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ABSTRACT  

   

Random peptide microarrays are a powerful tool for both the treatment and 

diagnostics of infectious diseases. On the treatment side, selected random peptides on the 

microarray have either binding or lytic potency against certain pathogens cells, thus they 

can be synthesized into new antimicrobial agents, denoted as synbodies (synthetic 

antibodies). On the diagnostic side, serum containing specific infection-related antibodies 

create unique and distinct "pathogen-immunosignatures" on the random peptide 

microarray distinct from the healthy control serum, and this different mode of binding  

can be used as a more precise measurement than traditional ELISA tests. My thesis 

project is separated into these two parts: the first part falls into the treatment side and the 

second one focuses on the diagnostic side.  

My first chapter shows that a substitution amino acid peptide library helps to 

improve the activity of a recently reported synthetic antimicrobial peptide selected by the 

random peptide microarray. By substituting one or two amino acids of the original lead 

peptide, the new substitutes show changed hemolytic effects against mouse red blood 

cells and changed potency against two pathogens: Staphylococcus aureus and 

Pseudomonas aeruginosa. Two new substitutes are then combined together to form the 

synbody, which shows a significantly antimicrobial potency against Staphylococcus 

aureus (<0.5uM). 

In the second chapter, I explore the possibility of using the 10K Ver.2 random 

peptide microarray to monitor the humoral immune response of dengue. Over 2.5 billion 

people (40% of the world’s population) live in dengue transmitting areas. However, 

currently there is no efficient dengue treatment or vaccine. Here, with limited dengue 
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patient serum samples, we show that the immunosignature has the potential to not only 

distinguish the dengue infection from non-infected people, but also the primary dengue 

infection from the secondary dengue infections, dengue infection from West Nile Virus 

(WNV) infection, and even between different dengue serotypes. By further bioinformatic 

analysis, we demonstrate that the significant peptides selected to distinguish dengue 

infected and normal samples may indicate the epitopes responsible for the immune 

response.  
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Chapter 1 

AN AMINO ACID SUBSTITUTION LIBRARY HELPS TO IMPROVE A RECENTLY 

REPORTED SYNTHETIC ANTIMICROBIAL PEPTIDE 

1.1       Introduction 

Antibiotic resistance is a continuing problem in antimicrobial drug treatment. 

However, new antibiotic development is always lagging behind bacteria evolution. As a 

result, more and more antibiotic-resistant strains create the risk of uncontrollable 

infection spreading. Our lab recently developed a random peptide microarray based high-

throughput technique for screening for new antimicrobial candidates. Our overall goal is 

to develop antimicrobial agents, particularly ones that would be bacterial specific.  The 

idea is that bacterial specific agents would slow the spread of microbial resistance and 

spare “good” bacteria. Here we show that one of the peptide candidates we selected 

previously can be further improved by a mutant library approach.  

In order to improve the de novo synthetic antimicrobial peptide, 

RWRRHKHFKRPHRKHKRGSC, we created a single substitution peptide library 

(containing 304 peptides). We have shown that by single amino acid replacement, 

selected peptide variants have a minimum inhibitory concentration range (MICrange) of 

5μM-10μM against S.aureus (SA) and 10μM->40μM against P.aeruginosa (PA). 

The hemolytic activity (%hemolysis) of the peptide candidates exhibits a range from 4% 

to 100% cell lysis. We further showed that by adding the single mutants together into 

double mutants, we observed additive effects on their inhibitory potency against both SA 

and PA. Finally, the selected mutants were combined together into a class of affinity 

agents called synbodies, which had MIC less than 1μM against SA.   
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As a follow-up procedure of our microarray-based synthetic antimicrobial 

peptides discovery system, we have demonstrated the peptide mutant library as an 

effective method to improve our selected candidates with more antimicrobial potency, 

more specificity and less hemolytic activity. 

In addition, we also tested the concept of using a random peptide as the antibody 

recruiting molecule (ARM) to increase the macrophage-bacteria interaction. We 

constructed the molecules called synbody effectors, which consisted of a bacteria binding 

arm and an antibody recruiting arm. The initial results indicated that synbody effectors 

were able to increase the macrophage absorption of pathogenic S.aureus.  

 

1.2       Background and significance  

1.2.1    Antibiotics and drug-resistance 

“No action today, no cure tomorrow”, claimed the WHO World Health Day 2011, 

accurately stressing the problem of antimicrobial resistance. On the one hand, more and 

more multi-drug resistant strains, such as multi-drug-resistant TB (MDR-TB)1, 

extensively drug-resistant TB (XDR-TB) and Methicillin/Vancomycin-resistant 

Staphylococcus aureus (MRSA/VRSA)2 are continually being identified these years. On 

the other hand, fewer and fewer new antibiotics have been introduced since the 1990s3. 

Multiple mechanisms exist in bacteria to confer drug-resistance. For example, the 

resistance against tetracycline can be caused by the active efflux system located on the 

bacteria membrane; the resistance against streptomycin can be explained as the chemical 

inactivation by the enzyme produced in the bacteria. The development of drug resistance 

is almost inevitable after the introduction of any new antibiotic, especially for those 
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targeting redundant metabolic pathways. Both vertical and horizontal gene transfer 

contribute to the wide-spread appearance of acquired antibiotic resistance. As a result, we 

are pushed to the edge of developing new antimicrobial treatments.   

 

1.2.2    Antimicrobial peptides (AMPs) 

Antimicrobial peptides (AMP), as a class of unconventional antibiotics, presently 

represent a promising solution due to their unique antimicrobial potency and the rare 

development of drug-resistance4,5. Natural antimicrobial peptides are host-defense 

molecules with diverse structures and functions produced by all living organisms, 

including bacteria, fungi, plants, invertebrates, vertebrates as well as human beings.  

Most natural antimicrobial peptides contain 20~50 amino acids with a net positive 

charge and 40%~60% hydrophobicity. A typicalα-helical antimicrobial peptide has a 

membranlytic mode of action: the positively charged AMPs are first attracted by the 

negatively charged bacteria surface (G+: the peptidoglycan layer; G-: outer membrane), 

then they assemble on the bacteria cytoplasmic membrane with different possible 

structures (classical pores; toroidal pores; carpet mode). The insertion of AMPs causes 

the direct rupture of the bacteria membrane, has allowing little chance for the bacteria to 

develop drug resistance.    

According to the Antimicrobial Peptide Database (APD, 

http://aps.unmc.edu/AP/main.php)6, 1664 antibacterial peptides have been reported 

(09/2012), among them, 799 are from fishes and amphibians, 180 are from insects, 161 

are from bacteria, 90 are from plants, 49 are from human sources, and only 27 are 

synthetic.  
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1.2.3    Synthetic antimicrobial peptides selection by random peptide microarray 

Natural antimicrobial peptides have limitations/disadvantages, such as high 

toxicity, low specificity and special structures, which make chemical synthesis difficult. 

Many efforts have been made to create synthetic antimicrobial peptides to overcome 

these shortcomes. Generally speaking, there are two kinds of approaches. One is a 

rational peptide sequence design based on the comparison of already demonstrated 

antimicrobial peptides, especially for theα-helical class. The new synthetic peptides are 

usually generated from one or two selected peptide scaffolds with limited amphipathicity 

and charge alterations7,8. Another approach is to select the random peptides with 

antimicrobial capacity from a phage display library. A successful example was shown by 

Alessandro Pini for his selection of anti-E.coli peptides9. Although a phage peptide 

library contains a large number of variants with diverse structures, the technique itself is 

relatively complex to perform.  

Our group recently developed a random peptide microarray-based technique to 

screen for new bacteria-binding and lytic peptides in an efficient way. The basic concept 

is to apply dye-labeled bacteria cells directly onto the microarray. The peptides which can 

specifically bind with the bacteria cells will show high fluorescent signals and thus be 

selected. Since all the peptides on the microarray are well-characterized prior to the 

spotting and screening, it saves a lot of time for the identification step. We show that the 

whole selection procedure can be finished in less than two hours, which might be quite 

useful in some urgent circumstances, for example in the face of unknown pathogens.     
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1.2.4    Synthetic antibody and synbody effectors 

Antibody therapy against microbes is an old idea, used even before the 

widespread usage of antibiotics. Passive antibody treatment has been shown useful in 

many infectious diseases, such as Anthrax (Bacillus anthracis), Hepatitis B (Hepatitis B 

virus), Pneumonia (Streptococcus pneumoniae), etc. However, among 15 FDA-approved 

mAbs (1986-2004), only one mAb, palivizumab, has been licensed for the infectious 

disease (RSV). One of the major disadvantages of antibody-based therapies is the high 

cost of drug development, production and administration10.  

In order to avoid the high cost of natural antibodies production, our group 

previously came up with the idea to chemically synthesize a class of agents called 

synthetic antibodies (synbodies), which can bind with selected targets with high affinity. 

A typical synbody molecule is produced by two relatively low affinity peptides (selected 

from the random peptide microarray) joined together with a scaffold to achieve the high 

affinity (based on the equation Kd = Kd1× Kd2)11. The targets of a synbody could be 

either protein (for example, TNF-α12) or the intact bacteria/ virus cells (for example, 

influenza virus, Norovirus and Staphylococcus aureus, unpublished results)  

In addition, in order to mimic the immunomodulatory function of natural 

antibodies, such as the Antibody-Dependent Cell-mediated Cytotoxicity (ADCC) and 

Complement Dependent Cytotoxicity (CDC), we intend to further engineer the synbody 

into an Antibody-Recruiting Molecule (ARM). ARM can be separated into two parts, one 

part can bind with specific pathogen cells, and the other part can recruit self-antibodies to 

exert certain biological functions13. This idea has been proved by Parker et al in their 

design for targeting the HIV gp12014. Here, as a first demonstration, I showed the 
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possibility of adding a modulatory peptide arm to the synbody to make it a synbody 

effector.  

1.3       Materials and methods 

1.3.1    Peptides synthesis and substitution library creation  

 

Figure 1.1 The list of peptides synthesized and tested for the project. A. Single 

mutant peptide library. The first row is the original sequence RWRRHKHF-

KRPHRKHKR, each of its position is replaced by 20 different amino acids in the second 

column, including one D amino acid (d-K). The orange color indicates the same amino 

acid replacement as control. B. Double mutant library containing ten single mutants and 

their double combinations with [H] as N terminal and [OH] as C terminal. C. Double 

mutant library containing six single mutants and their double combinations with [Ace] as 

N terminal and [NH2] as C terminal.      
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All peptides tested in this project were synthesized as three production runs by 

Sigma-Aldrich custom peptide library PEPscreen®. The first order (order number: 55435) 

contained 340 peptides, which were all single amino acid mutants of the original peptide 

[Ace]RWRRHKHFKRPHRKHKR[NH2] (Figure 1.1A). These 340 peptides were used 

for the initial screening for both antimicrobial and hemolytic activities. The second and 

third orders (order number: 3007196372 and 58302) contained 23 and 10 peptides, 

respectively (Figure 1.1B, 1.1C). They were picked and constructed as double/ triple 

mutants based on the initial screening of single mutants. 

 

1.3.2    Peptide concentration determination by BCA method 

All the ordered peptides were received as the lyophilized forms in 2ml tubes. 

Although these peptides were labeled as containing a known amount (mg), we did not 

know their solubility. So the concentrations needed to be determined. All peptides were 

dissolved in 100uL PBS and 100uL 50% acetonitrile. Since the Nanodrop cannot be used 

to measure the peptide concentrations with low extinction coefficient, in order to measure 

hundreds of peptides efficiently, we used the Pierce BCA Protein Assay Kit from Thermo 

Scientific. BSA standards of 2.0mg/ml Albumin Standard to 1.5mg/ml, 1.0mg/ml, 

0.75mg/ml, 0.5mg/ml, 0.25mg/ml, 0.125mg/ml and 0.025mg/ml were used The working 

reagent was a mix of 50 parts of BCA Reagent A with 1 part of BCA Reagent B. Since 

our sample size were limited, 10 ul of each unknown sample and standard were used. 

Plates were incubated at 37 degree for 60 minutes. A SpectraMax 190 Absorbance 

Microplate Reader (Molecular Devices) was used for measurements at wavelength 562 

nm. Dissolved peptides were stored in -20oC. Each time these peptides were used, we 
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tested the concentrations again in case of peptide degradation, which was observed each 

time we tested.  

 

1.3.3    Bacteria strains and culture 

The two bacteria strains we tested, Pseudomonas aeruginosa (PA) PAO-1 and 

Staphylococcus aureus (SA) UAB637, were provided by the Center for Infectious 

Diseases and Vaccinology (CIDV), the Biodesign Institute at Arizona State University 

(ASU). MH (Mueller-Hinton) medium was used as the standard medium for both bacteria 

growth and antibiotic susceptibility test. Typically MH contains 30% beef infusion, 1.75% 

casein hydrolysate, 0.15% starch and 1.7% agar (PH adjusted to neutral at 25%). The 

working colony plates were prepared directly from the -80oC degree original strain stock. 

Colony forming units at OD=0.5 were measured each time while making new working 

plates to make sure the bacteria number was the same for every experiment. For both SA 

and PA, we use the bacteria at the index growth period. A single colony was incubated 

with 5mL MH medium in a 50 mL tube (RPM250, 37oC degree) for 6~7 hours. 100uL 

bacteria culture was measured by spectrometer at 600nm to make the OD=0.5. The final 

concentrations of the working culture was set as 2x105CFU/mL.      

