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ABSTRACT

With increasing transistor volume and reducing feature size, it has become a ma-

jor design constraint to reduce power consumption also. This has given rise to aggressive

architectural changes for on-chip power management and rapid development to energy effi-

cient hardware accelerators. Accordingly, the objective of this research work is to facilitate

software developers to leverage these hardware techniques and improve energy efficiency

of the system. To achieve this, I propose two solutions for Linux kernel:

Optimal use of these architectural enhancements to achieve greater energy effi-

ciency requires accurate modeling of processor power consumption. Though there are

many models available in literature to model processor power consumption, there is a lack

of such models to capture power consumption at the task-level. Task-level energy models

are a requirement for an operating system (OS) to perform real-time power management

as OS time multiplexes tasks to enable sharing of hardware resources. I propose a detailed

design methodology for constructing an architecture agnostic task-level power model and

incorporating it into a modern operating system to build an online task-level power profiler.

The profiler is implemented inside the latest Linux kernel and validated for Intel Sandy

Bridge processor. It has a negligible overhead of less than 1% hardware resource consump-

tion. The profiler power prediction was demonstrated for various application benchmarks

from SPEC to PARSEC with less than 4% error. I also demonstrate the importance of the

proposed profiler for emerging architectural techniques through use case scenarios, which

include heterogeneous computing and fine grained per-core DVFS.

Along with architectural enhancement in general purpose processors to improve en-

ergy efficiency, hardware accelerators like Coarse Grain reconfigurable architecture (CGRA)

are gaining popularity. Unlike vector processors, which rely on data parallelism, CGRA

can provide greater flexibility and compiler level control making it more suitable for present
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SoC environment. To provide streamline development environment for CGRA, I propose

a flexible framework in Linux to do design space exploration for CGRA. With accurate

and flexible hardware models, fine grained integration with accurate architectural simu-

lator, and Linux memory management and DMA support, a user can carry out limitless

experiments on CGRA in full system environment.
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Chapter 1

INTRODUCTION

Energy-efficiency and low-power operation are no more second class constraints in the

design and operation of processors, especially for the battery-limited mobile and the

embedded systems. At the system-level, for such devices, high energy-efficiency of an

operation is expected at every node of computation. Towards this, I propose two system

level enhancements. First, for today’s energy-efficient multi core processors I propose a

methodology to accurately estimate task-level power consumption. Using such a task

profiler, sophisticated energy aware algorithms can be developed to bridge the gap in

energy efficiency between the system level software and the architecture. Next, I

introduce an extensible, hardware-software simulation platform to perform design space

explorations on accelerator design and programming model combinations for accelerator

rich, future system-on-chip architecture. This framework provides a coarse grain

hardware accelerator support with in contemporary Linux OS.

The reminder of this thesis is divided in two parts:

(i) Task-level Power Profiler and

(ii) Hardware-Software Co-Design Framework for CGRA.

1.1 Need for a Task-level Power Profiler

Enabling low power operation to improve the energy efficiency of processors has become

the key challenge of processor design in every market segment – including

battery-powered mobile phones and laptops, desktops and high performance servers in

data centers. A key and essential enabling technology is the availability of accurate

models of power consumption. Over the years, manufacturers have developed very

detailed register-transfer level (RTL) processor power models that are used at early design

stages. However, the computational complexity of such models is too high for them to be

used in real-time dynamic power management. To enable accurate dynamic control of the
1



power consumption of processors, there is a need for simpler and more abstract power

models that are of sufficiently low computational complexity so that they can be

incorporated into an operating system’s (OS) scheduler.

There are many benefits of task-level power profiling. Task-level power profiling

helps in gauging the energy demands of the tasks under execution, which can either be

used to decide the appropriate voltage-frequency states to limit the execution power

consumption, or to migrate the tasks to appropriate cores for reducing the hot spots and

for balancing the execution load in a multicore environment.

A processor’s power consumption can be profiled at various levels – for an entire

processor (a single power value), or for individual cores, or individual tasks. Task-level

power profiles would be the most beneficial but they are also the most difficult to develop

both with respect to accuracy and computational complexity. The problem becomes even

more difficult because of sharing of processor components such as caches, buses, memory

bandwidth etc among many different tasks.

1.2 Task Power Profiler: Key Contributions

In this thesis, I propose an effective methodology of constructing an energy model for a

multicore processor based on a single total processor power measurement, and available

processor event recordings and temperatures. The events used in building the model

include P-state, T-state, instruction-per-cycle (IPC), and cache related events. P (or

performance)-state control is a global dynamic voltage and frequency (DVFS) control for

all cores, while T (or throttle)-state modulates the duty cycle of clock on a per-core basis.

T-state control can be considered as dynamic frequency scaling (DFS) for all practical

purposes. Using this energy model, we build a task profiler in the Linux OS, which

periodically samples the energy consumption of the processor, and with the knowledge of

the current tasks in execution, accurately estimates power consumption of all tasks.

Figure 1.1 shows the complete flow of identification and integration of models within
2



Linux OS.

The model identification process followed in this work is loosely based on

factorial design-of-experiments (DoE) method. In this method, based on the knowledge of

the processor, I identify several parameters that help in the estimation of the task power. A

set of control experiments is conducted on the processor, where each of these parameters

is varied in conjunction with other parameters to determine the joint effect of several

parameters on the total power consumption. The relation between power consumption and

the factors is expressed as multi variate polynomials whose coefficients are estimated

using least squares. The overview of the model identification process is illustrated in

Fig. 1.1(B)

There are several advantages to the proposed power profiler: (i) The methodology

requires little to no knowledge of the processor architecture. As such, the model

identification techniques are portable across various processors. (ii) There is no need for a

priori knowledge of the workload under execution. (iii) The model identification process

does not affect the normal workload execution as it is conducted usually at the boot time

or at very rare intervals. (iv) The task-level power profiler is extremely light-weight and

its overhead is negligible.

The derived models are integrated inside a dynamic task profiler. Being part of the

OS scheduler, the proposed task profiler is capable of estimating power of every

individual task based on its performance and thermal behaviour. The proposed

methodology is validated on a real state-of-the-art machine. With negligible average

overhead of less than 1%, the profiler shows 99.95% accuracy in estimating performance

and greater than 96% accuracy in estimating power.

Finally, I demonstrate two valuable uses of the task-level profiler: (1) mapping

tasks to cores on a heterogeneous platform (big vs little cores) that is emulated on the Intel

3
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Sandy Bridge quad core processor, and (2) capability of the task-level voltage and

frequency scaling to achieve better energy efficiency (performance-per-watt measured by

MIPS/Watt) on a heterogeneous platform.

1.3 Need of a Hardware-Software Co-Design Framework for CGRA

Rapid growth of fixed-function hardware accelerators in an SoC environment has led to

energy efficient, powerful embedded devices. Even though IP based accelerators can

deliver high throughput with a good energy efficiency, their non programmable nature

raises doubts about their usefulness in future. Creating special on-chip-networks and a

lack of standards in their programming model, restricts the system functionalities. For

example, performing a common task like video play back which requires video

decryption, decoding and display. Chaining the accelerator and managing memory

bandwidth and other resources dynamically to perform video playback creates additional

overhead in terms of runtime power. Moreover, increasing chip area and power

consumption due to addition of more accelerator IPs on chip is a growing concern among

SoC architects. The need for a programmable accelerator is more than ever before which

can deliver high throughput at almost the same energy efficiency as regular hardware IP

blocks is greater than ever before. A CGRA is a hardware accelerator that can replace

more than one fixed-function hardware IP block with nearly the same energy efficiency

and performance but with great functional flexibility.

Fig 1.2, shows the relative power consumption and performance envelop for

various popular architectural paradigms. Note that the size of the block in the figure

represents its programmability. A larger block size indicates greater flexibility to perform

different user programmed functions. A general purpose processor and a FPGA, which

can execute almost all functions are the largest and ASICs or hardware IPs are the

smallest with fixed-function functionality. CGRAs are programmable and are highly

energy efficient. Consequently, they hold a greater promise for enabling high performance

5



energy efficient computing. This makes CGRA a very attractive alternative for the

fixed-function accelerators for future SoCs.

P
ow

er

Performance

DSP

FPGA

ASIC

GPU

CGRA

General Purpose 
Processor

Figure 1.2: Comparison of power and performance envelop for different architectural de-
signs, Size of the block for each design reflects its programming flexibility

The concept of CGRA as programmable accelerator predates GPUs. However the

lack of an efficient, optimized compiler prevented its wide spread adoption. The absence

of hardware platforms with a CGRA further hindered the development of CGRA. The

second part of my thesis is aimed at filling this gap. It includes a hardware-software

co-design framework for the CGRA that will allow hardware designers to alter the

hardware models and software developers to design a more suitable programming model.

