
System-Level Synthesis of Dataplane Subsystems for MPSoCs

by

Glenn Leary

A Dissertation Presented in Partial Ful�llment
of the Requirements for the Degree

Doctor of Philosophy

Approved May 2013 by the
Graduate Supervisory Committee:

Karamvir Chatha, Chair
Sarma Vrudhula
Aviral Shrivastava
Rudy Beraha

ARIZONA STATE UNIVERSITY

August 2013

ABSTRACT

In recent years we have witnessed a shift towards multi-processor system-

on-chips (MPSoCs) to address the demands of embedded devices (such as cell

phones, GPS devices, luxury car features, etc.). Highly optimized MPSoCs

are well-suited to tackle the complex application demands desired by the end

user customer. These MPSoCs incorporate a constellation of heterogeneous

processing elements (PEs) (general purpose PEs and application-speci�c inte-

grated circuits (ASICS)). A typical MPSoC will be composed of a application

processor, such as an ARM Coretex-A9 with cache coherent memory hierarchy,

and several application sub-systems. Each of these sub-systems are composed

of highly optimized instruction processors, graphics/DSP processors, and cus-

tom hardware accelerators. Typically, these sub-systems utilize scratchpad

memories (SPM) rather than support cache coherency. The overall architec-

ture is an integration of the various sub-systems through a high bandwidth

system-level interconnect (such as a Network-on-Chip (NoC)). The shift to

MPSoCs has been fueled by three major factors: demand for high perfor-

mance, the use of component libraries, and short design turn around time.

As customers continue to desire more and more complex applications on their

embedded devices the performance demand for these devices continues to in-

crease. Designers have turned to using MPSoCs to address this demand. By

using pre-made IP libraries designers can quickly piece together a MPSoC

that will meet the application demands of the end user with minimal time

spent designing new hardware. Additionally, the use of MPSoCs allows de-

signers to generate new devices very quickly and thus reducing the time to

market. In this work, a complete MPSoC synthesis design �ow is presented.

i

We �rst present a technique [23] to address the synthesis of the interconnect

architecture (particularly Network-on-Chip (NoC)). We then address the syn-

thesis of the memory architecture of a MPSoC sub-system [24]. Lastly, we

present a co-synthesis technique to generate the functional and memory archi-

tectures simultaneously. The validity and quality of each synthesis technique

is demonstrated through extensive experimentation.

ii

DEDICATION

To my wife, Amanda, for enduring this long road with me. I Love You.

To my sweet little angel, Lauren, you have changed my life forever.

And to my Zoey. You were truly a Man's best friend. I will forever miss you.

Zoey
8.1.2011 - 1.18.2013

iii

ACKNOWLEDGEMENTS

First I would like to give my thanks to my graduate advisor Dr. Karam

Chatha for directing me throughout my Ph.D. study. It was his guidance that

led me into the �eld of embedded systems. His knowledge and expertise has

given me the guidance to overcome the obstacles that I encountered during my

study. His help and insight has contributed to almost all of my research and

the papers that I have published. I am honored to have had the opportunity

to work with Dr. Chatha during the 6+ years (that's a long time) of my

Ph.D. study. His wisdom will continue to guide me and help me throughout

my professional career.

Secondly, I would like to thank my committee members for agreeing to

join my committee. I sincerely appreciate their time and guidance. I would

like to thank Dr. Vrudhula for his active participation in discussions and his

dedication to the Embedded Systems Consortium. I would like to thank Dr.

Shrivastava for his active role and contributions to the computing systems

research lab. I would like to thank Dr. Beraha at Qualcomm Inc. for his

professional insight into embedded devices. I consider myself lucky to have

such a kind and knowledgable committee.

I would like to thank all of the lab members that I have spent time with,

discussed research problems with, conducted projects with me, collaborated on

papers with me, and who have made the process more enjoyable. I would like

to thank Michael Baker for discussing research problems with me, working on

projects with me, traveling the globe with me, and making life more enjoyable

in and out of the lab. I would like to thank Sushu Zhang for her support at

iv

the beginning when I was freshly starting my journey. I would like to thank

Weijia Che for his help with the problems I had with Cell BE and StreamIT.

I would like to thank Amrit Panda for his knowledge and the discussions we

have had. I would to thank Jyothi Swaroop for his collaboration on

SystemC. There have been many other lab members that have been of great

help: Nikhil Ghadge, HaeSeung Lee, Krishna Mehta, and many others. They

have all helped me in one way or another and I would like to thank them for

their time and commitment.

I would like to thank the support I have received from outside of Arizona

State University. In particular, the collaboration with the IUCRC has given

me insight into the industry world and introduced me to many people. The

collaboration with Qualcomm Inc. has been a great help in both leading me

technically and supporting my study �nancially. The task of developing a

Network-on-Chip synthesis technique for their IP has given me insight into a

part of the industry I was blind to prior. The collaborations with the industry

partners not only helped me be successful during my academic studies but

also helped lay the foundation for a bountiful future after my graduation.

Last but not least, I would like to thank my family. I would like to

thank my parents, brother, and sister for always being there for me when I

needed it the most. I can not express in words what it has meant to have you

all by my side. I would also like to thank my wife for sticking by me through

it all. It has been a long and tenuous journey but you were always there for

me. I love you and I am so happy to have you at my side as we begin the next

chapter in our life together.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1 INTRODUCTION . 1

1.1 Contributions . 5

2 THE SYNTHESIS OF THE NETWORK-ON-CHIP ARCHITEC-

TURE . 6

2.1 Motivation . 7

2.2 Problem description . 8

2.3 Related Work . 10

2.4 NoC Synthesis Technique . 11

2.4.1 Design �ow . 11

2.4.2 Basic approach to topology synthesis 12

2.4.3 Deadlock avoidance . 14

2.4.4 Communication requirements 19

2.4.5 Port arity constraints 23

2.4.6 Multiple use cases . 25

2.4.7 Algorithm Time Complexity Analysis 25

vi

CHAPTER Page

2.5 Experimental Results . 26

2.5.1 Experimentation set-up 26

Benchmark designs 26

Existing approaches 27

Evaluation metrics 28

2.5.2 Comparisons with existing approaches 29

Comparison with ILP for S1 29

Comparison with GT for S2 31

Summary of comparisons with ILP and GT . . . 33

2.5.3 Impact of port arity 37

2.5.4 Impact of increasing bandwidth 38

2.5.5 Degree of transaction interference 41

2.5.6 Deadlock avoidance analysis 43

2.6 Summary . 44

3 THE SYNTHESIS OF THE MEMORY ARCHITECTURE 47

3.0.1 Motivation . 47

3.1 Problem De�nition . 52

3.2 Related Work . 54

3.3 System-level memory synthesis 56

vii

CHAPTER Page

3.3.1 Data memory minimization 58

3.3.2 Code memory minimization 60

3.3.3 Time Complexity Analysis 62

3.4 Experimental Results . 63

3.4.1 Comparison against Baseline Solution 63

3.4.2 Impact of Code Overlay Optimization 66

3.4.3 Comparison with Existing Approach 67

3.4.4 Impact of Area Constraint 69

3.5 Summary . 70

4 THE SYNTHESIS OF THE FUNCTIONAL ARCHITECTURE . 71

4.1 Motivation . 71

4.2 Problem De�nition . 75

4.3 Related Work . 76

4.4 Functional Architecture Synthesis 80

4.4.1 Initial Solution . 80

4.4.2 Data Memory Minimization 83

4.4.3 Code Memory Minimization 86

4.4.4 Hardware Accelerator Replication 89

4.4.5 Iterative Transition to HW-SW Design 90

viii

CHAPTER Page

4.5 Experimental Results . 93

4.5.1 High Level Synthesis of Hardware Accelerator Library . 94

4.5.2 DCT Comparison . 95

4.5.3 FFT Comparison . 98

4.5.4 Impact of Overlay . 102

4.6 Extended Results . 107

4.7 Summary . 128

5 CONCLUSION AND FUTURE WORK 129

5.0.1 Virtual Platform . 130

5.0.2 RTL Generation . 131

REFERENCES . 132

APPENDIX

A NETWORK-ON-CHIP SYNTHESIS 137

B MEMORY ARCHITECTURE SYNTHESIS 145

C FUNCTIONAL ARCHITECTURE SYNTHESIS 151

ix

LIST OF TABLES

Table Page

2.1 Categories of synthetic benchmarks 26

3.1 Benchmark Speci�cations . 62

4.1 Minimum Bu�er PASS Generation Sequence 81

4.2 Least Switching PASS Generation Sequence 82

4.3 Data Inteference Table . 85

4.4 Code Inteference Table . 87

4.5 Hardware Accelerators Before Replication 89

4.6 Hardware Accelerators After Replication 90

4.7 Benchmark Speci�cations . 93

4.8 Benchmark Constraints . 94

4.9 Single Software Core Comparison (FFT) 105

x

LIST OF FIGURES

Figure Page

1.1 Generic MPSoC Architecture . 2

1.2 System-Level Synthesis Flow . 2

2.1 Transaction level speci�cation . 9

2.2 Overall design �ow . 12

2.3 Shortest path graphs . 13

2.4 NoC Topology Synthesis . 14

2.5 Example of a Deadlock . 15

2.6 Deadlock Example - SPGs . 15

2.7 Deadlock Example - Global SPG 16

2.8 Deadlock Example - Global CDG 17

2.9 Deadlock Example - Updated SPGs 18

2.10 Pseudocode for deadlock avoidance 19

2.11 Bandwidth violation . 20

2.12 Transaction interference . 21

2.13 Pseudocode for trace con�ict resolution 22

2.14 Router arity constraints . 23

2.15 Pseudocode for router port arity resolution 24

2.16 Power/Router for ILP . 29

2.17 Avg. packet latency . 30

2.18 Avg. standard deviation . 31

2.19 Power/Router for GT . 32

2.20 Avg. packet latency . 33

2.21 Avg. standard deviation . 34

2.22 Power/router comparisons . 35

xi

Figure Page

2.23 Latency/std. dev. comparisons 36

2.24 Power/Routers versus Port Arity 37

2.25 Power Consumption with Increasing Bandwidth 38

2.26 Required Routers with Increasing Bandwidth 39

2.27 Reduction in latency and standard deviation 40

2.28 Normalized Power and Routers with Increasing Transaction Overlap 41

2.29 Average Packet Latency with Increasing Transaction Overlap . . . 42

2.30 Average Standard Deviation with Increasing Transaction Overlap 43

2.31 Application speci�cation . 44

2.32 ILP solution . 45

2.33 Our solution . 45

3.1 Generic MPSoC architecture . 48

3.2 System-level design �ow . 49

3.3 Architecture of MPSoC sub-system 50

3.4 Top-level view of memory synthesis 55

3.5 Data memory minimization pseudo-code 58

3.6 Clique partitioning pseudo-code 59

3.7 Code memory minimization pseudo-code 61

3.8 Normalized area . 64

3.9 Normalized throughput . 65

3.10 Normalized Perf./Watt . 66

3.11 Impact of code overlay . 67

3.12 Existing approach . 68

3.13 Area impact . 69

xii

Figure Page

4.1 Generic MPSoC architecture . 72

4.2 System-level design �ow . 73

4.3 Architecture of MPSoC sub-system 74

4.4 Functional Architecture Synthesis Flowchart 79

4.5 Example SDF Speci�cation . 80

4.6 Data Memory Minimization Pseudo-code 84

4.7 Example Data Lifetimes . 85

4.8 Data Overlay Schedule . 86

4.9 Code Memory Minimization Pseudo-code 87

4.10 Example SDF Speci�cation . 87

4.11 Least Switching Schedule . 88

4.12 Hardware Accelerator Replication Pseudo-code 88

4.13 Iterative Transition to HW-SW Design Pseudo-code 90

4.14 DCT Area vs. Perf. vs. Energy (sb) 96

4.15 DCT Area vs. Perf. vs. Energy (sb) 97

4.16 DCT Area vs. Perf. vs. Energy (ls) 98

4.17 DCT Area vs. Perf. vs. Energy (ls) 99

4.18 FFT Area vs. Perf. vs. Energy (sb) 100

4.19 FFT Area vs. Perf. vs. Energy (sb) 101

4.20 FFT Area vs. Perf. vs. Energy (ls) 102

4.21 FFT Area vs. Perf. vs. Energy (ls) 103

4.22 DCT Overlay Impact (sb) . 104

4.23 DCT Overlay Impact (ls) . 105

4.24 beamformer Area vs. Perf. vs. Energy (sb) 108

xiii

Figure Page

4.25 beamformer Area vs. Perf. vs. Energy (sb) 109

4.26 beamformer Area vs. Perf. vs. Energy (ls) 110

4.27 beamformer Area vs. Perf. vs. Energy (ls) 111

4.28 bitonic-sort Area vs. Perf. vs. Energy (sb) 112

4.29 bitonic-sort Area vs. Perf. vs. Energy (sb) 113

4.30 bitonic-sort Area vs. Perf. vs. Energy (ls) 114

4.31 bitonic-sort Area vs. Perf. vs. Energy (ls) 115

4.32 channelvocoder Area vs. Perf. vs. Energy (sb) 116

4.33 channelvocoder Area vs. Perf. vs. Energy (sb) 117

4.34 channelvocoder Area vs. Perf. vs. Energy (ls) 118

4.35 channelvocoder Area vs. Perf. vs. Energy (ls) 119

4.36 �lterbank Area vs. Perf. vs. Energy (sb) 120

4.37 �lterbank Area vs. Perf. vs. Energy (sb) 121

4.38 �lterbank Area vs. Perf. vs. Energy (ls) 122

4.39 �lterbank Area vs. Perf. vs. Energy (ls) 123

4.40 fm Area vs. Perf. vs. Energy (sb) 124

4.41 fm Area vs. Perf. vs. Energy (sb) 125

4.42 fm Area vs. Perf. vs. Energy (ls) 126

4.43 fm Area vs. Perf. vs. Energy (ls) 127

xiv

Chapter 1

INTRODUCTION

In recent years, multi-processor system-on-chips (MPSoCs) have emerged as

the architecture of choice in embedded devices (such as cell phones, GPS de-

vices, luxury car features, etc.) to address the complex applications desired by

the end user customer. These MPSoCs incorporate a constellation of heteroge-

neous processing elements (PEs) (general purpose PEs and application-speci�c

integrated circuits (ASICS)). As an example, Figure 1.1 depicts the top-level

view of a generic architecture for a MPSoC. The application processor is a

general purpose processor such as an ARM Cortex-A9 that supports a cache

coherent memory hierarchy. The other application sub-systems are composed

of highly optimized instruction processors, graphics/DSP processor, and cus-

tom hardware accelerators. Typically, the non-application sub-systems do not

support a cache hierarchy and instead utilize scratchpad memories. The over-

all architecture is an integration of the various sub-systems through a high

bandwidth system-level interconnect (such as an Network-on-Chip (NoC)).

The shift from single processor designs to MPSoCs has been fueled by

three major factors: demand for high performance, the use of component li-

braries, and short design turn around time. As customers continue to desire

more and more complex applications on their embedded devices the perfor-

mance demand for these devices continues to increase. This increasing per-

formance demand has become di�cult for single core architectures to meet.

Whereas, an MPSoC architecture is well suited to meet the performance

1

Application

Processor

Graphics

Subsystem

Video

Subsystem

Communication

Subsystem

Peripheral

Subsystem

System Interconnect

Figure 1.1: Generic MPSoC Architecture

Executable Specification
Performance/Power/Area

Constraints

Functional Architecture Design

Memory Architecture Design

Interconnection Architecture Design

System-level Architecture

Library of

IP Blocks

and their

Models

Figure 1.2: System-Level Synthesis Flow

demand through the use of several high-performance sub-systems and

concurrent on-chip communication.

2

The second factor leading to the shift to MPSoCs is the re-use of IP

blocks by device designers. Designing new IP blocks takes a lot of time and

money. With a single processor design this would be required far more often

than with a MPSoC architecture. With a MPSoC approach, designers main-

tain a library of their available IP blocks. Designers then pick and choose

from the IP blocks in order to build the sub-systems for new devices and to

meet the performance demand. This therefore, reduces the frequency of the

development of new IP.

The �nal factor leading to the shift towards MPSoCs is the short turn

around time on embedded devices. This short turn around time is the direct

result of the competitive environment of the industry. Each member in the

industry is striving to maintain their edge over their competition. In order to

achieve this, and meet consumer demands, companies are required to produce

new higher performing devices at rapid rates. Due to designers using libraries

of IP blocks and MPSoC architectures, they are able to build new devices with

very quick turn around times.

Figure 1.2 illustrates the major stages in the system-level MPSoC de-

sign �ow. The inputs to the design �ow are an executable speci�cation), a

set of constraints (performance, power, and area), and a library of character-

ized IP blocks (performance, power, and area models). The design �ow of the

system architecture consists of three major stages: functional design, memory

design, and interconnection design. During the functional architecture design

stage the required processing elements (PEs) are selected and the functional-

ity is mapped to these PEs. During the memory architecture design stage the

number and con�guration (size, number of ports, etc.) of the various mem-

3

ory elements are selected. And lastly, during the interconnection architecture

design stage the underlying topology for the interconnect is speci�ed.

Typically several sub-systems of a MPSoC (graphics, multimedia, com-

munication, etc.) exhibit classic streaming behavior. Therefore, it is a natural

choice to describe these sub-systems by utilizing stream programming formats.

For the purpose of this work we assume that the functionality of the appli-

cations are described by a synchronous data�ow (SDF) speci�cation [22]. A

typical SDF speci�cation will be represented through a graph consisting of

nodes and arcs. Each node represents an actor and each arc represents the

passing of data between actors through tokens. Each actor represents a sec-

tion of the applications functionality (typically one or more �lters within a

streaming application). Each token in the graph represents a block of data.

Each arc will be annotated with the number of tokens produced by the actor

at the head of the arc and the number of tokens consumed by the actor at the

tail of the arc.

As the complexity and performance demands of the applications on

embedded devices continues to increase, it is becoming more di�cult for de-

signers to meet the imposed constraints within the short design turn around

time with a manual design approach. In order to help with the design of the

MPSoCs, designers have began to explore the automation of the process. The

focus of this dissertation is on the automation of the complete system-level

MPSoC design �ow.

4

1.1 Contributions

The contributions of this dissertation are summarized as follows:

1. We present a novel technique for the synthesis of application speci�c

Network-on-Chip (NoC) interconnect architectures (Chapter 2). The

technique includes several design requirements: mixed communication

tra�c (cumulative/transactional), port arity constraints, deadlock avoid-

ance, and multiple use-cases. The technique generates superior architec-

tures than other existing techniques in terms of power consumption,

area, and latency.

2. We present a novel technique for the synthesis of the memory architec-

ture for a MPSoC sub-system for a given SDF speci�cation (Chapter 3).

The technique makes smart decisions to reduce both the code and data

memory area with minimal performance degradation. The technique

generates superior memory architectures than other existing techniques

in terms of performance, area, and energy consumption.

3. We present a novel technique for the co-synthesis of the functional and

memory architectures for a MPSoC sub-system for a given SDF spec-

i�cation (Chapter 4). The technique generates HW-SW designs that

provide a desirable balance between the �exibility of software and the

performance of hardware. The technique also simultaneously generates

a memory architecture for the sub-system that makes smart decisions to

reduce code and data memory area. The technique is shown to generate

highly optimized and e�cient designs in terms of performance, area, and

energy consumption.

5

Chapter 2

THE SYNTHESIS OF THE NETWORK-ON-CHIP ARCHITECTURE

Application speci�c Network-on-Chip (NoC) architectures have emerged as

a leading technology to address the communication woes of multi-processor

System-on-Chip architectures. Synthesis approaches for custom NoC must

address several requirements including cumulative bandwidth and transac-

tion level (TL) communication requirements, multiple application use-cases,

deadlock avoidance, and router port bandwidth and arity constraints. In this

chapter we present a holistic algorithm for NoC synthesis which is able to ad-

dress all these requirements together in an integrated manner. The approach

is able to generate designs that consume minimum dynamic power consump-

tion, and at most twice the number of routers (and leakage power) as an

optimal solution. In terms of performance the technique is able to generate

NoC designs with very low average communication latencies (veri�ed by ac-

tual simulations) and equally low standard deviation (jitter) while utilizing

simple best e�ort routers. We evaluated the e�ectiveness and quality of the

proposed technique by comparisons with two existing approaches. Extensive

experimental results are presented for synthetic/realistic multiple use case ap-

plications, cumulative/transaction tra�c requirements, increasing application

bandwidth requirements, and di�erent port arity constraints.

In the next section we motivate the problem. Section 2.2 formally

formulates the problm de�nition. We discuss related work in Section 2.3. We

present the synthesis technique in Section 2.4. In Section 2.5 we present our

experimental results. Lastly, we summarize the chapter in Section 2.6.

