect to a transmission phase parameter for a variety of

sensing noise distributions including impulsive ones. The proposed scheme is

also favorably compared with existing amplify-and-forward (AF) and detect-

and-forward (DF) schemes. The effect of fading is shown to be detrimental

to the detection performance and simulations are provided to corroborate the

analytical results.

The second part of the dissertation studies a distributed inference

scheme which uses bounded transmission functions over a Gaussian multi-

ple access channel. The conditions on the transmission functions under which

consistent estimation and reliable detection are possible is characterized. For

the distributed estimation problem, an estimation scheme that uses bounded

transmission functions is proved to be strongly consistent provided that the

variance of the noise samples are bounded and that the transmission function
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is one-to-one. The proposed estimation scheme is compared with the amplify

and forward technique and its robustness to impulsive sensing noise distribu-

tions is highlighted. It is also shown that bounded transmissions suffer from

inconsistent estimates if the sensing noise variance goes to infinity. For the

distributed detection problem, similar results are obtained by studying the

deflection coefficient. Simulations corroborate our analytical results.

In the third part of this dissertation, the problem of estimating the

average of samples distributed at the nodes of a sensor network is considered.

A distributed average consensus algorithm in which every sensor transmits

with bounded peak power is proposed. In the presence of communication

noise, it is shown that the nodes reach consensus asymptotically to a finite

random variable whose expectation is the desired sample average of the initial

observations with a variance that depends on the step size of the algorithm

and the variance of the communication noise. The asymptotic performance is

characterized by deriving the asymptotic covariance matrix using results from

stochastic approximation theory. It is shown that using bounded transmissions

results in slower convergence compared to the linear consensus algorithm based

on the Laplacian heuristic. Simulations corroborate our analytical findings.

Finally, a robust distributed average consensus algorithm in which ev-

ery sensor performs a nonlinear processing at the receiver is proposed. It is

shown that non-linearity at the receiver nodes makes the algorithm robust to

a wide range of channel noise distributions including the impulsive ones. It is

shown that the nodes reach consensus asymptotically and similar results are

obtained as in the case of transmit non-linearity. Simulations corroborate our

analytical findings and highlight the robustness of the proposed algorithm.
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Chapter 1

Introduction

1.1 Sensor Networks

Sensor networks (SNs) are designed to observe and collect information about a

phenomenon of interest by using sensor nodes deployed in space. The configu-

ration of the network depends on the application requirements such as health,

military and home applications [1–3]. The nodes in a sensor network typi-

cally have sensing, processing and communication capabilities, that can help

make intelligent decisions. Depending on the nature of the application and the

types of sensors, a sensor network can be designed to observe a single physical

phenomenon, or a single network can be designed to collect information from

various physical conditions. Recent advancements in electronics and hardware

technology have enabled the development of small, low cost, low power sen-

sors. These devices have the capability of wireless communications and some

of them are capable of locomotion. These features make the sensor networks

suitable for a variety of applications discussed in Section 1.1.1.

The size of sensor nodes can range from being extremely small (of

the order of cubic-millimetre) called as the smart-dust [4] to large platforms

collecting telemetry information in a aircraft. Depending on how the sensor

nodes are used and deployed, their capabilities may vary widely. Extremely

small sensors have limited memory capacity [1], they may be able to do sensing

but may not have sophisticated signal processing capabilities. Larger sensor

nodes that are supported by a more complex infrastructure can have more

sophisticated and different types of sensors. These can also be supported by

larger computers with better computing capacities [5].
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Wireless sensor networks (WSNs) differ fundamentally from general

data networks such as the internet, and there are challenging problems in

designing such networks. Some of the issues briefly follow. The local sensor

observations need to be processed (compressed) before they are sent to the

fusion center for joint processing. This arises for example, if the range of the

observed data at local sensors is large, or the channel capacity between sensors

and the fusion center is limited. If, on the other hand, the raw data observed

at local sensors are accessible in their entirety at the fusion center, the problem

of studying the physical phenomenon could be solved by one of the techniques

of classical statistical inference [6, 7]. The system should operate with the

stringent power constraints imposed by the WSN. The communication among

the sensors and between the sensors and the fusion center should happen

through the unreliable wireless channels.

1.1.1 Applications of Sensor Networks

Numerous applications of SNs have been discussed in detail in [2]. Due to the

advances in the past decade in microelectronics, sensing, analog and digital

signal processing, wireless communications, and networking, the design chal-

lenges are being tackled and WSNs are expected to have significant impact on

lives of people in the twenty-first century. WSNs can be an integral part of

military command, control, communications, computing, intelligence, surveil-

lance, reconnaissance and targeting systems. There are many environmental

applications such as forest fire detection, bio-complexity mapping of the envi-

ronment, flood detection and precision agriculture etc. WSNs have significant

number of health applications such as tele-monitoring of human physiological

data, tracking and monitoring doctors and patients inside a hospital drug ad-

ministration in hospitals. These applications involve identification of certain

2



signal sources that may be characteristics of hazardous material, monitoring

chemicals near a volcano, temperatures in a furnace, shifts in undersea tec-

tonic plates, or explosives in the air, to mention a few. Thus, SNs provide

a safe and low-cost inference alternative. Interesting commercial applications

include environmental control in office buildings, interactive museums, detect-

ing and monitoring car thefts, managing inventory control and vehicle tracking

and detection. Sensor networks can also be used for traffic control [8]. They

can be used to inform drivers about the areas of congestion, and to divert

the traffic to increase the efficiency of the roadways. They can be used to

monitor roads for accidents and stoppages. SNs can be deployed to manage

parking areas and to detect illegal use of parking areas. There are applications

in manufacturing, transportation, and home appliances in which multiple de-

cision makers arise naturally. Therefore, the study and design of distributed

methods for distributed inference in WSNs becomes an important subject.

1.1.2 Architecture of Sensor Networks

There are three different architectures for sensor networks; 1). Ad-hoc Net-

works, 2). Hierarchical Networks and 3). Conventional Sensor Networks.

These are briefly discussed here.

1.1.2.1 Ad-hoc Networks

In network literature, ad-hoc networks (Figure 1.1) refer to devices placed to

form a network without a controlling base station. These devices discover each

other and cooperate intelligently in order to function as a network. The ad-

hoc sensor networks are constructed in the same manner. Low-power sensors

are placed in an observation field and the sensor network exists without a

fusion center. Algorithms are developed for diverse applications such as data

routing, collaborative inference and distributed signal processing, all subject

3
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Figure 1.1: Ad-hoc sensor network without fusion center.

to a strict power constraint. Data-transmission between sensors in an ad-hoc

network is typically achieved using multi-hop routing, i.e., sensors in between

the source and destination are used to route the data between the transmitter

and the receiver. These sensors behave as relays in addition to their functions

as sensors [5].

Connectivity between sensors is a design issue in ad-hoc networks. An

ad-hoc network consists of nodes which share a common wireless medium.

Signals which are intended for a given receiver node can cause interference to

the other receiver nodes. This can potentially reduce the signal to noise ratio

(SNR) of the other receiver nodes. At the same time, each transmitter’s (sen-

sor node’s) power needs to be sufficiently high enough to reach the intended

receivers, while causing minimum interference on other receivers (nodes) shar-

ing the same channel [9–13]. For instance, in an ad-hoc WSN, the nodes in

the network are assumed to co-operate in routing each other’s packets, each

sensor node should transmit with sufficient power to ensure connectivity in the

network. Considering this problem, [10] derives an expression for the critical
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Figure 1.2: Hierarchical model: Data passes through multiple sensors.

power that is necessary for a node to transmit in order to guarantee that the

network is connected almost surely when the number of nodes is large. For a

unit bandwidth, the maximum rate at which reliable data transfer can happen

between a given set of transmitters and receivers of an ad-hoc network is called

as the network. Capacity of wireless ad-hoc networks for different conditions

are analyzed in [14–19].

1.1.2.2 Hierarchical Networks

The second type of configuration used in SNs is called the hierarchical config-

uration (See Figure 1.2). In this setting, in addition to observing data, sensors

collect decisions from other sensors [20, 20, 21]. They jointly process all this

information to arrive at their own decisions and pass along their decision to

subsequent sensors. This type of architecture is used in sequential detection

and sequential estimation [22, 23].
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1.1.2.3 Conventional Sensor Networks

In conventional sensor networks, sensors observe data and transmit them to

a fusion center (in Figure 1.3). Instead of transmitting the raw observations

sensed, the sensors use their signal processing abilities to locally carry out sim-

ple computations and transmit only the required and thus partially processed

data to the FC which performs the final task of detection or estimation [2].

The transmissions between sensors and the FC may happen over orthogonal

or multiple-access channels [5]. When the transmissions are orthogonal, the

transmissions from each sensor reach the FC separately corrupted by an ad-

ditive noise. There is no interference between transmitted signals. Therefore,

the fusion center can process the transmitted signals independently. On the

other hand, when the communications happen over multiple-access channels,

the transmitted signals from the sensors are added (incoherently when there

is time delay involved) by the channel and the FC can not have access to the

individual data from the sensors [5]. The disadvantage of orthogonal channels

is that the bandwidth scales linearly with the number of sensors, whereas,

when the channels are multiple-access, transmissions are simultaneous and

in the same frequency band, keeping the utilized bandwidth independent of

the number of sensors in the sensor network. For this multiple access chan-

nel model, it has been shown in [24] that a simple amplify-and-forward (AF)

scheme for analog signals is asymptotically optimal over AWGN channels. It

has also been shown in a distributed estimation context, that if the fading

channels are zero-mean, having no channel state information at the sensors re-

sults in poor performance [25]. Sensor networks that use this architecture are

typically used for collaborative signal processing applications like joint estima-

tion, distributed detection, histogram estimation, etc. Due to the presence of
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Figure 1.3: Sensor network with a fusion center.

multiple sensors, statistical methods perform very well since the number of ob-

servations can be very large. Histogram estimation using type based multiple

access (TBMA) is introduced in [26].

Transmissions from the sensors to the FC can be analog or digital [5].

The digital method consists of quantizing the sensed data and then trans-

mitting the data digitally over a rate-constrained channel [27]. In this case,

the required channel bandwidth is quantified by the number of bits being

transmitted between the sensors and the fusion center. When the number of

quantization levels is high to reduce the loss of information, the bandwidth

requirements increases for transmitting the information digitally. If the band-

width is limited, analog methods of transmissions may be used. One such

analog method consists of amplifying and then forwarding the sensed data to

the FC, while imposing a power constraint [25]. The transmissions can be

appropriately pulse-shaped and amplitude modulated to consume finite band-

width. The major drawback of the amplify-and-forward scheme is that the

transmit power depends on the sensing noise realizations and therefore may
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not be bounded. One solution to this problem is the use of phase modulation

techniques with constant modulus transmissions from the sensors. Another

solution is to map the sensed observations through a bounded function before

transmission so that the transmit power is always constrained.

1.1.3 Design Challenges in WSNs

The three major design principles for energy-constrained WSNs are summa-

rized below (please see [1, 28–32] for detailed discussions).

1. Low Power Constraints: Exploit low power hardware, and external

assets, to the greatest extent possible.

2. Communication Constraints: Optimize distributed detection and

estimation network tasks while minimizing the use of communications.

3. Network Constraints: Support network specific goals while minimizing

idle listening, network set-up, and network maintenance.

One of the most important constraints that is faced when dealing with

autonomous nodes is that these nodes are severely power limited [1,2]. In most

cases, the nodes are supplied with power with batteries when deployed and

these batteries cannot be recharged or replaced. Typically energy consumption

depends on the state of the sensor node, such as transmit, receive, idle etc. For

instance, it is shown in [33] that the transceiver of the sensor node consumes

more power in receive mode than in transmit mode. Since these nodes may

be deployed in remote regions, it is preferred that they stay powered for large

periods of time before the nodes are replaced. Therefore, whenever nodes are

autonomously deployed, the algorithms used on the nodes have to be designed

to consume minimal power so that the battery life can be maximized. It should

be noted here that while computing operations do consume power, maximum

power is consumed by the transceivers on the nodes. Hence, there is a need
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for efficient multi-access schemes to maximize transfer of information subject

to strict power constraints. When the sensors are deployed individually, they

can perform only simple computations and perform poorly at sensing. How-

ever, when deployed in large numbers, they can collaborate among themselves

to form intelligent networks and complicated tasks using statistical inference

could be accomplished. A number of useful references for various other design

issues such time synchronization, node localization, medium access control,

hardware and routing in an energy constrained WSN, are enumerated in [1].

In this work, we consider several distributed inference problems with

bounded transmit power from the sensors. Statistical inference can be broadly

classified into hypothesis testing and estimation. Accordingly, there are two

areas of distributed signal processing: Distributed detection and Distributed

estimation. In what follows, a brief overview of these two areas with some of

the relevant literature is described.

1.2 Distributed Detection

In a classical centralized detection scheme, the local sensors are assumed to

communicate their observations to a central processor that performs the task

of optimal detection using conventional statistical techniques. This is an ideal

scenario without loss of information and noise free communication is assumed

between the sensors and the central processor. In a distributed detection sys-

tem, generally, the raw observations are processed (quantized and channel

coded in case of digital transmissions) at the local sensors before they are

transmitted to the fusion center. This results in loss of information (often

referred to as lossy compression) at the local sensors and further loss could

occur if the transmission is over a fading/noisy channel. For these reasons,

the performance of a distributed detection system will always be suboptimal
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Figure 1.4: Distributed detection: Parallel topology with the fusion center

compared to the centralized detection system. However, there are significant

advantages of the distributed detection such as reduced bandwidth require-

ment (due to lossy compression), increased reliability, and reduced cost. In

addition, due to the relatively low cost of sensors, the availability of high speed

communication networks, and increased computational capability, distributed

detection has become a topic of great research interest [34] in the last two

decades. There are four different topologies used for distributed detection: 1).

Parallel topology, 2). Serial topology, 3). Tree topology, and 4). Multiple

access topology [22, 35–38].

Figure 1.4 shows a simple parallel topology with a fusion center. In this

study, we are concerned with the binary hypothesis testing problem for the

detection problem. There are basically L sensors in this system. Each sensor

observes the phenomenon and independently takes its decision based on its

local decision rule. Here, x1, . . . , xL are the observations of the L sensors

and u1, . . . , uL are their corresponding decisions. Each sensor then transmits
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its decision to the fusion center over a dedicated orthogonal channel and n1,

. . . , nL are the additive noise samples associated with the reception of u1, . . . ,

uL respectively. Here it is clear that L parallel channels are needed. So, as

the number of sensors increase, the bandwidth requirements for the successful

operation of the network would increase greatly. The fusion center’s task is

to decide which one of the hypothesis is true by jointly processing the noisy

versions of the decisions u1, . . . , uL received across the L branches. In a

more general setting, u1, . . . , uL could be functions of x1, . . . , xL respectively

instead of the binary decisions of the individual sensors. Note that there is

information loss in this general setting as well, and therefore the performance

at the FC will be sub-optimal compared to the centralized set-up. Figure 1.5

shows a DD system without a fusion center. All the sensors observe a common

phenomenon and make local decisions about the phenomenon. There is no task

of fusion in this setting, whereas costs of decision making at different sensors

are assumed to be coupled and a system wide optimization is performed based

on the coupled cost function [22].
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Figure 1.6: Serial topology

Figure 1.6 shows the Serial Topology for a distributed detection system.

In this setting, the decisions of the individual sensors are combined in a serial

manner. For instance, consider the case of only two sensors. First sensor

1 observes x1 and takes a decision u1. This decision is given to sensor 2

which takes the final decision by combining its own observation x2 and the

decision made by x1. Figure 1.7 shows the tree topology for a DD system.

The functioning of a tree network is similar to a serial network, but a given

sensor receives decisions from more than one sensor. A DD system in which

sensors communicate their processed observations to the FC over a multiple

access channel is shown in Figure 1.8.

For detailed discussions and design of optimal decision rules for the first

three topologies please see [22,35,39–41] and for the multiple access topology

please see [36–38, 42–44].

When the prior probabilities of the hypothesis are known, Bayesian

formulation is employed for detection. Bayesian formulation is a strategy

to minimize the probability of error at the fusion center. When the prior
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Figure 1.8: Distributed detection: Multiple access topology with the fusion
center

probabilities are not known, for instance in case of a target detection, the

Neyman-Pearson formulation is employed. Neyman-Pearson is a strategy to

maximize the probability of detection (minimize probability of miss) subject

to a false alarm probability constraint. The probability of false alarm is also
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called as the Type I error probability and probability of miss is also called as

Type II error probability [6].

Some useful metrics to measure the performance of a DD system are

described next. Under Bayesian hypothesis testing, the overall probability of

error at the fusion center is an important performance metric, and it generally

depends on fusion rule, channel SNR, the performance indices of the individual

sensors, noise variance at the fusion center, the channel parameters between

sensors and the fusion center. Under the Neyman-Pearson formulation, for

a given probability of false alarm at the fusion center, the probability of de-

tection (or the probability of miss PM) characterizes the over all detection

capability of the system. In a sensor network with a large number of sensors,

for any reasonable collection of transmission strategies and a fusion rule, the

probability of error Pe at the fusion center goes to zero exponentially fast as

L tends to infinity [35]. For example, with conditional independence of sensor

observations, using identical transmission mappings for all the sensor nodes is

asymptotically optimal [45]. For such a network, an important characteristic

of interest is how fast the probability of error at the fusion center goes to zero.

This is called as the error exponent of the sensor network [35, 46]. In fact the

probability of error can be approximated using the error exponent [47, pp. 10].

1.3 Distributed Estimation

Distributed estimation with multiple sensors is required in areas such as envi-

ronmental monitoring and remote sensing. For distributed estimation, there

are two major types of topologies used: 1). Parallel topology, 2). Multiple

access topology [22,38,48] as shown in Figures 1.9 and 1.10. In a distributed es-

timation set up, sensors observe an unknown physical phenomenon (indicated

as θ) embedded in noise. The sensors send the processed versions (indicated
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as f(xi)) of these observations to the FC over orthogonal channels as shown

in Figure 1.9 or over a multiple access channel as shown in Figure 1.10. Here

ρ is the scale factor which controls the per-sensor transmit power. The FC

has to estimate the unknown phenomenon θ by jointly processing the signals

received from the sensors.

The authors in [49,50] considered the estimation of a random parame-

ter with a large number of local sensor observations. Basically, the distributed

sensors observe the data, processes them, (quantize and channel code in case

of digital transmissions) and then transmit their processed observations to a

fusion center over the fading wireless channels. The task of the fusion center

is to combine the data from the sensors to give an estimate of the parameter

under consideration. For the case of i.i.d. observations with different noise

variances at different sensors and with i.i.d. fading channels, between the sen-

sors and the fusion center, it is shown in [51] that the full estimation diversity

(on the order of the number of sensor nodes) can be achieved even with simple

equal power transmission strategies.

Strict power constraints must be placed on the sensor nodes to ensure

the maximum lifetime of the batteries. As mentioned earlier, one method is

to use amplify-and-forward with a total power constraint and it is asymp-

totically optimal [24]. In [52], a power scheduling strategy is developed for

decentralized estimation in wireless sensor networks, when sensor nodes adopt

a uniform randomized quantization scheme with an uncoded quadrature am-

plitude modulation scheme. The optimal quantization level and transmission

is shown to be a function of channel path loss and the local observation noise

level.
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Figure 1.9: Distributed estimation: Parallel topology with the fusion center

For a bandwidth constrained sensor network, the reference [53] studies

the scenario where the sensor observes a noisy version of the true parameter

and transmits one bit of information to the fusion center. A new type of

estimation technique called the type based estimation is introduced in [26]. It

is shown in [26] with the assumptions that the channels between sensors and

fusion center are zero mean and sensors have no channel state information

(CSI), the performance of estimator is poor when the histogram of a finite

alphabet source is being estimated. In this case, if the fusion center sends

CSI to the sensors, the performance is improved significantly. For the TBMA

scheme, practical issues such as the impact of the interference between the

orthogonal waveforms, and channel estimation error on the histogram and

parameter estimation is studied in [54]. The authors in [55] consider a strategy

of selecting the sensor gains to minimize the the variance of the estimator with

perfect channel feedback.
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Figure 1.10: Distributed estimation: Multiple access topology with the fusion
center

Distributed systems without a fusion center (fully distributed) have

the advantages of robustness to node failures and being able to function au-

tonomously without a central node controlling the entire network [2]. In a

fully distributed set up, the sensors can collaborate with their neighbours by

exchanging information locally to achieve a desired global objective. In what

follows we describe one such objective called distributed consensus.

1.4 Distributed Consensus

Consensus literally means a group of agents coming to an agreement on a cer-

tain quantity of interest. In a distributed consensus problem, multiple nodes

(sensors) which are distributed across a network (wired or wireless) agree on

some desired parameter. For example, the nodes in a WSN can use the con-

sensus value to perform useful actions such as detecting a signal, estimating

an unknown parameter or controlling a process. Distributed consensus algo-

rithms have attracted significant interest in the recent past and has found a
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wide range of applications [56–58]. Here we introduce the basic idea behind

distributed consensus algorithm in a WSN.

Consider a WSN with N sensors deployed with sensing, communication

and signal processing capabilities. Let each sensor hold an initial measurement

xi(0) ∈ R, i = 1, . . . , N , measured by each of the N sensors. The measure-

ments could contain information about the unknown parameters of a physical

phenomenon such as temperature or strength of an unknown signal. Let the

average of the initial measurements x̄ = N−1
∑N

i=1 xi(0) be the parameter to

be estimated by a distributed algorithm, in which each node communicates

only with its neighbours. If the states of all the sensor nodes converge asymp-

totically with time to x̄, then the network is said to have reached consensus

on the sample average.

Distributed average consensus algorithms have been considered in the

literature (please see [58–67] and references therein). In most of these papers,

it is assumed that a given node can obtain exact information of the state

values of its neighbours through local communications. This essentially means

that there is unlimited energy and/or bandwidth. However, as mentioned in

Section 1.1.3, practical WSNs are severely power limited and the available

bandwidth is finite. Therefore, there is a need for consensus algorithms which

could work under strict resource constraints of power and bandwidth imposed

by the WSNs.

1.5 Contributions of the Dissertation

In this work, we address the first two design challenges discussed in Section

1.1.3 by proposing distributed detection and estimation schemes which require

bounded transmit power and finite bandwidth. The proposed schemes will
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be shown to outperform the existing schemes under the stringent power and

bandwidth constraints imposed by WSNs.

A distributed detection scheme relying on constant modulus transmis-

sions from the sensors is proposed over a Gaussian multiple access channel.

The instantaneous transmit power does not depend on the random sensing

noise, which is a desirable feature for low-power sensors with limited peak

power capabilities. In addition to the desirable constant-power feature, the

proposed detector is robust to impulsive noise, and performs well even when

the moments of the sensing noise do not exist as in the case of the Cauchy

distribution. It is shown that over Gaussian multiple access channels, the pro-

posed detector outperforms AF, DF and modified DF schemes consistently,

and the modified AF scheme when the sensing SNR is greater than 4 dB. The

proposed detector is shown to perform well even when the channel noise is

non-Gaussian. The error exponent is also derived for the proposed scheme

and large deviation theory is used to approximate the probability of error for

large L.

A distributed inference scheme which uses bounded transmission func-

tions over a Gaussian multiple access channel is considered. The conditions

on the transmission functions under which consistent estimation and reliable

detection are possible is characterized. For the distributed estimation prob-

lem, an estimation scheme that uses bounded transmission functions is proved

to be strongly consistent provided that the variance of the noise samples are

bounded and that the transmission function is one-to-one. The asymptotic

variance is derived, and shown to depend on the derivative of the transmission

function and the sensing noise statistics and channel noise variance. The pro-

posed estimation scheme is compared with the amplify and forward technique
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and its robustness to impulsive sensing noise distributions is highlighted. It

is also shown that bounded transmissions suffer from inconsistent estimates

if the sensing noise variance goes to infinity. For the distributed detection

problem, similar results are obtained by studying the deflection coefficient.

A distributed average consensus algorithm in which every sensor trans-

mits with bounded peak power is proposed. In the presence of communication

noise, it is shown that the nodes reach consensus asymptotically to a finite

random variable whose expectation is the desired sample average of the initial

observations with a variance that depends on the step size of the algorithm

and the variance of the communication noise. The asymptotic performance is

characterized by deriving the asymptotic covariance matrix using results from

stochastic approximation theory. It is shown that using bounded transmissions

results in slower convergence compared to the linear consensus algorithm based

on the Laplacian heuristic.

A distributed average consensus algorithm in which every sensor per-

forms a nonlinear processing at the receiver is proposed. We prove that non-

linearity at the receiver nodes makes the algorithm robust to a wide range of

channel noise distributions including the impulsive ones. This work is the first

of its kind in the literature to propose a consensus algorithm which relaxes the

requirement of finite moments on the communication noise. When the com-

munication noise samples are i.i.d., it is shown that the nodes reach consensus

asymptotically to a finite random variable whose expectation is the desired

sample average of the initial observations with a variance that depends on the

step size of the algorithm and the receiver nonlinear function. The asymptotic

performance is characterized by deriving the asymptotic covariance matrix

using results from stochastic approximation theory. It is shown that scaling
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the receiver nonlinear function does not affect the convergence speed of the

algorithm. An interesting relationship between the Fisher information and the

asymptotic covariance matrix is shown.

