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ABSTRACT 
 
The consumption of feedstocks from agriculture and forestry by current biofuel 

production has raised concerns about food security and land availability. In the meantime, 

intensive human activities have created a large amount of marginal lands that require 

management. This study investigated the viability of aligning land management with 

biofuel production on marginal lands. Biofuel crop production on two types of marginal 

lands, namely urban vacant lots and abandoned mine lands (AMLs), were assessed. 

 The investigation of biofuel production on urban marginal land was carried out in 

Pittsburgh between 2008 and 2011, using the sunflower gardens developed by a 

Pittsburgh non-profit as an example. Results showed that the crops from urban marginal 

lands were safe for biofuel. The crop yield was 20% of that on agricultural land while the 

low input agriculture was used in crop cultivation. The energy balance analysis 

demonstrated that the sunflower gardens could produce a net energy return even at the 

current low yield.  

 Biofuel production on AML was assessed from experiments conducted in a 

greenhouse for sunflower, soybean, corn, canola and camelina. The research successfully 

created an industrial symbiosis by using bauxite as soil amendment to enable plant 

growth on very acidic mine refuse. Phytoremediation and soil amendments were found to 

be able to effectively reduce contamination in the AML and its runoff.   

Results from this research supported that biofuel production on marginal lands 

could be a unique and feasible option for cultivating biofuel feedstocks. 
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CHAPTER 1 – INTRODUCTION AND BACKGROUND 

1.1 Motivation 

Biofuel production has been rising as a major component of our sustainable energy 

future. The United States Renewable Fuel Standard 2 (RFS2) mandates the production of 

36 billion gallons (136 billion L) of biomass-based fuel by 2022 [1, 2]. However, 

traditional biofuel production methods consume feedstocks mainly from agricultural and 

forestry sectors, and thus have raised concerns about food security and land use rights [3]. 

The conflicts between biofuel production and other important land uses have led to a 

desire to develop new biofuel production approaches that minimize the use of prime 

farmland [4]. Biofuel production on marginal land draws immediate research attentions 

as an option to resolve the land use issue for mass biofuel production. Most current 

research regarding marginal land biofuel focuses on marginal agricultural land and shows 

net environmental benefits from biofuel production on this type of land [5-9]. This thesis 

will extend the research to a broader range of marginal lands other than marginal 

agricultural land. A large amount of urban vacant lots and abandoned mine lands (AML) 

exist in the US as a result of the century-long industrial and urban development. Poor 

quality and soil contamination marginalize these lands and prevent them from being used 

for more common purposes. Traditional land management methods, such as vegetation, 

require high cost and do not return any useful products. This thesis will investigate the 

viability of aligning land management with beneficial land use through biofuel crop 

production. 

Life cycle assessment (LCA) is one tool that can quantitatively evaluate the 



 

2 

environmental sustainability of a process or product. This method tracks all emissions 

and materials consumptions from raw material extraction to waste disposal and convert 

the emissions and consumptions to comprehensible the environmental impacts [10]. LCA 

is one of the few methodologies for the evaluation of the environmental burdens 

associated with biofuel production, by identifying energy and materials used as well as 

waste and emissions released to the environment [11-13]. Ultimately, this thesis aims to 

evaluate the environmental implications of combining marginal land management with 

biofuel production from a life cycle perspective.  

1.2 Land Use Issues Related to Biofuel Production 

The pressure to reduce atmospheric emissions of CO2 to mitigate the problem of global 

climate changes and the concern for energy security has pushed the legal obligation of 

promoting biofuels in the national energy mix [14]. The United States Renewable Fuel 

Standard Program 2 (RFS2) that is developed based on the 2007 Energy Independence 

and Security Act (EISA) requires 36 billion gallons of renewable transportation fuel 

being produced per year by 2022 [1]. The rapidly expanding biofuel demand has caused 

an increasing amount of arable land being invested to biofuel production. This represents 

a shift in land use away from food production and poses a global dilemma, namely the 

need to feed humanity versus the greater monetary returns to farmers through the 

incorporation of lands for agro-energy [14].  The Central East region that U.S. 

Department of Agriculture (USDA) estimates will be able to produce 8.6 billion gallons 

of advanced biofuel required by the RFS2 can be viewed as an example [15]. This region 

is identified as one of the regions that have the most potential for near and long term 
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development of biofuels by USDA based on feedstock and land, infrastructure, and 

demand [15]. It has 241 million base acres of cropland and cropland pasture plus 109.8 

million acres of timberland. About 9.1 billion gallons of biofuel could be produced from 

10.8 million acres of dedicated bioenergy crops plus 2.0 million acres of harvested 

logging residue in a year [15]. The incremental biofuel production might take up 4.5% of 

the available cropland and cropland pasture in the entire Central East region. In 2011, 

about 40% of the US corn crop was used for ethanol providing an equivalent of 7% of 

gasoline consumption in the country [16]. A production of 35 billion gallons of ethanol 

will need the entire 2011 US corn crop being devoted to biofuel production [16]. The 

results from previous research demonstrated that land use is the concern that must be 

addressed before biofuel can move forward as a renewable alternative to fossil fuels.     

1.3 Biofuel Production Using Marginal Land 

EISA limits not only the types of feedstocks that can be used to make renewable fuel, but 

also the land that these renewable fuel feedstocks may come from. Specifically excluded 

under the EISA definition are virgin agricultural land cleared or cultivated after 

December 19, 2007, as well as tree crops, tree residues, and other biomass materials 

obtained from federal lands [16]. Existing agricultural land includes three land categories 

– cropland, pastureland, and Conservation Reserve Program (CRP) land [16]. Fallow land 

is defined as idled cropland and is therefore included within the definition of agricultural 

land. 

Previous research that investigated the use of CRP and fallow land as agricultural 

marginal land for biofuel production demonstrated net environmental benefits. These 
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studies showed greenhouse gas (GHG) emissions reduction and positive net energy value 

can be produced without causing prohibitive environmental impacts such as 

eutrophication and habitat destruction [7-9, 17, 18]. However, the use of other types of 

marginal land for biofuel production has been much less investigated. RFS2 does not 

include marginal lands other than conserved or abandoned agricultural land for biofuel 

production, because the environmental impacts of agricultural activities on these lands 

are unclear. Some concerns regarding the use of these marginal lands include decreasing 

soil fertility, increasing erosion, disappearing biodiversity, and long distance between 

feedstock supply and demand [16]. These concerns have to be addressed before a wide 

range of marginal land can be used for biofuel. 

1.4 Vacant Lots in Cities 

U.S. cities have an average of 15% vacant, or marginal lands, which produce little to no 

value and are often considered blights within communities [2, 19, 20]. Without any 

intervention, these vacant and abandoned properties contribute to urban blight and 

generate municipal expenses [2]. The management of vacant lands cost city agencies 

hundreds of thousands of dollars annually, and this covers only basic maintenance 

activities such as clearing brush and debris, mowing grass and removing snow in the 

winter [21, 22]. The efforts to turn vacant lands into development opportunities are 

limited by the fact that most urban vacant lots have poor soil quality and are concentrated 

in high crime areas or areas having limited infrastructure access. Previous research that 

proposed urban gardens as an effective method for vacant lot management has 

demonstrated that vegetation on these vacant lands can suppress urban crime, benefit 
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urban ecosystems and increase the value of the land [23-26]. In tandem with the 

proposition of converting vacant land into urban gardens is urban agriculture that has 

been proved to be able to generate useful products for sustainable cities [27].   

 Agriculture on urban land for biofuel feedstock has been suggested by an early 

study as a means to reduce net GHG emissions and avoid competition with food 

production [7]. A study about Pittsburgh demonstrated that 9,000 acres of vacant lots are 

available in this post-industrial city for energy crop cultivation [2], and an investigation 

of 31 large cities in the United States showed at least 113,000 acres of vacant lots [19]. If 

biofuel production is implemented on vacant lots in many U.S. cities, the feedstock 

output can contribute to the RFS2 [2]. 

Urban vacant lots can be either brownfield or grayfield. Brownfield means land 

whose use may be complicated by the presence or potential presence of a hazardous 

substance, pollutant, or contaminant [28]. A brownfield site is often associated with 

industrial uses. Heavy metal contamination by cadmium (Cd), zinc (Zn), chromium (Cr), 

nickel (Ni), lead (Pb) and arsenic (As) are possible in brownfield soils [29, 30]. Grayfield 

is considered as land that is economically underused [31]. A grayfield site can be left 

behind after non-industrial uses. Grayfield sites may include high levels of zinc (Zn), lead 

(Pb), and arsenic (As) [32-34].    

1.5 Abandoned Mine Lands 

Mining destroys vegetation, causes extensive soil damage, and alters microbial 

communities [35]. AML is left behind after mining activities are removed from land. 

AML poses many environmental risks while high heavy metal levels and instable soils 
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are the foremost ones. Reclamation of abandoned mine land is the process to restore the 

ecological integrity of these disturbed areas. Re-vegetation is the most widely accepted 

and useful way to reduce erosion, protect soils against degradation, control pollution, 

improve landscape and remove threats from human beings [35, 36]. However, high soil 

acidity, low soil fertility and heavy metal contamination are obstacles for the success of 

re-vegetation. The traditional way of neutralizing the acidic mine soils is to re-spread 

them at the site while applying limestone (CaCO3) [37]. Various natural amendments 

such as saw dust, wood residues, sewage sludge, and animal manures can increase soil 

fertility [35]. These amendments stimulate the microbial activity and provide nutrients (N 

and P) and organic carbon to the soil. Desirable plants for re-vegetation on AML should 

be easy to establish, drought-resistant and fast growing. They should also have dense 

canopies and root systems, and be able to grow on nutrient deficient soil with elevated 

metal content [35]. Grasses, legumes and suitable native species are most commonly 

chosen for re-vegetation on AML [35]. 

Heavy metals in the AML soil and acid mine drainage (AMD) causes 

environmental pollution that affects many countries having historic or current mining 

industries [38]. AMD can contaminate the entire watershed containing the AML, and the 

flow of water can result in contamination in a greater area [39]. Even though AMLs are 

different at different locations as the type of mine varies, aluminum (Al), iron (Fe), lead 

(Pb), chromium (Cr), arsenic (As), zinc (Zn), cadmium (Cd), copper (Cu), selenium (Se) 

and nickel (Ni) are common contaminants found in AMLs and AMD [39-41]. Heavy 

metal contaminants can dissolve into runoff more easily at low pH as metal hydroxides 

formed at neutral and alkaline environment are generally insoluble [42]. The hydroxides 
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of Al, Fe, Pb, Cr, Zn, Cd, Cu and Ni are all insoluble.  

1.6 Phytoremediation potential of Biofuel Crops  

The metal contaminants most commonly found at contaminated sites are Al, Fe, Zn, Ni, 

Pb, As, Cd, Cr and Se [40, 41]. Unlike organic contaminants, which are oxidized to 

carbon oxide by microbial action, most metals do not undergo microbial or chemical 

degradation [40]. Their total concentration in soils persists for a long time after their 

introduction [40]. Environmental restoration of metal contaminated soils by traditional 

physical and chemical methods demands large investment of economic and technological 

resources [43]. Phytoremediation as a low-cost technology that uses plants to remove 

contaminants from the environment has become a subject of intense public and scientific 

interest [44]. The phytoremediation capability of some biofuel crops has been 

demonstrated by some previous research. Table 1 summarizes the results from these 

studies. 