1.4 Hardware-Software Co-Design Framework for CGRA : Key Contribution

The proposed framework provides users a flexible infrastructure to (i) perform hardware

design space explorations and (ii) early software development including developing

application libraries, OS support, and programming model changes. Hardware-software

co-design can greatly reduce development and design exploration time. The work here
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also demonstrates a harmonious coordination of the entire hardware software stack with

complete OS and peripheral DMA support. It is also flexible to support power and thermal

model and can also be easily extended to support industrial standards like OpenCL [28].

1.5 Thesis Structure

The remainder of this thesis is organized as follows.

(PART 1): Task-level Power Profiler: Chapter 2 contains background and related

work in this research area. Chapter 3 discusses the design of experiments (DoE)

methodology used to derive the power model. Chapter 4 describes the actual power and

thermal model used within the infrastructure. Chapter 5 describes the task profiler and its

implementation inside the Linux operating system. Chapter 6 contains results of

experiments to validate the models and the task profiler. Chapter 7 demonstrates the

effectiveness of such framework through application use-cases.

(PART 2): Hardware-Software Co-Design Framework for CGRA: Similar to part

1, part 2 begins with the related research work in Chapter 8. The next chapter explains the

design and the components of the proposed framework in detail. Once the framework is

explained in detail Chapter 10 demonstrates how to use the framework with a sample

application and results. Lastly, Chapter 11 concludes the thesis.

7



Chapter 2

BACKGROUND AND RELATED WORK

In this chapter, we examine the related research work on task level power profiling. Since

the implementation of the task level power profiler is done within the Linux OS, I will first

describe the major components of the Linux OS. We will focus on Linux internals that

deal with the ”Completely Fair Scheduler(CFS)” and the ”performance counter

subsystem” for chip multiprocessors.

2.1 Linux Scheduling
Fairness

The main goal of the ”Completely Fair Scheduler (CFS)” in Linux is to realise ”ideal”

CPU sharing by allocating the execution time on the CPU in proportion to the task

priorities. Let delta exec denote the CPU time allocated to a task where there is no need to

share the CPU i.e. when there are no other tasks. Let nice denote the task priority

assigned by the user. For the historical reasons, the value of ’nice’ lies within [-20,19].

More negative ’nice’ value indicates a preference for higher priority. The weight of task i

is given by,

wi =
{
−20≤ nice≤ 19 : NICE 0 LOAD ·

(
1.25−(nice)

)}
(2.1)

The default value of ’nice’ is ’0’ in which case wi = NICE 0 LOAD, and which defines

the meaning of NICE 0 LOAD. Its value can by some factor of 2 and assumed to be 1024.

CFS computes a virtual runtime, based on the task weight. The virtual run-time

indicates how much CPU resources a given task has consumed. If a task’s virtual runtime

is low, the CFS will try to increase its share of the CPU usage. The default value, when

’nice’=0 and therefore wi = NICE 0 LOAD, will be delta exec.

In general the virtual runtime is given by

8



tvirtual runtime+=
delta exec

wi
(NICE 0 LOAD). (2.2)

CFS attempts to achieve ”fairness” by ensuring that all tasks have approximately the same

virtual runtime over the long run and tries to achieve Generalised Processor

Sharing(GPS) [20]. Thus, given a choice of tasks to run in the next epoch, CFS selects

that task with the lowest virtual runtime.

The share of a time interval [t1, t2] of a runnable task i is computed as

Si(t1, t2) =
wi

∑∀ j∈R w j
(t2− t1) . (2.3)

where Si is in seconds, R is a the set of all runnable tasks that are currently in run queue of

a core. Two additional parameters are also defined for scheduling purposes. One is

sched latency ns which represents the scheduling epoch, and the other is

sched min granularity ns, which denotes the minimum pre-emption time.

Interactivity

Quick response time is expected for interactive task and it can be achieved through low

schedule latency. The OS assumes that the interactive tasks sleep more frequently.

Heuristics based on this assumption gives rewards to such tasks to achieve good response

time. However, maintaining fairness with interactive tasks is challenging. An interactive

task should not take advantage of such rewards and should not starve other non interactive

tasks or vice versa.

CFS gives rewards to newly activated tasks by adjusting their virtual runtime to

achieve better interactive experience. It ensures small latencies for interactive tasks. The

virtual runtime is adjusted by

9



tvirtual runtime−=
sysctl sched latency

c f s rq→ load
(NICE 0 LOAD). (2.4)

where sysctl sched latency is scheduling epoch and c f s rq→ load is scheduler run queue

load. CFS ensures fairness by adjusting the virtual runtime.

From equation (2.4), it can be seen that the virtual runtime of a task is reduced

once it wakes up. This adjustment in virtual runtime is reflected as increased priority

while allocating CPU since the sleeper task’s new virtual runtime will be lower then other

tasks in the run-queue which are running without sleeping frequently.

Load balance

In a CMP, system load balancing is an important objective to maintain a high level of

system performance. Load balancing in CMPs maintains fairness among cores at a

coarser level then a task level scheduler. It is handled by the CFS subsystem in two ways:

(i) passive balancing and (ii) active balancing. Passive balancing attempts to move tasks if

there is an imbalance among cores in terms of run queue weight. However, since passive

load balancing is respects task priorities ,it can fail to strike a balance. Unlike passive load

balancing, active load balancing moves one task from a busy CPU to an idle CPU without

comparing priorities.

2.2 Linux perf events subsystem

This section discusses the implementation of the perf event subsystem in the latest Linux

OS. The perf event subsystem is a software module within Linux that is responsible for

initiating and managing hardware performance subsystem at low level. In newer chips,

hardware designers have added much more performance measurement and evaluation

support. Software developers can utilize the new features for both static as well as run

time optimization. Linux developers have developed this subsystem to permit applications

profiling support in the user space. It allows users to attach hardware events to the task

10



and record the event. It allows mapping of events to counters, and sharing of counters

among different events. By sampling and remapping counters at every context switch

makes every hardware event practically private to each task. This is also known as a

vitalization of hardware performance counters. A user can use this subsystem through a

single system call ’perf event open()’. The main task of this subsystem is to handle time

multiplexing of events on performance counters. Time multiplexing is required when the

number of events to be monitored exceeds the number of available counters. This

subsystem also handles counter overflow and other interrupts. Providing an architecture

independent software layer for hardware performance counters and maintaining software

level events are few of the many features of the perf events subsystem.

The perf event subsystem is not suitable for use inside the kernel. If used inside

the kernel for any event mapped to any counter, it blocks that event and counter for user

space. Inspite of lack of documentation, the perf event can be used to handle performance

counters within the kernel fairly easily. The perf event maintains different performance

monitoring units (PMUs) including the kernel’s general purpose PMU and other hardware

PMUs. The event attribute data structure is used to allocate and configure an event, which

can be software or hardware event. Once this event is configured with the perf event, it can

be attached to either task or a core. If configured in a task mode, the perf event handles

the event remapping when a task migrates through CPUs. Here for our experiments we

use the perf events extensively for task profiling inside the kernel with minimal overhead.

2.3 Current State-of-the-Art

Compiler based task profiling is a widely established method used to understand the

behavior of a program. However it is not suited for capturing the dynamic behavior of the

program in terms of performance and power consumption. To enable developers to more

accurately characterize the code behavior, vendors have started to provide more hardware

support to enable dynamic profiling of programs. This has resulted in the development of
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many tools for dynamic performance profiling of tasks. Similarly, power and thermal

profiling of a task is also gaining popularity for low power, battery operated devices as

well as for the power-hungry servers. The increasing demand for power management and

the increasing hardware support has resulted in a large body of work on power profiling at

the system and task levels. The existing approaches can be classified into two broad

categories: (1) those based on hardware performance counters and (2) those that employ

system calls.

Performance counter based approaches

Isci et al. [12] proposed a methodology to estimate chip power using models based on the

utilization of functional units, which are monitored by counters. However, their method is

not applicable for task-level power profiling. Moreover, no accounting for thermal

variations is present. This is extremely important as temperature directly and significantly

affects the leakage power, which in turn raises the temperature. One of the earliest

attempts at task-level power estimation was PowerScope [5]. This was an external

application running on a separate unit that measured the power consumption of tasks.

Although this method is not practical for present day processors, it does demonstrate the

benefits of maintaining power profiles of tasks even with limited information about task

behavior. The approach described in [11] uses performance counters to classify a task into

six categories, depending on the ratio of memory access to total number of instructions.

