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ABSTRACT  

   

This dissertation investigates spatial and temporal changes in land cover and plant species 

distributions on Cyprus in the past, present and future (1973-2070).  Landsat image 

analysis supports inference of land cover changes following the political division of the 

island of Cyprus in 1974. Urban growth in Nicosia, Larnaka and Limasol, as well as 

increased development along the southern coastline, is clearly evident between 1973 and 

2011. Forests of the Troodos and Kyrenia Ranges remain relatively stable, with 

transitions occurring most frequently between agricultural land covers and 

shrub/herbaceous land covers. Vegetation models were constructed for twenty-two plant 

species of Cyprus using Maxent to predict potentially suitable areas of occurrence. 

Modern vegetation models were constructed from presence-only data collected by field 

surveys conducted between 2008 and 2011. These models provide a baseline for the 

assessment of potential species distributions under two climate change scenarios (A1b 

and A2) for the years 2030, 2050, and 2070. Climate change in Cyprus is likely to 

influence habitat availability, particularly for high elevation species as the relatively low 

elevation mountain ranges and small latitudinal range prevent species from shifting to 

areas of suitable environmental conditions. The loss of suitable habitat for some species 

may allow the introduction of non-native plant species or the expansion of generalists 

currently excluded from these areas. Results from future projections indicate the loss of 

suitable areas for most species by the year 2030 under both climate regimes and all four 

endemic species (Cedrus brevifolia, Helianthemum obtusifolium, Pterocephalus 

multiflorus, and Quercus alnifolia) are predicted to lose all suitable environments as soon 

as 2030. As striking exceptions Prunus dulcis (almond), Ficus carica (fig), Punica 



ii 

granatum (pomegranate) and Olea europaea (olive), which occur as both wild varieties 

and orchard cultigens, will expand under both scenarios. Land cover and species 

distribution maps are evaluated in concert to create a more detailed interpretation of the 

Cypriot landscape and to discuss the potential implications of climate change for land 

cover and plant species distributions. 
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Chapter 1 

INTRODUCTION 

Research objectives and organization 

 This dissertation analyzes the spatial and temporal variations of the natural and 

human-created landscapes of Cyprus. One of the early questions guiding this work 

pertained to determining whether the political division of Cyprus in 1974 caused changes 

in land use and how these changes might be sensed and assessed. This major political 

event shifted populations on the island dramatically as the Republic of Cyprus, in 

particular, moved from largely agricultural lifeways to an increasingly urbanized society. 

Field work and conversations with archaeological, botanical, and historical scholars 

piqued interest in the historical, modern, and future distributions to plant species. These 

two ideas guided the development of the research objectives addressed in this 

dissertation: 

1. Inference of how the landscapes of Cyprus have changed since 1974 through the 

use of satellite imagery and on-the-ground field observations of plant 

distributions;  

2. Construction of modern potential vegetation models of plant species distributions 

based on the field observations; 

3. Predict changes to the vegetation distribution under multiple climate scenarios; 

and, 

4. Link changes of land cover and vegetation to enable detailed interpretation of 

changes in landscape configuration over time. 
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Following an introduction tying this study to preliminary work and describing the study 

area, this dissertation is broken into four main areas of research. Chapters 3 through 5 

address objectives 1 through 3, and although can be thought of as stand-alone products, 

they work toward the common goal of constructing a more comprehensive assessment of 

how human and natural landscapes are impacted by major political and social 

disjunctions like the 1974 partition of Cyprus and land-use and climate changes scenarios 

(Chapter 6). 

Landscape change 

Land-use and land-cover change (LUCC) is affected by many factors, including 

population growth, climate change, natural resource utilization, food production, and 

nature-society interactions (Turner et al., 1990; Bicik et al., 2001). Land use is generally 

defined as the human activity occurring at a particular place; e.g. fishing, timber 

harvesting, or playing baseball. Land cover incorporates the combined physical and biotic 

characteristics of a place (Meyer and Turner, 1992). Examples of land cover include 

agriculture, housing development, or forest, all of which can encompass many different 

types of land use. Following Geist and Lambin (2002), these factors are categorized as 

proximate causes or underlying driving forces. Proximate causes relate to human-caused 

changes at the local level, while underlying driving forces are the social processes at the 

local, regional, national, or global levels that lead to proximate causes (Geist and Lambin, 

2002). Nelson et al. (2006) further delineates the driving forces into direct and indirect 

drivers of LULC change. Direct drivers are “natural processes,” such as climate change, 

land conversion, and disease. Indirect drivers are related to human societies, and include 

economic, socio-political, cultural and religious, and technological factors (Nelson et al., 
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2006). Research within LUCC Science focuses on interactions within the human-

environment system, looking to establish the causal factors for trajectories, of LUCC 

(Kasperson et al., 1995).  

For example, Bicik et al. (2001) determined that land-use change in the Czech 

Republic was based on the specific influences of historical social driving forces. They 

found that changes in political and economic regimes led to distinctive differences in 

land-use trajectories, specifically in agricultural intensification or decline on rural 

landscapes.  Similarly, Kuemmerle et al. (2006) demonstrated that land-cover change 

may vary significantly under different political systems, even over an environmentally 

homogenous region. Their study of the border area of Poland, Slovakia, and Ukraine 

distinguished contrasting patterns of land cover that reflected different economic 

histories. These results reveal the influences of divergent political trajectories from the 

collapse of the Austro-Hungarian Empire nearly a century ago to the recent establishment 

of these three independent countries following the collapse of the Soviet Union. 

Remote sensing 

The development of photography in the early 17
th

 century transformed the art of 

capturing landscapes through painting and drawing to a scientific venture allowing for the 

cataloging, description, and quantification of features within a photograph. Landscapes, 

cities, and people were now captured “as is” and not left to the creative devices of artistic 

license. The camera is still considered one of the most reliable and useful remote sensing
1
 

                                                 
1
 Remote sensing was formally defined by the American Society for Photogrammetry and Remote Sensing 

as “the measurement or acquisition of information of some property of an object or phenomenon, by a 

recording device that is not in physical or intimate contact with the object or phenomenon under study” 

(Colwell 1983).  This definition only implies that the image is captured at some distance from the object or 
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instruments for capturing photographic images that provide historical records of unique 

places at specific times. Acquiring multiple images of the same place allows for the 

comparison between capture dates to evaluate potential changes in the spatial and 

temporal distribution of objects or phenomena of interest that can further understanding 

of the underlying man-made and natural processes at work in the area (Jensen, 2000, p. 

121). 

General advantages and limitations apply to all types of remotely sensed images. 

The most significant advantage is the (virtually) permanent, long-term record created 

through the acquisition of imagery. Remote sensing is usually considered a “passive” 

sampling technique that does not disturb the objects or phenomena of interest. Many 

types of imagery, regardless of capture technique, contain data from a broader spectral 

range than the human eye can sense (color perception generally in the range of 0.4 – 0.7 

µm). These long-term records, in concert with on-the-ground observations, digital 

elevation models (DEMs) and other mapping products enable observation and assessment 

of landscape transitions over time and space.  

Remote sensing has been utilized to map patterns of tropical deforestation (e.g. 

Geist and Lambin, 2001; Arima et al., 2008), successional stages of forests (e.g. Bergen 

et al., 2008), ecological responses to environmental change (e.g. Walther et al., 2002; 

Pettorelli et al., 2005; Laba et al., 2008), and to monitor changes in biodiversity (e.g. 

Nagendra, 2001; Kerr and Ostrovsky, 2003; Turner et al., 2003). Remote sensing allows 

the mapping of land use and land cover; however, the causes (proximate causes vs. direct 

                                                                                                                                                 
phenomenon; however, distance is undefined, thus landscape (ground-based) photographs are included 

within this definition of remote sensing. 
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and indirect drivers) are often difficult to determine directly from imagery. To determine 

the causes of LUCC, many studies have focused on individual to local decision-making 

(households to communities), limiting the spatial extent of analysis (e.g. Turner, 1999; 

Vicente-Serrano et al., 2004; Lasanta-Martinez et al., 2005; Dalle et al., 2006). However, 

broad-scale changes in political and socio-economic driving forces are thought to 

override individual or local decisions regarding land use and policy (Lambin et al., 2001) 

but experimental manipulation of the landscape is not possible at regional or national 

extents (Kuemmerle et al., 2006).  Thus, examination of “naturally-occurring” regime 

shifts, such as changes to political borders or national policies on land use, provides 

opportunities to examine broad-scale causes and their potential effects on land use and 

land cover (Kuemmerle et al., 2006). 

Species distribution modeling 

 Species distribution models (SDMs) predict the distribution of species under 

various environmental predictors and time frames. Species distribution models link the 

fields of geography, biology, ecology, statistics, information technologies and climate 

sciences to inform questions regarding resource availability, fire regimes (e.g. Lawson et 

al., 2010), potential for invasion by non-native species (e.g. Gritti et al., 2006), impacts 

from climate change (e.g. Thomas et al., 2004; Gritti et al., 2006; McKenney et al., 2007; 

Hu et al., 2010; Butler et al., 2012), prior distributions (e.g. Soto-Berelov, 2011) and 

many other conservation, management, and legislative issues (Franklin, 2009). SDMs are 

increasingly popular in scientific literature due to the interest in the above issues, 

improvements in data availability (Graham et al., 2004), continuous refinement of 

statistical approaches and advances in computing (including climate modeling and remote 
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sensing) (Franklin, 2009). With regard to vegetation, SDMs are potentially useful for 

predicting how species will shift in distribution over time in response to changes in 

environmental predictors. Vegetation SDMs tie into analyses of land-use and land-cover 

change since vegetative cover is one of the main indicators of these phenomena, 

especially in remote sensing applications. Models of vertebrate and invertebrate species 

are also influenced by changes to the landscape, as many of these species rely on 

particular land covers, vegetative communities or specific plant hosts. Thus the use of 

predictors to indicate shifts to vegetation or land-use and land-cover should be carefully 

considered when constructing SDMs. 

Mediterranean ecosystems, land-use change, and diversity 

Mediterranean ecosystems comprise only a small amount of the earth’s 

ecosystems (1.2 percent) (di Castri, 1981), but include approximately 48,000 plant 

species, including 20 percent of vascular plants (Heywood and Watson, 1995; Cowling et 

al., 1996; Groombridge and Jenkins, 2002).  These ecosystems are defined 

geographically as lying between 31 and 40 degrees latitude in both the northern and 

southern hemispheres.  Mediterranean ecosystems are characterized by wet winters, hot 

dry summers and woody shrubs with sclerophyllous leaves (Vogiatzakis et al., 2006).  

The Mediterranean Basin lies along the intersection of two major landmasses, extending 

from Portugal to Jordan (west to east) and Italy to Morocco (north to south). Its 

geological history and geomorphology have encouraged highly variable flora, fauna, 

habitats and landscapes (Blondel and Aronson, 1999; Quezel and Medail, 2003; Blondel, 

2006).  The landscapes of the Mediterranean Basin cannot be understood without taking 

into account the history of human-related change (Grove and Rackham, 1993; Blondel, 
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2006).  The land-use systems that have supported Mediterranean civilizations profoundly 

affected the distribution and dynamics of biotic species, communities and landscapes. 

This basin, a center of human civilization for thousands of years, has been characterized 

by relatively high population densities and repeated manipulation of its landscapes (Gritti 

et al., 2006).  Evidence indicates landscapes were intentionally managed and maintained 

through traditional land-use practices (fire, silviculture, pastoralism, agriculture) for 

many millennia (Blondel, 2008). 

The long history of human manipulation of Mediterranean landscapes has led to 

intricate land use systems, which support high biological and cultural diversity (Zaharis, 

1977; Rackham, 1990).  However, recent socio-economic factors have encouraged many 

people to abandon traditional land use (Kinzig and Grove, 2000).  In many countries this 

has led to a shift from agricultural lifeways to an economy dominated by service, 

manufacturing and technology often impacting land use and land cover (Pares-Ramos et 

al., 2008).  In Ecuador, Rudel et al. (2002) reported increases in forest cover due to rural-

to-urban shifts in populations, leading to rapid urban growth and agricultural 

abandonment.  On Crete, city growth, agricultural intensification and promotion of 

tourism threaten biological and landscape diversity, as forests and grasslands are 

converted to crop lands and urban land use (Ispikoudis et al., 1993). In this case land 

cover types have shifted to range from highly productive agricultural plots to unfertile 

and abandoned farm lands (Grove and Rackham, 1993).  Di Pasquale et al. (2004) 

describe increases in forest and shrub cover in recent years, particularly in former 

agricultural lands, reducing overall landscape heterogeneity.  Further, a growing literature 

argues that human landscape transformations often alter ecosystem function and 
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interactions (e.g., Vitousek et al., 1997).  A common inference holds that human-caused 

land-cover change leads to diminished biological diversity in ecosystems (Wilson, 1992; 

Vitousek et al., 1997).  Thus, the consideration of the socio-economic, historical and 

political contexts of LUCC and the relationship of these changes to ecological patterns 

and processes merits increased attention (Wu and Hobbs, 2002). 

