

A Systematic Approach to Generate the Security Requirements

For the Smart Home System

by

Rongcao Xu

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Computing Studies

Approved May 2013 by the
Graduate Supervisory Committee:

Arbi Ghazarian

Ajay Bansal
Timothy Lindquist

ARIZONA STATE UNIVERSITY

August 2013

i

ABSTRACT

Smart home system (SHS) is a kind of information system aiming at realizing

home automation. The SHS can connect with almost any kind of

electronic/electric device used in a home so that they can be controlled and

monitored centrally.

Today’s technology also allows the home owners to control and monitor the

SHS installed in their homes remotely. This is typically realized by giving the

SHS network access ability.

Although the SHS’s network access ability brings a lot of conveniences to the

home owners, it also makes the SHS facing more security threats than ever before.

As a result, when designing a SHS, the security threats it might face should be

given careful considerations.

System security threats can be solved properly by understanding them and

knowing the parts in the system that should be protected against them first. This

leads to the idea of solving the security threats a SHS might face from the

requirements engineering level.

Following this idea, this paper proposes a systematic approach to generate the

security requirements specifications for the SHS. It can be viewed as the first step

toward the complete SHS security requirements engineering process.

ii

DEDICATION

This thesis is dedicated to my family for their unconditional love.

iii

ACKNOWLEDGEMENTS

I wish to thank my supervisor, Dr. Arbi Ghazarian, for his great support and

patience in this project and my learning and understanding the field of

requirements engineering.

iv

TABLE OF CONTENTS

LIST OF FIGURES .. vii

CHAPTER

1 INTRODUCTION ... 1

2 BACKGROUND AND RELATED WORK ... 3

2.1 View Requirements as Conditions to Meet to Solve Problems 3

2.2 The Role of Requirements In System Design and Implementation 5

2.3 Requirements Engineering .. 5

2.3.1 Requirements Elicitation .. 6

2.3.2 Requirements Analysis/Derivation ... 6

2.3.3 Requirements Specification .. 6

2.3.4 Requirements Verification/Validation .. 7

2.3.5 Requirements Management .. 7

2.3.6 Requirements Engineering Process at Successive System Developing

Stages……………….. ... 7

2.4 Security and Sound Security Engineering Practice 9

2.5 Smart Home System (SHS) and Its Security Problem 10

3 PROBLEM STATEMENT .. 12

v

3.1 Security Engineering Practice as an Add On Feature 12

3.2 Security Engineering Practice as a Part Of Requirements Engineering

Process…………………………………………………………………………13

3.3 Security Engineering Practice in SHS ... 14

4 PROPOSED SOLUTION .. 16

4.1 Introduction ... 16

4.2 Solution Process .. 16

4.3 Detailed Discussion ... 18

4.3.1 Creating the SHS Security Threats Profile ... 18

4.3.1.1 Define Abstract System Model for the SHS Under Development: 19

4.3.1.2 Identify Security Assets and Security Threats in the SHS 21

4.3.1.3 Defining Abuse Case for Security Threats and Determine Their

Possibility and Risk Level ... 25

4.3.1.4 Prioritizing Threats .. 28

4.3.2 Defining High Level Security Requirements 29

4.3.3 Deriving Functional Security Requirements from High Level Security

Requirements ... 31

4.3.3.1 Analyze High Level Security Requirements.................................. 32

4.3.3.2 Identify/Define Suitable Countermeasures 32

4.3.3.3 Describe Countermeasures in Form of Functional Requirements . 33

4.4 Summary ... 33

vi

5 CASE STUDY ... 34

5.1 The Imaginary SHS ... 34

5.1.1 System Functionalities and System Structure 34

5.2 The Applying of the Proposed Solution .. 35

5.2.1 Creating the SHS Security Threats Profile ... 35

5.2.1.1 Abstract System Model for the Imaginary SHS 35

5.2.1.2 Identify Security Assets and Security Threats 36

5.2.1.3 Defining Abuse Case:.. 39

5.2.1.4 Prioritization .. 44

5.2.2 Defining High Level Security Requirements. 44

5.2.3 Derive Functional Security Requirements from High Level Security

Requirements ... 48

6 CONCLUSION AND FUTURE WORKS .. 49

6.1 Conclusion ... 49

6.2 Future Works ... 49

REFERENCES ... 51

vii

LIST OF FIGURES

Figure Page

Figure1: Requirement Engineering Process.. 8

Figure 2: Three Steps to Generate the SHS Security Requirements 18

Figure 3: Steps to Create the SHS Security Threats Profile 19

Figure 4: A General Abstract SHS Model .. 20

Figure 5: Steps to Identify Security Assets and Threat in SHS 22

Figure 6: Node Information Table .. 23

Figure 7: Security Threats Checklist Table .. 24

Figure 8: SHS Security Assets and Threats Table .. 25

Figure 9: Abuse Case Template .. 26

Figure 10: Possibility Scoring Criteria ... 27

Figure 11: Risk Level Scoring Criteria ... 28

Figure 12: SHS Security Requirements Table .. 31

Figure 13: Steps to Derive Functional Security Requirements for the SHS Under

Development ... 32

Figure 14: Abstract System Model for the Imaginary SHS 36

Figure 15: Nodes Information Table for the Imaginary SHS 37

Figure 16: The Security Threats Check List for the Imaginary SHS 38

Figure 17: The Security Assets and Threats Table of the Imaginary SHS 39

Figure 18: The Abuse Use for Networking Evasdropping Security Threat on the

Host Controller.. 40

viii

Figure 20: The Abuse Case for the Internal Communication Eavesdropping

Security Threat on the Host Controller ... 42

Figure 21: The Abuse Case for Internal Communcation Link Spoofing Security

Threat on the Host Controller. .. 43

Figure 22: The Abuse Case for the Node Unauthorized Data Access Security

Threat on the Host Controller ... 44

Figure 25: Security Requirement for Preventing the Host Controller from Internal

Communication Spoofing Security Threat ... 46

Figure 26: Security Requirement for Preventing the Host Controller from

Network Eavesdropping Security Threat. ... 47

Figure 27: Security Requirement for Preventing the Host Controller From Internal

Communication Link Eavesdropping Security Threat 47

1

Chapter 1

INTRODUCTION

One of the major causes of the information system design failure is that its

functionalities and performance do not meet its stakeholders’ expectations.