6

2.1 Motivation

Network-on-Chip (NoC) has been emerging as the solution of choice to ad-

dress the challenge of designing the interconnection architecture for such hun-

dred core MPSoCs. MPSoC implement a heterogeneous computation plat-

form (consisting of programmable processors, application speci�c integrated

circuits, re-con�gurable fabric) where each core supports a limited set of ap-

plication domain functionality. For such designs, custom NoC architectures

with optimized topologies have been shown to be superior to regular topolo-

gies (such as mesh or tori) in terms of power consumption and required NoC

router resources. This work addresses the problem of synthesizing custom NoC

architectures with the following considerations:

• Communication requirements: The communication requirements between

the cores are typically speci�ed by cumulative bandwidth (such as 10

Mbps). However, many MPSoC aimed at embedded domains implement

streaming applications which demonstrate regular periodic transactions

between the cores. Such communication patterns can be speci�ed by

transaction level (TL) speci�cations (described in the following section).

• Multiple use cases: In a current day high performance MPSoC only a

subset of applications is active at any given time. The NoC synthesis

approach should be able to e�ectively exploit the use case information

to generate a topology that maximizes the resource sharing between the

various use cases.

7

• IP library constraints: The NoC router and network to core interface

library places constraints in terms of supported tra�c classes, bandwidth

constraints on ports, and arity constraints on routers.

• Deadlock avoidance: A key requirement of the synthesized NoC topology

and routing scheme is that it must not result in deadlocks.

• Quality of results: The NoC synthesis approach must be able to e�ec-

tively overcome the design complexity while generating solutions with

guaranteed quality.

This chapter presents a holistic synthesis approach that is able to e�ectively

address the above design requirements (communication, multiple use-cases

and deadlock avoidance) and library constraints. Further, the approach is

able to generate topologies with shortest path routes (demonstrating minimal

latencies) and requiring minimum (optimum) dynamic power consumption,

while consuming at most twice the number of router resources (and leakage

power consumption) as the optimal solution.

2.2 Problem description

The inputs to the NoC design stage include the communication requirements

of the cores in the MPSoC, the multiple use cases, �oorplan information of

the MPSoC computation architecture, and a library of (performance/power)

characterized NoC IP blocks (routers and network interfaces).

The communication requirements for a MPSoC can be speci�ed by

graph G(V,E) where v ∈ V is the set of cores in the MPSoC and the set of

directed edges e(u, v) ∈ E denotes the communication requirements between

8

Period

S1 S2

time

Figure 2.1: Transaction level speci�cation

cores u and v. The edge e is either annotated with cumulative bandwidth

requirement ω(e) (for example ω(e) = 10 Mbps) between the cores or TL

requirement λ(e). The TL requirements are speci�ed by λ(e) = (p, L) where p

is the period of the transaction speci�cation and L is the list of transactions.

Each transaction l ∈ L is speci�ed by a time range l = [s1, s2] that denotes

the potential start times for the transaction relative to the period. Figure 2.1

depicts the TL speci�cation for an edge. Data dependent application behavior

may cause the start time of the transaction to vary from one period to another

and therefore we specify it as a range. Without loss of generality the size of all

transactions (bit width and �it length) are assumed to be equal. The multiple

use cases can be speci�ed by a graph G(V,E1, E2, ...En) where each set of

edges Ei denotes the communication requirements for a particular use case.

We consider a simple NoC router architecture that only supports best

e�ort tra�c. The router components in the NoC library are characterized by

the number of ports (η) and leakage power consumption, maximum arity or

number of ports for any router in the library (ηmax), maximum bandwidth

supported on any one port (Ω), and the power consumed per unit bandwidth

(ψr) to pass communication tra�c through the router. The physical links are

characterized by the power consumed per unit bandwidth of communication

per unit length of the link (ψl).

9

The objective of the NoC synthesis technique is to generate an opti-

mized topology with shortest path routes (consequently minimum dynamic

power consumption) for each edge such that the communication latency is

minimized. In addition to latency and dynamic power minimization, router

resource reduction and thus leakage power minimization are also desirable

objectives which are considered as secondary goals.

2.3 Related Work

Benini et al. [1] gives an excellent survey of the existing techniques for synthe-

sizing custom NoC architectures. Existing approaches [2][7][8][3] only consider

cumulative bandwidth requirements. Our approach is also able to consider

transaction level speci�cations and exploit them for synthesizing NoC designs

with low communication latency and jitter while using only best e�ort routers.

Hansson et al. [4] and Murali et al. [5][6] proposed heuristic approaches for

NoC synthesis with multiple application use cases. The communication re-

quirements are speci�ed by cumulative bandwidth requirements. The pro-

posed approach that is based on an extension of Chatha et al. [2] approxi-

mation algorithm is able to synthesize NoC architectures for multiple use case

while giving guarantees on quality bound. Further, the technique is also able

to address both cumulative bandwidth and transaction level communication

requirements for multiple use cases. Further, existing techniques [2][4] avoid

deadlocks by including a post-synthesis step that introduces virtual channels

at speci�c routers. While this approach is e�ective it does result in router IP

modi�cation which may not be desirable under all circumstances. This chap-

ter presents an approach that is able to synthesize NoCs which do not contain

10

deadlocks. Finally, in contrast to existing techniques, the proposed approach

is able to address several NoC design requirements (cumulative bandwidth,

transaction level speci�cations, multiple use cases, deadlock avoidance, router

arity) in a holistic manner and give guarantees on design quality.

The proposed approach is based on a technique by Chatha et al. [2].

Their approach does not consider transaction level speci�cations, multiple use

cases, bandwidth and port arity constraints, and deadlock avoidance. The

bandwidth constraints and deadlock avoidance are addressed in a post NoC

synthesis step in their approach. They are unable to incorporate port arity

constraints in their basic approach (at least one variable greater than 0.5 no

longer holds) and present an alternative strategy. Our approach is able to

address all the shortcomings of Chatha et al. while utilizing their technique

at the basic level. Thus, we are able to give near same quality guarantees as

Chatha et al. while incorporating several additional requirements.

2.4 NoC Synthesis Technique

2.4.1 Design �ow

We adapt the overall design �ow proposed by Chatha et al. [2] for custom NoC

synthesis (see Figure 2.2). The design �ow begins by allocating routers at the

corners of the channel intersection graph (CIG) of the MPSoC �oorplan. The

next step in the design �ow is the core to router mapping stage. Chatha et al.

[2] assumes that the cores are attached to one of the four routers located at

its corner. They present an optimal approach (in terms of estimated dynamic

power consumption and communication latency) for mapping the cores to the

routers. We utilize their optimal core to router mapping algorithm. Figure 2.2

11

Router Allocation Core-to-router mapping Topology synthesis

A

BX

Y

M

N

Figure 2.2: Overall design �ow

depicts core to router mapping by dotted lines from the center of the core to

the neighboring router. The �nal step in the NoC design �ow adds the physical

links between the various routers to construct the NoC topology and routes the

communication transactions over the topology. The objective of the topology

and router synthesis stage is to route each trace by minimum dynamic power

consumption (thus also minimum latency) while utilizing minimum router

resources (thus also leakage power consumption).

2.4.2 Basic approach to topology synthesis

Consider the topology synthesis stage shown in Figure 2.2. In the example we

consider two communication traces between cores (A,B) and (X, Y), respec-

tively. There are at least two potential shortest paths available for routing

the traces. One which utilizes the routers on the top half and the other which

utilizes the routers in the lower half of the layout. The synthesized topology

utilizes the paths on the lower half of the layout as it requires fewer addi-

tional routers (note that the router connected to cores M and N is required

to be in the NoC topology). Chatha et al. [2] present a polynomial time NoC

synthesis algorithm that is able to route each trace by shortest path routes

(optimum dynamic power consumption) while consuming at most twice the

router resources as the optimal solution.

12

Figure 2.3: Shortest path graphs

Their approach relies on construction of shortest path graphs (SPG)

as shown in Figure 2.3. The two graphs on the right show the SPG for cores

(A,B) and (X, Y). The edges (r2, r6) and (r3, r7) denote alternative shortest

paths created by over the cell routing of physical links. In the graph the routers

that must be utilized (as cores are attached to them) in the synthesized NoC

are shaded. Notice that the SPGs of the two cores share routers amongst

them. Their technique minimizes the number of routers in the NoC subject

to the constraint that a route exists from source to destination for each SPG.

As the routes are selected from SPG they are all shortest path routes which

minimize dynamic power consumption and communication latency.

The existing approach generates a SPG for every (u, v) in E. Essentially,

the technique considers all possible shortest path routes for every communi-

cation requirement and generates a NoC design. It synthesizes a solution by

utilizing a LP rounding based approach (see Figure 2.4). They prove that in

each iteration the LP solution has at least one variable (that denotes a router

13

G(V,E) Floorplan

SPG for all

(u,v) in E

Iterative rounding of

LP formulation

NoC architecture

(min dynamic power and at most

twice the optimal number of routers)

Core-to-router

mapping

Figure 2.4: NoC Topology Synthesis

is utilized in the NoC) above a 0.5 which is then rounded to 1. They also

prove that such a rounding strategy generates a solution where the number

of routers utilized in the NoC are at most twice the optimal. Thus, their ap-

proach converges to a solution in polynomial time with the above mentioned

quality guarantees.

In the following sections we present extensions to SPG construction

that can accommodate several NoC design requirements. Thus, we are able to

give the same quality guarantees (shortest paths, minimum dynamic power,

at most twice the optimal number of routers) on the solution as Chatha et al.

2.4.3 Deadlock avoidance

A deadlock is when no packets can progress further through the network or

portion of the network. A deadlock is caused by routers forming a cycle and

waiting on the resources of the next router in a cycle. This type of deadlock

is typically referred to as a circular wait. Figure 2.5 illustrates an example

of a deadlock. In the �gure, the register(s) of each router are occupied with

14

R1

R3

R4R2

Figure 2.5: Example of a Deadlock

1

2 3

4

(x, y)

4

2 3

1

(y, x)

2

1 4

3

(a, b)

3

1 4

2

(b, a)

Figure 2.6: Deadlock Example - SPGs

contents attempting to be routed to the next router in the cycle. Since, the

register(s) are �lled no packets are able to transfer. Therefore, a deadlock has

occurred.

Potential deadlocks can occur in the synthesized NoC if there are cycles

in the channel dependency graph [9]. A channel dependency graph (CDG)

can be obtained by transformation from the synthesized NoC. In the CDG the

physical links of the NoC are denoted by nodes, and a directed edge between

15

1

4

2 3

((x
,y
),(
b,
a)
)

((y
,x
),(
a,
b)
)

((y,x),(b,a))((x,y),(a,b))

((x,y),(a,b))

((y,x),(b,a)) ((x
,y
),(
b,
a)
)

((y
,x
),(
a,
b)
)

e1

e2 e3

e4

e6

e5

e7

e8

Figure 2.7: Deadlock Example - Global SPG

two nodes (u, v) ∈ CDG denotes that a communication requirement is routed

from node u to v (both u and v represent physical links in the NoC). Dead-

locks in a NoC can be alleviated by introduction of additional virtual channels

(or bu�ers) in the routers, and breaking the cycles [9]. However, such an ap-

proach does lead to modi�cation of the routers. An alternative strategy that

is presented here would be to generate a NoC that does not have cycles in its

CDG.

The approach is based on the modi�cation of the SPGs. We �rst �nd

the shortest path graphs (SPGs) for each communication trace in the design.

A SPG represents all of the shortest routes (# of routers) for a communication

trace. As an example, Figure 2.6 illustrates four communication traces and

their corresponding SPGs. After each of the individual shortest path graphs

have been found, all of the SPGs are combined into a globel shortest path

16

e2

e6 e3

e7

{((y,x),(b,a)),
((y,x),(a,b))}

{((x,y),(b,a)),
((y,x),(b,a))}

{((x,y),(a,b)),
((x,y),(b,a))}

{((y,x),(a,b)),
((x,y),(a,b))}

e1

e5 e4

e8

{((x,y),(b,a)),
((x,y),(a,b))}

{((x,y),(a,b)),
((y,x),(a,b))}

{((y,x),(a,b)),
((y,x),(b,a))}

{((y,x),(b,a)),
((x,y),(b,a))}

Figure 2.8: Deadlock Example - Global CDG

graph (SPGG). The global shortest path for our example is illustrated in

Figure 2.7. Each edge in the SPGG is annotated with the traces that are

routed along the edges.

After the SPGG is generated the graph is transformed into a CDGG.

A CDGG is a global Channel Dependency Graph (CDG). In the CDGG a

vertex represents an edge in the SPGG. An edge (e1, e2) ∈ CDGG if and only

if a path is present in the SPGG that contains edges e1 and e2. Figure 2.8

illustrates the CDGG for the SPGG. Each edge in the �gure is annotated with

the traces that have paths through the edges. After the CDGG is generated

we �nd all of the strongly connected components (SCCs). In a SCC there is

a path from each node to every other node in the SCC. Therefore, a SCC in

the CDGG represents a potential cycle in the network and thus a potential

deadlock. By removing an edge(s) from the SCCs we will break all possible

cycles and therefore ensure that no deadlocks are possible. In the CDGG in

Figure 2.8, there are two SCCs as easily seen in the �gure. If we remove an

edge from each of the SCCs we will break the cycles. For instance, assume

we eliminate the edge between nodes e1 and e5 and the edge between nodes

e2 and e6. After the edges have been removed the changes are re�ected back

into the individual SPGs.

17

1

2 3

4

(x, y)

4

2 3

1

(y, x)

2

1 4

3

(a, b)

3

1 4

2

(b, a)

Figure 2.9: Deadlock Example - Updated SPGs

Figure 2.9 illustrates how the removal of the edges from the CDGG is

re�ected back onto the SPGs. In the �gure, trace (x, y) has had the edges

from node 1 to node 2 to node 4 removed. This is from the edge in the CDGG

from node e1 to e5 being eliminated. Addionally, in Figure 2.9 the trace (y, x)

has had the edges from node 4 to node 2 to node 1 removed. This is from the

edge in the CDGG from node e2 to e6 being eliminated. With these changes

to the SPGs there is no longer any risk of circular wait deadlocks in the �nal

synthesized network.

The pseudo code for modifying SPGs for deadlock avoidance shown in

Figure 2.10. The above discussion addressed the problem in the context of a

single use case. The same identical steps can be followed for multiple use cases

to avoid deadlocks in each of them. The for loop in line 2 iterates through

all the use cases. Line 3 and 4 generate the SPGG and CDGG structures,

respectively. Line 5 �nds all the SCC in CDGG, and the for loop of Line

6 removes back edges in each of them to eliminate cycles. Finally, Line 10

re�ects the changes on the individual SPGs by removing appropriate edges.

18

deadlock_avoidance()
for each use-case UC do
generate_global_SPG()
convert_SPG_to_CDG()
find_SCCs()
for each SCC do
find_back_edges()
remove_back_edges()

end for
update_SPGs()

end for

Figure 2.10: Pseudocode for deadlock avoidance

The complexity of deadlock_avoidance() is dominated by Line 3 that

generates SPGG. Let U denote the number of use cases in the application,

and let R denote the number of routers allocated to the �oorplan. We utilize

Dijkstra's shortest path algorithm to generate the SPG for a single trace which

has a complexity of O(R2). SPGG construction in Line 3 has a complexity of

O(TR2) where T denotes the maximum number of traces over all use cases of

the application. The overall complexity of Line 3 is O(UTR2) when the for

loop of Line 2 is taken into account.

2.4.4 Communication requirements

Cumulative bandwidth requirements: We �rst consider cumulative bandwidth

requirements and then discuss transaction level speci�cations. The basic SPG

construction (as described in Chatha et al.) assumes that when routes are

shared between two communication traces (in order to minimize router re-

sources) there is no violation of port bandwidth constraints. However, vio-

lations could exist and we address them by splitting the traces across di�er-

19

(u,v) (i,j)

r2

r3

r4

(u,v) (i,j)

(u,v) + (i,j) (u,v) (i,j)

r1 r2

r3

r4

r1r1

r3

r4

r3

r4

r2

SPG(u,v) SPG(i,j)

Figure 2.11: Bandwidth violation

ent router ports. Figure 2.11 depicts partial SPGs of two traces (u, v) and

(i, j) that could potentially be routed through routers r3 and r4. However,

ω(u, v) +ω(i, j) > Ω. We avoid the bandwidth violation by routing (u, v) and

(i, j) on di�erent ports of r3 and r4 as shown in the �gure. Thus, if router

r3 and r4 were to be utilized for routing (u, v) and (i, j) in the �nal design,

they would be routed on di�erent ports of r3 and r4. We incorporate this

information in the SPG by annotating it on router r3.

Transaction level speci�cations: Inclusion of transaction level speci�cations in

the communication requirements gives us an opportunity to avoid con�icts or

interference between the various transactions. We capture transaction inter-

ference by �rst traversing each transaction from source router (connected to

the initiating core) to the sink router (connected to the target core) along each

shortest path. As the transaction traverses a router the range of its start time

is delayed by the router switching delay. Thus, we know the range of start

times of each transaction at every router along all its shortest paths.

We consider three cases for interference between two transactions that

wish to access the same output port of a router (see Figure 2.12). The rectan-

gles for transactions 1 and 2 denote the range of their start times. The shaded

20

Figure 2.12: Transaction interference

box represents the minimum transmission delay for a transaction through a

router. In Case I transactions 1 and 2 do not interfere with each other as there

is no overlap between their ranges of start times. In Case II if transaction 1

starts at its latest possible time, and transaction 2 starts at it earliest possi-

ble time, then the two transactions overlap as transaction 1 is being switched

through the network. However, we permit such overlaps to happen. Finally, in

Case III if transaction 1 starts at its latest possible time, transaction 2 could

delay transaction 1 if it starts earlier. We treat the latest start time of the

transaction plus the router switching delay as the deadline for the transaction.

Hence, Case III could potentially cause a deadline violation on transaction 1,

and we avoid such scenarios.

We avoid interference between two transactions (Case III) by adopting

a similar approach as that for bandwidth violation. The two transactions are

assigned to two di�erent ports that are connected with the same neighboring

router. Thus, both the transactions can traverse to the same neighboring

router without interfering with each other.

Cumulative and transaction speci�cations: Finally, we also avoid con�icts

between communication requirements that are speci�ed by cumulative band-

width and those that are speci�ed by transaction speci�cations. We do permit

21

1: trace_conflict_resolution()
2: for each router R do
3: for each use-case UC do
4: for each trace T1 placed on router R do
5: for each trace T2 placed on router R do
6: if T1 6= T2 then
7: if conflicts_exist(T1, T2) then
8: resolve_conflict(R, T1, T2)
9: end if
10: end if
11: end for
12: end for
13: end for
14: end for

Figure 2.13: Pseudocode for trace con�ict resolution

cumulative bandwidth and transaction speci�cations originating from the same

core to share the same route.

The pseudocode for the trace con�ict resolution algorithm is shown in

Figure 2.13. The algorithm iterates through each router, R, in the topology

(line 2) for each use case, UC (line 3). The algorithm then compares each

trace, T1, on the router R with every other trace, T2, (lines 4-7) also on the

router. The two traces are compared to see if they are routed through the

same port, and if they are whether a con�ict exists (line 7). If a con�ict is

found between the two traces the con�ict is resolved as discussed above (line

8). The complexity of trace_conflict_resolution() algorithm is determined

by the for loops of Lines 2, 3, 4 and 5, and it is O(RUT 2).

22

r1

r2

r3

SPG(u,v)

r4

r2

r5

SPG(i,j)

r1

r2

r3

r4

r5

r1

r2a

r3

r4

r2b

r5

Router duplication

Figure 2.14: Router arity constraints

The addition of ports to avoid bandwidth violations and transaction

interferences can potentially lead to router arity constraint violations whose

alleviation is discussed in the next section.

2.4.5 Port arity constraints

Figure 2.14 depicts port arity constraint alleviation. The left hand side of the

�gure shows partial SPGs belonging to communication requirements between

cores (u, v) and (i, j). We assume the port arity constraint is 3. If in the �nal

NoC topology both the communication requirements are routed through r2

they would cause a port arity constraint violation. We avoid such a violation

by introducing a duplicate router at the same location as r2. Thus, there are

now two routers r2a and r2b located very close to each other. The SPGs are

modi�ed to utilize r2a for (u, v) and r2b for (i, j).

The pseudocode for router port arity resolution algorithm is shown in

Figure 2.15. The algorithm begins by iterating through each router, R, and

each use-case, UC (lines 2 and 3). Each router R has its port arity compared

withMAX_PORTS which denotes the port arity constraint (line 4). If router

R has too many ports the algorithm �nds the set of routers, Z, connected to

23

1: port_arity_resolution()
2: for each router R do
3: for each use-case UC do
4: if port_arity(R) > MAX_PORTS then
5: Z ← set of routers connected to router R
6: T ← set of traces passing through router R
7: for each combination Ki ∈ CZMAX_PORTS do
8: S = duplicated_router(R)
9: connect_routers(S,Ki)
10: for each trace t in T do
11: if t has a path through R using routers in Ki then
12: add_edges()
13: end if
14: end for
15: end for
16: remove_router(R)
17: end if
18: end for
19: end for

Figure 2.15: Pseudocode for router port arity resolution

router R as well as the set of traces, T , passing through the router (lines 5 and

6). For each combination Ki ∈ CZMAX_PORTS of routers from Z, the algorithm

creates a new router S by duplicating the router R (lines 7 and 8). Next,

the Ki combination of routers are connected to the new router (line 9). The

algorithm then iterates through each trace t in the set of traces T (line 10).