In spite of the tendency to emphasize anthropogenic landscape degradation, 

Butzer and Harris (2007) argue against viewing Mediterranean landscapes, and Cyprus in 

particular, as degraded.  Instead they conclude that throughout history, Cyprus 

experienced minimal localized human impacts, and that its biota tend to be resilient in 

response to human transformations (Klinge and Fall, 2010; Klinge, 2013).  Butzer (2005) 

emphasizes the difference between human-related transformation vs. degradation.  He 

argues that landscape changes in the Mediterranean Basin are cyclical, rather than linear, 

unless the disequilibrium thresholds of a particular area are surpassed.  Butzer and Harris 

(2007) reason that although landscapes can deteriorate, in particular after agricultural 

abandonment, they can also regenerate.  Currently, it is unclear whether the dramatic 

relocation of agrarian populations since 1974 has led to an overall regeneration of shrub 

and forested lands or whether many of these areas are now subjected to intensified 

agricultural practices.  Thus, it seems more insightful to consider changing land use on 

Cyprus in terms of shifts between land-cover heterogeneity and homogeneity.  These 

concepts can accommodate any number of trends, ranging from the conversion of forests 

and grasslands to large agricultural tracts to the abandonment of croplands by their 

agrarian owners (e.g., di Pasquale et al., 2004) without assuming reduced biodiversity.  

This approach emerges as particularly valuable in light of Butzer’s argument against 
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assuming that modern land-use change on Cyprus necessarily entails landscape 

degradation. The concepts of heterogeneity/homogeneity will be applied to the Cypriot 

landscape by analyzing the land cover maps (Chapter 3) and the combined predicted 

vegetation and land cover maps (Chapter 6) through the use of landscape metrics (e.g. 

number and distribution of landscape patches). 

 Summary 

 This dissertation consists of seven chapters. Following this introduction, Chapter 

2 will describe the study area in terms of the physical, botanical, and political events that 

underpin the subsequent chapters.  

Chapter 3 addresses Objective 1 and examines how the landscape of Cyprus has 

changed since 1974. Using Landsat imagery, land cover will be derived for the years 

1973, 1984, 2001 and 2011. Land cover change analyses will indicate the types of land 

cover transitions, where they occur and if changes related to politically-inspired 

population movements are discernible. In addition, landscape metrics will be utilized to 

assess if changes to landscape homogeneity/heterogeneity have occurred over this time 

period and the possible implications for maintaining “traditional” landscapes. 

Chapter 4 addresses Objective 2 and utilizes species distribution modeling to 

predict the present-day suitable areas of occurrence for a set of 22 species. These models 

will be further employed in Chapter 5 to address Objective 3, where they are used as the 

baseline to predict future potential suitable areas of occurrence. To evaluate potential 

changes to suitable areas of occurrence, two climate change scenarios were selected over 

three time periods (2030, 2050 and 2070). 
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Chapter 6 addresses Objective 4 and links the land cover maps (Chapter 3) and 

the species distribution maps (Chapters 4 and 5) to create a detailed interpretation of 

changes to the Cypriot landscape and the possible implications of these changes for 

specific species and land cover types. 

Chapter 7 summarizes the major findings of this dissertation. 

  



11 

Chapter 2 

STUDY AREA 

Introduction 

Cyprus is located in the eastern Mediterranean Sea and is the third largest island 

(9,251 km
2
) within the Mediterranean Basin (Figure 1).  Cyprus was formed during the 

Tertiary period and lies along the boundary between the African and Eurasian plates.  As 

an island, Cyprus constitutes a bounded ecological study area. Its varied topography and 

microclimates result in a large range of flora consisting of approximately 2000 taxa, 

which include 144 endemics.  Although extremely rich in native flora, humans introduced 

most mammalian fauna, and the island has few indigenous mammal, reptile and 

amphibian species. The island is divided into three geomorphological zones, the Kyrenia 

Mountains (Pentadaktylos) including the Karpas Peninsula, the Troodos Range and 

foothills, and the alluvial plains (Mesaoria Plain) that extend between the two mountain 

ranges (Tsintides et al., 2002). Meikle (1977) adds a coastal belt to this description in 

which most coastal areas are low-lying (sea cliffs are rare). 

The island of Cyprus provides an optimal setting in which to examine how land-

cover transitions are influenced by, and also influence, political, environmental, 

economic, and population changes, in light of this island’s rich political and cultural 

history and distinctive, biologically diverse landscapes. Archaeological records indicate 

human presence on Cyprus for approximately 10,500 years and the in-migration of 

farming populations during the Aceramic Neolithic (c. 8200-5500 BC). This settlement 

event brought with it many of the plant and animal domesticates associated with the 

coastal Levant and Anatolia, establishing the initial farming communities of Cyprus 
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(Steel, 2004). Due to the island’s strategic geographic location in the Mediterranean, it 

has experienced a particularly dynamic history of political and cultural influences, being 

periodically articulated with or dislodged from the Phoenician, Greek, Roman, Venetian, 

Ottoman, and most recently, British, empires. Each of these episodes provided a distinct 

contribution to current species assemblages and the creation of the modern Cypriot 

landscape. 

 
Figure 1. Cyprus is located at the eastern end of the Mediterranean Basin. The island’s 

climate is defined by the topography and the Mediterranean Sea with temperatures 

decreasing with elevation and proximity to the coast. The island features two major 

mountain ranges the Troodos and Kyrenia Ranges, which are separated by the Mesaoria 

Plain. 
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As a result of the most recent change in imperial power, the British Crown 

granted the Cypriot people sovereignty over most of the island in 1960. The ensuing 

struggle for political power between Greek and Turkish Cypriots led to the partition of 

the island in 1974. Today, the southern Greek-speaking Republic of Cyprus is a member 

of the European Union (admitted in 2004), while the northern Turkish-speaking Turkish 

Republic of Northern Cyprus (TRNC) is formally recognized only by Turkey. The 1974 

partition involved the relocation of thousands of Turkish Cypriots to the north and Greek 

Cypriots to the south. This relocation translated into a period of acute urbanization, 

especially as Greek-speaking populations left the farming villages and smaller towns of 

the north for the larger cities of the south.  This relocation has shifted the economy of the 

Republic of Cyprus from agro-pastoralism to light manufacturing and services. Services 

are mainly related to tourism and finance, which account for approximately 78 percent of 

the Republic’s gross domestic product (GDP). Due to its geographic location and modern 

infrastructure, Cyprus has developed into an important hub for companies and 

governments with interests in the Middle East, Eastern Europe, North Africa, the former 

Soviet Union, and the European Union. In contrast, the per-capita GDP of northern 

Cyprus is approximately 40 percent that of the south. Agriculture and services employ 

more than one-half of the working population of the TRNC, which is highly reliant on aid 

from the government of Turkey. Tourism in Northern Cyprus has increased since a 2004 

relaxation of travel restrictions between the two parts of the island. 

Climate 

 The climate of Cyprus is generally Mediterranean, with a long, hot summer (mid-

May to mid-September) and short, mild and rainy winters (November to mid-March). 
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Summer weather conditions are highly influenced by low-pressure systems centered over 

Asia at this time, leading to high temperatures and very little precipitation. During the 

winter, small low-pressure systems tracking across the Mediterranean Sea bring most of 

the island’s annual rainfall, up to 60% of the yearly total. Topography and the sea 

influence climate conditions, with large seasonal and daily temperature ranges between 

the coast and interior of the island. In addition, rainfall and temperature patterns are 

governed by island topography, with increases in rainfall (up to 1100 mm) at the highest 

elevations (annual average is approximately 480 mm) and a temperature difference of 

approximately 7°C between the lowlands and upper elevations regardless of season. 

Botanical Divisions 

 To describe the distribution of vegetation, Meikle (1977; 1985) divided Cyprus 

into 8 botanical regions, representing the phytogeographic areas of the island (Figure 2). 

Boundaries between these regions are roads or rivers, following the Survey of Cyprus 

Administration Map (1950, revised 1958). Meikle (1977) provides a description of each 

of these regions (boundaries, general topographical characteristics, plants of special 

interest, cultural impacts), allowing for the determination of botanical regions for use in 

modern vegetation surveys.  

Vegetation types 

 Conifer forests 

 Indigenous to Cyprus, Pinus brutia is distributed across the island except within 

the Mesaoria Plain. Pinus brutia is found from sea level to approximately 1400 m and 

commonly occurs on calcareous, or acidic sedimentary and igneous formations (Meikle, 

1977, 1985). Extensive forests of Pinus brutia occur in the Troodos and Kyrenia Ranges. 
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In the Troodos Pinus brutia is commonly found in association with Pistacia terebinthus, 

Arbutus andrachne, Ceratonia siliqua, Crataegus azarolus, Pterocephalus multiflorus, 

Rhamnus oleoides and Cistus spp. (Fall, 2012). Within the Kyrenia Range, the 

association is generally composed of Cupressus sempervirens, Olea europaea, Pistacia 

lentiscus, Pistacia terebinthus, Arbutus andrachne, and Sarcopoterium spinosum (Fall, 

2012). 

 Also indigenous, Pinus nigra occurs at the highest elevations of Cyprus, between 

1100 and 1950 m in the Troodos’ igneous formations (Meikle, 1977, 1985). Pinus nigra 

forms extensive forests on Mt. Olympus (Khionistra), the island’s highest peak and also 

occurs in small patches on the peaks of Madari, Kyperounta and Spilia (Tsintides et al., 

2002). Pinus nigra forest is sometimes composed of Pinus brutia, Juniperus foetidissima, 

Rosa canina canina, Cistus creticus, Pterocephalus multiflorus and Sorbus aria. (Fall, 

2012). 

 Cedrus brevifolia is endemic to Cyprus and only occurs within the Cedar Valley 

(Tripylos) of the Pafos Forest between 900 and 1400 m (Tsintides et al., 2002). Cedrus 

brevifolia also occurs near the Kykko Monastery, Tsakkistra village and elsewhere in the 

Troodos and Kyrenia Ranges where it is planted. 

 Juniperus foetidissima is an indigenous small tree occurring at high elevations, 

from 1000 to 1950 m, on Mt. Olympus of the Troodos. Juniperus foetidissima often 

occurs within Pinus nigra forest, on rocky mountain slopes and on igneous formations 

(Meikle, 1977, 1985). Juniperus phoenicea tends to occur in Pinus brutia forest of the 

Akamas Peninsula, on dry and rocky soils and sometimes on sandy soils near the sea 
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(Meikle, 1977, 1985). Juniperus phoenicea occurs from sea level to approximately 500 

m.  

  

Figure 2. Meikle’s botanical divisions of Cyprus (1977). These botanical divisions 

represent the major phytogeographic regions of Cyprus and were used to help delineate 

areas of occurrence for modern vegetation during on-the-ground surveys. 

 

Oak forests 

 Quercus alnifolia is endemic to Cyprus, restricted to the Troodos Range at 

elevations of 300 to 1700 m (Tsintides et al., 2002). Restricted to igneous substrates, 

Quercus alnifolia often occurs with Pinus brutia as understory or can form extensive 

maquis (Meikle, 1977, 1985; Tsintides et al., 2002). Quercus coccifera is found in the 

Troodos and Kyrenia Ranges, as well as along the Akamas and Karpas Peninsulas. 

Quercus coccifera is found at elevations of 100 to 1300 m within maquis or garigue, on 

dry hillsides and sometimes within Pinus brutia forest (Meikle, 1977, 1985). 

 Maquis, Garigue and Batha 
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 Meikle (1977, 1985) divides the shrub and scrublands of Cyprus into three 

categories based on species composition and structure. This classification assumes a 

degradation of the forest into one of these three types (Meikle, 1977, 1985). Maquis is 

uncommon and consists of shrubs 4 to 6 m in height. The species comprising maquis 

include Arbutus andrachne, Pistacia terebinthus, Olea europaea, Styrax officinalis and 

Quercus coccifera. Garigue is untilled, grazed land with shrubs less than 3 m in height. 

Common garigue species include Cistus spp., Genista sphacelata, Calycotome villosa, 

Lithospermum hispidulum, Phagnalon rupestre and occasionally Pistacia lentiscus. 

Excessive grazing reduces the landscape to batha, primarily composed of Sarcopoterium 

spinosum, Fumana spp., Micromeria spp., Thymus capitatus and other small herbs 

(Meikle, 1977, 1985). 