Problems in the requirements engineering process, such as the ambiguous and

inconsistent requirements specifications, the inadequate verification of the

specified system requirements and the improper responses to the requirements

changing requests, are among the main reasons for causing such a failure

(Sommerville, Software engineering, 9th edition, 2011) .

At the same time, most of the information systems today face more security

threats than ever before as a result of their enhanced network access ability.

Although this ability brings convenience to personal life, it also increases the

possibility for the information systems to be attacked maliciously. If an

information system is designed without the consideration of the security threats it

might face then it is less useful or worthless.

Smart home system (SHS) is a kind of information system aiming at realizing

home automation (Home automation). Its build in network access ability allows

its users to know the status of their homes remotely and also allows them to

control the facilities in their homes remotely.

The users of the SHS can also use it to do a lot of other useful things like the

home entertainments, on-line chatting and the elderly monitoring.

2

Clearly, if there is no security mechanisms build into the SHS then it can be

intruded by the hackers easily and the results are the hackers can control every

home facilities connected with it, modify the critical data stored in it and report

fake information about the home status to the home owners.

The discussion above indicates that the requirements engineering and the

security mechanisms are among the key factors for a SHS to gain the commercial

success in the market. As a result, this paper proposes an approach on generating

the security requirements specifications of a SHS. The aim of this approach is to

understand and solve the security threats a SHS might face from the requirements

engineering level and to produce its security requirements specifications in a

systematic way.

Following the introduction this paper is organized as follows: Section 2

reviews current the security engineering practices in the field and in the SHS; this

section also identifies the problem to be solved by this paper. Section 3 proposes a

systematic approach to generate the security requirements specifications for a

SHS. Section 4 is the case study and section 5 summarizes the work done in this

paper and points out the future directions.

3

Chapter 2

BACKGROUND AND RELATED WORK

Requirements engineering and security, as discussed in chapter 1, are key

factors for a SHS system to gain commercial success in market and they are the

backgrounds for further discussion. As a result this chapter gives some discussion

on these factors.

2.1 View requirements as conditions to meet to solve problems

A system is useless if it does not do what the stakeholders need it to do; this is

also true for the information systems.

The needs from stakeholders define the system at the most abstract level;

because these needs just state what is needed and say nothing on how to design

and implement such a system. As an example, a need from stakeholders could be

“We need a new server system that can handle 100 transactions concurrently.”

The needs from stakeholders also present the highest level problems that

should be solved during system designing process. If these problems are properly

identified and solved then the needs from stakeholders would be met. Stated in

another way, meeting stakeholders’ needs is the process of solving the problems

presented in their needs.

Problems can be viewed as obstacles on the way of reaching desired results.

Solving problems is the process of knowing the problems and finding conditions

that can lead to the problems solutions.

4

Generally, solving problems is a multi-stage activity. For a given problem and

in the first stage of problem solving, efforts are exerted to find conditions (ideally

necessary and sufficient) that can lead to the problem solutions. But meeting these

conditions may not be an easy task; as a result, these conditions become problems

themselves and this leads us to the second stage of problem solving process. In

the second stage, efforts are exerted again to find conditions leading to the

problem solutions. This process is repeated until, at a certain stage, the conditions

that lead to problem solutions can be met easily. These conditions are at the

bottom of the problem solving process. The meeting of conditions at bottom

solves the problems at the bottom stage; and, in general, the solved problems at a

certain stage will solve the problems at the stage that is above it. Such a process is

the general problem solving process.

Solving the problems presented in stakeholders’ needs is similar to the general

problem solving process. The problems should be identified as clear as possible

and then conditions that can lead to the solutions should be identified. These

conditions are in fact requirements for system; they are what we the system

designers are required to do to solve the problem.

Also similar to the general problem solving process, these conditions may

become the new problems the system developers should solve in system

developing process.

Holding this view of point, requirements can be defined as a description of

conditions that should be met by system designing and implementation at

5

successive system development stages. These conditions can be system’s

operational, functional characteristics or constraints.

2.2 The role of requirements in system design and implementation

Requirements play important role in system design and implementation.

Without stable requirements the project is to be flounder (Elizabeth Hull, 2011).

With requirements, the system developers can evaluate if a design can fulfill

the requirements or not and at what cost; can predicate what could be if the design

fail to meet the requirements. When a changing request for a requirement raises,

either from customer or development team side, its impact on the whole system

can be evaluated; as a result one can determine whether to accept such a change

or not.

In summary, the requirements are used for: project planning, risk

management, acceptance testing, trade off and change control (Sommerville,

Software engineering, 9th edition, 2011) (Elizabeth Hull, 2011).

2.3 Requirements engineering

Because system requirements are so important, a systematic way is needed to

create, verify/validate and manage them. This is the place where the requirements

engineering come in.

Requirements engineering (REE) as defined by Elizabeth Hull et al is “the

subset of systems engineering concerned with discovering, developing, tracing,

6

analyzing, qualifying, communicating and managing requirements that define the

system at successive levels of abstraction.” (Elizabeth Hull, 2011).