If trace t has a path through router R using the routers in Ki, the algorithm

introduces edges between S and appropriate routers in Ki (lines 11 and 12).

After each combination of routers from Z have been processed the algorithm

removes the initial router R (line 16). The algorithm terminates after each

use-case has had all of its routers processed.

24

The complexity of port_arity_resolution() algorithm is dominated by

for loop of Line 7 which has an overall complexity of O(TRMAX_PORTS+2).

The overall complexity of the algorithm is O(TURMAX_PORTS+3) or O(TUR8)

if MAX_PORTS is assumed to be equal to 5.

2.4.6 Multiple use cases

The basic approach [2] to topology synthesis (Section 2.4.2) creates a set of

SPGs (each SPG is associated with one (u, v) ∈ E) from G(V,E). A set of

SPGs associated with an edge set E is denoted by SPG(E). We can ad-

dress multiple use cases by creating multiple sets of distinct sets of SPG(Ei)

associated with each use case Ei ∈ G(V,E1, . . . , Ei). The bandwidth and

transaction interference constraints imposed by Ei are only addressed in in-

dividual SPG(Ei). The bandwidth, transaction interference and deadlock

avoidance constraints are only applied on individual SPG(Ei). The port arity

constraints are imposed on all SPG(Ei). All the SPG(Ei) are then input to

the LP rounding based technique. Consequently, the resulting solution has

shortest routes for each communication requirement, and minimizes the num-

ber of routers across all use cases. Thus, the approach is able to e�ectively

minimize the resource usage across all use cases.

2.4.7 Algorithm Time Complexity Analysis

The algorithm time complexity for constructing the SPGs utilized by our

approach is dominated by the algorithm, port_arity_resolution(), which is

O(TUR8) (ifMAX_PORTS is assumed to be equal to 5). The iterative NoC

synthesis step utilizes approach identical to Chatha et al. which is polynomial.

Thus, the overall time complexity of can be considered to be O(TUR8).

25

Table 2.1: Categories of synthetic benchmarks

Bandwidth speci�cation
Cumulative Transaction Mixed

Multiple use case S1 S2 S3

2.5 Experimental Results

2.5.1 Experimentation set-up

Benchmark designs We performed extensive experimentation to evaluate our

technique. We considered several categories of synthetic benchmarks and a

realistic benchmark application. A description of the various categories of

synthetic benchmarks is given in Table 2.1. All the synthetic benchmark cate-

gories considered multiple use cases and had 10 designs within each category.

The synthetic benchmarks in S1 were generated by randomizing the num-

ber of cores (ranging from 10 to 50 cores), number of traces, bandwidth per

trace and number of use cases. In the case of benchmarks in category S2, the

randomization on bandwidth was replaced by randomization on the period of

transactions associated with a trace (instead of bandwidth), number of trans-

actions within the period, amount of data in each transaction, and the start

window of the transactions. Finally, synthetic benchmarks in category S3

were generated by an additional randomization on type of a trace (cumulative

versus transaction).

Our realistic benchmark modeled a real-world multimedia application

comprising of video recording, video playback, and wireless communication.

The application consisted of 21 cores broken into memories, processing units,

as well as application speci�c cores. The benchmark consisted of three appli-

cations and three use-cases: a use-case with only video playback and wireless

26

communication, a use-case with video recording and wireless communication,

and a use-case with video playback and recording and wireless communica-

tion. Each application of the benchmark was given as a transaction level

speci�cation.

In our experiments with both synthetic and benchmark tra�c we con-

sidered a port arity constraint of 5. We also present experimental results that

evaluate our approach by varying the port constraints from 3 to 10.

Existing approaches We compared the technique against two existing ap-

proaches: an integer linear programming approach (referred to as "ILP" for

the remainder of the chapter) by Srinivasan et al. [3] and a heuristic synthesis

technique rhat generates NoC with guaranteed throughput router architectures

by Hansson et al. [4] (hence forth referred to as "GT"). Both these approaches

consider only cumulative bandwidth speci�cations and do not support trans-

action level tra�c speci�cations. The ILP synthesizes designs with best e�ort

routers, and therefore is a good representative of many other existing NoC

design approaches. Similar to the other approaches ILP also does not con-

sider multiple use cases, port arity constraints, and deadlock avoidance. ILP

addresses multiple use cases by generating a NoC architecture for the worst

case scenario. The worst case scenario is one in which all the applications

are active simultaneously. We compared our approach with ILP for synthetic

benchmarks that include cumulative bandwidth tra�c (S1 and S3) and the

realistic application.

The GT approach heuristically searches for shortest paths to route

a trace subject to bandwidth constraints on the intermediate router. The

27

GT approach uses a specialized router architecture that assigns guaranteed

bandwidth to each trace �owing through the router. Thus, GT is a good

representative of existing NoC synthesis approaches that consider guaranteed

throughput tra�c. The bandwidth guarantees are achieved by including a

table at each port in the router. The base GT approach is able to handle

multiple use cases, but does not consider port arity constraints. We extended

the base GT approach [4] to account for port arity constraints. We compared

our approach with GT for synthetic benchmarks that include transaction level

tra�c speci�cation (S2 and S3) and the realistic application.

Evaluation metrics We compared against the existing approaches by evalu-

ating the power consumption, router requirements, and performance of the

generated designs. The power consumption included both dynamic (due to

routers and physical links) and leakage (due to routers) power for the designs.

The power consumption numbers were generated through RTL synthesis us-

ing a 65nm lower power process. The average packet latency was determined

through simulation using a transaction level simulator. The simulations in-

cluded a warm up period before the performance data was recorded. In the

case of designs that included transaction-level tra�c information, the transac-

tions were launched uniformly at random within their start time window. The

cumulative bandwidth tra�c was also generated by launching �its uniformly

random within a speci�ed period (reciprocal of bandwidth). The simulations

recorded the latency of each transaction along with the number of hops it

traversed as it traveled through the network. Thus, we could calculate the

average latency and standard deviation for every packet hop distance. In all

our charts that compare the average latency of the various approaches we also

28

Figure 2.16: Power/Router for ILP

plot the lower bound of the latency. The lower bound is calculated as the

minimum latency for a �it to traverse the speci�ed number of hops with no

interference from any other trace.

We also performed additional experiments that evaluated the quality of

the designs as the bandwidth was increased, port arity constraint was varied

(only for our approach), allowable transaction interference was increased (only

for our approach), and an application with deadlock possibility was considered.

2.5.2 Comparisons with existing approaches

Comparison with ILP for S1 We begin the discussion by presenting results

that compare our approach with ILP for the synthetic benchmark category

S1. Figure 2.16 plots the normalized power consumption and router require-

29

Figure 2.17: Avg. packet latency

ments for the NoC designs generated by ILP technique with respect to our

approach. As can be seen from the plot the power consumption of the de-

signs are comparable while ILP designs require a lot more routers. It is to be

expected as the ILP approach does not optimize for multiple use cases and

instead generates a NoC design for the worst case scenario. Further, we would

also like to point out the ILP approach did not honor port arity constraints

in any of the synthesized NoC designs. Figures 2.17 and 2.18 plot the hop

wise latency and standard deviation, respectively of the designs generated by

ILP and our approach. Figure 2.17 includes a plot for the lower bound on

packet latency for each hop assuming no interference. It can be seen from the

plots the designs generated by our technique demonstrate much lower packet

latencies and standard deviation with respect to the designs synthesized by

30

Figure 2.18: Avg. standard deviation

ILP. The designs synthesized by ILP do not honor port arity constraints and

utilize routers with very large number of ports. Consequently, there is a lot of

interference between the various tra�c traces that traverse such a large port

arity router leading to higher average packet latency and standard deviation.

Comparison with GT for S2 We next present experimental results that com-

pare our approach against GT with synthetic benchmarks in category S2.

Figure 2.19 plots the normalized power consumption and router requirements

for the designs generated by GT in comparison to our approach. It can be

observed from the �gure that the GT designs utilize higher power in all cases.

However, the router resource requirement is lower for the GT approach. The

higher power consumption requirement is attributed to the complex router

31

Figure 2.19: Power/Router for GT

architecture utilized by the GT approach. In contrast our technique utilizes

simple best e�ort routers. The higher router requirement of our approach is

due to the transaction con�ict avoidance measures taken by our technique.

Our approach utilizes more routers in an e�ort to generate alternative paths

in the NoC that lower con�ict between various transactions. Figures 2.20 and

2.21 plot the per hop latency and standard deviation, respectively for the de-

signs synthesized by GT and our approach. As can be seen from the �gures,

our designs demonstrate lower average latency and standard deviation with re-

spect to the GT designs. This is signi�cant as our designs are based on simple

best e�ort routers as opposed to the GT designs that utilize complex guaran-

teed throughput designs. Therefore, although our technique generates designs

that require more routers, the designs demonstrate lower power consumption

and superior performance.

32

Figure 2.20: Avg. packet latency

Summary of comparisons with ILP and GT In this section we summarize the

comparisons with ILP and GT approaches for the synthetic benchmarks and

the realistic application. Figure 2.22 gives the average percentage reduction in

routers and power consumption due to our technique in comparison with both

ILP and GT. The X-axis of the plot depicts the improvements for the three

synthetic benchmark categories and the realistic application. We compared

only against ILP for category S1, and category S2 was used for comparison

only with GT. Figure 2.23 gives the average percentage reduction in latency

and standard deviation due to our approach. The conclusions of the study are

summarized below:

1. Category S1: The ILP generated designs that required comparable power

consumption, almost 20% additional routers and that demonstrated about

33

Figure 2.21: Avg. standard deviation

45% higher average latency and standard deviation. The ILP performed

poorly because it does not optimize for multiple use cases, and does not

consider port arity constraints.

2. Category S2: The GT generated designs that required over 10% addi-

tional power consumption, 5% lower router resources and whose average

latency and standard deviation were higher by over 20% and 10%, re-

spectively. This result is signi�cant as our technique is able to generate

high quality designs while using best e�ort routers as opposed to GT

that utilized higher complexity guaranteed throughput routers.

3. Category S3: Synthetic benchmarks in this category modeled applica-

tions with both mixed cumulative and transaction tra�c speci�cations.

Designs synthesized by our approach demonstrated superior performance

34

Figure 2.22: Power/router comparisons

in comparison to the solutions of ILP and GT approaches. The trends in

power consumption and router resource requirements observed for the

previous two categories are repeated for category S3 for precisely the

same reasons.

4. Realistic application: The realistic application consisted of transaction

level tra�c speci�cations. Designs generated by ILP do not consider

interference avoidance between transactions and therefore require fewer

router resources. The fewer router resources also result in lower power

consumption of the ILP design because of reduced leakage power con-

sumption. However, the average latency and standard deviation in la-

tency is very large for ILP design. The GT approach generates a de-

sign that requires higher power consumption and comparable router

35

Figure 2.23: Latency/std. dev. comparisons

resources. The higher power consumption is primarily because of the

complexity of the guaranteed throughput router architecture. The per-

formance of the GT design showed a similar trend as that observed with

S2 synthetic benchmarks.

The run times of the various approaches were compared for large 50

core synthetic benchmarks. The ILP approach had to be timed out at 12

hours to generate the solutions. The GT approach took 5 minutes on average

while our approach took 45 minutes. It must be noted that our approach is

able to give very tight bounds on the quality of the solutions (shortest path

routes, minimum dynamic power consumption, at most twice the number of

routers and leakage power consumption as optimal solution) while addressing

multiple design requirements (multiple use cases, cumulative and transaction

tra�c speci�cation, port arity constraints and deadlock avoidance).

36

Figure 2.24: Power/Routers versus Port Arity

2.5.3 Impact of port arity

We examined the impact of maximum port arity on the power consumption

and required router resources for our technique. We utilized the set-top box

benchmark from Srinivasan et al. [3]. We �rst generated solutions for the

benchmark using our technique with the default maximum port arity setting

of 5 ports. We then varied the maximum port arity from 3 ports to 10 ports

and generated solutions for each constraint. The results for power consump-

tion and required router resources are shown in Figure 2.24. The plotted values

have been normalized to the solution given by our technique for a maximum

port arity of 5 ports. Increasing the port arity reduces both the power con-

sumption and required router resources. The reduction in router resources is

37

Figure 2.25: Power Consumption with Increasing Bandwidth

quite substantial. The reduced router resources are also responsible for the

nominal decrease in power consumption due to lower leakage power consump-

tion.

2.5.4 Impact of increasing bandwidth

We also studied the impact of increasing the bandwidth of an application on

the generated NoC architecture. We consider a synthetic single use case bench-

mark consisting of 14 cores, and 45 traces (speci�ed at transaction level). The

total bandwidth �owing through the traces was 31000 Mbps (with 13 Mbps

and 720 Mbps as minimum and maximum trace bandwidth, respectively). The

supported bandwidth at a router port was 4200 Mbps. We increased the band-

width of each trace in steps of 10% of initial bandwidth till the bandwidth of a

38

Figure 2.26: Required Routers with Increasing Bandwidth

trace was doubled (100% increase). We compared the NoC designs generated

by our technique against the ILP and GT solutions.

Figures 2.25 and 2.26 plot the power consumption and required routers

for the various designs normalized to the solution generated by ILP for original

design (0% bandwidth increase). It can be observed that as the bandwidth

is increased the power consumption of the designs increases. The power con-

sumption of the solutions generated by our approach are comparable to those

generated by ILP while the GT designs utilize considerably higher power. Fur-

ther, the power consumption of the GT designs increases at a faster rate with

increase in bandwidth in comparison to solutions of ILP and our approach.

The router requirements of the designs remain more or less constant for

bandwidth increases of up to 30%. Beyond 30% the number of routers begin

39

Figure 2.27: Reduction in latency and standard deviation

to increase with bandwidth for the solutions of the three approaches. The

ILP solutions utilize lower router resources than GT and our approach. At

lower bandwidth requirements the router requirements of GT are comparable

to our approach. However, at higher bandwidth requirements GT solutions

utilize markedly higher router resources. The GT approach failed to generate

solutions for inputs with 70%, 90% and 100% increase in bandwidth. The ILP

approach failed for inputs with 90% and 100% bandwidth increases. Both the

GT and ILP approaches consider an initial allocation of routers, and if they

are unable to generate the NoC design with the initial allocation they declare

failure. Our approach replicates routers as required, and therefore was able to

generate valid solutions for all inputs.

40

Figure 2.28: Normalized Power and Routers with Increasing Transaction Over-
lap

Figure 2.27 plots the percentage reduction in average latency and stan-

dard deviation due to our approach in comparison with ILP and GT solutions.

The percentage reductions in both average latency and standard deviation are

higher for ILP than GT solutions. The average latency reductions remain

more or less constant even as the bandwidth is increased. Although, the stan-

dard deviation reductions reduce slightly as the bandwidth is increased, they

are still quite large (40% for ILP and 15% for GT) for NoC designs with 80%

higher bandwidth.

2.5.5 Degree of transaction interference

We also analyzed the impact on the quality of the designs as the degree of

transaction interference was varied. The degree of transaction interference

41

Figure 2.29: Average Packet Latency with Increasing Transaction Overlap

is speci�ed as the percentage of overlap between the start time windows of

two transactions. The percentage overlap is measured with respect to the

transaction that has the smaller start time window. We considered the same

benchmark as the previous example. We generated designs with 0%, 25%,

50% and 75% permitted overlaps between the transactions. Figure 2.28 plots

the power consumption and router requirements of the 4 designs normalized

to the 0% overlap design. As observed from the �gure, the router requirement

reduces with increase in overlap. Our approach avoids transaction interference

by introducing additional routers and constructing alternative routes. Thus,

an increase in permitted interference leads to a decrease in router resources.

The router resource reduction also leads to a marginal decrease in power con-

sumption due to reduced leakage power.

42

Figure 2.30: Average Standard Deviation with Increasing Transaction Overlap

Figure 2.29 plots the average hop latency for each design. The average

per hop latency does not show much increase with 25% overlap. However,

the average latency increases sharply for larger percentages of the overlap.

The average standard deviation plotted in Figure 2.30 shows a similar trend.

Thus, we can consider 25% overlap to be a good trade-o� between achievable

performance and associated router requirements.

2.5.6 Deadlock avoidance analysis

In this section we present an application example (Figure 2.31) to illustrate the

bene�t of having deadlock alleviation integrated with synthesis. On the left

side of the �gure is the �oorplan with router allocation and core to router map-

ping. The layout consists of 9 cores arranged in a 3-by-3 mesh. On the right

43

Figure 2.31: Application speci�cation

side of the �gure is the communication graph for the application. Each ar-

row denotes a uni-direction communication trace. Each communication trace

is annotated with its bandwidth requirement. There is a high potential for

deadlock to exist in the the synthesized NoC due to the cyclical communica-

tion pattern (1− > 8, 5− > 6, 7− > 0, 3− > 2). The solution generated by the

ILP approach (which was identical to the one generated by GT) is shown in

Figure 2.32. The directed edges in the �gure denote the routes for the follow-

ing traces 1− > 8, 5− > 6, 7− > 0, and 3− > 2. The potential for deadlock

exists in the ILP solution as there is a cycle (due to the cyclical routes of the

traces shown in the �gure) in the CDG of the NoC. Our approach synthesized

the NoC design shown in Figure 2.33 whose CDG does not have any cycles,

and therefore is deadlock free.

2.6 Summary

We presented a holistic technique for custom NoC synthesis that can ad-

dress cumulative bandwidth and transaction level communication require-

ments, deadlock avoidance, multiple use cases, and router port arity con-

44

Figure 2.32: ILP solution Figure 2.33: Our solution

straints. The solutions generated by the approach use shortest path routes

for all communication requirements (minimum dynamic power consumption),

and utilize at most twice the number of routers (and leakage power consump-

tion) as the optimal solution.

The experimental results demonstrated that in comparison to ILP and

GT techniques our approach is able to generate NoC designs that demonstrate

markedly lower average packet latencies and standard deviation with compara-

ble power consumption requirements. The run times of our approach for large

benchmarks was 45 mins while ILP and GT required 12 hours (with time out)

and 5 mins, respectively. The solutions of our approach demonstrate a re-

duction in router resource requirements while the power consumption remains

comparable as the port arity constraints are increased. As the bandwidth

requirements of a design are increased in proportion to the port bandwidth

constraint, our approach is able to successfully synthesize NoC designs that

show superior performance characteristics, and similar power consumption in

comparison to the designs generated by the GT and ILP approaches. We an-

alyzed the impact of degree of overlap permitted between two transactions on

45

the NoC performance, and it was found that 25% overlap gave a good trade-o�

between the performance of the solution and associated router requirements.

Finally, we showed that for input speci�cations that could result in synthesis

of a deadlock susceptible NoC, our approach is successfully able to generate a

NoC design which is deadlock free.

46

Chapter 3

THE SYNTHESIS OF THE MEMORY ARCHITECTURE

Many embedded processor chips aimed at high performance and low power ap-

plication domains are implemented as multi-processor System-on-Chip (MP-

SoC) devices. The multi-media and communication sub-systems of an MP-

SoC perform some of the most computation intensive and performance critical

tasks, and are key determinants of the system-level performance and power

consumption. This chapter presents an automated technique for synthesizing

the system-level memory architecture (both code and data) for the streaming

sub-systems of an embedded processor. The experimental results evaluate ef-

fectiveness of the proposed technique by synthesizing the system-level memory

architecture for benchmark stream processing applications and comparisons

against an existing approach.

In the next section we motivate the problem. Section 3.1 formally

formulates the probelm de�nition. In Section 3.2 we discuss related work.

We present our synthesis technique in Section 3.3. In Section 3.4 present our

experimental results and lastly, we conclude the chapter with a summary in

Section 3.5.

3.0.1 Motivation

The past decade has seen the emergence of smart mobile devices (smart

phones, tablets) as the new technology drivers. Present day versions of these

devices support a multitude of applications with voice/data communication,

camera, media player, geographical position system (GPS), HD video, and 3D

displays on the same device. The processors aimed at such devices must sup-

47

Application

Processor

Graphics

Subsystem

Video

Subsystem

Communication

Subsystem

Peripheral

Subsystem

System Interconnect

Figure 3.1: Generic MPSoC architecture

port the desired performance while literally "sipping" energy from the battery

pack. Further, as smart devices fall in the realm of embedded computing the

processors must be designed with a short turn around time. Consequently,

chip designers have adopted a heterogeneous System-on-Chip architecture for

these processors where each sub-system (application, graphics/media, commu-

nication, peripheral) is designed with an optimal constellation of processors,

hardware accelerators, memory hierarchy and interconnection network.