Table 1. Summary of Phytoremediation Capabilities of Biofuel Crops 
Biofuel Crop Metal Removed Main Phytoremediation 

Plant Part Oil Source Type of 
Biofuel 

Sunflower 
 [45-48] Pb, Zn, Cd, Cr Roots, leaves & stems Seeds Biodiesel 

Soybean 
 [47, 49] 

Cr(VI), Cr(III), 
Ni, Zn Leaves & stems Seeds Biodiesel 

Canola 
 [50-52] Se, As Leaves, stems & roots Seeds Biodiesel 

Corn [53] Pb, Zn Roots & leaves Corn grains/ corn 
stover Bioethanol 

Switchgrass 
[54] Cr Roots Whole plant Bioethanol 

Sorghum  
[55, 56] Pb, Zn, Cd, Cu Leaves & stems Grain/sugar/stem Bioethanol 
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CHAPTER 2 – THE VIABILITY OF BIOFUEL PRODUCTION ON URBAN 

MARGINAL LAND 

2.1 Introduction 

Like the City of Pittsburgh, many urban areas have a substantial amount of vacant or 

blighted lands that present both opportunities and problems. Recent data sources indicate 

that over 14,000 vacant lots exist throughout Pittsburgh, which accounts for more than 

10% of the municipalities’ land [2, 19, 57, 58]. Pittsburgh’s public agencies collectively 

spend hundreds of thousands of dollars annually to maintain vacant lots in the city, and 

this covers only basic maintenance activities such as clearing brush and debris, mowing 

grass, and removing snow in the winter [21, 22]. Previous research has shown that plant 

growth on urban vacant lots can increase the resilience of urban ecosystems, suppress 

crime, and raise the price of the land [24-26]. Furthermore, a recent study demonstrated 

that wide use of the vacant lots in cities for biofuel crop production may contribute to the 

target set by the United States Renewable Fuel Standard 2 that requires one billion 

gallons biodiesel being produced per year by 2020 [2]. Large-scale biofuel production has 

caused wide social concerns about food security and land use rights due to its 

consumption of feedstocks that come largely from agriculture and forestry [3, 59, 60]. 

Aligning biofuel production with urban vacant lot management will not only reduce 

government expenditure on land management and improve urban landscape but also 

mitigate the land use concerns regarding biofuel production.  

Most urban vacant lots have poor soil quality and are concentrated in high crime 

areas or areas having limited infrastructure access. They are classified as marginal lands, 
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a term that is used to define lands that have poor agriculture potential and are unsuited for 

housing and other uses [61]. Previous research has shown that marginal agricultural land 

can be used to grow biofuel crops with net environmental benefits [6-9], but few studies 

investigated the use of marginal urban land for biofuel production. This article 

investigated the viability of growing biofuel crops as a way to reclaim the marginal urban 

land while providing feedstocks for biofuel production.  

There are two concerns associated with crop cultivation on marginal urban land. 

First, the land may be subject to a risk of contamination as a result of various human 

activities that used to take place on the land or nearby. Second, crop cultivation requires 

energy for harvesting and transportation; there may be more energy consumed for 

transportation per unit output because urban sites vary in size and are fragmented across 

different locations. This article quantifies the degree of contamination on urban marginal 

land, the contaminant uptake by plants, as well as the net energy value (NEV) of biofuel 

production. 

Existing studies have shown that contaminants in soil can enter biofuel crops such 

as sunflower, switchgrass, soybean, corn and canola. [43, 46, 47, 49, 52, 53, 62-64]. In 

this study, we examined the level of contamination in urban marginal soils by analyzing 

soil samples collected between 2008 and 2011 from two representative plots of marginal 

land in Pittsburgh. Further analysis with respect to contaminant concentrations in 

different parts of the plant was done to reveal whether there is a risk that the 

contaminants will enter the biofuel product if sunflower grown on urban marginal land is 

used as biofuel feedstock. Nine metals including Al, Fe, Zn, Ni, Pb, As, Cd, Cr and Se 

were considered to be the most likely contaminants present in Pittsburgh lots due to the 
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city’s industrial past and large volume of human activities at present [32-34].  

This study used the sunflower biofuel system developed by GTECH Strategies on 

Pittsburgh’s marginal land as an example of the urban marginal land biofuel system. 

GTECH Strategies, where GTECH stands for “Growth Through Energy and Community 

Health”, is a non-profit organization in Pittsburgh committed to transforming vacant or 

blighted properties into community economic development opportunities [65]. Sunflower 

was selected as the appropriate energy crop, because it has lower fertilizer requirement 

than other biofuel crops, is able to adapt to a broad range of soil qualities, and contributes 

to urban aesthetics [66]. In GTECH’s “Urban Land Use” project, the vacant lots in the 

city were converted to sunflower gardens and the sunflower seeds produced from these 

lands were used as biofuel feedstocks. NEV calculations were performed for two such 

sunflower gardens to determine the net energy value of producing biodiesel on urban 

marginal land. 

2.2. Materials and Methods 

2.2.1 Experimental plots  

Two plots where GTECH grew sunflowers were investigated in this study. Figures 1(a) 

and (b) classified the major land uses and soil types around the sites based on the criteria 

established in a recent study about urban merginal land [2, 19, 57, 58].  The two 

experimental plots were in industrial and residential areas respectively. The first plot, 

designated as the ‘0.8 ha-Industrial Plot’, had an area of 0.8 ha and was where a steel mill 

previously existed. The second plot, designated as the ‘0.12 ha-Residential Plot’, had an 

area of 0.12 ha and was within a residential community. The pH of the 0.8 ha-Industrial 
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Plot and 0.12 ha-Residential Plot was 7.6 and 8.4, while the soil organic carbon content 

measured by the dry combustion method was 1.3% and 2% respectively [67].  These two 

plots had most different histories and surroundings among the 27 GTECH sunflower 

gardens at the time of this study. They were supposed to be a generic representation of 

urban vacant lots that had been subject to either industrial or residential uses but had 

never experienced direct contact with contaminated materials. 

 

Figure 1. Experimental plot locations and major land uses around the sites 

2.2.2 Crop cultivation method 

GTECH employed a low input agriculture strategy to cultivate crops on the urban 

marginal land in order to reduce the use of chemicals and water, and minimize the cost. 

All of the work from field preparation to crop harvesting was done by hand with the 

exception that a mowing machine was used to cut weeds before planting and a walk-
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behind tiller was used to till the soil to a depth of 20 cm. No pesticides and irrigation 

were applied to the field throughout the growth of the crops. Either compost fertilizers or 

horse manure could be added to the field prior to the first growth cycle, if and only if the 

soil organic matter in a particular site was found below 3.5% w/w. No other fertilizer was 

used. All sunflower seeds were separated on site manually after harvesting and the heads 

were left on site to be chipped and re-incorporated into the soil. Cultivation using the low 

input method proved to be viable on marginal land in Pittsburgh, as GTECH had 

successfully established 27 existing sunflower gardens with a reduced seed yield of 280 

kg/ha.   

2.2.3 Analysis of heavy metals in soil and plant 

Concentrations of Al, Fe, Zn, Ni, Pb, As, Cd, Cr and Se in the soil of the 0.8 ha-Industrial 

Plot and 0.12 ha-Residential Plot were monitored from 2008 summer to 2011 summer. In 

addition to these metals, Hg had been tested by GTECH as a prequalification for the sites 

to be considered for sunflower cultivation and our initial tests further proved Hg could 

not be detected in the experimental plots.     

Soil samples were collected during this period before planting and after 

harvesting. On each of the plots, seven locations that were evenly distributed throughout 

the plot were selected for soil sampling. A total of 14 soil samples were taken from each 

plot, consisting of two soil samples from each sampling location at depths of 0 to 15 cm 

and 15 to 30cm. A coring device was used to collect soil samples whenever possible. At 

locations where mixed materials that could not be broken by the coring device were 

present, hand shovel and scoop were used for sampling. All soil samples were dried in 
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separate crucibles in a laboratory oven at 70 °C for 24 hours before being ground by 

mortar and pestle. The soils samples were then sieved to 177 µm (80 mesh). We followed 

EPA Method 3051A to digest the soil samples [68]. In brief, 0.5 g of each of the soil 

samples was mixed with a digestive solution consisting of 5 mL 65% HNO3, 2 mL 35% 

HCl and 43 mL deionized water and was digested in a CEM Model 5 Microwave 

Digestion System at 1200 W for 20 minutes at 170 °C. This method was intended to 

dissolve all elements that could become environmentally available and achieved 45-70% 

digestion of the soil samples with respect to the total dry mass in our analysis [68]. The 

sample extracts were subsequently passed through 450 nm Millipore mixed cellulose 

ester filters before being analyzed by Atomic Absorption Spectrometer (AAS). The 

concentrations of Al, Fe, Zn, Ni and Pb were analyzed by a Perkin Elmer 1100B flame 

AAS and the concentrations of As, Cd, Cr and Se were analyzed by a Perkin Elmer 

4100ZL graphite furnace AAS. Appropriate dilutions were made when the sample 

concentration of a particular metal exceeded the detection limit of the instrument. Metal 

concentrations in the soil were obtained by dividing the mass of the metal in the extract 

by the mass of the soil extracted.   

Quality control measures were taken for soil analysis. Control samples were taken 

from a predetermined undisturbed location in the plot each time soil samples were 

collected in order to verify the consistency of the results of analysis of samples obtained 

at different times. The soil samples were transported and kept in sealable polyethylene 

food storage bags for no more than 5 days before digestion. The soil extract solutions 

were kept in high-density polyethylene sample bottles cleaned by 3% HNO3 and 
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deioninzed water prior to AAS analysis. No labware made of the metals being analyzed 

was used in contact with the samples. Reagent blank consisting of the same acids went 

through the whole digestion process with the samples. The absence of contamination 

from sample digestion was verified as no reagent blank had metal concentrations that 

were detectable by the instrument used for the analysis. All AAS analyses were done in 

three replicates. The results were recorded only when the difference between replicate 

measurements were smaller than 5%. The average of the three measurements was 

regarded as the sample concentration. The instrument was rechecked with the standards 

every 15-20 sample analyses to ensure accuracy.    

 Entire sunflower plants were collected from both the 0.8 ha-Industrial Plot and 

0.12 ha-Residential Plot at the end of the growth seasons for the analysis of the metal 

contaminants in plants. The sunflowers were first washed with tap water to remove any 

soil attached to them and then air dried for 3 weeks. The dry plants were separated into 

root, stalk, leaf and flower head before being chopped by a household blender. 

Subsequently, 0.5 g of each of the four parts of the plants was digested by the same 

method as the soil analysis. The concentrations of the same nine metals were analyzed for 

the plant samples by the same method used in the soil analysis. The quality control for 

plant digestion and metal determination followed similar measures as in the soil analysis.  

2.2.4 Soil metal concentration data analysis 

Student’s t-test was employed to assess the differences in mean soil metal concentrations 

in one plot at different times with the assumption that the concentration followed normal 

distribution [69]. A t-test sample used consisted of all soil samples collected at one plot at 

one time. Paired t-test was performed, since the t-test samples being compared were 
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paired samples from one same plot on different dates. The details of the t-test are given in 

Table 2. The null hypothesis would be rejected if the P-value was less than 0.05, 

indicating that the soil metal concentration had either increased or decreased.   