Sommerville has defined RE as “The process of finding out, analyzing,

documenting, and checking the services and constraints is called Requirements

Engineering (RE)” (Sommerville, Software engineering, 2007).

As a result, the main steps in REE process are requirements elicitation,

analysis/derivation, specification, verification/validation and management.

2.3.1 Requirements elicitation
Requirements elicitation is the process to identify system requirements from

stakeholders’ needs. They are the system requirements that define the system at

the highest abstraction level.

2.3.2 Requirements analysis/derivation
Requirements analysis/derivation means to analyze system requirements

which define system at certain abstraction level and derive new system

requirements from them.

2.3.3 Requirements specification
Initially, requirements elicited from stakeholders’ needs or derived from

system requirements that define system at a certain abreaction level would be an

(vague) idea in the requirements engineers’ mind. They should be expressed out

in some way so that they can be analyzed and inspected concretely. The process

to express requirements concretely is called requirements specification.

7

Depending on the actual need, the requirements can be specified informally by

using natural language or formally by using formal language.

Requirements specifications should be clear (does not contain ambiguity),

consistent (does not contradict with each other), complete (enough for developing

solutions) and testable (be used as a testing acceptance criteria) (Elizabeth Hull,

2011). But most importantly, they should reflect the “real” meaning of system

requirements.

2.3.4 Requirements verification/validation
Requirements verification/validation is the process of checking that the

specified requirements actually define the system that the customer really wants

(Sommerville, Software engineering, 9th edition, 2011). If they are not, the

requirements would be re-analyzed and re-specified.

As a result the requirements analysis, specification and verification stages are

not totally separated, they are related with each other.

2.3.5 Requirements management
Requirements management is to manage the requirements after they are

specified and verified. Activities in requirements management include

requirements changing and tracing management.

2.3.6 Requirements engineering process at successive system
developing stages

A system development process is carried out at successive system abstraction

levels, starting from the most abstract one and ending at the most concrete one.

These successive system abstraction levels are corresponding to successive

8

system developing stages. Each of the stages would impose some requirements to

its successive stage. As a result, ideally, for each of the system developing stages,

the requirements engineering cycle would be repeated. This can be summarized in

the following Figure 1 (Elizabeth Hull, 2011)

Figure 1: Requirement engineering process

The problem domain is the domain in which a system is going to be used to

solve the problems (needs) presented by stakeholders (Elizabeth Hull, 2011). The

9

requirements engineering process in problem domain aims at forming stakeholder

requirements that define the system at highest abstraction level.

The solution domain is where engineers use their ingenuity to solve problems

(Elizabeth Hull, 2011). Requirement engineering process in the solution domain is

to derive system requirements at successive system abstraction levels.

If the system developers, when developing the system, jump directly into the

solution domain, the chances are the functionalities the system provides are not

those expected from system stakeholders.

2.4 Security and sound security engineering practice

Hardware, programs and data are system assets in an information system and

malicious persons can bring harms to them. For example, system CPU and hard

disk can be physically destroyed; confidential data can be read, copied, deleted or

altered maliciously. The consequence of allowing the harms to happen is typically

a disaster (Philip Koopman, Carnegie Mellon University, 2004), (Charles B.

Haley, 2008).

Security in the information systems is the mechanism to prevent such harms

from happening. Harms can be viewed as security threats and system assets that

are under the threatening of security threats are security assets.

Because of the booming of mobile applications, the wide availability of

network access and the increasing system interconnection, security problems in

the information systems today are more severe than ever before. If there is no

10

security mechanism being designed into the information systems, malicious

persons can bring security threats to them easily.

Security is easier to archive if there is a clear model of what is to be protected

and who is allowed to do what (Tanenbaum, 2007). Some security engineering

practitioners also suggest that system developers should firstly establish a sound

security policy and treat security as an integral part of system design to solve

security problems. (Rushby, 2001), (Charles B. Haley, 2008), (Guttorm Sindre,

2004)

This makes sense that a sound security engineering practice should start from

requirements engineering level. Beginning with stakeholders’ security needs,

system developers proceed to generate stakeholders’ security requirements; then

the system security requirements are derived from them and finally security

solutions are developed according to the system security requirements.

 A finished system could be either over protected or under protected if

security problems are solved directly from solution domain. Over protecting

means additional cost, under protecting means there are security leaks in system.

Both of them are not expected.

2.5 Smart home system (SHS) and its security problem

Smart home system (SHS) is a kind of information system aiming at realizing

home automation. Anything in a home that uses electricity can be put on the SHS

and at your command (Goodwin, 2010).

11

A SHS can be viewed as a collection of nodes and each node has its dedicated

functionalities. Some of the nodes in the SHS are sophisticated embedded

systems. They have powerful CPU and operating system; they run application

code in RAM instead of ROM and they store files in flash storage system. Stated

in another way, they are more likely a traditional PC system; for example, there

are SHS running Linux seen in market (Goodwin, 2010).

The PC like feature and the build-in network access ability in SHS make them

also facing the security threats seen in desktop and server system. Clearly, when a

SHS is developed security problems must be considered.

12

Chapter 3

PROBLEM STATEMENT

A key feature for information system is security; but how are security

problems understood and solved in practice and particularly in SHS?

3.1 Security engineering practice as an add on feature

 “Information systems security issues have usually been considered only after

the system has been developed completely, and rarely during its design, coding,

testing or deployment process” (Ambrosio Toval).

 “The security is often treated by embedded system designers as the addition

of features to the system” (Paul Kocher, 2004).

These statements indicate that the security is not considered as an integrated

part of the system design process. Instead, it is often considered when the

designing of other system features is finished.

One of the consequences of solving the security threats a system might face in

this manner is the system’s structure could be destroyed by the added security

mechanisms; another consequence is that the system performance can be severely

affected by the added security mechanisms.