Figure 3.1 shows a top-level view of a generic MPSoC aimed at smart

mobile devices along with its major sub-systems. The application processor is

a general purpose processor such as a dual core ARM Cortex-A9 with cache co-

herent memory hierarchy. The other sub-systems of the MPSoC are composed

of highly optimized instruction processors (such as ARM M3), graphics/DSP

processors, and custom hardware accelerators. Further, the non-application

sub-systems do not typically support a cache hierarchy and have scratchpad

memories for both code and data. The overall architecture is an integration

of the various sub-systems via a high bandwidth system-level interconnect.

48

Functional Architecture Design

Memory Architecture Design

Interconnection Architecture

Design

Executable Specification
Performance/Power/Area

Constraints

Library of IP

Blocks and

Their Models

System-level

Architecture

MEMORY

ARCHITECTURE

SYNTHESIS

Figure 3.2: System-level design �ow

The focus of this chapter is on the system-level architecture design of

a sub-system for such a MPSoC. Figure 3.2 depicts the three primary design

stages in developing the system-level architecture. The inputs to the system-

level design �ow are the executable speci�cation, performance/area/power

constraints and a library of characterized IP blocks (performance/power/area

models). The functional architecture design stage selects the processor core(s)

and hardware accelerator(s), and maps the functionality on the processing el-

ements (PE). The memory architecture design stage selects the number and

con�guration (sizes, ports) of the various memory elements. Finally, the inter-

connection architecture design stage speci�es the topology of the interconnect

for the architecture. This work focuses on the design automation of the mem-

ory architecture design stage for a domain speci�c sub-system of a MPSoC.

49

SW SPM HW

SW SPM

HW SPM

SW SPM SW SPM

DRAM

CNTRL
HW SPM

HW

HW SPM

HW

SPM HW

DRAM

MPSoC

Sub-system

DMA

DMA DMA DMA

Figure 3.3: Architecture of MPSoC sub-system

The graphics, multimedia and communication sub-systems of the MP-

SoC depict classical streaming behavior. Consequently, the functionalities of

these sub-systems can be most naturally described by stream programming

formats. For the purposes of this chapter we assume that the functionality is

described by a synchronous data�ow (SDF) speci�cation [11]. As the focus of

the chapter is on memory-interconnection architecture synthesis, we assume

that the designer performs the functional architecture design stage (selection

of PEs and mapping of the SDF actors onto the PEs). Thus, the objective

of our synthesis �ow is to select the number and con�guration (sizes, ports)

of the memory elements such that the performance and area constraints are

satis�ed, and the power consumption is minimized.

50

Figure 3.3 shows the generic architecture of a sub-system belonging to

the MPSoC. In the �gure, the instruction processors are denoted by SW, hard-

ware accelerators as HW and the scratch-pad memories as SPM. Each SW PE

has a local SPM, and a DMA controller. There may be other SPMs distributed

in the architecture that act as shared resources. The various compute nodes

and memory elements are connected together by a Network-on-Chip (NoC).

The overall performance (and consequently power consumption) of the archi-

tecture is a consequence of several design decisions and trade-o�s.

As the same SPM is shared by code and data for the SW PE, its

performance is dictated by the SDF schedule and code overlay (if required).

Code overlay schemes are utilized to minimize the memory required for actor

code by mapping the code of multiple actors to the same region of memory.

Thus, if the code for the actor to be executed next is not in the memory, it is

fetched from DRAM and the currently resident actor code is overlayed. At the

system-level the interconnect delays are dictated by the topology and the DMA

schedules. As the objective is to minimize the power consumption subject

to both performance and area constraints the number (and sizes) of memory

elements, and router nodes that can be utilized are limited. In our approach we

utilize an existing NoC synthesis technique [12]. This chapter presents a novel

automated memory synthesis approach that is able to e�ectively perform all

the various trade-o�s, and consequently generate a highly optimized memory

and NoC architecture for the sub-system.

51

3.1 Problem De�nition

The formal de�nition of the problem is as follows. Given:

1. a synchronous data�ow speci�cation of a streaming application: A Di-

rected Graph G(V,E), where v ∈ V is a set of �lters or actors, and the

set of directed edges e(u, v) ∈ E denotes that the data produced by u is

consumed by v. Each directed edge e(u, v) ∈ E is annotated with the

size of the data block, δ(u), produced by �lter u and the size of the data

block, φ(v), consumed by �lter v.

2. a set PEs and a mapping of �lters to the PEs: A bipartite Graph

G(V, P,M), where v ∈ V is the set of �lters pertaining to the streaming

application, p ∈ P is the set of PEs (HW or SW), and the set of undi-

rected edges e(v, p) ∈ M denotes the mapping of �lter v onto PE p. In

the case of SW PEs more than one �lter may be mapped to it. Each

�lter v ∈ V is annotated with the code size of the �lter, ω(v), and the

execution time of the �lter, τ(v).

3. performance and area constraints: Designer speci�ed throughput con-

straint on the SDF, and area constraint on the sub-system.

4. library of characterized memory elements: A library consisting of mem-

ory elements parameterized in terms of size and number of ports, and

characterized in terms of power consumption, area requirement, and ac-

cess latencies.

5. library of characterized NoC router architectures: A library of NoC IP

components (routers and network interfaces) characterized in terms of

power consumption, area requirement, and no load latency.

52

Synthesize

1. a memory architecture for the sub-system: The memory architecture

speci�es the number and con�guration of distinct SPM elements in the

sub-system.

2. a NoC topology: The NoC topology speci�es the number and con�gu-

ration of the routers used in the architecture, and their interconnection

to the PEs and memory elements.

3. a memory usage description for the sub-system: The memory usage de-

scription describes the utilization of the various SPMs for actor code

and data blocks. The description speci�es if a code overlay scheme has

been utilized for the SPM, and if indeed it has been utilized, the descrip-

tion includes a mapping of actors to region and segments in the SPM.

The usage description also de�nes a mapping of the actor data blocks

to memory regions of various SPMs. Further, as the memory usage is

minimized by utilizing shared SPM for ephemeral data, more than one

data block may be assigned to same region of a SPM.

4. a execution schedule for SDF and DMA: The execution schedule gives

the global schedule for �ring of various actors, and launching of DMA

operations for code overlays, and data transfers.

such that the performance and area constraints are satis�ed, and the power

consumption of the design is minimized.

53

3.2 Related Work

System-level MPSoC memory synthesis has been attracting growing attention

over the past few years. A representative selection of existing work is discussed

in this section. Meftali et al. [13] presented an integer linear programming

approach for memory synthesis that focused only on data blocks. Pasricha et

al. [14] proposed an integrated heuristic approach for memory and bus matrix

synthesis that was also primarily aimed at data blocks. Pandey et al. [18]

presented a bus and data memory architecture co-synthesis approach based

on slack allocation. Issenin et al. [15] proposed a MILP and heuristic mem-

ory synthesis approaches that utilized a �xed topology bus architecture and

aimed at minimizing data memory usage. An extension of the same work for

mesh based NoC was also proposed [16]. Monchiero et al. [17] presented the

results for design space exploration of a non-uniform memory access archi-

tecture interconnected with a parameterized (ring, spidergon or mesh) NoC

fabric. Recently, Lee et al. [19] presented an approach for integrated MPSoC

synthesis for SDF speci�cation that considered pre-selected bus templates. In

contrast to these approaches we consider NoC aware memory architecture de-

sign for streaming applications. Further, we not only optimize and account

for data block memory usage but also consider the impact of code memory

optimization. Speci�cally, we consider the design trade-o�s for partitioning

the same SPM between code and data. We also consider the performance

and power overheads of code overlay schemes that can reduce the memory

requirements (and consequently the MPSoC area). To the best of our knowl-

edge the system-level memory synthesis approach presented in this chapter is

the only technique that considers the impact of both data and code memory

requirements during design space exploration.

54

Performance/Area

Constraints

Library of IP

Blocks and

Their Models

System-level

Architecture

Functional

Architecture

Generate minimum buffer

multi-core SDF schedule

Initialize to maximal

memory architecture

NoC Synthesis

Performance

satisfied?

Output saved memory

architecture solution

Minimize data memory

Minimize code memory

Area

satisfied?

Performance

satisfied?

NoC Synthesis

Failure

Failure

Yes

No

NoYes

Yes

No

Initial

Solution

Generation

Iterative

Improvement Area reduction

possible? Failure

Yes

No

Figure 3.4: Top-level view of memory synthesis

55

3.3 System-level memory synthesis

The top-level view of our memory synthesis technique is shown in Figure 3.4.

The overall strategy of our technique is to begin with a highest performance

and lowest power consuming solution. We then iteratively arrive at a solution

that satis�es an area constraint with minimal decrease in performance and

increase in power consumption. The inputs to the memory synthesis design

stage are the i) performance and area constraints, ii) functional architecture

description, and iii) the library of memory and interconnect IP blocks along

with their power, performance, and area models. The memory synthesis tech-

nique broadly consists of two stages, an initial solution generation step followed

by an iterative improvement stage.

Initial solution generation stage: As a �rst step we generate a minimum bu�er

usage multi-core SDF schedule. We utilize a well known heuristic approach to

generate the schedule [20]. We then consider a maximal memory architecture

for the sub-system. In the maximal memory architecture the local SPM of

each SW PE is large enough to host the entire code base of all the actors

assigned to the PE. Further, there is su�cient memory for double bu�ering of

inter-PE transfers. Finally, we do not perform any memory optimization for

ephemeral data blocks. Thus, the maximal memory architecture represents

the maximum SPM memory that is required for the design. Consequently,

the design also depicts the best possible performance and minimal power con-

sumption1. We then synthesize the NoC architecture for the sub-system. As

mentioned earlier we utilize an existing approach to synthesize the NoC [12].

The NoC synthesis technique supports guaranteed throughput tra�c which is

1Power consumption is minimal because the number of accesses to DRAM is minimal.

56

ideal for streaming applications. The synthesis technique includes a system-

level �oorplanning stage, and is thus able to generate very good estimates for

communication latencies and power consumption. The NoC synthesis tech-

nique minimizes both the power consumption (primary goal) and resource

requirement (secondary goal) of the interconnection architecture subject to

the communication bandwidth requirements. Finally, we evaluate the perfor-

mance of the design and verify if the performance constraint is satis�ed. As

the initial design represents the best performance design, we declare failure if

the performance constraint is not satis�ed. Alternatively, if the performance

constraint is satis�ed we enter the iterative improvement stage in which we

aim to satisfy the area constraints, and minimize power consumption.

Iterative improvement stage: The objective of the iterative improvement stage

is to satisfy the area constraints and minimize power consumption. As a �rst

step we minimize the memory required for ephemeral data by analyzing their

lifetimes and mapping them to the same memory region wherever possible. We

introduce shared SPM into the memory architecture if the data blocks that

share the memory region are from di�erent PEs. Notice, that data memory

reduction does not have an appreciable impact on the performance2. How-

ever, the power consumption is expected to increase due to an increase in

NoC communication. We next check if the area constraint is satis�ed. If it

is we have successfully synthesized the memory architecture. Alternatively,

we try to further reduce the memory requirement by introducing code over-

lays. Introduction of code overlay involves periodic fetching of code from the

o�-chip DRAM memory, and it slightly increases the power consumption and

2Mapping the data blocks to remote SPM may introduce additional communication

delays. However, the NoC synthesis technique is able to generate designs with minimum

latency, and consequently the performance impact is minimal.

57

1: minimize_data_memory()
2: {
3: G = generate_interference_graph()
4: clique_partitioning(G)
5: for each clique C in G do
6: combine_data_blocks(C)
7: end for
8: }

Figure 3.5: Data memory minimization pseudo-code

reduces the performance. The impact of performance reduction can be amor-

tized to some extent by scheduling code pre-fetch DMAs whenever possible.

Code overlay is only introduced if the area constraints are not satis�ed. We

iteratively reduce the code memory usage (increase code overlay overheads)

until either the area constraints are satis�ed or no further reduction in mem-

ory can be achieved. In the case of the later we declare failure as the area

constraints are not satis�ed. If they are satis�ed we again evaluate the per-

formance constraint. If the performance constraint is still satis�ed we declare

success and output the memory architecture. Alternatively, we declare fail-

ure due to non-satisfaction of the performance constraint. In the following

two sub-sections we discuss the data and code memory minimization stages in

further detail.

3.3.1 Data memory minimization

The objective of the data memory minimization stage is reduce the memory

requirement for ephemeral data blocks by analyzing their lifetimes, and assign-

ing them to the same memory region. We utilize a classical clique partitioning

algorithm to achieve our goal. The pseudo-code for data memory minimiza-

58

1: clique_partitioning(G)
2: {
3: while vertex exists with degree greater than zero do
4: V = smallest_non_zero_degree_vertex()
5: U = smallest_degree_attached(V)
6: N = combine_vertices(U, V)
7: for each vertex P attached to V do
8: for each vertex L attached to U do
9: if P equals L then
10: add edge from N to P
11: end if
12: end for
13: end for
14: update_degrees()
15: end while
16: return partitioning
17: }

Figure 3.6: Clique partitioning pseudo-code

tion stage is shown in Figure 3.5. We �rst generate an interference graph (Line

3, Figure 3.5). The interference graph is speci�ed as G(V,E) where V is the

set of data_blocks and E is the set of edges from (u, v) where u and v are

vertices in V . An edge (u, v) exists when there is no interference between data

blocks u and v. Interference is de�ned as both data blocks being alive during

a portion of the same time frame. A data block is alive from the time when it

�rst begins to be written to, and up to (and including) the last time instance

that it is read from. As the data blocks may be present in distinct SPMs,

we annotate each edge (u, v) ∈ E with the physical distance between the two

distinct SPMs, d. Notice that we do synthesize a NoC as part of the initial

solution, and our NoC synthesis technique generates a �oorplan as part of its

design �ow. Consequently, we can deduce the distance between two distinct

59

SPMs. The distance is used as a tie breaker during the clique partitioning

stage.

As a next step (Line 4, Figure 3.5) we invoke the clique partitioning

algorithm (Figure 3.6). The algorithm begins by �nding the vertex with the

smallest non-zero degree (Line 4, Figure 3.6). The degree of a vertex is equal

to the number of edges incident on the vertex. The algorithm then �nds the

smallest degree vertex that is attached to the previously found vertex (Line

5, Figure 3.6). If there is a tie between vertices the algorithm will choose the

vertex with the highest common neighbors as the �rst vertex. If there is still a

tie the algorithm will choose the vertex that has the smallest physical distance

d (remember this is annotated on the edge). The algorithm will then combine

these two vertices into a single vertex. Next the algorithm updates the edges

of the graph. An edge will exist from the new compound vertex to another

vertex if and only if the vertex was connected to both the vertices that have

been collapsed into the compound node (Line 10, Figure 3.6). The degrees of

the vertices are updated and the algorithm repeats until all vertices have a

degree of zero.

Theminimize_data_memory() algorithm then collapses the data blocks

which are part of a clique into a single SPM (Line 4, Figure 3.5). Notice that

at this stage we might introduce new shared SPMs if the data blocks were

originally resident on local SPMs of distinct PEs.

3.3.2 Code memory minimization

We invoke the code memory minimization stage only if the area constraints are

not satis�ed. The objective of the code memory minimization stage is reduce

60

1: minimize_code_memory()
2: {
3: Initialize each �lter to occupy its own region
4: calculate_IF ()
5: while area constraint not met and | R | greater than 1 per SPM do
6: collapse_smallest_IF ()
7: update_IF ()
8: end while
9: perform_segmentation()
10: }

Figure 3.7: Code memory minimization pseudo-code

the code memory requirements for SW PEs by o� loading code to DRAM. We

would like to emphasize that the code is always resident in the DRAM. In the

initial solution generated by our approach the entire code base is fetched in to

the on-chip SPM before the start of the �rst iteration. Consequently, in the

initial solution for we do not need to fetch code from DRAM for any subsequent

iteration of the SDF. In the code memory minimization stage we assign code

bases of two or more �lters to the same region of the memory. Thus, during

an iteration of SDF execution, we would have to fetch code for one or more

�lters from the DRAM. Therefore, there is both a performance and power (as

accessing DRAM consumes a lot more power) penalty associated with code

memory reduction.

The pseudo-code for the code minimization algorithm is given in Figure

3.7. The algorithm begins by initializing each �lter to its own unique region

(Line 3). We next calculate the interaction factor (IF) for each region pair

(Line 4). The IF is �rst initialized to zero for all region pairs. Next we step

through the SDF execution schedule, and for each switch from region ri to

61

Table 3.1: Benchmark Speci�cations

Benchmarks #Actors #Edges #Executions

Beamformer 40 72 64
Bitonicsort 26 31 68
DCT 15 22 28
FFT 17 16 58
Filterbank 51 65 94
Fmradio 29 39 58

Average 30 41 62

region rj or vice versa the IF(ri, rj) is increased by one. The IF for regions

on distinct SPMs is initialized to in�nity. Next, the algorithm enters a loop

if the area constraint has not been met, and there is at least one SPM with 2

or more regions. Within the loop the algorithm collapses the region pair with

the smallest IF. The IF of the regions is then updated and the loop repeats.

Upon exiting the loop, the algorithm performs segmentation on the regions

where two or more �lter belonging to a single region are assigned to the same

segment. Segmentation amortizes the DMA cost for fetching the code bases

of the �lters from the DRAM.

3.3.3 Time Complexity Analysis

The time complexity of �nding the minimum bu�er schedule is O(n), where

n is the number of actors. The time complexity of the minimizing the data is

O(b3), where b is the number of data blocks. And lastly, the time complexity of

minimizing the code is O(n4), where n is the number of actors. Therefore, the

total time complexity for the memory architecture synthesis is O(n+ b3 +n4).

Typically, the number of data blocks is substantially larger than the number

of actors and therefore in practice the time is dominated O(b3).

62

3.4 Experimental Results

We evaluated the e�cacy of our proposed memory synthesis approach by con-

sidering the design of sub-systems that implemented six benchmarks from the

StreamIt [21] suite. The benchmarks are described in Table 3.1. In the table

the second and third columns denote the number of actors and edges in each

benchmark, and the last column denotes the total number of actor �rings in

one iteration of the SDF. We generated MPSoC designs for each benchmark

by considering 4, 6, 8, 12, and 16 PEs. For each number of PEs we set the

throughput constraint to be 0.75 times the throughput of the initial baseline

solution. We then iteratively reduced the area constraint until we had the

tightest area constraint for each benchmark in which our technique was able

to generate a valid design. We compared the solutions generated by our tech-

nique with the initial baseline solutions as well as with the designs generated

by the existing 2-stage technique proposed in [16]. Our technique took on

average 15 minutes to generate the designs which is reasonable considering we

perform NoC synthesis which contains a �oorplanning stage.

3.4.1 Comparison against Baseline Solution

The �rst set of experiments we compared the designs generated by our tech-

nique after the �nal NoC synthesis stage with the baseline initial solution for

each benchmark. Figures 3.8, 3.9, and 3.10 plot the normalized area, through-

put, and performance per watt of the various designs. For each benchmark in

the plot, the results are normalized to the initial baseline (or maximal area)

solutions of the 4 PE design. For example, the area plots for the beamformer

benchmark designs are normalized to the area of the initial baseline solution

for the beamformer implemented with 4 PEs. For some benchmarks (dct and

63

0.3

0.4

0.5

0.6

0.7

N
o

rm
a

li
z
e

d
 A

re
a

 R
e

q
u

ir
e

m
e

n
t

4P.E.s 6P.E.s 8P.E.s 12P.E.s 16P.E.s

0

0.1

0.2

beamformer bitonic sort dct fft filterbank fm

N
o

rm
a

li
z
e

d
 A

re
a

 R
e

q
u

ir
e

m
e

n
t

Figure 3.8: Normalized area

�t) we do not plot results for all PEs as the benchmarks were too small to be

mapped onto the larger number of PEs.

In Figure 3.8, we see that our technique is able to generate designs with

very tight area constraints. With the smallest area constraint at 4 PEs being

10% for the 'beamformer' benchmark and the largest constraint being 30%

for 'fmradio' benchmark. On average, across all benchmarks our technique is

able to generate designs that require 75.3% less area than the initial baseline

solutions for a 25% loss in performance. We also see that the area requirement

compared to the initial 4 PE design increases as we increase the number of

cores. This is due to the increase in the required amount of SPM memory

for the cores (each core requires a minimal amount). In Figure 3.9, we notice

64

2

2.5

3

3.5

4

N
o

rm
a

li
z
e

d
 T

h
ro

u
g

h
p

u
t

4P.E.s 6P.E.s 8P.E.s 12P.E.s 16P.E.s

0

0.5

1

1.5

beamformer bitonic sort dct fft filterbank fm

N
o

rm
a

li
z
e

d
 T

h
ro

u
g

h
p

u
t

Figure 3.9: Normalized throughput

that for the initial 4 PE design the throughput of the designs generated by

our technique is slightly lower than the initial solution. This is to be expected

due to the code overlay overhead from DRAM accesses to retrieve code. How-

ever, we see as the number of PEs increases we gain a substantial increase in

throughput over the initial baseline solution. Figure 3.10 illustrates that the

designs generated by our technique have higher performance per watt than the

initial baseline solutions. At 16 PEs the performance per watt of our design

is almost 2 times the intitial 4 PE baselin solution for both 'bitonic sort' and

'fm.' And in the other three benchmarks at 16 PEs, our designs had higher

performance per watt than the initial baseline 4 PE solutions.