Table 2. Student's t-test on the difference in soil metal concentration means 
 Details of the Test Description of Notation 
Null hypothesis H0: µ1 - µ2 = 0  µ1: mean concentration at 

time 1  
µ2: mean concentration at 
time 2  

Alternative hypothesis H1: µ1 - µ2 ≠ 0 µ1: mean concentration at 
time 1  
µ2: mean concentration at 
time 2  

Type of test Paired two-sample t-test  
Type of P-value Two-tailed P-value  
Level of significance α=0.05  
2.2.5 Net energy value of the system  

The NEV of GTECH sunflower biofuel system was calculated by subtracting the total 

energy input from the energy output. This study considered only primary energy inputs to 

the biodiesel production. Secondary inputs, such as the energy used to manufacture the 

materials used in the construction of the biofuel facilities, farm equipment, and vehicles 

were excluded from the NEV because they account for a negligible portion of energy 

consumption on a per-gallon basis after being distributed over the total production during 

the lifetime of the facilities [70]. The total energy input was obtained by summing up all 

the nonrenewable energy required to produce biodiesel from field preparation to biofuel 

processing and included the upstream energy consumption, such as the life-cycle energy 

required to produce truck fuel and electricity. Life cycle energy efficiencies for different 

energy sources obtained from the GREET1_2011 model were used in the energy input 

calculation to account for upstream energy use [71]. The energy output was calculated as 
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the energy content in the final products. Table 3 summarizes the equations and data 

sources that were used to calculate the energy consumptions in different life-cycle stages 

and the energy output from the products. Data regarding inputs to the sunflower gardens 

and seed yield were based on GTECH’s field records. The fuel efficiency of the vehicle 

used by GTECH was obtained from factory specifications. The processing capability and 

electricity consumption rate of the crusher was from a study using the same equipment 

[71]. The GREET1_2011 model published by Argonne National Laboratory that provided 

values representing U.S. national average levels was used as much as possible to evaluate 

the energy consumption in transportation fuel and biofuel processing [71]. For some 

parameters regarding the density and energy content of products, peer-reviewed 

publications that reported average values from large-scale applications were used as the 

data sources [71].   

Table 3. Equations Used in Net Energy Value Calculation 
x = life cycle stage; f = field preparation; t1 = transport during sunflower production; t2 = intra-city 
transport after harvest; t3 = intercity transport after harvest; e = sunflower oil extraction; c = sunflower 
oil to biodiesel conversion; d = biodiesel distribution   
 Equation for Energy 

Input/output 
Calculation  

Parameter Description Data Source 

Ein = total energy input 
(MJ) 

Calculated in this study Total Energy Input Equation 1: Ein = ∑Ex 

Ex = energy input in 
individual life cycle stage 
(MJ) 

Calculated in this study 

 
Energy input in Individual Production Phase 
Sunflower production    

Ef = energy input in field 
preparation (MJ) 

Calculated in this study 

Ff = gasoline use in field 
preparation (L) 

GTECH Strategies [67] 

Hgas = lower Heating 
Value of gasoline (MJ/L) 

GREET1_2011 [71] 

• Field	  preparation	  
(mowing	  and	  
tilling)	  

Equation 2: Ef = Ff × Hgas 
× RE-1 

 

RE = refining efficiency 
for gasoline 

GREET1_2011 [71] 

• Transport	   Equation 3: Et1 = Dt1 × 
FE-1 × Hgas × RE-1 

Et1 = energy input in 
transport during 
sunflower production 
(MJ) 

Calculated in this study 
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Dt1 = distance travelled 
during sunflower 
production (km) 

Estimated according to 
locations of lots 

FE = vehicle fuel 
efficiency (km/L) 

GMC Canyon 1-ton 
pickup technical 
specifications 

Hgas = lower Heating 
Value of gasoline (MJ/L) 

GREET1_2011 [71] 

  

RE = refining efficiency 
for gasoline 

GREET1_2011 [71] 

Transport after harvest    
Et2 = energy input in 
intra-city transport after 
harvest (MJ) 

Calculated in this study 

Dt2 = distance travelled 
within Pittsburgh after 
harvest (km) 

Estimated according to 
locations of lots 

FE = vehicle fuel 
efficiency (km/L) 

GMC Canyon 1-ton 
pickup technical 
specifications 

Hgas = lower Heating 
Value of gasoline (MJ/L) 

GREET1_2011 [71] 

• Transport	  within	  
Pittsburgh	  

 

Equation 4: Et2 = Dt2 × 
FE-1 × Hgas × RE-1 

 

RE = refining efficiency 
for gasoline 

GREET1_2011 [71] 

Et3 = energy input in 
intercity transport after 
harvest (MJ) 

Calculated in this study 

Dt3 = distance travelled 
between GTECH 
headquarter and 
Pennsylvania State 
University  

Distance calculated by 
Google Map 

FE = vehicle fuel 
efficiency (km/L) 

GMC Canyon 1-ton 
pickup technical 
specifications 

Yt3 = amount of seeds 
from each plot (m3) 

GTECH Strategies [67] 

d = sunflower seeds 
density (kg/m3) 

Gupta, R.K. and Das, S.K. 
[72] 

L = vehicle load capacity 
(kg)  

GMC Canyon 1-ton 
pickup technical 
specifications 

Hgas = lower Heating 
Value of gasoline (MJ/L) 

GREET1_2011 [71] 

• Intercity	  transport	   Equation 5: Et3 = Dt3 × 
FE-1 × Yt3 × d × L-1 × Hgas 
× RE-1 

RE = refining efficiency 
for gasoline 

GREET1_2011 [71]  

Biofuel processing    
Ei,x = energy input in 
sunflower oil extraction 
(MJ) 

Calculated in this study 

Ye = amount of seeds 
processed (m3) 

GTECH Strategies [67] 

d = sunflower seeds 
density (kg/m3) 

Gupta, R.K. and Das, S.K. 
[72] 

P = processing capability 
of the oil expeller (kg/hr) 

Backer, L. et al. [73] 

EU = electric energy use 
of the crusher (MJ/hr) 

Backer, L. et al. [73] 

• Sunflower	  oil	  
extraction	  

Equation 6: Ee = Ye × d × 
P-1 × EU × EE-1 

EE = power plant energy 
conversion efficiency 

GREET1_2011 [71] 
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Ec = energy input in 
biodiesel conversion (MJ) 

Calculated in this study 

Sc = sunflower oil 
processed (kg) 

GTECH Strategies [67] 

Cx = conversion ratio 
from sunflower oil to 
biodiesel (kg/kg) 

GREET1_2011 [71] 

• Sunflower	  oil	  to	  
biodiesel	  
conversion	  

Equation 7: Ec = Sc × C-1 
× EIc 

EIc = Energy use intensity 
in biodiesel conversion 
(MJ/kg) 

GREET1_2011 [71] 

Ed = energy input in 
biodiesel distribution 
(MJ) 

Calculated in this study 

Od = biodiesel distributed 
(kg) 

Calculated based on 
sunflower oil yield from 
GTECH Strategies 

Biofuel distribution Equation 8: Ed = Od × EId 

EId = energy use intensity 
in biodiesel distribution 
(MJ/kg) 

GREET1_2011 [71] 

 
Energy Output from Products 

Ebiodiesel = energy output 
from biodiesel (MJ) 

Calculated in this study 

Soil = sunflower oil 
produced from each plot 
(kg) 

GTECH Strategies [67] 

Cbiodiesel = ratio from 
sunflower oil to biodiesel 
(kg/kg) 

GREET1_2011 [71] 

• Biodiesel	  
 

Equation 9: Ebiodiesel = Soil 
× Cbiodiesel

-1 × Hbiodiesel  
 

Hbiodiesel = lower heating 
value of sunflower 
biodiesel (MJ/kg) 

Mehta, P.S. and Anand, 
K. [74] 

Emeal = energy output 
from sunflower meal 
(MJ) 

Calculated in this study 

Soil = sunflower oil 
produced from each plot 
(kg) 

GTECH Strategies [67] 

R = ratio between 
sunflower meal and 
sunflower oil (kg/kg) 

Kallivroussis, L. et al. 
[75] 

• Sunflower	  meal	   Equation 10: Emeal = Soil × 
R × M 

M = metabolizable energy 
content in sunflower meal 
(MJ/kg) 

Kallivroussis, L. et al. and 
Rossell, J.B. et al. [75, 76] 

Eglycerin = energy output 
from glycerin (MJ) 

Calculated in this study 

Soil = sunflower oil 
produced from each plot 
(kg) 

GTECH Strategies [67] 

Cglycerin = ratio between 
sunflower oil and glycerin 
(kg/kg) 

GREET1_2011 [71] 

• Glycerin	   Equation 11: Eglycerin = Soil 
× Cglycerin

-1 × Hglycerin  

Hglycerin = Energy content 
of glycerin (MJ/kg) 

GREET1_2011 [71] 

The crop cultivation and harvesting stages did not appear in the calculation 
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because they did not consume energy from nonrenewable sources under GTECH’s low 

input agriculture; rather, community members and other volunteers harvested the crops 

by hand. No machines driven by fossil fuels or synthetic fertilizers were used during crop 

cultivation and harvesting. The energy to transport workers was also assumed to be 

negligible since GTECH engaged volunteers who lived nearby the plots and walked to 

the plots.  

 The GTECH process involved both local and intercity transport. Local transport 

between GTECH and the plots was done twice in each growth cycle. The first visit was to 

prepare the land and plant the crop while the second visit was done after harvest to move 

the seeds from the plot to GTECH headquarter to be air-dried and collected with seeds 

from other plots. The average distance between GTECH and its plots was estimated to be 

six kilometers. All seeds were subsequently transported 218 kilometers from Pittsburgh 

to the Pennsylvania State University to be crushed. The sunflower oil was eventually sent 

back to a Pittsburgh’s biofuel plant to be converted into biodiesel.  

 The equations in Table 3 were used to calculate the NEV of the urban sunflower 

biofuel system based on data from the two GTECH sunflower gardens. The NEV varied 

with different sunflower gardens as the parameters in the equations changed. In order to 

quantify how significantly the NEV could be impacted by change in factors like plot size, 

seed yield, energy input allocated to by-products and transport amount, a sensitivity 

analysis was carried out with respect to each of these parameters. The sensitivity analysis 

tested the input parameters through either increasing or decreasing the value of one 

parameter by 50% while holding the other parameters in the equations the same as the 

original data from GTECH. A change of 50% was arbitrarily selected for the analysis, 
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because the value of plot size, seed yield, energy input allocated to by-products and 

transport amount was able to vary freely over a wide range. The NEV obtained after 

changing one of the parameters was eventually compared to the original NEV to reveal 

how a particular factor can influence the results under certain circumstances. 

2.3 Results and Discussion 

2.3.1 Heavy metals in marginal soils 

Amongst the nine metals analyzed for soil samples, only Fe, Pb and As were observed to 

exceed the residential maximum soil contaminant concentrations (MSCCs) issued by the 

Pennsylvania Department of Environmental Protection [77]. The concentrations of all 

other metals ranged from 1% to 50% of the MSCCs. (The complete soil metal 

concentration results are available in Table A and B in the Appendix.) Figure 2 shows the 

average concentrations as well as the maximum and minimum concentrations of Fe, Pb 

and As monitored between 2008 and 2011 in comparison with the residential MSCCs and 

non-residential MSCCs. Other than the Pb concentrations observed on October 7, 2009 

and May 24, 2010, the difference between the average concentrations in the 0.8 ha-

Industrial Plot and 0.12 ha-Residential Plot, was within 20%. Based on the metal 

concentrations detected on both Industrial Plot and Residential Plot, the marginal land in 

Pittsburgh is subject to a risk of contamination by Fe, Pb and As to a level that prevents 

residential use.  
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Figure 2. Average concentrations of Fe, Pb and As in soil compared with maximum soil 
contaminant concentrations (MSCCs) (error bars represent maximum and minimum 
concentrations observed in each plot) 

Figure 3 shows the change of the average concentrations of metals in the 0.8 ha-

Industrial Plot and 0.12 ha-Residential Plot on a normalized basis with respect to the 
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crops grown in between the sampling dates. The concentrations of all metals, except As 

in the 0.12 ha-Residential Plot, oscillated within a range of 50% from their original 

values in 2008 summer throughout the period of investigation.  

 

Figure 3. Average soil metal concentrations from 2008 to 2011 normalized to 2008  
* The switch grass was not intentionally grown as a crop on the field. It grew on the 0.8 
ha-Industrial Plot, because it had been planted on site prior to 2008. 