 

1.3.4    Synbody and synbody effectors synthesis (HPLC,MALDI, Silver stain) 

Synbody and synbody effectors are the conjugation of multiple peptides with 

linker molecules. The chemistry used for synbody synthesis is different based on 

different linkers applied. Synbody synthesis includes four steps, which are listed below.  
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Synbody synthesis: Peptide and scaffold are mixed together as a ratio of 2:1 and reacted 

in the solution phase (V[water]:V[ACN]=7:3; PH=6.5~7.5 adjusted by TEA); The  

mixture is incubated in room temp for at least 3 hours.  

MALDI check: The raw products need to be checked by MALDI first. Samples are 

diluted in the MALDI matrix (100ul volume α-Cyano-4-hydroxycinnamic acid; 166ul 

water 2X; 166ul ACN; 40ul 10% TFA in water) and spotted on the MALDI MSP 96 

target polished steel. MALDI is measured by MicroFlex and the results are analyzed by 

flexAnalysis.  

HPLC primary check: Purification of the raw products is done by the HPLC Agilent 

Technology 1260 series. Briefly speaking, the raw products are mixed together with 

buffer A (0.1% TFA) and buffer B (90% CAN and 0.1% TFA) as the ratio 1:1:1, and the 

mixture is ran on the HPLC, the correct peaks are collected and combined together in a 

50mL tube, finally the solution containing the purified products is lyophilized by the 

Labconco Freezone18 Dry system overnight.    

Silver stain check: All the synbodies and synbody effectors were finally checked by 

silver stain. Pierce® Silver Stain Kit (Thermo #24612) was used for this purpose. The 

samples are firstly ran on Invitrogen NuPAGE® Novex® 4-12% Bis-Tris Gel. After 

running, the gel is fixed, sensitized, stained, and developed. The stain results were 

visualized by ChemiDoc™ XRS+ System 

. 

1.3.5    Broth microdilution susceptibility test 

For the susceptibility assays, both PA and SA were grown in the Fluka-Mueller 

Hinton Broth/ Agar at 37℃. Selected peptides were measured twice by the BCA Protein 
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Assay Kit from Thermo Scientific Pierce to make sure the correct test concentrations. 

The MIC assay was slightly modified from the Clinical and Laboratory Standard15. 

~2x105 bacteria were incubated with peptides in a total volume 100μL (90uL bacteria 

culture with 10uL peptide in PBS) aerobically at 35±2°C for 18h. The endpoint reading 

was performed by a microplate ELISA reader (Molecular Devices SpectraMax M5) at 

600nm absorbance. CORNING 3641 96-well flat bottom nonbinding surface polystyrene 

ELISA plates were used to reduce the peptide attachment. The standard definition of 

Minimum Inhibition Concentration (MIC) is the lowest concentration of an antibiotic 

which can inhibit the visible growth of certain bacteria. It is notable that there is not a 

quantitative criteria for measuring the “visible growth”. In order to make our tests 

comparable with each other, we defined the MIC as the turning point below 20% Relative 

Growth (RG%: compared with the non-treated control group).      

 

1.3.6    Hemolytic activity assay 

The hemolytic activity assay on the mouse red blood cells used here was adapted 

from Shin et al16. Briefly, female BALB/C mice blood cells were used. Fresh 

erythrocytes were rinsed three times with PBS (35 nM phosphate buffer, 150 mM 

NaCl ,pH 7.0), centrifuged for 15min at 900g and then plated in 96-well microtiter plates 

(Nunc). The plates were incubated 1h at 37 ℃ with 100μL of the peptide solution and 

then centrifuged 1000g for 5 minutes. 100μL aliquots of the supernatant were transferred 

to a new 96-well plate for reading using a microplate ELISA reader (Molecular Devices 

SpectraMax M5) at 414nm absorbance. The % hemolysis was calculated by the formula: 

[(A414 in the peptide solution – A414 in PBS)/(A414 in 0.1% Triton-X 100 – A414 in 
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PBS)] x 100. PBS and 0.1%Triton-X100 were used as the negative and positive control, 

respectively. It’s notable that the incubation time of the hemolytic assay is very sensitive, 

when measuring lots of samples simultaneously at least two people are needed to make 

precise time control.    

 

1.3.7    Synbody effectors: mouse immunization and antibody titer determination 

In order to test our synbody effectors in vitro, we produced the mouse anti-serum 

against the immunomodulatory peptide arms of the synbody effectors. 

Conjugation of peptide to preactivated KLH: The preactivated KLH (Thermo 

SCIENTIFIC Imject Maleimide Activated mcKLH) is resuspended in PBS/EDTA to get 

10.0mg/ml; 2mg/100ul peptide is mixed up with 200ul activated KLH gently and 

incubated at room temperature for 4 hours; After Pre-washing the slide-a-lyzers in PBS, 

the mixture is  loaded into the slide-a-lyzers and dialyze for four PBS changes (the first 

one is overnight, the next three for one hour each); Remove from slide-a-lyzer and adjust 

buffer to 10% glycerol.  

Immunization: the peptides conjugated to KLH were mixed 1:1 with pierce Imject Alum. 

250ul of 1mg/ml peptide in PBS were mixed with 250ul Imject Alum for ~1 hour. 50ug 

per mouse was injected in a total volume of 100ul. Mouse: BALB/c mice from Charles 

River DOB: 19 JAN 2012 female. All mice were injected three times in total, and 

checked bleed periodically.  

Mouse IgG endpoint ELISA: Antigen plate preparation: antigens are diluted at 1.0ug/ml 

in carbonate/bicarbonate buffer (0.2M Na2CO3 and 0.2M NaHCO3) and dispensed 100ul 

into each well of Nunc Maxisorp flat bottom plate (100ng/well). Incubate at 4 degree 
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overnight. ELISA: The antigen plates are blocked by 5% nonfat milk in TBST for 

blocking 1 hour at 37 degree; serially diluted sera samples are added as primary across 

plate to make the dilution: 1:400, 1:800, 1:1600 etc; the plates are then incubated at 37 

degree for one hour and washed three times with TBST; Finally the ELISA results are 

colored by the HRP-ABTS reaction (1.0% SDS as the terminator), and measured under 

405nM absorbance.        

 

1.3.8    Peptide sub-array binding test  

We used the microarray platform to test the binding between selected peptides 

and pathogen cells. Peptide sub-array preparation: All the sub-arrays were prepared in 

our lab. Polymer slides were made from glass slides. Briefly the procedure was to. 

1)clean the glass slides with piranha solution; 2). incubate in silanization solution (1% 3-

Glycidoxypropyl-trimethoxysilane in anhydrous toluene) for 30min at 40 degree; 30 

Wash with toluene three times and dry in oven for 40 min 120 degree; 4) Incubate in 

coating solution (6mg/ml polyethylenimine branched in 10% ethanol) for 1hr, wash and 

dry; 5) Apply 200ul crosslinker solution (10mM SMCC in 1*PBS with 1mM EDTA, 

PH7.2) on the surface and incubate for 1hr, wash and dry. The final spotting 

concentration for each peptide is 1 mg/ml. Spotting buffer: 40mM HEPES, 20nM TCEP 

and 10mM EDTA. The selected peptides were printed automatically by a Nanoprinter 60. 

Pathogen cell binding assay: Staphylococcus aureus (SA) UAB637 was used at OD 

value 0.5. 10mg cells were washed by PBS two times and dispensed into three parts: 8mg 

for control; 1mg for labeling with AF647 (5ul in 500ul 1*?PBS); 1mg for labeling with 

CTO (10mM in DMSO, diluted to 10uM). Cells were incubated with dyes for 1hr at 37 
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degree, then washed and centrifuged at 5000g for 5mins. The final hybridization solution 

contained 1mg cells, 0.03% sodium azide, 3% BSA and 0.05% tween20. Previously 

prepared polymer slides were prewashed with TFA, DMF, ethanol and water sequentially. 

Then the slides were blocked with blocking buffer (3%BSA, 0.05%twee n20, 

0.134mg/ml mercaptohexanol, 1*TBS) for 1hr at RT in humidity chamber. The slides 

incubated with the prepared cells using the Agilent hybridization chamber system for 1hr 

at 37oC degree. The slides were washed and then scanned in an Aglient scanner at 555nm 

and 647nm. 

 

1.3.9    Minimum Bactericidal Concentration (MBC) Test 

The minimum bactericidal concentration test was modified from Nakatsuji’s 

protocol17. The incubation plates were prepared as 100ul/well, containing 10ul testing 

peptides (400uM, 200uM, 100uM, 50uM, 25uM and 125uM) and 90ul 107CFU/ml 

Staphylococcus aureus (SA) UAB637 in PBS. It’s notable that in order to prevent the 

bacteria growth during the incubation period, the incubation solution is PBS rather than 

medium. After incubation at 37oC for 5 hours, the mixture of peptide and bacteria of each 

well was diluted into 15~30 CFU/15 ul with medium, and then spotted on CORNING 

low profile square BioAssay large dishes. PBS containing no bacteria was spotted as the 

negative control, bacteria incubated with kanamycin was spotted as the positive control.  

 

1.3.10    Macrophage absorption assay 

 The concept of the macrophage absorption assay is to incubate macrophage with 

certain bacteria cells and then separate the bacteria cells remaining in the solution from 
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those absorbed by the macrophage. This assay was used to measure the in vitro viability 

of macrophage phagocytosis18,19.  

Macrophage: the macrophage strain we used here was J774A.1 ATCC. It is a mouse 

source macrophage which is active in antibody dependent phagocytosis. Cells were 

grown in ATCC-formulated Dulbecco’s Modified Eagle’s Medium with 10% FBS at 37 

degree, 5% CO2. The subcultivation ratio is 1:5. The best cell density for the macrophage 

absorption assay was determined using a Roche Cell Proliferation Kit II (XTT). Note: the 

macrophage growth time for XTT test should be the same as that to be used in the 

macrophage absorption assay, which is 12 hours here. 

Macrophage absorption assay: Since this assay contains contents of both mammalian 

cells and bacteria cells, it’s important to separate the procedures into two parts. PART A 

(tissue culture room): Macrophage cell culturing: Cells are seeded at 5x104 per well 

(100ul) in a 96-well tissue culture plate, overnight incubation. Media is removed and the 

cellswashed with PBS three times. Plate control: no macrophage seeded wells. PART B 

(biosafety hood outside): Bacteria cells were cultured to OD=0.5 (1.2x109 CFU/ml), 

make dilutions in HBSS/HBSS+10%NMS (normal mouse serum, fresh)/ HBSS+synbody 

effectors. Bacteria were added at multiplicity of infection (MOI) of 10(5x105) volume 

100ul. Incubate in 37oC, 5% CO2, 30mins. Each well gently was mixed gentlyand the 

supernatants removed. The plate was washed with PBS 3 times. 0.1% cold sodium 

deoxycholate in PBS 100ul was added to each well for 5mins on ice. Each well was 

mixed thoroughly. 50ul was taken into 450ul PBS to make 10 times dilution. 50ul of the 

dilution was spread on MH agar plates and incubated at 37oC overnight. The final count 

on the plates will be the number of bacteria cells absorbed by macrophage.          
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1.4       Results  

1.4.1    Characterization of the original lead antimicrobial peptide RWRR 

Previously, we have reported using a 10,000 random peptide microarray 

technique to screen for efficient bacteria-binding and lytic peptides. One of the peptides 

we selected showed a good array pattern as a bacteria lytic peptide (CTO-AF+; Bacteria 

membrane signal: Cell Tracker Orange and nucleus acid dye AF555). The sequence of 

the original peptide is [Ace]RWRRHKHFKRPHRKHKR-GSC[NH2] (Molecular 

weight=2688.169), the last three amino acids GSC is a general linker we used to connect 

with the microarray surface. This lead peptide contains 30% arginine, 20% lysine and 20% 

histidine with a high net charge of +14. The total hydrophobic ratio is 15% and the 

protein-binding potential (Boman index) is 6.31kcal/mol. It is notable that this is a linear 

peptide without any α -helix structures (predicted by using the AGADIR 

program20, %helicity/residue=0.37% at pH 7, 278o K and an ionic strength of 0.1. A). 

According to the classification by Yechiel Shai, our lead peptide belongs to the AMPs 

enriched with one or two amino acids (Pro-Arg, Trp or His) and without Cys. Other 

examples are PR-39, Indolicidin and Histatin 121. As a starting point of our mutant library 

creation, we tested this lead peptide for its antimicrobial effects on both S.aureus(SA) 

and P.aeruginosa(PA).  
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Standard broth microdilution based antimicrobial susceptibility test (modified 

from the CLSI standards) was applied for validating the antimicrobial potency of our 

RWRR lead peptide (Figure 1.2). The lead peptide showed a distinct selectivity between 

SA(MIC=7.5μM) and PA(MIC=40μM). The dramatic shift observed from the minimum 

relative growth to the maximum relative growth indicated a membranlytic antimicrobial 

peptide mode of action22 (Figure 1.2A). The time-based killing assay also showed a 

complete inhibition against SA over 22 hours above 5μM (Figure 1.2B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. In vitro antimicrobial effects of the lead RWRR peptide against S. 

aureus (SA) and P. aeruginosa (PA) A. Broth microdilution based antimicrobial 

susceptibility test (modified from the CLSI standards) for the lead RWRR peptide. Both 

SA and PA were adjusted to ~2x105 CFU/mL at the starting point, the end point was read 

as OD600 value after 18 hours incubation with the peptide series dilutions. Results are 

shown as the relative growth % compared with the non-peptide treated control. B. S. 

aureus growth over time with the lead peptide treatments. The SA starting concentration 

was ~2x105 CFU/mL. This result corroborates with the broth microdilution in A.       