65

1

1.5

2

2.5

N
o

r
m

a
li

z
e

d
 P

e
r
fo

r
m

a
n

c
e

 /
 P

o
w

e
r

4 P.E.s 6 P.E.s 8 P.E.s 12 P.E.s 16 P.E.s

0

0.5

1

beamformer bitonic sort dct fft filterbank fm

N
o

r
m

a
li

z
e

d
 P

e
r
fo

r
m

a
n

c
e

 /
 P

o
w

e
r

Figure 3.10: Normalized Perf./Watt

3.4.2 Impact of Code Overlay Optimization

Figure 3.11 demonstrates the impact of the code overlay optimization for two

benchmarks with the maximum number of actors (namely beamformer and

�lterbank). The plot depicts normalized throughput, energy and area for 16

PE designs. The plots are normalized to the solutions that only apply data op-

timizations and do not apply code overlay. As is depicted in the plot, the code

overlay optimization is able to considerably reduce the area requirements (by

over 50%) for comparable performance. The trade-o� is the increase in energy

due to code overlay accesses to DRAM. Particularly for the �lterbank appli-

cation the increase in energy is only about 30%. Area minimization is critical

66

1

1.5

2

2.5

N
o

rm
a

lz
ie

d
 V

a
lu

e
s

throughput energy area

0

0.5

1

beamformer filterbank

N
o

rm
a

lz
ie

d
 V

a
lu

e
s

Figure 3.11: Impact of code overlay

as the silicon real estate determines the cost of manufacturing. Code overlay

optimization is able to generate design alternatives for tight area constraints

that would not be otherwise possible.

3.4.3 Comparison with Existing Approach

Figure 3.12 compares the designs generated by our technique against a 2-stage

synthesis technique presented in [16]. The technique proposed in [16] only

accounts for data memory optimization (at the �ne grain). Also, the technique

considers a mesh (template) topology for the NoC network. The technique

generates a data reuse graph consisting of data bu�ers in a hierarchical manner

with each higher level bu�er containing all of the data in the bu�ers below it in

the hierarchy. The technique then greedily selects bu�ers to add to the design

67

0.6

0.8

1

1.2

1.4

N
o

rm
a

li
z
e

d
 V

a
lu

e
s

throughput area performance / watt

0

0.2

0.4

beamformer bitonic sort filterbank fm

N
o

rm
a

li
z
e

d
 V

a
lu

e
s

Figure 3.12: Existing approach

based on the energy savings of using the bu�er. We modi�ed the technique to

use the larger data blocks present in SDF speci�cations. We also modi�ed the

technique to use the same NoC synthesis tool that we use. This will ensure a

fair comparison between the techniques.

Figure 3.12 plots the normalized throughput, area, and performance per

watt for 4 StreamIt benchmarks. The plots are normalized to the respective

values for the designs generated by the existing approach [16]. As can be

observed in the �gure, our technique consistently gives better performaning

designs that utilize lower area and have higher performance per watt. On an

average our designs show 7.8% increase in performance, 17.7% reduction in

area and 5.6% increase in the performance per watt. Our technique is able to

68

1.1

1.2

1.3

1.4

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

beamformer filterbank

55%

65%
55%

65%

0.8

0.9

1

0.7 0.8 0.9 1 1.1

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

Normalized Throughput

75%

85%

85%

Figure 3.13: Area impact

give better results because of more comprehensive data minimization methods

and incorporation of code overlay optimizations.

3.4.4 Impact of Area Constraint

In our last experiment, we evaluated our approach by varying the area con-

straints for the 12 PE designs. In this experiment we only considered 2 bench-

marks, and Figure 3.13 plots the results. In the plot each point (energy and

throughput) depicts the design obtained for the respective area constraints

(55%, 65%, 75%, 85%). The area constraint is achieved by percentage scaling

the area for the initial baseline (maximal area) solution. The plots are nor-

malized to the 75% area constraint design. From the plot, we can see that

as the area constraint is made tighter the throughput of the designs decreases

69

and the energy consumption increases. This is expected due to the increase in

code overlay overheads as more code is forced into main memory.

3.5 Summary

We presented an approach for synthesizing the system-level memory of a MP-

SoC sub-system that demonstrates streaming characteristics. The approach

accounts and optimizes for the memory requirements for both code and data.

We evaluated our approach by extensive experimentation with streaming ap-

plication benchmarks through comparisons with an existing approach and the

initial baseline solution. Our technique performed superiorly to the existing

approach and clearly demonstrated the ability to generate high quality designs

meeting the area and performance constraints while maintaining a low energy

consumption.

70

Chapter 4

THE SYNTHESIS OF THE FUNCTIONAL ARCHITECTURE

Recently multi-processor System-on-Chip (MPSoC) has e-merged as the archi-

tecture of choice for high performance, low power embedded devices. The sub-

systems of an MPSoC perform highly computation intensive and performance

critical tasks. These sub-systems are key determinants of the system-level

performance and power consumption. This chapter presents an automated

technique targeted at the synthesis of the system-level functional architecture

for streaming sub-systems of an embedded processor. Speci�cally, the selection

of processing elements in the sub-system and the mapping of the application

tasks onto the processing elements. The experimental results evaluate the

e�ectiveness of the proposed technique by synthesizing HW-SW system-level

functional architectures for streaming benchmarks and through comparisons

against both pure software and pure hardware designs.

In the next section we motivate the problem. In Section 4.2 we formally

de�ne the problem. We discuss related work in Section 4.3. In Section 4.4

we discuss the synthesis technique in detail. In Section 4.5 we present our

experimental results. Lastly, we summaize the chapter in Section 4.7.

4.1 Motivation

Recently the demand for high performance, power e�cient embedded systems

(cell phones, set-top boxes, etc.) has grown substantially. As the demand for

higher performance embedded systems increases Multi-Processor System-on-

Chips (MPSoCs) are becoming a popular solution to address these demands.

71

Application

Processor

Graphics

Subsystem

Video

Subsystem

Communication

Subsystem

Peripheral

Subsystem

System Interconnect

Figure 4.1: Generic MPSoC architecture

Most real-world MPSoCs consist of a compilation of heterogeneous processing

elements (PEs) (general purpose processors and application-speci�c integrat-

ed circuits (ASIC)) on a single die [26] [27]. This architecture is appealing

to designers due to its native ability to provide signi�cant parallelism [25] to

meet the demands of the application.

Figure 4.1 depicts a generic top-level view of a MPSoC. The applica-

tion processor is a general purpose processor such as an ARM Cortex-R4 with

cache coherent memory hierarchy. The other sub-systems of the MPSoC are

composed of highly optimized instruction processors, graphics/DSP proces-

sors, and custom hardware accelerators. Typically, the non-application sub-

systems do not support cache coherency and instead have scratchpad memories

for both code and data. The overall architecture is an integration of the various

sub-systems via a high bandwidth system-level interconnect.

Figure 4.2 illustrates the three main stages in the MPSoC design pro-

cess. The inputs to the design �ow are the executable speci�cation, perfor-

mance, area, and power constraints and a library of characterized IP blocks

72

Functional Architecture Design

Memory Architecture Design

Interconnection Architecture

Design

Executable Specification
Performance/Power/Area

Constraints

Library of IP

Blocks and

Their Models

System-level

Architecture

FUNCTIONAL

ARCHITECTURE

SYNTHESIS

Figure 4.2: System-level design �ow

(performance/power/area models). The functional architecture design stage

selects the processor core(s) and hardware accelerator(s), and maps the func-

tionality of the application onto the processing elements (PE). The memory

architecture design stage selects the number and con�guration (sizes, ports) of

the various memory elements. Finally, the interconnection architecture design

stage speci�es the topology of the interconnect for the architecture. The work

in this chapter focuses on the design automation of the functional architecture

design stage.

During the functional architecture design stage the selection of the

hardware and software processing elements is performed and the application

is mapped onto these processing elements. Figure 4.3 illustrates a generic

design of a sub-system. The hardware accelerators are denoted by HW , the

software processing elements are denoted with a SW , and the scratchpad

73

SW SPM HW

SW SPM

HW SPM

SW SPM SW SPM

DRAM

CNTRL
HW SPM

HW

HW SPM

HW

SPM HW

DRAM

MPSoC

Sub-system

DMA

DMA DMA DMA

Figure 4.3: Architecture of MPSoC sub-system

memories are denoted by a SPM . The processing elements communicate via

an interconnect.

The selection of the hardware and software processing elements impacts

the performance, area, and �exibility of the �nal design. While a purely

hardware design exhibits high performance, low area, and low power it fails to

provide any �exibility after the design reaches the market. A pure hardware

design will only be able to perform the task it was originally designed for.

Further, a pure hardware design typically requires a longer design time in

order to ensure the hardware accelerators function properly. While a pure

software design typically requires a high amount of area and power while

giving varying performance. However, a pure software design has a short time

to market and provides extensive �exibility. Designers can simply change the

74

software being executed in order to add or remove functionality. Typically,

a design with priority given to software cores is desired. This design will

provide the performance required through the use of hardware accelerators,

with moderate area and power requirements while still allowing for a short

time to market and future �exibility. In this chapter, we present a novel

functional architecture synthesis technique that is capable of exploring designs

ranging from pure software to pure hardware and consequently generate highly

optimized functional architectures for MPSoC sub-systems. Additionally, our

technique provides a memory sub-system for the functional architecture.

4.2 Problem De�nition

The formal de�nition of the problem is as follows. Given:

1. a synchronous data�ow speci�cation of a streaming application: A Di-

rected Graph G(V,E), where v ∈ V is a set of �lters or actors, and the

set of directed edges e(u, v) ∈ E denotes that the data produced by u is

consumed by v. Each directed edge e(u, v) ∈ E is annotated with the

size of the data block, δ(u), produced by �lter u and the size of the data

block, φ(v), consumed by �lter v. Each �lter v ∈ V is annotated with

the code size of the �lter, ω(v), if the �lter is placed in software.

2. performance and area constraints: Designer speci�ed throughput con-

straint on the SDF, and area constraint on the functional architecture.

3. library of characterized processing elements: A library consisting of pro-

cessing elements categorized into software PEs and ASIC PEs. The ASIC

PEs, which perform the function of one �lter, are parameterized with

75

the �lter function it performs, the execution time, energy consumption,

and the area requirement. The software PEs are parameterized with

frequency, area, and energy requirement.

4. library of characterized memory elements: A library consisting of mem-

ory elements parameterized in terms of size and number of ports, and

characterized in terms of power consumption, area requirement, and ac-

cess latencies.

synthesize

1. a functional architecture for the system: The functional architecture

speci�es the number and type of processing elements in the sub-system.

2. a mapping of the SDF to the processing elements: A mapping of each

�lter in the SDF to the processing elements in the sub-system.

3. a memory architecture for the sub-system: The memory architecture

speci�es the number and con�guration of the SPM elements in the sub-

system.

such that the performance and area constraints are satis�ed, software cores

are given priority, and the power consumption of the design is minimized.

4.3 Related Work

The work presented in this chapter for the synthesis of the functional archi-

tecture looks at the multiprocessor scheduling problem. The multiprocessor

scheduling problem has been researched quite extensively: [31] [32] [33] [37]

76

[35] [36] [28] [29] [30]. However, most of these approaches assume a �xed num-

ber of processors and schedule the tasks onto the processors. In Fernandez et

al. [33], a upper and lower bound on the number of processors is presented

such that the time of the critical path is not exceeded. In Kasahara et al. [36],

heuristic algorithms are presented to minimize the execution time. However

neither of these, [33] and [36], consider the communication overhead or the

memory requirements of code and data. In our technique, we consider the

communication overhead of the interconnection and memory architectures.

Additionally, we consider the tradeo�s of placing �lters (tasks) in hardware or

software.

Several works have been proposed to address the hardware-software

synthesis problem of the functional architecture. Optimal synthesis of the

functional architecture with hardware and software PEs is a NP-complete

problem [37] and therefore techniques that use integer linear programming

[38] [39] or use exhaustive design space exploration [40] can only be applied to

very small design instances.

Since, optimality is too di�cult to achieve several heuristics have been

presented. In Dick et al. [41], a genetic algorithm is presented to solve the

hardware-software synthesis problem. While this approach handles the selec-

tion of PEs as well as the mapping of the application task graph to the PEs,

the approach does not consider any area constraints or memory requirements.

In Chen et al. [42], a SA-based algorithm is presented to perform the selection

of the PEs and the mapping of the task graph. However, again this approach

does not consider the memory requirement of the PEs and consequently the

area requirement. In Chen et al. [43], a heuristic is presented to perform

77

the co-synthesis of the PEs and memory sub-system. The approach addresses

the mapping of the task graph on to the processing elements. However, the

approach limits the design space to a designated NxN mesh NoC architecture

where either a PE or a memory is attached to each NoC router.

In the work in this chapter, we present a heuristic capable of synthe-

sizing a heterogenous sub-system consisting of both hardware and software

PEs and will account for the memory requirements of the PEs. Additionally,

the heuristic will account for area and performance constraints while minimiz-

ing power consumption. Further, the technique will be integrated with the

memory architecture design stage to provide a co-synthesis design �ow.

78

SDF Core Library

Generate Initial Solution

Perf./Area

Constraints

Perf.

Met?

YES

NO

FAILURE

Perform Data Overlay

Perform Code Overlay

Perform HW Accelerator

Replication

All

HW?

Move Filter to HW

Update Memory Blocks

Reduce Power Consumption

Output Solution

NO

YES

Figure 4.4: Functional Architecture Synthesis Flowchart

79

A

B

C

D

4

4

4

4

1

1

2

2

Figure 4.5: Example SDF Speci�cation

4.4 Functional Architecture Synthesis

The top-level view of our functional architecture synthesis technique is shown

in Figure 4.4. The overall strategy of our technique is to begin with a pure

software solution that meets the area constraint. We then iteratively arrive at

a HW-SW solution that meets both the area and performance constraints. We

then reduce the power consumption if possible. The inputs to the functional

architecture synthesis technique are the i) SDF speci�cation of the streaming

application, ii) a library of the processing elements and memory blocks along

with their power, performance, and area models, and iii) a set of area and per-

formance constraints. The synthesis technique broadly consists of two stages:

a initial solution generation stage followed by an iterative improvement stage.

4.4.1 Initial Solution

As a �rst step we generate an appropriate single-core SDF schedule. Our tech-

nique has an option to generate two di�erent types of schedules: a minimum

bu�er schedule or a least switching schedule. For the minimum bu�er schedule

we utilize a well-known technique presented by Jantsch et al. [49]. A brief

discussion on the generation of the schedules follows.

80

Table 4.1: Minimum Bu�er PASS Generation Sequence

Step Fired Deferred Non-Firable

1 A A B, B, C, C, D
2 B A, C B, C, D
3 C A B, C, D
4 A � B, C, D
5 B C D
6 C � D
7 D � �

Minimum Bu�er Schedule: The �rst step in generating the schedule is to deter-

mine the number of times each actor must �re in order to maintain the bu�er

sizes (ie. prevent unrestricted bu�er growth). This can be accomplished easily

using �ring vectors and solving a series of equations. Figure 4.5 illustrates a

simple SDF speci�cation. From the �gure we can determine that actors A,B,

and C must �re twice, while actor D must �re one time in order to main-

tain the initial bu�er sizes. The next step in the generation of the minimum

bu�er schedule is to �re the next available actor that will increase the bu�er

requirement the least. To do this a table of the actors that are �red, deferred,

and non-�rable is maintained. An actor that is �red is the next actor in the

schedule. A deferred actor is an actor that can be �red but has had it's �r-

ing delayed due to a better (smaller bu�er increase) choice being available.

Non-�rable actors are actors that are unable to �re. Table 4.1 illustrates the

process of �ring the actors for the simple SDF in Figure 4.5 in order to keep

the bu�er growth to a minimum. This sequence of actor �rings results in a

maximum bu�er requirement of 10 units and 6 switches between actors.

Least Switching Schedule: The �rst step in generating the least switching

schedule is to determine the number of times each actor must �re in order

81

Table 4.2: Least Switching PASS Generation Sequence

Step Fired Deferred Non-Firable

1 A A B, B, C, C, D
2 A B, C B, C, D
3 B B, C, C D
4 B C, C D
5 C C D
6 C � D
7 D � �

to maintain the bu�er sizes. This is accomplished in the same way as with

the minimum bu�er schedule. Therefore, for the SDF in Figure 4.5 the actors

A,B, and C must �re twice and actor D must �re one time. The next step is

to �re the actors in such a manner that the number of times we switch between

di�ering actors is minimal. To do this, we begin by �ring the available actor

that increases the bu�er usage the least. We then see if the same actor can

�re again. If it can, we �re it. If it can not, we �re a di�erent available

actor that will increase the bu�er usage the least. Table 4.2 illustrates the

process of �ring actors in order to keep the actor switching to a minimum.

This sequence of actor �rings results in a maximum bu�er requirement of 16

units and 3 switches between actors.

Each schedule type has advantages and disadvantages. The minimum

bu�er schedule is useful when the data blocks of the SDF are large and the

execution time of the �lters is long enough to hide the overhead of DMAing

the �lters in and out of main memory when code overlay schemes are in place.

Least switching schedules are useful when the data blocks are small and the

dominating aspect is the code size. Least switching schedules allow fewer

fetches of code from main memory when code overlay schemes are in place.

82

This reduces the time overhead to fetch the code as well as the large increase

to power consumption from accessing main memory.

After the multi-processor schedule is determined the next step in gener-

ating the initial solution is to perform code memory minimization. During this

step we implement a code overlay scheme to reduce the memory requirement.

In implementing the code overlay we attempt to keep the hit to performance to

a minimal by only overlaying code blocks that have no interference. The next

step is the data memory minimization step. During this step we implement an

overlay scheme for the data blocks. Again we attempt to keep the impact on

performance to a minimal by only overlaying data blocks that do not interfere

with each other at all. After the completion of the code and data overlay

steps we calculate the memory requirement of the code and data and generate

a scratchpad memory (SPM) for the core. We also calculate the performance,

area, and energy of the core utilizing the highest frequency (performance)

software processing element available in the the library. This represents one

software core. We then replicate this software core as many times as will �t

in the area constraint. This will represent the initial solution. By beginning

the iterative stage of our technique with a pure software design we are able

to ensure that priority is given to maintaining as much functionality in soft-

ware as possible. This is done by replacing �lters in software with hardware

accelerators only when necessary to meet performance and area constraints.

4.4.2 Data Memory Minimization

The objective of the data memory minimization stage is to create an overlay

scheme to reduce the memory required for the data blocks by analyzing their

lifetimes and assigning them to the same memory region. This is done while

83

1: perform_data_overlay()
2: {
3: G = generate_interference_graph()
4: while ∃ edge (a, b) ∈ G whose I.F. = 0 do
5: assign a and b to the same region.
6: update_interference_graph()
7: end while
8: }

Figure 4.6: Data Memory Minimization Pseudo-code

attempting to minimize the impact on performance. The pseudo-code for the

data minimization stage is shown in Figure 4.6. The �rst step is to generate

the data block interference graph (Line 3, Figure 4.6). The interference graph

is speci�ed as a graph G(V,E) where V is the set of data blocks and E is the set

of edges from (u, v) where u and v are vertices in V . An edge (u, v) is annotated

with the interference factor for the vertices u and v. The interference factor

can be one of three values, i) 0, denoting the data blocks do not interfere in

any way, ii) 1, denoting the data blocks interfere by being alive consecutively,

and iii) 2, denoting the data blocks interfere by being alive at the same time.

A data block is alive during the time frame it is being written to and again

during the time frame it is being read from. Next, we look and see if there are

any edges with zero interference (Line 4, Figure 4.6). If there is, we assign the

two data blocks to the same region (Line 5, Figure 4.6). We then update the

interference graph to include the combined interference of the newly overlayed

data blocks (Line 6, Figure 4.6). This process continues until there no longer

exists a pair of data blocks with an interference factor of zero.

84

writen

0 20

time

Data_D

Data_C

Data_B

Data_A read

readwriten

writen

writen read

read

30 50 60 80 90 100 130 150 160 180 210

Coarse Grain Lifetime of Data_A

Figure 4.7: Example Data Lifetimes

Table 4.3: Data Inteference Table

� A B C D

A � 2 0 1
B 2 � 1 0
C 0 1 � 2
D 1 0 2 �

Figure 4.7 illustrates a simple example with four data blocks A,B,C,

and D along with their associated lifetimes. After analyzing the data block

lifetimes we generate the interference graph (shown in table form) in Table

4.3. From the table we can see that data block pairs (A,C) and (B,D) both

have interference factors of zero. Therefore, we would combine data blocks

(A,C) into region 1 and data blocks (B,D) into region 2 and perform data

overlay on the regions. Figure 4.8 illustrates the resulting schedule with the

data blocks (A,C) and (B,D) being overlayed.