As a result, many security engineering practitioners argue to understand and

solve the security threats a system might face from the requirements engineering

level.

13

3.2 Security engineering practice as a part of requirements engineering

process

What is the situation if the security threats are understood and solved from the

requirements engineering level?

John Wilander et al present a survey on the security requirements engineering

in their paper (John Wilander and Jens Gustavsson, 2005). The paper surveyed the

security requirements specifications in 11 different kinds of information systems.

They are the billing, accounting, e-business and other information systems.

The outcome of this survey is not optimistic. One conclusion presented in the

paper is: “the security requirement is poorly specified.” The main problems in the

specification are the inconsistent selection of the security requirements and the

inconsistent level of details of the specified security requirements.

Inconsistent selection of the security requirements means some relevant

security areas are fairly well specified whereas other are completely left out (John

Wilander and Jens Gustavsson, 2005).

As examples, John Wilander et al point out in their paper that all systems

surveyed have requirements which indicate that restricted access is important. At

the same time only three specifications require some kind of encryption of data

communication and only two specifications require physical security including

restricted physical access.

14

Inconsistent level of detail means some security requirements have a high

level of detail whereas others in the same specification are only specified on a

general level (John Wilander and Jens Gustavsson, 2005).

John Wilander et al also give an example on this factor: “This phenomenon

can be seen in for instance the E-Business system where the requirements on

logging are very detailed (eight requirements on what info to be logged) and at

the same time digital signatures are specified as: The system should be able to

handle the use of electronic signatures with no further details.”

This conclusion indicates that there are still problems in the security

engineering process even if the security issues are understood and solved from the

requirements engineering level.

Another important conclusion presented in this survey is that most of the

security requirements are functional instead of being non-functional. Because the

survey result reveals more than 75% of the security requirements (164 out of 216)

boils down to functional requirements. This is a good indication that most of the

security requirements can be formalized.

3.3 Security engineering practice in SHS

Papers, like (Rosslin John Robles, 2010), (Eržen, 2012) (Mohd Ariff Razaly,

2012), (Georgios Mantas, 2011) and others, are trying to discuss the

countermeasures to address a particular or some kinds of security threats a SHS

might face.

15

Although these papers provide great information, by just putting the

countermeasures proposed in those papers blindly into the SHS under

development may result in system overprotection or under protection. This may

also bring the unnecessary development cost.

In another words, in order to build proper and efficient security mechanisms

for a particular SHS under development, there is a need to know exactly what are

the security threats it might face first; then the system developers can define

security requirements for it and finally proper countermeasures proposed in these

papers can be selected or new countermeasures can be established to deal with

those security threats.

This means the security problems in the SHS should be understood and solved

from the requirements engineering level. But none of these and others papers,

discussing the security threats in the SHS, surveyed so far addresses this issue.

Taking this discovery and the poorly specified system security requirements

as problems, this paper proposes an approach to systematically generate the

security requirements specification for a SHS under development. The generated

specifications would be consistency in both of the selection of security

requirements and the level of details. This approach can be viewed as the first step

toward the complete SHS security requirements engineering process.

16

Chapter 4

PROPOSED SOLUTION

4.1 Introduction:

The solution is to understand and solve the security problems in the SHS from

requirements level. The focus of this solution is on requirements specifications;

because (sound) requirements specifications are the basis for further system

development.

4.2 Solution process:

 Three main steps are needed to generate the SHS security requirements

specifications and they are depicted in Figure 2.

Step 1 analyzes the security needs proposed by stakeholders. These needs

define the system’s security features at the highest level and they are abstract.

Nothing is mentioned on what parts in the SHS should be protected and how to

protect them. So one of the main purposes of this step is to identify the security

threats a SHS might face and the parts in it that should be protected.

The output of this step is a SHS security threats profile and it contains five

parts. They are, in turn, the abstract system model; the system node information

table; the security threats check list; the security assets/threats table and the abuse

cases. The security threats profile is the basis for defining system security

requirements.

Step 2 defines the high level security requirements for each of the parts in the

SHS that should be protected by some kinds of security mechanisms. They are

17

described abstractly by just stating that a system part should be protected from a

particular security threat. The threats profile generated in step 1 is used to assist

this step.

Step 3 derives the functional system security requirements from the high level

abstract security requirements defined in step 2. These derived functional security

requirements are specified informally in natural language. This step is also

assisted by the threats profile.

Step 1 can enhance the consistency in the selection of the security

requirements because it forces the system developers to identify the security

threats a SHS might face as completed as possible and as a result there is less

chances to leave out security requirements on some security relevant areas.

Step 2 and 3 can enhance the consistency in the level of specification details

because they require the system developers to define the high level security

requirements first and then to derive the functional security requirements.

18

Figure 2: Three steps to generate the SHS security requirements

4.3 Detailed discussion

As discussed in chapter 2, system assets in an information system are system

hardware, software and data/information stored in such a system. The security

assets are those system assets that face security threats.

4.3.1 Creating the SHS security threats profile
The first step towards the sound security requirements engineering process in

any information system is to know what security threats it might face and the

parts that should be protected from them. Implementing security mechanisms

19

without knowing the security threats may result in waste of money and effort

(Suvda Myagmar), (Dale R. Thompson) (Microsoft, J.D. Meier, Alex Mackman),

(Tanenbaum, 2007).

A systematic approach is needed to create the SHS security threats profile;

creating it without carefully planned steps would also result in improper security

threats solutions. Figure 3 depicts the steps used to create the SHS security threats

profile.