 Other descriptions of maquis and garigue are dependent upon rainfall and 

elevation. For example, Tsintides (1998) describes maquis as occurring in areas with 

annual rainfall of 450 to 1000 mm. Along the lower elevations, common species include 

Juniperus phoenicea, Pistacia lentiscus, Ceratonia siliqua, Olea europaea, Salvia 

fruiticosa, Cistus spp. and random Pinus brutia. At the higher elevations, maquis 

transitions into oak forest and is generally composed of Arbutus andrachne, Quercus 

alnifolia, Pistacia terebinthus, Quercus coccifera and Crataegus azarolus (Tsintides, 

1998; Fall, 2012). Garigue occurs from sea level into the foothills of the Troodos and 

Kyrenia Ranges. Common shrubs that occur into the Troodos include Genista 

spaeceolata, Calycotome villosa, Cistus spp., Lithodora hispidula, Pterocephalus 

mutliflorus, Thymus capitatus and Lavendula stoachas. Pistacia spp., Ceratonia siliqua 

and Pinus brutia are dispersed throughout the island (Tsintides, 1998; Fall, 2012). Along 
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the southern foothills of the Kyrenia Range and drier slopes of the Mesaoria Plain, 

garigue is characterized by Crataegus azarolus, Ziziphus lotus, Noaea mucronata, 

Phagnalon rupestre, Thymus capitatus, Sarcopoterium spinosum, Asparagus stipularis, 

Helianthemum obtusifolium and Asperula cypria (Tsintides, 1998; Fall, 2012). 

 Orchards 

 Citrus spp. are most common along the coastal belt and are concentrated near 

Morphou and from Limasol to Pafos. Olea europaea (olive), Punica granatum 

(pomegranate) and Ficus carica (fig) orchards are usually found from low- to mid-

elevations. Prunus dulcis (almond) and other Prunus spp. orchards are most common 

along mid-elevation mountain slopes (Fall, 2012). 

Summary 

 This chapter introduces the environmental setting of Cyprus, including an 

overview of the topography, climate and major vegetation groups of relevance to this 

dissertation. The long-term land-use history of the island has created a mosaic-like 

landscape with many indigenous and endemic species. The recent (1974) political events 

that led to large-scale population shifts provide a ‘natural’ experimental setting in which 

to examine the effects of this major change on land-cover transitions and species 

distributions. 
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Chapter 3 

LAND COVER TRANSITIONS 1973-2011 

Introduction 

Human impacts on the Earth are well documented and range from land cover 

transformations to changes in global biogeochemistry to alterations in the Earth’s 

biological diversity (Marsh, 1864; Turner et al., 1990; Turner and Meyer, 1991; Vitousek 

et al., 1997).  Sanderson et al. (2002) estimated that approximately 83 percent of the 

Earth’s land surfaces are connected with human activities, while McKibben (1989) 

proposed that human activities affect all landscapes, regardless of their perceived 

isolation. A dichotomy has long existed in the sciences, separating “natural” from 

“human” or “cultural” systems, leading to the supposition that human activities degrade 

natural systems.  As an alternative, Rappaport (1968) advocates the incorporation of 

ecological systems theory into anthropological work (see Stoddart, 1965 for a 

geographical perspective).  This perspective views organisms (and thus, humans) as part 

of, and interacting with, the abiotic and biotic components of their environments, leading 

away from the assumption that human activities entail inherently negative impacts on the 

landscape. 

One line for investigating the relationship of human activity and landscape change 

has relied on the use of remote sensing technologies. Traditional remote sensing methods 

of land-use and land-cover change (LUCC) analysis involve the use of per-pixel 

classification techniques (Dean and Smith, 2003), in which each pixel is assigned a single 

value (class) based upon the spectral properties of the objects within that particular pixel. 

Pixel-based approaches have been utilized to document vegetative cover (e.g. Carlson 
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and Sanchez-Azofeifa, 1999), determine the extent, causes, and effects of deforestation 

(e.g. Brokensha and Riley, 1978, Allen and Barnes, 1985; Arima et al., 2008; Mena, 

2008), examine changes to land cover across political borders (e.g. Kuemmerle et al., 

2006), and evaluate the impacts to land cover based on changes to political regimes 

(Bicik et al., 2001). Within the Mediterranean Basin, LUCC research has focused on 

physical transformations to the environment, demographic shifts, and regeneration of 

shrub lands or forests.  A majority of this work has focused on the detailed collection of 

on-the-ground data, often at the scale of the individual or village.  Much of this research 

has not looked at the Mediterranean Basin as a coupled human-environmental system and 

often cites population change as causing environmental degradation. 

In general, Mediterranean ecosystems support high species, landscape, and 

cultural diversity. However, traditional heterogeneous Mediterranean landscapes are 

changing dramatically in the face of agricultural abandonment, urbanization, economic 

development and political dynamics. Modern land-use change in Cyprus has been 

particularly abrupt in comparison with other islands in the Mediterranean. The political 

crisis of 1974 led to the partition of Cyprus into the Greek-speaking Republic of Cyprus 

(a member of the European Union) and the Turkish-speaking Turkish Republic of 

Northern Cyprus (TRNC).  Although population movements began prior to 1974, the 

forced resettlement of thousands of Greek Cypriots in the southern Republic and Turkish 

Cypriots in the north accelerated the processes of agricultural abandonment and 

urbanization, especially as Greek-speaking Cypriots left the farming villages of the north 

for the larger cities of the south.  
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Other episodes of landscape change in the Mediterranean have been conditioned 

by post-colonial politics and intensive economic development. However, the other large 

islands in the Western Mediterranean, Sicily, Sardinia and Corsica, were united with Italy 

or France by the 18
th

 or 19
th

 centuries. The only other large island in the Mediterranean, 

Crete, experienced a 20
th

 century episode of resettlement similar to Cyprus’.  In 1923 

Greece and Turkey exchanged ethnic inhabitants, with Christian inhabitants from Turkey 

settling in Crete, and expanding its population greatly.  Although the partition of Cyprus 

in 1974 is reminiscent of this massive resettlement, the difference in timing is particularly 

significant for the study proposed here.  Whereas the resettlement on Crete took place 87 

years ago, the large-scale land-use transformation on Cyprus has unfolded over the past 

40 years, an era well-documented by modern remote sensing technology.  Thus, Cyprus 

provides a case study of rapidly changing socio-economic factors and their effects on 

land use/land cover over a historically manageable time frame and leads to the following 

questions and predictions: 

How has the Cypriot landscape changed over approximately the last 50 years (island-

wide)? 

1. Due to population movements and a change in the economic base of Cyprus, 

urban areas are expected to expand, while outlying villages are expected to 

decline in extent. Development along the coast is expected to increase in response 

to a larger tourism sector. In addition, it is expected that agricultural plots shift 

from small, multi-crop plots to larger, single-species plots. 

Are there differences between the northern and southern portions of the island? If so, 

how do they differ in terms of land cover composition and change over time? 
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2. Differences are expected across the island with coasts developing more quickly 

and extensively in the southern portion of the island. Along this same line of 

reasoning, urban expansion is expected to be greater in the southern areas of the 

island. It is also expected that agricultural plots remained similar in size and 

configuration in the northern area due to limited trade and economic development 

after 1974. 

3. In terms of landscape configuration, less heterogeneity is predicted in the south as 

urban areas and size of agricultural plots increase. 

Land cover maps and the transitions between land covers for different time 

periods will be combined with species distribution modeling results (Chapters 4 and 5) to 

discuss the expected impacts of changing land covers on species distributions over time 

(Chapter 6). 

Methods 

Data acquisition 

Assessments of land-cover change often are accomplished through the use of 

remote sensing or aerial photography.  For the purposes of this case study, Landsat 

images provide the most economical and easily accessible data source while maintaining 

a spatial resolution appropriate to the scale of the processes of interest.  Landsat imagery 

is provided at no cost and most data are available for immediate download from the 

USGS Earth Resources Observation and Science Center website
2
. The Landsat imagery 

utilized in this case study spans multiple years, sensor types, and spatial resolutions 

(Table 1) due to differences in flight paths and sensors between 1973 and 2011. Although 

                                                 
2
 http://glovis.usgs.gov/ 
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it is not ideal to use data of differing resolutions from multiple sensor types, this is 

currently one of the best ways to examine LULC patterns over this time span. Cloud-free 

images (0-10% cloud coverage) were selected to correspond as closely as possible to 10-

year anniversary dates between images. Cloud-free imagery was not available for the tip 

of the Karpas Peninsula in 1984 nor for the majority of the island in 1982 or 1985, so 

analysis was conducted without a portion of the Karpas.  The 1973 Landsat 1 MSS and 

1984 Landsat 5 MSS images were resampled to 30 m resolution, the same spatial 

resolution as the 2011 Landsat images. This resampling does not improve data quality or 

resolution; it just creates a grid (pixels) of the same extent as other images, which is a 

necessary step for maintaining the information available in the higher-resolution imagery. 

The inclusion of data across differing spatial and spectral properties permits the use of 

Landsat 1 MSS images (Table 1), which provide a snapshot of the landscape of Cyprus 

prior to the rapid urbanization and resettlement of the island’s population triggered by the 

partition in 1974.  Land cover after the partition of Cyprus will be documented through 

the analysis of subsequent Landsat images taken between 1984 until 2011. 

  



 

   

2
4 

Table 1. Characteristics of each Landsat image as downloaded from the United States Geological Survey 

(http://glovis.usgs.gov/). Landsat imagery were utilized to determine the land cover categories and their transitions between 

1973 and 2011 across the entire island of Cyprus. Landsat MSS data were resampled to 30m pixel size to match other data 

used for analyses. 
Image 

Type 

Sensor Image Date Pixel size (m) Data Type 

(USGS) 

Sun Azimuth Sun Elevation Path/Row 

Landsat1 MSS 3-Jan-73 79 L1T 150.7260087 25.20692169 189/35 

Landsat1 MSS 3-Jan-73 79 L1T 150.0661437 26.31382248 189/36 

Landsat1 MSS 4-Jan-73 79 L1T 150.5719299 25.23685933 190/36 

Landsat1 MSS 4-Jan-73 79 L1T 149.910059 26.34121105 190/35 

Landsat5 MSS 2-Jul-84 79 L1T 108.6011198 61.15808765 176/35 

Landsat5 MSS 2-Jul-84 79 L1T 105.7882573 61.33619238 176/36 

Landsat5 TM 4-Aug-90 30 L1T 112.63 57 176/36 

Landsat5 TM 4-Aug-90 30 L1T 114.4973965 55.68462538 176/35 

Landsat5 TM 29-Aug-90 30 L1T 125.4173837 51.07878476 175/35 

Landsat7 ETM+ 22-May-01 30 L1T 118.9826065 65.2556642 176/36 

Landsat7 ETM 22-May-01 30 L1T 122.0773288 64.74520348 176/35 

Landsat7 ETM  31-May-01 30 L1T 118.9690199 65.56355972 175/35 

Landsat5 TM 29-Jul-11 30 L1T 120.9881413 61.8290057 176/35 

Landsat5 TM 29-Jul-11 30 L1T 118.2264626 62.3140039 176/36 

Landsat5 TM 7-Aug-11 30 L1T 124.6010025 60.300179 175/35 
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Accuracy assessment data 

  Remotely sensed data from a 2008 Landsat image were analyzed to characterize a 

variety of land-cover classes prior to the collection of preliminary field data in May and 

June 2008. The sampling area (Figure 3) was designed to provide continuous sampling 

from the northern coast at Kyrenia to the Akrotiri Peninsula and the adjacent city of 

Limasol on the south coast.  This Landsat sample area totals approximately 1,485 km
2
 

and represents 16% of the island’s area.  Land-cover classes for vegetation in this area 

were derived using an unsupervised Iterative Self-Organizing Data Analysis (ISODATA) 

classification technique to create clusters based on spectral signatures within the image 

(Figure 4).   

Figure 3. Image illustrating the 2008 sampling area as selected from a Landsat image of 

the same year. The sampling area covers a coast-to-coast transect and covers the entire 

elevational gradient of the island. 
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Figure 4. Land cover classification scheme and the results of the initial 2008 study area. 

The image was classified using ISODATA analysis and the results of the land cover 

classification were used to create a stratified random sample of land cover classes for on-

the-ground point sampling of vegetation cover.  

 

Seven hundred forty-eight locations across Cyprus were selected utilizing a 

stratified random sampling scheme based on land-cover types derived from classification 

of the 2008 image.  During the summer 2008 field season, qualitative observations of 

vegetation composition and cover were collected at 131 random locations (17.5% of the 

random locations selected from the 2008 Landsat image). After the 2008 field season, 

additional vegetation data were collected at 390 non-random and 25 random sample 

points designated in 2009 – 2011, which were supplemented with data from 114 

historical points (Figure 5). Only the field observations (n = 546; data from historical 
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points excluded) will be utilized in accuracy assessment of the remote sensing 

classifications. 

 
Figure 5. Distribution of vegetation sampling points across Cyprus. Sampling points 

were collected between 2008 and 2001 and represent a full complement of the elevational 

gradient of the island. Each point’s geographical coordinates (latitude/longitude) were 

recorded, along with the species present, an estimate of the vegetative cover and the land 

cover category. Each point represents approximately 100 m in diameter. 

 

At each observation point, the locational data (latitude, longitude and elevation) 

were determined using a hand-held global positioning system receiver (GPS). Perennial 

plant species for both the random and non-random points were recorded over sample 

areas of about 100 m
 
diameter.  In addition, aspect, substrate, plant species present and 

estimated vegetation cover were collected at each point. Topographic variables 
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(elevation, slope and aspect) were derived for all the sample points from ASTER digital 

elevation models (DEMs). Nomenclature follows Trees and Shrubs in Cyprus (Tsintides 

et al., 2002), Flora of Cyprus (Miekle, 1985), and An Illustrated Flora of North Cyprus 

(Viney, 1994). 