85

write(A)

0 20

time

Region 2 (B,D)

Region 1 (A,C)

read(B)

write(C)

write(D)

read(C)

30 50 60 80 90 100 130 150 160 180 210

DMA access = 10 time units

D
M

A
_A

D
M

A
_C

D
M

A
_B

D
M

A
_D

D
M

A
_A

D
M

A
_C

D
M

A
_D

D
M

A
_B

40 110 140 170

write(B)

read(A)

read(D)

Figure 4.8: Data Overlay Schedule

4.4.3 Code Memory Minimization

The objective of the code memory minimization stage is to reduce the amount

of memory required for the code by establishing a code overlay scheme. The

pseudo-code for the code minimization stage is given in Figure 4.9. We begin

by initializing each �lter to its own region in memory (Line 3, Figure 4.9).

Next we generate an interference graph (Line 4, Figure 4.9). The interference

graph is speci�ed as a graph G(V,E) where V is the set of �lters and E is

the set of edges from (u, v) where u and v are vertices in V . An edge (u, v)

is annotated with the interference factor of vertices u and v. The interference

factor is de�ned as the number of times a consecutive transition is made from

�lter u to �lter v and vice versa. Next, we check to see if there exists a pair

of �lters (regions) with an interference factor of zero (Line 5, Figure 4.9). If

there is a pair we combine the regions together and update the interference

graph (Lines 6 and 7, Figure 4.9). This process continues until there no longer

exists a pair of �lters (regions) with an interference factor of zero.

86

1: perform_code_overlay()
2: {
3: Initialize each �lter to occupy its own region
4: G = generate_interference_graph()
5: while ∃ edge (a, b) ∈ G whose I.F. = 0 do
6: combine_regions()
7: update_IF ()
8: end while
9: }

Figure 4.9: Code Memory Minimization Pseudo-code

A

B

C

D

4

4

4

4

1

1

2

2

Figure 4.10: Example SDF Speci�cation

Table 4.4: Code Inteference Table

� A B C D

A � 1 0 1
B 1 � 1 0
C 0 1 � 1
D 1 0 1 �

Figure 4.10 illustrates a simple SDF speci�cation. In the �gure there

are four �lters (A,B,C,D). We will assume we are utilizing the least switch-

ing schedule A,A,B,B,C,C,D. Table 4.4 illustrates the interference graph

(shown as a table) for the code �lters. From the table we can see that �lters

(A,C) and �lters (B,D) have interference factors of zero. Therefore, we would

87

Region 1 (A,C)

Region 2 (B,D)

Actor execution = 10 time units DRAM DMA = 40 time units

A

B

A

B

CDMA C

DMA D

0 10 20 30 40

time

C

60 70 80 90

D

Figure 4.11: Least Switching Schedule

1: hardware_accelerator_replication()
2: {
3: for each hardware accelerator X do
4: for i = 2; i < number of SW core replicates; i++ do
5: create new hardware accelerator with attributes X ∗ i
6: end for
7: end for
8: }

Figure 4.12: Hardware Accelerator Replication Pseudo-code

combine �lters (A,C) into region 1 and �lters (B,D) into region 2. Figure

4.11 illustrates the resulting execution schedule with DMAs. From the illus-

tration and the assumed execution times and DMA time, we can see that the

overhead of the DMA is partially hidden by the execution of the �lters in the

other region.

88

Table 4.5: Hardware Accelerators Before Replication

Hardware Area Performance Energy
Accelerator (mm2) µs (nJ)

1 .29 5.64 26112.90
2 .45 1.16 31312.32
3 1.69 0.04 36372.78

4.4.4 Hardware Accelerator Replication

The hardware accelerator replication stage allows us to expand the library of

hardware accelerator processing elements to include processing elements with

performance, area, and power models that would otherwise be absent. Thus,

giving us a more complete library to choose from when transitioning from the

pure software initial solution to the HW-SW hybrid solution. The pseudo-

code for the hardware replication stage is shown in Figure 4.12. We begin by

iterating through all of the initial hardware accelerators (Line 3, Figure 4.12).

Next, we iterate from 2 to the total number of software cores in the initial

pure software solution (Line 4, Figure 4.12). For each value of i we create a

new hardware accelerator with attributes equal to replicating the hardware

accelerator i times (Line 5, Figure 4.12). This continues until every hardware

accelerator has been replicated fully.

Tables 4.5 and 4.6 show a simple hardware accelerator library before

and after hardware replication, respectively. Each hardware accelerator was

replicated twice to form a new accelerator (denoted by #.2). From the �gures

we see through replication we are able to provide new hardware accelerators

that �ll the gaps that would otherwise be absent.

89

Table 4.6: Hardware Accelerators After Replication

Hardware Area Performance Energy
Accelerator (mm2) µs (nJ)

1 .29 5.64 13112.90
1.2 .58 2.82 26225.80
2 .45 1.16 31312.32
2.2 .90 0.58 62624.64
3 1.69 0.04 66372.78
3.2 3.38 0.02 132745.56

1: move_filter_to_hw()
2: {
3: while performance constraint not met && SW still exists do
4: find_slowest_filter()
5: remove_filter_from_SW ()
6: add_hw_double_buffering()
7: while add_HW_accelerator() == FAIL do
8: remove_SW_core()
9: if number SW cores == 0 then
10: build_hw_design()
11: end if
12: end while
13: end while
14: if performance is met && area is met then
15: reduce_power()
16: else
17: output failure
18: end if
19: }

Figure 4.13: Iterative Transition to HW-SW Design Pseudo-code

4.4.5 Iterative Transition to HW-SW Design

During the iterative transition to a hw-sw design stage of the technique we

incrementally move a �lter from being executed in software to a dedicated

90

hardware accelerator in order to improve the performance of the design while

maintaining a similar area requirement. Typically we will see a reduction in

the power consumption during this stage due to hardware requiring less power

and the reduction of �lter code being fetched from DRAM. The pseudo-code

for the transition from a pure SW design to a HW-SW co-design is shown in

Figure 4.13.

The code begins by checking to see if the performance constraint is

met and whether there exists any �lters remaining in software (Line 3, Figure

4.13). Next, we �nd the slowest �lter in software (Line 4, Figure 4.13). This

�lter will be the �lter that we move from software to a hardware accelerator.

In the next step, we remove the �lter from the software core(s) (Line 5, Figure

4.13). To do this, we perform three tasks: i) we remove the �lter from the

software execution schedule, ii) we remove the �lter data blocks from memory

and update the data overlay scheme if applicable, and iii) we remove the �lter

code block from memory and update the code overlay scheme if applicable.

By maintaining the previously generated interference graphs we can quickly

and easily determine if by removing the �lter from software whether we can

create additional overlays for code and data in the memory of the software

core(s).

The next stage of the algorithm is to add the hardware accelerator for

the removed software �lter. To do this we �rst add double bu�ering to the

software core(s) for the data to/from the hardware accelerator (Line 6, Figure

4.13). By adding double bu�ering the software and hardware can execute

in parallel. Next, we attempt to add the hardware accelerator to the design

(Line 7, Figure 4.13). In order for the hardware accelerator to be successfully

91

added it must, i) �t in the available area, ii) execute n ∗ i times within the

performance constraint, where n is the number of software cores and i is the

number of instances the �lter exists in the execution schedule. If there does

not exist a hardware accelerator capable of meeting these requirements we

remove one software core and try again (Line 8, Figure 4.13). However, if we

remove the last software core we build a pure hardware design (Line 10, Figure

4.13).

To build a pure hardware design we allocate the slowest hardware accel-

erator for each �lter in the SDF. We then iteratively improve the performance

of the slowest �lter, by changing it to a faster accelerator, until the performance

constraint is met or the area constraint will become violated. This approach,

when successful, will yield a pure hardware solution with the minimal area

and energy for the given performance constraint.

If the algorithm is able to generate a design that meets both the area

and performance constraints it will try to reduce the energy consumption (Line

14 and 15, Figure 4.13). To do this, the faster processing elements (hardware

and software) are one-at-a-time switched out for slower more energy conscious

alternatives. This continues until no processing elements exist that can be

switched out without violating the performance constraint.

If the algorithm is unable to meet the performance and area constraint,

it will output a failure (Line 17, Figure 4.13).

92

Table 4.7: Benchmark Speci�cations

Benchmarks #Actors #Edges #Executions

Beamformer 40 72 64
Bitonic-sort 26 31 68
Channelvocoder 55 70 87
DCT 15 22 28
FFT 17 16 58
Filterbank 51 65 94
Fmradio 29 39 58

Average 33 45 65

4.5 Experimental Results

We evaluated the e�cacy of our approach through the use of seven benchmarks

from the StreamIT [44] benchmark suite. The benchmarks are described in

Table 4.7. In the table the second and third columns denote the number of

actors and edges in each benchmark, and the last column denotes the total

number of actor �rings in one iteration of the SDF. We set the performance

constraint to a set value for each benchmark and varied the area constraint.

The constraints used for each benchmark are shown in Table 4.8.

We compared our technique against four di�erent initial solutions, i)

one with both code and data overlay (denoted as "Code and Data Overlay"

in the plots), ii) one with only code overlay (denoted as "Code Overlay" in

the plots), iii) one with only data overlay (denoted as "Data Overlay" in the

plots), and iv) one with neither code or data overlay (denoted as "No Overlay"

in the plots). We also compared against a pure hardware solution (denoted as

"Hardware" in the plots). Each initial software solution utilized the highest

performing software core. The pure hardware designs were the smallest (lowest

energy) solution that met the performance constraint. The solutions generated

93

Table 4.8: Benchmark Constraints

Performance Area
Benchmarks Constraint Constraints

(µs) (mm2)
Beamformer 0.25 5,10,20,...,70
Bitonic-sort 0.33 1,5,10,15,20
Channelvocoder 120 2,6,11,17,22,30,35
DCT 2 1,5,10,15,20,25
FFT 10 10,50,100,150,200
Filterbank 50 1,5,10,20,...,110
Fmradio 40 5,10,15,20,30,35,45,50

by our technique utilized the initial solution with both code and data overlays.

We generated designs for both a minimum bu�er schedule and a minimum

switching schedule. We compared the designs generated by each method in

terms of performance vs. area vs. energy. We also analyzed the overall impact

overlay schemes have on the initial solution.

4.5.1 High Level Synthesis of Hardware Accelerator Library

In order to generate the designs, we needed to generate the hardware accel-

erator library. To do this, we utilized the software implementations of the

benchmark �lters provided by the StreamIT [44] compiler. We converted the

software (C/C++) implementations into SystemC [50] hardware descriptions.

We then utilized the high-level synthesis tool Forte Cynthesizer [46] to syn-

thesize the SystemC descriptions into hardware. By changing the synthesis

constructs within the SystemC �les we were able to synthesize several hardware

accelerators for each �lter with varying area and performance models. Dur-

ing the process of high-level synthesis the Cynthesizer tool outputs RTL code

for the hardware accelerators. We used the produced RTL code to generate

94

energy models using Synopsys Primepower [47]. During the process of high-

level synthesis and the gathering of the energy values we utilized the TSMC

45nm libraries from Synopsys. Due to the extensive manual labor required to

generate the hardware accelerators we only performed the high-level synthesis

tasks for two of the benchmarks: DCT and FFT. For the other benchmarks,

we performed estimations for the performance, area, and energy models of

the �lters based on the results generated for the �lters of the DCT and FFT

benchmarks.

The software cores utilized in our results are from the ARM Cortex

R4 [48] series of cores. The memory library (SPM and DRAM models) was

generated based on the �ndings in Banakar, et al. [45]. The capacity of

the SPM memories were set to power of two increments ranging from 32B to

524KB.

Due to the large quantity of results, we will only discuss in detail the

results for the DCT and FFT benchmarks in this section. The results for the

additional benchmarks will be presented in Section 4.6 with minimal discus-

sion.

4.5.2 DCT Comparison

In this section we will analyze the results for the DCT benchmark. Figures

4.14 and 4.15 illustrate the results for the performance vs. area vs. energy

comparison when the smallest bu�er execution schedule is utilized. In the

�gures the light gray dashed line represents the performance constraint. From

the �gure we can see that the software solution with code and data overlay is

only able to meet the performance constraint when the area constraint is quite

95

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

0

5

10

15

20

25

0 2 4 6 8 10

En
e

rg
y

(n
J)

A
re

a
(m

m
^2

)

Performance (us)

Our Technique - Area Code and Data Overlay - Area
Perf. Constraint Our Technique - Energy
Code and Data Overlay - Energy

Pure Hardware

Figure 4.14: DCT Area vs. Perf. vs. Energy (sb)

large. However, the software solution consumes a large amount of energy. The

high energy consumption can be contributed to two main causes, 1) the higher

cost to operate a software core compared with a hardware accelerator, and 2)

the high cost of accessing the main memory. From the �gure, we can see

that the designs generated by our technique are always capable of meeting the

area and performance constraints. The designs we generate place a priority

on software cores, only eliminating them when necessary. This is evident in

the �gure by the plot representing our designs ("Our Technique") following

the pure software designs until hardware accelerators are required. At which

point, our technique generates HW-SW designs which meet the performance

constraint while maintaining as much functionality in software as possible.

Our technique only resorts to a pure hardare design (denoted by circles in the

96

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

0

5

10

15

20

25

30

0 5 10 15 20 25 30

En
e

rg
y

(n
J)

A
re

a
(m

m
^2

)

Performance (us)

No Overlay - Area Code and Data Overlay - Area
Perf. Constraint No Overlay - Energy
Code and Data Overlay - Energy

Figure 4.15: DCT Area vs. Perf. vs. Energy (sb)

�gure) when the area constraint is too tight that a HW-SW design is infea-

sible. From the �gure we can see as the designs generated by our technique

transition from a pure software design towards a pure hardware design the en-

ergy consumption drastically decreases. This is expected due to the reduction

in main memory accesses as more and more functionality of the application is

being moved onto hardware accelerators. From Figure 4.15 we can see that

by using code and data overlay we are able to generate valid solutions for the

pure software designs longer. However, this comes with a cost of the energy

consumption increasing from the use of code and data overlays. Again, this is

expected due to more main memory accesses to retrieve code and data.

Figures 4.16 and 4.17 illustrate the results for the performance vs. area

97

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

0

5

10

15

20

25

0 1 2 3 4 5

En
e

rg
y

(n
J)

A
re

a
(m

m
^2

)

Performance (us)

Our Technique - Area Code and Data Overlay - Area
Perf. Constraint Our Technique - Energy
Code and Data Overlay - Energy

Pure Hardware

Figure 4.16: DCT Area vs. Perf. vs. Energy (ls)

vs. energy comparison when the least switching execution schedule is utilized.

From the �gures we can see a similar trend as with the previous �gures. How-

ever, one thing to note is due to the least switching schedule the software

designs do not improve with the use of code or data overlay. Because of this

the software designs are unable to meet the area and performance constraints

much sooner. Therefore, forcing our technique to generate HW-SW designs

and ultimately a pure hardware design as the area constraint is tightened.

4.5.3 FFT Comparison

In this section we will analyze the results for the FFT benchmark. Figures

4.18 and 4.19 illustrate the results for the performance vs. area vs. energy

comparison when the smallest bu�er execution schedule is used. From the

98

1E+06

1E+07

1E+08

1E+09

1E+10

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9

En
e

rg
y

(n
J)

A
re

a
(m

m
^2

)

Performance (us)

No Overlay - Area Code and Data Overlay - Area
Perf. Constraint No Overlay - Energy
Code and Data Overlay - Energy

Figure 4.17: DCT Area vs. Perf. vs. Energy (ls)

�gures we can see that the plots are similar to those for the DCT benchmark.

From Figure 4.18 we can see that the designs generated by our technique follow

the pure software designs until the designs no longer meet both the area and

performance constraint. At this point, our technique begins to generate HW-

SW designs with a priority on maintaining as much functionality in software

as possible. This evident in the �gure by the plot for our technique ("Our

Technique") following the performance constraint line rather than jumping

directly to a pure hardware design. Ultimately, when the area constraint

is restricted far enough our technique is forced to generate a pure hardware

design in order to meet the constraints. These pure hardware designs are

denoted in the �gure by the circles. The �gure also illustrates that the energy

consumption for the pure software designs is signi�cantly higher than the

99

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

En
e

rg
y

(n
J)

A
re

a
(m

m
^2

)

Performance (us)

Our Technique - Area Code and Data Overlay - Area
Perf. Constraint Our Technique - Energy
Code and Data Overlay - Energy

Pure Hardware

Figure 4.18: FFT Area vs. Perf. vs. Energy (sb)

energy consumption for the HW-SW designs generated by our technique as

well as the pure hardware design. This is anticipated due to the high cost of

accessing the main memory along with the higher energy cost to operate a

software core versus a hardware accelerator. Figure 4.19 illustrates a similar

trend as Figure 4.15. In the �gure we can see that by using code and data

overaly we are able to generate pure software solutions that meet both the area

and performance constraint longer. However, this comes at a cost of higher

energy consumption. The increase in energy consumption is associated with

the code and data overlay schemes requiring accesses to the main memory.

100

1E+06

1E+07

1E+08

1E+09

1E+10

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140

En
e

rg
y

(n
J)

A
re

a
(m

m
^2

)

Performance (us)

No Overlay - Area Code and Data Overlay - Area
Perf. Constraint No Overlay - Energy
Code and Data Overlay - Energy

Figure 4.19: FFT Area vs. Perf. vs. Energy (sb)

Figures 4.20 and 4.21 illustrate the results for the performance vs. area

vs. energy comparison when the least switching execution schedule is used.

From Figure 4.20 we can see that the pure software designs are never able to

meet the area and performance constraint. Therefore, forcing our technique to

generate HW-SW designs until the area constraint is tight enough to require a

pure hardware design (denoted by the circles). Figure 4.21 illustrates that with

the least switching execution schedule the pure software designs are unable to

take advantage of code and data overlays in order to reduce the footprint of

each software core. By reducing the footprint of each software core we are

able to place more software cores in the same area. Thus, increasing the

performance of the design.

101

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

En
e

rg
y

(n
J)

A
re

a
(m

m
^2

)

Performance (us)

Our Technique - Area Code and Data Overlay - Area
Perf. Constraint Our Technique - Energy
Code and Data Overlay - Energy

Pure Hardware

Figure 4.20: FFT Area vs. Perf. vs. Energy (ls)

4.5.4 Impact of Overlay

In this section we will discuss the impact of using code and data overlay on the

pure software solution. Since, we use a pure software solution as the starting

point in our technique it is worthwhile to discuss the impact of overlay schemes

in further detail. Figures 4.22 and 4.23 illustrate the impact of using overlay

schemes on the DCT benchmark when a smallest bu�er execution schedule

and a least switching execution schedule are used, respectively. In the �g-

ures the light gray dashed line denoted with "Perf. Constraint" represents the

performance constraint used for the DCT benchmark. From Figure 4.22 we

can see that with no overlay scheme as well as with code overlay we generate

102

1E+06

1E+07

1E+08

1E+09

1E+10

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

En
e

rg
y

(n
J)

A
re

a
(m

m
^2

)

Performance (us)

No Overlay - Area Code and Data Overlay - Area
Perf. Constraint No Overlay - Energy
Code and Data Overlay - Energy

Figure 4.21: FFT Area vs. Perf. vs. Energy (ls)

the same designs in terms of area and performance. This does not mean that

code overlay is not being performed. What this represents is that with code

overlay we are unable to use a smaller scratchpad memory (SPM) size. There-

fore, the area requirement remains the same. Further, the use of code overlay

is not negatively impacting the performance of the design. If we recall, not

decreasing performance was a priority when generting overlay schemes. From

Figure 4.22 we can see that using only data overlays we are able to improve

the performance of the design. This is due to data overlays allowing us to

use a smaller SPM and therefore add more software cores. Thus, improving

the performance of the design. Lastly, from the �gure we can see when we

implement both code and data overlays we are able to achieve the best per-

formance. This is again due to the savings in area by using a smaller SPM to

103

0

5

10

15

20

25

30

0 1 2 3 4 5 6

A
re

a
(m

m
^2

)

Performance (us)

No Overlay Code Overlay Data Overlay

Code and Data Overlay Perf. Constraint

No Overlay &
Code Overlay

Figure 4.22: DCT Overlay Impact (sb)

store the code and data, which allows more software cores to be allocated to

the design. Thus, improving the performance of the design.

Figure 4.23 illustrates an interesting concept when all four software de-

signs are the same. This occurs when the execution schedule (in this case the

least switching schedule) does not allow for any signi�cant code or data over-

lays to be implemented. Therefore, we are unable to save area through overlays

and thus unable to allocate additional software cores in order to improve the

performance of the design.