The result is a very coarse level assignment of power values to tasks, which can result in

rapid switching between DVFS states, and sub-optimal control. It can also interfere with

the hardware allocation scheme on a per-task basis performed by the OS during task

scheduling. Merkel et al. in [16], added the capability to the OS scheduler to monitor

performance counters, and proposed exponential smoothing over performance counter

values to avoid glitches due to very short scheduling periods. However, their work lacks

detailed power models that would be required to account for the effect of temperature on
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leakage.

System call based alternatives

An alternative approach to assigning energy values to a task is to trace the system calls it

generates, and use the energy usage per system call to estimate the energy usage of the

task [23, 24]. However, obtaining complete knowledge of power consumption of every

system call is not usually possible without manufacturer’s support. Moreover, this

approach is not sufficiently accurate for present day multicore processors, which share

hardware resources among tasks and cores.

An energy profiler for smart-phones was proposed in [33]. The power model was

based on the voltage output of a smart-phone battery and was able to characterize the

entire system based on the utilization of on-chip peripherals like GPS, WIFI, LCD, etc.

Kansal et al. [13] propose a technique for fine-grained, task-level energy profiling for

power-aware application design. Use of this technique is limited only to application

development and not suitable for runtime, dynamic characterization of tasks. Profiling in

this work is done by converting the application resource usage information to energy data

using the power specifications of the resources used. The primary focus in

references [13, 23, 24, 33] was mainly on overall system power usage and did not consider

any detailed models for the CPU.

Uniqueness of the proposed work

None of the above mentioned works describe the effect of tasks sharing hardware

resources on power consumption. Sharing of hardware resources is unavoidable due to OS

schedulers, which use time multiplexing for tasks. Furthermore, the above works do not

account for the interdependency between temperature and leakage power at the task-level.

This relationship is of increasing importance as feature sizes shrink. Ignoring the

dependency leads to suboptimal DVFS, resulting in significant performance loss or
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violation of thermal constraints. These limitations are very critical for on-line power or

thermal management using model based estimation. The method presented in this paper is

aimed at correcting this deficiency in the existing approaches.
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Chapter 3

EXPERIMENTAL DESIGN METHODOLOGY

A task-level model of power consumption expresses its power as some computable

function of various dependent factors. I use the method of design of experiments (DoE) to

quantify the effect of each factor on the power consumption. In this section, I give a brief

introduction to the DoE concepts that are used in this work in deriving power models for

complex out-of-order processors.

3.1 Factorial Design Experiments

Several methods exist for DoE in the literature that aid in modelling the behaviour of

systems. One of the simplest and intuitive ways is the one-factor-at-a-time

experiment [19]. In this experiment, only one control input is varied while maintaining all

other control inputs at some constant value. The effect of the controlled input on the

output is then observed to derive the model. Although this simplistic approach requires

fewer experiments, it clearly misses the effect of correlations among the factors on the

output. This approach would not be accurate for processors because their power

consumption is the result of complex interactions of various parameters and the changing

phases of the workload.

Another commonly used alternative method is the factorial design [19], where

various factors of a system are varied together directly or indirectly through control

inputs. With such an approach, one can devise a series of experiments to enumerate all

possible combinations of discrete levels of all factors. An experiment can be defined as a

test or a series of tests in which purposeful changes are made to the input variable of the

process or system so that we may observe and identify the reasons for changes that may

be observed in the output response [19]. Today, many experimental design methodologies

exist, requiring no knowledge of a system to a good understanding of a system behaviour.

In this experiment, which requires control of various components of a chip multiprocessor
15



system, a fair amount of knowledge of system architecture and factors affecting its power

consumption and heat generation is assumed. With this, we need to narrow down on a

strategy of experiments involving analysis of the key factors affecting system’s power and

temperature. A factor is an independent input variable which can be controlled to observe

changes in the output. One popular approach is to carry out the experiment by controlling

one factor at a time. The major limitation of this approach is the failure to observe

interaction between the factors. It is evident that the one factor at a time strategy is not of

particular interest to us especially when the factors of system have strong interactions. For

example, there is a clear relation between the frequency of the core and its instruction

execution rate. Another popular approach and suitable for our system is factorial design,

where factors are varied together instead of one at a time. This enables us to observe not

only effectiveness of individual factors but also the interaction between them. This

method can be used for a system with any number of factors. However, the total number

of experiments grow exponentially with increasing number factors. levels f actors indicates

the full factorial design can be infeasible where there are more levels and factos. In such

cases, a fractional factorial design will be a better choice, as it omits certain discrete levels

of factors, resulting in a significantly reduced time for experimentation.

For better understanding of the factorial design, we will consider an example

system shown in Figure 3.1. As illustrated in Figure 3.1(a), the system has three

independent control variables or factors. Each of the factors, A, B, and C can take two

levels. The objective here is to design a method to carry out a series of experiments in

order to evaluate the effect of each factor on the output with known input. If we follow

factorial design, we will have to perform a series of experiments as shown in

Figure 3.1(b). Each node of the cube represents an experiment configuration with the level

selected for each factor. This particular type of factorial experiment is called ”23 factorial

design” leading to 8 different experiments on the system to evaluate the effect of all 3
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Figure 3.1: Factorial experiment design space for 3 variable with 2 levels each

factors.

In addition to the factorial design, a few standard techniques like blocking,

repetition and randomization can be applied to enhance the quality of measurements from

the experiments. Blocking is used to improve the precision among selected factors by

suppressing unwanted factors. For example, in our experimentation for determining the

power model, a deliberate attempt is made to reduce the use of encryption and I/O related

functional units to improve the accuracy of estimation of power consumption of the other

major functional units. Repetition and randomization are done at the CPU functional unit

level to reduce the effect of extraneous noise and thereby avoid any statistical bias on the

outcome of the experiments. Once all experiments are carried out, a statistical method like

analysis of variance (ANOVA) is applied to filter unwanted noise and determine the
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effectiveness of every factor. This statistical analysis is needed when factors are assigned

to experimental units by a combination of randomization and blocking to ensure the

validity of the results.

3.2 System Details

Fig. 1.1(A) represents the system under observation, a standard chip multiprocessor

(CMP). A CMP consists of many function units, with some of them being part of cores,

and the remaining are in peripheral units, and are collectively termed as ‘uncore’. The

classification of the functional units is illustrated in Fig. 3.2. The focus of the DoE is on

the functional units shown in Fig. 3.2 as their power consumption is the dominant

component of the CMP’s power.

CMP

Core Uncore

Last level
cache

Execution Flow memory

SIMD
Integer
Float

Fetch & 
Decode
Branch

L1
L2

Execution

SIMD
Integer

Figure 3.2: Hardware functional unit classification for a CMP

The power consumption of a processor depends mainly on two things: (1) the

clock frequency of the processor, and (2) the subsets of the functional units that are

accessed and the rate of their access. This is a characteristic of the program code.

Role of Frequency and Voltage on Processor Power

The power consumption of a processor is typically modeled as the sum of dynamic and

leakage power as shown below:
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P = pmax
dyn f v2 + plkg(v,T ), (3.1)

where pmax
dyn is the maximum possible dynamic power consumption, and f and v

are the frequency and the voltage of the processor, respectively. The leakage power is

denoted by plkg, which is a function of the operational voltage and the current die

temperature. Note that the clock frequency and the voltage in (3.1) are not independent.

In general, the maximum frequency, the supply voltage and the temperature are all

constrained w.r.t each other. This is because circuit delay increases with temperature due

to mobility degradation, which can be compensated by increasing the voltage, which in

turn increases the both the dynamic and leakage power, leading to increased temperature.

This complex dependency is extremely difficult to model as well as use. Consequently, in

practice, for a given clock frequency, the range of operational voltages at which the circuit

timing constraints are satisfied at some worst-case corner are determined empirically. This

is done for each frequency within some range. As a result, most manufacturers only allow

the control of pre-determined ‘voltage-frequency’ pairs at which the timing constraints are

satisfied. These pairs are called P-states. P-states are applied globally to all cores (as in

Intel Sandy Bridge) or locally per-core (as in Qualcomm Krait) depending on whether

each core has a voltage island of its own. Although, per-core DVFS allows for more

energy savings over global DVFS, global DVFS has the benefit of reducing expensive

voltage islands.

On the other hand, for a given voltage, a processor’s clock can be throttled to a

desired level to reduce power consumption. This is usually achieved by either inserting

halt instructions or through clock modulation. On some platforms this is implemented

using clock modulation as shown in Fig. 3.3, and the resulting states are called a T-state.