1.6 Outline of the Dissertation

The rest of the Dissertation is organized as follows. Chapter 2 describes a dis-

tributed detection scheme relying on constant modulus transmissions from the

sensors over a Gaussian multiple access channel and analyses the performance

of the proposed detection scheme by deriving the deflection coefficient and

the error exponent for several cases. Chapter 3 considers a general problem

of distributed inference using bounded transmission functions and establish

regimes under which estimation and detection will be possible and discuss

regimes under which estimation will fail and reliable detection will be impos-

sible. Chapter 4 studies the merits and demerits of bounded transmissions in

distributed consensus problems and characterizes the performance for a variety

of bounded transmission functions. Chapter 5 proposes a robust consensus al-

gorithm and characterizes its asymptotic performance. Finally the conclusions

are presented in Chapter 6.
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Chapter 2

Distributed Detection with Constant Modulus Signaling

2.1 Literature Survey and Motivation

In Chapter 1 we learnt that, in inference-based wireless sensor networks, low-

power sensors with limited battery and peak power capabilities transmit their

observations to a fusion center (FC) for detection of events or estimation of

parameters. For distributed detection, much of the literature has focused on

the parallel topology where each sensor uses a dedicated channel to transmit

to a fusion center. Multiple access channels offer bandwidth efficiency since

the sensors transmit over the same time/frequency slot.

In [68], the distributed detection over a multiple access channel is stud-

ied where arbitrary number of quantization levels at the local sensors are

allowed, and transmission from the sensors to the fusion center is subject

to both noise and inter-channel interference. References [69–72] discuss dis-

tributed detection over Gaussian multiple access channels. In [69], detection

of a deterministic signal in correlated Gaussian noise and detection of a first-

order autoregressive signal in independent Gaussian noise are studied using an

amplify-and-forward scheme where the performance of different fusion rules is

analyzed. In [70], a type-based multiple access scheme is considered in which

the local mapping rule encodes a waveform according to the type [73, pp. 347]

of the sensor observation and its performance under both the per-sensor and

total power constraints is investigated. This scheme is extended to the case

of fading between the sensors and the FC in [71] and its performance is an-

alyzed using large deviation theory. In the presence of non-coherent fading

over a Gaussian multi-access channel, type-based random access is proposed

and analyzed in [72]. In [74], the optimal distributed detection scheme in a
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clustered multi-hop sensor network is considered where a large number of dis-

tributed sensor nodes quantize their observations to make local hard decisions

about an event. The optimal decision rule at the cluster head is shown to be a

threshold test on the weighted sum of the local decisions and its performance

is analysed.

Two schemes called modified amplify-and-forward (MAF) and the mod-

ified detect-and-forward (MDF) are developed in [37] which generalize and

outperform the classic amplify-and-forward (AF) and detect-and-forward (DF)

approaches to distributed detection. It is shown that MAF outperforms MDF

when the number of sensors is large and the opposite conclusion is true when

the number of sensors is smaller. For the MDF scheme with identical sensors,

the optimal decision rule is proved to be a threshold test in [36]. Decision

fusion with a non-coherent fading Gaussian multiple access channel is con-

sidered in [75] where the optimal fusion rule is shown to be a threshold test

on the received signal power and on-off keying is proved to be the optimal

modulation scheme. A distributed detection system where sensors transmit

their observations over a fading Gaussian multiple-access channel to a FC

with multiple antennas using amplify-and-forward is studied in [76]. In all

these cases, the sensing noise distribution is assumed to be Gaussian. Even

though the Gaussian assumption is widely used, sensor networks which oper-

ate in adverse conditions require detectors which are robust to non-Gaussian

scenarios. Moreover, in the literature there has been little emphasis on dis-

tributed schemes with the desirable feature of using constant modulus signals

with fixed instantaneous power.

A distributed estimation scheme where the sensor transmissions have

constant modulus signals is considered in [38]. Distributed estimation in a
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bandwidth-constrained sensor network with a noisy channel is investigated

in [77] and distributed estimation of a vector signal in a sensor network with

power and bandwidth constraints is studied in [78]. The estimator proposed

in [38] is shown to be strongly consistent for any sensing noise distribution

in the iid case. Inspired by the robustness of this estimation scheme, in this

work, a distributed detection scheme where the sensors transmit with constant

modulus signals over a Gaussian multiple access channel is proposed for a bi-

nary hypothesis testing problem. The sensors transmit with constant modulus

transmissions whose phase is linear with the sensed data. The output-signal-

to-noise-ratio, also called as the deflection coefficient (DC) of the system, is

derived and expressed in terms of the characteristic function (CF) of the sens-

ing noise. The optimization of the DC with respect to the transmit phase

parameter is considered for different distributions on the sensing noise includ-

ing impulsive ones. The error exponent is also derived and shown to depend

on the CF of the sensing noise. It is shown that both the DC and the error

exponent can be used as accurate predictors of the phase parameter that min-

imizes the detection error rate. The proposed detector is favorably compared

with MAF and the MDF schemes developed in [36,37] for the Gaussian sensing

noise and its robustness in the presence of other sensing noise distributions is

highlighted. The effect of fading between the sensors and the fusion center

is shown to be detrimental to the detection performance through a reduction

in the DC depending on the fading statistics. Different than [38] where the

asymptotic variance of an estimator is analyzed, the emphasis herein is on

derivation, analysis, and optimization of detection-theoretic metrics such as

the DC and error exponent. Our aim in this chapter is to develop a distributed

detection scheme where the instantaneous transmit power is not influenced by

possibly unbounded sensor measurement noise.
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This chapter is organized as follows. In Section 2.2, the system model

is described with per-sensor power constraint and total power constraint. In

Section 2.3, the detection problem is described and a linear detector is pro-

posed. The probability of error performance of the detector is analyzed in

Section 2.4. The DC is defined and its optimization for several cases is stud-

ied in Section 2.5. The presence of fading between the sensors and the fusion

center is discussed in Section 2.6. The error exponent of the proposed detec-

tor is analyzed in Section 2.7. Non-Gaussian channel noises are discussed in

Section 2.8. Simulation results are provided in Section 2.9 which support the

theoretical results.

2.2 System Model

Consider a binary hypothesis testing problem with two hypotheses H0, H1

where P0, P1 are their respective prior probabilities. Let the sensed signal at

the ith sensor be,

xi =





θ + ni underH1

ni underH0

(2.1)

i = 1, . . . , L, θ > 0 1 is a known parameter whose presence or absence has

to be detected, L is the total number of sensors in the system, and ni is the

noise sample at the ith sensor. The sensing noise samples are independent,

have zero median and an absolutely continuous distribution but they need not

be identically distributed or have any finite moments. We consider a setting

where the ith sensor transmits its measurement using a constant modulus signal

√
ρejωxi over a Gaussian multiple access channel so that the received signal at

1the proposed scheme will work without any difference for θ < 0 due to symmetry if we
substitute −θ in the place of θ in all the equations.
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the FC is given by

yL =
√
ρ

L∑

i=1

ejωxi + v (2.2)

where ρ is the power at each sensor, ω > 0 is a design parameter to be

optimized and v ∼ CN (0, σ2
v) is the additive channel noise. We consider

two types of power constraints: Per-sensor power constraint and total power

constraint. In the former case, each sensor has a fixed power ρ so that the

total power PT = ρL, and as L → ∞, PT → ∞; in the later case, the total

power PT is fixed for the entire system and does not depend on L, so that the

per-sensor power ρ = PT/L → 0 as L → ∞.

2.3 The Detection Problem

The received signal yL under the total power constraint can be written as

yL =

√
PT

L

L∑

i=1

ejωxi + v. (2.3)

We assume throughout that P0 = P1 = 0.5 for convenience even though other

choices can be easily incorporated. With the received signal in (2.3), the FC

has to decide which hypothesis is true. It is well known that the optimal fusion

rule under the Bayesian formulation is given by:

f(yL|H1)

f(yL|H0)

H1

≷
H0

P0

P1
= 1 (2.4)

where f(yL|Hi), is the conditional probability density function of yL when Hi

is true. The equation (2.3) can be rewritten as follows:

yL =

√
PT

L

(
L∑

i=1

cos(ωxi)

)
+ j

√
PT

L

(
L∑

i=1

sin(ωxi)

)
+ v.

Since there are L terms in the first summation involving the cosine function,

we need to do L fold convolutions with the PDFs of cos(ωxi) and another set of

L fold convolutions with the PDFs of sin(ωxi). Then we need to find the joint
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distribution of the PDFs obtained thus for the cosine and sine counterparts.

This joint PDF will need to be convolved with the PDF of v. It is not possible

to obtain a closed form expression for these (2L+1) fold convolutions. Hence,

f(yL|Hi) is not tractable. Therefore, we consider the following linear detector

which is argued next to be optimal for large L:

ℜ[yLe−jωθ]− ℜ[yL]
H1

≷
H0

0 , (2.5)

where we define ℜ[y] as the real part, and ℑ[y] as the imaginary part of

y. Note that the detector in (2.5) would be optimal if yL were Gaussian.

Clearly due to central limit theorem yL in (2.3) is asymptotically Gaussian,

which indicates that (2.5) approximates (2.4) for large L. With the Gaussian

assumption, the variances of yL in (2.3) under the two hypotheses are the same

and given by Var(yL|H0) =Var(yL|H1) = [PT(1−ϕ2
n(ω))+σ2

v ], where ϕn(ω) is

the characteristic function of ni. Hence, the optimal likelihood ratio simplifies

to the detector in (2.5) which is linear in yL, when yL is assumed Gaussian

which holds for large L. However as will be seen in Section 2.4, we do not

assume that yL is Gaussian for any fixed L when we analyze the performance

of the detector in (2.5) or in finding the associated error exponent in Section

2.7. We proceed by expressing the probability of error.

2.4 Probability of Error

The detector in (2.5) depends on the design parameter ω and this means that

the probability of error will in turn depend on ω. Let Pe(ω) be the probability

of error at the FC:

Pe(ω) =
1

2
Pr [error|H0] +

1

2
Pr [error|H1] = Pr [error|H0] (2.6)

where Pr [error|Hi] is the error probability when Hi, i ∈ {0, 1}, is true and

the last equality holds due to symmetry between the two hypotheses which is
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explained as follows. From the detection rule (2.5), the probability of error

under H0 is given by

Pr [error|H0] = Pr
[
ℜ[yL] < ℜ[yLe−jωθ]|H0

]
, (2.7)

where the received signal in (2.3) under H0 is given by

yL =

√
PT

L

L∑

i=1

ejωni + v. (2.8)

Substituting (2.8) for yL in (2.7) and doing some algebraic simplifications,

Pr [error|H0] can be written as

Pr




L∑

i=1

2 sin

(
ωθ

2

)
cos

(
ωni −

ωθ

2
+

π

2

)
+

√
L

PT
vT

︸ ︷︷ ︸
ZL(ω):=

< 0




(2.9)

where vT := ℜ[v](1− cos(ωθ))−ℑ[v] sin(ωθ). Similarly, Pr [error|H1] is same

as that of (2.9) except the argument of the cosine function is replaced by

(ωni + ωθ/2 − π/2). To see the symmetry between the two hypotheses as-

serted in (2.6), let ζ := (ωθ/2− π/2) for convenience, so that cos(ωni ∓ ζ) =

[cos(ωni) cos ζ + sin(±ωni) sin ζ ]. Since ni is symmetric, ωni and −ωni have

the same distribution which implies that the random variables cos(ωni − ζ)

and cos(ωni + ζ) have the same distribution establishing that Pr [error|H1] =

Pr [error|H0]. Therefore, the probability of error in (2.6) is given by (2.9). We

are interested in using (2.9) to find the ω that minimizes the probability of

error at FC. Since Pe(ω) is not straightforward to evaluate, we optimize two

surrogate metrics to select ω. These are the error exponent and the DC. The

error exponent is an asymptotic measure of how fast the Pe(ω) decreases as

L → ∞, and is specific to the detector used in (2.5) and will be considered in
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Section 2.7. The DC, on the other hand, is specific to the model in (2.3), and

does not depend on any detector.

2.5 Deflection Coefficient and its Optimization

We will now define and use the deflection coefficient which reflects the output-

signal-to-noise-ratio and widely used in optimizing detectors [79–82]. The DC

is mathematically defined as,

D(ω) :=
1

L

|E[yL|H1]− E[yL|H0]|2
var[yL|H0]

. (2.10)

By calculating the expectations in (2.10), it can be easily verified that the DC

for the signal model in (2.2) is given by:

D(ω) =
2ϕ2

n(ω)[1− cos(ωθ)][
1− ϕ2

n(ω) +
σ2
v

PT

] (2.11)

where ϕn(ω) = E[ejωni] is the CF of ni. The CF ϕn(ω) does not depend

on the sensor index i, since we will be initially assuming that ni are iid.

We will consider the non-identically distributed case in Section 2.5.4. Note

that D(ω) ≥ 0 and that ϕn(ω) is real-valued since ni is a symmetric random

variable. Moreover, ϕn(ω) = ϕn(−ω) so that D(ω) = D(−ω) which justifies

why we will focus on ω > 0 throughout. The factor (1/L) introduced in (2.10)

does not appear in conventional definitions of the DC but included here for

simplicity since it does not affect the optimal ω.

2.5.1 Optimizing D(ω)

We are now interested in finding ω by optimizing D(ω):

ω∗ := argmax
ω>0

D(ω). (2.12)

Since ϕn(ω) ≤ 1, when σ2
v > 0, D(ω) is bounded, and achieves its small-

est value of D(ω) = 0 as ω → 0. On the other hand, as ω → ∞, we
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have limω→∞D(ω) = 0. This implies that the maximum in (2.12) cannot

be achieved by ω = 0 or ω = ∞ and establishes that there must be a finite

ω∗ ∈ (0,∞) which attains the maximum in (2.12).

In what follows, we will further characterize ω∗ by assuming that ϕn(ω)

¿ 0 and ϕ
′

n(ω) < 0 for all ω > 0. Many distributions including the Laplace,

Gaussian and Cauchy have CFs that satisfy this assumption. Indeed all sym-

metric alpha-stable distributions [83, pp. 20] of which the latter two is a

special case, satisfy this assumption. We now have the following theorem

which restricts ω∗ in (2.12) to a finite interval.

Theorem 2.5.1. If ϕn(ω) is decreasing and differentiable over ω > 0, then

ω∗ ∈ (0, π/θ).

Proof. First, note that ϕn(ω) ≥ 0 which is implied by the assumption that

ϕn(ω) is decreasing and that ϕn(ω) → 0 as ω → ∞. Let D(ω) = C(ω)[1 −

cos(ωθ)] with C(ω) := 2ϕ2
n(ω)/[1 − ϕ2

n(ω) + σ2
v/PT] for brevity. Since ϕn(ω)

is decreasing on ω > 0 and ϕn(ω) ≥ 0, C(ω) is also decreasing. Because

[1− cos(ωθ)] is periodic in ω with period 2π/θ,

D

(
ω +

2π

θ

)
= [1− cos(ωθ)]C

(
ω +

2π

θ

)
< [1− cos(ωθ)]C(ω) = D(ω).

(2.13)

Noticing that D(2π/θ) = 0 which rules out ω∗ = 2π/θ, we have ω∗ ∈ (0, 2π/θ).

To further reduce the range of ω∗ by half, consider the fact that D(0) =

D(2π/θ) = 0, which combined with D(ω) > 0 for ω ∈ (0, 2π/θ) implies that

ω∗ ∈ (0, 2π/θ) satisfies D
′

(ω∗) = 0. Writing D
′

(ω∗) = 0 we obtain:

[θ sin(ω∗θ)]

[cos(ω∗θ)− 1]
=

C
′

(ω∗)

C(ω∗)
. (2.14)

Since C(ω) > 0 is decreasing, the right hand side (rhs) of (2.14) is negative

and it follows that ω∗ ∈ (0, π/θ) as required.
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By the definition of ω∗, it is clearly a function of θ. We showed in

Theorem 2.5.1 that 0 < ω∗ < π/θ if ϕ
′

n(ω) < 0 for ω > 0. Note that when

ω = 0, there is no phase modulation done, and what is transmitted is a

constant signal which actually contains no information about xi. Therefore

the boundary value ω = 0 is not a valid choice. When ω = π/θ, the detector

in (2.5) actually simplifies to: ℜ[yL]
H0

≷
H1

0. While ω = π/θ is a valid choice,

it is optimal only when θ is large as will be proved in Theorem 2. We now

investigate the behavior of ω∗ when θ is large without assuming anything

about ϕn(ω) except the absolute continuity of its distribution, and show that

ω∗ ≈ π/θ for large θ in the sense that ω∗θ → π, as θ → ∞.

Theorem 2.5.2. If σ2
v > 0, and ni are iid and have absolutely continuous

distributions,

lim
θ→∞

ω∗θ = π. (2.15)

Proof. We have

D
(π
θ

)
≤ D(ω∗) ≤ sup

ω>0
[1− cos(ωθ)] sup

ω>0
C(ω) =

4PT

σ2
v

, (2.16)

where the first inequality is because ω∗ maximizes D(ω), and the second in-

equality follows fromD(ω) = C(ω)[1−cos(ωθ)]. Recalling that limω→0 ϕn(ω) =

1 we take the limit as θ → ∞ in (2.11) and obtain limθ→∞D(π/θ) = 4PT/σ
2
v ,

which using (2.16) shows that limθ→∞D(ω∗) = 4PT/σ
2
v . Since ϕn(0) > ϕn(ω)

and because D(ω) is an increasing function of ϕ2
n(ω), from (2.11) it is clear

that the only way limθ→∞D(ω∗) = 4PT/σ
2
v holds is if ω∗ → 0 and ω∗θ → π,

as θ → ∞.

Theorem 2.5.2 establishes that when θ is large we have an approximate

closed-form solution for ω∗ ≈ π/θ for any absolutely continuous sensing noise

distribution.
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2.5.2 Finding the Optimum ω for Specific Noise Distributions

Theorem 2.5.1 showed that ω∗ ∈ (0, π/θ) for a general class of distributions.

Under more general conditions, Theorem 2.5.2 establishes that ω∗ ≈ π/θ when

θ is large. To find ω∗ exactly, we need to specify the sensing noise distribu-

tion through its CF, ϕn(ω). In what follows we describe how to find ω∗ for

several specific but widely used sensing noise distributions. We will assume

throughout that the assumptions of Theorem 2.5.1 (ϕ
′

n(ω) < 0 for ω > 0) are

satisfied so that ω∗ ∈ (0, π/θ), which holds for Gaussian, Cauchy and Lapla-

cian distributions, among others. We will assume σ2
v > 0 throughout this

subsection.

2.5.2.1 Gaussian Sensing Noise

In this case, we have ϕn(ω) = e−ω2σ2
n/2 so that ϕ2

n(ω) = e−ω2σ2
n, where σ2

n is the

variance of ni. To simplify (2.11) we substitute β = ωθ. Since ω ∈ (0, π/θ)

we have β ∈ (0, π). Note that the value of ω that maximizes (2.11) over ω

is related to the β that maximizes D(β/θ) through the relation ω = β/θ.

Differentiating D(β/θ) with respect to β, equating to 0 and simplifying we

obtain,

GG(β) := α− e−
σ2
n

θ2
β2 − 2ασ2

n

θ2
β tan

(
β

2

)
= 0 (2.17)

with α := [1 + (σ2
v/PT)]. Equation (2.17) can not be solved in closed-form.

However it does have a unique solution in β ∈ (0, π) as shown below.

First we note that GG(0) = (α−1) > 0 since σ2
v > 0 and GG(π) = −∞.

Since GG(β) is continuous, (2.17) has at least one solution. To show that this

solution is unique, consider the first derivative:

G
′

G(β) =
σ2
n

θ2

[
2βe−

σ2
n

θ2
β2 − 2α

(
β

2
sec2

(
β

2

)
+ tan

(
β

2

))]
. (2.18)
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Now, using tan(β/2) ≥ β/2 and sec2(β/2) ≥ 1 + (β2/4) for β ∈ (0, π), we get

the following upper bound:

G
′

G(β) ≤
σ2
n

θ2

[
2βe−

σ2
n

θ2
β2 − αβ

(
1 +

β2

4

)
− αβ

]
. (2.19)

Since σ2
v > 0 we have α > 1. Recall that β ∈ (0, π), and the rhs of (2.19)

is always negative. It follows that GG(β) is monotonically decreasing over

β ∈ (0, π) and (2.17) has a unique solution which corresponds to the global

maximum of D(β/θ). The solution to (2.17), β∗
G, can be found numerically

and the optimum ω for the Gaussian case is ω∗
G = β∗

G/θ.

2.5.2.2 Cauchy Sensing Noise

In this case, ϕn(ω) = e−γω so that ϕ2
n(ω) = e−2γω where γ is the scale pa-

rameter of the Cauchy distribution. It is well known that no moments of this

distribution exists. Substituting ϕn(ω) in D(ω) and letting β = ωθ we have,

D

(
β

θ

)
=

[1− cos(β)]

[αe
2γ
θ
β − 1]

(2.20)

with α := [1 + (σ2
v/PT)] and β ∈ (0, π). It can be verified that the equation

(2.20) has a unique maximum over β ∈ (0, π) as shown below.

The first derivative of D(β/θ) is given by,

D
′

(
β

θ

)
=

[
sin(β)e

2γ
θ
β

(αe
2γ
θ
β − 1)2

] [
α− e−

2γ
θ
β − 2γ

θ
α tan

(
β

2

)]
. (2.21)

Since the first term on the rhs of (2.21) is non-zero for β ∈ (0, π), we need to

solve

GC(β) := α− e−
2γ
θ
β − 2γ

θ
α tan

(
β

2

)
= 0. (2.22)

First we see that GC(0) = (α − 1) > 0 and GC(π) = −∞ which implies that

there is at least one solution to (2.22) in β ∈ (0, π) as GC(β) is continuous.

The second derivative of GC(β) is given by

G
′′

C(β) = −
[(

4γ2

θ2
e−

2γ
θ
β

)
+

γα

θ
sec2

(
β

2

)
tan

(
β

2

)]
. (2.23)

33



Clearly, G
′′

C(β) < 0 for β ∈ (0, π) which establishes that GC(β) is concave.

Therefore, (2.22) has a unique solution which corresponds to the global max-

imum of D(β/θ).The β∗
C that maximizes (2.20) can be found numerically and

ω∗
C = β∗

C/θ.

When σ2
v/PT is sufficiently large (i.e., the low channel SNR regime)

compared to [1 − ϕ2
n(ω)] in D(ω), the problem in (2.11) can be transformed

into maximizing ϕ2
n(ω)[1 − cos(ωθ)] over ω ∈ (0, π/θ). In this low channel

SNR regime, we have a closed form solution for the Cauchy case:

ω∗
C =

2

θ
tan−1 θ

2γ
. (2.24)

If we let θ → ∞ in (2.24), we get ω∗
C = π/θ which agrees with Theorem 2.5.2.

2.5.2.3 Laplace Sensing Noise

In this case, we have ϕn(ω) = 1/(1 + b2ω2) and b2 := σ2
n/2. Substituting this

in D(ω) and letting β = ωθ, and differentiating D(β/θ) with respect to β,

equating to 0 and simplifying we get,

GL(β) :=

[
1 +

b2

θ2
β2

]2
− 4b2

θ2
β

[
1 +

b2

θ2
β2

]
tan

(
β

2

)
− 1

α
= 0 (2.25)

with α := [1 + (σ2
v/PT)]. It can be easily verified that equation (2.25) has a

unique solution in β ∈ (0, π) as shown below.

First we note that GL(0) = (1−(1/α)) > 0 if σ2
v > 0 and GL(π) = −∞.

This means that (2.25) has at least one solution. The first derivative of GL(β)

is given by,

G
′

L(β) =
2b2

θ2

[
2β

(
1 +

b2

θ2
β2

)
−
(
β +

b2

θ2
β3

)
sec2

(
β

2

)

+2

(
1 + 3

b2

θ2
β2

)
tan

(
β

2

)]
. (2.26)
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Now, using tan(β/2) ≥ β/2 and sec2(β/2) ≥ 1 + (β2/4) over β ∈ (0, π) in

(2.26) and simplifying, we get the following upper bound:

G
′

L(β) ≤ − b2

2θ4
[
(θ2 + 8b2)β3 + b2β5

]
(2.27)

Clearly, for β ∈ (0, π), the rhs of (2.27) is always negative which implies

G
′

L(β) < 0. It follows that GL(β) is monotonically decreasing over β ∈ (0, π)

and (2.25) has a unique solution which corresponds to the global maximum of

D(β/θ).The β∗
L that solves (2.25) can be found numerically and ω∗

L = β∗
L/θ.

2.5.2.4 Uniform Sensing Noise

For the uniform sensing noise, we have ϕn(ω) = sin(ωa)/ωa, where σ2
n = a2/3.