Figure 3: Steps to create the SHS security threats profile

4.3.1.1 Define abstract system model for the SHS under development:

The SHS is not a new conception and there are a lot of commercial SHS on

the market. Based on the researches made on these SHS, a general SHS abstract

20

model is defined and is depicted in Figure 4. (This is not to say the proposed

solution excludes other general abstract model)

Figure 4: A general abstract SHS model

In essence, a SHS is a kind of communicating network composed by different

system modules and communication links. Each module has its dedicated

functionalities. For example the main control module is responsible for receiving

user commands, coordinating the operation of the system and reporting the system

status to the home owners. And all the modules in the SHS are working together

to provide the overall SHS functionalities.

The ovals in the abstract system model represent the different system nodes in

a SHS. A single node is an abstraction of a particular module in the SHS. For

example, the main node abstracts the main control module and a security sub node

abstracts the security module in the SHS.

The double heads arrow is the abstraction of the communication links between

the system modules. In reality these links could be in either wired or wireless

21

form. The double heads arrow also indicates that the link is usually a two way

communication link.

It is possible for a node to be as complicated as a communicating network

itself. But these details are ignored and the focus is on the overall functionalities it

provides.

It is common for the SHS to be accessed through a PC, a smart phone or a

tablet. The specially designed SHS control software is running on these devices.

The users can use this software to control and monitor the SHS remotely. Based

on this observation, for a SHS, these kinds of devices are abstracted as a remote

node.

If a SHS under development has the structure described in this general

abstract model then its abstract system model can be an instance of it.

The main purpose of this step is to reduce the number of system assets to be

evaluated against security threats. When doing the evaluation, instead of

evaluating every system assets, only the abstract system nodes and the

communication links are considered.

4.3.1.2 Identify security assets and security threats in the SHS
This stage identifies the security assets in a SHS and the security threats they

may face. Figure 5 describes the steps to identify security assets and security

threats in a SHS.

22

Figure 5: Steps to identify security assets and security threats in SHS

In the first step, related information is collected for the nodes identified in the

abstract SHS model. The information to be collected is the functionalities,

interfaces, communication links and data of a node. Additional information may

also be collected depending on the actual needs.

The collected information could be recorded in the nodes information table.

The table is depicted in Figure 6. Typically, such information could be obtained

by reading other system development documents and the collected information is

used to assist the determination of the security threats a node might face.

23

Figure 6: Nodes information Table

The second step, if the security threats checklist is not available yet, is the

creation of the security threats checklist for the SHS.

The checklist is used to list possible security threats the SHS might face and

once it is created the system developer can use it to evaluate whether the system is

under the risk of a particular security threat. The checklist can also be updated as

needed and reused when developing similar systems in future.

A SHS might face many security threats and sometimes they seem to be

complicated but some of them may fall into a particular category. As a result

security threats categorization could be an effective way to manage the

complexity.

The main parts in the SHS are network interface, nodes and internal

communication links and they are the targets of the security threats. As a result,

the security threats a SHS might face can be categorized by considering whether

they are targeting at the network interface, the nodes or the internal

communication links. Based on this observation the security threats checklist for

the SHS is defined and it is shown in Figure 7.

24

Figure 7: Security threats checklist table

The system developers can focus on the network interface first when building

the security threats checklist. The possible security threats on the network

interface are recorded into the table with their names and descriptions. The same

process is applied to the internal communication links and nodes.

When the nodes information table and the security threats checklist are ready,

the third step is to evaluate the system nodes in the SHS under development

against the security threats checklist. The user interfaces, functionalities,

communication link and data on a particular node is evaluated in turn to see

whether they are under the risk of the security threats listed in the checklist. If the

answer is yes then a node is determined as a security asset. The evaluating results

are recorded in the SHS security assets and threats table. This table is depicted in

Figure 8.

25

Figure 8: SHS security assets and security threats table

If the node is under the risk of a specific threat then the corresponding unit in

the table is marked as “Y”.

The priority of a particular security threat imposed on a node is also recorded

in this table. But this information is obtained and filled in the prioritization step.

4.3.1.3 Defining abuse case for security threats and determining their
possibility and risk level

An abuse case for each of the security threats a node might face is defined in

this stage. Abuse case is the descriptions of the interactions between a hacker and

a system that carry out the security threats on system which resulting in harm

(John McDermott).

The purpose of defining abuse case is to force the system developers to think

as a hacker so that a better understanding on how a particular security threat can

be carried out is obtained. Such an understanding is helpful in determining the

possibility and the risk level of a particular security threat.

This understanding is also helpful in knowing what methods can be used to

prevent these steps from being carried out.

26

The abuse case would be recorded in the template depicted in Figure 9.

Figure 9: Abuse case template

In the template, the abuse case number is the reference number for a

particular abuse case; the abuse case name gives a description of what it is about;

the source section records the originating of this abuse case; the purpose section

illustrates the goal of carrying out this particular security threat; the steps section

summarizes the main steps used to accomplish the goal; the consequence section

records the possible results if such a security threat is carried out successful.

The possibility section records the chance for this security threat to happen;

the risk level sections records the severity of the consequence and these two

factors are used to determine the priority of a threat.

Possibility is quantified against three criteria: the level of skills needed, time

and money cost needed to perform the attacks. For a particular security threat,

27

these criteria are scored within the range of 1 – 3. The scores are recorded in the

corresponding locations in the abuse case template; they are summed and

averaged. The possibility is the reciprocal of the averaged result, so the possibility

value ranges from 0.3-1. Under this algorithm, the higher the average is the less

possibility for it to occur. Inspired by, (Microsoft, J.D. Meier, Alex Mackman)

(Suvda Myagmar), (EbenezerA.Oladimeji), Figure 10 is the table that records the

possibility scoring criteria.