 



17 

1.4.2    Lead peptide mutant library creation and screening 

We created a single mutant peptide library containing 304 RWRR single amino 

acid variants. The first 17 amino acids of the lead peptide were substituted by 19 different 

amino acids (A, R, N, D, d-K, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V), except for 

cysteine. The N terminal and C terminal of the peptide were acetylated and amidated, 

respectively. Based on the antimicrobial susceptibility test of the lead peptide, we chose 

5μM and 15μM as the starting screening concentration for SA and PA, respectively and 

18 hours as the incubation time. The hemolytic assay was performed at peptide 

concentration of 50μM (Figure 1.3). 

For the bacteria inhibition assays, we defined the fold change value FCSA and 

FCPA as RG%(Lead)/RG%(Mut) (RG%: bacteria relative growth % compared with non-

peptide treated control). Among the 301 single peptide mutants we tested (3 had 

insufficient sample amounts), 23 mutants showed improved inhibitory effects on SA 

(FCSA>1.5) with the most significant FCSA=17.45 (MUT122); while 84 mutants showed 

significant decreased potency against SA (FCSA<0.08). In comparison, 9 mutants had 

FCPA>1.5 with the highest FCPA=10.95 (MUT114); while 19 mutants had FCPA<0.08. It’s 

notable that although the fold changes here were not the fold changes of minimum 

inhibitory concentration (MIC), they indicated the correct trends of improvement. We 

also defined  
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A                                                                            B 

                C 

Figure 1.3 Fold-change heatmap for the 

single mutant peptide library. A.B. The 

peptide mutant library inhibition assay 

against S.aureus and P.aeruginosa, 

respectively. The inhibition assays were 

performed at peptide concentration 5μM 

and 15μM for S.aureus and P.aeruginosa, 

respectively. Endpoint measurement after 

18h incubation at 37°C. The relative fold-

change to the lead peptide was calculated 

as RG%(Lead)/RG%(Mut), RG%: bacteria 

relative growth% compared with non-

peptide treated control. The higher the 

number means the better inhibitory effect. 

C. The peptide mutant library hemolytic 

activity assay. The fold-change was determined by the formula: 

Hemolysis%(Lead)/Hemolysis%(Mut), Zero and 100% hemolysis were determined in 

PBS and 0.1%Triton-X 100; assays were performed at peptide concentration 50uM. The 

higher the number means the better improvement on the hemolytic activity. Single 

Mutant nomenclature: “R3P” represents the arginine in the position 3 (position 1-16 from 

the left N-terminal to the right C-terminal) is substituted by a proline. Heatmap were 

created by MATLAB, the white features indicate the same amino acid substitutes or 

missing data.       
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the fold change in hemolytic assay FChemo as Hemolysis%(Lead)/Hemolysis%(Mut) 

(Zero and 100% hemolysis were determined in PBS and 0.1%Triton-X 100). 89 out of 

301 mutants we tested showed at least twice less hemolysis than the lead peptide 

(FChemo>2).       

A close scrutiny into these heat maps revealed some hot substitution positions/ 

amino acids (Figure 1.4). For example, 31.6% substitutions in position 6 (lysine) 

improved the peptide’s anti-PA potency; 63.2% substitutions in position 13 (arginine) 

and 12 (histidine) decreased the hemolytic effects by at least two-folds. 27.3% and 45.5% 

arginine replacement improved the peptide’s anti-SA and anti-PA potency, respectively. 

After all, it seems that the net charge impacts both the antimicrobial effects and the 

hemolytic activity.     

                 A 
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B 

C 

 

Figure 1.4. Statistics of fold-change heatmap for the single mutant peptide library. 

Green color   represents the decreased hemolysis fold change (A), improved inhibitory 

fold change on SA (B) and PA (C). Empty positions are the same amino acid substitutes; 

Red colors are missing data.  

 

1.4.3    Selected single substituted peptides showed changed specificity against 

Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA) 

The next step we selected several promising single substituted peptides based on 

three different criteria (Figure 1.5). These peptides were tested for their minimal 

inhibitory concentrations (MICs). We noticed that most of the selected peptides showed 
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the consistent trend of MIC change compared with the initial library screening results, 

and the MIC change against PA is more significant than that against SA (Table 1.1, 

Figure 1.6). We also defined the peptide specificity against SA and PA as 

MIC(PA)/MIC(SA), and we showed that single amino acid substitutions can move the 

specificity value from the original 5.33 to a range of 1.5 (towards PA)~>6.67(towards SA) 

(Figure 1.3, Table 1.1). Interestingly, variants with the same position substituted by 

different amino acids had similar MIC and specificity shift, as we observed for 

MUT152(F8K); MUT153(F8M); MUT155(F8P); MUT157(F8T) and MUT110(K6I); 

MUT114(K6F); MUT120(K6V).  
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Figure 1.5. Different criteria used for selecting the single mutants. We chose the 

single mutants based on the improvement of inhibition against SA and hemolysis (A); the 

improvement of inhibition against PA and hemolysis (B); the change of inhibition 

selectivity between SA and PA (C).    
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Test Peptides S.aureus P.aeruginosa Specificity  

  MIC1/2(uM)
a
 MIC(uM) MIC1/2(uM) MIC(uM) MIC(PA)/MIC(SA) 

ORI 6 7.5 17.5 40 5.33  

Single Mutants           

MUT83(H5N) 5.5 6 22.5 >40 >6.67 

MUT152(F8K) 6.5 7.5 30 >40 >5.33 

MUT153(F8M) 6.5 7.5 30 >40 >5.33 

MUT155(F8P) 6.5 7.5 40 >40 >5.33 

MUT157(F8T) 6.5 7.5 35 40 5.33  

MUT110(K6I) 8.5 10 12.5 15 1.50  

MUT114(K6F) 8.5 10 12.5 17.5 1.75  

MUT120(K6V) 8.5 10 12.5 17.5 1.75  

MUT165(K9d-K) 6.5 10 12.5 15 1.50  

MUT22(W2R) 5 7.5 12.5 20 2.67  

MUT222(H12R) 5.5 6 12.5 17.5 2.92  

MUT290(H15I) 5.5 6 15 40 6.67  

Double Mutants           

MUT157&83 2.75 5 >40 >40 >8.00 

MUT110&165 5 6 8.5 10 1.67  

      

Test Peptides S.aureus P.aeruginosa Specificity  

  MIC1/2(uM) MIC(uM) MIC1/2(uM) MIC(uM) MIC(PA)/MIC(SA) 

ORI*b 2.75 5 <5 7.5 1.50  

Single Mutants           

MUT83*(H5N) 5.5 7.5 11 12.5 1.67  

MUT153*(F8M) 2.75 5 7.5 10 2.00  

MUT155*(F8P) 2.5 5 7.5 10 2.00  

MUT157*(F8T) 2.75 5 8.5 17.5 3.50  

MUT110*(K6I) 6 10 6.5 7.5 0.75  

MUT114*(K6F) 2.75 5 <5 <5 <1 

MUT120*(K6V) 2.75 5 <5 7.5 1.50  

MUT165*(K9d-K) 2.75 5 <5 7.5 1.50  

MUT22*(W2R) 2.75 5 <5 <5 <1 

MUT222*(H12R) 2.75 5 7.5 7.5 1.50  

            

Double Mutants           

MUT22&222* <2.5 2.5 <5 <5 <2 

MUT83&153* 7.5 12.5 17.5 25 2.00  

MUT165&120* 2.75 5 <5 <5 <1 
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a.MIC1/2 and MIC: inhibiting over 50% and 90% of the overnight bacteria growth, 

respectively. Determined by the concentration based inhibitory curves 

b.the star symbol (*) represents the peptide N-[Ace] terminal and C-[NH2] terminal were 

deprotected to N-[H],C-[OH] 

Table 1.1 Selected peptide mutants’ minimum inhibitory concentration (MIC) 

comparison. The MIC endpoints and MIC1/2 points were determined by the broth 

microdilution susceptibility test with different peptide dilution series (S.aureus: 25μM, 

20μM, 17.5μM, 15μM, 12.5μM, 10μM, 7.5μM, 6μM, 5μM, 2.5μM, 1.25μM; 

P.aeruginosa: 40μM, 30μM, 25μM, 20μM, 17.5μM, 15μM, 12.5μM, 10μM, 7.5μM, 

5μM). In general, the MIC of PA and the specificity changed more significantly than the 

MIC of SA by mutation.    

 

1.4.4    Selected single substituted peptides showed changed specificity against 

Pseudomonas 

In one of our tests, we synthesized the selected peptides without N and C terminal 

protection (previous peptides had [ACE] group at the N terminal and [NH2] group at the 

C terminal). All the peptides showed undifferentiated MIC improvement against both SA 

and PA, especially PA (Table 1.1). The possible reason was the arginine at the N terminal 

plays an important role while it is deprotected in the solution.   

 

1.4.5          There is an additive effect of double substituted peptide variants 

To better understand the substitution-function relationship, we synthesized several 

double substituted peptide variants based on the single peptide variants we selected in 4.3. 

Previous work using this approach for protein targets had demonstrated additive 

improvements (REF). On the one side, we showed that by combining two defective 

single variants together, there was an even worse performance (Figure 1.7 A,B). This 

could be explained as the loss of functional structure. On the other side, two single 

variants with improved potency also had additive improvement (Figure 1.7C,D). For 
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example, the MUT22*(W2R) + MUT222*(H12R) exhibited the best MIC we observed 

(2.5μM) against SA, which might be caused by the increase of arginine %23. Importantly, 

all the screening and selection processes were performed without any knowledge of the 

peptide structures. This would be a benefit for us developing the MOVE THIS 

UPsynthetic antimicrobial peptides for unknown bacteria targets. 

Figure 1.6. Selected single mutant peptides show distinct specificities against 

S.aureus(SA) and P.aeruginosa(PA) by the broth microdilution susceptibility test. 

MUT: peptide mutant; ORI: lead peptide; RG%: bacteria relative growth% compared 

with non-peptide treated control; [C]uM: peptide concentration. A. MUT155(F8P) shows 

improved specificity to SA, MUT153(F8M) and MUT157(F8T) show the similar change. 
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B. MUT114(K6F) shows improved specificity to PA, MUT110(K6I) and MUT120(K6V) 

show the similar change. C. MUT83(H5N) shows improved specificity to SA. D. 

MUT165(K9d-K) shows increased specificity to PA. E. MUT290(H15I) shows slight 

improvement for both SA and PA but no specificity change. F. MUT66(R4E) shows 

significant decrease for both SA and PA, which indicates the importance of arginine in 

position 4.  

 

 

* represents the peptide N-[Ace] terminal and C-[NH2] terminal deprotected to N-[H],C-

[OH] 

Figure 1.7. Selected double mutant peptides show additive effects on their 

antimicrobial potency. MUT: peptide mutant; ORI: lead peptide; RG%: bacteria relative 

growth% compared with non-peptide treated control; [C]uM: peptide concentration. A. 

MUT157*&83* shows additive decreased potency against PA, it also shows slight 

additive improved potency against SA (see Table1). B. MUT83&153* shows additive 

decreased potency against PA. C. MUT22*&222* shows additive improved potency 

against SA. D. MUT110&165 shows additive improved potency against PA.         
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1.4.6          Synbodies made from the single variants exhibit great potency against SA 

Previously, our group had shown that the antimicrobial effect of synbody 

(combination of one lytic peptide with one binding peptide) was much better than that of 

a single lytic peptide24. Here we constructed several synbodies to test this notion. As 

shown in Figure 1.8, the B-B synbody control (B represents SA binding peptide without 

any observed inhibitory effects, B: DRIFHKMQHKPYKIKKRGSC) has no inhibitory 

effects at uM level, however, both the combination of the binding peptide with one lytic 

peptide or the combination of two lytic peptides show strong inhibitory effects at the nM 

level. The best of them, 152-152, shows the MIC against SA at 200nM. It’s noticeable 

that kanamycin can interact with the 30S subunit of prokaryotic ribosomes, which can 

indirectly inhibit the protein translation and kill the bacteria. This mechanism is different 

than the antimicrobial peptides, which can cause the membranlytic effects and directly 

kill the bacteria. This difference might explain why all the constructed synbodies work 

better than the kanamycin positive control. We also tried to test the influence of synbody 

scaffolds on its antimicrobial effect. We observed a slightly better performance by using 

the MAP scaffold than the two GP scaffolds.    
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Figure 1.8. Constructed synbodies show significant improvements of antimicrobial 

effects against SA. Three peptides were used for the synthesis of synbodies: B: 

DRIFHKMQHKPYKIKKRGSC was selected for its high binding to SA on the peptide 

microarray, but no inhibitory effect on SA. 22(W2R) and 152(F8K) were two lytic 

peptides (shown in Table 1.1). The structures of two scaffolds MAP and GP were shown 

below.    