Substituting ϕn(ω) in (2.11) and letting β = ωa for convenience we have

D(β) =

[
1− cos

(
βθ
a

)]

[αβ2 csc2(β)− 1]
= C(β)

[
1− cos

(
βθ

a

)]
(2.28)

where C(β) := 1/[αβ2 csc2(β)− 1]. Writing D
′

(β) = 0 gives

[
αβ2 csc2(β)− 1

]
− 2αaβ

θ sin2(β)
tan

(
θβ

2a

)
[1− β cot(β)] = 0 (2.29)

with α := [1+(σ2
v/PT)]. Theorem 2.5.1 does not apply for the uniform sensing

noise. However if θ/a ≥ 2, then using C(β) ≥ C(β + kπ), k = 1, 2, . . . , and

using the periodicity of [1 − cos(βθ/a)], we can show that β∗
U ∈ (0, πa/θ].

Following similar arguments to the Laplacian noise case, it can be shown that

there is only one stationary point in (0, πa/θ] which corresponds to the global

maximum. The β∗
U that solves (2.29) can be found numerically and therefore,

ω∗
U = β∗

U/a. On the other hand if θ/a < 2, multiple local maxima are possible

in β ∈ (0, πa/θ] and (2.29) can have multiple solutions. In this case, that β∗
U

which yields the largest value for D(β) in (2.28) should be chosen.
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2.5.3 Per-sensor Power Constraint or high Channel SNR

We now consider the DC under the per-sensor power constraint. In this setting,

as L → ∞, PT → ∞ which makes (σ2
v/PT) → 0. Therefore the DC for the

per-sensor constraint when L is large becomes:

Dpspc(ω) =
2ϕ2

n(ω)[1− cos(ωθ)]

[1− ϕ2
n(ω)]

. (2.30)

Equation (2.30) can also be interpreted as the DC when σ2
v = 0 for any finite

L. In what follows, we characterize ω∗ in this per-sensor constraint regime,

which effectively amounts to the removal of (σ2
v/PT) from (2.11). In this case

there is not necessarily a ω∗ that attains the maximum in (2.12). Our first

result reveals that (2.30) can be made large by choosing ω sufficiently close to

zero when ni are Gaussian, and yields an interesting relationship between the

DC and the Fisher information.

Theorem 2.5.3. When ni are Gaussian,

sup
ω>0

Dpspc(ω) =
θ2

σ2
n

= lim
ω→0

Dpspc(ω) (2.31)

Proof. We begin with the inequality [1−cos(ωθ)] ≤ ω2θ2/2. Consider [84, eqn

(1)], which using the fact that ϕn(ω) is real-valued, reveals ϕ2
n(ω) ≤ (1 +

ϕn(2ω))/2. Using these two inequalities we can write the following:

1

Dpspc(ω)
≥ [1− ϕn(2ω)]

2ω2ϕ2
n(ω)θ

2
. (2.32)

Now from [84, eqn (2)] with the fact that ϕn(ω) is real-valued, we have:

[1− ϕn(2ω)]

2ω2ϕ2
n(ω)

≥ 1

J
(2.33)

where J is the Fisher information of ni with respect to a location parameter [85,

eqn (8)] (i.e., the Fisher information in xi about θ). Combining (2.32) and
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(2.33) we have:

Dpspc(ω)

θ2
≤ J =

1

σ2
n

(2.34)

where the equality follows from the fact that for Gaussian random variables

the Fisher information is given by the inverse of the variance. Now, we also

see that using l’Hôspital’s rule on (2.30), limω→0Dpspc(ω) = θ2/σ2
n, which

shows that the inequality in (2.34) can be made arbitrarily tight establishing

supω>0Dpspc(ω) = θ2/σ2
n.

The proof of Theorem 2.5.3 also reveals an interesting inequality be-

tween the DC and the Fisher information, which of course is related to the

Cramér-Rao bound for unbiased estimators. So for the per-sensor power con-

straint case with Gaussian noise, ω should be chosen as small as possible for

the best performance and it does not depend on the value of θ.

For the Laplacian case, the solution is similar to the Gaussian case. It

can be easily verified that, with (σ2
v/PT) = 0, D

′

pspc(ω) < 0 over ω ∈ (0, π/θ).

This means that Dpspc(ω) is monotonically decreasing with ω which implies

that ω should be chosen arbitrarily small.

On the other hand, when ni are Cauchy distributed, then ϕn(ω) =

e−γω. Substituting in (2.30) and using l’Hôspital’s rule we observe that limω→0

Dpspc(ω) = 0 for Cauchy sensing noise. This implies that, for the Cauchy

sensing noise with per-sensor power constraint, smaller values of ω should be

avoided for reliable detection to be possible.

2.5.4 Analysis of the DC for Non-homogeneous Sensors

Consider now the case where ni are independent with non-identical distribu-

tions. This could occur if ni have the same type of distribution (e.g. Gaussian)
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with different variances. Letting ϕni
(ω) = E[ejωni], the DC in (2.10) becomes

DL(ω) =

2[1− cos(ωθ)]

(
L−1

L∑

i=1

ϕni
(ω)

)2

[
1− L−1

L∑

i=1

ϕ2
ni
(ω) +

σ2
v

PT

] (2.35)

which is now a function of L unlike in (2.11), and reduces to (2.11) if ϕni
(ω) =

ϕn(ω), as in the iid case. We now study the conditions on the variances

σ2
i := var(ni) for limL→∞DL(ω) = 0 for all ω > 0. When this asymptotic DC

is zero for all ω > 0, the interpretation is that there is no suitable choice for

ω > 0. The following result establishes that if the sensing noise variances are

going to infinity, the asymptotic DC is zero for all ω > 0, indicating a regime

where reliable detection is not possible.

Theorem 2.5.4. Let ϕni
(ω) = ϕn(σiω) for some CF ϕn(ω) where n has an

absolutely continuous distribution. Suppose also that limi→∞ σi = ∞. Then

limL→∞DL(ω) = 0 for all ω > 0.

Proof. Clearly the denominator of (2.35) is bounded between (σ2
v/PT) and (1+

σ2
v/PT). Therefore, it suffices to show that L−1

∑L
i=1 ϕni

(ω) = L−1
∑L

i=1 ϕn(σiω)

→ 0 as L → ∞. Since n has an absolutely continuous distribution, limx→∞

ϕn(x) = 0, and because limi→∞ σi = ∞, it follows that limi→∞ ϕn(σiω) = 0 for

ω > 0. From [86, pp. 411] we know that if a sequence satisfies limi→∞ ai = 0

then its partial sums also satisfy limL→∞ L−1
∑L

i=1 ai = 0, which gives us the

proof when applied to the sequence ϕn(σiω).

If, instead of σ2
i → ∞ as i → ∞, the variances σ2

i are bounded, we can

show the existence of an ω > 0 for which limL→∞DL(ω) > 0 which is done

next.
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Theorem 2.5.5. Let var(ni) exist for all i and σmax := supi(var(ni))
1/2 be

finite. Then any 0 < ω <
√
2/σmax satisfies limL→∞DL(ω) > 0.

Proof. To show limL→∞DL(ω) > 0 for ω > 0, it suffices to show that

L−1
∑L

i=1 ϕni
(ω) > 0 for ω > 0. From [87, pp. 89] we have ϕni

(ω) ≥

1 − σ2
i ω

2/2 for any CF with finite variance. Therefore, L−1
∑L

i=1 ϕni
(ω) ≥

1 − (L−1
∑L

i=1 σ
2
i )ω

2/2 ≥ 1 − σ2
maxω

2/2 > 0 where the last inequality holds

provided that ω <
√
2/σmax.

This shows that if the noise variances are bounded, there exists (a small

enough) ω that yields a strictly positive asymptotic DC, establishing that there

is a choice of ω that enables reliable detection.

2.6 Fading Channels

Suppose that the channel connecting the ith sensor and the FC has a fading

coefficient hi := |hi|ejφi normalized to satisfy E[|hi|2] = 1. If the sensors do not

know or utilize their local channel information, and the fading has zero-mean

(E[hi] = 0), then the performance over fading channels is poor because the

DC in (2.10) becomes zero due to law of large numbers and reliable detection

is not possible. On the other hand, if the ith sensor corrects for the channel

phase before transmission, using local channel phase information, the received

signal under the TPC becomes

yL = ejωθ
√

PT

L

L∑

i=1

|hi|ejωni + v , (2.36)

where we focus on the iid sensing noise case to highlight the effect of fading

even though the non-homogeneous case can also be easily pursued. The phase

correction does not change the constant power nature of the transmission. By

calculating the expectations in (2.10), for the signal model in (2.36), the DC
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in the presence of fading is given by:

D(ω) =
2(E[|hi|])2ϕ2

n(ω)[1− cos(ωθ)][
1− (E[|hi|])2ϕ2

n(ω) +
σ2
v

PT

] . (2.37)

We see that in case of fading, the term ϕ2
n(ω) is scaled by the factor (E[|hi|])2

in the DC expression. Since E[|hi|2] = 1, using Jensen’s inequality, the factor

(E[|hi|])2 < 1 unless |hi| is deterministic in which case it is one. Comparing

(2.11) and (2.37) we have, with (E[|hi|])2 < 1, the numerator of (2.37) is

decreased and the denominator of (2.37) is increased, leading to a reduction

in DC and thus fading has a detrimental effect on the detection performance,

as expected.

Note that if the optimization of the DC is desired in the fading case,

the factor (E[|hi|])2 in the denomenator of (2.37) affects the optimum ω

value. Theorem 2.5.1 can be proved for the fading case as well with C(ω) :=

2(E[|hi|])2ϕ2
n(ω)/[1− (E[|hi|])2ϕ2

n(ω) + σ2
v/PT] which is still decreasing with ω

if ϕn(ω) is. Therefore the conclusion of Theorem 2.5.1, namely, ω∗ ∈ (0, π/θ),

does not change. The procedure to find the ω∗ under the TPC for Gaussian,

Cauchy and Laplacian is the same as described in Sections 2.5.2.1, 2.5.2.2 and

2.5.2.3 respectively. The equations (2.17), (2.18), (2.19) and (2.22) remain

valid with the exponentials in these equations scaled by the factor (E[|hi|])2.

The equations (2.25), (2.26) and (2.27) for the Laplacian case also remain valid

except the term 1/α in (2.25) scaled by (E[|hi|])2.

We note that if sensors have imperfect knowledge of the phase, |hi|

will be replaced by |hi|ejφ̃i where φ̃i is the phase error. Clearly this error can

also be subsumed in (2.36) as replacing ωni with ωni + φ̃i which changes the

sensing noise by a term independent of ω. This establishes the interesting fact
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that phase error over fading channels can be treated as a change in sensing

noise distribution.

2.7 Asymptotic Performance and Optimization of ω based on error

exponent

The error exponent in a distributed detection system is a measure of how

fast the probability of error goes to zero as L → ∞. Mathematically error

exponent is defined as:

− lim
L→∞

logPe(ω)

L
. (2.38)

Large deviation theory [47, 88] provides a systematic procedure to calculate

the error exponent which is briefly reviewed next. Let YL be a sequence of

random variables without any assumptions on their dependency structure and

let M(t) = limL→∞(1/L) log E{etYL} exist and is finite for all t ∈ R. Define

ε(z) = − lim
L→∞

1

L
log Pr [YL < z] , (2.39)

where z is the threshold and YL is the test statistic of a detector. Gärtner-Ellis

Theorem [88, pp. 14] states that ε(z) in (2.39) can be calculated using,

ε(z) = sup
t∈R

[tz −M(t)] , (2.40)

where

M(t) = lim
L→∞

1

L
log E{etYL}. (2.41)

We will now use the Gärtner-Ellis Theorem with YL replaced by ZL(ω) in

(2.9) and z = 0. Letting Mω(t) := limL→∞(1/L) log E{etZL(ω)}, and εω(z) =

supt∈R[tz −Mω(t)] we have the following theorem which relates the error ex-

ponent to the CF ϕn(ω) of the sensing noise distribution.
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Theorem 2.7.1. For the detector in (2.5), the error exponent in (2.38) is

εω(0) = − inft∈R Mω(t) where Mω(t) is given by

log

[
I0(mt) + 2

∞∑

k=1

Ik(mt)ϕn(kω) cos

(
k

(
π

2
− ωθ

2

))]
+

[
t2σ2

v(1− cos(ωθ))

2PT

]

(2.42)

where Ik(t) is the modified Bessel function of the first kind and m := 2 sin (ωθ/2).

Proof. We use the Gärtner-Ellis theorem from large deviation theory [88, pp.

14] to calculate the error exponent. To this end, we need to calculate Mω(t)

in (2.41) and substitute into (2.40).

Mω(t) = lim
L→∞

1

L
log E{exp[tZL]}

= lim
L→∞

1

L
log E

{
exp

[
t

(
L∑

i=1

2 sin

(
ωθ

2

)

cos

(
ωni −

ωθ

2
+

π

2

)
+

√
L

PT

vT

)]}

= logE

{
exp

[
2t sin

(
ωθ

2

)
cos

(
ωni −

ωθ

2
+

π

2

)]}

+

[
t2σ2

v(1− cos(ωθ))

2PT

]
(2.43)

From [89, pp. 376], we have the Fourier series expansion of the periodic func-

tion ep cos(u) as,

ep cos(u) = I0(p) + 2
∞∑

k=1

Ik(p) cos(ku) (2.44)

Using the equation (2.44) in (2.43) with p = 2t sin(ωθ/2) and

u = (ωni − ωθ/2 + π/2) and then applying the expectation on the resulting

summation, we get Mω(t) as in (2.42).

It is well known that the function Mω(t) is convex in t [88]. Therefore

the supremum in (2.40) can be found efficiently for z = 0. The t∗ that maxi-
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mizes (2.40) satisfies M
′

ω(t
∗) = 0 which can be found by convex methods with

geometric convergence [90].

In addition to the error exponent, it is also possible to approximate

Pe(ω) using the function εω(z). In fact Bahadur and Rao [47, pp. 10] have

proved that this probability can be approximated using the error exponent

and is given by:

Pe(ω) =
1√
2πσ̂2

ω

e−Lεω(0)(1+o(1)) , (2.45)

as L → ∞ and σ̂2
ω := [ε

′

ω(0)]
2/[ε

′′

ω(0)]. The quantities ε
′

ω(0) and ε
′′

ω(0) are the

first and second derivatives of εω(z) at z = 0 respectively, and can be calculated

from the following equations [90, pp. 121]: ε
′

ω(0) = t∗, and ε
′′

ω(0) = 1/M
′′

ω(t
∗).

The error exponent given in Theorem 2.7.1 is a function of ω and let us

denote it by εω for convenience. It will be illustrated in Section 2.9 that the

values of ω that minimizes Pe(ω) is closely predicted by the value obtained by

maximizing D(ω) or εω. We will also examine in the simulations in Section

2.9 how accurately (2.45) can be used to approximate Pe(ω) for finite L.

2.8 Non-Gaussian Channel Noise

We have so far assumed that the channel noise as Gaussian. However, we

verified that the detector in (2.5) works well even if the channel noise is mixed

Gaussian, uniform or Laplacian. The channel noise distribution will only affect

the error exponent through the second term in (2.42). Using this, the effect of

different channel noise distributions we considered are briefly sketched below.

We considered the case of mixed Gaussian having two different vari-

ances drawn from a Bernoulli distribution. Let p0 be the probability that the

samples drawn from the mixture have variance σ2
v0

and p1 = 1 − p0 be the

probability corresponding to σ2
v1 and let σ2

v1 > σ2
v0 . In this case, we found that
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the error exponent is affected only by the larger variance in the mixture. While

using Gärtner-Ellis Theorem to calculate Mω(t), the second term in (2.42) for

the mixed Gaussian becomes lim
L→∞

L−1 log[p0 exp
(
t2σ2

v0(1− cos(ωθ))/2PT

)
+

p1 exp
(
t2σ2

v1(1− cos(ωθ))/2PT

)
] and this limit in fact evaluates to the quan-

tity [t2σ2
v1
(1− cos(ωθ))/2PT] which proves that only the larger variance σ2

v1
in

the mixture affects the error exponent.

For the uniform channel case, interestingly we found that the second

term in (2.42) evaluates to 0 and thus proving that the error exponent is not

impacted by the uniform channel noise. We do not include the straightforward

derivation due to lack of space. We will discuss the performance of the mixed

Gaussian and Laplacian cases in Section 2.9.6.

2.9 Simulations

We define the sensing and channel SNRs as ρs := θ2/σ2
n, ρc := PT/σ

2
v and

assume P1 = P0 = 0.5 throughout. Note also that ρ = PT/L is the power at

each sensor as defined in Section 2.2.

2.9.1 Effect of ω on Performance

We begin by comparing the optimized ω values using D(ω), εω and Pe(ω) for

the TPC. The values of ω∗ > 0 obtained by maximizing the error exponent

εω and the DC D(ω) were found to be very close over the entire range of

PT. Figure 2.1 shows the plots of D(ω), εω, and Pe(ω) vs ω for Gaussian

and Cauchy sensing noise distributions where the Pe(ω) plot is obtained using

Monte-Carlo simulations. The different ω∗ values in Figure 2.1 correspond to

the best ω values obtained by optimizing D(ω), εω and Pe(ω) respectively.

It is interesting to see that the ω∗ that minimizes Pe(ω) is very close to that

which maximizes D(ω) and εω. For Laplacian and Uniform sensing noises (not

shown), the same trends were observed.
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Gaussian, D(ω), ρs = 10 dB, ω∗ = 0.70
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Figure 2.1: Total Power Constraint, D(ω), εω, Pe(ω) vs ω: ρs=10, 15 dB, ρc=-
10 dB, L=20

Figure 2.2 shows the performance under per-sensor power constraint

with large L. It is observed that smaller ω yields better error probability. This

agrees with our findings in Section 2.5.3 where it was shown that Dpspc(ω) can

be made larger by choosing ω > 0 arbitrarily small. Since both Figures 2.1

and 2.2 verify that the choice of ω based on minimizing Pe(ω) can be closely

approximated by that which maximizes D(ω), in all subsequent simulations,

we have used the ω∗ values obtained by maximizing D(ω).

2.9.2 Comparison against MAF and MDF Schemes

In Figure 2.3, the proposed scheme is compared under the TPC with the MAF

and MDF schemes which have been shown in [37] to outperform conventional

amplify-and-forward (AF) and detect-and-forward (DF) schemes. We observe

that the proposed scheme outperforms MAF when ρs > 4 dB, and MDF for the
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Figure 2.2: Per-sensor Power Constraint, Gaussian, Pe(ω) vs ω: ρs=-10 dB,
ρ=10 dB

entire range of ρs. The same trend was observed when L is increased to 90 with

an improvement in the detection error probability. The ML performance shown

was obtained by the Monte-Carlo implementation of the ML detector and is

computationally complex, but serves as a performance benchmark. Figure

2.4 shows the Pe performance versus L under the TPC. Clearly the proposed

scheme outperforms the AF, DF, MAF and MDF schemes consistently since

ρs = 15 dB.

The proposed scheme requires the fine tuning of the transmission phase

parameter ω either through optimizing the deflection coefficient or the error

exponent. However, it should be noted that similar type of fine tuning is also

required in the competing schemes such as the MAF or the MDF. We note

that the proposed scheme is inferior to MAF at low sensing SNRs (ρs < 4
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Figure 2.3: Total Power Constraint, Pe vs ρs: ρ=-30 dB, L=60

dB). On the whole, the benefits of constant modulus signaling and improved

performance at higher sensing SNRs make the proposed approach a viable

alternative.

2.9.3 Total Power Constraint: Different Noise Distributions

For the Total Power Constraint, Figure 2.5 shows that Cauchy sensing noise

results in better performance when ρs is low, and worse when ρs is high com-

pared with other sensing noise distributions. This agrees with the fact that

D(ω∗) is smaller for Cauchy sensing noise when ρs is high than other dis-

tributions and vice versa when ρs is low. When ρs is moderately high, we

observe that Gaussian, Laplacian and Uniform distributions have identical

performance if ρc is very low for a wide range of L as illustrated in the Figure

2.5. We found numerically that the similarity of the Pe(ω) curves under dif-
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Figure 2.4: Total Power Constraint, Pe vs L: ρs=15 dB, ρc=0 dB

ferent sensing noise distributions was also reflected in the corresponding D(ω)

values where they were also verified to be similar.

Figure 2.6 compares the performance of the proposed scheme in the

presence of Rayleigh flat fading between the sensors and the FC against with-

out fading with the Gaussian sensing noise. Clearly, fading has a detrimental

effect on the detection performance as argued in Section 2.6. It is also ob-

served that, in the presence of fading, Pe is not as sensitive to the increase in

ρs as that of the no fading case.

2.9.4 Error Exponent

Figure 2.7 depicts the error exponent of the proposed scheme under the PSPC

and illustrates its improvement with increase in ρs for all the sensing noise

distributions. Recall that σ2
v has no effect on the error exponent for the PSPC

case since (σ2
v/PT) → 0 in (2.42). It is interesting to see that Cauchy sens-
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Figure 2.5: Total Power Constraint, Pe vs L: ρs=5, 15 dB, ρc=-10 dB

ing noise has a better error exponent than Gaussian, Laplacian and Uniform

sensing noise distributions when ρs ≤ 4 dB while it is worse when ρs > 4 dB.

The error exponent with Gaussian sensing noise is better than that of Lapla-

cian noise when when ρs > 7.5 dB and the uniform distribution has a better

error exponent than other sensing noise distributions when ρs > 4 dB. The

error exponent of the proposed scheme is compared with the error exponents

of MAF and MDF schemes which were only derived for the Gaussian case

(please see equations (24) and (25) in [37]). It is seen that, for the PSPC case,

the MAF scheme (whose error exponent is ρs/8) and the proposed scheme

with optimum ω have identical error exponents leading us to conjecture that

supω[− inft∈R Mω(t)] = ρs/8 when ni are Gaussian. The MDF error exponent

is inferior compared to MAF and the proposed scheme.
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Figure 2.6: Rayleigh flat fading, Pe vs ρc, ni Gaussian, L=10

Figure 2.8 shows the error exponent under the TPC with ρs = 0 dB.

In this scenario, Cauchy sensing noise has the best error exponent since ρs is

low. This concurs with the fact illustrated in Section 2.9.3 that the DC of

Cauchy is better at lower values of ρs than other distributions and this was

justified by the simulation results as shown in Figure 2.5. We found that when

ρs is increased, Cauchy becomes inferior to other noise distributions. For all

the distributions, increasing ρc results in an increase in the error exponent

which becomes a constant beyond ρc = 15 dB. This is because, for a given

ρs, increasing ρc combats the effect of channel noise, thereby improving the

error exponent. However, the effect of sensing noise can not be overcome by

increasing ρc indefinitely. This can be seen from (2.42) as well where the

second term vanishes while the first term remains even for large PT. For the

Gaussian case, we derived the error exponent of the MAF scheme under the
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Figure 2.7: Per-sensor Power Constraint, εω vs ρs

TPC as εMAF = θ2/8[σ2
n + (σ2

v(σ
2
n +P0P1θ

2)/PT)]. If PT → ∞, this reduces to

ρs/8 for the PSPC case. It is seen that with ρs = 0 dB, the MAF scheme is

better than the proposed method when ρc < 15 dB. However, under the TPC,

the error exponent of the proposed scheme was found to beat the MAF scheme

when ρs > 4.5 dB and an example plot is shown in Figure 2.8 for ρs = 10 dB.

This crossover between the MAF and the proposed schemes is also reflected

in their respective Pe performance curves approximately around the same ρs

value (please see Figure 2.3). However, if ρc is increased beyond 15 dB, we see

that the error exponents of both the schemes become very close.

2.9.5 Approximations of Pe(ω) through εω(z)

Equation (2.45) provides an approximation of Pe(ω) based on the error expo-

nent. The expression in (2.45) is found to match with the simulations when

ρc > 0 dB and ρs > -5 dB. Figures 2.9 and 2.10 elucidate this behavior for
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Gaussian sensing noise distribution. Similar trends were observed for the other

sensing noise distributions as well but are not shown due to space constraints.

When L is small, the gap between theory and simulation is significant as shown

in Figure 2.9. This can be explained by the o(1) term in (2.45). Accordingly,

when L is increased to about 40, we see the theory and simulation curves

merging as shown in Figure 2.9. Figure 2.10 shows that when ρs is moderately

high, smaller L is required to get the performance match between theory and

simulation.

From the various simulation plots in Figures 2.1, 2.5, 2.7, and 2.8, we

see that the proposed scheme is robust in the sense that it works very well

for a variety of sensing noise distributions including the impulsive Laplacian

distribution and the Cauchy distribution which has no finite moments.

52



−5 0 5 10 15 20 25 30 35 40

10
−4

10
−3

10
−2

10
−1

10
0

ρc (dB)

P
e

L = 60

L = 40

L = 20

L = 10

Theory

Simulation

Figure 2.9: Gaussian Sensing Noise: Pe vs ρc: ρs=0 dB, L=10, 20, 40, 60

2.9.6 Non-Gaussian Channel Noise

Figure 2.11 shows the error exponent plot for the case where σ2
v0

= 0.25, p0 =

0.80, σ2
v1

= 4, p1 = 0.20 (note that the effective channel noise variance is:

σ2
veff

= p0σ
2
v0
+ p1σ

2
v1

= 1). We see that the error exponent of mixed Gaussian

with σ2
veff

= 1 is worse compared to that of the Gaussian with σ2
v = 1 case.