Image pre-processing 

Atmospheric correction 

Electromagnetic radiation signals are distorted through absorption and scattering 

by aerosols and gases as they pass through the atmosphere, impacting the measurement of 

surface radiance by satellite systems. This radiometric distortion results in the reporting 

of altered reflectance values (Hodgson and Shelley, 1994) and may cause inaccurate 

interpretations of land cover (Holben and Justice, 1981; Colby and Keating, 1998). The 

type of image analysis and availability of atmospheric data dictate the necessity and 

ability to apply one of the available atmospheric corrections. 

Several kinds of atmospheric corrections have been developed to correct for 

scattering and absorption due to aerosols due to their unpredictability in time and space 

(Chavez, 1988, 1996; Hall et al., 1991; Kaufman, 1993; Jensen et al., 1995; Lillesand et 

al., 2004; Mahiny and Turner, 2007). Atmospheric correction is utilized to minimize 

distortion by converting the digital number (DN, sometimes referred to as brightness 

values) to reflectance values, which provides a correction for comparisons across 

multiple dates and sensor types. Within IDRISI Selva
3
 (v. 17.0 –17.02), four atmospheric 

correction models are available:  

                                                 
3
 http://clarklabs.org/ 
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1. Dark object subtraction model (see Chavez, 1988). As implemented in IDRISI, an 

estimate of the DN of haze (using a dark object from the image as the estimate), 

sun elevation, central wavelength of the band, date and time of the image, and 

Lmin/Lmax (minimum and maximum values of radiance for the band) are 

required (Eastman, 2012).  

2.  Cos(t) model (see Chavez, 1996). This model incorporates the parameters used in 

the dark object subtraction model, but includes a calculation that estimates the 

effects of scattering and absorption. There are no additional data requirements 

beyond those of the dark object subtraction model (Eastman, 2012). 

3.  Full correction model (see Turner and Spencer, 1972; Forester, 1984). This 

model requires the parameters from the dark object correction model, plus an 

estimate of the optical thickness of the atmosphere and the spectral diffuse sky 

irradiance (Eastman, 2012). 

4. Apparent reflectance model. This model only requires the sun elevation as a 

model parameter (Eastman, 2012), but does not correct for atmospheric scattering 

and absorption (Chavez, 1996). 

The Cos(t) model was selected for use in this study, since it works well in semi-arid to 

arid environments (Chavez, 1996). This model first converts to normalized at-sensor 

reflectance, and then to proportional surface reflectance with values ranging from 0.0 to 

1.0. Correction factors, including the DN for dark objects as selected using the near-

infrared band (NIR) for each band and image combination, are summarized in Table 2.   

 



 

 

 

3
0
 

Table 2. Data in this table were used to atmospherically correct each band of each Landsat image. The numbers in the header row 

refer to the band number for each specific path/row and satellite sensor combination. Bold numbers in the table are the wavelength of 

the band center (µm). Other numbers are Lmin and Lmax, or the radiance at Digital Number (DN) 0 and DN 255. The Lmin and Lmax 

are measured in Wm
-2

sr
-1

mm
-1

 (Watts per square meter per steradian per micron). 

 

B1 B2 B3 B4 B5 B6 B7 

DN haze 

NIR band 

1973 

   
0.55 0.65 0.75 0.95 

 
189/35 

   

0.000/201.000 9.100/171.300 -8.400/161.600 0.000/159.000 7 

189/36 

   

0.000/201.000 9.100/171.300 -8.400/161.600 0.000/159.000 7 

190/36 

   

0.000/201.000 9.100/171.300 -8.400/161.600 0.000/159.000 7 

190/35 

   

0.000/201.000 9.100/171.300 -8.400/161.600 0.000/159.000 7 

1984 0.55 0.65 0.75 0.95 

    
176/35 2.500/220.800 2.700/163.600 3.800/150.700 2.900/117.500 

   

4 

176/36 2.500/220.800 2.700/163.600 3.800/150.700 2.900/117.500 

   

8 

1990 0.485 0.56 0.66 0.83 1.65 

 

2.215 

 
176/36 -1.520/169.00 -2.840/333.00 -1.170/264.000 -1.510/221.000 -0.370/30.200 

 

-0.150/16.500 8 

176/35 -1.520/169.00 -2.840/333.00 -1.170/264.000 -1.510/221.000 -0.370/30.200 

 

-0.150/16.500 10 

175/35 -1.520/169.00 -2.840/333.00 -1.170/264.000 -1.510/221.000 -0.370/30.200 

 

-0.150/16.500 8 

2001 0.485 0.56 0.66 0.835 1.65 

 

2.22 

 
176/36 -6.200/293.700 -6.400/300.900 -5.000/234.400 -5.100/241.100 -1.000/47.570 

 

-0.350/16.540 17 

176/35 -6.200/191.600 -6.400/196.500 -5.000/152.900 -5.100/241.100 -1.000/31.060 

 

-0.350/10.800 18 

175/35 -6.200/191.600 -6.400/196.500 -5.000/152.900 -5.100/241.100 -1.000/31.060 

 

-0.350/10.800 12 

2011 0.485 0.56 0.66 0.83 1.65 

 

2.215 

 
176/35 -1.520/193.000 -2.840/365.000 -1.170/264.000 -1.510/221.000 -0.370/30.200 

 

-0.150/16.500 19 

176/36 -1.520/193.000 -2.840/365.000 -1.170/264.000 -1.510/221.000 -0.370/30.200 

 

-0.150/16.500 10 

175/35 -1.520/193.000 -2.840/365.000 -1.170/264.000 -1.510/221.000 -0.370/30.200 

 

-0.150/16.500 15 
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Mosaicing 

 Evaluation of land cover conditions across Cyprus required use of multiple tiles 

from Landsat (see Table 1; a tile is indicated by the path/row combination). The 

combining or mosaicing of tiles increases the difficulty of processing the imagery. One 

issue in this regard is that even after atmospheric correction, atmospheric conditions may 

vary enough between images (especially across multiple paths) that the reflectance values 

will not match in scale. To avoid this issue, images were classified or analyzed prior to 

creating a mosaic of images.       

Image classification and analysis 

Image ratios, change images, NDVI, and Tasseled Cap 

One type of spectral enhancement technique that helps to inform land-cover 

classification is the creation of ratio images. These “new” ratio images utilize 

combinations of bands to highlight differences between the spectral reflectances of 

materials without the effects of topography and insolation. They are utilized often in 

assessing the presence and condition of green vegetation (Lillesand et al., 2004). The 

Simple Ratio (or Ratio Vegetation Index) is expressed as: NIR/red, where NIR is the near 

infrared band and red is the red band. This index indicates the presence of green 

vegetation and also helps distinguish between bare soil and vegetation. As the density of 

vegetation increases within a pixel, the value increases from 1 (bare soil). A disadvantage 

of this index is that pixel values are not bounded (Birth and McVey, 1968). Change 

images are simple methods that utilize mathematical operations to evaluate change 

without classification of an image. Image differencing simply involves the subtraction of 
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one band in an image from the same band in another image (usually most recent image – 

older image). Percent change (recent-old/old) and standardized difference images also 

can be produced easily. These types of analysis can highlight areas that have changed 

spectrally between time periods; the threshold of change versus non-change is determined 

by the analyst and is commonly set at one standard deviation (Warner and Campagna, 

2009). The normalized difference vegetation index (NDVI) is calculated as: (NIR-

red)/(NIR+red). The brightness values in the NDVI image range from -1 to 1, where 

areas of high chlorophyll density, and thus, high vegetation density, have higher values 

than areas with low vegetation densities.  An index to assess the physical characteristics 

of agricultural fields was developed for Landsat-1 and -2 MSS bands by Kauth and 

Thomas (1976). The Tasseled Cap or Kauth-Thomas Transformation allows the analyst 

to view vegetation brightness, greenness, and yellowness in separate bands, or as a false 

color composite. This transformation distinguishes agricultural fields from bare soil and 

other features nearly year-round. Crist and Cicone (1984) modified the Tasseled Cap 

Transformation for use with Landsat-4 through -7 TM, ETM, and ETM+ sensors. This 

version of the Tasseled Cap Transformation features brightness, greenness, and wetness 

as separate bands for image feature differentiation. After ratio images and spectral 

transformations are conducted, all of the images are qualitatively assessed for tonal 

differences between and among images to determine image features and to distinguish 

differences in vegetative cover (e.g. forest from agriculture). 
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Image classification 

Land-cover classes for the sample points were derived using a hybrid 

classification technique, as this method is more robust than supervised or unsupervised 

techniques alone (Wulder et al. 2004), particularly in areas where training or ground truth 

data (e.g. site visits or aerial photographs) are not available (Bauer et al., 1994; Lark, 

1995).  Image classification began with the 2011 image and the classification system 

derived from the 2011 image is then applied to the remaining images (Table 3).  

Unsupervised Iterative Self-Organizing Data Analysis and Clustering (Isoclust, a 

variation of ISODATA) was used for image classification. An image layer consisting of 

all of the bands chosen for analysis (see Table 1, no derived data were used as 

classification layers) was analyzed by creating a set of arbitrary clusters, with pixels then 

assigned to the nearest cluster location using a maximum likelihood procedure (Eastman, 

2012). The mean reflectance value is calculated once all pixels are assigned to a cluster 

and the process is repeated until no significant change occurs between pixel groupings. A 

histogram of the clusters (classes) is displayed for the user, who can now determine the 

appropriate number of clusters to generate through the classification process (Warner and 

Campagna, 2009; Eastman, 2012). The number of clusters to keep through the 

subsequent assigning of pixels to clusters depends upon the analyst. A small number of 

clusters (based upon the major break points in the histogram) will provide generalized 

land cover categories, necessitating little reassignment of clusters. In this case, a number 

of clusters approximately double that of major classes was selected (20-25 clusters) in 

order to capture some of the land covers that are not common.  Next, a supervised 
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classification was performed and the clusters were assigned to land cover categories 

(Table 2.2), following the CORINE land cover technical guide (Bossard et al., 2000). 

However, not all CORINE categories (e.g. Class 4 – Wetlands) were utilized in this 

analysis. In this case, this decision is due to the limited nature of wetlands on Cyprus. 

Other subcategories were not utilized based upon their usefulness in classifying the 

Cypriot landscape and their ability to discern features. The CORINE land-cover classes 

are derived in a vector-based system (features are digitized on screen) at a minimum 

mapping unit of 25 hectares (note that future CORINE products will be produced in a 

semi-automated manner). Classes were renumbered (e.g. Class 13 in this system is Water 

bodies) to reflect exclusion of categories. The determination of land cover category was 

based upon the features highlighted in each of the spectral enhancements (image ratios, 

change images, NDVI, and tasseled cap) and a false color composite of each image date.      

Table 3. Land cover classes that were expected across the Landsat images of Cyprus. 

Land cover classification scheme derived from CORINE land  cover categories (Bossard 

et al., 2000). 
Class 

number 

Sub-class Name Description 

1  Artificial areas Includes urban areas and mine, industrial, and 

construction sites 

2  Agricultural 

areas 

Includes arable land, permanent crops, pastures, 

heterogeneous agricultural plots (more than one type 

of agricultural product in one area) 

 3 Arable land  

 4 Permanent crops  

 5 Pastures  

 6 Heterogeneous 

agricultural areas 

 

7  Forest and semi-

natural areas 

Includes forests, shrub, and herbaceous cover. Also 

includes natural areas that are mostly open space with 

little vegetative cover 

 8 Forests  
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Class 

number 

Sub-class Name Description 

 9 Shrubs and/or 

herbaceous 

vegetation 

associations 

 

 10 Natural grassland  

 11 Open spaces  

 12 Bare rock/soil  

13  Water bodies Includes inland waters, marine waters, and water 

courses (including canals) 

14  Clouds  

 

Change analysis 

 Post-classification change detection is used to quantify differences between time 

periods. Changes are represented for each comparison (e.g. 1973 to 1984, 1984 to 1990, 

etc.) in a matrix illustrating “from-to” land cover classes and total number of pixels 

changed between classes. Land cover categories and areas of change are layered to create 

images that illustrate the geographical extent of each. Images created during pre-

processing (change images) can also help to inform the areas of change. 

An accuracy assessment is only viable for the 2011 classified image as reference 

images and on-the-ground field data are not available to serve as reference data for other 

classifications of other time steps. One hundred and fifty-one reference pixels were 

selected randomly from the on-the-ground observation data (27.7% of on-the-ground 

observation data). The reference pixel coordinates were then located on Google Earth 

imagery, aerial photos, and the pre-processing imagery for land cover categorization. An 

error matrix was constructed (Tables 4 and 5) to highlight errors within the classification 
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categories of the 2011 Landsat image based upon reference pixel categorization, and 

accuracy statistics were calculated (cf. Lillesand et al. 2004).   