Unlike a P-state, a T-state can be changed on a per-core basis. An example of allowed

P-states and T-states on Intel Sandy Bridge processor is given in Table 3.1.
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Figure 3.3: T state implementation through clock modulation control

Table 3.1: P-state and T-state specifications for Intel Sandy Bridge processor

P-state Voltage (V) Fmax (GHz) T-state % throttling
0 1.000732 2.1 0 00.0%
1 0.975708 2 1 12.5%
2 0.955688 1.9 2 25.0%
3 0.930664 1.8 3 37.5%
4 0.910645 1.7 4 50.0%
5 0.910645 1.6 5 62.5%
6 0.885620 1.5 6 75.0%
7 0.865601 1.4 7 87.5%
8 0.840576 1.3
9 0.820557 1.2
10 0.795532 1.1
11 0.775513 1
12 0.775513 0.9
13 0.775513 0.8

Access rates of functional units

As seen from Fig. 3.2, there are large number of functional units in a processor. Each

access of a functional unit consumes a certain amount of energy, which varies greatly

among functional units. Hence it is necessary to monitor the access rates of these

functional units. Many modern processors provide an option of monitoring such events,

also called performance counters. A single performance counter can be programmed to

capture any one of a large set of hardware events. However, due to the limitations on the
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number of available performance counters, only few of the many possible hardware events

can be monitored simultaneously. Therefore, it is important to identify the prominent

sources of power consumption based on the knowledge of processor architecture, such

that these sources can account for most of the processor power consumption. Table 3.2

lists a set of factors that were selected for the experiments on the Intel Sandy Bridge

processor. The choice of these is based on knowledge of the architecture, as well as,

extensive experimental exploration of the system. Our approach to identifying these

factors was based on the classification of the functional units shown in Fig. 3.2. For

instance, the events corresponding to the program flow are the number of instructions

retired and accesses and misses to the memory hierarchy.

Table 3.2: Processor factors used in modelling processor power

Factor Granularly Notation
P-state chip ρ

T-state core τ

Temperature core T
Instructions Retired core µ

Core cycles core –
Integer operations core –
Floating operations core –
SIMD operations core –
Load and store core ∆l,∆s
L1 D accesses/misses core –
L1 I accesses/misses core –
L2 access core ∆2
Last-level cache access chip ∆3
Memory controller access chip ∆m

In order to conduct a factorial DoE, all factors should be controllable

independently. In Table 3.2, except for the P-state and T-state, most events are not directly

controllable, but can be indirectly controlled by modifying a program code to selectively

effect one functional unit, while blocking all other units. Since temperature contributes to

leakage power, which is significant in sub-micron designs, it is also listed in the table.
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In the next chapter, I will identify the relationship of various factors on the

processor power, and a method to build a model based on the observed relationships.
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Chapter 4

MODEL IDENTIFICATION

4.1 Analyzing variation in power consumption of cores

There can be significant variation in power consumption among different cores. This is

especially prominent in heterogeneous multicores like ARM big-little architecture [1].

Even for a homogeneous multicore processor, there can be variation in core power

consumption due to process variations. In order to analyze this variation, I designed an

experiment, where a known application was executed on one core at a time, leading to n

trials for an n core processor, and measured the resulting power consumption. Analysis of

the variation in the power consumption of the n trials determines the ratios of power

consumption of various cores. Fig. 4.1 shows the scatter plot of the deviation in power

consumption of various cores against the mean power consumption of a known

application on our reference platform.
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Figure 4.1: Scatter plot of deviation of power of cores from the mean of core powers

In the following sections we analyze the relationship of various factors listed in

Table 3.2 w.r.t. power consumption. Let P be the measured total power consumption of

the processor. The notation for each of the factors is listed in Table 3.2. A subscript c
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denotes the variable is involved with core c. Let Pρ |τ,µ,T,∆l ,∆s,∆2,∆3,∆m denote the power

consumption of P w.r.t. P-state ρ while keeping other parameters τ,µ,T,∆l,∆s,∆2,∆3,∆m

constant. I first start with analyzing the effect of P-states and T-states on the total power

consumption.

4.2 Effect of P-states and T-states on Power Consumption

From (3.1), we expect P-state to have a cubic effect on dynamic power consumption.

However, a closer look at the P-states in Table 3.1 show that while the frequency changes

by constant amount, the voltage changes non-linearly. The theoretical cubic relation

between power consumption, and frequency and voltage, when characterized according to

P-states is closer to being quadratic. This is shown in Fig. 4.2, which plots the power

consumption vs. P-states for Intel Sandy Bridge processor.
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Figure 4.2: Quadratic effect of P-states on processor on power consumption

Equation (4.1) captures the relation between the power consumption of a core and

its P-states using a second degree polynomial.

Pρ |τ,µ,T,∆l ,∆s,∆2,∆3,∆m =
n

∑
c=0

2

∑
i=0

kρ,i,cρ
i
c, (4.1)
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where ρc is the P-state of core c. Note that the association between Fmax and voltage is a

function, while the converse is not. Consequently, we use Fmax to identify the P-state. The

coefficients kρ,2,c, kρ,1,c, and kρ,0,c are processor specific, which needs to be determined.

T-states are not the same as DFS. Fig. 4.3 shows plots of the processor’s power

consumption versus the T-states (measured as the % of throttling). For low frequencies,

the relation is linear, but changes considerably at higher frequencies.
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Figure 4.3: Quadratic effect of T-states on processor on power consumption

Similar to (4.1), (4.2) expresses the total power consumption of a core w.r.t.

T-states as a quadratic relation.

Pτ |ρ,µ,T,∆l ,∆s,∆2,∆3,∆m =
n

∑
c=0

2

∑
i=0

kτ,i,cτ
i
c, (4.2)

where τc is the T-state of core c, and kτ,2,c, kτ,1,c, and kτ,0,c are coefficients to be estimated.

The combined effect of P-states and T-states can be determined by finding the coefficients

of (4.1), i.e.[kρ,2,c,kρ,1,c,kρ,0,c] for various T-states, and observing the relation between

[kρ,2,c,kρ,1,c,kρ,0,c] and T-states. The experiment to determine the combined effects can

also be conducted by observing how T-state coefficients ([kτ,2,c,kτ,1,c,kτ,0,c]) vary with

varying the P-states. From our experiments, [kρ,2,c,kρ,1,c,kρ,0,c] varies quadratically with
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T-states. Overall, the combined effect of P-states and T-states can be represented as below:

Pτ,ρ |µ,T,∆l ,∆s,∆2,∆3,∆m =
n

∑
c=0

2

∑
i=0

2

∑
j=0

kρτ,i, j,csi
p,cs j

t,c. (4.3)

The above equation contains all possible combinations of P-state and T-state exponent

terms from (4.1) and (4.2). Note that in general, kρτ,c,i, j 6= kρ,c,ikτ,c, j.

For now, we only show the partial relationship of a factor with the total power

consumption, and in the end of this section we present a unified power model which

includes all the factors. In general, combining relationship of two factors with the total

power follows the product rule followed in (4.3), i.e. multiplying the product terms

involved in the individual relationship of a factor with the total power. In order to avoid

the above representation getting more unwieldy as more and more factors are added, we

introduce a simpler representation of a factor’s relationship with the total power. This

simpler representation takes only the factors considered, and not the rest of the factors that

are held constant, e.g. we will represent Pτ |ρ,µ,T,∆l ,∆s,∆2,∆3,∆m as just Pτ .

4.3 Effect of IPC on Processor Power

The power consumption of a task increases with its instructions committed per cycle or

IPC. In general, the processor power increases linearly with the IPC, but at a fairly slow

rate (see Fig. 4.4). It is true that the IPC can be further refined by distinguishing the

different types of instructions (e.g. integer and floating point). However, this did not

substantially improve the accuracy of the power prediction. The relationship between the

IPC of a task in a core and the total power is given by

Pµ =
n

∑
c=0

1

∑
i=0

kµ,i,cµ
i. (4.4)

4.4 Analysis of Memory Power

Memory power is the factor that is most difficult to analyze. The primary reason is that it

is hard to control various factors of cache and memory controller (MC) from a program.
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Figure 4.4: Linear effect of increasing IPC over power consumption

The second reason is that caches consume large leakage power. Thus, it is hard to see the

effect of accessing any blocks as the change is small. We identified four factors related to

memory access that have an impact on the total power consumption. These are (loads +

stores)/cycle, L2 accesses/cycle, L3 accesses/cycle, and MC accesses/cycle. The values

for the above four factors are obtained by combining various performance counters

associated with memory access.