This is because, in the mixed Gaussian case, the error exponent is a function

of the larger variance of σ2
v1

= 4.

Figure 2.12 shows the performance of the proposed detector with Lapla-

cian channel noise against the Gaussian channel noise when the sensing noise

is Gaussian. We note that when sensing SNR ρs is moderately high, the im-

pulsive Laplacian channel noise is worse compared to Gaussian channel noise.
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Figure 2.10: Gaussian Sensing Noise: Pe vs ρc: ρs=10 dB, L=5, 7
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Chapter 3

Distributed Inference with Bounded Transmissions

3.1 Literature Survey and Motivation

In this chapter we consider the general problem of distributed inference using

bounded transmission functions and establish regimes under which estimation

and detection will be possible and discuss regimes under which estimation will

fail and reliable detection will be impossible.

In inference-based wireless sensor networks (WSNs), low-power sensors

with limited battery and peak-power capabilities transmit their observations

to a fusion center (FC) for detection of events or estimation of parameters.

For distributed estimation and distributed detection, much of the literature

has focused on a set of orthogonal (parallel) channels between the sensors and

the FC (please see [22,91] and the references therein). The bandwidth require-

ments of such an orthogonal WSN scale linearly with the number of sensors.

In contrast, over multiple access channels where the sensor transmissions are

simultaneous and in the same frequency band, the utilized bandwidth does

not depend on the number of sensors.

Sensors may adopt either a digital or analog method for relaying the

sensed information to the FC. The digital method consists of quantizing the

sensed data and transmitting with digital modulation over a rate-constrained

channel. In this case, the required channel bandwidth is proportional to the

number of bits at the output of the quantizer which are transmitted after pulse

shaping and digital modulation. The analog method consists of transmitting

unquantized data by appropriately pulse shaping and amplitude or phase mod-

ulating to consume finite bandwidth. One such method is the amplify-and-

forward (AF) scheme in which sensors send scaled versions of their measure-
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ments to the FC. However, using the AF technique is not a viable option for

WSNs because it requires high transmission power when the values to be trans-

mitted are large [92]. Moreover, the linear transmit amplifier characteristics

required for AF are often very power-inefficient [93], requiring the study of the

effect of nonlinear transmissions on performance. Distributed systems which

employ the AF technique for transmission of the sensed data often assume

that the power amplifiers used are perfectly linear over the entire range of the

sensed observations. In practice, the amplifiers exhibit nonlinear behaviour

when the amplitude of the sensed data is relatively high [93–95]. Wireless

sensor networks have stringent power and bandwidth constraints, therefore

distributed schemes which use bounded instantaneous transmit power over

multiple access channels are highly desirable.

References [38,42–44,70,96,97] discuss distributed estimation over Gaus-

sian multiple access channels. In [38, 42], a distributed estimation scheme

where the sensor transmissions are phase-modulated to make constant mod-

ulus transmissions is considered. The estimator proposed in [38] is shown to

be strongly consistent for any symmetric sensing noise distribution when the

noise samples are i.i.d.. In [43, 44], the mean and variance of a signal embed-

ded in noise (not necessarily Gaussian) are estimated which are then used to

estimate the SNR of the signal. In all the above cases of [38, 42–44], the de-

sired constant modulus property is achieved by phase modulating the sensed

data before transmission. The authors in [98] discuss the effect of nonlinear

transmissions on the convergence speed of a consensus algorithm proposed for

a distributed average consensus problem.

References [36, 37, 99, 100] discuss distributed detection using constant

modulus transmissions over Gaussian multiple access channels for a binary
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hypothesis testing problem. Inspired by the robustness of the estimation

scheme in [38], the authors in [99] and [100] proposed a distributed detection

scheme where the sensors transmit with constant modulus signals over a Gaus-

sian multiple access channel. Here again, the sensors transmit with constant

modulus transmissions whose phase varies linearly with the sensed data and

the performance is analysed using deflection coefficient and error exponent.

In [36] and [37], two schemes called modified amplify-and-forward (MAF)

and the modified detect-and-forward (MDF) are developed which generalize

and outperform the classic amplify-and-forward (AF) and detect-and-forward

(DF) approaches to distributed detection. It is shown that MAF outperforms

MDF when the number of sensors is large and the opposite conclusion is true

when the number of sensors is smaller. In both the DF and MDF schemes,

the sensors individually take a decision by quantizing the sensed measure-

ment and transmit the one bit information to the FC by BPSK modulation

and therefore the transmit power is always constant. Bounded transmission

schemes are highly desirable and practically viable for the power constrained

WSNs. In addition, bounded transmissions are robust to impulsive measure-

ments [38,42–44] which could happen for WSNs deployed in adverse conditions.

In this chapter, we are interested in studying the effect of general non-

linear transmissions (as opposed to the linear AF scheme) from the sensors to

the FC in a distributed inference framework. The sensors map their observa-

tions using a bounded function before transmission to constrain the transmit

power and these observations are transmitted to the FC over a Gaussian mul-

tiple access channel. Our emphasis in this Chapter is not so much to propose a

specific estimator or a detector, rather we want to focus on studying the impli-

cations of bounded transmission schemes on distributed inference in resource
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constrained WSNs. Moreover, this work also studies the merits and demerits

of distributed schemes involving realistic, nonlinear amplifier characteristics.

We characterize the general conditions on the sensing noise statistics and the

nonlinear function under which consistent estimation and reliable detection

are possible. We also compare the bounded transmissions scheme with the

AF scheme and highlight the advantages and disadvantages of each other. We

show that if the measurement accuracy degrades progressively in the sense that

the sensing noise variance goes to infinity, bounded transmission is not useful

for distributed inference. On the other hand, it is shown that AF scheme does

not suffer from this issue. These conclusions are drawn by studying the fun-

damental metrics such the asymptotic variance and the deflection coefficient.

This chapter is organized as follows. In Section 3.2, the system model

is described with the total power constraint. In Section 3.3, the estimation

problem is described and the properties of the proposed estimator is stud-

ied. Optimization of AsV (ω) is considered in this section. In Section 3.3,

the detection problem is described and a quadratic detector is proposed. The

probability of error performance of the detector is analyzed and the optimiza-

tion of DC is studied in this section. The proposed scheme is compared against

the AF scheme in Section 3.2.4. Simulation results are provided in Section 3.4

which support the theoretical results.

3.2 Distributed Estimation with Bounded Transmissions
3.2.1 System Model

Consider the sensing model, with L sensors,

xi = θ + σini i = 1, . . . , L (3.1)

where θ is an unknown real-valued parameter, ni is symmetric real-valued

noise with zero median (i.e., its probability density function (PDF) is sym-
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metric about zero), and xi is the measurement at the ith sensor. The noise

samples ni are assumed to be independent identically distributed (i.i.d.) but

not necessarily with finite mean or variance. We consider a setting where the

ith sensor transmits its measurement using a bounded function
√
ρf(xi) over

a Gaussian multiple access channel (please see Figure 3.1) so that the received

signal at the FC is given by

y
L
=

√
ρ

L∑

i=1

f (xi) + v (3.2)

where ρ is a power scale factor and v is the additive Gaussian noise with

zero mean and variance σ2
v . Parameter σi is a deterministic scale parameter

which makes the variance (when it exists) of the noise samples different for

each sensor depending on how they are distributed in space and how accurate

their measurements are. For instance, if the phenomenon quantified by θ

happens near a sensor, it is reasonable to expect that the variances of the

sensing noise would be higher compared to those that are farther. Moreover,

in case of WSNs operating in adverse conditions, the sensing noise ni could

be impulsive characterized by heavy tailed distributions [101]. We also point

out that the received signal at the FC as modeled in (3.2) is realistic if the

transmit amplifiers at the local sensors are nonlinear.

In this chapter, we study the consequences of the boundedness of f(·)

on performance. In particular, we assume that the transmit function f(x)

satisfies the following conditions.

Assumptions:

(A1): f(x) is differentiable such that 0 < f
′

(x) ≤ d, ∀x ∈ R.

(A2): f(x) is bounded, supx∈R |f(x)| = c.

Note that the transmitted signal at the ith sensor has the instantaneous power

ρf 2(ωxi) and it is always constrained within ρc2, which does not suffer from
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Figure 3.1: Bounded transmissions over Gaussian multiple access channel

the problems of unbounded transmit power seen in AF schemes for which

f(x) = αx. The total transmit power from all the sensors in (3.2) is upper

bounded by ρc2L. We begin by considering a fixed total power constraint PT

for the entire network implying that the per-sensor power is less than or equal

to PT/L. Clearly the per-sensor power is a function of L when PT is fixed.

3.2.2 The Estimation Problem

First we consider estimating θ from y
L
. Let σi be a deterministic sequence

capturing the reliability of the ith sensor’s measurement. The received signal

y
L
under the total power constraint is given by

y
L
=

√
PT

L

L∑

i=1

f(θ + σini) + v. (3.3)

Let z
L
denote the normalized received signal:

z
L
:=

yL√
L

=
√

PT
1

L

L∑

i=1

f(θ + σini) +
v√
L

, (3.4)
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and define hω(θ) := L−1
∑L

i=1 Eni
[f(θ + σini)] where E(·) denotes expectation.

We now state an important result known as the Kolmogorov’s strong law of

large numbers [102, pp. 259] which handles the case of independent non-

identically distributed RVs, due to the fact that the σi are different.

Theorem 3.2.1. Let X1, X2, . . . , XL be a sequence of independent and

not necessarily identically distributed RVs. Let var[Xk] denote the variance

of Xk and X̄L = L−1
∑L

k=1Xk denote the partial sum of the sequence. If
∑∞

k=1 var[Xk]/k
2 < ∞, then, X̄L − E[X̄L] → 0 almost surely as L → ∞.

Due to the law of large numbers in Theorem 3.2.1 we have

lim
L→∞

1

L

L∑

i=1

f(θ + σini) = hω(θ) (3.5)

where we use the fact that the variances var[f(θ + σini)] ≤ c2 are bounded.

Therefore, we have limL→∞ z
L
=

√
PThω(θ). Due to the boundedness of f(·),

(3.5) holds regardless of the sensing noise distributions. Consider estimating

θ from,

θ̂L = h−1
ω

(
z
L√
PT

)
, (3.6)

where z
L
is as given in (3.4). To recover θ uniquely from h−1

ω (·), we need

hω(θ) to be one-to-one in θ for which (A1) and (A2) are sufficient as shown

in Lemma 3.2.1.

Lemma 3.2.1. Let g
σi
(θ) := Eni

[f(θ + σini)] and suppose that the assump-

tions (A1) and (A2) hold. Then, hω(θ) is one-to-one in θ.
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Proof. Differentiating g
σi
(θ) with respect to θ, we have

g
σi
(θ) =

∞∫

−∞

f(θ + σini)p(ni)dni ,

∂g
σi
(θ)

∂θ
=

∞∫

−∞

∂f(θ + σini)

∂θ
p(ni)dni , (3.7)

> 0 , (3.8)

where we have applied Corollary 5.9 in [103, pp. 46] using assumptions (A1)

and (A2) to move the derivative inside the integral in (3.7). The last inequality

follows from the fact that convex combination of positive valued functions is

positive. Therefore, g
σi
(θ) is strictly an increasing function of θ. Since hω(θ)

is a convex combination of strictly increasing and differentiable functions, we

have h
′

(θ) > 0, θ > 0. Therefore, hω(θ) is a strictly increasing function and

thus it is one-to-one in θ.

We now state a Lemma about a convergent sequence which will be used

in the sequel.

Lemma 3.2.2. Let ai be a converging sequence such that limi→∞ ai = a. Then,

limL→∞ L−1
∑L

i=1 ai = a.

Proof. Please see [86, pp. 411].

An estimator θ̂L is strongly consistent if θ̂L converges to the true value

θ almost surely as L → ∞ [86]. Now we establish the strong consistency of

the class of estimators θ̂L in (3.6) In Theorem 3.2.2.

Theorem 3.2.2. Let the assumptions (A1) and (A2) hold. Let σmax :=

maxi σi be finite. Then, the estimator θ̂L in (3.6) is strongly consistent.
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Proof. Since f(x) is a bounded function by assumption (A2), the Kolmogorov’s

condition
∑∞

i=1 var[f((θ + σini)]/i
2 ≤ ρ2c2π2/6 < ∞ is satisfied, therefore the

strong law of large numbers for the non-identically distributed random vari-

ables (RVs) is applicable and z
L
→ √

PThω(θ) almost surely. Since f
′

(x) > 0

by assumption (A1), it follows from Lemma 3.2.1 that h(θ) is one-to-one in

θ. Due to the fact that θ̂L is a continuous function of z
L
, θ̂L → θ almost

surely [86, Thm 3.14] proving that the estimator in (3.6) is strongly consis-

tent.

On the other hand, if σi → ∞ as i → ∞, then the estimator in (3.6) is

not consistent and θ can not be estimated from z
L
. A more formal statement

is presented next as a theorem.

Theorem 3.2.3. Let the assumptions (A1) and (A2) hold and σi be a de-

terministic sequence such that σi → ∞ as i → ∞, then hω(θ) is independent

of θ.

Proof. First we note that due to assumption (A2), the variances var[f((θ +

σini)] are bounded. According to Kolmogorov’s strong law of large numbers
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for non-identically distributed random variables, we have

hω(θ) = lim
L→∞

z
L
=
√
PT lim

L→∞

1

L

L∑

i=1

Eni
f(θ + σini) (3.9)

=
√
PT lim

L→∞

1

L

L∑

i=1

∞∫

−∞

f(θ + σini)p(ni)dni (3.10)

=
√
PT lim

L→∞

∞∫

−∞

1

L

L∑

i=1

f(θ + σini)p(ni)dni (3.11)

=
√
PT

∞∫

−∞

lim
L→∞

1

L

L∑

i=1

f(θ + σini)p(ni)dni (3.12)

=
√
PT

0∫

−∞

lim
L→∞

1

L

L∑

i=1

f(θ + σini)p(ni)dni

+
√
PT

∞∫

0

lim
L→∞

1

L

L∑

i=1

f(θ + σini)p(ni)dni (3.13)

=
√
PT

(
−c2

2
+

c1
2

)
=

c1 − c2
2

(3.14)

for some c1 ≤ c, c2 ≤ c. We have exchanged the summation and expectation

in (3.10) to get (3.11). We have used assumption (A2) to apply bounded

convergence theorem [104, pp. 288] to move the limit in (3.11) inside the

integral as in (3.12). In (3.13), we have used Lemma 3.2.2 for the sequence

f(θ+ σini) along with the fact that f(x) converges to some constant as |x| →

∞ by the virtue of assumptions (A1) and (A2). Thus if σi → ∞, then

z
L
→ (c1− c2)/2 almost surely so that hω(θ) is independent of θ and therefore

θ can not be recovered from hω(θ) and the theorem is proved.

Theorem 3.2.3 indicates that if sensors use a bounded function to trans-

mit their measurements to the FC, there is a penalty incurred when the vari-

ance of the noise samples are going to infinity. When the noise samples are

very high in magnitude, the sensors will be transmitting the boundary values
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(c1 or −c2) most of the time. These boundary values do not contain any in-

formation on the quantity of interest θ, therefore we can not construct any

useful estimator of θ from z
L
.

We like to point out that the assumption (A2) is not necessary for

Theorems 3.2.2 and 3.2.3 to hold. It is sufficient if f(x) is just an increasing

function such that the variances var[f((θ+ σini))] are bounded (boundedness

of f(x) is not necessary) to prove Theorems 3.2.2 and 3.2.3. For instance, the

function f(x) = sign(x)|x|p, 0 < p < 1/2 is not bounded, but var[sign((θ +

σini))|(θ + σini)|p] is bounded. Therefore, Kolmogorov’s strong law of large

numbers is still applicable and it is possible to estimate θ from z
L
in (3.4).

3.2.3 Asymptotic Normality of the Estimator

We now investigate the asymptotic normality of the estimator in (3.6). For

the sake of simplicity we assume that ni are i.i.d. and σi = 1, i = 1, . . . , L.

Theorem 3.2.4. Let the assumption (A1) hold and suppose that σi = 1, i =

1, . . . , L. Let ni be i.i.d. and v ∼ N (0, σ2
v), then

√
L
(
θ̂L − θ

)
is asymptotically

normal with zero mean and variance given by

AsV =

∞∫
−∞

f 2(θ + ni) p(ni)dni − h2
ω(θ) +

σ2
v

PT

( ∞∫
−∞

f ′(θ + ni) p(ni)dni

)2 . (3.15)

Proof. Due to the central limit theorem, we see that
√
L [z

L
− hω(θ)] is asymp-

totically normal with zero mean and variance σ̃2 given by

σ̃2 = PT




∞∫

−∞

f 2(θ + ni) p(ni)dni − h2
ω(θ)


+ σ2

v . (3.16)

Applying [86, Thm 3.16] the asymptotic variance of the estimator in (3.6) is

given by

AsV = G2σ̃2 (3.17)
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where

G :=
∂h−1

ω (
z
L√
PT

)

∂z
L

∣∣∣∣
z
L
=
√
PThω(θ)

=
1

h′

ω

(
h−1
ω

(
z
L√
PT

))
∣∣∣∣
z
L
=
√
PThω(θ)

=
1√

PTh
′

ω(θ)
(3.18)

Substituting G in (3.17) and simplifying we obtain the theorem.

3.2.4 Comparison with Amplify and Forward Scheme

For the AF scheme, the transmitted signal at the ith sensor is given by αLxi

where αL depends on the number of sensors L to ensure the total power con-

straint, but is independent of xi [38], [51], [105]. To begin with, we focus on

the case when ni are i.i.d., and choosing αL identical across sensors. In what

follows, we will show that the scheme in (3.6) is superior to AF when the

sensing noise has a heavy-tailed density.

The received signal for the AF scheme is given by

y
L
= αL

L∑

i=1

(θ + σini) + v . (3.19)

We have already seen that the per-sensor power α2
L(θ+σini)

2 is an unbounded

RV, when the PDF of the sensing noise has support over the entire real line.

This is undesirable especially for low-power sensor networks with limited peak-

power capabilities. We reiterate that using a bounded transmission function

is preferable to AF, with respect to the management of the instantaneous

transmit power of sensors.

Since the total instantaneous power is random for AF, the total power

is defined as an average PT = α2
L

∑L
i=1 E[(θ + σini)

2], where the expectation

is taken with respect to the sensing noise distribution. We will consider a

total power constraint case where PT is not a function of L so that αL =
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√
PT∑L

i=1
(θ2+σ2

i σ
2
n)

. For the AF scheme the estimator is given by θ̂AF = y
L
/(LαL)

so that

(θ̂AF − θ) =
1

L

L∑

i=1

σini +
1

L

√∑L
i=1(θ

2 + σ2
i σ

2
n)

PT
v . (3.20)

The normalized multiple access channel output for the AF scheme is pro-

portional to the sample mean, which is not a good estimator of θ when the

sensing noise is heavy-tailed. As a specific example, consider the case when ni

is Cauchy distributed. From (3.20) it is clear that (θ̂AF − θ) → 0 is not possi-

ble since the sample mean L−1
∑L

i=0 σini is Cauchy distributed for any value

of L. Since the sample mean is not a consistent estimator for Cauchy noise,

the AF approach over multiple access channels fails for such a heavy-tailed

distribution. On the other hand, the estimator proposed in (3.6) is strongly

consistent in the presence of any sensing noise distribution, including Cauchy

distribution. This example illustrates that the inherent robustness of using the

bounded transmission function in the presence of heavy-tailed sensing noise

distributions. The sample mean, “computed” by the multiple access channel

in the AF approach, is highly suboptimal, and sometimes not consistent like

in the Cauchy case, whereas in the proposed approach the channel computes a

noisy and normalized version of the function of the sensed samples, from which

a consistent estimator can be constructed for any sensing noise distribution.

We saw that bounded transmissions are more robust to impulsive sens-

ing noise compared to AF. On the other hand, AF can be superior to bounded

transmissions if σi → ∞. Recall Theorem 3.2.3 which says that if σi → ∞,

then the estimator in (3.6) is not consistent. It is clear from (3.20) that AF is

strongly consistent provided that L−1
∑L

i=0 σini converges to zero. A sufficient

condition for this is given by Theorem 3.2.1 which is given by
∑∞

i=1 σ
2
i /i

2 < ∞

in this case. It is possible for σi → ∞ while
∑∞

i=1 σ
2
i /i

2 < ∞, when the vari-
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ances of ni exist. For example, if σi =
√
iσ for some σ > 0, then σi → ∞ as

i → ∞. However,
∑∞

i=1 σ
2
i /i

2 = σ2
∑∞

i=1 i
−3

2 < ∞. Therefore, in this case the

strong law of large numbers holds, and the AF scheme is consistent. Whereas

the proposed scheme fails to be consistent as was proved in Theorem 3.2.3

irrespective of at what rate σi goes to ∞. Thus, AF is consistent over a less

strict set of conditions on σi.

3.3 Distributed Detection with Bounded Transmissions

For the distributed estimation problem, we saw that consistency requires that

f(·) is one-to-one. For distributed detection this is not necessary, since we

do not seek to estimate θ but to distinguish between two hypothesis. Indeed,

conventionally, f(·) is chosen as a quantizer in distributed detection. In this

section, we want to address the choice of f(·) whether it is a quantizer, or

an invertible bounded function. We also want to study the consequences of

boundedness for f(·) through the deflection coefficient.

3.3.1 System Model

Consider a binary hypothesis testing problem with two hypotheses H0, H1

where P0, P1 are their respective prior probabilities. Let the sensed signal at

the ith sensor be,

xi =





θ + σini underH1

σini underH0

(3.21)

i = 1, . . . , L, θ > 0 is a known parameter whose presence or absence has to be

detected, L is the total number of sensors in the system, and ni is the noise

sample at the ith sensor. As explained in Section 3.2.1, σi > 0 is a deterministic

scale parameter. The sensing noise samples are i.i.d, have zero median but they

need not be bounded or have any finite moments. We consider a setting where

the ith sensor transmits its measurement using a bounded function
√
ρf(xi)
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over a Gaussian multiple access channel so that the received signal at the FC

is given by (3.2) where ρ is a power scale factor and f(x) satisfies the same

conditions as in Section 3.2.1, and v ∼ N (0, σ2
v) is the additive channel noise.

Note that the power at each sensor is upper bounded by ρc2. We also assume

that the total power ρc2L for the entire network is constrained to PT.

3.3.2 The Detection Problem

The received signal y
L
under the total power constraint can be written as

y
L
=

√
PT

L

L∑

i=1

f (xi) + v . (3.22)

With the received signal in (3.22), the FC has to decide which hypothesis

is true. It is well known that the optimal decision rule under the Bayesian

formulation is given by:

p(y
L
|H1)

p(y
L
|H0)

H1

≷
H0

P0

P1
(3.23)

where p(y
L
|Hi), is the conditional probability density function of y

L
when the

hypothesis Hi, i ∈ {0, 1}, is true.

3.3.3 Probability of Error

The PDFs of y
L
in (3.23) under the hypothesis Hi involve (L+1) convolutions

and are not tractable in general. Let Pe be the probability of error at the FC:

Pe = P0 Pr [error|H0] + P1 Pr [error|H1] (3.24)

where Pr [error|Hi] is the error probability when Hi is true. Since Pe is not

straightforward to evaluate, we will study a surrogate metric called the deflec-

tion coefficient (DC) to identify regimes where reliable detection is possible.

The DC, depends only on the system model in (3.22), and does not depend

on any detector. As we are considering a general transmission scheme at the

local sensors, and Pe is not tractable, it is more insightful to study the DC.
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3.3.4 Deflection Coefficient and its Optimization

We will now define and use the deflection coefficient which reflects the output-

signal-to-noise-ratio and widely used in optimizing detectors [79–82]. The DC

is defined as,

D :=
1

L

|E[y
L
|H1]− E[y

L
|H0]|2

var[y
L
|H0]

. (3.25)

When σi is a deterministic sequence, the DC for the system in (3.22)

is given by

DL =


L−1

L∑

i=1

∞∫

−∞

[f(θ + σini)− f(σini)]p(ni)dni




2

L−1

L∑

i=1




∞∫

−∞

f 2(σini)p(ni)dni −




∞∫

−∞

f(σini)p(ni)dni




2
+

σ2
v

PT

.

(3.26)

We now study the conditions on the sequence σi for limL→∞D
L
= 0. When

this asymptotic DC is zero, the interpretation is that reliable detection is

not possible. The following result establishes that if σi goes to infinity, the

asymptotic DC is zero.

Theorem 3.3.1. Let σi be a deterministic sequence such that limi→∞ σi = ∞,

suppose that the assumptions (A1) and (A2) hold. Then, limL→∞D
L
= 0.