The Student’s t-test was employed to determine whether the null hypothesis, H0: 
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the average soil metal concentrations at two sampling dates were equal, was true. Table 4 

summarizes the results of the t-test. While fluctuation in soil contaminant concentrations 

was observed for some metals between some sampling dates, the metal levels were more 

likely to remain unchanged as more than 80% of the test results indicated no change in 

concentration (Table 4).  The concentration of all the metals, except Al and As in the 0.8 

ha-Industrial Plot, could be considered as unchanged between 2008 and 2011. These 

results demonstrated that metal contaminant levels in GTECH sunflower gardens were 

consistent in the study period.  

Table 4. Results of Hypothesis Testing for the Change of Metal Concentrations  

0.8 ha-Industrial Plot Jun. 10, 2008 – 
Oct. 7, 2009 

Oct. 7, 2009 – 
May 24, 2010 

May 24, 2010 – 
Sep. 13, 2010 

Sep. 13, 2010 – 
Jul. 19, 2011 

Jun. 10, 2008 – 
Jul. 19, 2011 

Crops Grown on the Site Sunflower No crops 
cultivated 

Sunflower Peach trees and 
switch grass 

 

Al Decrease No change No change No change Decrease 
Fe No change No change No change No change No change 
Zn Increase No change No change No change No change 
Ni No change No change No change Increase No change 
Pb No change No change No change No change No change 
As No change No change No change Decrease Decrease 
Cd No change No change No change No change No change 
Cr No change No change No change Decrease No change 

Results of 
Statistical 

Analysis of 
Concentration 

Change 

Se No change No change No change Increase No change 
      

0.12 ha-Residential Plot Jun. 10, 2008 – 
Oct. 7, 2009 

Oct. 7, 2009 – 
May 24, 2010 

May 24, 2010 – 
Sep. 13, 2010 

Sep. 13, 2010 – 
Jul. 19, 2011 

Jun. 10, 2008 – 
Jul. 19, 2011 

Crops Grown on the Site Sunflower No crops 
cultivated 

Sunflower Medium red 
clover 

 

Soil Amendment Applied 
to the Site 

None Horse manure None None  

Al No change No change No change No change No change 
Fe No change No change No change Increase No change 
Zn Increase No change No change No change No change 
Ni No change Decrease No change Increase No change 
Pb No change No change No change Increase No change 
As Increase No change No change Decrease No change 
Cd No change No change No change No change No change 
Cr Increase Decrease No change No change No change 

Results of 
Statistical 

Analysis of 
Concentration 

Change 

Se No change No change No change No change No change 

2.3.2 Heavy metals in plants 

Results from this study showed limited metal uptake by sunflowers on urban marginal 

land and indicated them as safe feedstocks for biodiesel. Metal content in the root, stalk, 
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leaf, and head of the sunflowers from the 0.8 ha-Industrial Plot and 0.12 ha-Residential 

Plot are summarized in Table 5. The concentrations of all metals in the stem, leaf and 

head parts of the plant samples were no more than 1% of the concentrations in the soil 

except that the concentrations of Zn and Cd in these parts were 5-10% of the soil 

concentrations. Metal concentrations in the root were higher than the top parts, but did 

not exceed 10% of that of the soil concentrations. No metal concentration in the urban 

marginal land sunflowers was higher than that reported by previous studies for 

sunflowers grown on regular soil, except for Fe whose concentration in the parts of urban 

marginal land sunflowers was 3-5 times that of sunflowers from regular soil (Madejón et 

al., 2003, National Sunflower Association, 2004). However, Fe concentration was not 

regulated by the ASTM D6751 standard (ASTM International, 2008), which was 

acknowledged by the U.S. EPA as the measure for biodiesel quality (U.S. EPA, 2007b).    

The fact that soil contamination in GTECH sites was limited to only Fe, Pb and 

As to a maximum of residential MSCC level contributed to the safe metal concentrations 

in urban marginal land sunflowers. Some studies that grew sunflowers on soils 3-10 times 

more contaminated by one or more metals than this study reported 2-8 fold increase in 

Zn, Pb, As and Cr concentrations in plant [45-48, 53, 63]. Feedstock safety needed to be 

reevaluated if sunflowers were cultivated on these contaminated lands. 

Table 5. Metal Concentrations in Different Parts of the Sunflower Samples 

 Al 
(ppm) 

Fe 
(ppm) 

Zn 
(ppm) 

Ni 
(ppm) 

Pb 
(ppm) 

As 
(ppm) 

Cd 
(ppm) 

Cr 
(ppm) 

Se 
(ppm) 

0.8 ha-
Industrial 

Plot 

249 358 17 B.D.L. B.D.L. B.D.L. 0.1 1.6 B.D.L. Head 

0.12 ha-
Residential 

Plot 

263 501 18 B.D.L. B.D.L. B.D.L. 0.1 1.4 B.D.L. 

Leaf 0.8 ha-
Industrial 

Plot 

230 319 107 B.D.L. B.D.L. B.D.L. 0.1 0.7 B.D.L. 
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 0.12 ha-
Residential 

Plot 

235 434 92 5.4 B.D.L. B.D.L. 1.5 0.2 B.D.L. 

0.8 ha-
Industrial 

Plot 

44 173 15 B.D.L. B.D.L. B.D.L. 0.1 B.D.L. B.D.L. Stalk 

0.12 ha-
Residential 

Plot 

125 280 22 2.6 B.D.L. B.D.L. 0.1 0.3 B.D.L. 

0.8 ha-
Industrial 

Plot 

3988 4649 90 B.D.L. 28 0.8 0.1 10.8 0.4 Root 

0.12 ha-
Residential 

Plot 

3976 6774 53 5.8 25 B.D.L. 0.2 8.5 0.5 

B.D.L. = Below Detection Limit  

2.3.3 System energy balance 

The NEV calculation for the sunflower biofuel system used GTECH’s average seed yield 

of 280 kg/ha in Pittsburgh, and the average distance of 12 km between GTECH and its 

plots was assumed. The average yield and distance were used for both the experimental 

plots to demonstrate the differences in NEV as a result of different plot size. Table 6 

shows four scenarios for calculating the energy input and output of the sunflower biofuel 

system on the 0.8 ha-Industrial Plot and 0.12 ha-Residential Plot. (Details of the 

calculation and data sources are available in the Appendix.) Both plots would generate a 

negative energy balance under GTECH’s current process, which included a 218-km 

intercity transport between Pittsburgh and University Park, Pennsylvania (Table 6, 

Scenario 1). The intercity transport was required solely because the crusher GTECH used 

to get sunflower oil from the seeds was located at University Park, PA. Therefore, the 

energy balance of GTECH’s process could be improved through the use of local biofuel 

production facilities. If the entire production was carried out locally, 341 MJ or 38% of 

the total energy input on the 0.8 ha-Industrial Plot and 51 MJ or 22% of the total energy 

input on the 0.12 ha-Residential Plot could be avoided. This would give rise to a net 

energy yield of 83 MJ on the 0.8 ha-Industrial Plot, and, a reduced energy loss of 82 MJ 
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on the 0.12 ha-Residential Plot, if biodiesel was the only product considered (Table 6, 

Scenario 2). 

Additional energy gains could be demonstrated by considering energy content in 

sunflower meal and glycerin, which are byproducts resulting from the sunflower oil 

extraction process and the transesterification process to make biodiesel. Data in Table 6, 

Scenario 3 treated these two products and the biodiesel all as the desirable products from 

the system. The total energy output given in Table 6, Scenario 3 is the sum of the heat 

energy content in biodiesel and glycerin, and the metabolic energy content in sunflower 

meal. The heat energy content was calculated as the product of the lower heating value 

and mass of products, while the metabolic energy content was the product of metabolic 

energy in unit mass of sunflower meal and the mass of sunflower meal. Inclusion of the 

energy content in all the products will increase the energy yield on the 0.8 ha-Industrial 

Plot to 472 MJ and reduce the energy loss on the 0.12 ha-Residential Plot to only 24 MJ.  

Table 6, Scenario 4 demonstrates the energy balance when only part of the total 

energy investment was allocated to biodiesel production based on the market value of all 

products. The average prices for biodiesel, sunflower meal and glycerin were assumed to 

be $1.03/kg, $0.17/kg and $0.33/kg respectively [71]. Market value was selected as the 

benchmark for the allocation because the end uses as well as the usefulness of biodiesel, 

sunflower meal, and glycerin are very different. Allocation by market value could better 

account for these differences than other allocation methods (available in the Appendix) 

based on energy content, mass, and energy displacement [78]. Following the market 

value-based allocation, the 0.8 ha-Industrial Plot gave an energy yield of 221 MJ while 

the 0.12 ha-Residential Plot returned an energy loss of 32 MJ.  
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Table 6. Energy Input and Output on the 0.8 ha-Industrial Plot and 0.12 ha-Residential 
Plot 

Scenario 1 Scenario 2 Scenario 3 Scenario 4  
 
 

Unit: MJ 
Unallocated; 

intercity 
transport 
included 

Unallocated; 
intercity 
transport 
excluded 

Energy output of 
all products 
considered; 

intercity 
transport 
excluded 

Allocated by 
market value of 

products; 
intercity 
transport 
excluded 

	   0.8 ha-
Industr
ial Plot 

0.12 
ha-

Reside
ntial 
Plot 

0.8 ha-
Industr
ial Plot 

0.12 
ha-

Reside
ntial 
Plot 

0.8 ha-
Industr
ial Plot 

0.12 
ha-

Reside
ntial 
Plot 

0.8 ha-
Industr
ial Plot 

0.12 
ha-

Reside
ntial 
Plot 

Sunflower production 
• Field	  

preparation	  
• Transport	  

 
271 

 
56 

 
39 

 
56 

 
271 

 
56 

 
39 

 
56 

 
271 

 
56 

 
39 

 
56 

 
193 

 
40 

 
28 

 
40 

Transport after harvest 
• Transport	  

within	  
Pittsburgh	  

• Transport	  to	  
and	  from	  
University	  
Park,	  PA	  

 
56 

 
 

341 

 
56 

 
 

51 

 
56 

 

 
56 

 
 

 
56 

 

 
56 

 
 

 
40 

 
40 

Biofuel processing 
• Sunflower	  oil	  

extraction	  
• Sunflower	  oil	  

to	  biodiesel	  

 
77 

 
98 

 
12 

 
15 

 
77 

 
98 

 
12 

 
15 

 
77 

 
98 

 
12 

 
15 

 
55 

 
91 

 
8 
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Biofuel distribution 5.8 0.9 5.8 0.9 5.8 0.9 5.8 0.9 
Total energy input 905 230 563 179 563 179 425 129 
         
Energy output 

• Biodiesel	  
• Sunflower	  

meal	  
• Glycerin	  

 
646 

 

 
97 

 
646 

 
97 

 
646 
323 

 
67 

 
97 
48 

 
10 

 
646 

 
97 

Total energy output 646 97 646 97 1036 155 646 97 
         
Net energy value -259 -133 83 -82 472 -24 221 -32 

Many factors could affect the net energy value on a particular plot. The reason 

why the 0.8 ha-Industrial Plot produced a net energy yield while the 0.12 ha-Residential 

Plot lost energy was that the area and hence the crop output of the 0.8 ha-Industrial Plot, 
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was several times greater than that of the 0.12 ha-Residential Plot. The transport distance 

between the plots and GTECH headquarter was constant for each plot regardless of plot 

size and crop output. Therefore, an increasing portion of the total energy input would be 

spent on smaller plot with less crop output. The plot size corresponding to the energy 

breakeven point could be solved by setting the total energy input equal to the output in 

Table 3 while holding the values of other parameters unchanged. If all GTECH’s 

production parameters and the market value allocation scheme in Table 6, Scenario 4 

were used, the minimum size to avoid negative NEV on a plot could be determined as 0.2 

ha. Given the seed yield of 280 kg/ha in Pittsburgh, the energy breakeven plot size of 0.2 

ha indicated only plots that could produce more than 56 kg seeds had the potential for net 

energy production. Other than plot size, factors like seed yield on unit area, market value 

of by-products which influenced how much energy input could be allocated to the by-

products, and amount of transport were also able to alter the net energy value of the 

system. Figure 4 shows how 50% fluctuation of one of these parameters while others 

were held constant would affect the NEVs in Table 6, Scenario 4. The NEVs obtained 

assuming U.S. sunflower agriculture’s average yield of 1330 kg/ha could be achieved on 

the plots are also shown in Figure 4 [70, 79].  Cutting down the amount of transport by 

50% was the most effective way to make the energy balance on the 0.12 ha-Residential 

Plot be positive, but it impacted the energy balance on the 0.8 ha-Industrial Plot least. 