The plots of factors related to memory access along with the total power

consumption for various sizes of the memory working-set of the programs are shown in

Fig. 4.5. Notice that the number of accesses for each component varies with the

working-set size. The plots show that considering only load and store operations does not

sufficiently account for the power consumption at large working-set sizes. For this reason,

we consider the higher level cache and memory controller accesses. Through experiments

it was found that power consumption can be modeled as a linear function of each of these

individual factors. The relation between the above memory access factors to the total

power consumption is given by
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P∆l ,∆s,∆2,∆3,∆m =
n

∑
c=0

1

∑
i=0

[k∆ls,i,c(∆l + ∆s)
i + k∆2,i,c∆

i
2 + k∆3,i,c∆

i
3 + k∆m,i,c∆

i
m]. (4.5)

4.5 Effect of Temperature on Leakage Power

Temperature plays a significant factor in contributing to the leakage power. The

relationship between temperature and leakage power has been well studied in the

literature, and is usually approximated by an exponential relationship [15]. However, the

ratio of the leakage power to the dynamic power is low. As a result, this exponential

relationship will not be observed in the case when only the total power, which is a

combination of both the leakage power and the dynamic power, is measured. In fact, we

observed an approximate linear relationship of total power with the mean core

temperatures as illustrated in Fig. 4.6. The relationship between a core temperature and

the total power is given by

PT =
n

∑
c=0

1

∑
i=0

kT,i,cT i. (4.6)
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Figure 4.6: Linear effect of increasing core temperatures over power consumption

29



4.6 Derived Power Model

The combined equation that relates all the factors with the total power consumption is

given by

P = Pρ ∗Pτ ∗Pµ ∗PT ∗P∆l ,∆s,∆2,∆3,∆m. (4.7)

The coefficients in the above equation is determined using the linear least-square (LLS)

method [30] as all the terms have linear coefficients. The LLS equation is given by

Ak = P, (4.8)

where P is a vector of P for various time instants; k is a vector, where all ks in (4.8) are

arranged serially in a decided order; A is a matrix that contains the elements

ρ i
cτ

j
c µk

c T l
c (∆l,∆s,∆2,∆3,∆m)

m that matches the arrangement of ks.
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Chapter 5

BUILDING A TASK LEVEL POWER PROFILER IN LINUX

In this chapter, I will describe how the task specific power profiles are generated and

maintained dynamically for a Linux OS, although the proposed profiler methodology is

adaptable for any other OS. The profiling process is especially challenging in a multi-core

environment where hardware resources are shared among tasks via time multiplexing,

parallel execution on multiple cores and task migration.

To understand task scheduling and management in Linux, consider a standard

CMP as an example. In a standard CMP, each core has a set of tasks eligible to run in its

private run-queue. A task is a program, and can be defined as a set of instructions being

executed in the processor which takes finite amount of time to finish. Tasks are time

multiplexed in round-robin fashion on each core, each taken from the corresponding core’s

run-queue. Generally, the time slice length is proportional to the user assigned priority to

the task. A higher priority task runs longer, thus consuming higher CPU resources. On

every core, when a task uses up its allocated time slice, the operating system preempts the

running task and the next task in the run-queue of the core [29, 31] is assigned to the core.

A task profiler is a module, which can be inside or outside of an operating system.

It dynamically monitors and analyzes tasks running on all cores. With support from the

hardware platform in terms of performance counters, it is feasible to monitor the dynamic

behaviour of programs and profile them with almost negligible overhead. The proposed

task profiler is an online, architecture independent software module, which is

implemented inside Linux OS to analyze the dynamic behaviour of tasks.

The generation of a task-level power profiler happens in two stages: for every task,

the task profiler (i) collects performance events pertaining to that task, and (ii) uses the

collected events to extract power consumption of the task. The performance profile of a
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task is a data structure stored within the task that consists of predefined set of performance

counter values. It accurately represents the dynamic behaviour of a task. Similar to the

performance profile, a power profile is also maintained for every task within the task data

structure. The power profile keeps track of the power consumption of a task in the

previous few scheduling intervals.

OS Scheduler
Task A ( Low Priority )
Task B ( High Priority )

time
B ...BA A A...

........1 2 3 4 5 6 7

Suspend A; // fair time slice expires
A.end = Counter_Read(this_core, A.event_list);
Performance_profile_update(A.start, A.end, Performance_profile);
Pick_fair_task(); // next eligible task  e.g. B

                     (other kernel functions)

B.Power = Power_profile(B.performance_profile, core 
temperatures);
B.start = Counter_Read(this_core, B.events)
Resume B // run for fair time slice

1

2

3

4

5

6

7

OS preemption 

Figure 5.1: An example of the proposed task profiler profiling two tasks A and B

Fig. 5.1 illustrates the implementation of the task profiler within the Linux

scheduler. Two tasks A and B are running on one of the cores in a CMP. Task A has been

assigned a lower priority than task B, and hence gets a smaller share of the CPU’s

resources. During the context switching period as highlighted in Fig. 5.1, the task profiler

is invoked by the OS. It updates A.end in the task profiler’s data structure task struct

with the current values of the performance counters. The entry A.start contains the

performance counter values stored at the beginning of the OS scheduler time slice. Every

task maintains its own .start and .end fields. Let A.Ei represent a hardware event i related

to Task A. Then the hardware events that occurred during an interval related to Task A are

given by A.Ei,cur = A.starti−A.endi. These event counts need to be filtered as they can be
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affected by artificial phase changes in a task due to interrupts and rapid load changes.

These glitches in performance counter values can lead to misleading performance as well

as power predictions. For smoothening the event counters, we use exponential smoothing

filter as shown below:

A.Ei = kA.Ei,cur +(1− k)A.Ei, (5.1)

where A.Ei refers to the value of the performance counter i for the current time; k ∈ [0,1]

(default k = 0.5) is the exponential smoothing filter’s weight.

The above procedure is repeated at every context switch, while noting the

performance counter values that are stored in the previous task’s .end and for the

upcoming task’s .start fields of their respective data structures. The power profile for a

task is computed using the events stored in the task data structure and applying the power

models as derived in (4.8). This power number is stored in the task data structure. Since

the constructed power model is just an approximation, and never can accurately predict

the power consumption, we need to include an adaptive filter that corrects the model

parameters with every new data. This is achieved by using recursive least squares

(RLS) [4] filter. The goal of the RLS filter is to minimize the weighted error of the

estimated total processor power w.r.t. the measured total processor power. The weights

are chosen such that the recent values of the estimated power are given more significance.

Migrating tasks is not an issue for the task profiler, as the task profiler runs in a

distributed fashion on all cores allowing tasks to migrate from one run queue to another

easily. Also, the task’s data structure is always kept intact since the data structure is stored

within the task’s private memory. Another interesting scenario in a CMP system is

profiling of multi-threaded programs. In this case, we profile every thread, treating a

thread as a standalone program. The proposed task profiler is summarized in Algorithm 1.
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Input: Performance event list, no. of cores (C), task run-queues (Γi,∀i ∈C)
Output: Performance and power profile of every task
Generation of power models; (Section 3)
for every core i ∈C (in parallel) do

for every task j ∈ Γi, at every scheduling interval ts ∈ [4 ms,20 ms] do
if j is new task then

Create and initialize task j’s performance and power profile within
its data structure;

Build task j performance profile using performance counters;
Smooth the counter values using (5.1);
Compute task j’s power using (4.8);
Run RLS to update task t j’s power profile;
if j is exiting then

Delete task j’s performance and power profile and its corresponding
task data structure;

Algorithm 1: Overall procedure of task-level power profiling in CMPs

34



Chapter 6

EXPERIMENTAL VALIDATION

6.1 Experiment Platform

• The experiments for validation and case studies are conducted on a 32 nm,

quad-core Intel Sandy Bridge processor [26] running SMP Linux kernel 3.5.5 of

Ubuntu distribution. Hyper threading or simultaneous multi-threading (SMT) is

disabled as hyper threading complicates the derivation of power models. Thus

hyper threading is currently not part of the proposed power profiler.

• The power measurements for the processor is done by reading the specific

model-specific registers (MSR) [10]. The on-board power measurements can be

easily replaced with any external power measurements, which is necessary for

processors where such a feature is not available. Power measurements are used for

both validation and also for adaptive correction of the model error.

• Hardware events are monitored and collected inside kernel by reading performance

counters using Intel performance counter driver. The overhead of reading

performance counters is much less inside the kernel than in user space since there is

no overhead of using system call or user space library. Each reading of the

performance counter measures anywhere between 2 µs and 5 µs.