 

1.4.7        The selection/verification of the synbody effectors binding arm and modulatory 

arm 

As demonstrated in 4.6, combining individual peptides into a synbody is a 

promising strategy of creating new antimicrobial agent. The concept of a traditional 

synbody contains one binding peptide, which is used for increase the affinity to pathogen 

cells, and one lytic peptide, which is used for killing the bacteria. However, the existence 

of lytic peptide has many drawbacks, including the possible high toxicity. A new design 

of a synbody effector does not include the lytic peptide; instead, we add a modulatory 

arm to two binding peptides (Figure 1.9 A,B).  

 
 

Figure 1.9. Synbody effector: a new concept of performing antimicrobial function. 

The traditional and new idea are shown as A and B. The deletion of lytic arm from the 

traditional design might have several advantages. The modulatory arm could be any 

molecule which can recruit the host self-immunity. One classic example is the Antibody 

Recruiting Molecules (ARMs), as shown in C. It can recruit self antibody to exert either 

Antibody-Dependent Cell-mediated Cytotoxicity (ADCC) or Complement Dependent 

Cytotoxicity (CDC).      
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One significant feature for cell-extrinsic recognition of pathogens by innate 

immune cells, for example macrophage, is the physical co-occurrence of the antigen and 

a PAMP (pathogen-associated molecular patterns) within the same particle. This kind of 

association ensures the efficient activation of adaptive immunity by the innate immune 

system. The introduction of a modulatory arm is to mark the pathogens for the innate 

immune cells and boost the recognition between them. 

Different kinds of modulatory arms could be used for this purpose. 1. TLR (Toll-

Like Receptor) peptide binders. Most of them are lipopeptides with diacylated or 

triacylated lipid modification of the N-terimal cysteine residue. TLR1/2 and TLR2/6 are 

their major receptors. An example is lipoprotein FSL-1-TLR6/2 agonist 

(Pam2CGDPKHPKSF). 2. N-formyl peptides are important chemotactic factors which 

are produced by pathogens. They can bind with N-formyl peptide receptor family on 

innate immune cells, namely FPR (N-formyl peptide receptor), FPRL1 (FPR like-1) and 

FPRL2 (FPR like-2). Host-derived antimicrobial peptide LL-37 can also bind with FPR. 

However, LL-37 is too complex to synthesize. There are already some reported N-formyl 

peptides (both natural and synthetic). 3. Antibody Recruiting Molecules (ARMs). ARMs 

are kinds of molecules that can act as the antibody Fc part. They will recruit host self 

antibodies and utilize these antibodies to exert both ADCC and CDC functions (Figure 

1.9C). Here, we constructed the NO.3 as a demonstration of the idea.  

In order to construct and test a synbody effector shown in Figure 9C, several 

components are needed: binding arm (can bind with SA, but not inhibit); modulatory arm 

(cannot bind with nor inhibit SA, high immunogenicity); antibody which can bind with 
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the modulatory arm; macrophages which are sensitive to antibody Fc part. According to 

our previous screening, peptide NO.27 (CSGPHPQYRHGPKHYIRTQM) was used as 

the bacteria binding arm; peptides NO.9 (CSGALTVHKQCHKLGGTVLP), NO.10 

(CSGVGWHKSLQQQGPELPPQ) and NO.34 (CSGPHFMFEPSVVRPNYKQA) were 

chosen as the modulatory arm; peptide ORI (RWRRHKHFKRPHRKHKRGSC) as the 

positive control. Note: the peptide numbers used here are not from the substitution library 

creation. 

 
Figure 1.10. Synbody effector binding test. Peptide NO.9, NO.10, NO.34. NO.27. were 

printed on custom polymer microarray and tested for their bacteria binding capacity.  

 

As shown in Figure 1.10, testing peptides were printed on custom slides as 

described in the method part. SA was screened on the slides as the pathogen target. The 

result showed significantly that the NO.27 (the binding arm) bind with the pathogen cells, 

as well as the positive control (ORI). However, the other three peptides (NO.9 NO.10 

NO.34) were not able to bind with the bacteria at all. A 20 fold unlabeled bacteria was 

also given as a competitive control, which demonstrated the binding specificity.    
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In the next step, we showed that all the selected peptides had no significant 

inhibitory influence on SA (Figure 1.11), which was good, since it would not be able to 

interfere with the following macrophage absorption assay. It is notable that in our MBC 

test, the ORI showed stronger inhibitory effect against SA than the positive control 

kanamycin, which corroborated with the fact we observed previously in our synbody test 

(4.6). Immunized mice also showed significant IgG response against the selected 

modulatory arms NO9, NO10, NO34 (Figure 1.12). 

 

Figure 1.11. Synbody effector antimicrobial test. Peptide NO.9, NO.10, NO.34. NO.27. 

were tested for their anti-SA effects. Both the MBC test (left) and the MIC test (right) 

showed no significant anti-SA effects of selected peptides. 
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1.4.8        Chemical synthesis and purification of synbody effectors  

The protocol of synbody effector synthesis is listed in the method part. In general, 

we firstly constructed the binding part of the synbody effector, which consists of two 

peptide NO.27 and a GP2 scaffold. Since the GP2 scaffold is protected by a Cys-StBu 

group, IN the next step we deprotected its Cys to make it activated. In the third step, we 

connected this binding part with the selected modulatory peptide: NO10, NO34 with a 

maleimide crosslinker. Finally, we purified the product by HPLC and verified it by both 

mass spectrometer and silver stain. Figure 1.13 shows the structure of the synbody 

effector and final synthesis reports. As shown in the silver stain, our final product 

contained a significant amount of synbody effectors target, though there also existed non-

reacted binding part (27-27). The final products were lyophilized and stored at minus 20 

degree. The proper amount of product was weighted out and used for test each time.    
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Figure 1.12. Synbody effector modulatory arms IgG end point titration. 
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Figure 1.13. Synbody effector synthesis and purification. The structures of synbody 

effectors (top left) contains the bacteria binding part and the antibody recruiting part. The 

length of maleimide crosslinker is set up as 14.7 Ao. The final product was tested by both 

silver stain (top right) and HPLC (bot). For silver stain: Marker SeeBlue; 1.27-27(6ug); 

2.27-27-34(6ug); 3.27-27-10(6ug); 4.27-27(15ug); 5.27-27-34(15ug); 6.27-27-10(15ug). 

For HPLC: the target synbodies were concentrated in the second peak with the molecule 

weight 9312 and 9421. The final product also contained the side products of single (MW 

2189 and 2295) and double peptides (MW 4681), which could not be separated by HPLC.    

 

1.4.9        Synbody effectors can increase the macrophage absorption of bacteria 

 

We establish a macrophage absorption array for testing the in vitro performance 

of the constructed synbody effectors, which are suppose to be able to recruit the antibody 

and increase the macrophage absorption (not distinguishing between the engulfment and 
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attachment). Our results showed that synbody effectors can increase the macrophage 

absorption of SA regardless of the interference of complements in serum. Our result also 

indicated the possible enhancement of CDC by synbody effectors. 
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gureFigure 1.14. Synbody effector macrophage absorption assay. All assays: 

[C]SYN10=40uM. A. Correct combination “SYN10+Serum10” increases the 

macrophage adhesion/ phagocytosis; B,C,D. The possible interference by complements in 

the serum. E,F. The enhancement of CDC by synbody effecters. G. The starting 

macrophage density was determined as 50K/well (red circle) by the XTT test. SYN10: 

synbody effecter with modulatory arm peptide NO.10; Serum10: mouse serum 

immunized by peptide NO.10; IN-: heat (56 ℃) complement inactivated serum; Fresh 

serum: non-immunized mouse serum; Relative bacteria counting: the relative colony 

plate counting normalized by the HBSS control.  

 

As shown in Figure 1.14A, the correct combination of synbody effector NO.10 

and its corresponding serum NO.10 gave us the highest macrophage absorption. 

Complement in the serum played a complex role in this experiment: on the one hand, it 

could increase the macrophage assay result by its opsonization function; on the other 

hand, it could also decrease the assay result by killing the bacteria cells (Alternative 

Pathway and classic pathway). The results in Figure 1.14B and Figure 1.14C indicated 

that the synbody effector might trigger the complement classic pathway and decrease the 

assay result. In order to eliminate the complement influence, we used heat (56 ℃) to 

inactivate the complements in the serum. Figure 1.14D shows that the synbody effector 

treated group significantly increased the macrophage absorption. Figure 1.14E,F shows 

the total bacteria number of SYN10+1%Serum10 is lower than that of SYN10+IN-

1%Serum10. This probably suggests that the complement classic pathway helped kill 

more bacteria cells.         

 

1.4.10        Use 10K Ver.3 microarray to select the pre-existing Ab peptide binders 

In our previous in vitro assay, we established an artificial test system including 

the modulatory peptide and the corresponding antibody produced against it. Here we 

show that without the pre-immunization, the antibodies in non-immunized mouse serum 
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are also able to bind with certain random peptide targets on microarray (Figure 1.15). In 

order to pick up the peptide binders caused mainly by affinity rather than avidity, that is 

the spot signal intensity is caused by the sum of individual peptide-antibody bonding, but 

not the combined synergistic strength of all the peptides in the same spot, we used the 

NSB27 slide, which was designed to have 9nm distance between each peptide in one spot. 

Two incubation times were tested, 1 hour and 16 hours. As we observed, 16 hours 

incubation displayed a much wider dynamic range than 1 hour incubation, which means 

the binding signal in 1 hour is mainly caused by avidity rather than affinity. The real 

affinity pairs stand out when the incubation time became longer (16h). Some top 

examples are shown here. It is notable that all peptides on 10K Ver 3 microarray contain 

D-amino acids. In the future, we could choose some of them as the candidates of synbody 

modulatory arm.          
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Figure 1.15. 10K NSB 27 Ver.3 microarray screening for a normal mouse serum 

pool. A pool of ten naïve BALB/c mouse serum samples was screened on the 10K NSB 

27 Ver.3 microarray. A: Compared with the non-serum control, both 1 hour and 16 hour 

incubation showed significant antibody binding signal. NMS: naïve mouse serum; B: Left: 

the top 154 intensity spots with 16 hour incubation. Right: the corresponding spots 

intensity with 1 hour incubation.     

 

 

1.5       Discussions 

Antimicrobial peptide (AMP) represents an old, host native defense mechanism, 

which exists in virtually all kinds of multicellular organisms. Generally speaking, natural 

AMPs derived mostly from invertebrates and plants have the advantages: wide spectrum 

antimicrobial capacity, less bacteria-resistance occurrence chance and possible 

immunomodulatory effects. However, the disadvantages such as low specificity, relative 

high hemolytic activity and high discovery costs of synthesis and screening become the 

hurdles of transferring them into therapeutically valuable agents25. Numeral strategies 

have been used to make improvements, for example, rational design of the peptide α

helicity /hydrophobicity /charges26,27; truncation of existing peptide sequences25; 

dendrimeric peptide constructions28.   

Here, we demonstrated that the creation of a peptide single variants library helped 

to improve the synthetic antimicrobial peptide RWRR we generated from our random 

peptide microarray. One of the selected single variants, MUT165(K9d-K) showed 

improved efficacy against PA but not SA. This finding supports the notion that the 

diastereomeric analogs have different impacts on different AMPs21, and it indicates that 

the specific secondary structure-function relationship might be important for some AMPs 

but not the others. The selected single variants were further combined together to make 

either double variants or bivalent synbodies. For the double variants, we have shown the 
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best candidates MUT22&222* with the minimal inhibitory concentration (MIC) of 

2.5μM (SA) and <5μM (PA), which are among the top of previously literature reported 

AMPs29,30.  

Traditionally, people in the field pay more attention to the AMPs ability of 

distinguishing mammalian cells and pathogen cells. Recently, more studies now focus on 

the selectivity within the pathogen cells (bacteria versus fungi27; Gram positive bacteria 

versus Gram negative bacteria21). This is an important issue since broad-spectrum 

antibiotics will more easily give rise to the drug resistance, so it will be best to narrow 

down the peptides’ toxic effect solely on the specific pathogen cells but not the other gut 

flora.   Besides the antimicrobial potency improvements, we also observed that the 

selectivity between SA and PA can be significantly shifted by either single or double 

mutation (the specificity index ranges from 0.75 to >8). It’s noticeable that our lead 

peptide RWRR initially has better inhibitory potency against SA than PA (specificity 

index=5.33), this might explain why there are less changes for SA than PA. We can also 

create the substitution library based on a lead peptide having the same potency versus SA 

and PA (for example, peptide HRPRKKFHKFPRKWRRHGSC has 30μM MIC for both 

SA and PA, unpublished data), in this case, we expect to observe more diverse specificity 

changes.     

On the other hand, we provided the evidence of constructing the synbody effector 

as an antibody recruiting molecule. As shown by our demonstration, the synbody acted as 

a bivalent linker between the pathogen cells and the antibodies, and then the antibody Fc 

part could potentially increase the macrophage phagocytosis. This reminds me of some 

other peptide-based immunomodulators, for example, tuftsin and soymetide-13, which 
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are able to stimulate macrophage and neutrophil phagocytosis, respectively. Conversely, 

a computationally designed peptide from CD47 was recently shown to inhibit phagocytic 

clearance and enhance delivery of nanoparticles31. In the future, it’s valuable to add these 

peptide immunomodulators as part of synbody effector to check the synergetic effect.   