This implied a quickly diminishing significance of the amount of transport on the system 

energy balance with increasing plot size. Apart from amount of transport, seed yield was 

the most influential factor determining the energy balance of both of the plots, followed 

by plot area and market value of by-products. A 50% increase in seed yield would be able 
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to increase the energy balance on the 0.12 ha-Residential Plot to a positive value. If U.S. 

sunflower agriculture’s average yield of 1330 kg/ha from could be achieved, the NEVs 

on the 0.8 ha-Industrial Plot and 0.12 ha-Residential Plot could be increased to more than 

700 MJ and more than 35MJ respectively (Figure 4) [70, 79]. 

 

Figure 4. System energy balance resulting from changing parameters 

In the GTECH system, the transportation of workers to the plots was avoided 
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through the use of volunteers from the community. In case transportation was needed for 

the labor force, the total energy input could be increased by approximately 3.2 MJ per 

kilometer of transportation per vehicle based on an average car fuel efficiency of 10 km/L 

and gasoline lower heating value of 32.3 MJ/L [71]. Given that GTECH usually invited 

5-15 volunteers to work on its plots, using community volunteers who were able to walk 

to the plots could save 32-96 MJ of energy that might be consumed if each worker drove 

2 km to and from the site. These energy savings could account for a significant portion of 

the total energy input when compared to the values in Table 5. Hence, engaging 

community volunteers to work on the plots could be an important factor to increase the 

system NEV. 

The sunflower biofuel systems on urban marginal land also created extra benefits 

that were not considered in the energy balance calculation. For example, the energy used 

in the sunflower gardens saved the energy that was originally spent to maintain these 

vacant lots. Moreover, each GTECH reclamation project leveraged additional resources, 

helping to improve environmental conditions in communities while integrating green job 

training as a means of transitioning problematic spaces into productive places in benefit 

of community [65]. Social life cycle assessment might be performed to quantify these 

benefits in the future. 

2.4. Conclusions 

In this research, the environmental implication of using urban marginal land for biofuel 

production was evaluated from the perspectives of soil quality, crop cultivation under 

urban context, and system energy balance. Three years’ monitoring of metal 
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concentrations in the experimental plots determined that heavy metal concentrations were 

below residential MSCC most of the time and never above industrial MSCC. Marginal 

land in Pittsburgh could be subject to a risk of being contaminated by Fe, Pb and As to a 

level that was not appropriate for residential purposes. The experimental plots were a 

generic representation of urban marginal land in industrial and residential areas that had 

no direct contamination history. The results from this study demonstrated low input 

agriculture was able to produce sunflowers on urban lots having similar soil quality. The 

metal contaminant levels in the experimental plots were consistent over time under 

GTECH operation. This indicated that sunflower cultivation could be a long-term 

practice on urban vacant lots without causing concerns about varying soil contaminant 

concentrations.   

The little to no land contamination and low level of metal uptake by the plant 

tissues made sunflowers from the experimental plots in Pittsburgh a safe feedstock for 

biodiesel. However, this might not be true had sunflowers been grown on more 

contaminated soils, especially those having contaminant concentrations higher than the 

industrial MSCCs. In such case, the heavy metal content in the final biofuel product 

should be analyzed. If heavy metal removal methods are necessary in order to get safe 

products, the energy consumption in these steps needs to be included in the energy 

consumption.  

The energy balance calculation in this study demonstrated that local biofuel 

production and adequate lot size were important to improve the NEV of the urban biofuel 

system. Under GTECH operation, lots in Pittsburgh with size greater than 0.2 ha were 

able to produce positive NEV if the biofuels were processed locally. A positive NEV 
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would promote the possibility of coupling vacant lot management with useful biofuel 

crop production and avoid the costly land maintenance activities done in the past. 
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CHAPTER 3 – BIOFUEL CROP CULTIVATION ON ABANDONED MINE LAND 

3.1 Introduction 

With some two to four tons of bauxite residue arising for every ton of aluminum 

produced, the management of bauxite residue has always been a significant issue for the 

aluminum industry [80]. This study is an effort to look for sustainable bauxite residue 

management methods. Since bauxite residue has high pH, residueal liming capacity, and 

clay-like soil texture, there is an opportunity for industrial synergy that uses bauxite 

residue instead of lime to neutralize the acidic mine refuse for vegetative cover 

development. This research investigates the possibility of growing biofuel crops on acidic 

mine refuse using bauxite residue as soil amendment. The experiments that tests biofuel 

crop growth on acidic coalmine refuse mixed with bauxite residue are carried out in our 

greenhouse. The coalmine refuse is obtained from the Mather Mine in Greene County, 

Pennsylvania shown in Figure 5. The Mather Mine, which is well known for its explosion 

in 1928 that killed 195 miners, was closed in 1964. The contamination from the 

abandoned mine site poses an immediate threat to the thousands of residents in the 

community nearby. Runoff from the site pollutes the river that passes around it, causing 

greater pollution to the environment. In addition, the site suffers from other problems 

including erosion, subsurface fire, etc. Vegetation has proved to be effective in 

controlling these problems. This research aims to make the AML management practice 

more sustainable through cultivating useful biofuel crops on these lands.  
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Figure 5. Abandoned mine site at Mather, PA 

3.2 Approach and Methodology 

3.2.1 Crop cultivation on mine refuse 
Synergy between aluminum production and acidic mine refuse management is created to 

cultivate biofuel crops on AML. Biofuel crops were grown in greenhouse on mine refuse 

obtained from Mather, PA. Lime, which was added to the mine refuse to neutralize the 

acidity in the common re-vegetation process, was replaced by bauxite residue obtained 

from a local alumina refinery. Bauxite residue was mixed with mine refuse in 20-gallon 

nursery pots with a mass ratio of 1/9 before seeds were added to it. The soil mixture in 

each pot weighed 70 kg. The efficacy of bauxite residue at neutralizing mine refuse 

acidity is determined by soil measurements along plant growth.   

The first growth cycle was completed in a greenhouse located inside of an office 

building at the University of Pittsburgh, as shown in Figure 6 (a). The greenhouse had an 

area of approximately 220 sf. Ten 432-watt fluorescent light panels provided full 



 

35 

spectrum of light 12 hours a day for plant photosynthesis. The temperature in the office 

building was controlled at 20 °C at all times. Five energy crops including corn, camelina, 

canola, sunflower and soybean were grown in the greenhouse. All plants were irrigated 

with the amount of water suggested for commercial corn production, since corn has the 

highest water demand among the crops [81]. A total of 25 inches of water was added to 

each pot during the plant growth. Since Pennsylvania had an annual rainfall of about 40 

inches, this represented a scenario in which the entire water needs for plant growth were 

provided by natural precipitation. None of the plants achieved full growth during the first 

growth cycle. Reasons were identified as lack of air circulation in the greenhouse and low 

artificial light use efficiency by plants. 

 The second growth cycle were carried out on the same soil in the greenhouse at 

Arizona State University, as shown in Figure 6 (b). Sorghum, sunflower and camelina 

and canola were cultivated. Corn and soybean died in the previous cultivation 

experiment, so they were not grown in the second experiment. The greenhouse was 

equipped with specifically designed ventilation system to allow the exchange of indoor 

and outdoor air. Constant airflow was maintained within the room. The walls of the 

greenhouse were made of transparent glasses that did not obstruct sunlight. The length of 

daytime was 10-12 hrs per day during the plant growth. The light intensity measured at 

noon ranged from 8000 lumens on a cloudy day to 20,000 lumens on a sunny day. The 

temperature in the greenhouse was 22-30 °C during the day and 18-25 °C at night. Plants 

were watered every other day with 2 L of water to keep the soil moisture above 2 on a 0 

to 10 scale, in which 0 meant completely dry soil and 10 meant soil saturated with water.   

(a) First Greenhouse Set-up (b) Second Greenhouse Set-up 
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Figure 6. Greenhouse for crop cultivation 

3.2.2 Soil analysis 

Soil samples were collected before planting and after harvesting from the second 

greenhouse experiment. Soil heavy metal contaminants including Al, Fe, Zn, Ni, Pb, As, 

Cd, Cr, Se, Co, Cu, and Hg were analyzed following EPA Method 3051A [68]. All soil 

samples were dried, ground and sieved to 177 µm (80 mesh). Then, 0.5 g of each of the 

soil samples was mixed with a digestive solution consisting of 9 mL 65% HNO3 and 3 

mL 35% HCl, and was digested in a CEM Model 5 Microwave Digestion System at 800 

W for 15 minutes at 170 °C. The sample extracts were subsequently passed through 450 

nm mixed cellulose ester filters before being analyzed by inductively coupled plasma 

optical emission spectrometry (ICP-OES). Metal concentration in the extract solution was 

finally converted to soil metal concentration. 

3.2.3 Plant analysis 

Entire plants were collected at the end of the growth cycle of the second greenhouse 

experiment. The plants were washed and air-dried before they were separated into root, 

stem, leaf, and grain/seed head. Different parts of the plants were subsequently analyzed 

for their Al, Fe, Zn, Ni, Pb, As, Cd, Cr, Se, Co, Cu, and Hg concentrations using the same 
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method as in the soil analysis.  

3.2.4 Water analysis 

Water analysis was done in the study. Sample collection was done in the second 

greenhouse experiment every one or two weeks as the plants grew. The samples were 

collected as soon as water leached out the pots after irrigation. ICP-OES was used to 

determine the Al, Fe, Zn, Ni, Pb, As, Cd, Cr, Se, Co, Cu, and Hg concentrations in the 

water samples.  

3.3 Results and Discussion 

3.3.1 Biomass production  

No plant generated seeds in the first cultivation experiment due to the conditions in the 

greenhouse that limited plant growth. All plants except canola generated seeds at the end 

of the second cultivation experiment. Table 7 summarized the average dry mass of each 

part of an individual plant obtained from the control pots containing commercial topsoil 

and pots consisting of 90% w/w mine refuse and 10% w/w bauxite residues (MA). The 

data indicated that the dry mass of plants grown on MA could achieve no less than 60% 

of that on regular topsoil.   

Table 7. Plant Dry Mass Obtained from the Greenhouse 

Control MA Unit: g  
Root Stem Leaf Seed Root Stem Leaf Seed 

Camelina 4.3 7.8* 5.8 3.1 6.8* 5.7 
Canola 19.2 31.2 26.1 N.S. 18.9 17.7 24.2 N.S. 

Sunflower 11.2 16.2 14.3 19.4 8.6 14.6 12.9 13.7 
Sorghum 10.4 26.3 12.2 21.6 7.0 17.9 8.7 15.3 
*	  Sum	  of	  the	  mass	  of	  stem	  and	  leaf	  
N.S. = no seed 
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3.3.2 Heavy metals in the soil 

The data in Table 8 showed the heavy metal content in the soils used to grow biofuel 

crops in the greenhouse. Except for Hg, the heavy metal levels were quite consistent 

before and after plant growth with a difference no more than 35%.    