• The global P-states on our experimental Sandy Bridge processor are changed using

the APIs provided by Advanced Configuration and Power Interference (ACPI) [9];

while the per-core T-states are modified by directly writing into specific MSR

registers.

• Applications from SPEC CPU2006 [2] and PARSEC-2.0 [2] benchmark suits were

used to validate proposed power profiler.
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6.2 Profiler Validation

Profiler validation has been carried out in two parts. First set of experiments were done to

validate the performance profile of a profiler and then power predictions are validated

using on board hardware power estimations.

Performance validation

Before validating the power prediction of the proposed profiler, we need to ensure that the

performance events used by the profiler are also validated. Towards this, we validate the

recording of the performance events with the standard performance monitoring tools

based on lib-perfmon [32] library. We observe less than 0.05% error between the values

recorded by lib-perfmon based profiler and our proposed profiler. Note that this error also

includes the fact some of the performance counter events are not completely deterministic,

and hence there is some inherent measurement noise.

Analysis of power prediction error

For the purpose of validating the proposed profiler prediction of power consumption, we

ran both SPEC CPU2006 and PARSEC 2.0 benchmarks, and varied the execution rates of

the benchmarks by randomly varying P-states and T-states. Using the models derived in

Section 4, and the RLS method, the task profiler makes a prediction of the current power

consumption for every task. Since the only available measurement of power is the total

processor power, we summed all the tasks’ power consumption in a given time and

compared with the total power measurement. Fig. 6.1 and Fig. 6.2 plots the mean and the

standard deviation of the prediction error of our proposed power profiler against the

measurement of the total power consumption.

The mean error refers to the average prediction error on the entire run of a

benchmark, which in ideal scenario should be zero; while the standard deviation of error

refers to the average deviation of a prediction from the actual measurement for every
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sample, which cannot be lesser than the measurement noise of the sensor. The power

consumption of SPEC and PARSEC benchmarks varied from 10 W to 40 W.

6.3 Accuracy Analysis and System Overhead

Reading and maintaining performance counters, synchronizing between cores, evaluating

power models and maintaining power prediction history, generates additional overhead.

The power profiler is integrated within the scheduler and as described earlier in Chapter 5,

the profiler is called by the scheduler on every context switch. The frequency of context

switching can be as high as 250 times per second. Maintaining low overhead restricts the

computational complexity and so the model accuracy. Even though profiler generates less

then 1% overhead, performance counter values were maintained with high accuracy.

Similarly, power predictions are in within 4% error even with a noisy temperature and

power sensors.
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Chapter 7

USE CASES

In this chapter, we discuss the use cases of my proposed profiler for two emerging

architectural techniques in commercial platforms: fine grained per-core DVFS control and

architecturally heterogeneous cores. Although the above architectural techniques have

shown promise in reducing power consumption, they are yet to be seamlessly integrated

with the system software, partially due to the lack of a detailed task-level power profiler.

In the following sections, we discuss how the proposed profiler can efficiently bridge the

gap between available hardware techniques and system software to improve energy

efficiency of future processors.

7.1 Task priority-aware fine grained DVFS including soft power and thermal capping

The DVFS techniques currently adopted for power and thermal management are task

agnostic. The DVFS decisions made purely on system-level power and temperature

information might achieve the desired power savings for the processor, but can be unfair

w.r.t. a task, if its priority is not taken into consideration. This is also true w.r.t. hardware

power capping. As an example, consider the plot of performance/Watt (PPW) of two

SPEC CPU2006 benchmarks running on Intel Sandy Bridge as shown in Fig. 7.1. PPW is

an effective metric representing task’s energy efficiency, accounting power and

performance of a task. Figure shows that the optimal frequency of execution to achieve

maximum PPW is not same for all applications, but depends on the application

requirements of the hardware resources, e.g. a high IPC application will need a higher

operating frequency to improve energy efficiency than a low IPC application as seen from

the figure. Such observations are not possible without the use of a task-level power

profiler.

An accurate power model at the task-level is necessary to ensure that a task is not

unfairly throttled and to complete its execution in a reasonable time. Also, accurate power
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models can help in enforcing soft power and thermal capping, where the capping can be

relaxed for a short time to boost performance. This is similar to turbo mode in Intel

processors [26]. Recent architectural improvements have enabled low overhead per core

DVFS, which has increased the effectiveness of DVFS compared to single voltage

domain. Such a hardware feature can be used to improve system energy efficiency, while

at the same time respecting task priorities.
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Figure 7.1: Different applications have different optimal DVFS operating points for maxi-
mum energy efficiency

7.2 Heterogeneous task-to-core mapping

Asymmetric multicores have recently gained popularity as they provide more

opportunities to improve energy-efficiency than standard homogeneous multi-cores. A

typical heterogeneous chip multiprocessors (HMP) consists of two different set of cores

on a single die with both having the same instruction set architecture (ISA). Of the two set

of cores, one set of cores is designed to deliver high performance, and the other set offers

high energy efficiency, but with reduced performance. In other words, both set of cores

differ in terms of their power consumption and performance, e.g. ARM’s bigLITTLE [1].

With a power model that accounts for this kind of heterogeneity among cores, one can

develop intelligent task-level, energy aware load balancing and scheduling techniques to

improve energy efficiency of a processor.

Using a task-level power profiler, one can derive a metric to effectively represent
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runtime energy efficiency of a task. This metric can be used to select most suitable type of

core to run a task. This dynamic task-to-core mapping is important to improve energy

efficiency under changing thermal and workload conditions.

To demonstrate the importance of a task profiler for heterogeneous systems, we

emulated a four core heterogeneous system on a four core SMP system. This system has

two performance oriented cores and two lower performance, but with energy efficiency.

Heterogeneity is emulated by adopting clock modulation using ACPI T-states to produce

low performance cores as shown in Fig. 7.2. Both high and low performance cores have

voltage-frequency controls and performance counters support. As we are mimicking

heterogeneity through clock modulation, no modification in the operating system is

required. In order to do power and thermal profiling on architecturally different cores, one

must develop separate power model parameters for different types of cores. For

architecturally different, real heterogeneous cores, we can apply our proposed model

building methodology described in Section 3 for both types of cores. In the current

scenario, the low and the high performance cores differ only by the T-states they operate

at.
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Figure 7.2: Emulating heterogeneous cores through core clock modulation

One of the primary goals in introducing heterogeneous cores is to achieve better

energy efficiency by performing runtime task-to-core mapping. Without the help of a task

profiler, the task-to-core mapping is very challenging. In order to demonstrate that there
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are many situations in which such runtime task-to-core mapping is essential, we executed

SPEC CPU2006 benchmark 473.astar on emulated heterogeneous core system. The

performance/Watt (PPW) results are plotted in Fig. 7.3. Notice the dynamic change in the

energy efficiency of the task running on high performance vs. low performance core.

There are some segments where high performance core gives higher energy efficiency,

and some other segments, where low performance core gives higher energy efficiency.

Without a task-level power profiler, such changes in energy efficiency over heterogeneous

cores cannot be detected, and benefits offered by heterogeneous cores will be wasted.
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Figure 7.3: Energy efficiency comparison of execution of SPEC CPU2006 benchmark
473.astar on high and low performance cores. The task needs to be migrated from either
core to provide high energy efficiency at various times.
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Chapter 8

RELATED RESEARCH WORK

The fundamental CGRA architecture utilizes multiple processor elements (PEs)

connected to the data memory via a 2D mesh network. In contrast to a general purpose

processor, CGRAs are much more configurable in terms of what each PE does every

cycle. Unlike a FPGA, which provides a finer-grain static reconfigurability, CGRA’s

coarse yet dynamic reconfigurability can be utilized by a compiler to map an application

efficiently. CGRA’s coarse reconfigurability greatly reduces the delay, area, power and

configuration time with compared to a FPGA. Other features include predictable

execution timing, a small instruction storage space and flexible topology. It is a promising

architecture to deliver higher performance and better energy efficiency. Fig 1.2, compares

legacy architecture models.

Since 1994, many researchers have developed variety of systems using CGRA as a

centrepiece of their design [6]. Kress Array [7], REMARC [18], Matrix [17] are some of

the popular on-chip CGRA designs. These earlier architectures use MIPS, PowerPC or

ARM based cores to help the CGRA with more general tasks like memory management

and operating systems. These designs have one or more high bandwidth on-chip

scratch-pad memory units associated with the CGRA. The idea of using CGRA with

processor cache memory is present in MorphoSys [27] and Garp [8]. In addition to

hardware design space exploration, a lot of work went into analyzing the scheduling

required to maximize utilization of CGRAs.