Proof. Clearly the denominator of (3.26) is bounded between (σ2
v/PT) and

(c2 + σ2
v/PT). Therefore, it suffices to show that the numerator goes to 0 as
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L → ∞. Consider

lim
L→∞

D
L
= lim

L→∞

1

L

L∑

i=1

∞∫

−∞

[f(θ + σini)− f(σini)]p(ni)dni (3.27)

=

∞∫

−∞

lim
L→∞

1

L

L∑

i=1

[f(θ + σini)− f(σini)]p(ni)dni (3.28)

=

0∫

−∞

lim
L→∞

1

L

L∑

i=1

[f(θ + σini)− f(σini)]p(ni)dni

+

∞∫

0

lim
L→∞

1

L

L∑

i=1

[f(θ + σini)− f(σini)]p(ni)dni (3.29)

=
(
−c2

2
+

c2
2

)
+
(c1
2
− c1

2

)
= 0 (3.30)

for some c1 ≤ c, c2 ≤ c and we have used assumption (A2) to apply bounded

convergence theorem [104, pp. 288] to move the limit in (3.27) inside the

integral as in (3.28). In (3.29), we have used Lemma 3.2.2 for the sequences

f(θ+σini) and f(σini) along with the fact that f(x) converges to some constant

as |x| → ∞ by the virtue of assumptions (A1) and (A2). Thus if σi → ∞,

then limL→∞D
L
= 0.

Theorem 3.3.1 indicates that if sensors use a bounded function to trans-

mit their measurements to the FC, there is a penalty incurred when the vari-

ance of the noise samples are very high. When the noise samples are very high

in magnitude, the sensors will be transmitting the boundary values of f(x),

i.e., c1 or −c2 most of the time. These boundary values do not contain any

information about the signal θ to be detected when H1 is true. Hence it is not

possible to distinguish between the hypothesis H1 and H0 and accordingly we

have the asymptotic DC equal to 0.

However, if σi are bounded, then we can show that limL→∞D
L
> 0

which is done next.
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Theorem 3.3.2. Let σmax := maxi σi be finite and suppose that the assump-

tions (A1) and (A2) hold. Then, limL→∞D
L
> 0.

Proof. Let g
σi
(θ) :=

∞∫
−∞

[f(θ+σini)−f(σini)]p(ni)dni. To show limL→∞D
L
>

0, it suffices to show that g
σi
(θ) > 0, ∀θ > 0 for some i. Using the assumption

(A1) we have,

g
σi
(θ) =

∞∫

−∞

[f(θ + σini)− f(σini)]p(ni)dni ,

∂g
σi
(θ)

∂θ
=

∞∫

−∞

∂f(θ + σini)

∂θ
p(ni)dni , (3.31)

> 0 , (3.32)

where we have applied Corollary 5.9 in [103, pp. 46] using assumptions (A1)

and (A2) to move the derivative in (3.31) inside the integral. The last inequal-

ity follows from the fact that convex combination of positive valued functions

is positive. Therefore, g
σi
(θ) is strictly an increasing function of θ. When

θ = 0, clearly g
σi
(0) = 0 and together with the fact that ∂g

σi
(θ)/∂θ > 0,

∀θ > 0, we have g
σi
(θ) > 0, ∀θ > 0.

Theorem 3.3.2 says that if the deterministic σi are bounded, then the

asymptotic DC is strictly positive which means that reliable detection is pos-

sible in this regime.

Next we will prove that for the DC to be greater than zero, we do

not need f(x) to be a differentiable or strictly increasing. In the following

theorem we prove that D
L
> 0 for an uniform quantizer with bounded number

of quantization levels.
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Theorem 3.3.3. Let σmax := maxi σi be finite and suppose that f(x) is a

uniform quantizer with M levels such that

f(x) =





k∆ , (k − 1
2
)∆ ≤ x < (k + 1

2
)∆ ,

K∆ , x ≥ (K + 1
2
)∆ ,

−K∆ , x ≤ −(K + 1
2
)∆

(3.33)

where k = −K,−(K − 1), . . . , 0, . . . , (K − 1), K, M = 2K + 1, ∆ = 2xmax/M

and xmax is the saturation point of the finite level quantizer. Suppose that ni

has infinite support. Then, D
L
> 0.

Proof. Let g
σi
(θ) :=

∞∫
−∞

[f(θ + σini) − f(σini)]p(ni)dni. To show D
L
> 0, it

suffices to show that g
σi
(θ) > 0, ∀θ > 0. Note that the function f(x) in (3.33)
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is non-decreasing, i.e., f(x)− f(y) ≥ 0, ∀x ≥ y. Consider

g
σi
(θ) =

∞∫

−∞

[f(θ + σini)− f(σini)]p(ni)dni (3.34)

=
1

σi

∞∫

−∞

[f(θ + vi)− f(vi)]p(vi)dvi (3.35)

=
1

σi

−[(K+ 1

2
)∆+θ]∫

−∞

[f(θ + vi)− f(vi)]p(vi)dvi

+
1

σi

(K+ 1

2
)∆∫

−[(K+ 1

2
)∆+θ]

[f(θ + vi)− f(vi)]p(vi)dvi

+
1

σi

∞∫

(K+ 1

2
)∆

[f(θ + vi)− f(vi)]p(vi)dvi (3.36)

≥ 1

σi

(K+ 1

2
)∆∫

−[(K+ 1

2
)∆+θ]

[f(θ + vi)− f(vi)]p(vi)dvi (3.37)

=
1

σi

K∑

k=−K

(k+ 1

2
)∆∫

[(k− 1

2
)∆−θ]

∆p(vi)dvi (3.38)

> 0 (3.39)

where in (3.34) we substituted vi = σini to get (3.35). The inequality in

(3.39) follows from the fact that ∆ > 0 and vi has infinite support (since ni

has infinite support so that vi = σini has infinite support as well). When

θ = 0, clearly g
σi
(0) = 0 and therefore, we have D

L
> 0, ∀θ > 0.

Theorem 3.3.3 can in fact be proved for non-uniform quantizer as long

as M ≥ 2 and ni has infinite support.

We would ideally like to find the f(x) that maximizes the DC in (3.26)

but this is not tractable. However, when θ is small, and channel noise is neg-
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ligible, we have a closed form expression for f(x) through the locally optimal

detection strategy. We now briefly discuss the use of nonlinear functions in

the context of locally optimal detection.

3.3.5 Locally Optimal Detection

A detector is said to be locally optimal (most powerful) if it is better than

any other detector in the sense of minimizing the probability of error for very

small values of θ (please see [101] for more details). The problem of designing

optimum detectors in the presence of additive noise has a long history in

the statistical signal processing literature [101]. Usually the sensing noise

corrupting the signal is assumed to be Gaussian. However there are situations

when the noise is impulsive, which are characterized by symmetric alpha stable

distributions [101]. In such scenarios, linear detector is not necessarily optimal,

and therefore nonlinear functions are applied on the sensed observations to

minimize the impact of impulsive sensing noise distributions with heavy tails.

In [101], it is shown that for a given sensing noise distribution p(n), the

nonlinear function f(x) that would be locally optimal is given by

f(x) = −p
′

(x)

p(x)
. (3.40)

One may be interested in the inverse problem that given a nonlinear function

f(x), for which sensing noise distribution, it would be locally optimal. From

(3.40) it is easy to answer this question. We have,

p(x) = Ce
−

x∫
−∞

f(y)dy

. (3.41)

Here the p(x) obtained from (3.41) should be a valid PDF satisfying p(x) ≥ 0

and
∞∫

−∞
p(x)dx = 1. For example, if f(x) = tanh(x), we get p(x) = πsech(x) =

2πe−x/(1+e−2x). The sech(x) distribution behaves like the heavy-tailed Lapla-

cian distribution when x is relatively high. It is interesting to note that tanh(x)
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behaves like the hard clipper non-linearity [101] which is a bounded function

and is locally optimal for Laplacian noise distribution. In fact, a closer look

at (3.40) reveals that if p(x) behaves like an exponential density (for rela-

tively large x), then the f(x) that would be locally optimal would behave like

a constant (for relatively large x). This shows that the family of increasing

bounded functions are locally optimal for the family of heavy tailed sensing

noise distributions. When n is Gaussian, bounded f(x) is no longer optimal

as it is well known that f(x) = x is optimal for Gaussian sensing noise. We

will illustrate this in the Simulations section.

3.4 Simulations

In this section, we corroborate our analytical results through Monte Carlo sim-

ulations for both the distributed estimation and distributed detection prob-

lems. In all of the simulations we have assumed σi = 1, i = 1, . . . , L.

3.4.1 Distributed Estimation Performance

In Figure 3.2 we chose f(x) = tanh(ωx), ω > 0 is a scale parameter. Here we

compare AsV (ω) and Lvar(θ̂
L
− θ) versus ω under the total power constraint

for various distributions on the sensing noise ni. We observe that the variance

of the asymptotic distribution, AsV (ω) and the normalized limiting variance

Lvar(θ̂
L
− θ) are closer to each other when L is sufficiently large. However if

L is smaller, we see that there is significant difference between AsV (ω) and

Lvar(θ̂
L
−θ) as illustrated in Figure 3.3. This is due to the finite sample effect,

and when L is increased, Lvar(θ̂
L
− θ) decreases to converge its limiting value

of AsV (ω). In Figure 3.4, we compare AsV (ω) and Lvar(θ̂
L
− θ) versus L.

Clearly in all cases, as L increases the Lvar(θ̂
L
− θ) approaches its limiting

values of AsV (ω).
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Figure 3.2: Total Power Constraint: f(x) = tanh(ωx), σ2
n=1, σ2

v=1, PT=10,
L=500

In Figure 3.5, we compare the performance among different bounded

transmission functions when ni is Gaussian. All the functions used in this

plot are appropriately normalized so that −1 ≤ f(x) ≤ 1. Here gd(x) is the

Gudermannian function given by gd(x) = arctan(sinh(ωx)). We note that

tanh(ωx) has the lowest asymptotic variance compared to other functions.

Intuitively, this is due to the fact that for a given ω, tanh(ωx) is closest to the

linear function among the other functions considered here. For the Gaussian

sensing noise, since linear estimator is optimal, tanh(ωx) performs better than

other functions.

3.4.2 Distributed Detection Performance

We define the sensing and channel SNRs as ρs := θ2/σ2
n, ρc := PT/σ

2
v and

assume P1 = P0 = 0.5. Note also that ρ = PT/L is the power at each
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sensor as defined in Section 3.2.1. We used a quadratic detector based on

the assumption that y
L
in (3.22) is Gaussian under both hypotheses in the

simulations provided here.

In Figure 3.6, we chose f(x) = tanh(ωx), ω > 0 is a scale parameter

and show that maximizing the DC approximately results in minimizing the

probability of error. Figure 3.6 shows the plots of D(ω) and Pe(ω) vs ω for

Gaussian, Laplacian and Cauchy sensing noise distributions where the Pe(ω)

plot is obtained using Monte-Carlo simulations. The different ω∗ values in

Figure 3.6 correspond to the best ω values obtained by optimizing D(ω) and

Pe(ω) respectively. It is interesting to see that the ω∗ that minimizes Pe(ω)

is very close to that which maximizes D(ω) and thus DC is justified as a

performance metric.
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Finally we depict the Pe performance versus L for different bounded

functions in Figure 3.7. In each of these cases, ω∗ that maximized the deflection

coefficient were used. We note that AF outperforms all other functions since

for the AF scheme, the detector is a linear function of observations which is

optimal when ni is Gaussian. The function ωx/(1 + |ωx|) exhibits the worst

performance as it has the largest deviation from the linear function compared

to the other candidate functions considered in this simulation.
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Chapter 4

Distributed Consensus with Bounded Transmissions

4.1 Literature Survey and Motivation

In this chapter, we consider the problem of estimating the average of sam-

ples measured at the nodes of a sensor network without a fusion center (fully

distributed network). Distributed computing has been a subject of extensive

research in the last two decades with a wide range of applications (see for

example [1, 2]). Originally, the purpose of distributed algorithms was to re-

duce the burden on a single processor and perform computationally large tasks

in a distributed manner on multiple processors which were physically wired.

With the recent interest in wireless sensor networks (WSNs), the focus has got

shifted to performing global computations with the data available locally at

each node of a WSN in a distributed manner. For example, the sensor nodes in

a WSN could measure information about a physical phenomenon of interest.

These measurements can be used for estimating unknown parameters of the

physical phenomenon (distributed estimation) or they can be used to make a

decision about the state of the physical phenomenon (distributed detection).

Wireless sensor networks (WSNs) without a fusion center have the ad-

vantages of robustness to node failures and they can function autonomously

without a central node controlling the entire network [2]. In such fully dis-

tributed networks, sensors collaborate with their neighbours by repeatedly

exchanging information locally to achieve a desired global objective. For ex-

ample, the sensors could come to an agreement on the sample average (or on a

global function) of initial measurements. This is called distributed consensus.

Distributed consensus algorithms have attracted significant interest in the re-

cent past and have found several applications in areas such as healthcare, envi-
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ronmental monitoring, military and home appliances (please see [58–61,63–65]

and references therein). In this body of literature, it is often assumed that

a given node can obtain exact information of the state values of its neigh-

bours through local communications. This essentially means that the system

consumes theoretically unlimited energy and bandwidth. However, practical

WSNs are severely power limited and the available bandwidth is finite. More-

over, the main source of power consumption in a sensor is its transceiver [106].

Therefore, there is a need for consensus algorithms which work under strict

resource constraints of power and bandwidth imposed by the WSNs.

Sensors may adopt either a digital or analog method for transmitting

their information to their neighbours. Digital methods of transmissions may

be using low transmit power but require increased bandwidth especially when

the number of quantization levels is high. Distributed consensus algorithms

using quantized transmissions have been studied in [107–111]. The analog

method consists of transmitting unquantized data by appropriately pulse shap-

ing and amplitude or phase modulating to consume finite bandwidth. One such

method is the amplify-and-forward (AF) scheme in which sensors send scaled

versions of their measurements to their neighbours. However, using the AF

technique is not a viable option for WSNs because it requires high transmis-

sion power when the values to be transmitted are large [92]. Moreover, the

linear transmit amplifier characteristics required for AF are often very power-

inefficient [93], requiring the study of the effect of non-linear transmissions

on performance. In distributed systems which employ the AF technique for

transmission of the sensed data, it is often assumed that the power amplifiers

used are perfectly linear over the entire range of the sensed observations. In
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practice, the amplifiers exhibit non-linear behaviour when the amplitude of

the sensed data is relatively high [93–95].

In this chapter, we propose a non-linear distributed consensus (NLC)

algorithm in which every sensor maps its state value through a bounded func-

tion before transmission to constrain the peak transmit power. Therefore the

magnitude of the transmitted signal at every node in every iteration is always

bounded, making it ideal for resource-constrained WSNs. In the presence

of communication noise, we prove that all the sensors employing the NLC

algorithm reach consensus to a finite random variable whose mean is the de-

sired sample average. We characterize the asymptotic performance by deriving

the asymptotic covariance matrix using results from stochastic approximation

theory. We show that using the NLC algorithm results in larger asymptotic

covariance compared to the linear consensus algorithm. Finally we explore

the performance of the proposed algorithm employing various bounded trans-

mission functions. Different from [65] which also considered consensus in the

presence of noisy transmissions, herein we analyse non-linear transmissions

and study the asymptotic covariance matrix and its dependence on the non-

linearity. Our work in this chapter also studies the merits and demerits of

distributed schemes involving realistic amplifier models with non-linear char-

acteristics such as the ones discussed in [93, 94].

The rest of this chapter is organized as follows. We begin by reviewing

some basics of network graph theory in Section 4.2. In Section 4.3, we describe

the system model and review the previous work on non-linear consensus. We

consider the NLC algorithm in the presence of noise in Section 4.4, and prove

that the sensors reach consensus to a random variable. In Section 4.5, we
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present several simulation examples to study the performance of the proposed

algorithm.

Notations and Conventions

Vectors are denoted by boldface upper-case or lower-case letters and matrices

are denoted by boldface upper-case letters. max{a1, a2} denotes the maximum

of a1 and a2. diag[a1, a2, . . . , aN ] denotes an N ×N diagonal matrix whose

diagonal elements are given by a1, a2, . . . , aN . E[·] denotes the expectation

operator and I denotes the identity matrix. The symbol ‖ · ‖ denotes the l
2

norm for real vectors and spectral norm for symmetric matrices. For a matrix

M, λi(M) denotes the ith smallest eigenvalue. The vector 1 denotes an N × 1

column vector of all ones, 1 = [1 1 . . . 1]T.

4.2 Review of Network Graph Theory

In this chapter, we model a sensor network as an undirected graph. In this

section, we provide a brief background on network graph theory which we will

use to derive our results. Consider an undirected graph G = (N,E) containing

a set of nodes N = {1, . . . , N} and a set of edges E. Nodes that communicate

with each other have an edge between them. We denote the set of neighbours

of node i by Ni, Ni = { j|{i, j} ∈ E} where {i, j} indicates an edge between

the nodes i and j [112]. A graph is connected if there exists at least one path

between every pair of nodes. We denote the number of neighbours of a node

i by di and dmax = maxi di. The graph structure is described by an N × N

symmetric matrix called the adjacency matrix A = {aij}, aij = 1 if {i, j} ∈ E.

The diagonal matrix D = diag[d1, d2, . . . , dN ] captures the degrees of all

the nodes in the network. The Laplacian matrix of the graph is given by

L = D−A.
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The graph Laplacian characterises a number of useful properties of

the graph. The eigenvalues of L are non-negative and the number of zero

eigenvalues denotes the number of distinct components of the graph. When

the graph is connected, λ1(L) = 0, and λi(L) > 0, i ≥ 2, so that the rank of L

for a connected graph is N−1. The vector 1 is the eigenvector of L associated

with the eigenvalue 0, i.e, L1 = 0. The eigenvalue λ2(L) characterizes how

densely the graph is connected and the performance of consensus algorithms

depend on this eigenvalue [62].

4.3 System Model and Previous Work
4.3.1 System Model

Consider a WSN withN sensor nodes each with an initial measurement xi(0) ∈

R. Measurements made at the sensor nodes are modeled as

xi(0) = θ + ni , i = 1, . . . , N (4.1)

where θ is an unknown real-valued parameter and ni is the sensing noise at

the ith sensor. The sample mean of these initial measurements in (4.1) is given

by

x̄ =
1

N

N∑

i=1

xi(0) . (4.2)

Let x̄ be the estimate of the parameter θ to be computed by an iterative

distributed algorithm, in which each sensor communicates only with its neigh-

bours. If the states of all the sensor nodes converge to x̄, then the network is

said to have reached consensus on the sample average.

4.3.2 Previous Work

A commonly used iterative algorithm for distributed consensus can be written

as
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xi(t+ 1) = xi(t)− α
∑

j∈Ni

h(xi(t)− xij(t)) , (4.3)

where i = 1, . . . , N , t = 0, 1, 2, . . ., is the time index, xi(t + 1) is the updated

state value of sensor node i at time t+ 1, Ni is the set of neighbours of sensor

node i, xij(t), j ∈ Ni are the state values of the neighbours of sensor node i at

time t, and α is a constant step size. If h(·) is linear, then (4.3) is a linear dis-

tributed average-consensus (LDAC) algorithm [58,61,62]. In [58], it is proved

that if 0 < α < 2/λN(L), then xi(t) converges to x̄ exponentially and (4.3) is

then called as the LDAC algorithm based on the Laplacian heuristic. If h(·)

is non-linear then the algorithm belongs to the class of non-linear distributed

average-consensus algorithms [60, 113–117]. In [60], the average consensus

problem is solved when h(x) in (4.3) is differentiable and odd. In [113], it

is illustrated that when h(x) in (4.3) is sin(x), faster convergence is possible

compared to the LDAC algorithm based on the Laplacian heuristic. In all

of these cases, xij(t) has to be transmitted to node i before it can apply the

function h(·) to get the new updated state value. Therefore, the transmit peak

power in (4.3) is determined by xi(t) and not necessarily bounded, even if h(·)

is bounded. Moreover, there is no communication noise assumed in all the

previous work on non-linear consensus.

4.4 Consensus with Bounded Transmissions and Communication Noise

In this work, we propose a distributed non-linear average consensus algorithm

in which every sensor maps its state value through a bounded function before

transmission to constrain the transmit power. Therefore the magnitude of the

transmitted signal at every node in every iteration is always bounded making

it ideal for resource-constrained WSNs.
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In this section, we will study the NLC algorithm with communication

noise when sensors exchange information. Our approach is similar to, but

more general than [65] in that we analyse non-linear transmissions. Moreover,

unlike [65] we study the asymptotic covariance matrix of the state vector and

its dependence on the non-linearity. Unlike [113] and [60], we assume transmit

non-linearity which allows for bounded transmissions. Moreover, we consider

the presence of communication noise.

4.4.1 The NLC Algorithm with Communication Noise

Let each sensor map its state value at time t through the function h(x) before

transmission, and consider the following NLC algorithm with communication

noise:

xi(t+ 1) = xi(t)− α(t)
∑

j∈Ni

[h(xi(t))− h(xij(t)) + nij(t)] , (4.4)

where i = 1, . . . , N, t = 0, 1, 2, . . ., is the time index. The value xi(t + 1) is

the state update of node i at time t + 1, xij(t) is the state value of the jth

neighbour of node i at time t and α(t) is a positive step size which will further

be assumed to satisfy assumption (A4) in the sequel. The node j transmits

its information xij(t) by mapping it through the function h(x), node i receives

a noisy version of h(xij(t)) and nij(t) is the noise associated with the reception

of h(xij(t)).

Note that the proposed scheme (4.4) is different from (4.3) in the fol-

lowing aspects. Firstly, in (4.3), xij(t) has to be transmitted which could

exhibit variation over a wide range of values if xi(0) has a large dynamic range

and hence (4.3) does not guarantee bounded transmission power. In contrast,

in the proposed scheme the non-linearity is applied before the state value is

transmitted so that the magnitude of the transmitted state value is always
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constrained within the maximum value of h(x) irrespective of the range of

xi(t) and the realizations of noise nij(t). Finally, (4.4) involves communica-

tion noise while (4.3) does not. Thus the proposed scheme is more suited to

resource constrained WSNs when compared to (4.3).

The recursion in (4.4) can be written in vector form as

X(t+ 1) = X(t)− α(t) [Lh(X(t)) + n(t)] , (4.5)

where X(t) is state vector at time t given by X(t) = [x1(t) x2(t) . . . xN(t)]
T,

and h : RN → RN such that h(X(t)) = [h(x1(t)) h(x2(t)) . . . h(xN (t))]
T.

The vector n(t) captures the additive noise at N nodes contributed by their

respective neighbours and its ith component is given by

ni(t) = −
∑

j∈Ni

nij(t) , 1 ≤ i ≤ N . (4.6)

Our model in (4.5) is more general than the linear consensus algorithm con-

sidered in [65] which is a special case of h(x) when it is linear. We make the

following assumptions on h(x), nij(t), α(t) and the graph:

Assumptions

(A1): The graph G is connected so that λ2(L) > 0.

(A2): The function h(·) is differentiable, and has a bounded derivative such

that 0 < h
′

(x) ≤ c, for some c > 0.

(A3) Independent Noise Sequence: The channel noise {nij(t)}t≥0,1≤i,j≤N

is an independent sequence across time and space. It also satisfies

E[nij(t)] = 0, 1 ≤ i, j ≤ N, t ≥ 0, sup
i,j,t

E[n2
ij(t)] ≤ σ2 < ∞. (4.7)

From (4.6) we have

E[n(t)] = 0 , ∀t , µ := sup
t

E[‖n(t)‖2] ≤ Ndmaxσ
2 < ∞. (4.8)
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Note that (4.8) is because of the fact that the number of neighbours of a given

node is upper bounded by dmax.

(A4) Decreasing Weight Sequence: The channel noise in (4.5) could

make the algorithm diverge. In order to control the variance growth rate of

the noise we need the following conditions on the sequence α(t):

α(t) > 0 ,

∞∑

t=0

α(t) = ∞ ,

∞∑

t=0

α2(t) < ∞ . (4.9)

Our primary motivation for considering non-linear transmissions is to

impose the realistic assumption of bounded peak per-sensor power by ensuring

that h(·) is bounded. However, as seen in (A2) this assumption is not needed

for our subsequent development as long as h
′

(·) is bounded.

We will prove convergence and asymptotic normality result of the NLC

algorithm in (4.5). For the sake of clarity, we now present a result on the con-

vergence of a discrete time Markov process which will be used in establishing

convergence of the NLC algorithm in (4.5).

4.4.2 A Result on the Convergence of Discrete time Markov Processes

Let X = {X(t)}t≥0 be a discrete time vector Markov process on RN . The

generating operator L of X is defined as

LV (x) = E [V (X(t+ 1))|X(t) = x]− V (x) (4.10)

for functions V (x),x ∈ RN , provided that the conditional expectation exists.

Let B ⊂ RN and its complement be B
′

= RN \ B. We now state the desired

result as a simplification of Theorem 2.7.1 in [118] (see also Theorem 1 in [65]).

Theorem 4.4.1. Let X be a discrete time vector Markov process with the

generator operator L as in (4.10). If there exists a potential function V (x) :
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RN → R+, and B ⊂ RN with the following properties

V (x) > 0,x ∈ B
′

, V (x) = 0, x ∈ B , (4.11)

LV (x) ≤ −γ(t)ϕ(x) +mg(t)[1 + V (x)] (4.12)

where m > 0, ϕ(x) is such that

ϕ(x) = 0,x ∈ B, ϕ(x) > 0,x ∈ B
′

, (4.13)

and

γ(t) > 0, g(t) > 0,

∞∑

t=0

γ(t) = ∞,

∞∑

t=0

g(t) < ∞ , (4.14)

then, the discrete time vector Markov process X = {X(t)}t≥0 with arbitrary

initial distribution converges almost surely (a.s.) to the set B as t → ∞. That

is,

Pr

[
lim
t→∞

inf
Y∈B

‖X(t)−Y‖ = 0

]
= 1. (4.15)

Intuitively, Theorem 4.4.1 indicates that if the one-step prediction error

of the Markov process evaluated at the potential function in (4.10) is bounded

as in (4.12) then it is possible to establish convergence of X(t).