Table 8。 Heavy Metal Content in Soil 

Unit: ppm Al Fe Zn Ni Pb As 

Before Planting 449726 929354 1179 363 326 <1 Soil 
After harvest 390383 760322 994 326 313 <1 

Before Planting 231079 587410 423 219 420 <1 
Camalina 

MA 
After harvest 218179 640393 343 186 291 <1 

Before Planting 449726 929354 1179 363 326 <1 Soil 
After harvest 465094 958491 1264 413 358 <1 

Before Planting 197617 533943 361 187 349 <1 
Canola 

MA 
After harvest 201822 474374 422 239 335 <1 

Before Planting 449726 929354 1179 363 326 <1 Soil 
After harvest 439045 767322 973 315 277 <1 

Before Planting 232763 966194 384 218 462 <1 
Sunflower 

MA 
After harvest 213089 826114 357 204 356 <1 

Before Planting 449726 929354 1179 363 326 <1 Soil 
After harvest 547685 981227 1300 420 361 <1 

Before Planting 183443 686885 317 168 406 <1 
Sorghum 

MA 
After harvest 246046 752103 377 211 333 <1 

 
Unit: ppm Cd Cr Se Co Cu Hg 

Before Planting 6.0 848 39 209 1154 31 Soil 
After harvest 5.0 724 13 187 741 4 

Before Planting 10.1 625 61 118 431 36 
Camalina 

MA 
After harvest 5.3 535 43 98 372 7 

Canola Soil Before Planting 6.0 848 39 209 1154 31 
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 After harvest 5.7 913 <0.01 245 794 13 
Before Planting 5.5 569 33 96 343 23 

 

MA 
After harvest 6.0 568 52 118 378 10 

Before Planting 6.0 848 39 209 1154 31 Soil 
After harvest 4.2 713 8 186 589 29 

Before Planting 6.3 621 58 94 424 26 
Sunflower 

MA 
After harvest 5.3 555 52 89 412 11 

Before Planting 6.0 848 39 209 1154 31 Soil 
After harvest 5.6 939 8 245 790 13 

Before Planting 6.6 589 71 81 320 37 
Sorghum 

MA 
After harvest 5.6 547 40 101 489 6 

3.3.3 Heavy metals in the plant 

The results of plant analysis showed that crops grown on MA could take up 10-40% more 

heavy metals than those grown on regular soil and the metal concentration was 2-20 

times higher in root, stem and leaf than in seed (Table 9a and b). The metal concentration 

in sorghum, which had the highest biomass yield among the four crops tested, showed a 

consistent decreasing trend from root to seed. The heavy metal in sorghum seeds from 

pots containing MA was low and similar to those grown on regular soil. This implied that 

sorghum grown on MA might be a suitable candidate for biofuel purposes.  

Table 9a. Al, Fe, Zn, Ni, Pb and As Content in Plant 

Unit: ppm Al Fe Zn Ni Pb As 
Root 5866 8.8 235 28 5.7 <1 

Stem & Leaf 566 5.9 75 25 4.7 <1 Soil 
Seed 112 0.4 17 11 1.1 <1 
Root 8943 13.1 300 40 6.9 2.1 

Stem & Leaf 872 5.5 107 31 8.5 <1 

Camelina 

MA 
Seed 568 1.5 14 38 <1 0.6 
Root 1076 1.2 73 8 2.5 3.2 
Stem 987 1.1 38 3 <1 2.5 Soil 
Leaf 8611 12.5 108 16 6.4 <1 
Root 9457 14.1 120 37 11.0 <1 
Stem 1019 1.5 95 19 0.3 0.4 

Canola 

MA 
Leaf 4936 7.5 132 36 2.0 3.1 
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Root 3084 35.7 129 25 14.9 <1 
Stem 182 0.2 34 1 <1 <1 
Leaf 460 0.5 117 2 <1 0.6 

Soil 

Seed 162 0.2 109 4 <1 0.2 
Root 3490 16.0 233 31 9.9 1.8 
Stem 790 0.4 105 22 0.7 0.4 
Leaf 2855 5.4 181 20 6.8 <1 

Sunflower 

MA 

Seed 1812 2.5 214 64 1.1 <1 
Root 8663 9.8 85 13 4.6 <1 
Stem 592 0.6 80 2 <1 <1 
Leaf 549 0.6 114 1 <1 1.0 

Soil 

Seed 897 0.8 64 3 <1 <1 
Root 2921 7.4 227 147 9.8 0.2 
Stem 225 0.4 290 152 0.1 1.4 
Leaf 658 1.2 142 132 <1 1.9 

Sorghum 

MA 

Seed 107 2.5 83 10 1.1 <1 

Table 9b. Cd, Cr, Se, Co, Cu, and Hg Content in Plant  

Unit: ppm Cd Cr Se Co Cu Hg 
Root 2.2 13.2 17.8 8.9 <1	   <1 

Stem & Leaf 1.2 8.7 4.8 4.7 <1	   <1 Soil 
Seed 0.2 0.2 2.9 0.3 <1	   <1 
Root 3.3 19.0 31.1 10.8 <1	   <1 

Stem & Leaf 2.5 10.5 8.1 8.8 <1	   <1 

Camelina 

MA 
Seed 0.1 1.2 17.9 1.7 <1	   <1 
Root 0.4 6.3 5.3 0.7 55	   1.4 
Stem 0.4 6.4 1.4 0.7 15	   <1 Soil 
Leaf 0.9 39.5 <1 5.7 67	   <1 
Root 0.9 20.6 6.9 17.1 72	   <1 
Stem 0.8 2.4 5.6 2.9 29	   1.6 

Canola 

MA 
Leaf 1.1 11.1 7.3 17.4 60	   <1 
Root 0.8 20.8 2.4 14.4 99	   0.3 
Stem 0.2 1.6 <1 0.5 29	   0.3 
Leaf 1.1 2.9 4.6 0.9 91	   <1 

Soil 

Seed 0.8 4.1 0.6 1.0 71	   <1 
Root 1.1 3.2 17.3 20.0 157	   1.5 
Stem 1.2 0.8 8.1 14.8 39	   2.1 
Leaf 2.5 3.9 10.1 14.3 111	   <1 

Sunflower 

MA 

Seed 1.8 2.4 10.7 23.1 76	   <1 
Sorghum Soil Root 1.5 21.5 6.1 10.8 71	   0.8 
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Stem 1.1 4.9 8.0 0.5 22	   <1 
Leaf 1.0 3.9 <1 0.9 31	   <1 

 

Seed <1 3.7 2.9 0.1 29	   <1 
Root 4.2 6.5 8.8 7.5 62	   1.8 
Stem 4.2 3.2 1.3 2.0 28	   3.3 
Leaf 4.3 5.2 9.0 2.6 41	   <1 

 

MA 

Seed 0.7 1.1 6.6 1.2 48	   <1 
 

3.3.4 Heavy metals in leachate 

The heavy metal concentration in leachate collected 4 and 12 weeks after planting was 

summarized in Table 10. The heavy metal concentration in the leachate from the pots 

containing MA were only 1-30% of that of the leachate from pots filled with only mine 

refuse. In the meantime, the metal concentration in leachate from MA pots decreased 

faster than that from mine refuse pots. The lower and more quickly decreasing metal 

levels in leachate from MA pots could be attributed to the addition of 10%w/w bauxite 

residues which raised the soil pH from below 0 in pots containing only mine refuse to 

5.1-7.1 in MA pots. The leachate analysis results demonstrated that bauxite residues were 

able to inhibit heavy metal contaminants in AML entering the environment with water 

flows.   

Table 10. Heavy Metal Concentration in Leachate 

Heavy Metal Contaminant (ppm) Soil 
Type Plant 

Week 
after 

planting Al Fe Zn Ni Pb As 

4 2006 29.69 25.85 7.162 0.0142 <0.01 Mine 
refuse No plant 

12 1961 17.56 25.29 6.553 0.0107 <0.01 
 

4 783.9 2.762 6.339 3.63 0.0403 <0.01 MA Camelina 
12 394 1.04 2.65 5.442 0.0308 <0.01 

 
4 823 4.55 0.655 0.808 0.0354 <0.01 MA Canola 
12 290 2.97 0.758 0.324 0.0709 <0.01 
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4 481 1.066 1.928 1.522 0.0452 <0.01 MA Sunflower 
12 238 0.4592 1.233 1.127 0.0439 <0.01 

 
4 572 2.0147 0.5346 0.49 0.0267 <0.01 MA Sorghum 
12 267 1.1011 0.7815 0.9913 0.0448 <0.01 

 
Heavy Metal Contaminant (ppm) Soil 

Type Plant 
Week 
after 

planting Cd Cr Se Co Cu Hg 
4 0.1215 0.3252 0.2085 2.872 9.552 <0.001 Mine 

refuse  
12 0.1222 0.1492 0.219 2.782 7.739 <0.001 

 
4 0.0674 0.0593 0.1312 1.481 3.394 <0.001 MA Camelina 
12 0.0971 0.1428 0.154 2.314 8.048 <0.001 

 
4 0.0128 0.8 0.1298 0.2544 0.1226 0.002 MA Canola 
12 0.03 0.2676 0.0573 0.4177 0.7638 <0.001 

 
4 0.0264 0.0126 0.0641 0.5265 0.6707 <0.001 MA Sunflower 
12 0.0228 0.004 0.1019 0.355 0.2998 0.0016 

 
4 0.0061 0.0005 0.2415 0.1882 0.1515 0.0035 MA Sorghum 
12 0.0141 0.0002 0.3107 0.3141 0.1454 <0.001 

3.4 Conclusions 

Results from the greenhouse experiments showed that addition of bauxite residues that 

neutralized acidic mine refuse were a necessary step to enable plant growth. Plants grown 

on soil containing mine refuse had total metal concentrations 10-50% higher than those 

grown on commercial topsoil, but the metal levels in the seeds were less than 10% 

different between plants grown on soil and the mixture of mine refuse and bauxite 

residues.  Bauxite residue addition and plant growth could effectively reduce the amount 

of contaminants that entered the environment with water flows. This research provided 

some evidences that growing biofuel crops could be a useful management for AMLs and 
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an opportunity for valuable use of these degraded lands. 
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CHAPTER 4 – CONCLUSIONS AND FUTURE WORK 

The management of urban marginal land and AML is a challenge that involves social, 

economic and environmental dimensions. The traditional methods for managing these 

marginal lands are either costly and have ranges of effectiveness. Biofuel feedstock 

production is proposed in this thesis to be an alternative to both enhance beneficial use of 

these lands and reduce the inputs to land management. The results from this study 

provided evidences on the viability of aligning biofuel production with land management. 

The urban marginal land biofuel system was conducted in collaboration with a non-profit 

organization, GTECH Strategies of Pittsburgh, PA, and involves extensive community 

participation. Since the urban marginal land biofuel system is built in collaboration with a 

non-profit organization and involves extensive community participation, this research 

presented an example of tying academia and the public towards an effort to solve an 

engineering challenge. The AML biofuel study investigates the beneficial use of wastes 

materials from the aluminum mining industry. The approach used in this investigation 

contributed intellectual merit to the broader understanding of the process of developing 

sustainable industrial systems. 