Architecture of the coarse-grained reconfigurable arrays required a deep

understanding of the underlying architecture by the application developers, which made

the CGRA less attractive. The modulo graph embedding technique for finding a more

effective schedule was able to reduce the amount of extra routing to map the instructions
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properly [21]. It was focused on the interprocess communication and assumes that the

data will be available in the memory. In 2009, the same group of researchers introduced a

new algorithm called edge-centric modulo scheduling which increases performance by

25%over traditional modulo scheduling and achieves 85-98% of the performance

compared to a state-of-the-art simulated annealing technique [22]. However, this was also

focused more on the routing of the instructions and output registers than how the memory

referencing can affect the CGRA architecture. Unlike general purpose processors, the

compiler and software programming model for the CGRA is still a long way from

maturing and has a good scope in future research.

Evidently, the CGRA architecture is an interesting and a challenging research

problem for both hardware as well as software developement. It can be a potential

candidate as a center piece for accelerator rich future system-on-chip. Here in this

research, I am proposing a flexible framework to perform design space experiments using

CGRAs at software as well as hardware level. This will facilitate researchers to do

hardware-software co-design at early design stage of developement thus reducing

development time for a CGRA based systems.
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Chapter 9

COMPONENTS OF THE FRAMEWORK

9.1 CGRA- future of programmable accelerators

Components of the proposed framework can be classified into two broad categories (i)

Hardware Models in to the simulator and (ii) Software modules. For this work, hardware

models including the CGRA model are part of the architectural simulator. It is a software

tool which simulates pre-configured processor using its hardware models to mimics the

actual hardware. This simulated hardware is accurate enough to boot unmodified Linux

operating system. Once simulator is updated with the CGRA hardware model, we need to

add few software components to the OS to utilize newly added hardware models. This

operating system components include device drivers to handle CGRA accelerator and user

space applications. Following this chapter, first we will see hardware components added

in the simulator and later we will see software modules added in the OS in details.

9.2 Hardware Components

GEM5 is an open source, cycle accurate architectural simulator [3]. It is based on the

discrete event driven simulation principle. GEM5 is capable of simulating various popular

architecture like ARM, x86 etc. In addition to support multiple architectures, it can run

unmodified operating system with reasonable speed and fairly good accuracy. Since it is

an open source software, adding hardware models or modifying existing ones is not

difficult. Such attributes make GEM5 an attractive platform for this research work where

design space exploration requires adding and altering the hardware models. Overview of

the GEM5 simulator based system is shown in Fig. 9.1.

Embedded and low power system has hard constraint on power consumptions and

battery life. For demonstration purpose in this work, I selected the ARM 32 bit, in-order

microprocessor based system to integrate the CGRA as an off-chip accelerator. CGRA is

attached to the IO bus of the processor and to the ARM DMA PL081 [25]. The DMA
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Figure 9.1: GEM5 simulation environment

controller is used to efficiently offload memory transfer request between the main memory

and the CGRA memories. In this section, we will see the CGRA hardware model and its

interface with IO bus and ARM DMA controller in detail.

CGRA Model and interfaces

The CGRA is a promising architecture capable of delivering high throughput at the

greater energy efficiency than a standard processor. Its 2D mesh like array architecture as

shown in Fig. 9.2 connects processing elements called PEs. Each PE is connected to its

neighbors with a private interconnect and connected to a data memory with a shared bus.

The PE typically consists of set of functional units capable of performing basic integer

arithmetic and logical operations. The instruction supplied to CGRA is determined by the

compiler at a compile time. This static mapping removes a need for complicated dynamic

scheduling inside PE and thus improving energy efficiency. Reduced PE complexity also

reduce decoder complexity lead to power saving in decoding. Every PE also has a small

register file and a shared element which can be accessed by neighbor PEs.

This simple 2D structure has a private instruction and a data memory. The

instruction memory has one port for each PE to supply 32 bit wide instructions every
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cycle. Unlike the instruction memory, the data memory has only 4 ports and all PEs in a

row share the data memory port. The instruction and the data memories are treated as

scratch pad memories further eliminating need for power hungry, complicated tag store

and compare hardware circuits. Just like any other scratch pad memory, CGRA

instruction and data memories have to be managed by software during the program

execution. In addition to that, from system point of view, CGRA is connected to IO bus

and thus being treated as standard peripheral device. DMA is used to manage data and

instruction memories of CGRA, just like any other peripheral device. This is a standard

solution adopted by many other off-chip accelerators.

CGRA model developed here as shown in Fig. 9.2, features 16 PEs. Each PE

consists of a basic ALU and a register file. On every cycle, PE fetches and decodes 32 bit

instruction. As all the instructions are mapped statically by the compiler, CGRA

eliminates need of complicated hardware dynamic scheduling e.g. out-of-order

processing. This leads to better hardware utilization and performance at lower power

consumption. CGRA’s PE instruction encoding is shown in Table 9.1. As shown in the

table, it has 3 bit encoding for Op-code and Multiplexer selection. The register file has 2

bit register selection fields, meaning each PE has 4 registers in their register file. 3 bit

opcode and the multiplexer selection fields are explain in the Table 9.2. Each PE supports

8 preliminary arithmetic and logical operations selected by the bit-field Op-Code. In the

table we see all 8 different opcodes supported by the PE. Each opcode consumes two 32

bit operand and produces 32 bit output. Selection of both input operand source is done by

the instruction bit fields called Left and Right. These bit field control the select pins of

the multiplexers present on both of the ALU inputs. Both input multiplexers can select

operand from the neighbour PEs, data memory, immediate and register file as shown in

Table 9.2. Similarly, the destination for output operand can be controlled through the

output multiplexer. Setting the Write Enable bit will write output to the register file
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and Data bit field can be used to when to send the data on the data bus for either to data

memory or other PEs. It also has a predicate field which can be used by the compiler

in various ways while dealing with if-then-else type conditional program mapping. Lastly,

instruction also has a 12 bit unsigned immediate field, allowing constants from 0 to

212−1 inside instruction. Communication with data memory is done by putting a address

on data memory address bus by selecting bit 13(Addr) and if store, selecting bit Data in

the same cycle by some other PE in the same raw. But if load, data memory will put data

on the same port in the next cycle, available to all PEs sharing the bus.

Figure 9.2: Architecture overview of CGRA

Table 9.1: Encoding of 32 bit PE Instruction

31-29 28,27 26-24 23-21 20,19 18,17 16,15 14 13 12 11-0
Op pred- Left Right Reg. Reg. Reg. Write Addr Data Imm

code icate Mux Mux A B O Enable Bus Bus

CGRA relies on the DMA controller for any data or instruction memory transfer to

or from the main memory. The DMA used here is the ARM PL081 controller.

Programming the DMA controller is integrated into the master-slave programming

paradigm used for CGRA. DMA model developed is a minimalistic dual channel, single

direction DMA engine mimicking PL081’s features and programmability. It is capable to
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Table 9.2: Specifications of PE op-code and multiplexer selection in CGRA Model

Encoding Op Code Mux Select
000 Add Register
001 Sub Left
010 Mult Right
011 And Up
100 Or Down
101 Xor DataBus
110 Asr Immediate
111 Asl Invalid

handling memory-to-memory, memory-to-peripheral and peripheral-to-memory modes.

Modes involving peripherals are especially useful to transfer data and instruction from

main memory to CGRA memories. It also support read, write competition interrupts to

communicate with ARM core. The CGRA is connected to the IO bus (also known as

peripheral bus). Thus can not access any system memory without a DMA and vice versa.

It can not program the DMA either but it can communicate with ARM or master core

though interrupt. This interrupt is also used by the CGRA device driver to maintain state

of the CGRA.

All the hardware models discussed in this section are written in C++ and are part

of the GEM5 simulator and can easily extended for more features. In following section,

we will discuss about the software modules present in the Linux kernel to utilize the

CGRA hardware and how it facilitate users to use CGRA from user space.

9.3 Software Components

The GEM5 simulator boots a guest Linux OS using the processor and memory hardware

models. In order to utilize new hardware models added in the simulator, software support

has to be added in OS e.g. device drivers and interface with kernel subsystems. This

section will focus on necessary software modules added and modified to support CGRA

accelerator in the guest OS. This includes CGRA device driver, ARM DMA device driver,

and user space applications. Fig. 9.3 shows the overview of interconnection and
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communication between user application, device drivers and hardware models.