To prove the a.s. convergence of the consensus algorithm in (4.5) using

Theorem 4.4.1, we define the consensus subspace B, the set of all vectors whose

entries are of equal value as,

B = {x ∈ R
N |x = a1 , a ∈ R} . (4.16)

We are now ready to state the main result of Section 4.4.

92



Theorem 4.4.2. Let the assumptions (A1), (A3) and (A4) hold, and as-

sume h(x) is strictly increasing. Consider the NLC algorithm in (4.5) with the

initial state vector X(0) ∈ R
N . Then, the state vector X(t) in (4.5) approaches

the consensus subspace B a.s., i.e.,

Pr

[
lim
t→∞

inf
Y∈B

‖X(t)−Y‖ = 0

]
= 1. (4.17)

Proof. We will make use of Theorem 4.4.1 to prove (4.17). We will choose

an appropriate potential function V (x) that is non-negative which satisfies

equation (4.11). We will then prove that the generating operator L applied

on V (x) as in (4.10) can be upper bounded as in (4.12) with γ(t) = α(t), and

a ϕ(x) can be found that satisfies (4.13).

First we see that under the assumptions (A1), (A2) and the assump-

tion on h(x), the discrete time vector process {X(t)}t≥0 is Markov. Since L

is a positive semi-definite matrix, it has an eigenvalue decomposition (EVD)

given by L = UΣUT, where Σ is the diagonal matrix containing the eigen-

values of L in the increasing order, and U is a unitary matrix with 1 as its

first column vector which corresponds to the 0 eigenvalue. Define a posi-

tive semi-definite matrix M as a function of U such that M = UΛUT and

Λ = diag[0, 1, 1 , . . . , 1]. Let V (x) = xTMx, then the function V (x) is non-

negative since M is a positive semi-definite matrix by construction. Note that

x ∈ B is an eigenvector of M associated with the zero eigenvalue, therefore we

have

V (x) = 0,x ∈ B . (4.18)

Let x = xB + xB⊥ where xB is the orthogonal projection of x on B. When

x ∈ B
′

, we have ‖xB⊥‖ > 0. Let x ∈ B
′

and h(x) be as defined in (4.5). Then,
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h(x) = hB(x) + hB⊥(x), where hB⊥(x) is non-zero, i.e., ‖hB⊥(x)‖ > 0. Define

β := ‖hB⊥(x)‖2/‖xB⊥‖2, then β > 0, x ∈ B
′

. Therefore, for any x ∈ B
′

,

V (x) = xTMx = V (xB + xB⊥) = V (xB⊥)

≥ min
xB⊥ 6=0

xT
B⊥MxB⊥ = λ2(M)‖xB⊥‖2 > 0 , (4.19)

where the last inequality is due to λ2(L) > 0 by assumption (A1). The

equations (4.18) and (4.19) establish that the conditions in (4.11) in Theorem

4.4.1 are satisfied.

Now we will prove that (4.12) is satisfied as well. Towards this end,

consider LV (x) defined in (4.10),

LV (x) = E
[
X(t+ 1)TMX(t + 1)|X(t) = x

]
− V (x), (4.20)

= E
[(
xT − α(t)

(
h(x)TLT + n(t)T

))
·

(Mx− α(t) (MLh(x) +Mn(t)))]− V (x) (4.21)

= −2α(t)
[
xTMLh(x)

]

+ α2(t)
[
h(x)TLTMLh(x) + E

[
n(t)TMn(t)

]]
. (4.22)

We get (4.22) by expanding (4.21) and taking the expectations and using the

fact that E[n(t)] = 0. Recall the EVDs of L and M from which we have

LM = ML = UΣUTUΛUT = UΣUT = L . (4.23)

Since λ2(M) = λN(M) = 1, we have

E
[
n(t)TMn(t)

]
≤ E

[
λN(M)‖n(t)‖2

]
≤ µ, (4.24)
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where the second inequality follows from (4.8) and the fact that λN(M) = 1.

Using (4.23) and (4.24) in (4.22), we get the following bound

LV (x) ≤ −2α(t)
[
xTLh(x)

]
+ α2(t)

[
h(x)TL2h(x) + µ

]
(4.25)

≤ −2α(t)
[
xTLh(x)

]
+ α2(t)

[
λ2
N(L)β‖xB⊥‖2 + µ

]
(4.26)

≤ −2α(t)
[
xTLh(x)

]
+ α2(t)

[
β
λ2
N (L)

λ2(M)
xTMx+ µ

]
(4.27)

≤ −2α(t)
[
xTLh(x)

]
+mα2(t)

[
1 + β2x

TMx
]

(4.28)

≤ −α(t)ϕ(x) +mα2(t) [1 + V (x)] , (4.29)

where ϕ(x) := 2xTLh(x), m := max{βλ2
N(L)/λ2(M), µ}, β2 := µ/m and

β2 ∈ (0, 1]. In (4.26), we have used the fact h(x)TL2h(x) ≤ λ2
N(L)‖hB⊥(x)‖2

and ‖hB⊥(x)‖2 = β‖xB⊥‖2. In (4.27), we have used the fact that xTMx ≥

λ2(M)‖xB⊥‖2 due to (4.19). We will now prove that ϕ(x) in (4.29) satisfies

the equation (4.13) of Theorem 4.4.1.

Recall that L is the Laplacian matrix of the graph and that 1 is in

its null space, that is, L1 = 0. Whenever x ∈ B, i.e., x = a1, a ∈ R, then

h(x) = b1 for some b ∈ R. This implies Lh(a1) = Lb1 = 0. Therefore we

have ϕ(x) = 2xTLh(x) = 0, ∀x ∈ B.

To prove ϕ(x) > 0 when x ∈ B
′

, consider ϕ(x) for a connected graph

with L of dimension N ×N ,

ϕ(x) = 2xTLh(x) (4.30)

= 2

[
∑

j∈N1

(x1 − xj)h(x1) +
∑

j∈N2

(x2 − xj)h(x2)

+ . . .+
∑

j∈NN

(xN − xj)h(xN)

]
, (4.31)

where (4.31) follows from the structure of the symmetric matrix L (recall

L = D − A). Note that the ith summation in (4.31) corresponds to the ith
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node. Now suppose that node i is connected to node j. Then there exists a

term (xi − xj)h(xi) in the summation corresponding to the ith node in (4.31),

and a term (xj − xi)h(xj) in the summation corresponding to the jth node in

(4.31). Both of these terms can be combined as (xi − xj)(h(xi) − h(xj)) and

this corresponds to the edge {i, j} ∈ E. Thus equation (4.31) can be written

as pairwise products enumerated over all the edges in the graph as follows

ϕ(x) = 2
∑

{i,j}∈E
(xi − xj)(h(xi)− h(xj)) . (4.32)

Since x ∈ B
′

, ϕ(x) in (4.32) is positive due to the fact that h(x) is strictly

increasing so that there is at least one term in the sum which is strictly greater

than zero. Letting γ(t) = α(t), g(t) = α2(t) and by assumption (A4), we see

that the sequence α(t) in (4.29) satisfies (4.14). Thus all the conditions of

Theorem 4.4.1 are satisfied to yield (4.17).

Theorem 4.4.2 states that the sample paths of X(t) approach the con-

sensus subspace almost surely. We note that the assumption (A2) is not

necessary for Theorem 4.4.2 to hold. Instead we assumed h(x) is strictly in-

creasing (not necessarily differentiable) to prove Theorem 4.4.2. Now, like

in [65], we will prove the convergence of X(t) to a finite point in B in Theorem

4.4.3.

Theorem 4.4.3. Let the assumptions of Theorem 4.4.2 hold. Consider the

NLC algorithm in (4.5) with the initial state X(0) ∈ RN . Then, there exists a

finite real random variable θ∗ such that

Pr
[
lim
t→∞

X(t) = θ∗1
]
= 1. (4.33)
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Proof. Let the average ofX(t) be x̄(t) = 1TX(t)/N . Since 1x̄(t) ∈ B, Theorem

4.4.2 implies,

Pr
[
lim
t→∞

‖X(t)− x̄(t)1‖ = 0
]
= 1 , (4.34)

where (4.34) follows from (4.17) since the infimum in (4.17) is achieved by

Y = x̄(t)1. Pre-multiplying (4.5) by 1T/N on both sides and noting that

1TLh(X(t)) = 0 we get,

x̄(t+ 1) = x̄(t)− ṽ(t) (4.35)

= x̄(0)−
∑

0≤k≤t

ṽ(k) (4.36)

where ṽ(t) = α(t)1Tn(t)/N . From assumption (A3), it follows that

E[ṽ(t)] = 0,

∑

t≥0

E[ṽ(t)]2 =
∑

t≥0

α2(t)

N2
E‖n(t)‖2 ≤ µ

N2

∑

t≥0

α2(t) < ∞

which implies

E[x̄(t + 1)]2 ≤ x̄2(0) +
µ

N2

∑

t≥0

α2(t) , ∀t . (4.37)

Equation (4.37) implies that the sequence {x̄(t)}t≥0 is an L2 bounded mar-

tingale 1 and hence converges a.s. and in L2 to a finite random variable θ∗

(see [118, Theorem 2.6.1]). Therefore the theorem follows from (4.34).

It should be noted that the results in Theorems 4.4.2 and 4.4.3 are

similar to the results in [65], but we have proved it for a more general case of

which [65] is a special case when h(x) = x. In what follows, we present the

properties of the limiting random variable θ∗.
1A sequence of random variables {y(t)}t≥0 is called as a martingale if for all t ≥ 0,

E [|y(t)|] < ∞ and E [y(t+ 1) | y(1) y(2) . . . y(t)] = y(t). The sequence {y(t)}t≥0 is an L2

bounded martingale if sup
t
E
[
y2(t)

]
< ∞ (see [119, pp. 110]).
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4.4.3 Mean Square Error of NLC Algorithm

The Theorems 4.4.2 and 4.4.3 establish that the sensors reach consensus

asymptotically and converge a.s. to a finite random variable θ∗. We can

view θ∗ as an estimate of x̄. In the following theorem we characterize the

unbiasedness and means squared error (MSE) properties of θ∗. We define the

MSE of θ∗ as ξ
N
= E[(θ∗ − x̄)2].

Theorem 4.4.4. Let θ∗ be the limiting random variable as in Theorem 4.4.3.

Then θ∗ is unbiased, E[θ∗] = x̄, and its MSE is bounded, ξ
N
≤ µN−2

∑

t≥0

α2(t).

The proof is obtained by following the same steps of the Lemma 5

in [65].

We point out that with non-linear transmissions, we have obtained

the same bound on the MSE ξ
N

as that of the linear consensus algorithm

in [65]. It should be noted that µ ≤ Ndmaxσ
2 from (4.8) which implies that

ξ
N
≤ dmaxN

−1
∑

t≥0 α
2(t)σ2. Therefore, if dmax is finite for a large connected

network, we have limN→∞ ξ
N

= 0 and this means that θ∗ converges to x̄ as

the variance of θ∗ approaches 0. If the graph is densely connected, then dmax

is relatively high which increases the worst-case MSE. On the other hand,

when the graph is densely connected, λ2(L) is larger which aids in the speed

of convergence to θ∗, as quantified through the covariance matrix in Section

4.4.4.

For any connected graph with N nodes, if σ2 = 0 then limt→∞ X(t) =

x̄1, which means all the sensor states asymptotically converge to the desired

sample average. In fact, in the absence of communication noise, under as-

sumptions (A1) and (A2), we believe that it is possible to prove exponential
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convergence of X(t) to x̄1 by letting α(t) = α such that 0 < α < 2/(cλN(L))

and by following a similar approach as in [113].

Similar results as in Theorems 4.4.2 and 4.4.3 could be easily proved

under more general assumptions. For example, the graph can be randomly

varying over time due to link failures. As long as the graph is connected on

an average, it can be easily proved that the Theorems 4.4.2 and 4.4.3 hold.

The independent assumption on the noise sequence can also relaxed and the

noise sequence can be allowed to depend on X(t). For detailed discussions on

these assumptions and its variations, please see Section III-A in [65]. We do

not pursue these extensions herein since our focus is on studying the effect of

non-linear transmissions on performance.

4.4.4 Asymptotic Normality of NLC Algorithm

The NLC algorithm in (4.5) belongs to the class of stochastic approximation

algorithms. The convergence speed of these algorithms is an important issue

from a practical perspective. There are various criteria for determining the

rate of convergence. For instance, one can try to estimate E [‖X(t)− θ∗1‖2] or

Pr [‖X(t)− θ∗1‖ ≤ ǫ(t)] [120]. Estimating these parameters may be difficult

in practice. However, it is usually possible to establish that
√
t(X(t)− θ∗1) is

asymptotically normal with zero mean and some covariance matrix. Asymp-

totic normality of stochastic approximation algorithms have been established

under some general conditions in [118] and for the linear consensus algorithms

in [63].

In this section, we establish the asymptotic normality of the NLC al-

gorithm in (4.5). Our approach here is similar to the one in [63]. Basically, we

decompose the NLC algorithm in RN into a scalar recursion and a recursion

in R
(N−1). In this section, for the sake of simplicity we assume that the noise
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sequence {n(t), t ≥ 0} are i.i.d. random vectors with zero mean and finite

covariance. We now formally state and prove the result as a theorem.

Theorem 4.4.5. Let α(t) = a/(t+1), a > 0, then the NLC algorithm in (4.5)

becomes

X(t+ 1) = X(t) +
a

t
[−Lh(X(t)) + n(t)] . (4.38)

Suppose that the assumptions (A1), (A2), (A3) and (A4) hold and that the

noise sequence {n(t), t ≥ 0} are i.i.d. across time and space with zero mean

and covariance σ2
vI. Let the EVD of L be given by L = UΣUT, where U is a

unitary matrix whose columns are the eigenvectors of L such that

U =

[
1√
N

Φ

]
,Φ ∈ R

N×(N−1) , −Σ =



0 0T

0 B


 , (4.39)

where B ∈ R(N−1)×(N−1) is a diagonal matrix containing the N − 1 nega-

tive eigenvalues of −L (this means that B is a stable matrix). In addition,

let θ0 be a realization of the random variable θ∗ and 2aλ2(L)h
′

(θ0) > 1 so

that the matrix
[
ah

′

(θ0)B+ I/2
]
, θ0 ∈ R is stable. Define [ñ(t) ñ(t)T]T :=

N−1/2UTn(t), ñ(t) ∈ R(N−1), so that ñ(t) = N−11Tn(t) and ñ(t) =

N−1/2ΦTn(t). Let C = E[ññT], C ∈ R(N−1)×(N−1). Then, as t → ∞,

√
t(X(t)− θ∗1|θ∗ = θ0) ∼ N

(
0, N−1a2σ2

v11
T +N−1ΦSθ0ΦT

)
, (4.40)

where

Sθ0 = a2
∞∫

0

e

[
ah

′

(θ0)B+ I

2

]
t
C e

[
ah

′

(θ0)B+ I

2

]
t
dt . (4.41)

Proof. Define [x̃(t) X̃(t)T]T := N−1/2UTX(t), X̃(t) ∈ R(N−1). From Theorem

4.4.3, we have X(t) → θ∗1 a.s. as t → ∞ which implies that [x̃(t) X̃(t)]T →
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[θ∗ 0]T a.s. as t → ∞, and therefore X̃(t) → 0 a.s. as t → ∞. The error

[X(t) − θ01] can be written as the sum of two error components (see also

Section VI in [63]) as given below

[X(t)− θ01] = [x̃(t)− θ0]1+
1√
N
ΦX̃(t) , (4.42)

= e1 + e2 , (4.43)

where e1 = [x̃(t)− θ0]1 and e2 = N−1/2ΦX̃(t). By calculating the covariance

matrix between e1 and e2, it can be proved that they are asymptotically

uncorrelated as t → ∞, and that asymptotically
√
te1 ∼ N (0, N−1a2σ2

v11
T)

(see Theorem 12 in [63]). To show that
√
te2 is asymptotically normal, it

suffices to show that
√
tX̃(t) is asymptotically normal. To this end, express

h(x) in (4.38) around x = θ0 using Taylor’s series expansion,

h(x) = h(θ0) + h
′

(θ0)(x− θ0) + o(|x− θ0|) , as x → θ0 . (4.44)

Using (4.44) in (4.38) we get

X(t+ 1) = X(t) +
a

t+ 1

[
−L

(
h(θ0)1+ h

′

(θ0)[X(t)− θ01]
)
+ δ(X(t)) + n(t)

]

(4.45)

= X(t) +
a

t+ 1

[
h

′

(θ0) (−LX(t)) + δ(X(t)) + n(t)
]
, as t → ∞ ,

(4.46)

where ‖δ(X(t))‖ → 0 as t → ∞. Pre-multiplying (4.46) on both sides by

N−1/2UT and using (4.39) we get the following recursions

x̃(t + 1) = x̃(t) +
a

t+ 1
ñ(t) , (4.47)

X̃(t + 1) = X̃(t) +
a

t + 1

[
h

′

(θ0)BX̃(t) + δ̃(X(t)) + ñ(t)
]
, as t → ∞ ,

(4.48)
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where δ̃(X(t)) = N−1/2ΦTδ(X(t)). With the assumption that
[
ah

′

(θ0)B+ I/2
]
,

θ0 ∈ R is a stable matrix, it can be verified that all the conditions of Theorem

6.6.1 in [118, p. 147] are satisfied for the process X̃(t) in (4.48). Therefore, for

a given θ0, the process
√
tX̃(t) is asymptotically normal with zero mean and

covariance matrix given by (4.41). Since
√
te1 ∼ N (0, N−1a2σ2

v11
T) and using

(4.41) together with the fact that e1 and e2 are asymptotically independent

as t → ∞, we get (4.40) which completes the proof.

Equation (4.40) indicates how fast the process
√
t(X(t) − θ01) will

converge to θ01 for a given θ0 as t → ∞. The convergence speed clearly

depends on h
′

(θ0). We note that if h(x) = x, then h
′

(θ0) = 1, ∀θ0 ∈ R, and

substituting this in (4.41), we get the results for the linear case as in Theorem

12 of [63].

Let the asymptotic covariance in (4.40) be denoted by Cnlc. Since n(t)

are i.i.d., C in (4.41) becomes C = σ2
vI and thus we have Cnlc = N−1a2σ2

v11
T+

N−1ΦSθ0ΦT where Sθ0 is a diagonal matrix whose diagonal elements are given

by Sθ0
ii = a2σ2

v/[2ah
′

(θ0)λi+1(L) − 1]. A reasonable quantitative measure of

largeness [120] of the asymptotic covariance matrix is ‖Cnlc‖ which is the

maximum eigenvalue of the symmetric matrix Cnlc. Further, ‖Cnlc‖ can be

minimized with respect to the parameter a. This can be formulated as the

following optimization problem,

min
{a|2ah′ (θ0)λ2(L)>1}

max
{x|x∈RN ,‖x‖2≤1}

xTCnlcx , (4.49)

which can be solved analytically by using the KKT conditions [90]. The value

of a that optimizes (4.49) is a∗nlc = (N + 1)/[2Nλ2(L)h
′

(θ0)] and the corre-

sponding optimal value of the ‖Cnlc‖is given by

‖C∗
nlc‖ =

(
N + 1

2N

)2(
σ2
v

λ2
2(L)

)(
1

h′(θ0)

)2

. (4.50)
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The size of the asymptotic covariance matrix in (4.50) is inversely proportional

to the square of the smallest non-zero eigenvalue λ2(L) which quantifies how

densely a graph is connected. We also note that (4.50) is directly proportional

to the channel noise variance σ2
v .

Equation (4.50) also gives some useful insights to design the trans-

mission function h(x). If we choose two functions h1(x) and h2(x) such

that h
′

1(x) > h
′

2(x), ∀x ∈ R, it is easy to see from (4.50) that ‖C∗
nlc1‖ <

‖C∗
nlc2‖, ∀θ0 ∈ R. This means that the convergence will be faster when h1(x) is

employed in the NLC algorithm (4.5) than when h2(x) is employed. However,

it should be noted that if h
′

1(x) > h
′

2(x), ∀x ∈ R and suppose h1(0) = h2(0) = 0

then we have h2
1(x) > h2

2(x), ∀x which implies that on an average the transmit

power is greater when h1(x) is employed compared to h2(x). Thus, optimiza-

tion of asymptotic covariance with respect to the parameter a helps us to do

a comparative study among different h(x) functions without the knowledge

of the limit point θ0. We will illustrate these findings in the simulations in

Section 4.5. Comparing the ‖C∗
nlc‖ against the special case of h(x) = cx

yields ‖C∗
nlc‖ = ‖C∗

lin‖(c/h
′

(θ0))
2. Clearly c/h

′

(θ0) ≤ 1 and therefore if h(x) is

bounded, appropriately normalized by letting c = 1, so that 0 < h
′

(x) ≤ 1, we

conclude that the best case linear algorithm outperforms the best case NLC

algorithm in terms of speed of convergence. However, the improved asymp-

totic covariance matrix in the former is achieved at the cost of increased peak

and average transmit power compared to the latter.

4.5 Simulations

In this section, we corroborate our analytical findings through various simu-

lations. In all the simulations presented, the initial samples xi(0) ∈ R, i =

1, 2, . . . , N, were generated randomly using Gaussian distribution with a stan-
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Figure 4.1: Entries of X(t) versus Iterations t: α = 1.5, ω = 0.01, N = 75,
h(x) = tanh(ωx), x̄ = 76.

dard deviation equal to 10. The desired global average value is indicated in

each of the simulations. We focus here on bounded transmission functions to

study their performance. Please note that our results are valid for a broader

class of increasing functions (see Section 4.4.1) than the ones considered in

this section.

4.5.1 Performance of NLC Algorithm without Channel Noise

Our focus in this chapter is on non-linear transmissions in the presence of

noise. However, we would also like to illustrate the convergence behavior

on the absence of noise. Figures 4.1, 4.2 and 4.3 depict the performance

of the proposed NLC algorithm in the absence of channel noise for a large

network with N = 75. In all the cases, we have used α values such that

0 < α < 2/(cλN(L)) as mentioned in Section 4.4.3.
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Figure 4.2: Evolution of error ||X(t) − x̄1|| versus Iterations t: α = 1.5,
ω = 0.01, N = 75, x̄ = 76.

From Figure 4.1, we infer that in about 50 iterations, all the nodes

reach consensus on the desired global average of x̄ = 76. Figure 4.2 shows

evolution of error norm ||X(t) − x̄1|| for various bounded functions. We see

that the convergence is exponential in all cases as noted in Section 4.4.3.

Figure 4.3 illustrates the performance of the NLC algorithm when α is varied.

Interestingly, by adjusting the step size α it is indeed possible to achieve the

same convergence speed using the NLC algorithm as that of optimal linear

consensus algorithm using the Laplacian heuristic [58].

4.5.2 Performance of NLC Algorithm with Channel Noise

Figures 4.4 - 4.8 illustrate the performance of NLC algorithm in the presence

of communication noise. As explained in the assumption (A4) in Section

4.4.1, we chose the decreasing step sequence to be α(t) = 1/(t + 1), t ≥ 0, in
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all simulations. Here we assumed that ρ = maxx h
2(x) is the maximum power

available at each sensor to transmit its state value. Figure 4.4 shows that the

nodes employing the NLC algorithm reach consensus for a small network with

N = 10. Figure 4.5 shows the transmit power h2(xi(t)), i = 1, 2, . . . , N, per-

neighbour versus iterations for a large network. Clearly, the transmit power

is always constrained within the upper bound of ρ (indicated by the dashed

line) making the proposed scheme practically viable for the power constrained

WSNs.

In Figures 4.6, 4.7 and 4.8, we show the convergence speed performance

of the proposed NLC algorithm by plotting ||E[X(t)]− x̄1|| versus iterations t.

These plots indicate how fast the mean of the process X(t) converges towards

the desired global mean vector x̄1.
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In Theorem 4.4.5, we saw that if two functions h1(x) and h2(x) such

that h
′

1(x) > h
′

2(x), ∀x ∈ R, are employed in the NLC algorithm then the

convergence will be faster for h1(x) compared to that of h2(x). This is il-

lustrated in Figure 4.6 where we have chosen h1(x) =
√
ρ tan−1(ωx) and

h2(x) =
√
ρ tanh(ωx). The performance gain of h1(x) obtained over h2(x) can

be understood intuitively by observing that on an average the transmit power

will be more when h1(x) is employed than when h2(x) is employed. The speed

of convergence for various transmit functions appropriately normalized to have

the same peak power ρ is shown in Figure 4.7. Here, we see that the transmit

function h1(x) has the best performance and h4(x) has the worst performance.