 

Chapter 2 

SERODIAGNOSIS BY IMMUNOSIGNATURE: A MULTIPLEXING TOOL FOR 

MONITORING THE HUMORAL IMMUNE RESPONSE TO DENGUE INFECTION  

2.1       Introduction 

Dengue virus (DENV) is a mosquito-transmitted virus belonging to the genus 

Flavivirus. It is endemic in more than one hundred tropical and subtropical countries 

around the world. Although it has been studied for more than fifty years, currently there 

is no specific treatment or vaccine available for dengue infection or significant strategies 

to control dengue transmission. As the control and eradication strategies of dengue 

mainly rely on rapid and effective laboratory diagnosis, in this chapter we try to use an 

antibody profiling assay, which is based on the 10K random peptide microarray 

technique in our lab, to monitor the humoral immune response of dengue. We showed 

that based on IgG, IgM or IgA immunosignaturing, dengue infected patients can be 

distinguished from healthy individuals, and there’s a potential difference between the 

dengue primary and secondary infection. Furthermore, we can also detect the signature 

differences with some other related arthropod-borne viruses, such as West Nile Virus 

(WNV), and from malaria which confounds existing diagnostics. Finally, we checked the 



43 

possibility to use the 10K microarray, as well as a de novo made NS1 dengue protein 

subarray to differentiate the four dengue serotypes.     

 

2.2       Background and significance 

2.2.1    Dengue and dengue infection 

Dengue is the disease caused by any one of four closely related dengue virus 

subtypes (DENV 1, DENV 2, DENV 3, or DENV 4). It’s one of the most rapidly 

worldwide-spreading arthropod-borne/ mosquito-borne viral infections. During the last 

50 years, the number of impacted districts and infected people increased dramatically. 

According to CDC, about one-third of the world population is currently living in areas at 

risk of dengue (including the South-East Asian Region; Western Pacific Region; Central/ 

South America and African Region). Most reported cases in United State are imported 

from the tropic endemic areas, however, outbreaks were also reported in Hawaii, Texas 

and most recently Florida. Dengue has been included in 2005 World Health Assembly 

resolution as an example of disease that might require a public health emergency of 

international concern beyond national borders32. 

Dengue viruses is a member of small enveloped single-strand RNA(+) flavivirus. 

It’s mostly transmitted by mosquitoes of the genus Aedes. Dengue infections have a wide 

range of clinical outcomes from self-limiting no symptoms to dengue fever to life-

threatening dengue hemorrhagic fever (DHF)/ dengue shock syndrome (DSS) with the 

mortality rate as high as 40%33. A typical severe infection includes the febrile phase 

(Day2-Day7), which is indistinguishable from the other influenza-like illness (ILI); 

critical phase (Day3-Day7) with increased hematocrit and plasma loss; recovery phase32. 



44 

All four human dengue serotypes have the similar clinical manifestations, however, 

there’s no long-term cross protective immunity between each other. What’s even worse, 

the limited cross-reactive immune response to other serotypes increases the risk for 

developing DHF and DSS when the patient gets the secondary infection, a phenomenon 

commonly attributed to antibody dependent enhancement (ADE)34. It’s noticeable that 

there’s no approved vaccine or specific treatment for dengue infection, and little do we 

know about its pathological immune responses in human. 

 

2.2.2    Current dengue diagnosis   

The accurate and efficient laboratory diagnosis of dengue is of great importance 

for clinical concern (early detection), academic research, vaccine development and 

surveillance activities32. An ideal dengue test has the specifications such as “distinguish 

between dengue and other diseases with similar clinical presentations”, “distinguish 

between dengue serotypes”, “distinguish between the primary and secondary 

infection”,etc35.  

Currently used diagnostic methods include traditional viral isolation and 

identification, viral RNA detection by PCR, antigen detection by NS1 assay, 

immunohistochemistry test for infected tissues and serological tests based on either 

hemagglutination-inhibition(HI) or ELISA(IgM/IgG/ IgA). The direct detection of either 

virus or viral antigens usually takes longer time and requires expertise and appropriate 

facilities. Since viral particles and antigens are usually cleared in historic samples, it’s 

also not possible to use the direct methods for measurement. The indirect antibody 

detection techniques, especially the anti-dengue IgM based technique has become the 
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most widely used serologic test, for example the standard MAC (immunoglobulin M 

capture) ELISA assay. Different commercially available anti-DENV IgM tests have quite 

distinct sensitivity and specificity. Their general limitations include the inability to detect 

secondary infection samples with low IgM titers; inability to identify the dengue 

serotypes; potential false positive with other infections caused by antibody cross-

reactivity (such as West Nile virus, St.Louis encephalitis and Malaria36) and potential 

delayed diagnosis (detectable IgM antibody six to ten days after onset37). In order to tell 

different dengue serotypes, RT-PCR is usually used. For example, the CDC DENV-1-4 

Real Time RT-PCR Assay is approved by FDA to test the acute phase dengue infection 

within 5 days, but not those samples taken 5 or more days after the onset of symptoms. 

Another “gold standard” test, Dengue Plaque Reduction Neutralization Test (PRNT), is 

also used to characterize and quantify circulating levels of anti-DENV neutralizing 

antibody (NAb). WHO has already published a guideline for the PRNT test. However, 

PRNT is very labor intensive and therefore not amenable  to be high throughput and large 

scale usage38,39. 

What is more important, none of the methods mentioned above are multiplexing, 

which means the negative result could not be interpreted into other diseases. In order to 

reduce the burden of diagnosis, a multiplexing diagnostic tool is needed especially in the 

areas with the other co-circulating arboviruses. Multiplexed microsphere-based flow 

cytometric assay has the potential to detect multiple viruses simultaneously, for example, 

different influenza viruses40, West Nile virus and St.Louis encephalitis virus41. 

Microarray based techniques, including both DNA microarray, peptide microarray and 

protein microarray are also promising to detect different infectious diseases in parallel, 
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for example the peptide array created by Andresen et al to distinguish closely related 

herpes viruses and hepatitis c virus42 and the proteome array designed to detect different 

infectious gram-negative bacteria43. 

 

2.2.3    10k random peptide microarray and immunosignaturing 

Peptide microarray technology, as one kind of Small Molecule Microarrays 

(SMMs) has been widely used to expand our understanding of humoral immune 

responses to diseases in a high-throughput way44. These attempts include 1.Biomarker 

identification of M.tuberculosis (MTB)45, SARS46,47 and Alzheimer’s disease48; 2.Epitope 

mapping for food allergens, such as those from lentil49 and milk50; 3.Immunodiagnosis of 

Echinococcus Spp.51, Toxoplasma gondii infection52 and HIV53. However, none of the 

microarray platforms designed above is multiplexing, which means it’s impossible to use 

one for testing another. 

Our group has come up with the idea of creating a random peptide microarray as a 

universal diagnostic tool, which is not specifically designed for any pathogens, however, 

is able to generate distinct signal patterns-immunosignatures54 to distinguish different 

kinds of humoral immune responses. The capacity of our array has been tested and 

reported on influenza (mouse)55, valley fever54, Alzheimer’s disease and brain cancer56. 

One general benefit of using peptide-based microarray other than ELISA or a protein-

based microarray is it is more distinguishable signal output42. The output of peptide 

microarray is based on each individual kind of antibody but not the sum of a 

heterogeneous family of antibodies, as in an ELISA. So we expect to tell even subtle 

changes in the whole antibodyome. However, since the peptides we used on the 
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microarray are all 17-mers, it’s quite possible that certain peptides contain more than one 

epitope/ mimotope, thus can bind with different antibodies. 

ELISA and epitope microarraies always contain the real antigens coated for 

detecting the specific antibodies, however, the peptides on the random peptide microarray 

have no intended homology to any specific pathogen antigens, which makes it difficult to 

track back to the real proteome. Currently, we do not have a good strategy to decipher the 

information on 10K microarray, due to its relatively low resolution.  

 

2.3       Materials and methods 

2.3.1    Serum sources: dengue, West Nile Virus and Malaria 

Dengue infected patient sera samples tested here are from several different 

sources. One is the PVD201 (Seracare, 20 dengue samples plus 1 normal control, it’s 

notable that the real value of all these individuals is determined by ELISA, there’s no 

clinical information for the patients. Since different ELISA methods give us different 

results, the individuals with only a few tests showing positive but not the others have the 

possibility to be false positive), Figure 2.1. By the definition of Panbio ELISA IgG/IgM 

Duo Assay, we are able to identify three of these samples (PVD201-10, 16, 20) as 

primary infections and the others as either secondary infections or non-infectious. 

Another source is Panel Dengue DS689G (Seracare, 5 samples, for these samples, we 

only know their IgG titers), DS689M (Seracare, 8 samples, for these samples, we only 

know their IgM titers), both PVD201 and DS689G/M samples were kindly provided by 

the Lawrence Livermore National Labs (LLNLs). The third one is the dengue WHO 

reference panel from NIBSC (four monovalent anti-sera collected from single donors 
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and confirmed by 50% PRNT test: 02/300 (anti-DEN 1), 02/296 (anti-DEN 2), 02/274 

(anti-DEN 3), 02/298 (anti-DEN 4). One negative control plasma pool comprising of pre-

bleeds of the Japanese Encephalitis vaccines 02/184 (Negative control human serum)). 

The other patient samples tested here include three malaria positive plasma (Seracare DS-

774) and West Nile Virus (WNV, 10 samples from different Seracare panels). The 

normal samples were collected from laboratory volunteers, and were randomly chosen for 

testing.  

 

2.3.2    10K random peptide microarray screening procedures 

The general processing, alignment and data extraction is based on the Standard 

Operating Procedure for Binding Antibodies to the CIM10K. A brief description is listed 

below:  

a. 10K Ver.2 slides preparation. In order to reduce the technical errors caused by 

batch-to-batch differences, we tried to use the slides from the same batch or the same 

spotting plate for each experiment. Slides are firstly pre-washed by the pre-wash buffer 

(7.33% acetonitrile, 33% isopropanol and 0.55% triflouroacetic acid in nanopure water), 

then manually washed by 1xTBST three times and then ddH2O three times. The were 

then dried by centrifuge (800g 5min). 

b. Binding of Antibodies to CIM10K by Tecan Automated Slide Processing 

Station. Blocking buffer: 5 ml of 30% BSA, 6.9 ul of Mercaptohexanol, 25 ul of Tween 

20, 5 ml 10x PBS, 40 ml ddH20. Slides are incubated with the blocking buffer for 1 hour 

at 27oC; Incubation buffer: 5 ml of 30% BSA, 25 ul of Tween 20, 5 ml 10x PBS, 40 ml 

ddH20. Primary, secondary and tertiary are all diluted in the incubation buffer, and 



49 

Figure 2.1. Dengue ELISA results provided by Seracare. TOP: IgG tesets, the signal 

to cutoff ratios(s/co) >1.0 is considered to be positive and marked in green; BOT: IgM 

tests, for InBIOS ELISA, the ratios(s/co)>2.84 are considered to be positive, for the other 

tests, the ratios(s/co)>1.0 are considered to be positive; The country of origin: Colombia 

(PVD201-01,07,17) Honduras (PVD201-02,03,04,05,06,08,09,11,12,13,15,18,19)  

Ecuador (PVD201-10,16,20,21) Control United States (PVD201-14) 
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incubated for 1 hour at 370C. For the IgG detection, we use 1:500 diluted sera as the 

primary, 5nM IgGh andlnM biotin-labeled goat anti-mouse as the secondary, 5nM 

Alexaflour647 labeled streptavidin as the tertiary. For the IgM detection, we use 1:500 

diluted sera as the primary, 5nM DyLight 649-conjugated affiniPure Rabbit Anti-Human 

IgM Fc5u Fragment as the secondary. For the IgA detection, we use 1:50 diluted sera as 

the primary, 1nM Alexa Fluor 647-conjugated AffiniPure Goat Anti-Human Serum IgA 

as the secondary.  

c. The slides are scanned by Agilent scanner at 647nm. Alignment is done semi-

automatically in GenePix Pro 6.0. The slides with good correlation between duplicates 

are chosen for analysis. Those with bad correlation will be repeated to achieve the 

satisfied correlation (>80%, calculated by a custom QCPC application) 

 

2.3.3    Statistical analysis by GeneSpring  

Genespring GX 7.3 from Agilent Technologies is the major tool we use to 

perform our statistical analysis. All the aligned microarray data were imported into the 

Genespring, every spot on the microarray is addressable to one random peptide sequence. 

Data Normalization: any measurements less than 0.01 (cutoff value) were set to the 0.01. 

We usually assumed that most of the features on the microarray were unaffected by the 

disease conditions compared with the normal control, so all of the measurements on each 

chip were divided by a specified percentile value (50.0% by default), denoted by 

Normalized Data. For those cases which most of the features on the microarray were 

affected by the disease conditions, this step was neglected, denoted as Raw Data. 
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Parameters: Experimental parameters were set up as individuals, such as Dengue 

PVD20101, Normal 158; groups, such as Dengue PVD201, Normals.  