Table 4. Error matrix for the 2011 Landsat land cover classification scheme. Error matrix 

was constructed using 151 reference points. The reference points were randomly selected 

from on-the-ground survey points collected between 2008 and 2011. 
    Reference Data   

Classified Data Background Artificial  

areas 

Agricultural 

Areas 

Forests Shrubs/ 

Herbaceous 

Cover 

Bare  

Rock/ 

Soil 

Classified 

(Row) 

Totals 

Background 0 0 2 0 2 0 4 

Artificial  

Areas 0 7 1 0 0 0 8 

Agricultural 

Areas 0 3 3 0 0 1 7 

Forests 0 1 4 41 4 1 51 

Shrubs/ 

Herbaceous 

Cover 0 6 22 17 23 4 72 

Bare Rock/Soil 0 0 2 0 2 2 6 

Column 

(Reference) 

Total 0 17 34 60 32 8 151 

 

Table 5. Accuracy assessment summary statistics for each land cover category in the 

2011 classified Landsat image. The Producer’s accuracy is a measure of omission and the 

User’s accuracy is a measure of commission. 

          Class  Classified Number Producer’s User’s 

          Name  Totals Correct Accuracy Accuracy 

Background  4 0 --- --- 

Artificial Areas  8 7 41.18% 87.50% 

Agricultural Areas  7 3 8.82% 42.86% 

Forests  51 41 68.33% 80.39% 

Shrubs/Herbaceous 

Cover 

 

72 23 71.88% 31.94% 

Bare Rock/Soil  6 2 25.00% 33.33% 

         Totals  151 76 

        

Overall Classification Accuracy =50.33%    

Overall Kappa Statistics = 0.3344    
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Landscape pattern analysis 

Landscape pattern analysis is useful in analyzing changes in the distribution, 

number, size, and aggregation of land cover classes across the landscape.  For use with 

data broken up into grids (e.g., based on remote sensing or aerial photography), Turner et 

al. (2001) define a patch as “a contiguous group of cells of the same mapped category.”  

However, the analyst must determine what constitutes contiguous, with the most common 

guidelines being a four-neighbor rule (including cells that touch on the horizontal and 

vertical sides of the cell of interest) or an eight-neighbor rule (including the immediately 

surrounding horizontal, vertical, and diagonal cells).  An eight-neighbor rule is applied to 

the classified imagery to capture landscape-scale heterogeneity; however, metrics are 

calculated at the class level to determine variation between land cover classes.  

Specifically, metrics were employed at the class level that determined the area of 

patches, the diversity or evenness of land covers in a neighborhood (7x7 neighborhood 

size), the edge density, the change process and the compactness of patches (Eastman, 

2012).  The evenness index (diversity of land covers) ranges from 0 to 1 and is an 

indicator of how uniform the landscape is within a neighborhood (number of pixels under 

analysis). Values near 0 indicate that the land cover is uniform, while values near 1 

indicate the maximum diversity of land cover categories. Edge density measures the 

fragmentation of the neighborhood under analysis and is calculated by comparing the 

number of adjacent pairs of pixels that are different from each other (in land cover 

category) relative to the maximum number of different pairs possible within the same 

neighborhood. The index ranges in value from 0 to 1 with values of 0 indicating that 
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there is very little fragmentation and values near one indicating maximum fragmentation 

(or number of edges) within the neighborhood. The change process metric is a means of 

comparing two images of different dates and measures the type of change occurring 

between time steps within each land cover category. The change process is determined by 

comparing the number of land cover patches present at each time step and calculates 

changes in their areas and perimeters (cf. Bogaert et al., 2004). The categories of change 

process are summarized in Table 6. The compactness index ranges from 0 to 1, where 0 

indicates the land cover class of interest is maximally aggregated, while numbers near 1 

indicate maximum disaggregation (Eastman, 2012). 

Table 6.  Types of change processes possible within IDRISI. Change process describes 

how land covers are changing between two time periods. Table based on Eastman (2012). 

Change 

process Description 

Deformation The shape of patches is changing 

Shift The position of patches is changing 

Perforation The number of patches remains constant but the area decreases 

Shrinkage The number of patches remains constant but the area and perimeter 

decrease 

Enlargement The number of patches is constant but the area increases 

Attrition The number of patches and area decrease 

Aggregation The number of patches decreases but area is constant or increasing 

Creation The number of patches and are increasing 

Dissection The number of patches is increasing and the area is decreasing 

Fragmentation The number of patches increases and the area is strongly decreasing 

 

Results 

Image classification and analysis 

 Landsat imagery was classified for five time steps (1973, 1984, 1990, 2001 and 

2011) and evaluated for changes in land cover category and landscape configuration 
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between each time step. Each path/row of the Landsat images was classified separately to 

reduce effects from image capture at different dates, times and sensor. The land cover 

categories from the CORINE Land Cover Technical Guide (Bossard et al., 2000) were 

adapted for a pixel-based analysis resulting in six classification categories: artificial 

areas, agricultural areas, forests, shrubs and/or herbaceous vegetation, bare soils/rocks 

and water (see Table 6 for a description of the categories). The ISOCLUST classifier 

created groups of pixels with similar spectral responses and the groups were then 

assigned to a land cover category based on comparisons with the NDVI, Tasseled Cap 

and false-color composite images. Maps depicting the land cover for 1973, 1984, 1990, 

2001 and 2011 are included as Figures 6, 7, 8, 9 and 10, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Map of the land cover classification for the mosaiced 1973 Landsat images, 

derived using an ISOCLUST classifier. In this image artificial areas are not evident at the 

scale of analysis (30 m pixels).  
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Figure 7. Map of the land cover classification for the mosaiced 1984 Landsat images, 

derived using an ISOCLUST classifier. Agricultural areas in the southeast of the country 

have increased in agricultural land covers. 

 
Figure 8. Map of the land cover classification for the mosaiced 1990 Landsat images, 

derived using an ISOCLUST classifier. The Mesaoria Plain shows an increase in 

agricultural land covers and the urban area of Nicosia evident in the plain. 
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Figure 9. Map of the land cover classification for the mosaiced 2001 Landsat images, 

derived using an ISOCLUST classifier. The Troodos Range shows an increase in forests 

and the urban areas of Nicosia, Larnaka and Limasol are clearly delineated. 

 

Figure 10. Map of the land cover classification for the mosaiced 2011 Landsat images, 

derived using an ISOCLUST classifier. The urban areas have increased in extent. 
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The 2011 classified image (Figure 10) was assessed for pixels that were 

misclassified through the construction of an error matrix that compares the classification 

of pixels to their actual land cover as verified on the ground or through higher resolution 

imagery (Congalton, 1991). Errors of commission (total number of correctly classified 

pixels in category/total number of pixels as classified belonging to the category) and 

errors of omission (total number of pixels correctly classified pixels/total number of 

pixels identified as the category from reference data) are calculated from the error matrix.  

Shrubs and/or herbaceous vegetation had a producer’s accuracy (errors of omission) of 

71.88% and forests were at 68.33% (Table 5), indicating the probability that reference 

pixels are successfully identified using the ISOCLUST algorithm. Artificial areas and 

forests had user’s accuracies (errors of commission) of 87.50% and 80.39%, respectively. 

This is a measure of reliability that indicates the probability of a pixel identified as either 

of these classes actually belonging to the same class on the ground (Congalton, 1991). 

Overall accuracy and a Kappa statistic also were calculated to evaluate the 

classification results further. Overall classification accuracy was 50.33% and the Kappa 

statistic (KHAT) was 33.44% (Table 5). Overall accuracy indicates that only half of the 

pixels are correctly classified when judged against reference data. The KHAT statistic 

measures the difference between the observed accuracy (agreement between the reference 

data and an automated classifier) and chance agreement (agreement between the 

reference data and a random classifier) (Lillesand and Kiefer, 2000). The KHAT statistic 

for the 2011 classified map indicates that it is 33% better than if the result had occurred 
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by chance and is ranked as fair in terms of strength of agreement (Landis and Koch, 

1977). 

Change analysis 

Matrices were constructed to evaluate the changes in land cover categories 

between each time step (Tables 7 to 10). The cross-tabulation (from-to) matrix for 1973 

to 1984 (Table 7) shows that 1.34% of shrub and/or herbaceous vegetation changed to 

artificial areas by 1984 and 3.74% of artificial areas in 1973 were classified as shrub 

and/or herbaceous cover in 1984. Agricultural areas comprise 9.76% of the landscape in 

1973 but increase to 11.97% by 1984. Forests decline from7.08% in 1973 to 4.74% in 

1984 with 2.34% of the change attributed to transition from forest to shrub and/or 

herbaceous vegetation. 

Table 7. Proportional cross-tabulation of land cover categories. The table tabulates the 

portion of a class in 1973 (columns) that transition to each other class in 1984 (rows). 

Total proportional area for each category is shown along the bottom (1973 totals) and 

along the right side (1984 totals) of the table. See Table 3 for classification system. 
 

 1973 Land Cover Classification (proportional area) 

1
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0 2 8 9 12 Total 

0 0.6552 0.0008 0.001 0.0005 0.0001 0.6576 

1 0 0.0062 0.0004 0.0134 0.0037 0.0237 

2 0 0.0321 0.0089 0.052 0.0268 0.1197 

8 0.0006 0.0139 0.0317 0.0012 0 0.0474 

9 0 0.0374 0.0234 0.0322 0.0104 0.1035 

12 0 0.0071 0.0012 0.017 0.0181 0.0434 

13 0.0004 0.0001 0.0042 0 0.0001 0.0047 
 

Total 0.6562 0.0976 0.0708 0.1163 0.059 1 

 

The 1984 to 1990 cross-tabulation (Table 8) shows an increase in agricultural 

areas from 11.97% of the landscape in 1984 to 21.18% of the landscape by 1990. A large 
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proportion of this change (5.79%) comes from forest transitioning into agricultural areas 

by 1990. The total area classified as bare soils/rocks in 1984 declines from 4.34% to 

0.54% in 1990. A transition from soils to agriculture accounts for 3.56% of the changed 

area. 

Table 8. Proportional cross-tabulation of land cover categories. The table tabulates the 

portion of a class in 1984 (columns) that transition to each other class in 1990 (rows). 

Total proportional area for each category is shown along the bottom (1984 totals) and 

along the right side (1990 totals) of the table. See Table 3 for classification system. 
 

 
 

1984 Land Cover Classification (proportional area) 
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0 1 2 8 9 12 13 Total 

0 0.6552 0 0.0004 0 0.0001 0.0001 0 0.6558 

1 0.0001 0.001 0.0029 0.0001 0.0038 0.002 0 0.0101 

2 0.0005 0.0221 0.0933 0.0024 0.0579 0.0356 0 0.2118 

8 0.0006 0 0.0011 0.0369 0.0097 0 0 0.0484 

9 0.0004 0.0005 0.0209 0.008 0.0314 0.002 0 0.0632 

12 0.0004 0.0001 0.001 0 0.0003 0.0036 0 0.0054 

13 0.0003 0 0.0001 0 0.0004 0 0.0046 0.0054 

 
Total 0.6576 0.0237 0.1197 0.0474 0.1035 0.0434 0.0047 1 

 

In 1990, 21.18% of the landscape is under cultivation (Table 9); however, this 

declines to 11.17% by 2001. The decline is split between increase to artificial areas 

(change of 3.24% between 1990 and 2001), increase in bare soil/rock (change of 3.29%), 

and increase in shrub and/or herbaceous vegetation (change of 3.57% between the two 

time steps). Forested areas increase from 4.84% of the landscape in 1990 to 8.92% in 

2001 with 2.48% of the change in transitions from shrub and/or herbaceous cover. 

Agricultural areas decline from 11.17% of the landscape to 7.98% between 2001 

and 2011, with a shift of 4.57% of land from agriculture to shrub and/or herbaceous 

vegetation (Table 10). Shrub and/or herbaceous cover increased overall, from 6.09% of 



 

45 

 

the landscape in 2001 to 12.79% in 2011. There also is a notable decline in artificial areas 

from 3.95% of the total land area in 2001 to 1.86% by 2011.  This shift is seen in a 

transition to forests (change of 4.57%). 

Table 9. Proportional cross-tabulation of land cover categories. The table tabulates the 

portion of a class in 1990 (columns) that transition to each other class in 2001 (rows). 

Total proportional area for each category is shown along the bottom (1990 totals) and 

along the right side (2001 totals) of the table. See Table 3 for classification system. 
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0 1 2 8 9 12 13 Total 

0 0.6552 0 0 0 0 0 0 0.6552 

1 0.0001 0.0028 0.0324 0.0002 0.0033 0.0006 0 0.0395 

2 0.0001 0.0019 0.0937 0.0012 0.0141 0.0007 0 0.1117 

8 0 0.002 0.0171 0.0446 0.0248 0.0005 0.0002 0.0892 

9 0.0001 0.0029 0.0357 0.0023 0.0197 0.0002 0 0.0609 

12 0.0002 0.0003 0.0329 0.0001 0.0013 0.0034 0 0.0382 

13 0 0.0001 0.0001 0 0 0.0001 0.0051 0.0054 
 

Total 0.6558 0.0101 0.2118 0.0484 0.0632 0.0054 0.0054 1 

 

Table 10. Proportional cross-tabulation of land cover categories. The table tabulates the 

portion of a class in 2001 (columns) that transition to each other class in 2011 (rows). 