Intuitively this is due to the fact that h
′

1(x̄) > h
′

2(x̄) > h
′

3(x̄) > h
′

4(x̄). Fi-

nally, we depict the convergence speed versus the power scaling constant ρ,

the upper bound on the transmit power, in Figure 4.8. For a given transmit
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function, increased power leads to faster convergence as would be expected,

and we also observe that when the consensus iterations were increased, speed

of convergence improves.

4.6 Distributed Consensus on other Functions using NLC Algorithm

In the consensus literature, so far the focus has been mostly on the compu-

tation of average of the samples measured at t = 0. There has been little

emphasis on the actual sensing model. The estimation of other statistics such

as variance and SNR are equally important in statistical inference problems

just like the mean. Moreover, when the sensing noise is Cauchy distributed,

the sample mean is not a consistent estimator of a location parameter any

more [38, 42–44]. To overcome these bottlenecks in the consensus set up, we

propose a scheme which is robust to impulsive sensing noise distributions and

using which joint estimation of mean and variance would be possible.
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4.6.1 Distributed Variance and SNR Estimation

Consider the following sensing model

xi(0) = θ + σni i = 1, . . . , N , (4.51)

where θ is an unknown real-valued parameter in a bounded interval [0, θR] of

known length, θR < ∞, ni are a mutually independent, symmetric real-valued

noise with zero median (i.e., its PDF, when it exists, is symmetric about zero),

and xi is the measurement at the ith sensor. Note that ni are not necessarily

identically distributed, bounded, and need not have finite moments and σ is

the scale parameter which measures the standard deviation when the standard

deviation of ni exists. The sensing SNR is defined as γs := θ2/σ2.
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4.6.1.1 Pre-processing the Sensing Measurements

Let ni are Cauchy distributed and suppose we employ the NLC algorithm in

(4.5), the state values of the nodes will converge closer to N−1
∑N

i=0(θ + σni)

which is not a consistent estimator of θ for Cauchy noise. In order to solve this

problem, we introduce the pre-processing of the initial sensing measurements.

Let

yi(0) = ejxi(0) = [yRi (0) + jyIi(0)], i = 1, . . . , N , (4.52)

where yi(0) are the pre-processed measurements. We now treat yi(0) to be

the initial measurements. We can apply either the linear consensus algorithm

or the NLC algorithm in (4.5). Consider the following recursive consensus
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algorithms

yRi (t + 1) = yRi (t)− α(t)

[
∑

j∈Ni

h(yRi (t))− h(yRij(t)) + nR
ij(t)

]
, (4.53)

yIi(t+ 1) = yIi(t)− α(t)

[
∑

j∈Ni

h(yIi(t))− h(yIij(t)) + nI
ij(t)

]
, (4.54)

where i = 1, . . . , N, t = 0, 1, 2, . . ., indicates recursion in time. We assume that

the function h(x) is differentiable, and is increasing in x. In equation (4.53),

the value yRi (t+1) is the state update of node i at time t+1, yRij(t) is the state

value of the jth neighbour of node i at time t and α(t) is a positive decreasing

step size. The node j transmits its information yRij(t) by mapping it through

the function h(x), node i receives a noisy version of h(yRij(t)) and nR
ij(t) is the

zero mean additive noise with variance σ2/2, and similarly for (4.54).

From Theorems 4.4.2 and 4.4.3, we have
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lim
t→∞

[yRi (t) + jyIi(t)] = θ∗ = θR + jθI, ∀i, (4.55)

and

E[θ∗] = ejθ

[
1

N

N∑

i=1

ejni

]
. (4.56)

Now from (4.56), when N is sufficiently large, we have

lim
N→∞

E[θ∗] = ejθϕ(σ) , (4.57)

where ϕ(σ) is the characteristic function of ni in (4.51).

From (4.55) it is possible to estimate θ, σ and γs using the same ap-

proach in [38, 42–44].

In a consensus algorithm, an important metric is the average power

consumption for a given number of consensus iterations T . This can be defined

as PT = T−1

T∑

t=0

E
[
‖X(t)‖2

]
, where X(t) is the state vector of the consensus

algorithm. We now reiterate the advantages of proposed algorithm in ((4.53)

and (4.54)) against the linear consensus algorithm in literature. 1). The

proposed approach is robust to a wide range of sensing noise distributions (as

long as ni is symmetric the proposed approach will work). 2). The nonlinear

pre-processing of the observations as in (4.52) results in a significant saving of

total power compared to the case without pre-processing, and we will illustrate

this in the following simulations section.

4.6.1.2 Simulations

In this section, we compare the total power consumption for the approach in

((4.53), (4.54)) with and without pre-processing using Monte Carlo simula-

tions. In all the simulations, we fixed T = 500 and θ = 2. Figure 4.9 shows
112



2 4 6 8 10 12 14 16 18 20
10

0

10
1

10
2

Variance of xi(0)

A
v
er

a
g
e

P
o
w

er

 

 

No pre-processing

Pre-processing

Figure 4.9: Total power versus Variance of xi(0): ni is Gaussian, θ = 2,
N = 75, h(x) = x, σ2 = 0.01.

that the total power required versus variance of xi(0) when ni is Gaussian.

Clearly, pre-processing the initial measurements significantly reduces the total

transmit power. This is because, the state vector converges to θ∗ such that

E[θ∗] = e2jϕ(σ) and when ni is Gaussian, we have ϕ(σ) = e−
σ2

2 which is in-

versely proportional to the variance of xi(0). Similar trend is observed when

ni is Laplacian as seen in Figure 4.10.

4.6.2 Consensus on Arbitrary Functions

The general problem of consensus on arbitrary functions of initial measure-

ments has been considered in [121, 122]. In [121], the authors obtain neces-

sary and sufficient conditions under which an algorithm would asymptotically

achieve consensus on a desired function of initial measurements under some

mild smoothness assumptions. Using this result, the authors discuss max and
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Figure 4.10: Total power versus Variance of xi(0): ni is Laplacian, θ = 2,
N = 75, h(x) = x, σ2 = 0.01.

min consensus algorithms. The same problem is considered in [122] but in the

presence of malicious agents. In both of these papers, the linear iterations is

assumed for achieving consensus.

We saw how to achieve consensus on the sample mean using bounded

transmissions. If we want to get an estimate of the mean of the square of the

initial samples (second moment), all we need to do is to square the measure-

ments (pre-processing) initially and employ the NLC algorithm. The same

technique could be employed to get consensus on the moment of any order.

An interesting future direction is to design consensus algorithms for arbitrary

functions using the NLC algorithm which we have proved to be ideal for re-

source constrained WSNs.
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Chapter 5

Robust Consensus with Receiver Non-Linearity

5.1 Literature Survey and Motivation

In Chapter 4, we saw that the non-linear mapping was done at the transmit

node before transmitting the state information and we proved convergence

and convergence rate results. In existing literature on consensus (please see

[63, 65, 67, 123–129] and references therein) which discuss consensus in the

presence of communication noise, the additive noise is assumed to have finite

moments. All the existing consensus algorithms will fail if the communication

noise does not have finite second moment such as in the case of Cauchy noise.

Sensor networks which operate in adverse conditions require algorithms which

are robust to impulsive channel noise distributions. Therefore there is a need

to develop consensus algorithms which are impervious to impulsive channel

noise (like Cauchy) by performing some nonlinear operation at the receiver

node. Moreover, consensus with nonlinear combining at the receiver has been

considered in [60,113] only in the absence of inter-sensor communication noise.

Therefore, it is of interest to solve the problem of distributed consensus with

receiver non-linearity when there is communication noise.

In this chapter, we propose a robust nonlinear distributed consensus

(RNLC) algorithm which is robust to impulsive communication noise by per-

forming nonlinear processing at the receiver sensor node. We consider a more

general class of channel noise distributions than the very restricted class of

noise distributions considered in the literature. We do not require the chan-

nel noise to have finite moments as is assumed in all the previous work on

distributed average consensus algorithms, please see [63, 65, 67, 123–129]. We

only need the channel noise to be a zero median symmetric random variable,
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i.e., the probability density function (PDF) is symmetric about zero. In addi-

tion, we also assume that every sensor maps its state value through a bounded

function before transmission so that the transmit power at every node in every

iteration is always bounded, making it ideal for resource-constrained WSNs.

The analysis of the RNLC algorithm with both the transmit and receiver non-

linearities in the presence of channel noise is non-trivial. We prove that all

the sensors employing the RNLC algorithm reach consensus to a finite ran-

dom variable whose mean is the desired sample average. We characterize the

asymptotic performance by deriving the asymptotic covariance matrix using

results from stochastic approximation theory. Finally we explore the perfor-

mance of the proposed algorithm employing various functions for the transmit

and receiver non-linearities. Different from [63, 65, 67] which also considered

consensus in the presence of noisy transmissions, herein we analyse nonlinear

processing both at the transmit and receiver nodes and study the asymptotic

covariance matrix and its dependence on both the non-linearities. Our work

in this chapter also shows an interesting relationship between the Fisher in-

formation and the asymptotic covariance matrix which comes out as a result

of having nonlinear processing at the receiver sensor node. To the best of

our knowledge, we are the first ones in the consensus literature to propose a

consensus algorithm which relaxes the requirement of finite moments on the

communication noise.

The rest of this chapter is organized as follows. In Section 5.2, we

describe the system model and review the previous work on non-linear con-

sensus. We consider the RNLC algorithm in the presence of noise in Section

5.3, and prove that the sensors reach consensus to a random variable. In Sec-
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tion 5.4, we present several simulation examples to study the performance of

the proposed algorithm.

We will use the same notations used in the previous chapter. We note

that we will drop the index of some variables for convenience and the intention

will be clear from the context.

5.2 System Model and Previous Work
5.2.1 System Model

Consider a WSN withN sensor nodes each with an initial measurement xi(0) ∈

R. Measurements made at the sensor nodes are modeled as

xi(0) = θ + ni , i = 1, . . . , N (5.1)

where θ is an unknown real-valued parameter and ni is the sensing noise at

the ith sensor. The sample mean of these initial measurements in (5.1) is given

by

x̄ =
1

N

N∑

i=1

xi(0) . (5.2)

Let x̄ be the estimate of the parameter θ to be computed by an iterative

distributed algorithm, in which each sensor communicates only with its neigh-

bours. If the states of all the sensor nodes converge to x̄, then the network is

said to have reached consensus on the sample average.

5.2.2 Previous Work

A commonly used iterative algorithm for distributed consensus can be written

as

xi(t+ 1) = xi(t)− α
∑

j∈Ni

h(xi(t)− xij(t)) , (5.3)

where i = 1, . . . , N , t = 0, 1, 2, . . ., is the time index, xi(t + 1) is the updated

state value of sensor node i at time t+ 1, Ni is the set of neighbours of sensor
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node i, xij(t), j ∈ Ni are the state values of the neighbours of sensor node i at

time t, and α is a constant step size. If h(·) is linear, then (5.3) is a linear dis-

tributed average-consensus (LDAC) algorithm [58,61,62]. In [58], it is proved

that if 0 < α < 2/λN(L), then xi(t) converges to x̄ exponentially and (5.3) is

then called as the LDAC algorithm based on the Laplacian heuristic. If h(·)

is non-linear then the algorithm belongs to the class of non-linear distributed

average-consensus algorithms [60,113]. In [60], the average consensus problem

is solved when h(x) in (5.3) is differentiable and odd. In [113], it is illustrated

that when h(x) in (5.3) is sin(x), faster convergence is possible compared to

the LDAC algorithm based on the Laplacian heuristic. In all of these cases,

xij(t) has to be transmitted to node i before it can apply the function h(·) to

get the new updated state value. Therefore, the transmit peak power in (5.3)

is determined by xi(t) and not necessarily bounded, even if h(·) is bounded.

Moreover, there is no communication noise assumed in all the previous work

on non-linear consensus.

5.3 Robust Consensus with Impulsive Communication Noise

In this work, we propose a robust distributed nonlinear average consensus

algorithm in which every node also performs a nonlinear operation upon the

receiving the state values from its neighbours. Every sensor also maps its state

value through a bounded function before transmission to constrain the trans-

mit power. Therefore the magnitude of the transmitted signal at every node

in every iteration is always bounded making it ideal for resource-constrained

WSNs and the receiver non-linearity makes the algorithm robust to a wide

range of channel noise distributions.

In this section, we will study the RNLC algorithm with communica-

tion noise when sensors exchange information. Our approach is similar to,
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but more general than [65] and [98] in that we analyse non-linearity at both

the receiver and transmit sensor nodes. Moreover, unlike [65] we study the

asymptotic covariance matrix of the state vector and its dependence on the

non-linearity. Unlike [113] and [60], we assume receiver non-linearity in the

presence of communication noise which brings us the benefit of robustness to

a wide range of noise distributions.

5.3.1 The RNLC Algorithm with Communication Noise

Let each sensor map its state value at time t through the function h(x) be-

fore transmission, and combines the received state values through a nonlinear

function according to the following RNLC algorithm:

xi(t+ 1) = xi(t)− α(t)
∑

j∈Ni

[f (h(xi(t))− h(xij(t)) + nij(t))] , (5.4)

where i = 1, . . . , N, t = 0, 1, 2, . . ., is the time index. The value xi(t + 1) is

the state update of node i at time t + 1, xij(t) is the state value of the jth

neighbour of node i at time t and α(t) is a positive step size which will further

be assumed to satisfy assumption (A5) in the sequel. The node j transmits

its information xij(t) by mapping it through the function h(x), node i receives

a noisy version of h(xij(t)) and nij(t) is the noise associated with the reception

of h(xij(t)). The function f(x) is applied at the receiver side to combat the

effect of impulsive channel noise and will be further assumed to satisfy (A2)

in the sequel.

Note that the proposed scheme (5.4) is different from (5.3) in the fol-

lowing aspects. Firstly, in (5.3), xij(t) has to be transmitted which could

exhibit variation over a wide range of values if xi(0) has a large dynamic range

and hence (5.3) does not guarantee bounded transmission power. In contrast,

in the proposed scheme the non-linearity is applied before the state value is
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transmitted so that the magnitude of the transmitted state value is always

constrained within the maximum value of h(x) irrespective of the range of

xi(t) and the realizations of noise nij(t). Finally, (5.4) involves communica-

tion noise while (5.3) does not. Thus the proposed scheme is more suited

to resource constrained WSNs when compared to (5.3), and it is practically

viable for WSNs operating in adverse conditions.

Our model in (5.4) is more general than the linear consensus algorithm

considered in [65] which is a special case when f(x) and h(x) are linear. We

make the following assumptions on f(x), h(x), nij(t), α(t) and the graph:

Assumptions

(A1): The graph G is connected so that λ2(L) > 0.

(A2): The function f(x) is strictly increasing, odd such that for a given x,

the variance var[f(x + n)] ≤ σ2 is bounded (we have dropped the indices of

the noise samples nij(t) for convenience).

(A3): The function h(x) is differentiable, and has a bounded derivative

such that 0 < h
′

(x) ≤ c, for some c > 0.

(A4) Independent Noise Sequence: The noise samples nij(t) are mu-

tually independent identically distributed (i.i.d.), symmetric real-valued with

zero median (i.e., its PDF symmetric about zero). Note that nij(t) are not

necessarily bounded, and need not have finite moments. We make no distri-

butional assumptions on the communication noise PDF. Note that this as-

sumption is more general than [63, 65, 67, 123–129] in that they require the

communication noise to have finite moments whereas we do not require finite

mean or variance for the noise distribution.

(A5) Decreasing Weight Sequence: Even though var[f(x+n)] is bounded,

the recursive nature of (5.6) could make the algorithm diverge. In order to
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control the variance growth rate of the noise we need the following conditions

on the sequence α(t):

α(t) > 0 ,
∞∑

t=0

α(t) = ∞ ,
∞∑

t=0

α2(t) < ∞ . (5.5)

Let g(x) := En [f(x+ n)] where E(·) denotes the expectation so that

f(x+ n) = g(x) + ñ(x). It can be easily proved that g(x) is an odd function

under the assumptions (A2), (A3) and (A4), and hence g(0) = 0. Clearly

E[ñ(x)] = 0 and E[ñ2(x)] ≤ σ2. Using g(x) the recursion in (5.4) can be

written in vector form as

X(t+ 1) = X(t)− α(t) [µ(X(t)) + n(t,X(t))] . (5.6)

where X(t) is state vector at time t given by X(t) = [x1(t) x2(t) . . . xN(t)]
T,

and µ : RN → RN such that its ith element is given by

µi(X(t)) =
∑

j∈Ni

g(h(xi(t))− h(xij(t))) , 1 ≤ i ≤ N . (5.7)

The vector n(t,X(t)) captures the additive noise at N nodes contributed by

their respective neighbours and their state values and its ith component is

given by

ni(t,X(t)) = −
∑

j∈Ni

ñ(t, xi(t), xij(t)) , 1 ≤ i ≤ N . (5.8)

Clearly, conditioned on X(t), the channel noise {ñ(t, xi(t), xij(t))}t≥0,1≤i,j≤N

is an independent sequence across time and space. It also satisfies

E[n(t,X(t))] = 0 , ∀t , µ := sup
t

E[‖n(t,X(t))‖2] ≤ Ndmaxσ
2 < ∞. (5.9)

Note that (5.9) is because of the fact that the number of neighbours of a given

node is upper bounded by dmax.

Our primary motivation for considering non-linear processing is two

fold: 1). We want to develop a consensus algorithm that is robust to the
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impulsive communication noise which do not necessarily have finite moments.

We accomplish this by the receiver nonlinear function f(·) as it will be shown

in Theorem 5.3.1; 2). We want to impose the realistic assumption of bounded

peak per-sensor power by ensuring that the transmit nonlinear function h(·)

is bounded.

We will prove convergence and asymptotic normality result of the RNLC

algorithm in (5.6) using the same approach used in Chapter 4. Recall the re-

sult on the convergence of a discrete time Markov process which will now be

used in establishing convergence of the RNLC algorithm in (5.6).

To prove the a.s. convergence of the consensus algorithm in (5.6) using

Theorem 4.4.1, we define the consensus subspace B, the set of all vectors whose

entries are of equal value as,

B = {x ∈ R
N |x = a1 , a ∈ R} . (5.10)

We are now ready to state the main result of Section 5.3.

Theorem 5.3.1. Let the assumptions (A1), (A2), (A4) and (A5) hold,

and assume h(x) is strictly increasing. Consider the RNLC algorithm in (5.6)

with the initial state vector X(0) ∈ RN . Then, the state vector X(t) in (5.6)

approaches the consensus subspace B a.s., i.e.,

Pr

[
lim
t→∞

inf
Y∈B

‖X(t)−Y‖ = 0

]
= 1. (5.11)

Proof. We will make use of Theorem 4.4.1 to prove (5.11). We will choose

an appropriate potential function V (x) that is non-negative which satisfies

equation (4.11). We will then prove that the generating operator L applied
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on V (x) as in (4.10) can be upper bounded as in (4.12) with γ(t) = α(t), and

a ϕ(x) can be found that satisfies (4.13).

First we see that under the assumptions (A1), (A2), (A4) and the

assumption on h(x), the discrete time vector process {X(t)}t≥0 is Markov.

Define a positive semi-definite matrix M such that mij = −1, i 6= j, mii =

N − 1. Let V (x) = xTMx, then the function V (x) is non-negative since M

is a positive semi-definite matrix by construction. Note that x ∈ B is an

eigenvector of M associated with the zero eigenvalue, therefore we have

V (x) = 0,x ∈ B . (5.12)

Let x = xB + xB⊥ where xB is the orthogonal projection of x on B. When

x ∈ B
′

, we have ‖xB⊥‖ > 0. Let x ∈ B
′

and µ(x) be as defined in (5.6). Then,

µ(x) = µB(x) + µB⊥(x), where µB⊥(x) is non-zero, i.e., ‖µB⊥(x)‖ > 0 which

is proved now. First we note that xTMµ(x) > 0 (please see equations (5.23)

through (5.29). This means (xB+xB⊥)M(µB(x)+µB⊥(x)) = xB⊥MµB⊥(x) >

0. If µB⊥(x) were zero, then xB⊥MµB⊥(x) = 0 which contradicts with the

fact that xB⊥MµB⊥(x) > 0. Therefore, µB⊥(x) is non-zero. Define β :=

‖µB⊥(x)‖2/‖xB⊥‖2, then β > 0, x ∈ B
′

. Therefore, for any x ∈ B
′

,

V (x) = xTMx = V (xB + xB⊥) = V (xB⊥)

≥ min
xB⊥ 6=0

xT
B⊥MxB⊥ = λ2(M)‖xB⊥‖2 > 0 , (5.13)

where the last inequality is due to λ2(L) > 0 by assumption (A1). The

equations (5.12) and (5.13) establish that the conditions in (4.11) in Theorem

4.4.1 are satisfied.
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Now we will prove that (4.12) is satisfied as well. Towards this end,

consider LV (x) defined in (4.10),

LV (x) = E
[
X(t+ 1)TMX(t+ 1)|X(t) = x

]
− V (x) , (5.14)

= E
[(
xT − α(t)

(
µ(x)T + nT(t,x)

))
·

(Mx− α(t) (Mµ(x) +Mn(t,x)))]− V (x) , (5.15)

= −2α(t)
[
xTMµ(x)

]
+ α2(t)

[
µ(x)TMµ(x) + E

[
nT(t,x)Mn(t,x)

]]
.

(5.16)

We get (5.16) by expanding (5.15) and taking the expectations and using the

fact that E[n(t)] = 0. We have

E
[
nT(t,x)Mn(t,x)

]
≤ E

[
λN(M)‖nT(t,x)‖2

]
≤ λN(M)µ, (5.17)

where the second inequality follows from (5.9). Using (5.17) in (5.16), we get

the following bound

LV (x) ≤ −2α(t)
[
xTMµ(x)

]
+ α2(t)

[
µ(x)TMµ(x) + µλN(M)

]
, (5.18)

≤ −2α(t)
[
xTMµ(x)

]
+ α2(t)

[
λN(M)β‖xB⊥‖2 + µλN(M)

]
, (5.19)

≤ −2α(t)
[
xTMµ(x)

]
+ α2(t)

[
β
λN (M)

λ2(M)
xTMx + µλN(M)

]
, (5.20)

≤ −2α(t)
[
xTMµ(x)

]
+mα2(t)

[
1 + β2x

TMx
]
, (5.21)

≤ −α(t)ϕ(x) +mα2(t) [1 + V (x)] , (5.22)

where ϕ(x) := 2xTMµ(x), m := max{βλN(M)/λ2(M), λN(M)µ}, β2 :=

µλN(M)/m and β2 ∈ (0, 1]. In (5.19), we have used the fact µ(x)TMµ(x) ≤

λN(M)‖µB⊥(x)‖2 and ‖µB⊥(x)‖2 = β‖xB⊥‖2. In (5.20), we have used the fact

that xTMx ≥ λ2(M)‖xB⊥‖2 due to (5.13). We will now prove that ϕ(x) in

(5.22) satisfies equation (4.13) of Theorem 4.4.1.
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Whenever x ∈ B, i.e., x = a1, a ∈ R, then xi = xj , ∀i, j, which means

g(h(xi) − h(xj)) = 0, ∀i, j, and hence µ(x) = 0. This implies that ϕ(x) =

0, ∀x ∈ B.

To prove ϕ(x) > 0 when x ∈ B
′

, consider ϕ(x) = 2xTMµ(x) with M

of dimension N ×N ,

ϕ(x) = 2

[
x1 x2 x3 . . . xN

]




N − 1 −1 −1 . . . −1

−1 N − 1 −1 . . . −1

−1 −1 N − 1 . . . −1

...
...

... . . .
...

−1 −1 −1 . . . N − 1




µ(x)

(5.23)

= 2

N−1∑

k=1

xT
µ(x)− 2

{[
x2 x3 x4 . . . xN x1

]
+

[
x3 x4 x5 . . . x1 x2

]
+

. . .
[
xN x1 x2 . . . xN−2 xN−1

]
+

[
x1 x2 x3 . . . xN−1 xN

]
−

[
x1 x2 x3 . . . xN−1 xN

] }
µ(x) (5.24)

= 2
[
(N − 1)xT

µ(x)−
[
N(x1 + x2 + . . .+ xN)1

T
µ(x)

]
+ xT

µ(x)
]

(5.25)

= 2NxT
µ(x) , (5.26)

where we get (5.25) by expanding the terms in the curly braces in (5.24) and

simplifying and we have used the fact that 1T
µ(x) = 0 in (5.25) to get (5.26).
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Now consider

ϕ(x) = 2NxT
µ(x) (5.27)

= 2N

[
∑

j∈N1

g(h(x1)− h(xj))x1 +
∑

j∈N2

g(h(x2)− h(xj))x2

+ . . .+
∑

j∈NN

g(h(xN)− h(xj))xN

]
, (5.28)

where (5.28) follows from the symmetric structure of the graph. Note that

the ith summation in (5.28) corresponds to the ith node. Now suppose that

node i is connected to node j. Then there exists a term g(h(xi)− h(xj))xi in

the summation corresponding to the ith node in (5.28), and a term g(h(xj)−

h(xi))xj in the summation corresponding to the jth node in (5.28). Both of

these terms can be combined as (xi−xj)g(h(xi)−h(xj)) and this corresponds to

the edge {i, j} ∈ E. Thus equation (5.28) can be written as pairwise products

enumerated over all the edges in the graph as follows

ϕ(x) = 2N
∑

{i,j}∈E
(xi − xj) g(h(xi)− h(xj)) . (5.29)

Since x ∈ B
′

, ϕ(x) in (5.29) is positive due to the facts that h(x) is strictly

increasing and g(x) is strictly an increasing odd function so that there is

at least one term in the sum which is strictly greater than zero. Letting

γ(t) = α(t), g(t) = α2(t) and by assumption (A5), we see that the sequence

α(t) in (5.22) satisfies (4.14). Thus all the conditions of Theorem 4.4.1 are

satisfied to yield (5.11).