Principal Component Analysis (PCA) is a tool for reducing the complexity of 

multi-dimensions data by doing covariance analysis and discovering a number of 

principal components that define most of the data variability. PCA is not a clustering tool, 

but it can roughly show the relationships between different conditions. In this study, PCA 

(on conditions) is performed; each individual sample is a condition (a dimension) and is 

compressed and plotted on either a two-dimensional or three-dimensional scatter dot 

figure, the distance between each spot represents the difference between them.     

Feature selection: several methods in Genespring were used to select the features 

to distinguish different groups, such as the dengue infection vs. normal. The purpose of 

One-way ANOVA is to test for a significant difference in the medium expression levels 

between two or more selected groups. In other words, the peptide features with the least 

p-value means they are expressed differently by at least one of the groups analyzed 

(Parametric test, assume variances equal, the false discovery rate is set up at least 0.05. 

No multiple testing correlation). Filter on Volcano Plot: In many cases, we just need to 

compare two different conditions, for example dengue infected serum with normal serum. 

Volcano plot is a convenient way to display both fold-change values and p-values 

interactively. We usually set up the fold change=2, and pick up the top 20/50/100 features 

by the p-value. Draw expression profile: for the cases in which most of the features are 

significant (p-value<0.05) between different conditions, or those just have one individual 

sample (for example, our WHO dengue panel contains just one individual sample for 

each serotype 1/2/3/4), we use the “draw expression profile function” to select the 
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features expressed higher in one or more conditions. Basically, the “Draw expression 

profile” creates an artificial expression line among all the other real features, and then the 

“Find similar genes” function let us find the features with similar expression pattern with 

this artificial line (for example, higher in dengue serotype 1 but not the others). The 

similarities between features are measured by Pearson correlation, Spearman correlation 

or Distance. The selected features can be shown as a line graph, bar graph, box plot, or 

scatter plot. 

Clustering: Hierarchical clustering is done for both genes (selected peptide 

features) and conditions (dengue/ WNV/ Malaria/ Normal), which are two independent 

processes. The clustering is solely based on the feature expression, the features with 

similar expression patterns will be put close to each other. The similarities between 

features are measured by Pearson correlation, Spearman correlation or Distance with 

calculated confidence levels (bootstrapping). The color bar expression range 

(high/normal/low expression) is set up manually to achieve the best visual contrast. The 

clustering pattern is determined by both the peptide features used and the conditions 

(individual samples) selected. Note: We did not intentionally exclude any conditions in 

clustering, and the clustering result just shows the similarity between each condition, 

which means there’s no cut-off line between any two conditions.  

Classification: for the dengue IgG immunosignature, we separated it into training 

group and testing group, the significant features selected from the training group were 

used to classify the individuals from testing group. Weka, an open source software 

containing many machine learning algorithms for data mining, is used for this purpose. 

Naïve Bayes method is used to make 10-fold cross validation of selected samples.  
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2.3.4    Custom NS1 subarray creation   

The custom NS1 subarray was created based on the dengue non-structural protein 

1 (NS1). First, the amino acid sequences of 22 dengue NS1 proteins (3 serotype1; 9 

serotype2; 5 serotype3; 5 serotype4. Obtained from NCBI taxonomy browser) are aligned 

by MEGA 5.10 ClustalW. After the alignment, all the sequences are chopped into non-

overlapping 17-mers, and are exported into Excel. Note: every 17-mers has a tag 

indicated the dengue strain/serotype it was generated from. Second, all the 17-mers are 

chopped into continuous 5-mers, 6-mers, 7-mers….11mers, Third, all the 5-mers are 

compared with each other, and the 17-mers containing the 5-mers, which belong to more 

than one dengue serotypes are deleted. The remaining 17-mers are called the selection at 

“5-mers level”. We can get the similar selections at “6/7/8/9/10/11-mers level”. Note: 5-

mers level is the strictest criteria for selection, while 11-mers is the loosest criteria for 

selection. Finally, the selections at 10-mer level (58 17-mers) combing with 7 real NS1 

epitopes (reported by IEDB) were sent to Sigma for synthesis. A CSG- linker was added 

to each 17-mers. The NTerm and CTerm are [H] and [NH2], respectively.  

The ordered peptides arrived as lyophilized power. They were firstly dissolved in 

30% acetonitrile to make the concentration 2mg/ml. Microarray spotting buffer: 40mM 

HEPES, 20mM TCEP, 2mM EDTA, PH=7.5. The peptide stock and the spotting buffer 

were mixed together by half and half. The final peptide spotting concentration is 1mg/ml. 

The NSB 9 slides were used for spotting and activated by SMCC, an amine-to-sulfhydryl 

crosslinker. Printing was processed automatically by Nanoprint 60. All the peptide were 

printed three times, and randomly located on each array. The screening procedures of  the 

NS1 subarray is similar with that of 10K array: 1:500 diluted sera as the primary 
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incubation for 16 hour; 5nM Alexa Fluor 647-conjugated AffiniPure Goat Anti-Human 

Serum IgG as the secondary for 1 hour. In order to decrease the cross-reactivity, all the 

incubation temperature here is 27 degree rather than 37 degree.  

 

2.4       Results 

2.4.1    CIM 10K Ver2 microarray can distinguish the dengue serum from the normal 

serum by the IgG/IgM/IgA immunosignature 

The first fundamental question we would like to ask is whether by using 

immunosignaturing, we could separate the dengue infected serum samples with the non-

infected normal serum samples. Here, we do not consider the potential differences in the 

dengue serotypes/ genotypes, primary/ secondary infection, sample collection time points, 

clinical outcomes etc. We just want to see whether there’s a particular “dengue pattern”, 

which is common among the dengue variants we tested.  

Besides the IgG immunosignature, we also tested the IgM and IgA 

immunosignature of dengue infections in two independent experiments, each with its own 

sample set and secondary antibody. In fact, the IgM ELISA test is more widely used for 

dengue serologic tests than IgG, especially for the primary infection early detection. IgA 

ELISA tests for dengue are currently being developed by several groups57 due to the fact 

that dengue specific IgA appears one day after IgM and disappeared within 45 days 

following detection. Since IgM and IgA might recognize different epitopes and 

mimotopes than IgG, we expect to obtain additional valuable information for the 

diagnosis.  
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The dengue samples we tested for the IgG immunosignature included the 

PVD201 (20 samples) and the Seracare DS689G (5 samples). Those tested for IgM 

immunosignature included only the PVD201 (14 samples, 7 of 14 have positive IgM 

ELISA titers, denoted by Dengue IgM+; the other 7 have negative IgM ELISA titers but 

positive IgG ELISA titers, denoted by Dengue IgM-/IgG+); those tested for IgA 

immunosignature included only the PVD201 (6 samples). Note that all these samples 

were from the Americas. The peptides selected for each isotype were different. As shown 

in Figure 2.2, by correctly selecting significant peptide features, our microarray can 

distinguish the dengue serum from the normal serum by either IgG, IgM or IgA 

immunosignature, at least in this training set. 

We tested most of our dengue samples by the IgG immunosignature. 25 dengue 

samples and 8 normal samples are tested. The sample size is big enough to do the class 

prediction. Three quarters of the PVD201 (15 samples) and three quarters of the normal 

(6 samples) were randomly selected and used as the training group. The other one quarter 

of each group along with the DS689G (5 samples) are used as the test group. Based on 

the training set, 50 features are selected (1-Way T-Test of the training set;P=2.1239e-5; 

fold change>2; parametric test assuming variances the equal) as significant between the 

normal and dengue. As shown in Figure 2.3, the Naïve Bayes 10-fold cross validation for 

all samples (25dengue+8normal) shows 97% accuracy with only one dengue 

misclassified as normal. The weighted average false positive rate is 0.01(by Weka 

classification). 
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Figure 2.2. CIM 10K Ver2 microarray can distinguish the dengue serum with the 

normal serum by the IgG/IgM/IgA immunosignature. Distance clustering (top three), 

PCA by conditions (bottom three). IgG immunosignature (Left): 50 peptides selected by 

the T-Test of the training set (P=2.1239e-5; fold change>2), dengue PVD201(20), dengue 

DS689G(5), normal(8); IgM immunosignature (Middle): 50 peptides selected by the T-

Test (P= 8.7729e-11; fold change>2) between the dengue PVD201 IgM+ (7) and 

normal(7); IgA immunosignature (Right): 49 peptides selected by the T-Test (P= 

4.8604e-8; fold change>2), dengue PVD201(6), normal(5). Note: the feature selections of 

IgG and IgM immunosignature were based on the 50% normalized data, the selection of 

IgA immunosignature was based on the raw data.  
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Figure 2.3. Class prediction by the dengue IgG immunosignature. A (top): the 

training and testing sets selected for the classification. A (bot). the peptide features 

selected by the training set can distinguish the samples in testing set by conditional PCA. 

B. The distribution of the selected 50 peptides on volcano plot. C. Classification by 

Support Vector Machines (SVMs) for the testing set shows 100% accuracy. D. Naïve 

Bayes 10-folds cross validation for all samples shows 9 7% accuracy. 

 

For the IgM Immunosignature, we compared three groups: 7 IgM+ PVD201 

samples, 7 IgM-/IgG+ samples and 7 normal samples. As shown in Figure 2.4A, if we set 

up the selection criteria as fold change>2, P=1.2316e-9, and compare the three groups 

one with the other, we can select 100 features between IgM+ and normal, 12 features 

between IgM+ and IgM-/IgG+, and zero between IgM- and normal. Since the more 
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significant features selected, the more difference there is, IgM+ and normal has the most 

difference, however, IgM-/IgG+ and normal has the least difference. Hence, IgM-/IgG+ 

should be between IgM+ and normal. As shown in Figure 2.4B, 50 peptides were 

selected by the T-test between IgM+ and normal. The PCA and distance clustering results 

show that IgM-/IgG+ is indeed placed between IgM+ and normal. This indicates that our 

IgM immunosignature truly reflects the IgM titer measured by standard IgM ELISA 

assay, which would be the basis for the quantitative immunosignature in the future. 

Additionally, the Naïve Bayes 10-fold cross validation correctly classify the 7 IgM-/IgG+ 

samples as dengue rather than normal, indicating the immunosignature has higher 

detection power than ELISA (Figure 2.4C).     
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Figure 2.4. Class prediction by the dengue IgM immunosignature. A. Volcano plot 

under the same selection criteria (fold change>2, P=1.2316e-9), IgM+ vs. Normal has 

more significant peptides selected than the other two pairs, indicating more signature 

difference. B. Conditional PCA and distance clustering shows the relationship of all the 

21 samples. IgM-/IgG+ is placed between the IgM+ and normal. C. Naïve Bayes 

Classification correctly identify the 14 dengue samples, with only one normal sample 

incorrectly classified as dengue    

Figure 2.5. The dengue IgA immunosignature. A. IgA immunosignature analyzed by 

both raw data and median normalized data. PCA: x axis (fold change); y axis (P value). B. 

Comparison between IgA/IgG/IgM immunosiganture. Selection criteria: IgA and IgM 

(fold change>2, top 50/100/300 features by P-value); IgG (fold change>1.3, top 100/300 

features by P-value; fold change>2. Top 50 features by P-value).    

 

The difference in analyzing the IgA immunosignature was that we used the raw 

data instead of the median normalized data. The reason we cannot use the median 

normalized data for IgA is shown in Figure 2.5A. We find the median value of dengue 

IgA immunosignature is significantly higher than that of normal, if we still use the 

median value for normalization, the major difference will be hidden and even inverted. 
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The disadvantage of using raw data is the noise. For example the technical errors, will 

also be presented. This might explain why when we compare the significant peptides 

selected by the T-test and fold change, we notice a certain percentage overlapping 

between IgG with IgM immunosignature, but not with the IgA immunosignature (Figure 

2.5B).    

 

2.4.2    10K Ver2 microarray can distinguish dengue primary and secondary infection 

In dengue epidemic areas, many people are suffering with the dengue secondary 

infection rather than the primary infection, and evidence shows that secondary infection 

with a different serotype might be a risk factor for DHF (dengue hemorrhagic fever, a 

more serious condition). Distinguishing between primary and secondary dengue infection 

is always an important issue for clinical diagnosis. Hemagglutination Inhibition (HI) test 

is the reference test recommended by WHO. However, it is a complicated protocol. More 

strategies include the ELISA test and IgG affinity test58, for example, the Panbio Dengue 

Duo IgM & IgG Capture ELISA. Here, we test the possibility to use the immunosignature 

data to distinguish the primary and secondary infection.  