Figure 10: Possibility scoring criteria

Risk level quantification is also done by scoring a set of evaluating criteria in

the range of 1 – 3 then summing these scores and averaging the sum. Damage

potential, reproducibility, and number of users affected are the criteria for

evaluating the risk level. The scores are also recorded in the abuse case template.

It is intuitive that the higher these scores are the higher risk level a security

threat can impose on the system. Figure 11 is the table records risk level scoring

criteria (Microsoft, J.D. Meier, Alex Mackman).

28

Figure 11: Risk level scoring criteria

4.3.1.4 Prioritizing threats
Due to the cost, time to market and other constraints, it is impossible to

mitigate all the possible security threats a system might face (Suvda Myagmar).

At the same time not all the security threats would have the same importance

level. Some of them would bring severe consequence to the system and is very

likely to happen; some of them are severe but are unlikely to happen; while others

are less likely to happen and would bring inconsequence harm to the system. So

there is a need to evaluate the priority of the security threats. By knowing the

priority, the system developers may exert their efforts to solve high priority

security threats and they may decide to accept the happening of a low priority

security threat.

Priority should be quantified. The priority number would help the system

developers to understand the severity of a particular security threat.

29

A simple algorithm is used in this approach: Priority = Possibility * Risk level

(Suvda Myagmar), (Microsoft, J.D. Meier, Alex Mackman). Possibility and risk

level are already determined when defining abuse cases so that the calculation of

priority is straightforward. The calculated priority values are recorded into the

SHS security assets and threats table.

If the priority of a security threat imposed on a node is lower enough then the

system developers may chose to accept such a threat to happen.

After these 4 steps, the SHS security threats profile is generated. It has five

parts: an abstract system model, nodes information table, a security threat check

list, a system security assets and threats table and a collection of abuse cases. This

profile would give the system developers a good understanding of the threats the

SHS under development might face; how these threats can be carried out and their

priorities. This profile is also the basis for defining system security requirements.

4.3.2 Defining high level security requirements
The system developers would use the SHS security assets and security threats

table to assist this defining work.

For each of the nodes in the table, if it is under the risk of a particular security

threat and if the threat has a high priority value then a high level security

requirement is defined on it; if the threat has a low priority value then the system

developers may chose to allow the threat to happen and there is no high level

security requirement defined against that threat.

30

For example, if the main control node in a SHS is under the threat of spoofing

security threat and the priority value is 3 then a high level security requirement

can be defined as: “The main control node should be protected from spoofing

threat whenever there is an attempt to access it from network.”

The defined high level security requirements are recorded in the security

requirement table which is shown in Figure 12.

The category section indicates this requirement is security requirement; the

number section contains the numerical identification of this security requirement;

the name section describes the name of the security requirement; the source

section is used to identify the originality of this security requirement.

The derived functional security requirements are also recorded in this table;

but these contents are filled when the process goes to that phase.

31

Figure 12: SHS security requirements table

4.3.3 Deriving functional security requirements from high level
security requirements

This phase aims at deriving the functional security requirements from the high

level security requirements. Ideally, the implementations of those functional

requirements in the system would fulfill the high level security requirements.

Three steps are needed to derive the functional security requirements and they are

depicted in Figure 13.

32

Figure 13: Steps to derive functional security requirements for the SHS
under development

4.3.3.1 Analyze high level security requirements
This step is to find some clues for finding/defining suitable countermeasures

to fulfill high level security requirements. The abuse cases can be used to assist

this step because they describe how the security threats can be carried out.

4.3.3.2 Identify/define suitable countermeasures
In this step proper countermeasures are identified or defined to fulfill high

level security requirements.

Many of the security threats imposed on the information systems had been

analyzed in great detail and a lot of countermeasures are proposed to deal with

them. As a result, for a particular high level security requirement, the task is to

find the suitable countermeasures and tailor it for the system under development.

33

Sometimes, due to some domain/application specific constraints, there are no

available countermeasures and as a result, new countermeasures should be

defined to resolve the security threats.

4.3.3.3 Describe countermeasures in form of functional requirements
In this step, the identified/defined countermeasures are specified in the form

of functional security requirements and they are recorded into the derived

functional security requirements section of the security requirements table.

4.4 Summary

This chapter introduces a systematic method to generate security requirements

for the SHS. The main outputs of this method are the system security threats

profile and a collection of system security requirements specifications.

34

Chapter 5

CASE STUDY

The approach proposed in chapter 4 is applied to an imaginary SHS. The

purpose of this chapter is to give an example on how to use the proposed

approach to generate the SHS security requirements specifications.

5.1 The imaginary SHS:

5.1.1 System functionalities and system structure
Many practical SHS are researched for their functionalities, structures and

user interfaces when the imaginary SHS is being defined. As a result, the

functionalities of the imaginary SHS are common among the SHS seen in the

market. The functionalities of the imaginary SHS are lighting control, HVAC and

home safety/security. The system structure confirms to one described in the

general abstract SHS system model (Figure 4).

Each of the functionalities is implemented by an individual module and these

modules communicate with each other through the wireless communication links.

There is a specially designed SHS controlling software runs on the mobile

tablet in this imaginary SHS. A user can use that software to control and

communicate with the SHS remotely. User commands are sent to the host

controller and then the host controller passes these commands to related modules.

System status can be obtained and displayed on the mobile tablet upon user

request or in other user definable manner. This mobile tablet corresponds to the

remote node as discussed in chapter 4.

35

It is possible for this SHS to be controlled by other kind of remote node but

for simplicity it is assumed the mobile tablet is the only remote node in this SHS.

5.2 The applying of the proposed solution

The stakeholders’ security needs for the imaginary SHS can be expressed as

simple as a single sentence: “The newly developed SHS should be secure”; and

this is the start point for the security requirements development process.