Just like any other standard peripheral device, the CGRA accelerator is also

memory mapped and DMA has to be used in order to copy data to and from CGRA

memories. The memory mapping of CGRA is shown in Fig 9.4.
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Figure 9.3: CGRA Hardware-Software Stack

User Interface and Device Drivers

As seen in Fig. 9.3, the user application directly communicate with the CGRA device

driver through system calls. Once programmed, and initiated CGRA operation, user

blocks itself and sleeps until CGRA driver signals the application. At the application

level, communication with the CGRA through the CGRA driver is very straight forward,

and described in Algorithm 2. First, the user application checks the availability of the

accelerator. Once available, it obtains the ownership of the CGRA and locks it. Then, the

actual transfer of user space pointers of .data and .text sections of CGRA binary and their

sizes is done. Note that this step does not involve any actual copy of the data or
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Figure 9.4: System memory mapping for CGRA

instruction. Actual data and instructions are transferred using DMA and handled by the

CGRA driver. This data movements are completely transparent to the user application.

Input: CGRA Instructions and Data buffers ( Binary: .text, .data sections)
Output: Processed data buffer(.data section or results)
if CGRA is available then

Obtain CGRA Handler;(Ownership)
Transfer CGRA instruction to CGRA Driver;(No actual copy)
Transfer CGRA data to CGRA Driver;(No actual copy)
Program CGRA control memory;
Start CGRA;(Blocking Call);
Use Results;

else
Try after some time;

Algorithm 2: Procedure of CGRA User Application

CGRA device driver is a fundamental block of this framework. This software

module is responsible to provide user level abstraction of the CGRA hardware and
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controlling it. It also provide system call interface to the CGRA, allowing users to utilize

the CGRA with minimal hardware knowledge.

Here follows the main features of the CGRA device driver, (1) Handling the DMA

requests and maintaining the DMA queue, (2) Configuring the PL081 DMA controller for

every DMA transfer, (3) Handling the virtual memory to the physical memory mapping

and the page table entries, (4) Handler for PL081 and CGRA interrupts, (5) Configuring

CGRA as per user application, (7) Maintaining the CGRA state and handle data and

instruction flow with limited CGRA memory and lastly (8) Providing uniform interface to

user space to utilize CGRA.

The internal workings of the CGRA device driver is shown in Algorithm 3.

52



Input: CGRA System Calls: Ownership, Memory transfer to and from user, Start,
Stop, Release

Output: CGRA status:running, complete, available
Start: status=available; if User System Call: Get Status then

return status;
if User System Call: Transfer .text section then

Obtain pointer and size of the section; (virtual pages)
Perform page table walk to obtain physical frame mapping;
transfer all frames to CGRA instruction memory: DMA transfer;

if User System Call: Transfer .data section then
Obtain pointer and size of the section; (virtual pages)
Perform page table walk to obtain physical frame mapping;
transfer all frames to CGRA instruction memory: DMA transfer;

if User System Call: configure CGRA then
copy control data structure from user space;
program CGRA control memory;
start CGRA;
status=running

Function DMA transfer(Source address, Size, Direction [to/from], CGRA
Memory Offset )
Add DMA Controller transfer setting in a DMA request Queue;
Perform Copy; (Non Blocking)
return;
Function CGRA Interrupt handler()
Update CGRA State: Complete;
Transfer all result frames to user: DMA transfer;
Update CGRA State: available;
return;

Algorithm 3: Procedure of CGRA Driver
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Chapter 10

USING THE FRAMEWORK

In the previous chapter, we saw the internals of the framework and the user space interface

for application developement. In this section, we will see an example application

development on CGRA from a Linux OS running on the 32 bit, in-order ARM processor.

Assuming the framework is already installed in the guest Linux OS and it is running on

GEM5 simulation platform with this CGRA hardware models available and ready to use.

As explained in previous section, CGRA driver exposed few standard system calls to

Linux user space. First, we will use those system call and develop a parallel, memory

efficient matrix multiplication algorithm running on the CGRA accelerator. Then, we will

compare the performance of the same algorithm running on an ARM processor with that

running on the CGRA.

10.1 Programming CGRA

For an application to use CGRA, first it needs to provide .data section and .text section of

the CGRA binary. This sections are nothing more than a buffer in a memory which can be

generated dynamically using standard ARM libraries. As, the compilers for the current

hardware accelerator are very premature and this work is primarily focused on dynamic

software-hardware framework, I implemented .text and .data section in CGRA assembly

language. It is reasonable to assume that a mature compile can automatically produce the

CGRA instructions and data automatically without user to get familiar with hardware

details or assembly language programming of the CGRA.

10.2 Benchmark: Matrix Multiplication

Since there is no compiler support available for now to test the framework, developing

handwritten assembly benchmark is necessary. To validate functionality of the proposed

framework and demonstrate usefulness of MIMD accelerator, I chose to implement a

variable size matrix multiplication using Cannon’s [14] memory efficient matrix
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multiplication algorithm.

Here, the multiplication of two matrices, each of size MxM where, M = 2n,n ∈ N

is done using a CGRA of size, P=16. To minimize the inter PE and memory

communication, matrices are processed in blocks of size N/
√

PxN/
√

P. According to the

Cannon’s algorithm on the 2D array architecture, matrices are required to be skewed first

and perform a circular shifts after every cycle. It keeps the partial results in the PE

registers eliminating need of data movements. At the end of multiplication, PEs store the

complete result ready to be written back to memory. It is highly memory efficient

algorithm suitable for symmetric 2D array architecture. Implementation on 4 by 4 CGRA

to finish one 16 by 16 matrix multiplication, one block for larger matrices takes about 35

cycles and it supports matrices upto 128 by 128 by partitioning them into 16x16 blocks.

Keeping PE utilization to the highest and minimizing inter iteration delay are standard

measures to improve quality of mapping. The average loop utilizes on average 80% of

CGRA PEs during entire loop which has inter iteration delay of 35 cycles.

10.3 Results: ARM vs CGRA

For simplicity, the CGRA model performs multiplication and addition in single cycle and

runs as fast as standard ARM in-order processor. Similarly the DMA also transfers data at

1 bytes/cycle speed. As this is complete simulation framework, bandwidth and latencies

can be easily adjusted.

’Naive’ implementation on the ARM in-order processor performs matrix

multiplication sequentially. To exploit the parallel nature, the CGRA based multiplication

is done on 2D mesh of distributed PEs in parallel. Inherently parallel applications like

matrix multiplication which utilizes PEs well should give high performance boost and the

expected speed-up is about P times but due to DMA transfer overhead associated with

CGRA gives less than expected performance boost. CGRA memory limitations and

without compiler support, hiding DMA latency by pipe-lining DMA transfers is not
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possible. This puts DMA transfer operands from main memory to CGRA memory and

results from CGRA to main memory in critical path.

Preliminary results are presented in the Fig. 10.1. As you can see, due to DMA

overhead the benefit of CGRA is not as good as 16 times better as it should have been.

Also lower utilization of 80% affect the performance benefits. For large matrices, ARM

suffers cache misses which increases execution time which is not the case for CGRA. The

power and energy efficiecny numbers are not available at this time of the development.
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Figure 10.1: CGRA and ARM matrix multiplication comparison in cycles
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Chapter 11

CONCLUSION

Intelligent use of architectural support for reducing power consumption requires a detailed

task-level power profiler. In this paper, we proposed an online task-level power profiler,

and discussed an experiment methodology to develop detailed power models. This

methodology eliminates the need to have a detailed chip layout to get build accurate

power models. The proposed profiler was integrated within Linux OS and validated with

Intel Sandy Bridge processor with more than 96% accuracy and with less than 1%

overhead. We also demonstrated the importance and flexibility of proposed tool to

facilitate – (1) task characterization for improved energy efficiency in heterogeneous

architectures, and (2) intelligent fine grained, per core DVFS features. Coarse Grain

Reconfigurable Architecture provides much desired combination of performance and

energy efficiency. In future SoCs where the power consumption will be of prime concern,

the CGRA can play an important role to achieve higher energy efficiency. The CGRA

features like enhanced compiler control, simple hardware design and inherent parallelism

motivates researchers to do many architectural and software level research. Towards

achieving this and to facilitate hardware designers to evaluate different architectural

design evaluation and software developers to develop most suitable programming model, I

developed a full system hardware-software co-design framework for CGRAs. Proposed

framework is capable to detecting the CGRA as an accelerator in the Linux with help of

the CGRA device driver I developed. It also allows efficient memory transfers using the

peripheral DMA. I demonstrated its usefulness with a parallel matrix multiplication as an

example application.
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