 While this study used experiments and life cycle methods to demonstrate the 

advantage of using marginal land for biofuels, the facts that the experiments were 

implemented under well-defined conditions and that the life cycle analysis only focused 

on energy analysis could be limitations for the results of this study to be applied to a 

broader range of scenarios. In the future, experiments at various locations and under 

different conditions, and life cycle assessments concerning more complete impact 

categories are needed to finish a comprehensive assessment of the sustainability of 
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biofuel production on urban marginal land and AML.  
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Table A. Soil Analysis Results for the 0.8 ha-Brownfield 
 Al Fe 

Residential 
MSC (0-15 

feet) 

190000 66000 

Non-
residential 

MSC 
(Surface 
Soil, 0-2 

feet) 

190000 190000 

 Jun. 10, 
2008 

Oct. 7, 
2009 

May 24, 
2010 

Sep. 13, 
2010 

Jul. 19, 
2011 

Jun. 10, 
2008 

Oct. 7, 
2009 

May 24, 
2010 

Sep. 13, 
2010 

Jul. 19, 
2011 

Average 
(ppm) 

65789 52182 60017 54040 56602 171786 163144 131921 149479 187306 

Max. (ppm) 80597 71921 84700 79379 65797 201241 
 

226248 179903 218897 305451 

Min. (ppm) 50455 39323 40137 27435 47940 139393 115896 66257 73380 123336 
Control 
(ppm) 

64392 66786 62163 66643 69853 140188 147890 146256 142580 140009 

 
 Zn Ni 
Residential 
MSC (0-15 

feet) 

66000 4400 

Non-
residential 

MSC 
(Surface 
Soil, 0-2 

feet) 

190000 56000 

 Jun. 10, 
2008 

Oct. 7, 
2009 

May 24, 
2010 

Sep. 13, 
2010 

Jul. 19, 
2011 

Jun. 10, 
2008 

Oct. 7, 
2009 

May 24, 
2010 

Sep. 13, 
2010 

Jul. 19, 
2011 

Average 
(ppm) 

633 794 642 763 922 209 174 134 117 221 

Max. (ppm) 787 1116 1598 2258 2190 381 271 739 176 329 
Min. (ppm) 363 522 258 25 546 151 127 17 77 128 

Control 
(ppm) 

588 621 635 609 601 145 159 161 149 159 

 
 Pb As 
Residential 
MSC (0-15 

feet) 

500 12 

Non-
residential 

MSC 
(Surface 
Soil, 0-2 

feet) 

1000 53 

 Jun. 10, 
2008 

Oct. 7, 
2009 

May 24, 
2010 

Sep. 13, 
2010 

Jul. 19, 
2011 

Jun. 10, 
2008 

Oct. 7, 
2009 

May 24, 
2010 

Sep. 13, 
2010 

Jul. 19, 
2011 

Average 
(ppm) 

375 489 238 371 492 7.0 8.9 9.7 8.4 5.2 

Max. (ppm) 765 914 266 460 1151 10.4 16.6 13.4 13.4 8.7 
Min. (ppm) 170 220 209 250 215 4.4 4.9 5.2 4.5 1.4 

Control 
(ppm) 

432 413 409 427 414 9.0 9.3 9.5 9.1 9.8 

 
 Cd Cr 
Residential 
MSC (0-15 

feet) 

47 660 
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Non-
residential 

MSC 
(Surface 
Soil, 0-2 

feet) 

210 8400 

 Jun. 10, 
2008 

Oct. 7, 
2009 

May 24, 
2010 

Sep. 13, 
2010 

Jul. 19, 
2011 

Jun. 10, 
2008 

Oct. 7, 
2009 

May 24, 
2010 

Sep. 13, 
2010 

Jul. 19, 
2011 

Average 
(ppm) 

1.1 1.3 0.8 0.8 1.1 144 170 147 157 117 

Max. (ppm) 3.6 5.4 1.4 1.5 2.3 280 293 387 209 173 
Min. (ppm) 0.4 0.3 0.2 0.4 0.5 111 70 85 87 70 

Control 
(ppm) 

1.3 1.3 1.1 1.4 1.4 155 157 152 160 149 

 
 Se 
Residential 
MSC (0-15 

feet) 

1100 

Non-
residential 

MSC 
(Surface 
Soil, 0-2 

feet) 

14000 

 Jun. 10, 
2008 

Oct. 7, 
2009 

May 24, 
2010 

Sep. 13, 
2010 

Jul. 19, 
2011 

Average 
(ppm) 

4.9 3.1 3.0 3.6 5.9 

Max. (ppm) 6.3 5.7 5.4 5.3 8.7 
Min. (ppm) 3.5 1.7 1.6 1.9 2.8 

Control 
(ppm) 

5.1 5.5 4.9 5.4 5.6 

Note: The concentrations that exceed 
the residential MSCs are highlighted 
in bold black; the concentrations that 
exceed the non-residential MSCs are 
highlighted in bold red. 
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Table B. Soil Analysis Results for the 0.12 ha-Greyfield 
 Al Fe 

Residential 
MSC (0-15 

feet) 

190000 66000 

Non-
residential 

MSC 
(Surface 
Soil, 0-2 

feet) 

190000 190000 

 Jun. 10, 
2008 

Oct. 7, 
2009 

May 24, 
2010 

Sep. 13, 
2010 

Jul. 19, 
2011 

Jun. 10, 
2008 

Oct. 7, 
2009 

May 24, 
2010 

Sep. 13, 
2010 

Jul. 19, 
2011 

Average 
(ppm) 

65827 70149 63296 56455 66098 144146 168891 139026 126248 162134 

Max. (ppm) 77775 77755 82218 58756 77259 182256 334449 169444 155704 198114 
Min. (ppm) 51445 48050 36039 40473 47410 114666 129202 87941 101786 114198 

Control 
(ppm) 

54897 55786 54122 55987 54628 133456 135773 139862 135673 131123 

 
 Zn Ni 
Residential 
MSC (0-15 

feet) 

66000 4400 

Non-
residential 

MSC 
(Surface 
Soil, 0-2 

feet) 

190000 56000 

 Jun. 10, 
2008 

Oct. 7, 
2009 

May 24, 
2010 

Sep. 13, 
2010 

Jul. 19, 
2011 

Jun. 10, 
2008 

Oct. 7, 
2009 

May 24, 
2010 

Sep. 13, 
2010 

Jul. 19, 
2011 

Average 
(ppm) 

591 825 772 711 660 142 169 115 95 165 

Max. (ppm) 1126 2005 2845 2677 1557 182 387 175 150 250 
Min. (ppm) 418 404 257 91 427 105 124 52 63 102 

Control 
(ppm) 

528 564 587 534 555 156 141 155 152 147 

           
 Pb As 
Residential 
MSC (0-15 

feet) 

500 12 

Non-
residential 

MSC 
(Surface 
Soil, 0-2 

feet) 

1000 53 

 Jun. 10, 
2008 

Oct. 7, 
2009 

May 24, 
2010 

Sep. 13, 
2010 

Jul. 19, 
2011 

Jun. 10, 
2008 

Oct. 7, 
2009 

May 24, 
2010 

Sep. 13, 
2010 

Jul. 19, 
2011 

Average 
(ppm) 

510 685 522 340 536 5.5 9.4 8.0 6.7 5.2 

Max. (ppm) 1194 1719 1457 1140 1259 7.2 13.9 16.1 9.4 7.0 
Min. (ppm) 214 248 160 91 183 4.5 3.3 2.8 4.4 2.9 

Control 
(ppm) 

399 410 411 401 418 7.7 7.1 7.9 7.7 7.1 

           
 Cd Cr 
Residential 
MSC (0-15 

feet) 

47 660 
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Non-
residential 

MSC 
(Surface 
Soil, 0-2 

feet) 

210 8400 

 Jun. 10, 
2008 

Oct. 7, 
2009 

May 24, 
2010 

Sep. 13, 
2010 

Jul. 19, 
2011 

Jun. 10, 
2008 

Oct. 7, 
2009 

May 24, 
2010 

Sep. 13, 
2010 

Jul. 19, 
2011 

Average 
(ppm) 

0.6 0.9 0.7 0.8 0.7 111 164 127 126 125 

Max. (ppm) 1.4 2.3 1.4 2.0 1.2 154 258 179 202 294 
Min. (ppm) 0.3 0.3 0.3 0.4 0.4 76 57 83 99 82 

Control 
(ppm) 

0.5 0.5 0.6 0.6 0.6 121 113 115 120 119 

           
 Se 

Residential 
MSC (0-15 

feet) 

1100 

Non-
residential 

MSC 
(Surface 
Soil, 0-2 

feet) 

14000 

 Jun. 10, 
2008 

Oct. 7, 
2009 

May 24, 
2010 

Sep. 13, 
2010 

Jul. 19, 
2011 

Average 
(ppm) 

4.2 3.4 2.8 3.9 3.9 

Max. (ppm) 6.9 6.9 4.1 13.1 4.6 
Min. (ppm) 2.9 0.6 1.1 2.0 2.9 

Control 
(ppm) 

4.3 4.5 4.7 4.4 4.1 

Note: The concentrations that exceed 
the residential MSCs are highlighted 
in bold black; the concentrations that 
exceed the non-residential MSCs are 
highlighted in bold red. 
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APPENDIX B 

ENERGY CALCULATIONS FOR THE URBAN MARGINAL LAND BIOFUEL SYSTEM
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Energy Balance Calculation (Unallocated) 
0.8 ha-Brownfield: 
Field Preparation: 
Table 2, Equation 2: Mowing and tilling = 7.6 L gasolinea × 32.3 MJ/Lb ÷ 90.6%c = 270.9 
MJ  
Table 2, Equation 3: Transportd = 12 kme ÷ (7.6 km/L)f × 32.3 MJ/Lb ÷ 90.6%c = 56.3 MJ 
 
Transportd:  
Table 2, Equation 4: Transport within Pittsburgh = 12 kme ÷ (7.6 km/L)f × 32.3 MJ/Lb ÷ 
90.6%c = 56.3 MJ 
Table 2, Equation 5: Transport to and from University Park = [(217.6 kmg × 2) ÷ (10.1 
km/L)h] × [(0.3024 m3)i × (735 kg/m3)j ÷ 1000 kgk] × 32.3 MJ/Lb ÷ 90.6%c = 341.4 MJ 
 
Biofuel Processing: 
Table 2, Equation 6: Sunflower oil extraction = (0.3024 m3)i × (735 kg/m3)j ÷ 50 kg/hrl × 
(2.2 kWm × 3.6 MJ/kWh) ÷ 46.0%n = 76.5 MJ 
Table 2, Equation 7: Sunflower oil to biodiesel = (23.8 L/hao × 0.8 hap × 0.919 kg/Lq ÷ 
1.04r) × 5.8 MJ/kg of biodiesels = 97.6 MJ 
 
Biofuel Distribution: 
Table 2, Equation 8: Transportation and distribution of biodiesel = (23.8 L/hao × 0.8 hap × 
0.919 kg/Lq ÷ 1.04r) × (38.4 MJ/kgt × 8982 J/MJu ÷ 1000000J/MJ) = 5.8 MJ 
 
Energy Output: 
Table 2, Equation 9: Biodiesel = (23.8 L/hao × 0.8 hap × 0.919 kg/Lq ÷ 1.04r) × 38.4 
MJ/kgt = 646.1 MJ 
Table 2, Equation 10: Sunflower meal = (23.8 L/hao × 0.8 hap × 0.919 kg/Lq) × 
(660/340)v × 9.5 MJ/kgw =322.7 MJ 
Table 2, Equation 11: Glycerin = (23.8 L/hao × 0.8 hap × 0.919 kg/Lq ÷ 1.04r × 0.214x) × 
18.6 MJ/kgy = 67.0 MJ 
 

a. Fuel consumption value from GTECH Strategies;  
b. Low heating value of conventional gasoline reported by GREET1_2011;  
c. Refining efficiency for conventional gasoline reported by GREET1_2011;  
d. Calculation based on GMC Canyon 1-ton pickup; 
e. Average distance travelled by GTECH to and from its plots; 
f. Fuel efficiency of GMC Canyon 1-ton pickup in city driving; 
g. Distance between Pittsburgh and University Park, PA; 
h. Fuel efficiency of GMC Canyon 1-ton pickup on the highway;  
i. Seeds output from the 0.8 ha-Brownfield; 
j. Density of sunflower seeds [72]; 
k. Load capacity of GMC Canyon 1-ton pickup; 
l. Processing capability of a typical oilseed crusher for sunflower seeds [73]; 



 

59 

m. Power of the oilseed crusher [73]; 
n. Power plant energy conversion efficiency based on GREET1_2011 and fuel mix 

to generate electricity in the western Pennsylvania;  
o. Sunflower oil yield reported by GTECH Strategies;  
p. Area of the 0.8 ha-Brownfield; 
q. Density of sunflower oil [82]; 
r. Conversion ratio from bio-oil to biodiesel reported by GREET1_2011;  
s. Energy consumption in the transesterification process reported by 

GREET1_2011;  
t. Lower heating value of sunflower biodiesel [74]; 
u. Energy consumption for biodiesel transportation and distribution reported by 

GREET1_2011.  
v. Mass-based ratio of sunflower meal and sunflower oil from sunflower seeds [75]; 
w. Metabolizable energy content in sunflower meal [75, 76]; 
x. Mass-based ratio of glycerin and biodiesel from biodiesel production process 

given by GREET1_2011;  
y. Energy content of glycerin reported by GREET1_2011. 