Total proportional area for each category is shown along the bottom (2001 totals) and 

along the right side (2011 totals) of the table. See Table 3 for classification system. 
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0 1 2 8 9 12 13 Total 

0 0.6552 0 0 0 0 0 0 0.6552 

1 0 0.009 0.0042 0.0008 0.001 0.0036 0.0001 0.0186 

2 0 0.0075 0.0479 0.0014 0.0082 0.0147 0 0.0798 

8 0 0.0004 0.0041 0.0667 0.0071 0.0002 0 0.0785 

9 0 0.0179 0.0457 0.0174 0.0412 0.0056 0 0.1279 

12 0 0.0041 0.0087 0.0006 0.002 0.0139 0.0001 0.0295 

13 0 0.0004 0.0006 0.001 0.0003 0.0002 0.0047 0.0073 

 
14 0 0.0001 0.0005 0.0012 0.001 0 0.0004 0.0033 

 
Total 0.6552 0.0395 0.1117 0.0892 0.0609 0.0382 0.0054 1 

 

A cross-tabulation was also conducted for the time period of 1984 to 2001 to 

evaluate the changes that occurred after 1974 but prior to the opening of the UN 



 

46 

 

controlled buffer zone (Table 11). Over this time frame the largest change was observed 

in forest cover. In 1984 the landscape was composed of 4.74% forest and by 2001 forest 

cover increased to 8.92%. Shrub and/or herbaceous cover declined with transition of 

3.07% to artificial cover and 2.92% to forests. Evaluation of this time period indicates 

relatively little overall change to the percentage of the landscape designated as artificial 

areas (increase from 2.37% to 3.95%). 

Table 11. Proportional cross-tabulation of land cover categories. The table tabulates the 

portion of a class in 1984 (columns) that transition to each other class in 2001 (rows). 

Total proportional area for each category is shown along the bottom (1984 totals) and 

along the right side (2001 totals) of the table. See Table 3 for classification system. 
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0 1 2 8 9 12 13 Total 

0 0.6552 0 0 0 0 0 0 0.6552 

1 0.0002 0.0053 0.0173 0 0.0089 0.0077 0 0.0395 

2 0.0004 0.0131 0.0486 0.0009 0.0307 0.018 0 0.1117 

8 0.001 0.0004 0.0126 0.0443 0.0292 0.0015 0.0001 0.0892 

9 0.0004 0.0017 0.0247 0.0021 0.0272 0.0048 0 0.0609 

12 0.0001 0.0032 0.0165 0 0.0072 0.0112 0 0.0382 

13 0.0003 0 0.0001 0 0.0003 0.0001 0.0045 0.0054 
 

Total 0.6576 0.0237 0.1197 0.0474 0.1035 0.0434 0.0047 1 

 

Transitions maps were created for artificial areas, agricultural areas, forests and 

shrub and/or herbaceous vegetation (Figures 11-14). These maps illustrate the spatial 

arrangement of area gained, lost or persisting between time steps for each land cover 

category individually. In the maps for 1973 to 1984 transitions (Figure 11a-d), 

agricultural areas in the Troodos appear to decline while increases in agriculture are most 

pronounced from the southwestern edge of the Troodos foothills to the coast. With this 

agricultural transition, shrubs and/or herbaceous vegetation increase around the entire 
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Troodos foothills and throughout the Mesaoria Plain. Additional areas of shrub and/or 

herbaceous vegetation increase along the foothills of the Kyrenia Range, the Karpas 

Peninsula and the Akamas Peninsula. Artificial areas appear to increase the most across 

the Mesaoria Plain and along the southeastern coastline. Forest areas decline in the 

northern portions of both the Troodos and Kyrenia ranges. Many slopes with a 

predominately south to southeast orientation show increases in forested areas. 

(a) (b) 

(c) (d) 

Figure 11. Transition maps for 1973 to 1984. Green areas are pixels of increase in the 

specific land cover, red areas are pixels of decrease and yellow areas are areas that stay 

the same land cover between the two time periods. Map a depicts changes to agricultural 

areas, b is changes to shrubs and/or herbaceous covers, c illustrates changes to artificial 

areas and d shows changes to forests. 
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The transition maps for 1984 to 1990 (Figure 12a-d) show further increases in 

agriculture across the Mesaoria Plain and extension northward onto the Karpas Peninsula 

with small declines near Nicosia. Changes to agricultural areas are not very pronounced 

along the southeastern side of the Troodos during this time period. Shrubs and/or 

herbaceous vegetation decline dramatically long the northern fringe of the Troodos and to 

a lesser extent, across the Mesaoria Plain. The southeastern foothills to the coast 

experience some increases in shrub and/or herbaceous cover. Artificial areas increase 

near Nicosia and Limasol. A large patch of artificial area is seen in the center of the 

Troodos around a mine site developed during this time period. Forest cover stabilizes 

between 1984 and 1990, with only a few patches of loss scattered throughout the 

Troodos. 
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(a) (b) 

 

(c) (d) 

Figure 12. Transition maps for 1984 to 1990. Green areas are pixels of increase in the 

specific land cover, red areas are pixels of decrease and yellow areas are areas that stay 

the same land cover between the two time periods. Map a depicts changes to agricultural 

areas, b is changes to shrubs and/or herbaceous covers, c illustrates changes to artificial 

areas and d shows changes to forests. 

 

 Agricultural areas do not change much over the Mesaoria Plain between 1990 and 

2001 (Figure 13a), although a large area of loss is evident near Nicosia, Limasol, Larnaka 

and in a patch of the northern foothills of the Troodos. Shrubs and/or herbaceous 

vegetation show a slight decline across the entire island, with a ribbon of decline evident 

along the buffer zone (Figure 13b). Artificial areas increase in the areas of agricultural 

decline (Figure 13c) and a network of roads becomes more apparent across the landscape. 
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Forests maintain their configuration between 1990 and 2001, with additions in the 

Troodos and Kyrenia Ranges and Morphou Bay (Figure 13d).  

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure 13. Transition maps for 1990 to 2001. Green areas are pixels of increase in the 

specific land cover, red areas are pixels of decrease and yellow areas are areas that stay 

the same land cover between the two time periods. Map a depicts changes to agricultural 

areas, b is changes to shrubs and/or herbaceous covers, c illustrates changes to artificial 

areas and d shows changes to forests. 

 

 The Karpas Peninsula experiences an increase in agricultural areas between 2001 

and 2011 while the southeast end of the Mesaoria Plain shows a decline (Figure 14a). 

Much of the Mesaoria Plain is stable over this time period and does not increase or 

decrease in agricultural land cover. Shrubs and/or herbaceous vegetation appear to 

experience the most dramatic changes between 2001 and 2011 with increases in cover 
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across much of the island (Figure 14b). Increases are particularly high along the southeast 

and northwest ends of the Mesaoria Plain. Much of the southwestern side of the Troodos, 

extending to the coast, maintains shrub and/or herbaceous cover between 2001 and 2011, 

however many areas in this region also experience an increase in this cover type. There is 

still evidence of growth in artificial areas near Nicosia, Larnaka and Limasol, with 

additional coastal areas along the south also increasing in this land cover type (Figure 

14c). Forest areas are largely maintained with increases to forest cover along the Karpas 

Peninsula (Figure 14d).  
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure 14. Transition maps for 2001 to 2011. Green areas are pixels of increase in the 

specific land cover, red areas are pixels of decrease and yellow areas are areas that stay 

the same land cover between the two time periods. Map a depicts changes to agricultural 

areas, b is changes to shrubs and/or herbaceous covers, c illustrates changes to artificial 

areas and d shows changes to forests. 

  

Changes in northern and southern Cyprus 

  To examine changes occurring on different parts of the island, the UN controlled 

buffer zone was used as a boundary to divide Cyprus into northern and southern portions. 

Over the entire period of evaluation (1973-2011) large shifts in land cover categories are 

not evident (Table 12). The largest change is in the shrub and/or herbaceous cover, which 

experienced a decline from 4.99% to 3.26% of the entire landscape. A majority of the 

difference is in transition to agricultural land covers (2.88%). In 1973 artificial areas are 
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not evident across the entire island, and by 2011 they constitute only 0.46% of the 

northern area (1189.28 km
2
). When the time period since 1974 (1984-2011 images) is 

considered more details emerge (Table 13). For example, an increase in forests occurs 

from 1984 to 2011, increasing from 3.92% to 5.53% of northern Cyprus. Agricultural 

areas increase from 3.92% to 5.53% of the northern area, while artificial areas decrease 

from 1.29% to 0.46%. In southern Cyprus, agricultural areas decline from 6.20% in 1973 

to 2.44% in 2011 (Table 14), while forested area increase in extent over the same period 

(from 5.61% to 6.16%). Shrub and/or herbaceous vegetation cover experiences the largest 

change between time periods, with an increase from 6.64% in 1973 to 9.53% in 2011. 

Between 1984 and 2011 agricultural areas declined from 8.05% of the southern landscape 

to 2.44%; much of this transition was to shrub and/or herbaceous vegetation (4.51%) 

(Table 15). Forests also experienced noticeable change during this time period, gaining 

2.06% of the landscape. Looking at just the time between closing and re-opening of the 

buffer zone (1984-2001 image dates), forest areas experienced an increase in extent, 

growing from 6.20% in 1984 to 7.19% in 2001. 
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Table 12. Proportional cross-tabulation of land cover categories for northern Cyprus 

from 1973 to 2011. The table tabulates the portion of a class in 1973 (columns) that 

transition to each other class in 2011 (rows). Total proportional area for each category is 

shown along the bottom (1973 totals) and along the right side (2011 totals) of the table. 

See Table 3 for classification system. 
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0 2 8 9 12 Total 

0 0.8805 0 0 0 0 0.8805 

1 0 0.001 0.0001 0.0024 0.0011 0.0046 

2 0 0.0127 0.0009 0.0288 0.013 0.0553 

8 0.0001 0.006 0.0077 0.0028 0.0003 0.0169 

9 0 0.014 0.0029 0.0132 0.0025 0.0326 

12 0 0.0006 0.0001 0.0019 0.0023 0.0048 

13 0.0002 0.0002 0.002 0.0001 0 0.0025 
 

14 0 0.0013 0.0008 0.0006 0.0001 0.0028 
 

Total 0.8807 0.0356 0.0146 0.0499 0.0192 1 

 

Table 13. Proportional cross-tabulation of land cover categories for northern Cyprus 

from 1984 to 2001. The table tabulates the portion of a class in 1984 (columns) that 

transition to each other class in 2001 (rows). Total proportional area for each category is 

shown along the bottom (1984 totals) and along the right side (2001 totals) of the table. 

See Table 3 for classification system. 
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0 1 2 8 9 12 13 Total 

0 0.8805 0 0 0 0 0 0 0.8805 

1 0.0002 0.0015 0.0033 0 0.0023 0.002 0 0.0093 

2 0.0004 0.0087 0.0209 0.0003 0.0156 0.0112 0 0.0572 

8 0.001 0.0001 0.0029 0.0057 0.0071 0.0004 0 0.0172 

9 0.0004 0.0009 0.0069 0.0004 0.0089 0.0025 0 0.0201 

12 0.0001 0.0017 0.0052 0 0.0028 0.0035 0 0.0133 

13 0.0003 0 0 0 0.0001 0 0.0019 0.0024 

 
Total 0.8829 0.0129 0.0392 0.0064 0.0369 0.0196 0.0019 1 

 

 

 

 



 

55 

 

Table 14. Proportional cross-tabulation of land cover categories for southern Cyprus 

from 1973 to 2011. The table tabulates the portion of a class in 1973 (columns) that 

transition to each other class in 2011 (rows). Total proportional area for each category is 

shown along the bottom (1973 totals) and along the right side (2011 totals) of the table. 

See Table 3 for classification system. 
 

 1973 Land Cover Classification (proportional area) 
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0 2 8 9 12 Total 

0 0.7748 0 0 0 0 0.7748 

1 0 0.0027 0.0005 0.0067 0.0041 0.014 

2 0 0.0043 0.0006 0.011 0.0086 0.0244 

8 0.0005 0.0205 0.0354 0.0048 0.0004 0.0616 

9 0 0.0317 0.0164 0.0351 0.012 0.0953 

12 0 0.0021 0.0006 0.008 0.014 0.0247 

13 0.0002 0.0007 0.0023 0.0007 0.0007 0.0047 
 

14 0 0 0.0003 0 0.0001 0.0004 
 

Total 0.7756 0.062 0.0561 0.0664 0.0399 1 

 

Table 15. Proportional cross-tabulation of land cover categories for southern Cyprus 

from 1984 to 2001. The table tabulates the portion of a class in 1984 (columns) that 

transition to each other class in 2001 (rows). Total proportional area for each category is 

shown along the bottom (1984 totals) and along the right side (2001 totals) of the table. 

See Table 3 for classification system. 
 