Based on the Panbio Dengue Duo IgM & IgG Capture ELISA, we can identify 

three primary dengue samples and 12 secondary dengue samples from the PVD201 panel 

(Figure 2.6). For the secondary infection, the IgM titer is sometimes undetectable. It’s 

noticeable that three primary samples are all from Ecuador. However, we still have one 

secondary sample from Ecuador. It’s important to include this Ecuador secondary sample 

to ensure the difference is not caused merely by the country of origin. We can select a list 

of peptides which can distinguish the selected primary and secondary dengue infection by 
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IgG/IgM/IgA immunosignature (Figure 2.7). One interesting thing we find is unlike the 

antibody titer, in which case the secondary is higher than the primary, many significant 

peptides we pick up on microarray show higher signal in primary than the secondary. I 

think the reason for this is our microarray is not only a measure for the “titers”, but also a 

measure for the “diversity” of the entire antibodyome. During the primary infection, the 

antibodies generated are more diverse than the secondary infection, and that’s probably 

why there‘s higher signal on primary immunosignature.  XIAO: out of place sentence       

Figure 2.6. Primary and secondary dengue infection identified by Panbio IgM/IgG 

assay. Left: the principle of Panbio IgM/IgG assay, the IgG assay can only detect the 

secondary infection, whose titer is above the cutoff line (equivalent to HAI>1:2560). The 

samples below the IgG cutoff line, however above the IgM detection limit, are considered 

as the primary infection. Right: three samples of the PVD201 panel are predicted as the 

primary infection, 12 are considered as secondary. The other samples are non-infected 

based on this specific ELISA test.   
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Figure 2.7. Primary and Secondary dengue infection immunosignnature. A. IgG 

immunosignature, Top 100 peptides are selected (Fold change>2, P=2.607e-8) between 

the primary samples (PVD201-10,16,20) with the secondary samples (PVD201-

01,17,13,15,18,03,05,21,02,08,06,07). B. IgM immunosignature, Top 100 peptides are 

selected (Fold change>2, P=1.6205e-6) between the primary samples (PVcfD201-

10,16,20) with the secondary samples (PVD201-01,17,21,07). C. IgA immunosignature, 

Top 100 peptides are selected (Fold change>2, P=0.0027) between the primary samples 

(PVD201-10,16,20) with the secondary samples (PVD201-03,21,07).  

 

Furthermore, as we notice this significant difference between dengue primary and 

secondary immunosignature, we add this into distinguish the “dengue” and “normal”. As 

shown in Figure 2.8A left, it shows the distribution of the top 100 peptides (selected to 

distinguish dengue primary and secondary by IgG immunosignature) on the volcano plot 

used to selected the significant peptides between “dengue” and “normal” in Figure 2.2, 
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since previously we did not separate the primary and secondary samples, we notice many 

peptides of the 100 are not hot hits on the volcano plot (in other words, they were 

neglected). However, now we realize these peptides are also good features to tell dengue 

from normal (Figure 2.8A middle). The three groups (primary, secondary and normal) 

can be separated even better, if we use the features directly selected from the entire 

10,000 peptides (Figure 2.8A right). Here is the interesting thing; the secondary IgG 

immunosignature is closer with the normal immunosignature, rather than the primary 

immunosignature. This reminds us that we should not make the assumption that the 

difference between subgroups is less than the major groups, and separate the significant 

infectious subgroups might be helpful to compare the immunosignature to the normal.  

Figure 2.8. Distinguish between dengue primary, dengue secondary and normal 

samples. A. Left: the distribution of the top 100 peptides (primary vs. secondary by IgG 

immunosignature) on the volcano plot used to select the significant peptides between 

“dengue” and “normal”. Middle: by one-way ANOVA(P=0.05) 82 features are picked 

from the top 100 peptides (primary vs. secondary by IgG immunosignature). Right: 104 

features are picked by one-way ANOVA (P=5*10e-11) from the entire 10,000 peptides to 

distinguish “dengue primary”, “dengue secondary” and “normal”. B. the same as A, for 

the IgM immunosignature. 
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Finally, we use the selected top 100 peptides for IgG immunosignature (Figure 

2.7A) to test the other six PVD201 samples, which are shown as “NONE” in Figure 2.6 

(Right); 5 DS689G samples; 8 DS689M samples and 4 WHO samples. It is interesting to 

find out if some of these samples are classified as primary, some of them are secondary. 

The WHO samples (four dengue serotype individuals, denoted as D1,D2,D3,D4)  looks 

like a different group, though closer to the secondary (Figure 2.9). 

Figure 2.9. Unknown dengue samples are predicted as either primary or secondary. 

Distance clustering based on the top 100 peptides selected (Fold change>2, P=2.607e-8) 

between the primary samples (PVD201-10,16,20) with the secondary samples (PVD201-

01,17,13,15,18,03,05,21,02,08,06,07). A. PVD201-04,09,11,12,19, DS689G and 

DS689M samples as the testing set; B. WHO samples as the testing set. 
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2.4.3    Compare the immunosignature of dengue with the other related infectious 

diseases 

Antibody cross-reactivity is always a big problem for traditional ELISA-based 

diagnosis of dengue. For example, the commonly used MAC-ELISA is based on the 

antigens derived from the E protein of the virus, which shows cross-reactivity between 

other circulating flaviviruses, such as West Nile virus (WNV), St. Louis encephalitis 

virus (SLE), Japanese encephalitis virus (JEV) and yellow fever virus (YFV). What is 

more, dengue itself is regarded as an Influenza-Like Illness (ILI), so it could be 

misdiagnosed as the other ILIs, such as influenza and malaria. To evaluate the cross-

reactivity of a diagnostic method is very important, particularly for dengue36,59. 

Here we tested and compared several West Nile Virus (WNV) and malaria 

samples with the previous dengue samples. 10 WNV, 3 malaria, 15 dengue (training set 

shown in Figure 2.3A) and 8 normal samples are used here for a simple demonstration. 

We do observe the difference between dengue and WNV/ malaria by the IgG 

immunosignature (Figure 2.10). However, we find the raw data of malaria is significantly 

higher than that of normal, which makes it not possible to use the medium normalization.  

We consider this significant higher raw data is caused by the overall higher IgG titer in 

the serum. Recently, we have the idea of adding a series of internal references to detect 

the general IgG titer in a particular sample; we expect this reference can be used to make 

better normalizations in the future.  
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Figure 2.10. Compare dengue immunosignature with WNV and malaria. A. FDA 

approved IgM ELISA diagnostics has a high cross reactivity with WNV, 10 Feature(s) 

chosen from 'Dengue vs WNV P=3.56e-7'. 50 Feature(s) chosen from 'Dengue vs Normal 

P= 2.1239e-5‘ Pearson correlation clustering; B. Medium normalization is not a good 

way to analyze the malaria data.   

 

2.4.4    Comparison of different dengue isotopes (NIBSC WHO Standard Panel) by both 

10K Ver2 microarray and a custom NS1 subarray   

          Currently well-accepted techniques to distinguish the four dengue serotypes 

include the RT-PCR and PRNTs, which are both complicated. A novel serotyping-NS1-

ELISA was recently created for the same purpose. It demonstrated that selected Mabs 

produced by mouse splenocyte and myeloma cell fusions (stimulated by DENV 1/2/3/4 

NS1 protein) can specifically recognize their original targets (DENV 1/2/3/4 NS1 

protein)60. Based on this fact, we select 65 peptides based on the real amino acid 

sequences of DEN1/2/3/4 NS1 proteins, and create a new sub-array. We want to know 
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whether this subarray, as well as the 10K random array can be used to distinguish 

different dengue serotypes.  

 

Figure 2.11. The creation of Dengue NS1 subarray. A: NS1 protein identity 

comparison between 22 dengue strains. B: Phylogeny reconstruction of DEN1/2/3/4 by 

their NS1 proteins. Neighbor-joining classification by MEGA 5.03. C: The structure of 

NS1 subarray, 12 peptides selected for DEN1; 25 selected for DEN2; 12 selected for 

DEN3; 16 selected for DEN4.  

 

          Dengue NS1 protein is a secreted extracellular protein (~350a.a), which has been 

shown to modulate the complement system and to enhance DENV infection. Its primary 

structure is highly identical between different serotypes (~70%); however, we can still 

select 65 17mers, which contain the majority of sequence differences. These peptides are 
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spotted on the slides and screened against 4 WHO dengue serotype standard. The 

subarray results are compared later with the random 10K array results. 22 dengue NS1 

proteins (3 DEN1; 9 DEN2; 5 DEN3; 5 DEN4) are used for the spotting peptide selection. 

Figure 2.11 shows the similarity between different dengue strains and the distribution of 

spots on the NS1subarray  

           

 

Figure 2.12. Significant peptides selected from NS1 dengue subarray. One significant 

peptide for DEN1/2/3/4 is selected. We totally tested 8 samples (4 WHO dengue samples 

and 4 normal samples, listed on the right). For example, NS1DEN3-48 is selected, 

because it is designed for dengue serotype 3 and it also has higher signal when screened 

against WHO dengue3 sample. NS1DEN3-48 is the most possible epitope specific for 

dengue serotype 3.  

 

           Since we know the exact origin of each peptide (DEN1/2/3/4), we wanted to see 

whether the peptides generated from DEN1/2/3/4 have higher signal when screened 

against its specific serotype. Four WHO standard dengue serum samples (DEN1/2/3/4, 
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identified by PRNT50) and 4 normal samples (different sources) are screened on the NS1 

subarray. Although most of the peptides have similar signals between different dengue 

serotypes, as well as normal samples, we could still pick up some significant ones. As 

shown in Figure 2.12, four sets of peptides are viewed separately; the most significant 

one for each set is marked black and denoted below.   

 Figure 2.13. Dengue serotype prediction by NS1 subarray. Four peptides (NS1DEN1-

11, NS1DEN2-32, NS1DEN3-48, NS1DEN4-56) were used to predict the other three 

primary PVD201 samples (NO. 10/16/20). All these three samples have relative high 

signal of NS1DEN3-48.  
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Figure 2.14. Dengue serotype prediction by 10K random microarray. A: 38 random 

peptides are selected by the “draw expression profile” function in Genespring, each set 

contains the peptides higher in one serotype, but not the other three serotypes or the 

WHO normal. B: Heatmap Pearson clustering of three PVD201 primary dengue samples 

between WHO samples based on the selected 38 peptides. C: PCA plot of all 20 PVD201 

dengue samples with WHO samples based on the selected 38 peptides. D: DEN3 are the 

dominant serotypes in Colombia areas since 2000.     

    

            As the next step, we tried to use the four peptides selected above to identify the 

serotype of three primary PVD201 dengue samples (PVD201-10/16/20). As shown in 

Figure 2.13, the three PVD primary samples, denoted by 5, 6, 7, have relative high signal 

on NS1DEN3-48, but not the other three peptides, which indicates they’re probably 

DEN3. We also screened the WHO samples on the 10K random array, as shown in 

Figure 2.14, we select the top peptides for each serotype (38 in total), and used this 

peptide list to identify the PVD201 dengue samples. Since we only have one WHO 

reference sample for each serotype, we do not have the real biological replicates. The 

feature selection here is based on intensity fold-change, not T-test. Interestingly, we find 

most of the PVD201 samples are closer to WHO DEN3 on the PCA plot, and the three 
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primary PVD samples are also classified close to DEN3 on the heatmap. Based on both 

the NS1 subarray and 10K random array, we predicted the three primary PVD201 dengue 

samples are DEN3, and most of the secondary PVD201 dengue samples were also 

probably infected by DEN3 before. This prediction is in accordance with the endemic 

patterns of dengue disease in the region of the Americas: during the 90s, DEN1 and 

DEN2 were the most dominant serotypes; since the introduction of DEN3 in 2000, DEN2 

and DEN3 became the most frequently reported serotypes61,62 (Figure 2.14D). When we 

have more specific dengue serotype samples in the future, we can statistically test 

whether this serotyping method is specific or accurate enough.   

 

2.5       Discussions: How to decipher the proteome information containing in the 10K 

immunosignature  

          In this research, we investigate the immunosignature of different dengue infected 

serum samples. We have shown the possibility of using 10K microarray to distinguish 

dengue from normal, dengue primary from secondary, dengue from WNV and different 

dengue serotypes. One of the most interesting questions is whether the peptides we 

picked up as significant have a relationship with the real pathogen epitopes. For the 

traditional epitope microarray created from real pathogen proteome, the high binding of a 

particular peptide is usually interpreted as the existence of its corresponding antibody in 

the serum. However, for our microarray, every random peptide has the potency to bind 

with more than one kind of antibody in the serum; conversely, every kind of antibody has 

the potency to bind with more than one random peptide on the array. Since the binding 

relationship on random microarray is not one-to-one, how to decipher the selected 



72 

significant peptides is very difficult, even possible. Currently, we do not have a standard 

way to decipher the data generated from 10K microarray. Several methods are used here 

to show that the random microarray also contains the real epitope/ mimotope information. 

However, it is difficult to identify them solely based on the 10K microarray data. 

Microarrays with higher peptide density (for example, 330K random peptide microarray) 

or additional mutation microarray (based on selected significant peptides on 10K) is 

necessary for the further identification.      

          Among the top 50 significant peptides selected for distinguishing dengue and 

normal (IgG immunosignature, fold change>2, P=2.1239e-5, Figure 2.3), 46 show higher 

signal in dengue. These 46 peptides have the highest possibility of containing the primary 

structure similarity with the real dengue proteome. We first searched these 46 peptides by 

NCBI blastp (Database: Non-redundant protein sequences; organism: Dengue viruses 

(taxid:11052)). Another 46 randomly picked up peptides were also searched against 

blastp as a control. For each entry, the result with the highest E-value is displayed in 

Table 2.1 below. The molecular weight, isoelectric point and hydrophilicity are 

calculated by two on-line peptide calculators (GenScript/BACHEM). Compared with the 

control peptide list, the selected 46 peptides do not have significantly better search 

matches. However, they do have a higher isoelectric point, higher positive charge and 

higher hydrophilicity. Since blastp is designed for the query of relative long protein, or 

short but nearly exact peptide, it might not be very powerful to align our random peptides.  