 
0.12 ha-Greyfield: 
Field Preparation: 
Table 2, Equation 2: Mowing and tilling = 1.1 L gasolinea × 32.3 MJ/Lb ÷ 90.6%c = 39.2 
MJ  
Table 2, Equation 3: Transportd = 12 kme ÷ (7.6 km/L)f × 32.3 MJ/Lb ÷ 90.6%c = 56.3 MJ 
 
Transportd:  
Table 2, Equation 4: Transport within Pittsburgh = 12 kme ÷ (7.6 km/L)f × 32.3 MJ/Lb ÷ 
90.6%c = 56.3 MJ 
Table 2, Equation 5: Transport to and from University Park = [(217.6 kmg × 2) ÷ (10.1 
km/L)h] × [(0.04536 m3)i × (735 kg/m3)j ÷ 1000 kgk] × 32.3 MJ/Lb ÷ 90.6%c =  51.2 MJ 
 
Biofuel Processing: 
Table 2, Equation 6: Sunflower oil extraction = (0.04536 m3)i × (735 kg/m3)j ÷ 50 kg/hrl 
× (2.2 kWm × 3.6 MJ/kWh) ÷ 46.0%n = 11.5 MJ 
Table 2, Equation 7: Sunflower oil to biodiesel = (23.8 L/hao × 0.12 hap × 0.919 kg/Lq ÷ 
1.04r) × 5.8 MJ/kg of biodiesels = 14.6 MJ 
 
Biofuel Distribution: 
Table 2, Equation 8: Transportation and distribution of biodiesel = (23.8 L/hao × 0.12 hap 
× 0.919 kg/Lq ÷ 1.04r) × (38.4 MJ/kgt × 8982 J/MJu ÷ 1000000J/MJ) = 0.9 MJ 
 
Energy Output: 
Table 2, Equation 9: Biodiesel = (23.8 L/hao × 0.12 hap × 0.919 kg/Lq ÷ 1.04r) × 38.4 
MJ/kgt = 96.9 MJ 
Table 2, Equation 10: Sunflower meal = (23.8 L/hao × 0.12 hap × 0.919 kg/Lq) × 
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(660/340)v × 9.5 MJ/kgw = 48.4 MJ 
Table 2, Equation 11: Glycerin = (23.8 L/hao × 0.12 hap × 0.919 kg/Lq ÷ 1.04r × 0.214x) × 
18.6 MJ/kgy = 10.0 MJ 
 

a. Fuel consumption value from GTECH Strategies;   
b. Low heating value of conventional gasoline reported by GREET1_2011;  
c. Refining efficiency for conventional gasoline reported by GREET1_2011;  
d. Calculation based on GMC Canyon 1-ton pickup;  
e. Average distance travelled by GTECH to and from its plots;  
f. Fuel efficiency of GMC Canyon 1-ton pickup in city driving;  
g. Distance between Pittsburgh and University Park, PA;  
h. Fuel efficiency of GMC Canyon 1-ton pickup on the highway;  
i. Seeds output from the 0.12 ha-Greyfield;  
j. Density of sunflower seeds [72];  
k. Load capacity of GMC Canyon 1-ton pickup;  
l. Processing capability of a typical oilseed crusher for sunflower seeds [73]; 
m. Power of the oilseed crusher [73]; 
n. Power plant energy conversion efficiency based on GREET1_2011 and fuel mix 

to generate electricity in the western Pennsylvania;  
o. Sunflower oil yield reported by GTECH Strategies; 
p. Area of the 0.12 ha-Greyfield;  
q. Density of sunflower oil [82]; 
r. Conversion ratio from bio-oil to biodiesel reported by GREET1_2011;  
s. Energy consumption in the transesterification process reported by 

GREET1_2011;  
t. Energy value of the sunflower biodiesel [74]; 
u. Energy consumption for biodiesel transportation and distribution reported by 

GREET1_2011;  
v. Mass-based ratio of sunflower meal and sunflower oil from sunflower seeds [75]; 
w. Metabolizable energy content in sunflower meal [75, 76]; 
x. Mass-based ratio of glycerin and biodiesel from biodiesel production process 

given by GREET1_2011;  
y. Energy content of glycerin reported by GREET1_2011.  

 
Energy Credits Calculation for Co-products 
Market Value-based Allocation: 
0.8 ha-Brownfield: 
Market value of biodiesel = (23.8 L/haa × 0.8 hab × 0.919 kg/Lc ÷ 1.04d) × $1.03/kge = 
$17.3 
Market value of sunflower meal = (23.8 L/haa × 0.8 hab × 0.919 kg/Lc) × (660 kg meal / 
340 kg sunflower oil)f × $0.17/kgg = $5.8 
Market value of glycerin = (23.8 L/haa × 0.8 hab × 0.919 kg/Lc ÷ 1.04d × 0.214h) × 
$0.33/kgi = $1.2 
 
0.12 ha-Greyfield: 



 

61 

Market value of biodiesel = (23.8 L/haa × 0.12 haj × 0.919 kg/Lc ÷ 1.04d) × $1.03/kge = 
$2.6 
Market value of sunflower meal = (23.8 L/haa × 0.12 haj × 0.919 kg/Lc) × (660 kg meal / 
340 kg sunflower oil)f × $0.17/kgg = $0.9 
Market value of glycerin = (23.8 L/haa × 0.12 haj × 0.919 kg/Lc ÷ 1.04d × 0.214h) × 
$0.33/kgi = $0.2 
 

a. Sunflower oil yield reported by GTECH Strategies; 
b. Area of the 0.8 ha-Brownfield; 
c. Density of sunflower oil [82]; 
d. Conversion ratio from bio-oil to biodiesel reported by GREET1_2011;  
e. Price of biodiesel given by GREET1_2011;  
f. Mass-based ratio of sunflower meal and sunflower oil from sunflower seeds [75]; 
g. Average sunflower meal price between 2009 and 2010 [83]; 
h. Mass-based ratio of glycerin and biodiesel from biodiesel production process 

given by GREET1_2011;  
i. Price of glycerin reported by GREET1_2011;  
j. Area of the 0.12 ha-Greyfield. 

 
Energy-based Allocation: 
0.8 ha-Brownfield: 
Energy content of biodiesel = (23.8 L/haa × 0.8 hab × 0.919 kg/Lc ÷ 1.04d) × 38.4 MJ/kge 
= 646.1 MJ 
Energy content of sunflower meal = (23.8 L/haa × 0.8 hab × 0.919 kg/Lc) × (660/340)f × 
9.5 MJ/kgg = 322.7 MJ 
Energy content of glycerin = (23.8 L/haa × 0.8 hab × 0.919 kg/Lc ÷ 1.04d × 0.214h) × 18.6 
MJ/kgi = 67.0 MJ 
 
0.12 ha-Greyfield: 
Energy content of biodiesel = (23.8 L/haa × 0.12 haj × 0.919 kg/Lc ÷ 1.04d) × 38.4 MJ/kge 
= 96.9 MJ 
Energy content of sunflower meal = (23.8 L/haa × 0.12 haj × 0.919 kg/Lc) × (660/340)f × 
9.5 MJ/kgg = 48.4 MJ 
Energy content of glycerin = (23.8 L/haa × 0.12 haj × 0.919 kg/Lc ÷ 1.04d × 0.214h) × 18.6 
MJ/kgi = 10.0 MJ 
 

a. Sunflower oil yield reported by GTECH Strategies; 
b. Area of 0.8 ha-Brownfield; 
c. Density of sunflower oil [82]; 
d. Conversion ratio from bio-oil to biodiesel reported by GREET1_2011;  
e. Lower heating value of sunflower biodiesel [74]; 
f. Mass-based ratio of sunflower meal and sunflower oil from sunflower seeds [75]; 
g. Metabolizable energy content in sunflower meal [75, 76]; 
h. Mass-based ratio of glycerin and biodiesel from biodiesel production process 
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given by GREET1_2011;  
i. Energy content of glycerin reported by GREET1_2011;  
j. Area of 0.12 ha-Greyfield. 

 
Mass-based Allocation: 
0.8 ha-Brownfield: 
Mass of Biodiesel = 23.8 L/haa × 0.8 hab × 0.919 kg/Lc ÷ 1.04d = 16.8 kg 
Mass of sunflower meal = (23.8 L/haa × 0.8 hab × 0.919 kg/Lc) × (660/340)e = 34.0 kg 
Mass of glycerin = 23.8 L/haa × 0.8 hab × 0.919 kg/Lc ÷ 1.04d × 0.214f = 3.6 kg 
 
0.12 ha-Greyfield: 
Mass of Biodiesel = 23.8 L/haa × 0.12 hag × 0.919 kg/Lc ÷ 1.04d = 2.5 kg 
Mass of sunflower meal = (23.8 L/haa × 0.12 hag × 0.919 kg/Lc) × (660/340)e = 5.1 kg 
Mass of glycerin = 23.8 L/haa × 0.12 hag × 0.919 kg/Lc ÷ 1.04d × 0.214f = 0.5 kg 
 

a. Sunflower oil yield reported by GTECH Strategies; 
b. Area of 0.8 ha-Brownfield; 
c. Density of sunflower oil [82]; 
d. Conversion ratio from bio-oil to biodiesel reported by GREET1_2011;  
e. Mass-based ratio of sunflower meal and sunflower oil from sunflower seeds [75]; 
f. Mass-based ratio of glycerin and biodiesel from biodiesel production process 

given by GREET1_2011;  
g. Area of 0.12 ha-Greyfield. 

 
Displacement Method: 
Energy credit for sunflower meal = (660 kg meal / 340 kg sunflower oil)a × (9.5 / 12.3)b × 
1.9 MJ/kgc = 2.8 MJ/kg sunflower oil 
Energy credit for glycerin = 19.6 MJ/kg biodieseld 

 
0.8 ha-Brownfield: 
Energy credit for sunflower meal = (23.8 L/hae × 0.8 haf × 0.919 kg/Lg) × 2.8 MJ/kg 
sunflower oil = 49.0 MJ 
Energy credit for glycerin = (23.8 L/hae × 0.8 haf × 0.919 kg/Lg ÷ 1.04h) × 19.6 MJ/kg 
biodieseld = 329.8 MJ 
 
0.12 ha-Greyfield: 
Energy credit for sunflower meal = (23.8 L/hae × 0.12 hai × 0.919 kg/Lg) × 2.8 MJ/kg 
sunflower oil = 7.3 MJ 
Energy credit for glycerin = (23.8 L/hae × 0.12 hai × 0.919 kg/Lg ÷ 1.04h) × 19.6 MJ/kg 
biodieseld = 49.5 MJ 
 

a. Mass-based ratio of sunflower meal and sunflower oil from sunflower seeds [75]; 
b. Ratio of metabolizable energy of sunflower meal and soy meal [75]; 
c. Energy displaced by soy meal given by GREET1_2011;  
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d. Energy credit for glycerin production given by GREET1_2011;  
e. Sunflower oil yield reported by GTECH Strategies; 
f. Area of the 0.8 ha-Brownfield;  
g. Density of sunflower oil [82]; 
h. Conversion ratio from bio-oil to biodiesel reported by GREET1_2011;  
i. Area of 0.12 ha-Greyfield.  
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