 
 

1984 Land Cover Classification (proportional area) 
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0 1 2 8 9 12 13 Total 

0 0.7748 0 0 0 0 0 0 0.7748 

1 0 0.0038 0.014 0 0.0066 0.0057 0 0.0301 

2 0 0.0044 0.0276 0.0006 0.0151 0.0068 0 0.0545 

8 0 0.0003 0.0097 0.0387 0.022 0.0011 0.0001 0.0719 

9 0 0.0007 0.0178 0.0017 0.0182 0.0023 0 0.0408 

12 0 0.0015 0.0113 0 0.0044 0.0077 0 0.025 

13 0 0 0 0 0.0002 0.0001 0.0026 0.0029 

 
Total 0.7748 0.0108 0.0805 0.041 0.0665 0.0237 0.0027 1 
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Landscape pattern analysis 

Five metrics describing landscape patterns were employed to examine how 

landscapes have changed in Cyprus from 1973 to 2011. Each metric produces a map, 

with values at each pixel indicating the measure for the patch to which the pixel belongs. 

On the maps for each index, low values are indicated by cooler colors while high values 

are indicated by warmer colors. Patch areas (Figures 15a-e) remain similar from 1973 to 

2011 but patch areas change in their distribution over time. For example in 1973 slightly 

larger patches occur across the Mesaoria Plain (Figure 15a) but by 2011 the largest 

patches are occurring in the foothills of the Troodos and Kyrenia Ranges (Figure 15e). In 

1990 (Figure 15c) large patches are occurring across most of the island and indicate that 

land cover categories covering these regions are becoming more contiguous and 

aggregated.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

 

 
(e) 

 

Figure 15. Patch area for each time step from 1973 to 2011. Locations of the largest 

patch area shift from the Mesaoria Plain to the foothills of the Troodos and Kyrenia 

Ranges. 

Land cover diversity was evaluated using the normalized entropy (also known as 

Shannon’s Diversity index or Evenness Index). This measure ranges from 0 to 1 and 

indicates how the land cover categories are distributed across the neighborhood with 1 

representing more evenness (or land covers that are approximately evenly distributed 

across the landscape within the neighborhood and represents the highest diversity of land 

covers) and 0 indicating less evenness (one land cover is prevalent, thus the distribution 

is more uniform) (Turner et al., 2001). In 1973 the areas of highest evenness occur in the 
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Troodos foothills while the areas that are most uniform in land cover are located in the 

northwestern and southeastern parts of the Mesaoria Plain (Figure 16a). In 1984 the 

pattern shifts, with the highest evenness occurring across the Mesaoria Plain, the southern 

side of the Kyrenia Range and the southern coastline (Figure 16b). Regions of the 

Troodos, particularly to the north and west, show large regions of low land cover 

diversity, with prevalence of forest and agricultural land covers. This indicates that across 

the Mesaoria Plain land covers are changing and increasing the heterogeneity of the 

landscape. By 1990 the Mesaoria Plain has stabilized and evenness has declined, while 

areas around Nicosia and in and around the Troodos have the highest evenness, with 

nodes and linear features appearing in the landscape (Figure 16c). This indicates that land 

covers are transitioning with a distinctive increase in artificial areas and roads radiating 

from those areas (nodes and linear features). In 2001, evenness is highest along the 

southern foothills of the Troodos and many linear features are visible in this area and the 

Mesaoria Plain (Figure 16d). This indicates the road network is still increasing and 

development along the south coast is common. Evenness in 2011 is the highest near and 

along the southern coastlines and urban centers (Figure 16e) indicating transitions to 

artificial areas are still progressing, creating heterogeneous landscapes as they grow. 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 
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(e) 

 

Figure 16. Land cover diversity or Evenness Index. Higher values indicate areas where 

land covers are more evenly distributed across the 7x7 pixel neighborhood and represent 

the highest diversity of land covers possible in that neighborhood. Low values indicate 

that the land cover in the neighborhood is more uniform and fewer land cover types occur 

in the neighborhood and one or two cover types dominate the neighborhood. 

Edge density was calculated to examine the level of fragmentation with values 

near 0 indicating very little fragmentation and 1 indicating maximum fragmentation in 

the neighborhood under analysis. Edge density does not change much between 1973 and 

1984 (Figures 17a and 17b), with the notable areas of change are in the Troodos and 

Mesaoria Plain. In 1984 the Troodos have decreased in edge density (become less 

fragmented) while the Mesaoria Plain increases in fragmentation. However, by 1990 

(Figure 17c) the Mesaoria Plain has very little fragmentation but fragmentation has 

increased across all other parts of the island. The urban center of Nicosia stands out in the 

Mesaoria Plain as a region of fragmentation.  Fragmentation is high along the Troodos 

foothills in 2001 (Figure 17d) but has continued to decline within the Troodos and along 

the northern parts of the Kyrenia Range. The map illustrating the distribution of 

fragmentation in 2011 (Figure 17e) looks similar to distributions in the 1973 and 1984 
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maps (Figures 17a and 17b); however, fragmentation is slightly higher across most of the 

island with values lower than either of those years in the Troodos.  

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 
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(e) 

 

Figure 17. Edge density measures the level of fragmentation in the 7x7 pixel 

neighborhood. Higher values indicate that more edges exist in the neighborhood, thus the 

neighborhood is fragmented. 

The compactness index indicates aggregation of land cover categories with values 

that range from 0 to 1. Maximum aggregation is indicated by values near 0, while 

maximum disaggregation is indicated by values near 1. Patch compactness for each year 

(Figures 18a-e) follows the trends highlighted for edge density (Figures 17a-e). It 

logically follows that these two measures are similar as an increase in fragmentation 

(values near one for patch compactness) would increase the edge density measurements 

as dissimilar cover types are now adjacent to each other. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 

 
(e) 

 

Figure 18. Patch compactness is a measure of aggregation of the patches in a 7x7 

neighborhood. Values near 0 represent maximum aggregation of patches, while values 

near 1 represent maximum disaggregation. Areas with high values of patch compactness 

are areas where multiple land covers occur within an area, so patches are very small and 

fragmented in nature. 

The change process metric compares images of two different dates and indicates 

the type of change that occurs over the time period of interest. Changes to the area and 

perimeter of overlapping land covers determines the dominant change process for each 

land cover (see Table 6). In Cyprus, four change processes occur over the time steps 

between 1973 and 2011 (Figures 19a-d); creation, attrition, aggregation and dissection. 
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Between 1973 and 1984 (Figure 19a), attrition of land covers is the dominant process 

across the Troodos and northern parts of the Kyrenia Ranges. This indicates that the 

number of patches and area of patches are decreasing. Southeast of the Troodos the 

dominant pattern is aggregation, indicting the number of patches is decreasing and that 

the area of each patch remains constant or increases. Across the Mesaoria Plain and in the 

foothills of the Troodos and Kyrenia Ranges dissection is the dominant land change 

process, indicating an increase in the number of patches with decreases in the area of 

patches. Creation, or an increase in the number and area of patches, occurs scattered 

across the Mesaoria Plain and into the Karpas Peninsula. Between 1984 and 1990 (Figure 

19b), creation is the dominant change process across a majority of the island with 

scattered areas of dissection in the Troodos and surrounding foothills, in and around 

Nicosia and along the northern side of the Kyrenia Range. Creation as the dominant 

change process indicates a homogenization of the landscape as patch sizes increase. 

Creation, dissection and attrition occur between 1990 and 2001 (Figure 19c). Creation 

occurs in areas of high dissection in the map from 1984-1990 (Figure 19b). Dissection is 

predominately located on the eastern end of the Mesaoria Plain, while areas of attrition 

are scattered across the entire island. Over the last time period covering 2001-2011 

(Figure 19d) attrition and aggregation are the main processes, with aggregation occurring 

in the Kyrenia Range, the eastern tip of the Mesaoria Plain and surrounding the Troodos. 

Attrition occurs across the Troodos, the Mesaoria Plain and into the Karpas Peninsula. 

Areas of creation are evident as small patches, most of which occur along the southern 
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side of the Troodos. A majority of these are reservoirs, which introduces a new land 

cover and increases the number and area of patches in these locations.  

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure 19. Change process between each set of time steps. 

Discussion 

 Landsat imagery was used to classify land cover and to evaluate the transitions in 

land cover from 1973 to 2011. The hybrid classification technique ISOCLUST created 

groupings of land cover based on reflectance values of the Landsat data. The clusters 

were then assigned to a land cover category derived from the CORINE Land Cover 

Technical Guide (Bossard et al., 2000). CORINE land cover categories were selected 



 

66 

 

based upon their presence in the Cypriot landscape and a determination of which features 

are discernible from the Landsat images. The purpose of classifying land cover and 

evaluating the type of transitions and how they are occurring was to address the following 

questions and predicted landscape responses: 

How has the Cypriot landscape changed over approximately the last 50 years (island-

wide)? 

1. Due to population movements and a change in the economic base of Cyprus, 

urban areas are expected to have expanded, while outlying villages are expected 

to have declined in extent. Development along the coast is expected to have 

increased in response to a larger tourism sector. In addition, it is expected that 

agricultural plots have shifted from small, multi-crop plots to larger, single-

species plots.  

Are there differences between the northern and southern portions of the island? If so, 

how do they differ in terms of land cover composition and change over time? 

2. Differences are expected across the island with coasts developing more quickly 

and extensively in the southern portion of the island. Along this same line of 

reasoning, urban expansion is expected to be greater in the southern areas of the 

island. It is also expected that agricultural plots remained similar in size and 

configuration in the northern area due to limited trade and economic development 

after 1974. 

3. In terms of landscape configuration, less heterogeneity is predicted in the south as 

urban areas and size of agricultural plots increase. 
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Evaluating research questions and predictions 

 Prediction 1 

 Political events beginning in the late 1950s led to the partition of Cyprus in 1974 

and the resettlement of an estimated 200,000 Greek and Turkish Cypriots. This event is 

proposed to accelerate the processes of agricultural abandonment and urban expansion on 

the island post-1974. Based on the results of land cover change analyses, urban areas 

increase, most notably in Nicosia, Larnaka and Limasol. Agricultural areas decline, 

particularly in southern Cyprus.  By 1984 artificial land cover across the island was 

increasing (Table 7), with an increase to 1.29% of the study area in northern Cyprus 

(Table 13) and 1.08% in southern Cyprus (Table 15). Urban areas are more apparent by 

1990 (Figure 8) with the most development around Nicosia and Limasol. Urban areas 

continue to grow through 2011 (Figures 9 and 10), with increases to urban extent around 

Nicosia, Larnaka and Limasol. The urban area of Kyrenia is most apparent in Figures 8 

and 9, (1990 and 2001). Development is highest along the southern coastline between 

1990 and 2001 (Figure 13c) and stretches from Ayia Napa to Paphos, as well as in Polis 

to the west of the Troodos. Additional development is seen along the Karpas Peninsula 

during the same time frame.   

 Urban growth is easier to quantify and observe on land cover maps than 

transitions to larger agricultural plots. The long-term trend is a general loss of agricultural 

land cover, from 9.76% of the landscape in the study area (Table 7) to 7.98% (Table 10) 

with much of this loss occurring in the southern portions of the island (Figures 11a – 

14a). Coupled with the decrease in agricultural land covers is an increase in shrub and/or 
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herbaceous covers, indicating a trend of agricultural abandonment and not fallow areas. 

The patch area of agricultural areas increases between 1973 and 2011 but only across the 

Mesaoria Plain and into the lower portions of the Karpas Peninsula. This may indicate 

that in places where agriculture was not abandoned around the Troodos foothills, the 

topography restricts the consolidation of many agricultural plots. However, the Mesaoria 

and lower portions of the Karpas are relatively flat and open, allowing for the increase in 

plot size. Due to the spatial resolution of the Landsat images and the inability to discern 

between types of agricultural land covers, it is not possible to determine if crop 

production has shifted from multi-species plots to single-species production in a plot. 

 Prediction 2 

 Prediction 2 looked to examine rates and type of land cover changes between the 

northern and southern parts of the island after the political division in 1974 utilizing land 

cover maps from 1984 to 2011 to calculate the changes that occurred post-1974. 

Comparisons of change within land cover categories reveals changes in the opposite 

direction between northern and southern Cyprus, with the exception of forest cover.  

Agricultural areas increased in the northern portion of the island, with most of the 

transition to agricultural lands coming from areas that were previously covered by shrub 

and/or herbaceous vegetation (Table 13). Forested areas more than double from 1984 to 

2001, with an increase from 0.64% of the study area to 1.72%. In 2011, artificial areas 

have declined from 1984 or 2001 land cover classifications (Tables 12 and 13). Shrub 

and/or herbaceous cover increases by 2011, to approximately the same extent as 1984 
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(3.26% and 3.69%, respectively) while forested areas remain relatively unchanged from 

2001 extents. 

 In southern Cyprus, agricultural land covers decline from 8.05% of the study area 

in 1984 to 5.45% in 2001 (Table 15). A majority (1.78%) of the transition is to shrub 

and/or herbaceous cover, indicating a permanent change from agricultural production in 

these areas and encroachment by shrub dominated plant communities. Overall, shrub 

and/or herbaceous cover declines from 6.65% of the study area in 1984 to 4.08% in 2001. 