The purpose of this case study is for illustration; as a result only the security

requirements for the host controller will be generated by using the proposed

method.

5.2.1 Creating the SHS security threats profile

5.2.1.1 Abstract system model for the imaginary SHS
The abstract system model of the imaginary SHS which is shown in figure 14

is an instance of the general abstract SHS system model that is discussed in

chapter 4. This is because its structure confirms to the structure of it.

.

36

Figure 14: Abstract system model for the imaginary SHS

5.2.1.2 Identify security assets and security threats
The first step in this process is to build the nodes information table. The

building of it is straight forward because the information needed can be obtained

by reading other system design/development documents. In this case study, only

the information about the host controller is collected because this case study is

intended to generate the security requirements for host controller only. The

collected information is shown in Figure 15.

37

Node Mobile
tablet

Host controller Lighting
control

HVAC
control

Home
security/safety

User interface A touch panel
for local
control; a
network port for
receiving
remote
commands and
reporting system
status.

Functionalities Receiving
remote
commands to
perform actions;
collecting sub
nodes status and
reporting them
to mobile tablet;
control sub
nodes by the
commands
entered by local
users through
touch panel

Communication
links

 Communicate
with mobile

tablet via
network

connection;
communicate

with sub nodes
via internal

wireless
communication

link

Data on node User credential;
system
configuration
data; system
status logging
data

Other
Figure 15: Nodes information table for the imaginary SHS

38

It is assumed, in this case study, a security threats check list is not available

when the SHS is developed and the system developers are required to create the

check list.

This check list is created by using the conception and template discussed in

section 3. The created security threats check list is assumed to be complete for the

illustration purpose and the checklist is shown in Figure 16.

Figure 16: The security threats check list for the imaginary SHS

The next step is to identify security assets and security threats they are facing

after the nodes information table and the security threats check list are ready.

The host controller is evaluated against each of the security threats listed in

the check list. The node information collected for the host controller is used

during this evaluation process.

After the evaluation, the host controller is found to be facing the security

threats of network eavesdropping and spoofing, internal communication link

39

eavesdropping and spoofing and unauthorized data access. These threats are

marked out in the security assets and threats table (Figure 17).

Figure 17: The security assets and threats table of the imaginary SHS

5.2.1.3 Defining abuse case:
 For each of the security threats the host controller faces an abuse case is

defined. One of the purposes of this step is to get a better understanding on how a

particular security threat can be carried out; another purpose is to generate the

possibility and risk level information which is used to calculate the priority of a

particular security threat. The possibility and risk level information are obtained

by following the steps defined in chapter 4.

These abuse cases are shown from Figure 18 to Figure 22.

40

Figure 18: The abuse use for networking eavesdropping security threat on
the host controller

41

Figure 19: The abuse case for network spoofing security threat on the host
controller

42

Figure 19: The abuse case for the internal communication eavesdropping
security threat on the host controller

43

Figure 20: The abuse case for internal communication link spoofing security
threat on the host controller.

44

Figure 21: The abuse case for the node unauthorized data access security
threat on the host controller

5.2.1.4 Prioritization
Prioritization is a straight forward process. The priority is obtained by using

the algorithm defined in chapter 4 and the calculated priority is recorded into the

security assets and threats table for the imaginary SHS.

5.2.2 Defining high level security requirements .

The process for defining the high level security requirements can be carried

out under the assistance of all the information obtained in the previous steps.

The security threats with higher priority value are considered first and for each

of them a high level security requirement is defined.

45

For the security threats with very low priority value, the system developers

may chose to accept such threats to happen due to cost, time - to- market

constraints.

The high level security requirements for the host controller in the imaginary

SHS are recorded in the system security requirements table. Figure 23 – figure 27

shows the defined high level security requirements.

Figure 23: Security requirement for preventing the host controller from

unauthorized data access security threat

46

Figure 24: Security requirement for preventing the host controller from
network spoofing security threat

Figure 22: Security requirement for preventing the host controller from
internal communication spoofing security threat

47

Figure 236: Security requirement for preventing the host controller from
network eavesdropping security threat.

Figure 247: Security requirement for preventing the host controller from
internal communication link eavesdropping security threat

48

5.2.3 Derive functional security requirements from high level
security requirements

After defining the high level security requirements the corresponding

functional security requirements can be derived from them. For example, for the

high level security requirement to prevent host controller from unauthorized data

access security threat, a privilege based method can be used to fulfill this

requirement. As a result, the derived functional requirement could be:

When a user tries to access a data stored in the host controller, after he/she

logged into the host controller, the user’s privilege should be checked.

If the user has the right privilege then he/she is allowed to access the data.

These two functional security requirements are recorded into the

corresponding system security requirements table.

The same process is applied to other high level security requirements. By the

end of the process, the security requirements specification for the host controller

is generated (Figure 23- Figure 27).

When such a process is applied to all other nodes in the SHS, a complete SHS

security requirements specification can be generated.

49

Chapter 6

CONCLUSION AND FUTURE WORKS

6.1 Conclusion

 By noting the importance of the security features of the SHS, the lacking

of a systematic method to understand and solve security problems the SHS facing

from the requirements engineering level and the problems in security

requirements specification, a systematic approach to generate to security

requirements for a SHS under development is proposed in this paper.

Briefly, in this approach, a SHS security threats profile is build first and then

the high level security requirements and functional security requirements are

defined and derived.

The building of the SHS security threats profile is the core part of this

solution. It gives the system developers a SHS security threats check list; a clear

understanding on what security threats a SHS under development might face; the

steps needed to carry out those security threats; their possibilities to happen; their

risk level and their priorities. The SHS security threats profile is the basis for

defining and deriving security requirements.