          Second, we used GuiTope63, an application for mapping random sequence peptides 

to protein sequences, to analyze the 46 peptides. GuiTope is similar with blastp, but with  



73 

improved scoring matrix for peptide-protein comparison. We also used a randomly 

picked up 46 peptides as control. The database we used to compare with is a list of real 

dengue linear B cell epitope (411 peptides) reported by IEDB. What GuiTope does is it 

compares every entry from the 46 peptides with the peptides in database, the mostly 

matched sequences are automatically ranked from the highest score to the lowest (with a  
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Table 2.1. Selected 46 significant peptides search by blastp.  
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cut-off value=1.20). As shown in Table 2.2, compared with the control group, the 

selected 46 peptides have more hits passing the cut-off value, and more 100% identical 

matches (highlighted in yellow). This indicates that at least some of the 46 selected 

peptides contain the real dengue epitope information, and the frequency is higher than 

randomly picked up ones. We cannot exclude the possibility that the other selected 

peptides from these 46 also have similarity with the real epitopes, which are not in the 

reported by IEDB.  
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Table 2.2. Comparison between selected 46 peptides with IEDB dengue real epitopes 

by GuiTope (Rank by SCORE/LEN). Top: Selected 46 peptides have more hits passing 

the cut-off value (106), the 100% identical ones are highlighted; Bot: Randomly picked 

up 46 peptides have less hits (90), and only one 100% identical match.  

 

            The next step, we set 28 dengue polyprotein sequences as the database, the 46 

selected peptides are compared with the database, instead of ranking the hits by 

SCORE/LEN, we rank them by PRO POS (the starting position of the protein window). 

The idea here is the epitopes for a particular protein are usually clustered together at 

some hot spots with close sequence position. As an example shown in Table 2.3A, we 
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have 5 hits picked up by GuiTope, and they all match with the DEN23 polyprotein 

around position (317~325), which indicates the high possibility of real epitope around 

this location (317~325). Totally we can pick up 71 “predicted epitopes”, and when these 

peptides are compared with the IEDB dengue real epitopes database, we find 31 of the 71 

peptides match with the real dengue epitopes. The other 40 peptides might be new 

dengue epitopes (Table 2.3B). Interestingly, the sequence “QYEG/RVQYEG” (shown in 

the selected 46 peptides: csgysrssQYEGwhgkrdfm; csgqRaQYhGrmqtfyrgem) is picked 

up by both methods (Table 2.3;2.4), strongly indicating it’s a real dengue epitope. 

 

Table 2.3. Comparison between selected 46 peptides with 28 dengue polyprotein 

sequences by GuiTope (Rank by PRO POS). A: An example showing the selection 

method by PRO POS, the PRO WINDOW with more than three closely related selected 

random peptide matches is picked up as “predicted epitops”; B: comparison between the 

“predicted epitopes” with the IEDB dengue real epitopes (10 hits shown here, totally 31 

over the cut-off value).    
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Table 2.4. Comparison between selected 46 peptides with 28 dengue polyprotein 

sequences by GuiTope (Rank by SCORE/LEN). Among the top 366 hits passing the 

cut-off value (1.20), the sequence QYEG stands out as a significant epitope.  

 

           As a conclusion, the work here firstly shows that CIM 10K Ver2 random peptide 

microarray is a useful diagnostic tool of monitoring the humoral immune response to 

dengue infection. Both the IgG and IgM immunosignature can be used to distinguish the 

dengue infection from the healthy, and the primary dengue infection from the secondary 

infection. It is also possible to use the IgG immunosignature to distinguish dengue from 

WNV, even between different dengue serotypes (more samples needed for verification). 

Second, although it is generally difficult to extract the real proteme information from the 

10K microarray, we show that the real strong dengue epitopes are still able to stand out as 

significant. Some peptide sequences selected as significant but not reported by IEDB 

might be new dengue epitopes, which deserve further verification by ELISA. Third, we 

created a real dengue epitope subarray based on the its NS1 protein, and tested it on a 

small scale. There is not a significant improvement to use this subarray to distinguish 
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dengue infection vesus healthy compared with the 10K random microarray, however, we 

hope in the furture we can add more peptides from the other dengue proteins to expand 

the library and thus increase the detecting power.    

 

APPENDIX 1 

GLAM2: Search for the common motifs between selected significant peptide features 

             Based on our previous experience on the immunosignature of polyclonal 

antibodies of simple peptide antigen (Structural maintenance of chromosomes, SMC1 

peptide), the significant features selected on the array share the common short motif, 

which is part of the real sequence on the original antigen. In order to test whether this is 

also true in the more complicated case: dengue infection, I use the GLAM2 (Gapped 

Local Alignment of Motifs) to analyze the similarity among the selected 46 peptide 

features distinguishing dengue infection and normal. As shown in the figure AP1 and 

AP2, I tried two different search conditions provided by GLAM2, although at certain 

positions, there is one or two common amino acids between at least 2 out of the 46 

peptides, there is no common motifs longer than three. It appears that GLAM2 is not a 

powerful tool to decipher the dengue immunosignature.  
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Figure AP1. The 46 selected significant peptides common motif discovery by 

GLAM2. GLAM2 setting: Minimum aligned sequences 2; Minimum aligned columns 2; 

Maximum aligned columns 50; Initial aligned columns; 20; Number of alignment 

replicates 10. The top 6 hits are shown here.   

 

 

 
Figure AP2. The 46 selected significant peptides common motif discovery by 

GLAM2. GLAM2 setting: Minimum aligned sequences 2; Minimum aligned columns 4; 

Maximum aligned columns 17; Initial aligned columns; 5; Number of alignment 

replicates 10. The top 6 hits are shown here.   

 

 



81 

APPENDIX 2 

Dengue NS1 subarray peptide list 

Peptide 
Name NTerm Sequence CTerm 

MW 
(daltons) 

Amount 
(mg) 

NS1DEN1-1 [H] CSGADSPKRLSAAIGRAWEE [NH2] 2103 5.8 

NS1DEN1-2 [H] CSGAKIIGADVQNTTFIIDG [NH2] 2022 7.8 

NS1DEN1-3 [H] CSGCGSRGPSLRTTTVTGKI [NH2] 1980 4 

NS1DEN1-4 [H] CSGELDFDLCEGTTVVVDEH [NH2] 2167 4.4 

NS1DEN1-5 [H] CSGEMIIPKMYGGPISQHNY [NH2] 2224 3.5 

NS1DEN1-6 [H] CSGIRPQPMEHKYSWKSWGK [NH2] 2404 9.1 

NS1DEN1-7 [H] CSGKEENLVKSMVSAGSGEI [NH2] 2024 5 

NS1DEN1-8 [H] CSGKNETWKLARASFIEVKT [NH2] 2267 8.5 

NS1DEN1-9 [H] CSGPDTPECPDEQRAWNIWE [NH2] 2332 7.7 

NS1DEN1-10 [H] CSGQISNELNHILLENDMKF [NH2] 2304 7 

NS1DEN1-11 [H] CSGSGCVINWKGRELKCGSG [NH2] 2040 8.9 

NS1DEN1-12 [H] CSGTVVVGDVVGILAQGKKM [NH2] 1960 6.6 

NS1DEN2-13 [H] CSGAKMVPTEPHNQTFLIDG [NH2] 2144 9.9 

NS1DEN2-14 [H] CSGCHWPKSHTLWINGGLES [NH2] 2211 7.9 

NS1DEN2-15 [H] CSGDICGIRSVTRLENLMWK [NH2] 2280 6.7 

NS1DEN2-16 [H] CSGEMDFDFCDGTTVVVTED [NH2] 2169 6.7 

NS1DEN2-17 [H] CSGEMIIPKNFAGPVSQHNY [NH2] 2191 4.4 

NS1DEN2-18 [H] CSGMVIPKNIAGPVSQHNNR [NH2] 2121 4.1 

NS1DEN2-19 [H] CSGGICGIRSVTRLENLMWK [NH2] 2222 10.2 

NS1DEN2-20 [H] CSGITEWCCRSSTIPPLRIK [NH2] 2249 6.6 

NS1DEN2-21 [H] CSGKDNRAVHDDMGYWIESA [NH2] 2253 8.5 

NS1DEN2-22 [H] CSGKEKQDVFCDSKLMSAAI [NH2] 2159 6.5 

NS1DEN2-23 [H] CSGLNDTWKIEKASFIEVKS [NH2] 2254 5.8 

NS1DEN2-24 [H] CSGLRPQPTELRYSWKTWGK [NH2] 2392 8.9 

NS1DEN2-25 [H] CSGPESPSKLASAMRKAHEE [NH2] 2114 6.5 

NS1DEN2-26 [H] CSGPETAECPNTNRAWNSLE [NH2] 2178 9.2 

NS1DEN2-27 [H] CSGQITSELNHILSENEVKL [NH2] 2213 5.5 

NS1DEN2-28 [H] CSGREKEDLCCDSKVMSAAS [NH2] 2118 11.1 

NS1DEN2-29 [H] CSGREKQDAFCDSKLMSAAI [NH2] 2159 8.8 

NS1DEN2-30 [H] CSGRPGYYTQTAGPRHLGKL [NH2] 2161 10.3 

NS1DEN2-31 [H] CSGRPLKEKEENLVTSLVTA [NH2] 2173 7.2 

NS1DEN2-32 [H] CSGDSGCVVSWKNKELKCGS [NH2] 2086 8 

NS1DEN2-33 [H] CSGTIMTGDIKGIMQAGTRS [NH2] 2026 7.7 

NS1DEN2-34 [H] CSGTIMTGDIKGIMQVGKRS [NH2] 2081 9.1 

NS1DEN2-35 [H] CSGELRYSWKTWGKAKMLSTELH [NH2] 2711 4.7 

NS1DEN2-36 [H] CSGNRGPSLRTTTASGKLIT [NH2] 2019 8 

NS1DEN2-37 [H] CSGGEDGCWYGMEIRPLKEK [NH2] 2257 8 

NS1DEN3-38 [H] CSGADSPKRVATAIAGAWEN [NH2] 2003 7.7 

NS1DEN3-39 [H] CSGAKIVTAETQNSSFIIDG [NH2] 2040 6.1 

NS1DEN3-40 [H] CSGCGTRGPSLRATTVSGKL [NH2] 1950 6 

NS1DEN3-41 [H] CSGCTWPKSHTLWTNGVLES [NH2] 2205 1.9 
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NS1DEN3-42 [H] CSGDMIIPKSLAGPISQHNY [NH2] 2130 7.8 

NS1DEN3-43 [H] CSGELDFNYCEGTTVVITES [NH2] 2166 6 

NS1DEN3-44 [H] CSGKNGSWKLEKASLIEVKT [NH2] 2177 16.5 

NS1DEN3-45 [H] CSGMGCVINWKGKELKCGSG [NH2] 2056 9.6 

NS1DEN3-46 [H] CSGPSTPECPSASRAWNVWE [NH2] 2163 9.2 

NS1DEN3-47 [H] CSGQIANELNYILWENNIKL [NH2] 2334 8.6 

NS1DEN3-48 [H] CSGREVYTQLCDHRLMSAAV [NH2] 2238 9.6 

NS1DEN3-49 [H] CSGTVVVGDTLGVLEQGKRT [NH2] 2018 4.7 

NS1DEN4-50 [H] CSGAKIFTPEARNSTFLIDG [NH2] 2126 9.2 

NS1DEN4-51 [H] CSGEIDFGECPGTTVTIQED [NH2] 2100 7.1 

NS1DEN4-52 [H] CSGKDQKAVHADMGYWLESS [NH2] 2211 6.5 

NS1DEN4-53 [H] CSGPDTSECPNERRAWNSLE [NH2] 2250 9.8 

NS1DEN4-54 [H] CSGPESPARLASAILNAHKD [NH2] 2036 9.6 

NS1DEN4-55 [H] CSGQITNELNYVLWEGGHDL [NH2] 2247 8.3 

NS1DEN4-56 [H] CSGQMLIPKSYAGPFSQHNY [NH2] 2227 3 

NS1DEN4-57 [H] CSGRQGYATQTVGPWHLGKL [NH2] 2158 6.8 

NS1DEN4-58 [H] CSGSEREENMVKSQVSAGQG [NH2] 2082 6.4 

NS1DEN4-59 [H] CSGTGCAVSWSGKELKCGSG [NH2] 1916 7.4 

NS1DEN4-60 [H] CSGTVVAGDVKGVLVKGKRA [NH2] 1943 8 

NS1DEN4-61 [H] CSGVTQWCCRSCTMPPLRFL [NH2] 2287 7.2 

NS1DEN4-62 [H] CSGFLIDGPDTSECPNERRA [NH2] 2166 5.9 

NS1DEN4-63 [H] CSGKFQPESPARLASAILNA [NH2] 2059 4.8 

NS1DEN4-64 [H] CSGFTTNIWMKFREGSSEVC [NH2] 2281 7 

NS1DEN4-65 [H] CSGWYGMEIRPLSEKEENMV [NH2] 2357 9 

 

Table AP1. List of selected dengue NS1 subarray peptides. Totally 65 peptides are 

selected based on the differences between four dengue serotypes. NS1DEN1(1-12) are 

for dengue serotype1; NS1DEN2 (13-37) are for dengue serotype2; NS1DEN3 (38-49) 

are for dengue serotype3; NS1DEN4 (50-65) are for dengue serotype4. Peptides are 

synthezied by Sigma.   
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