Lastly, Table 4.9 illustrates the performance, area, and energy values

of a single software core for each pure software design for the FFT benchmark

when a smallest bu�er execution schedule is used. From the table, we can

104

0

5

10

15

20

25

30

0 1 2 3 4 5 6

A
re

a
(m

m
^2

)

Performance (us)

No Overlay Code Overlay Data Overlay

Code and Data Overlay Perf. Constraint

No Overlay,
Code Overlay,
Data Overlay, &
Code and Data Overlay

Figure 4.23: DCT Overlay Impact (ls)

Table 4.9: Single Software Core Comparison (FFT)

Overlay Performance Area Energy
Type (µs) (mm2) (nJ)
No Overlay 116.316 16.8176 65482600
Code Overlay 116.998 16.8176 65549100
Data Overlay 116.316 9.074 66303000
Code and Data Overlay 116.998 9.074 66369600

see when we only implement code overlay we receive a software core with

worse performance, equivalent area, and higher energy consumption as the

software core with no overlays. The impact to performance and energy is

due to fetching code from main memory. However, the thing to note is that

the area requirement remained the same. This is due to the memory savings

from code overlay not being substantial enough to allow the use of a smaller

105

SPM. However, if we implement only data overlays we see no decrease to

performance, a reduction in area, and an increase to energy. The increase to

energy is expected due to accessing the main memory. The reduction in area

is contributed to the memory savings of overlaying data blocks allowing the

core to utilize a smaller SPM. The lower area requirement through the use of

data overlays would allow more software cores to be allocated in the same area

constraint as the softwares core with no overlays and code overlays. Lastly,

from the table we can see that the use of both code and data overlay results

in a software core with decreased performance, smaller area requirement, and

higher energy consumption than the software core with no overlays. From this

analysis we can conclude that always using the software core with both code

and data overlays may not be the best option. For instance, in this case the

software core with data overlays only would be the best choice.

106

4.6 Extended Results

In this section we discuss the performance vs. area vs. energy results for the

remainder of the benchmarks.

107

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2

(E
n

e
rg

y
(n

J)

A
re

a
(m

m
^2

)

Performance (us)

Our Technique - Area Code and Data Overlay - Area
Perf. Constraint Our Technique - Energy
Code and Data Overlay - Energy

Pure Hardware

Pure Hardware

Figure 4.24: beamformer Area vs. Perf. vs. Energy (sb)

Figures 4.24 and 4.25 illustrate the performance vs. area vs. energy

comparison when a smallest bu�er execution schedule is used. From the �gures

we can see that the plots follow a similar trend as those discussed previously.

However, one interesting point is that there are multiple pure hardware so-

lutions in Figure 4.24. This occurs as the pure hardware design attempts to

meet both the area and performance contraint. Until both constraints have

been met the design will change as more area is made available in order to

allocate higher performing hardware accelerators. Figures 4.26 and 4.27 illus-

trate the comparison when a least switching execution schedule is used. From

the �gures we can see that they follow a similar trend as previously discussed.

108

1E+07

1E+08

1E+09

1E+10

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14
En

e
rg

y
(n

J)

A
re

a
(m

m
^2

)

Performance (us)

No Overlay - Area Code and Data Overlay - Area

Perf. Constraint No Overlay - Energy

Code and Data Overlay - Energy

Figure 4.25: beamformer Area vs. Perf. vs. Energy (sb)

109

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2
En

e
rg

y
(n

J)

A
re

a
(m

m
^2

)

Performance (us)

Our Technique - Area Code and Data Overlay - Area
Perf. Constraint Our Technique - Energy
Code and Data Overlay - Energy

Pure Hardware

Pure Hardware

Pure Hardware

Pure Hardware

Pure Hardware

Pure Hardware

Pure Hardware

Pure Hardware

Figure 4.26: beamformer Area vs. Perf. vs. Energy (ls)

110

1E+07

1E+08

1E+09

1E+10

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14
En

e
rg

y
(n

J)

A
re

a
(m

m
^2

)

Performance (us)

No Overlay - Area Code and Data Overlay - Area
Perf. Constraint No Overlay - Energy
Code and Data Overlay - Energy

Figure 4.27: beamformer Area vs. Perf. vs. Energy (ls)

111

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2 1.4

En
e

rg
y

(n
J)

A
re

a
(m

m
^2

)

Performance (us)

Our Technique - Area Code and Data Overlay - Area
Perf. Constraint Our Technique - Energy
Code and Data Overlay - Energy

Pure Hardware

Figure 4.28: bitonic-sort Area vs. Perf. vs. Energy (sb)

Figures 4.28, 4.29, 4.30, and 4.31 illustrate the performance vs. area vs.

energy comparison for the bitonic-sort benchmark when a smallest bu�er exe-

cution schedule and a least switching execution schedule are used, respectively.

From the �gures we can see that the plots follow a similar trend as previously

discussed. Our technique generated designs which are pure software until no

longer feasible due to the area constraint. At which point, are technique will

generate a HW-SW design until ultimately being forced to generate a pure

hardware design.

112

1E+07

1E+08

1E+09

1E+10

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2 1.4
En

e
rg

y
(n

J)

A
re

a
(m

m
^2

)

Performance (us)

No Overlay - Area Code and Data Overlay - Area
Perf. Constraint No Overlay - Energy
Code and Data Overlay - Energy

Figure 4.29: bitonic-sort Area vs. Perf. vs. Energy (sb)

113

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2 1.4
En

e
rg

y
(n

J)

A
re

a
(m

m
^2

)

Performance (us)

Our Technique - Area Code and Data Overlay - Area
Perf. Constraint Our Technique - Energy
Code and Data Overlay - Energy

Pure Hardware

Figure 4.30: bitonic-sort Area vs. Perf. vs. Energy (ls)

114

1E+07

1E+08

1E+09

1E+10

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2 1.4
En

e
rg

y
(n

J)

A
re

a
(m

m
^2

)

Performance (us)

No Overlay - Area Code and Data Overlay - Area
Perf. Constraint No Overlay - Energy
Code and Data Overlay - Energy

Figure 4.31: bitonic-sort Area vs. Perf. vs. Energy (ls)

115

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600

En
e

rg
y

(n
J)

A
re

a
(m

m
^2

)

Performance (us)

Our Technique - Area Code and Data Overlay - Area
Perf. Constraint Our Technique - Energy
Code and Data Overlay - Energy

Pure Hardware

Figure 4.32: channelvocoder Area vs. Perf. vs. Energy (sb)

Figures 4.32, 4.33, 4.34, and 4.35 illustrate the performance vs. area

vs. energy comparison for the channelvocoder benchmark when a smallest

bu�er execution schedule and a least switching execution schedule are used,

respectively. From the �gures we can see that the plots follow a similar trend

as previously discussed.

116

1E+07

1E+08

1E+09

1E+10

0

5

10

15

20

25

30

35

0 500 1000 1500 2000
En

e
rg

y
(n

J)

A
re

a
(m

m
^2

)

Performance (us)

No Overlay - Area Code and Data Overlay - Area
Perf. Constraint No Overlay - Energy
Code and Data Overlay - Energy

Figure 4.33: channelvocoder Area vs. Perf. vs. Energy (sb)

117

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600
En

e
rg

y
(n

J)

A
re

a
(m

m
^2

)

Performance (us)

Our Technique - Area Code and Data Overlay - Area
Perf. Constraint Our Technique - Energy
Code and Data Overlay - Energy

Pure Hardware

Figure 4.34: channelvocoder Area vs. Perf. vs. Energy (ls)

118

1E+07

1E+08

1E+09

1E+10

0

5

10

15

20

25

30

35

0 500 1000 1500 2000
En

e
rg

y
(n

J)

A
re

a
(m

m
^2

)

Performance (us)

No Overlay - Area Code and Data Overlay - Area
Perf. Constraint No Overlay - Energy
Code and Data Overlay - Energy

Figure 4.35: channelvocoder Area vs. Perf. vs. Energy (ls)

119

1E+06

1E+07

1E+08

1E+09

1E+10

0

20

40

60

80

100

120

0 50 100 150 200

En
e

rg
y

(n
J)

A
re

a
(m

m
^2

)

Performance (us)

Our Technique - Area Code and Data Overlay - Area
Perf. Constraint Our Technique - Energy
Code and Data Overlay - Energy

Pure Hardware

Figure 4.36: �lterbank Area vs. Perf. vs. Energy (sb)

Figures 4.36, 4.37, 4.38, and 4.39 illustrate the performance vs. area

vs. energy comparison for the �lterbank benchmark when a smallest bu�er

execution schedule and a least switching execution schedule are used, respec-

tively. From the �gures we can see that the plots follow a similar trend as

previously discussed.

120

1E+06

1E+07

1E+08

1E+09

1E+10

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500
En

e
rg

y
(n

J)

A
re

a
(m

m
^2

)

Performance (us)

No Overlay - Area Code and Data Overlay - Area
Perf. Constraint No Overlay - Energy
Code and Data Overlay - Energy

Figure 4.37: �lterbank Area vs. Perf. vs. Energy (sb)

121

1E+07

1E+08

1E+09

1E+10

0

20

40

60

80

100

120

0 50 100 150 200
En

e
rg

y
(n

J)

A
re

a
(m

m
^2

)

Performance (us)

Our Technique - Area Code and Data Overlay - Area
Perf. Constraint Our Technique - Energy
Code and Data Overlay - Energy

Pure Hardware

Figure 4.38: �lterbank Area vs. Perf. vs. Energy (ls)

122

1E+06

1E+07

1E+08

1E+09

1E+10

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500
En

e
rg

y
(n

J)

A
re

a
(m

m
^2

)

Performance (us)

No Overlay - Area Code and Data Overlay - Area
Perf. Constraint No Overlay - Energy
Code and Data Overlay - Energy

Figure 4.39: �lterbank Area vs. Perf. vs. Energy (ls)

123

1E+06

1E+07

1E+08

1E+09

1E+10

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200

En
e

rg
y

(n
J)

A
re

a
(m

m
^2

)

Performance (us)

Our Technique - Area Code and Data Overlay - Area
Hardware - Area Perf. Constraint
Our Technique - Energy Code and Data Overlay - Energy
Hardware - Energy

Pure Hardware

Figure 4.40: fm Area vs. Perf. vs. Energy (sb)

Figures 4.40, 4.41, 4.42, and 4.43 illustrate the performance vs. area

vs. energy comparison for the fm benchmark when a smallest bu�er execu-

tion schedule and a least switching execution schedule are used, respectively.

From the �gures we can see that the plots follow a similar trend as previously

discussed. There is one point to note however. In Figures 4.40 and 4.42 our

technique never generates a valid pure hardware design. We can see from the

�gures that the closest design we create to pure hardware is still a HW-SW

design. This is the direct result of our technique placing a priority on using

software cores. The pure hardware solution requires less area and performs

better than our design however, by maintaining a HW-SW design our tech-

nique still leaves the �exibility to the designer in the future to add/remove

functionality. This is an important attribute of our technique.

124

1E+06

1E+07

1E+08

1E+09

1E+10

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500 600 700
En

e
rg

y
(n

J)

A
re

a
(m

m
^2

)

Performance (us)

No Overlay - Area Code and Data Overlay - Area
Perf. Constraint No Overlay - Energy
Code and Data Overlay - Energy

Figure 4.41: fm Area vs. Perf. vs. Energy (sb)

125

1E+06

1E+07

1E+08

1E+09

1E+10

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200
En

e
rg

y
(n

J)

A
re

a
(m

m
^2

)

Performance (us)

Our Technique - Area Code and Data Overlay - Area
Hardware - Area Perf. Constraint
Our Technique - Energy Code and Data Overlay - Energy
Hardware - Energy

Figure 4.42: fm Area vs. Perf. vs. Energy (ls)

126

1E+06

1E+07

1E+08

1E+09

1E+10

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500 600 700
En

e
rg

y
(n

J)

A
re

a
(m

m
^2

)

Performance (us)

No Overlay - Area Code and Data Overlay - Area
Perf. Constraint No Overlay - Energy
Code and Data Overlay - Energy

Figure 4.43: fm Area vs. Perf. vs. Energy (ls)

127

4.7 Summary

We presented a HW-SW co-design synthesis technique for the functional ar-

chitecture for MPSoC sub-systems. The approach accounts for software and

hardware processing elements and generates optimized HW-SW designs that

meet given area and performance constraints while giving priority to software

cores. Further, the technique generates a memory architecture for the sub-

system that accounts for and optimizes for both code and data through the

use of overlay schemes. We evaluated our approach through extensive experi-

mentation with streaming application benchmarks through comparisons with

various pure software solutions as well as a pure hardware solution. Our tech-

nique demonstrated the ability to generate high quality designs that account

for the tradeo�s between hardware and software while meeting the area and

performance constraints and maintaining a low energy consumption.

128

Chapter 5

CONCLUSION AND FUTURE WORK

In this dissertation we present novel synthesis techniques for the three stages

of the multi-processor System-on-Chip (MPSoC) design process: functional

architecture synthesis, memory architecture synthesis, and interconnect ar-

chitecture synthesis. We begin with presenting a synthesis technique for the

interconnect architecture. In particular, we present a Network-on-Chip (NoC)

synthesis technique. The technique presented is an extension of the work pre-

sented by Srinivasan, et al. [2]. Through modi�cations to the shortest path

graph approach presented in [2] we are able to provide a holistic synthesis

technique. The technique provides integrated solutions to mixed communi-

cation tyes (transactional/cummulative), port arity, deadlock avoidance, and

multiple use-cases. The technique is able to provide these design improve-

ments while using only best e�ort routers. Experimental results show that

our technique is able to generate high quality designs that demonstrate supe-

rior performance, area, and power consumption when compared with existing

approaches.

In the next phase of our work, we presented a memory architecture

synthesis technique. The technique synthesized memory architectures for the

sub-systems of a MPSoC. The technique incorporated smart decisions to re-

duce the memory requirement of code and data for the application �lters. This

was done through the use of code overlay and data minimization through clique

partitioning. Through experimentation we showed the designs generated by

our technique were high quality and performed superior when compared to an

existing technique in terms of performance, area, and energy consumption.

129

In the �nal phase of our work, we presented a functional architecture

and memory architecture co-synthesis technique. The technique synthesized

the functional architecture for the sub-system of a MPSoC while simultane-

ously synthesizing the memory architecture. The technique considered the

trade-o�s of implementing �lters in software vs. hardware and made smart

decisions when moving �lters to hardware accelerators. Further, the technique

reduced the memory requirement for code and data through the use of overlay

schemes while minimally impacting performance. Through experimentation

our technique demonstrated the ability to generate high quality designs in

terms of performance, area, and energy consumption when compared with a

several pure software solutions and pure hardware solutions.

The dissertation work can be extended in two ways: �rst, through the

addition of a virtual platform to test the designs, and secondly, through the

automation of generating the RTL structure of the designs. The discussion of

what would be required for these two extensions follows.

5.0.1 Virtual Platform

A virtual platform is a software speci�cation to simulate the functionality

of hardware. A virtual platform can behave at a cycle-accurate level, a fast

loosely timed level, or somewhere in between. The modeling language Sys-

temC [50] is a natural choice to describe a virtual platform. To build a virtual

platform for the MPSoC design �ow we would need to model the process-

ing element library, memory component library, and NoC IP blocks library in

SystemC. Further, we would modify the stages of the design �ow to provide

outputs describing the architectures. The virtual platform would be required

to read these outputs and generate a software model from the SystemC li-

130

braries for the synthesized architectures. The virtual platform would be an

useful addition by allowing designers to quickly simulate designs in order to

see how they perform prior to implementing them in hardware.

5.0.2 RTL Generation

RTL code describes the functionality of hardware. Using RTL we can perform

synthesis to generate actual hardware (ASICs, FPGAS, etc.). The addition of

this aspect would hasten the process of taking the designs synthesized by the

MPSoC design �ow and turning them into a hardware implementation. In or-

der to automate this process we would need to describe the processing element

library, memory library, and NoC library in RTL using a hardware modeling

language such as VHDL [51]. The stages of the design �ow would need to

be modi�ed to output characteristics of the designs synthesized. This output

would then be read by a netlister which would turn the description of the de-

sign into a RTL model. By having the automated generation of RTL models a

designer can easily go from design generation synthesis to hardware with little

overhead or manual labor. The automatic generation of RTL along with the

virtual platform would provide a complete design �ow and testing framework

for the automated synthesis of highly optimized MPSoC sub-systems.

131

REFERENCES

[1] L. Benini. Application speci�c noc design In Proceedings of DATE, 2006.

[2] K. S. Chatha, K. Srinivasan, and G. Konjevod. Automated techniques
for synthesis of application-speci�c network-on-chip architectures IEEE
Trans. on CAD on Integrated Circuits and Systems, Vol 27 Issue 8, 2008.

[3] K. Srinivasan, K. S. Chatha, and G. Konjevod. Linear-programming-
based techniques for synthesis of network-on-chip architectures IEEE
Trans. Very Large Scale Integr. Syst., 2006.

[4] A. Hansson, K. Goossens, and A. Radulescu. A uni�ed approach to
constrained mapping and routing on network-on-chip architectures In
Proceedings of CODES+ISSS, 2005.

[5] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. D. Micheli.
Mapping and con�guration methods for multi-use-case networks on chips
In Proceeding of ASP-DAC, 2006.

[6] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. D. Micheli. A
methodology for mapping multiple use-cases onto networks on chips In
Proceedings of DATE, 2006.

[7] S. Murali, P. Meloni, F. Angiolini, D. Atienza, S. Carta, L. Benini, G. D.
Micheli, and L. Ra�o. Designing application-speci�c networks on chips
with �oorplan information ICCAD, 2006.

[8] U. Y. Ogras and R. Marculescu. Application-speci�c network-on-chip
architecture customization via long-range link insertion ICCAD, 2005.

[9] W. Dally and B. Towles. Principles and Practices of Interconnection
Networks, Morgan Kaufmann, 2004.

[10] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algo-
rithms (Second Edition), MIT Press and McGraw-Hill, 2002.

[11] E. A. Lee and D. G. Messerschmitt. Synchronous Data Flow In Proceed-
ings of the IEEE, Vol. 75, No. 9, September, 1987.

132

[12] G. Leary and K.S. Chatha. Holistic Approach to Network-on-Chip Syn-
thesis In Proceedings of CODES+ISSS, 2010.

[13] S. Meftali, F. Gharsalli, F. Rousseau and A. A Jerraya. An Optimal
Memory Allocation for Application-Speci�c Multiprocessor System-on-
Chip In Proceedings of International Symposium in System Synthesis
(ISSS), 2001.

[14] S. Pasricha and N. Dutt. COSMECA: Application Speci�c Co-Synthesis
of Memory and Communication Architectures for MPSoC In Proceedings
of DATE, 2006.

[15] I. Issenin, E. Brockmeyer, B. Durinck and N. Dutt. Data-Reuse-Driven
Energy-Aware Cosynthesis of Scratch Pad Memory and Hierarchical Bus-
based Communication Architecture for Multiprocessor Streaming Appli-
cations IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, Vol. 27, No. 8, August 2008.

[16] I. Issenin and N. Dutt. Data Reuse Driven Memory and Network-on-
Chip Co-Synthesis IFIP Embedded System Design: Topics, Techniques
and Trends, 2007.

[17] M. Manchiero, G. Palermo, C. Silvano and O. Villa. Exploration of Dis-
tributed Shared Memory Architectures for NoC-based Multiprocessors
Journal of Systems Architecture: the EUROMICRO Journal Volume 53
Issue 10, October, 2007

[18] S. Pandey and R. Drechsler. Slack Allocation Based Co-synthesis and Op-
timization of Bus and Memory Architectures for MPSoCs In Proceedings
of DATE, 2008.

[19] C. Lee, S. Kim and S. Ha. A Systematic Design Space Exploration of
MPSoC Based on Synchronous Data Flow Speci�cation Journal of Signal
Processing Systems, Vol 58, 2010.

[20] A. Jantsch. Modeling Embedded Systems and SoCs: Concurrency and
Time in Models of Computation, Morgan Kaufmann Publishers, 2004.

133

[21] W. Thies, M. Karczmarek and S. Amarasinghe. Streamit: A language
for streaming applications In Proceedings of International Conference on
Compiler Construction, 2002.

[22] E. A. Lee and D. G. Messerschmitt. Synchronous Data Flow In Proceed-
ings of the IEEE, Vol. 75, No. 9, September, 1987.

[23] G. Leary and K.S. Chatha. Holistic Approach to Network-on-Chip Syn-
thesis In Proceedings of CODES+ISSS, 2010.

[24] G. Leary, W. Che, and K.S. Chatha. System-level Synthesis of Memory
Architecture for Stream Processing Sub-Systems of a MPSoC In Proceed-
ing of DAC, 2012.

[25] K. Olukotun, B.A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The
case for a single-chip multiprocessor SIGPLAN, Volume 31, Issue 9, 1996.

[26] W.H. Wolf. Hardware-software codesign of embedded systems In Pro-
ceedings of IEEE, Volume 82, 1994.

[27] R.K. Gupta and G. De Micheli. Hardware-software cosynthesis for digital
systems IEEE Design Test Computation Magizine, 1994.