Theorem 5.3.1 states that the sample paths of X(t) approach the con-

sensus subspace almost surely. We note that the assumption (A3) is not

necessary for Theorem 5.3.1 to hold. Instead we assumed h(x) is strictly in-

creasing (not necessarily differentiable) to prove Theorem 5.3.1. Now, like
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in [65], we will prove the convergence of X(t) to a finite point in B in Theorem

5.3.2.

Theorem 5.3.2. Let the assumptions of Theorem 5.3.1 hold. Consider the

RNLC algorithm in (5.6) with the initial state X(0) ∈ RN . Then, there exists

a finite real random variable θ∗ such that

Pr
[
lim
t→∞

X(t) = θ∗1
]
= 1. (5.30)

Proof. Let the average ofX(t) be x̄(t) = 1TX(t)/N . Since 1x̄(t) ∈ B, Theorem

5.3.1 implies,

Pr
[
lim
t→∞

‖X(t)− x̄(t)1‖ = 0
]
= 1 , (5.31)

where (5.31) follows from (5.11) since the infimum in (5.11) is achieved by

Y = x̄(t)1. Pre-multiplying (5.6) by 1T/N on both sides and noting that

1T
µ(x) = 0 due to the symmetric structure of the graph we get,

x̄(t+ 1) = x̄(t)− ṽ(t) (5.32)

= x̄(0)−
∑

0≤k≤t

ṽ(k) (5.33)

where ṽ(t) = α(t)1Tn(t,X(t))/N . From (5.9) it follows that

E[ṽ(t)] = 0,

∑

t≥0

E[ṽ(t)]2 =
∑

t≥0

α2(t)

N2
E‖n(t,X(t))‖2 ≤ µ

N2

∑

t≥0

α2(t) < ∞

which implies

E[x̄(t + 1)]2 ≤ x̄2(0) +
µ

N2

∑

t≥0

α2(t) , ∀t . (5.34)
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Equation (5.34) implies that the sequence {x̄(t)}t≥0 is an L2 bounded mar-

tingale 1 and hence converges a.s. and in L2 to a finite random variable θ∗

(see [118, Theorem 2.6.1]). Therefore the theorem follows from (5.31).

It should be noted that the results in Theorems 5.3.1 and 5.3.2 are

similar to the results in [65], but we have proved it for a more general case of

which [65] is a special case when f(x) = x and h(x) = x, and [98] is a special

case of (5.6) when f(x) = x. In what follows, we present the properties of the

limiting random variable θ∗.

5.3.2 Mean Square Error of RNLC Algorithm

The Theorems 5.3.1 and 5.3.2 establish that the sensors reach consensus

asymptotically and converge a.s. to a finite random variable θ∗. We can

view θ∗ as an estimate of x̄. In the following theorem we characterize the

unbiasedness and means squared error (MSE) properties of θ∗. We define the

MSE of θ∗ as ξ
N
= E[(θ∗ − x̄)2].

Theorem 5.3.3. Let θ∗ be the limiting random variable as in Theorem 5.3.2.

Then θ∗ is unbiased, E[θ∗] = x̄, and its MSE is bounded, ξ
N
≤ µN−2

∑

t≥0

α2(t).

The proof is obtained by following the same steps of the Lemma 5

in [65].

We point out that with non-linear processing, we have obtained a simi-

lar bound on the MSE ξ
N
as that of the linear consensus algorithm in [65] but in

our case the bound depends on the functions f(x) and h(x). It should be noted

that µ ≤ Ndmaxσ
2 from (5.9) which implies that ξ

N
≤ dmaxN

−1
∑

t≥0 α
2(t)σ2.

1A sequence of random variables {y(t)}t≥0 is called as a martingale if for all t ≥ 0,
E [|y(t)|] < ∞ and E [y(t+ 1) | y(1) y(2) . . . y(t)] = y(t). The sequence {y(t)}t≥0 is an L2

bounded martingale if sup
t
E
[
y2(t)

]
< ∞ (see [119, pp. 110]).
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Therefore, if dmax is finite for a large connected network, we have limN→∞ ξ
N
=

0 and this means that θ∗ converges to x̄ as the variance of θ∗ approaches 0.

If the graph is densely connected, then dmax is relatively high which increases

the worst-case MSE. On the other hand, when the graph is densely connected,

λ2(L) is larger which aids in the speed of convergence to θ∗, as quantified

through the covariance matrix in Section 5.3.3.

For any connected graph withN nodes, if nij(t) = 0 then limt→∞ X(t) =

x̄1, which means all the sensor states asymptotically converge to the desired

sample average. In fact, in the absence of communication noise, under assump-

tions (A1), (A2) and (A3), we believe that it is possible to prove exponential

convergence of X(t) to x̄1 by letting α(t) = α such that 0 < α < 2/(cλN(L))

and by following a similar approach as in [113].

5.3.3 Asymptotic Normality of RNLC Algorithm

The RNLC algorithm in (5.6) belongs to the class of stochastic approximation

algorithms. The convergence speed of these algorithms is an important issue

from a practical perspective. There are various criteria for determining the

rate of convergence. For instance, one can try to estimate E [‖X(t)− θ∗1‖2] or

Pr [‖X(t)− θ∗1‖ ≤ ǫ(t)] [120]. Estimating these parameters may be difficult

in practice. However, it is usually possible to establish that
√
t(X(t)− θ∗1) is

asymptotically normal with zero mean and some covariance matrix. Asymp-

totic normality of stochastic approximation algorithms have been established

under some general conditions in [118] and for the linear consensus algorithms

in [63].

In this section, we establish the asymptotic normality of the RNLC

algorithm in (5.6). Our approach here is similar to the one in [63]. Basically, we

decompose the RNLC algorithm in R
N into a scalar recursion and a recursion
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in R(N−1). In this section, for the sake of simplicity we assume that the noise

sequence nij(t) are i.i.d. random variables with zero median and the graph is

k regular. We now formally state and prove the result as a theorem.

Theorem 5.3.4. Let α(t) = a/(t + 1), a > 0, then the RNLC algorithm in

(5.6) becomes

X(t+ 1) = X(t) +
a

t + 1
[−µ(X(t)) + n(t,X(t))] . (5.35)

Suppose that the assumptions (A1), (A3), (A4) and (A5) hold, the function

f(x) is differentiable and suppose also that graph is a k regular connected graph.

Let the EVD of L be given by L = UΣUT, where U is a unitary matrix whose

columns are the eigenvectors of L such that

U =

[
1√
N

Φ

]
,Φ ∈ R

N×(N−1) , −Σ =



0 0T

0 B


 , (5.36)

where B ∈ R(N−1)×(N−1) is a diagonal matrix containing the N − 1 negative

eigenvalues of −L (this means that B is a stable matrix). In addition, let θ0

be a realization of the random variable θ∗ and 2aλ2(L)g
′

(0)h
′

(θ0) > 1 so that

the matrix
[
ag

′

(0)h
′

(θ0)B+ I/2
]
, θ0 ∈ R is stable. Define [ñ(t) ñ(t)T]T :=

N−1/2UTn(t,X(t)), ñ(t) ∈ R(N−1), so that ñ(t) = N−11Tn(t,X(t)) and ñ(t) =

N−1/2ΦTn(t,X(t)). Let C = E[ññT], C ∈ R
(N−1)×(N−1). Then, as t → ∞,

√
t(X(t)− θ∗1|θ∗ = θ0) ∼ N

(
0, N−1a2σ2

v11
T +N−1ΦSθ0ΦT

)
, (5.37)

where σ2
v = kE[f 2(n)] and

Sθ0 = a2
∞∫

0

e

[
ag

′

(0)h
′

(θ0)B+ I

2

]
t
C e

[
ag

′

(0)h
′

(θ0)B+ I

2

]
t
dt . (5.38)
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Proof. Define [x̃(t) X̃(t)T]T := N−1/2UTX(t), X̃(t) ∈ R(N−1). From Theorem

5.3.2, we have X(t) → θ∗1 a.s. as t → ∞ which implies that [x̃(t) X̃(t)]T →

[θ∗ 0]T a.s. as t → ∞, and therefore X̃(t) → 0 a.s. as t → ∞. The error

[X(t) − θ01] can be written as the sum of two error components (see also

Section VI in [63]) as given below

[X(t)− θ01] = [x̃(t)− θ0]1+
1√
N
ΦX̃(t) , (5.39)

= e1 + e2 , (5.40)

where e1 = [x̃(t)− θ0]1 and e2 = N−1/2ΦX̃(t). By calculating the covariance

matrix between e1 and e2, it can be proved that they are asymptotically

uncorrelated as t → ∞, and that asymptotically
√
te1 ∼ N (0, N−1a2σ2

v11
T)

(see Theorem 12 in [63]). To show that
√
te2 is asymptotically normal, it

suffices to show that
√
tX̃(t) is asymptotically normal. To this end, express

µ(x) in (5.35) around x = θ01 using Taylor’s series expansion,

µ(x) = µ(θ01) +
∂µ(x)

∂x

∣∣∣∣
x=θ01

+ o(‖x− θ01‖) , as x → θ01 , (5.41)

= g
′

(0)h
′

(θ0)Lx + o(‖x− θ01‖) , as x → θ01 . (5.42)

Using (5.42) in (5.35) we get, as t → ∞,

X(t+ 1) = X(t) +
a

t+ 1

[
g

′

(0)h
′

(θ0) (−LX(t)) + δ(X(t)) + n(t,X(t))
]
,

(5.43)
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where ‖δ(X(t))‖ → 0 as t → ∞. Pre-multiplying (5.43) on both sides by

N−1/2UT and using (5.36) we get the following recursions

x̃(t + 1) = x̃(t) +
a

t + 1
ñ(t) , (5.44)

X̃(t + 1) = X̃(t) +
a

t+ 1

[
g

′

(0)h
′

(θ0)BX̃(t) + δ̃(X(t)) + ñ(t)
]
, as t → ∞ ,

(5.45)

where δ̃(X(t)) = N−1/2ΦTδ(X(t)). With the assumption
[
ag

′

(0)h
′

(θ0)B+ I/2
]
,

θ0 ∈ R is a stable matrix, it can be verified that all the conditions of Theorem

6.6.1 in [118, p. 147] are satisfied for the process X̃(t) in (5.45). Therefore, for

a given θ0, the process
√
tX̃(t) is asymptotically normal with zero mean and

covariance matrix given by (5.38). Since
√
te1 ∼ N (0, N−1a2σ2

v11
T) and using

(5.38) together with the fact that e1 and e2 are asymptotically independent

as t → ∞, we get (5.37) which completes the proof.

Equation (5.37) indicates how fast the process
√
t(X(t) − θ01) will

converge to θ01 for a given θ0 as t → ∞. The convergence speed clearly

depends on g
′

(0) and h
′

(θ0) which captures the effect of receiver and transmit

non-linearities respectively.

Let the asymptotic covariance in (5.37) be denoted by Crnlc. Since

n(t,X(t)) are asymptotically i.i.d., C in (5.38) becomes C = σ2
vI and thus

we have Crnlc = N−1a2σ2
v11

T + N−1ΦSθ0ΦT where Sθ0 is a diagonal matrix

whose diagonal elements are given by Sθ0
ii = a2σ2

v/[2ag
′

(0)h
′

(θ0)λi+1(L)−1]. A

reasonable quantitative measure of largeness [120] of the asymptotic covariance

matrix is ‖Crnlc‖ which is the maximum eigenvalue of the symmetric matrix

Crnlc. Further, ‖Crnlc‖ can be minimized with respect to the parameter a.

This can be formulated as the following optimization problem,

min
{a|2ag′ (0)h′ (θ0)λ2(L)>1}

max
{x|x∈RN ,‖x‖2≤1}

xTCrnlcx , (5.46)
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which can be solved analytically by using the KKT conditions [90]. The value

of a that optimizes (5.46) is a∗nlc = (N + 1)/[2Nλ2(L)g
′

(0)h
′

(θ0)] and the

corresponding optimal value of the ‖Crnlc‖is given by

‖C∗
rnlc‖ = k

(
N + 1

2N

)2(
E[f 2(n)]

(E[f ′(n)])2

)(
1

λ2
2(L)

)(
1

h′(θ0)

)2

. (5.47)

The size of the asymptotic covariance matrix in (5.47) is inversely proportional

to the square of the smallest non-zero eigenvalue λ2(L) which quantifies how

densely a graph is connected. We also note that (5.47) depends on the receiver

nonlinear function used.

Equation (5.47) gives some useful insights to design the transmission

function h(x) as discussed in [98] and all the conclusions drawn in [98] are

applicable here as well. For a fixed f(x), if we choose two functions h1(x)

and h2(x) such that h
′

1(x) > h
′

2(x), ∀x ∈ R, it is easy to see from (5.47)

that ‖C∗
rnlc1‖ < ‖C∗

rnlc2‖, ∀θ0 ∈ R. This means that the convergence will be

faster when h1(x) is employed in the RNLC algorithm (5.6) than when h2(x)

is employed.

When f(x) is a bounded function, from equation (8) in [84] we have

E[f 2(n)]

(E[f ′(n)])2
≥ 1

J
, (5.48)

where J is the Fisher information of n with respect to a location parameter [85,

eqn (8)] and thus we see an interesting relationship between the maximum

eigenvalue of the asymptotic covariance and the Fisher information. For a

given h(x), the best choice of f(x) is the one that achieves equality in (5.48).

For instance, when n is Gaussian, f(x) = x achieves equality in (5.48) in which

case we have var[f(n)] equals the inverse of Fisher information. In addition,

when n has finite moments, if we let f(x) = x, we get the same result as

in [98], and together with this if we also let h(x) = x, we get the results for
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Figure 5.1: Entries of X(t) versus Iterations t: α = 100, N = 15, h(x) =
tanh(0.05x), f(x) = 2

π
tan−1(π

2
0.05x), x̄ = 22.67.

the linear case as in Theorem 12 of [63]. Equation (5.47) also indicates when

h(x) is fixed, scaling f(x) does not improve the speed of convergence. We will

illustrate these findings in the simulations in Section 5.4.

5.4 Simulations

In this section, we corroborate our analytical findings through various simu-

lations. In all the simulations presented, the initial samples xi(0) ∈ R, i =

1, 2, . . . , N, were generated randomly using Gaussian distribution with a stan-

dard deviation equal to 10. The desired global average value is indicated in

each of the simulations. We focus here on bounded functions for both the

transmit and receiver non-linearities to study their performance. Please note

that our results are valid for a broader class of increasing functions (see Section

5.3.1) than the ones considered in this section.
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Figure 5.2: Evolution of error ||X(t) − x̄1|| versus Iterations t: α = 100,
ω = 0.05, N = 15, x̄ = 22.67.

5.4.1 Performance of RNLC Algorithm Without Channel Noise

Our focus in this paper is on non-linear processing in the presence of noise.

However, we would also like to illustrate the convergence behavior on the

absence of noise. Figures 5.1 and 5.2 depict the performance of the proposed

RNLC algorithm in the absence of channel noise for a large network with

N = 15. In all the cases, we have used α values such that 0 < α < 2/(cλN(L))

as mentioned in Section 5.3.2. From Figure 5.1, we infer that in about 40

iterations, all the nodes reach consensus on the desired global average of x̄ =

22.67. Figure 5.2 shows evolution of error norm ||X(t) − x̄1|| for various

bounded functions. We see that the convergence is exponential in all cases as

noted in Section 5.3.2.
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Figure 5.3: Entries of X(t) versus Iterations t: Cauchy noise, h(x) = x, f(x) =
x, N = 75, x̄ = 134.31, γ = 1.

5.4.2 Performance of RNLC Algorithm with Channel Noise

First, we highlight that the linear consensus algorithms in [63,65,67,123–129]

fail to achieve consensus when the channel noise does not have finite variance.

An example plot is shown in Figure 5.3 for the case when the channel noise is

Cauchy distributed with γ = 1. Clearly, the sensors do not reach consensus.

Whereas the proposed RNLC algorithm will work when we choose f(x) as a

nonlinear function as shown next.

Figures 5.4 - 5.10 illustrate the performance of RNLC algorithm in

the presence of communication noise. As explained in the assumption (A5)

in Section 5.3.1, we chose the decreasing step sequence to be α(t) = 1/(t +

1), t ≥ 0, in all simulations. Here we assumed that ρ = maxx h
2(x) is the

maximum power available at each sensor to transmit its state value. The
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receiver nonlinear function f(x) is indicated in each case. Figure 5.4 shows

that the nodes employing the RNLC algorithm reach consensus for a small

network with N = 10 in about 100 iterations and Figure 5.5 shows convergence

for a large network with N = 75 in about 40 iterations. Note that the transmit

power h2(xi(t)), i = 1, 2, . . . , N, is always constrained within the upper bound

of ρ (not shown) making the proposed scheme practically viable for the power

constrained WSNs.

In Figures 5.6, 5.7, 5.8 and 5.9 we show the convergence speed perfor-

mance of the proposed RNLC algorithm by plotting ||E[X(t)] − x̄1|| versus

iterations t. These plots indicate how fast the mean of the process X(t) con-

verges towards the desired global mean vector x̄1.
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In Theorem 5.3.4, we saw that for a fixed f(x), if two functions h1(x)

and h2(x) such that h
′

1(x) > h
′

2(x), ∀x ∈ R, are employed in the RNLC al-

gorithm then the convergence will be faster for h1(x) compared to that of

h2(x). This is illustrated in Figure 5.6 where we have chosen f(x) = 1.5x
1+|1.5x|

and h1(x) =
√
ρ tan−1(ωx), h2(x) =

√
ρ 2
π
tan−1(π

2
ωx) and h3(x) =

√
ρ ωx√

1+ω2x2
.

The performance gain of h1(x) obtained over h2(x) and h3(x) can be under-

stood intuitively by observing that on an average the transmit power will be

more when h1(x) is employed than when h2(x) or h3(x) is employed. The

speed of convergence for two graphs with different algebraic connectivity is

illustrated in Figure 5.7. We see that the graph with smaller connectivity

(smaller λ2(L)) converges slower than the one with large connectivity as dic-

tated by (5.47). In Theorem 5.3.4, we also saw that scaling f(x) does not

improve the asymptotic convergence speed. This is shown in Figure 5.8 where
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we see that when the iterations are large (t > 120), the speed of convergence

of all the three functions are nearly the same. In Figure 5.9, we depict the

robustness of the RNLC algorithm for various channel noise distributions. We

observe that the performance is nearly the same for Gaussian and Laplacian

distributions, whereas there is a significant gap between Cauchy and alpha-

stable distributions considered in this simulation. The latter effect is due to

the fact that E[f 2(n)]/(E[f
′

(n)])2 is significantly different for those two cases

which justifies the performance gap. Finally, we illustrate the difference be-

tween the variance of θ∗ and the asymptotic variance in Figure 5.10. Here we

consider the evolution of the state value x1(t) of the first node for several con-

sensus runs for the same initial conditions. Recall that in every consensus run

the state value x1(t) converges to an instance of the limiting random variable

θ∗ and the variation among these several realizations is characterized by the
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variance of θ∗. In contrast, how fast the state value x1(t) converges to the

limiting value θ0 is characterized by the asymptotic variance of
√
t[x1(t)− θ0]

as t → ∞.

Comments on the Sensing Model

We want to point out that the sensing model in Sections 4.3 and 5.2 are

theoretical models, where the sensing measurement error is modeled as an

additive noise with the true value of the parameter θ. However, the actual

sensing characteristics is usually nonlinear in θ [130]. This type of nonlinear

characteristic could be modeled as

xi(0) = s(θ) + ni , i = 1, . . . , N (5.49)
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where s(θ) captures the inherent non-linearity of the sensor. The NLC and

RNLC consensus algorithms discussed in Chapters 4 and 5 still would work

without any change except that the consensus value will now depend on s(θ).
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Chapter 6

Conclusions

In Chapter 2 of this dissertation, a distributed detection scheme relying on

constant modulus transmissions from the sensors is proposed over a Gaussian

multiple access channel. The instantaneous transmit power does not depend

on the random sensing noise, which is a desirable feature for low-power sen-

sors with limited peak power capabilities. The DC of the proposed scheme

is shown to depend on the characteristic function of the sensing noise and

optimized with respect to ω for various sensing noise distributions. In addi-

tion to the desirable constant-power feature, the proposed detector is robust

to impulsive noise, and performs well even when the moments of the sensing

noise do not exist as in the case of the Cauchy distribution. Extensions to

non-homogeneous sensors with non-identically distributed noise are also con-

sidered. It is shown that over Gaussian multiple access channels, the proposed

detector outperforms AF, DF and MDF schemes consistently, and the MAF

scheme when the sensing SNR is greater than 4 dB. The proposed detector

is shown to work with the non-Gaussian channel noises as well. The error

exponent is also derived for the proposed scheme and large deviation theory

is used to approximate Pe(ω) for large L. It is shown that while the DC has

a simpler expression for the purpose of optimizing ω, the probability of error

approximation based on (2.40) is shown to be an accurate indicator of detec-

tion performance for all distributions and moderate number of sensors. The

effect of fading is also considered, and shown to be detrimental to the detection

performance.

In Chapter 3, the more general problem of a distributed inference

scheme using bounded transmissions from the sensors over Gaussian multi-
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ple access channels is considered. A distributed inference scheme relying on

bounded transmissions from the sensors is considered over Gaussian multi-

ple access channels. The instantaneous transmit power is always constrained

to be bounded irrespective of the random sensing noise, which is a desirable

feature for low-power sensors with limited peak power capabilities. For the

distributed estimation problem, the estimation scheme using bounded trans-

missions is shown to be strongly consistent provided that the variance of the

noise samples are bounded and that the transmission function is one-to-one.

For sensing noise distributions for which the sample mean is highly subopti-

mal or inconsistent, the proposed estimator is shown to be consistent. For

heavy-tailed distributions with infinite variance like Cauchy, it is shown that

the AF scheme fails, and that the proposed approach is superior to AF. As

long as the variance of the noise samples grow to infinity slower than linearly,

AF scheme is consistent, whereas the proposed scheme fails when the variance

of the noise samples go to infinity at any rate. For the distributed detection

problem, the regimes under which reliable detection is possible or impossible

are also established. Monte Carlo simulations are presented to illustrate the

performance of several bounded transmission functions for a variety of sensing

noise distributions.

In Chapter 4 of this dissertation, a distributed consensus algorithm in

which every sensor maps its state value through a bounded function before

transmission to constrain the transmit power is proposed. The transmitted

signal power at every node in every iteration is always bounded irrespective

of the state value or the communication noise, which is a desirable feature

for low-power sensors with limited peak power capabilities. In the presence

of communication noise, it is proved using the theory of Markov processes

144



that the sensors reach consensus asymptotically on a finite random variable

whose expectation contains the desired sample average of the initial sensor

measurements, and whose mean-squared error is bounded. The asymptotic

convergence speed of the proposed algorithm is characterized by deriving the

asymptotic covariance matrix using results from stochastic approximation the-

ory. While the proposed NLC algorithm has the desirable feature of bounded

transmit power, it is shown that using the best case NLC algorithm results

in larger asymptotic covariance compared to the best case linear consensus

algorithm. In the absence of communication noise, it is illustrated that the

network achieves consensus on the global sample average exponentially fast

provided the step size is chosen appropriately and that by adjusting the step

size, it is possible to achieve the same speed of convergence as that of the best

case linear consensus algorithm using Laplacian heuristic.

Finally, in Chapter 5, a distributed average consensus algorithm in

which every sensor performs a nonlinear processing at the receiver is pro-

posed. Every sensor also maps its state value through a bounded function

before transmission to constrain the transmit power. It is shown that non-

linearity at the receiver nodes makes the algorithm robust to a wide range of

channel noise distributions including the impulsive ones. The proposed algo-

rithm does not need the requirement of finite moments on the communication

noise and thus it is proved to be not only more general than the existing

consensus algorithms but is practically viable for WSNs deployed in adverse

conditions. It is proved using the theory of Markov processes that the sensors

reach consensus asymptotically on a finite random variable whose expectation

contains the desired sample average of the initial sensor measurements, and

whose mean-squared error is bounded. The asymptotic convergence speed of
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the proposed algorithm is characterized by deriving the asymptotic covariance

matrix using results from stochastic approximation theory. It is shown that

scaling the receiver nonlinear function does not affect the convergence speed

of the proposed algorithm and its robustness to a variety of channel noise

distributions is highlighted. An interesting relationship between the Fisher in-

formation and the asymptotic covariance matrix is also shown. In the absence

of communication noise, it is illustrated that the network achieves consensus

on the global sample average exponentially fast provided the step size is chosen

appropriately.
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