This solution can enhance the consistency in the selection of security

requirements because the building of the security threats profile forces the system

developers to identify the security threats a SHS might face as completed as

possible and as a result there is less chance to leave out security requirements on

some security relevant areas.

50

It can also enhance the consistency in the level of specification details because

it requires the system developers to define high level security requirements first

and then to derive functional security requirements.

6.2 Future works

Although the SHS security requirements specifications can be generated by

using the proposed approach, there are still a lot of works could be done in future

to complete the SHS security requirements engineering process.

A security threats check list that is specific to the SHS can be build in future.

This check list can be used directly or used as a reference by the system

developers when they are dealing with the security problems in the SHS.

The functional security requirements generated by this approach may contain

ambiguities and the formal specification is an effective way to resolve them. As a

result, another future work is to formalize these security requirements by using a

kind of formal language.

The specified security requirements should be verified and validated to ensure

they are actually fulfilling the stakeholders’ expectations. As a result, establishing

a security requirements verification/validation method which is specific to the

SHS is also a direction of the future work.

51

REFERENCES

Ambrosio Toval, J. N. (n.d.). Requirements Reuse for Improving Information
Systems Security: A Practitioner's Approach.

Charles B. Haley, R. L. (2008, January/Febuary). Security Requirements
Engineering: A Framework fo rRepresentation and Analysis. IEEE
TRANSACTIONSON SOFTWARE ENGINEERING, VOL.34, NO.1, p.
133.

Dale R. Thompson, N. C. (n.d.). RFID SECURITY THREAT MODEL.

EbenezerA.Oladimeji, S. a. (n.d.). SECURITY THREAT MODELING AND
ANALYSIS: A GOAL ORIENTED APPROACH.

Elizabeth Hull, K. J. (2011). Requirements Engineering, 3rd edition. Springer.

Eržen, R. (2012). Review of main security threats in Smart Home networks.

Georgios Mantas, D. L. (2011). Security in Smart Home Environment.

Goodwin, S. (2010). Smart Home Automation with Linux, 1st edition. Apress.

Guttorm Sindre, A. L. (2004). Eliciting security requirements with misuse cases.
Requirements Eng (2005).

Home automation. (n.d.). Retrieved from Wikipedia:
http://en.wikipedia.org/wiki/Home_automation

John McDermott, C. F. (n.d.). Using Abuse Case Models for Security
Requirements Analysis.

John Wilander and Jens Gustavsson. (2005). Security Requirements -A Field
Study of Current Practice. Dept.of Computer and Information Science,
Link¨opings universite.

Microsoft, J.D. Meier, Alex Mackman. (n.d.). Threat modeling. Retrieved from
http://msdn.microsoft.com: http://msdn.microsoft.com/en-
us/library/ff648644.aspx

Mohd Ariff Razaly, M. S.-R. (2012). A Review of Security System for Smart
Home Applications. Journal of Computer Science 8 (7, , pp. 1165-1170.

Paul Kocher, R. L. (2004). Security as a New Dimension in Embedded System
Design. DAC 2004, June7–11.

52

Philip Koopman, Carnegie Mellon University. (2004, 7). Embedded System
Security.

Rosslin John Robles, T.-h. K. (2010, February). A Review on Security in Smart
Home Development. International Journal of Advanced Science and
Technology Vol. 15.

Rushby, J. (2001, March). Security Requirements Specifcations: How and What?

Sommerville, I. (2011). , Software engineering, 9th edition. Pearson Education.

Suvda Myagmar, A. J. (n.d.). Threat Modeling as a Basis for Security
Requirements.

Tanenbaum, A. S. (2007). Modern operating system, 3rd edition. Prentice Hal.

Young, R. R. (2004). The requirement engineering handbook . Artech House.

	LIST OF FIGURES
	Chapter 1
	INTRODUCTION
	BACKGROUND AND RELATED WORK
	2.3 Requirements engineering
	2.3.1 Requirements elicitation
	2.3.2 Requirements analysis/derivation
	2.3.3 Requirements specification
	2.3.4 Requirements verification/validation
	2.3.5 Requirements management
	2.3.6 Requirements engineering process at successive system developing stages

	2.4 Security and sound security engineering practice
	2.5 Smart home system (SHS) and its security problem

	PROBLEM STATEMENT
	3.1 Security engineering practice as an add on feature
	3.2 Security engineering practice as a part of requirements engineering process
	3.3 Security engineering practice in SHS

	PROPOSED SOLUTION
	4.1 Introduction:
	4.2 Solution process:
	4.3 Detailed discussion
	4.3.1 Creating the SHS security threats profile
	4.3.1.1 Define abstract system model for the SHS under development:
	4.3.1.2 Identify security assets and security threats in the SHS
	4.3.1.3 Defining abuse case for security threats and determining their possibility and risk level
	4.3.1.4 Prioritizing threats

	4.3.2 Defining high level security requirements
	4.3.3 Deriving functional security requirements from high level security requirements
	4.3.3.1 Analyze high level security requirements
	4.3.3.2 Identify/define suitable countermeasures
	4.3.3.3 Describe countermeasures in form of functional requirements

	4.4 Summary

	CASE STUDY
	5.1 The imaginary SHS:
	5.1.1 System functionalities and system structure

	5.2 The applying of the proposed solution
	5.2.1 Creating the SHS security threats profile
	5.2.1.1 Abstract system model for the imaginary SHS
	5.2.1.2 Identify security assets and security threats
	5.2.1.3 Defining abuse case:
	5.2.1.4 Prioritization

	5.2.2 Defining high level security requirements.
	5.2.3 Derive functional security requirements from high level security requirements

	CONCLUSION AND FUTURE WORKS
	6.1 Conclusion

	REFERENCES