[28] W. Che, A. Panda, and K.S. Chatha. Compilation of Stream Programs
for Multicore Processors that Incorporate Scratchpad Memories In Pro-
ceedings for DATE, 2010.

[29] W. Che and K. S. Chatha. Scheduling of Stream Programs onto SPM
Enhanced Processors with Code Overlay In Proceedings ESTIMEDIA,
2011.

[30] W. Che and K. S. Chatha. Scheduling of Synchronous Data Flow Mod-
els on Scratchpad Memory Based Embedded Processors In Proceedings
ICCAD, 2010.

[31] T.L. Adam, K.M. Chandy, and J. R. Dickson. A Comparison of List
Schedules for Parallel Processing Systems Comm. ACM, Volume 17, Issue
12, 1974,

134

[32] E.G. Co�man, Jr., and P.J. Denning. Operating Systems Theory.
Prentice-Hall, Englewood Cli�s, NJ, 1973.

[33] E. B. Fernandez and B. Bussell. Bounds on the number of processors and
time for multiprocessor optimal schedules IEEE Trans. Comput. Volume
C-22, Issue 8, 1973.

[34] M. R. Garey, R.L. Graham, and D. S. Johnson. Performance Guarantees
for Scheduling Algorithms Oper. Res., Volume 26, Issue 1, 1978.

[35] T. C. Hu. Parallel Sequencing and Assembly Line Problems Oper. Res.,
Volume 9, 1961.

[36] H. Kasahara and S. Narita. Practical Multiprocessor Scheduling Algo-
rithms for E�cient Parallel Processing IEEE Trans. Comput., Volume
C-33, Issue 11, 1984.

[37] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: Freeman, 1979.

[38] S. Prakash and A. Parker. SOS: Synthesis of application-speci�c heteroge-
neous multiprocessor systems Journal on Parallel Distributed Computing,
Volume 16, 1992.

[39] M. Schwiegershausen and P. Pirsch. Formal approach for the optimization
of heterogeneous multiprocessors for complex image processing schemes
In Proceedings DATE, 1995.

[40] J. D. Ambrosio and X. Hu. Con�guration-level hardware-software par-
titioning for real-time systems In Proceedings International Workshop
Hardware-Software Codesign, Volume 14, 1994.

[41] R.P. Dick and N.K. Jha. Mogac: a multiobjective genetic algorithm for
the co-synthesis of hardware-software embedded systems In Proceedings
for ICCAD, 1997.

[42] Y.J. Chen, C.L. Yang, and Y.S. Chang. An architectural co-synthesis
algorithm for energy-aware network-on-chip design JSA, Volume 55, Issue
5-6, 2009.

135

[43] Y.J. Chen, C.L. Yang, and P.H. Wang. PM-COSYN: PE and Memory
Co-Synthesis for MPSoCs In Proceedings for DATE, 2010.

[44] W. Thies, M. Karczmarek and S. Amarasinghe. Streamit: A language
for streaming applications In Proceedings of International Conference on
Compiler Construction, 2002.

[45] R. Banakar, S. Steinke, B. Lee, M. Balakrishnan, and P. Marwedel.
Scratchpad Memory : A Design Alternative for Cache On-chip memory
in Embedded Systems IN Proceedings of CODES, 2002.

[46] Forte. Forte Cynthesizer http://www.forteds.com/products/cynthesizer.asp

[47] Synopsys. Synopsys PrimePower http://www.synopsys.com/home.aspx

[48] ARM. ARM Cortex R4 Series of Cores.
http://www.arm.com/products/processors/cortex-r/cortex-r4.php

[49] A. Jantsch. Modeling Embedded Systems and SoCs: Concurrency and
Time in Models of Computation, Morgan Kaufmann Publishers, 2004.

[50] Accellera. The SystemC Standard.
http://www.accellera.org/downloads/standards/systemc

[51] IEEE. VHDL Standard. http://ieeexplore.ieee.org/xpl/

[52] LP_solve. LP_solve Open Source Project.
http://sourceforge.net/projects/lpsolve/

[53] University of Michigan. Parquet Floorplanner.
http://vlsicad.eecs.umich.edu/BK/parquet/

136

APPENDIX A

NETWORK-ON-CHIP SYNTHESIS

137

In this appendix we will discuss the framework for the Network-on-

Chip (NoC) synthesis technique. In the following, we will �rst discuss the

�le structure of the code base for the technique. Next, we will discuss the

environment setup followed by the execution command. We will then discuss

the �le format of the inputs and outputs.

File Structure

The code base for the technique is written exclusively in the C++

standard library. The �les for the technique include:

• Make�le: The Make�le contains the commands to build the synthesis

technique.

• global.h: This �le includes global de�nitions. Things like TRUE, FALSE,

etc. These are de�nitions that will be used throughout the entire code

base.

• objects.h/objects.cpp: This �le contains the de�nitions for all of the

objects in the code along with the function de�nitions to accessing and

manipulating the objects. Some of the objects would include: use cases,

transactions, shortest path graph, etc.

• main.h/main.cpp: This �le has the main routine within it. The main

routine controls the execution �ow of the program.

• read_�les.h/read_�les.cpp: This �le reads in the input �les and creates

the objects accordingly.

138

• router_placer.h/router_placer.cpp: This �le allocates routers at the ap-

propriate locations on the �oorplan.

• sa_core_to_router_mapping.h/sa_core_to_router_mapping.cpp: This

�le performs the core to router mapping. This �le uses a simulated an-

nealing approach to �nd a mapping in which cores are mapped to a

router within a certain maximum distance.

• opt_core_to_router_mapping.h/opt_core_to_router_mapping.cpp: This

�le performs the core to router mapping. This �le uses a optimized core

to router mapping technique presented by Srini et al. [2]. The approach

maps a core to one of the routers located at its four corners. The ap-

proach �nds a mapping with minimal power consumption.

• shortest_paths_generator.h/shortest_paths_generator.cpp: This �le con-

tains the routines to generate the shortest path graphs for each of the

communication traces in the application.

• communication_resolution.h/communication_resolution.cpp: This �le

contains the routines to perform the commuinication resolution stage of

the algorithm. This stage ensures that communication does not interfere

with each by adding additional ports to router when necessary.

• deadlock_avoidance.h/deadlock_avoidance.cpp: This �le contains the

routines to eliminate potential deadlocks from the shortest paths. The

�le will convert the global shortest path graph into the global channel

dependency graph. From there it will locate cycles and break the cycles

before re�ecting the changes back onto the shortest paths of the traces.

139

• port_arity_resolution.h/port_arity_resolution.cpp: This �le contains

the routines to perform the port arity resolution. This stage will �nd

routers that violate the maximum port arity of the router by adding

additional routers and rerouting traces.

• lp.h/lp.cpp: This �le contains the routines to generate and solve the LP

formulation. The LP formulation is described in Srini et al. [2].

• print_output_�les.h/print_output_�les.cpp: This �le prints the out-

put �les containing all of the information about the NoC design.

• push_relabel.h/push_relabel.cpp: This is a helper function used to �nd

the shortest paths.

Environment Setup

In order to execute the NoC synthesis technique the system environ-

ment must be properly setup. First, C++ compiler must be installed. The

code has been tested and proven to function properly with gcc version 4.7.2.

The environment will also need LP_solve [52] installed. LP_solve will need

the additional package xli_XPRESS installed. The code has been tested

using LP_solve version 5.5. The following environment variables must be

updated:

• PATH=$PATH:<lp_solve_dir>/lp_solve_5.5/lp_solve/bin/ux32

• LD_LIBRARY_PATH=<lp_solve_dir>/lp_solve_5.5/xli/xli_XPRESS/bin/ux32

Execution Command

140

The execution of the program is performed from the directory contain-

ing the input �les. The command is:

holistic < problem_name >

where problem name is the name of the benchmark you want a NoC

synthesized for. All input �les must begin with the problem name. For exam-

ple, < problem_name > .floorplan.

Input Files

The tool requires several input �les to describe the problem instance.

The required input �les are as follows:

• <problem_name>.�oorplan: This �le is a tab delimited �le containing

the placement, size, and characteristics of each core in the �oorplan.

Each core is described on a single line in the following manner:

FILE FORMAT:

ID X_DIM Y_DIM X_MIN Y_MIN X_MAX Y_MAX FREQ. MLL

D_WIDTH

where id denotes the id of the core, x_dim and y_dim describe the x and

y dimensions of the core, x_min, x_max, y_min, and y_max describe

the coordinates of the location for the core in the �oorplan. freq. is the

operating frequency of the core, MLL is the distance a packet can travel

to/from the core before being bu�ered, and d_width is the width of the

ports to the core.

141

• <problem_name>.applications: This �le is a tab delimited �le contain-

ing the information for each trace in the application(s). The �le describes

each individual application �rst followed by the use cases.

FILE FORMAT:

Application ID

ID SOURCE SINK BW PERIOD #_TRANS TYPE START1 START2

Use_case ID PERCENT APP_IDs

where id after application denotes the id for the application. ID denotes

the id for the trace, SOURCE and SINK denote the id of the core for

the source and sink for the trace, BW and PERIOD denote the band-

width of the trace and the execution period for the trace. #_TRANS is

the number of transactions in the trace (if any). It will then be followed

by a list of three values: TY PE, START1, and START2 which de-

scribe the type and start window for each transaction. The use cases are

described with an ID, denoting the use case id, PERCENT denoting

how often the use case is active, and a list of APP_IDs which denote

which applications are included in the use case.

• <problem_name>.labeling: This �le is a tab delimited �le containing a

mapping of the actual name of the cores to the id used in the rest of the

�les. The �le format is as follows:

FILE FORMAT:

ID NAME

where ID denotes the id, and NAME denotes the common name of the

core.

142

• <problem_name.router_types: This �le is a tab delimited �le contain-

ing the descriptions of the available routers in the router library. The

�le format is as follows:

FILE FORMAT: IDM_PORTSM_CORES P_WIDTH FREQ R_ENERGY

L_ENERGY

where ID is the id for the router element, M_PORTS is the maximum

number of ports the router supports,M_CORES is the maximum num-

ber of cores that can be conencted to the router, P_WIDTH is the

width of the ports of the router, FREQ is the operating frequency of

the router, R_ENERGY is the energy consumption of the router, and

L_ENERGY is the energy consumption of the router links.

Output Files

In this section we were discuss the output �les of the synthsis technique.

The �les are as follows:

• �oorplan.pdf: This �le provides a visualization of the base �oorplan.

• router_mapping.pdf: This �le provides a visualization of the core-to-

router mapping on the �oorplan.

• topology.pdf: This �le provides a visualization of the generated NoC

topology (graph structure).

• device_descriptions.txt: This �le provides a detailed description of each

of the routers included in the �le topology, including the number of

input/output ports, the frequency, etc.

143

• connectivity.txt: This �le describes how the routers are connected to-

gether.

144

APPENDIX B

MEMORY ARCHITECTURE SYNTHESIS

145

In this appendix we will discuss the framework for the memory synthesis

technique. In the following, we will �rst discuss the �le structure of the code

base for the technique. Next, we will discuss the environment setup followed

by the execution command. We will then discuss the �le format of the inputs

and outputs.

File Structure

The code base for the technique is written exclusively in the C++

standard library. The �les for the technique include:

• global.h: This �le contains variable de�nitions that are used by every

�le.

• objects.h/objects.cpp: This �le contains all the information for the ob-

jects in the code. The �les also contain the functions necessary to access

and manipulate the objects.

• main.h/main.cpp: This �le contains the main execution �ow of the pro-

gram.

• read_�les.h/read_�les.cpp: This �le contains the necessary functions to

read the input �les. This �le also contains a function to generate the

necessary output �les.

• pass.h/pass.cpp: This �le generates the PASS execution schedule for the

SDF input speci�cation.

• �oorplan.h/�oorplan.cpp: This �le performs �oorplanning on the mem-

ory and cores.

146

• lifetimes.h/lifetimes.cpp: This �le calculates the lifetimes of the data

blocks and the code segments.

• gen_traces.h/gen_traces.cpp: This �le generates the communication

traces necessary for the cores/memories to communicate.

• memory.h/memory.cpp: This �le generates and optimizes the memories.

• data_memory.h/data_memory.cpp: This �le performs the optimiza-

tions on the data blocks in memory. In particular, it performs the clique

partitioning and sharing of memory regions between non-interfering data

blocks.

• clique_partitioning.h/clique_partitioning.cpp: This �le performs the

clique partitioning algorithm.

• code_memory.h/code_memory.cpp: This �le contains the functions to

generate code overlays.

• Make�le: This �le contains the commands to build the program.

Environment Setup

In order to execute the mmory synthesis technique the system environ-

ment must be properly setup. First, C++ compiler must be installed. The

code has been tested and proven to function properly with gcc version 4.7.2.

The environment will also need the Parquet Floorplanner [53]. The following

environment variables must be updated:

• PATH=$PATH:<parquet_dir>/bin

147

Execution Command

The execution of the program is performed from the directory contain-

ing the input �les. The command is:

mem_synth < problem_name >

where problem name is the name of the benchmark you want a mem-

ory synthesized for. All input �les must begin with the problem name. For

example, < problem_name > .filters.

Input Files

In this section we will discuss the input �les to the synthesis tool. The

tool requiers several input �les as described:

• <problem_name>.�lters: This �le contains the relevant information

about the �lters of the SDF. The �le format is as follows:

FILE FORMAT:

ID NAME C_SIZE EXEC

where ID is the id number for the �lter, NAME is the common name

for the �lter, C_SIZE is the size of the code for the �lter, and EXEC

is the amount of time to execute the �lter on the core it is mapped.

• <problem_name>.cores: This �le contains the characteristics of the

cores in the problem. The �le format is as follows:

148

FILE FORMAT:

ID X_DIM Y_DIM

where ID is the id of the core, X_DIM is the x dimension of the core,

and Y_DIM is the y dimension of the core.

• <problem_name>.mapping: This �le provides the mapping of the �lters

to the cores. The �le format is as follows:

FILE FORMAT:

FILTER CORE

where FILTER is the id of the �lter being mapped to the core and

CORE is the id of the core the �lter is mapped to.

• <problem_name>.sdf_desc: This �le describes the SDF speci�cation

for the application. The SDF is described in a graph format. The �le

format is as follows:

FILE FORMAT:

SOURCE SINK D_GEN D_CON

where SOURCE is the id of the source �lter, SINK is the id of the sink

�lter, D_GEN is the amount of data generated by the source �lter, and

D_CON is the amount of data being consumed by the sink �lter.

• <problem_name>.memory_types: This �le de�nes the various memory

types available to the synthesis technique. The �le format is as follows:

FILE FORMAT:

ID N_PORTS SIZE X_DIM Y_DIM POWER L_POWER LAT LAT2

D_WIDTH LINK

149

where ID is te id of the memory type, N_PORTS is the number of ports

on the memory, SIZE is the capacity of the memory, X_DIM isthe x

dimension of the memory, Y_DIM is the y dimension of the memory,

POWER is the power consumption of the memory, L_POWER is the

power consumption of the memory links, LAT is the access latency for

the �rst byte of data, LAT2 is the latency for successive data accesses,

D_WIDTH is the width of the data ports, and LINK is the maximum

link length to/from the memory.

Output Files

In this section we discuss the �les produced as output to the memory

synthesis technique. The output �les are as follows:

• <problem_name>.applications: This �le describes the communication

between the cores and memories. This �le is an input to the NoC syn-

thesis technique.

• <problem_name>.�oorplan: This �le describes the �oorplan of the

cores and memories. This �le is also an input to the NoC synthesis

technique.

• <problem_name>.labeling: This �le provides a mapping of the ids of

the cores and memories to their common name. This �le is an input to

the NoC synthesis technique.

• memory_description.txt: This �le describes the memories in the solu-

tion. The �le provides information relating the the size, number of ports,

what data is stored, etc.

150

APPENDIX C

FUNCTIONAL ARCHITECTURE SYNTHESIS

151

In this appendix we will discuss the framework for the functional syn-

thesis technique. In the following, we will �rst discuss the �le structure of

the code base for the technique. Next, we will discuss the environment setup

followed by the execution command. We will then discuss the �le format of

the inputs and outputs.

File Structure

The code base for the technique is written exclusively in the C++

standard library. The �les for the technique include:

• global.h: This �le contains variable de�nitions that are used by through-

out the code base, such as TRUE, FALSE, etc.

• objects.h/objects.cpp: This �le contains the descriptions of all of the ob-

jects used in the code base. The �les also contain the functions necessary

to access and manipulate the objects.

• main.h/main.cpp: This �le provides the overall execution �ow of the

program.

• read_�les.h/read_�les.cpp: This �le provides functions to read the in-

put �les describing the problem intance.

• pass.h/pass.cpp: This �le generates the execution scehdule for the soft-

ware cores. It includes functions to generate both a minimum bu�er

schedule and a least switching schedule.

152

• initial_solution.h/initial_solution.cpp: This �le provides the functions

necessary to generate the initial solution. This includes the optimization

of the memory through the use of data and code overlays.

• hw_replication.h/hw_replication.cpp: This �le provides a function to

replicate the hardware accelerators in order to expand the hardware

accelerator library.

• optimize_design.h/optimize_design.cpp: This �le provides functions to

optimize the design. This optimization is the iterative process of moving

�lters out of software and onto hardware accelerators.

• hw_solution.h/hw_solutions.cpp: Thsi �le provides the routine to gen-

erate a pure hardware solution. This is called when a HW-SW solution

can not be found.

• optimize_energy.h/optimize_energy.cpp: This �le contains functions to

attempt to minimize the energy consumption.

• output_design.h/output_design.cpp: This �le contains functions to gen-

erate the output �les.

• Make�le: This �le contains the methods to build the program.

Environment Setup

In order to execute the functional synthesis technique the system envi-

ronment must be properly setup. First, C++ compiler must be installed. The

code has been tested and proven to function properly with gcc version 4.7.2.

153

Execution Command

The execution of the program is performed from the directory contain-

ing the input �les. The command is:

func_synth < problem_name >

where problem name is the name of the benchmark you want a func-

tional architecture synthesized for. All input �les must begin with the problem

name. For example, < problem_name > ..�lters

Input Files

In this section we will discuss the input �les to the synthesis tool. The

tool requires several input �les as described:

• <problem_name>.�lters: This �le contains the description of the �lters

in the problem. The �le format is as follows:

File Format:

ID NAME SIZE

where ID is the id of the �lter, NAME is the common name for the

�lter, and SIZE is the size of the �lter in bytes.

• <problem_name>.memory_library: This �le describes the characteris-

tics of the memory elements. The �le format is as follows:

File Format:

ID NAME X_DIM Y_DIM WIDTH FREQ LAT_1 LAT_2 ENERGY

SIZE MLL

154

where ID is the id of the memory type, NAME is the common name

for the memory type, X_DIM is the x dimension, Y_DIM is the

y dimension, WIDTH is the data width of the ports, FREQ is the

operating frequency of the memory, LAT_1 is the latency to access the

�rst byte of data, LAT_2 is the latency to access successive bytes of

data, ENERGY is the energy consumption per access, SIZE is the

size of the memory in bytes, and MLL is the maximum link length that

can be attached to the memory.

• <problem_name>.pe_library: This �le describes the characeristics of

the processing element libray (both hardware and software processing

elements). The �le format is as follows:

File Format:

ID NAME X_DIM Y_DIM WIDTH FREQ/EXEC ENERGY MLL

TYPE

where ID is the id of the processing element, NAME is a common

name for the processin element, X_DIM is the x dimension of the pro-

cessing element, Y_DIM is the y dimension of the processing element,

WIDTH is the data width of the processing element, FREQ/EXEC

is either the operating frequency (software) or the execution time of the

hardware accelerator, ENERGY is the energy consumption of the pro-

cessing element, MLL is the maximum link length for the processing

element, and TY PE is the type of the processing element (HW or SW).

• <problem_name>.sdf: This �le describes the SDF speci�cation for the

application. The �le format is as follows:

155

File Format:

SOURCE SINK D_GEN D_CON

where SOURCE is the id of the source �lter, SINK is the id of the

sink �lter, D_GEN is the amount of data being generated by the source

�lter, and D_CON is the amount of data being consumed by the sink

�lter.

Output Files

In this section we will discuss the output �les of the functional synthesis

technique. The output �les are as follows:

• core_description.txt: This �le describes the characteristics of the cores

in the solution.

• memory_description.txt: This �le describes the characteristics of the

memories in the solution. This �le includes the number of memory re-

gions and what is mapped to each region (if applicable).

• connectivity.txt: This �le describes which memories are attached to

which cores.

• mapping.txt: This �le provides a mapping of the �lters of the SDF to

the cores.

• communication.txt: This �le provides the communication between the

cores and memories.

Due to the functional synthesis technqiue utilizing estimates to deter-

mine the performance of the design. The output �les need to be postprocessed

156

to generate the proper input to the NoC synthesis technique. The applications

input �le needs to be generated along with a proper �oorplan. These steps

were purposefully omitted from the synthesis techniqe due to the large over-

head required to constantly update the �oorplan and communication traces.

157