There is a large increase in artificial area extent between 1984 and 2001 (1.08% and 

3.01%, respectively). Forested areas also experience a large increase in extent over this 

time period, expanding from 4.1% of the southern region to 7.19%. By 2011, artificial 

extents have declined to 1.4% of the southern areas with further declines in agricultural 

areas (2.44%) (Table 14). Shrubs and/or herbaceous cover increases to 9.53% of the 

southern portion of the island, indicating a 27-year increase in this land cover type in line 

with agricultural declines over the same period (1984-2011). 

 The extent of development along the southern coastline from 1984-2001 is 

demonstrated in Figure 13c, which depicts not only the growth of the coastal cities of 

Larnaka, Limasol and Paphos, but also the increase in development across the entire 

coastline during this period. In addition, development is noticeable along the northern 

coastline near Kyrenia and onto the Karpas Peninsula. The decline of artificial areas is 

predominately in the Troodos foothills and along the northern extent of the Troodos 

(Figure 14c). The decline in the southern portions of the foothills may indicate an actual 

loss of developed areas as people continue to move away from the villages into the urban 
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centers. The decline in artificial areas along the northern Troodos foothills is likely an 

artifact due to the difference in reflectance of calcareous soils between 2001 and 2011. 

Agricultural patches shift in terms of where larger patches are located between 1984 and 

2001. Larger patches occur in the south in 1984 and shift to the eastern part of the 

Mesaoria Plain of both north and south Cyprus and into the Karpas Peninsula of northern 

Cyprus by 2001. This follows the larger trend of agricultural abandonment in the 

southern portion of Cyprus; however it contradicts the prediction that patches would 

remain of similar size and configuration in northern Cyprus during closure of the buffer 

zone. 

  Prediction 3 

 Prediction 3 anticipated the increase of agricultural plot sizes in the southern parts 

of Cyprus. However, as discussed in Prediction 2 agricultural patches decline in size 

across most of the southern portions of Cyprus, only increasing along the eastern extent 

of the Mesaoria Plain. Comparison of the results for the 1984 and 2001 evenness index 

(Figures 16b and 16c) indicate an increase in land cover diversity along the southern edge 

of the Troodos. This is expected as agricultural areas are abandoned and those areas 

transition to shrub and/or herbaceous cover types and as coastal development causes 

transitions from one land cover type to another type. A small decline in evenness occurs 

along the eastern part of the Mesaoria Plain near Famagusta, in the same region where 

patch size and agricultural land covers are increasing. Land cover evenness decreases 

across a large portion of the Troodos, but also along the northern slopes of the Kyrenia 

Range. Small declines in evenness are discernible in the urban area of Nicosia. Edge 
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density also plays a role in heterogeneity and indicates the level of fragmentation. Figures 

17b and 17d illustrate that the southern part of the island are more fragmented in 2001 

than they were in 1984; however fragmentation has increased in much of northern Cyprus 

as well. 

 Accuracy assessments for the classified 2011 Landsat image were low, with 

overall accuracy of 50.33% and a Kappa statistic (KHAT) of 33.44%. Landis and Koch 

(1977) consider the KHAT statistic as fair in terms of strength of agreement between 

observed accuracy and chance agreement. The error matrix and accuracy assessment 

(Tables 4 and 5, respectively) reveal cases of misclassification For example, 22 points 

that were classified as shrubs/herbaceous cover where identified as agricultural areas in 

the reference data and 17 forest reference points were incorrectly classified as 

shrub/agricultural areas (Table 4). Gong et al. (2013) consider misidentification between 

forests, shrubs and grasslands as “typical confusions” and also state that their study had 

issues in correctly separating grasslands from bare croplands. The results of Gong et al.’s 

study (2013), as well as the results discussed above highlight general issues in large area 

land use and land cover mapping that influence classification accuracies. Examples of 

these issues include spectral confusion, where two different land covers have similar or 

overlapping reflectance values (e.g. croplands and grasslands or orchards and open 

deciduous forests); mixed pixels, where pixels within the image are larger than land cover 

categories and thus contain multiple land covers; and underrepresentation or other 

inadequacies in the selection of training samples for land cover categories. In the case of 

the 2011 Landsat classified map, both spectral confusion and mixed pixels are an issue. 
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Land covers in Cyprus are often smaller in size than the pixels used to represent them, 

thus the land cover with the dominant spectral reflectance is assigned to the entire pixel. 

When the land cover category for this pixel is compared to ground truth data, the two 

may or may not agree, which may influence the accuracy assessment of the image. Other 

large area land-cover and land-use mapping projects (e.g. National Land Cover Dataset) 

have provided initial estimates of accuracy between 70 and 98% (Homer et al., 2007) and 

Selkowitz and Stehman (2011) found that overall accuracies were higher when both a 

primary and alternate reference label were compared to the sample pixel. However, when 

just comparing the sample pixel to the primary reference label, accuracies declined to 

59.4% for Level II classification and 69.3% for Level I classification (see Selkowitz and 

Stehman, 2011, for a description of the classification hierarchy). Overall accuracy of 

50.33% for Cyprus’ 2011 land cover classification was calculated considering only a 

primary reference label, resulting in a similar overall accuracy to the Selkowitz and 

Stehman (2011) study. 

Conclusions 

Across Cyprus a slight increase in forests was noted for the entire study period 

(1973-2011), with declines that occurred from 1973 to 1984 (Table 7) and 2001 to 2011. 

Hadjikyraikou (2000) reports that 7770 hectares of forest were burnt between 1990 and 

1999 in the southern forests, which may contribute to the decline noticed in forested areas 

from 2001 to 2011. A transition from shrub and/or herbaceous cover to agriculture 

occurred between 1984 and 1990 (Table 8) but a transition from agriculture to bare 

rock/soil and shrub and/or herbaceous cover occurs by 2011 to near 1973 extents (Tables 
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7 and 10). However, the distribution of agricultural and shrub and/or herbaceous land 

cover types changes from 1973 to 2011 (Figures 6-10). 

Evaluation of Predictions 1 through 3 found differences in land cover transitions 

and types between the northern and southern portions of Cyprus. Land cover transitions 

occurred as anticipated with increased development along the coast and increase in urban 

areas. In the eastern portion of the Mesaoria Plain, agricultural plots shifted to larger 

patches but much of the southern portion of the island transitioned to smaller patches of 

agriculture with replacement by shrub and/or herbaceous cover. Coastlines did develop 

extensively in the southern portion of the island between 1984 and 2011 as well as in 

Kyrenia, and to a small extent along the Karpas Peninsula. Evaluation of land cover 

diversity and edge density in land covers indicates that the southern portion of the island 

is more heterogeneous in 2011 than in 1984 due to multiple types of land conversions 

during this time period (Figure 16). 

Continuation of the overall trends of land cover transitions would indicate further 

coastal development, even along the northern coast, contrary to the remote sensing 

analysis. Growth of the urban areas of Nicosia, Larnaka, Limasol, Paphos and Kyrenia is 

expected to continue as fewer people choose to live in the smaller villages, especially 

villages far removed from the urban areas. Continued transition to shrubs in areas of 

agricultural decline is anticipated, with eventual growth of Pinus brutia and other forest 

types where conditions allow for the reintroduction of forest species. 
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Chapter 4 

MAXENT MODELING OF MODERN VEGETATION 

Introduction 

 Species distribution models (SDMs) incorporate a broad range of statistical 

methods, data types, and applications. SDMs are known by a variety of names in 

scientific literature, such as climate envelope models, bioclimatic models, ecological 

niche models and habitat suitability models (Elith and Graham, 2009; Elith and 

Leathwick, 2009; Franklin, 2009). The resulting models are used to predict the current 

distribution or range of plant or animal species and the future range of species as a means 

of applying rules for the management of the species, whether this is reintroduction of 

species, preservation of suitable habitat, or mitigation of responses to changes in habitat 

availability, habitat quality and climate change (e.g. Franklin, 1995, 2009; Guisan and 

Zimmerman, 2000; Manel et al., 2001; Rushton et al., 2004; Guisan and Thuiller, 2005; 

Barry and Elith, 2006; Elith and Graham, 2009; Warren and Seifert, 2011). 

 Biogeographers have a long history of describing species distributions based upon 

climate or other environmental factors (Von Humboldt, 1805/1807; Merriam and 

Steineger, 1890; Grinnell, 1904). However, these early attempts at mapping species (or 

community) distributions were primarily descriptive. As ecological and geographical 

theory advanced, quantitative methods for combining field-based observations of species 

with environmental conditions were developed to produce the suite of models available 

today. Common model types include generalized linear models (GLMs), generalized 

additive models (GAMs) and machine learning methods (Elith and Graham, 2009; Elith 
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and Leathwick, 2009; Franklin, 2009). All of these models produce predicted species 

distributions by correlating field observations with environmental variables at 

observation points to predict distributions across space and/or time. Many of these 

models require the use of presence/absence data, which reduces their applicability, since 

an increasing number of published data sets provide predominately presence-only data 

(e.g. museum collections or historical surveys) (Graham et al., 2004; Elith et al., 2006; 

Phillips and Dudík, 2008; Franklin, 2009; Elith et al., 2011). Modeling based on 

presence-only data presents a series of challenges such as: How well does the model tie 

to ecological theory? How does the model perform against presence/absence models or 

other presence-only models? Which model is best suited to address the intended 

question(s) and or application(s)? (Elith and Graham, 2009). Table 16 summarizes 

commonly used presence-only methods, their primary characteristics, the modeling tool 

or method, and pertinent literature (based on Elith et al., 2006; Phillips et al., 2006; 

Pearson, 2008; Franklin, 2009; Soto-Berelov, 2011). 

Table 16. Commonly used presence-only species distribution methods, major features of 

each method and literature where first described or implemented. Table is based on based 

on Elith et al., 2006; Phillips et al., 2006; Pearson, 2008; Franklin, 2009; Soto-Berelov, 

2011 

Model Type 

Software/ 

Model Features/Method 

Background/pseudo

-absence samples 

Source (as 

applied in 

SDMs) 

Environmental/ 

climate envelope 

BIOCLIM Parallelepiped classifier; potential range 

is the multi-dimensional environmental 

space bounded by the minimum and 

maximum values of the defined set of 

presences (e.g. 100%); produces a 

binary classification (suitable vs. 

unsuitable) 

 

No Busby, 

1986, 

1991 

 HABITAT Convex hull; the relative density of 

presences within subareas determines 

membership of each subregion to the 

range of the species 

 Walker & 

Cocks, 

1991 
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Model Type 

Software/ 

Model Features/Method 

Background/pseudo

-absence samples 

Source (as 

applied in 

SDMs) 

 

Environmental 

distance 

DOMAIN Gower metric; compares the site of 

interest to the nearest presence record to 

estimate the environmental similarity 

No Carpenter 

et al., 1993 

Discriminative 

models 

GAMs 

(Generalized 

additive model) 

Non-parametric; multiple regression 

model; categorical data can be used; 

linear and non-linear functions can both 

be used 

 

Yes Hastie & 

Tibshirani, 

1990 

 GLMs 

(Generalized 

linear models) 

Parametric; general category of models 

that includes linear regression; 

categorical data can be used; multiple 

link functions available (e.g. linear, 

polynomial); link function describes the 

relationship between the response 

(species data) and the predictors 

Yes McCullagh 

& Nelder, 

1989 

 MARS 

(Multivariate 

adaptive 

regression 

splines) 

 

Piece-wise linear basis functions; non-

linear regression method 

Yes Friedman, 

1991; 

Hastie & 

Tibshirani, 

1996 

 

ENFA 

(Ecological 

niche factor 

analysis) 

Multivarigate ordination; niche based 

the magnitude of difference between the 

species’ mean and the complete range 

of environmental conditions in the 

background sample 

 

Yes Hirzel et 

al., 2002 

Generative 

models 

GARP Genetic algorithm; uses four tools to 

identify relationships between 

occurrences and environmental data 

Yes Stockwell 

& Noble, 

1992; 

Stockwell 

& Peters, 

1999 

 Maxent 

(Maximum 

entropy) 

Machine-learning or maximum-

likelihood method; categorical data can 

be used; linear and non-linear functions 

can be used; prediction based on the 

probability distribution of maximum 

entropy, subject to constraints based 

upon the environmental data 

Yes Phillips et 

al., 2004 

  

Presence-only methods of modeling potentially suitable habitat are of particular 

interest for this study, which utilizes presence-only observations and a combination of 

differing sampling methods, sample sizes and sampling dates. Based on the full range of 
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observed data, twenty-two woody shrub and tree species representing conservation, 

agricultural, cultural and indicator species were chosen for modeling (Table 17). 

Modeling of these species will examine their current suitable areas, assess modeling 

platform performance and produce binary suitability maps. These models will provide the 

base conditions necessary to predict future suitable areas based on two climate change 

scenarios over three time periods, and will combine these future scenarios with land-use 

change predictions derived from the land cover transitions presented in Chapter 3. 

From the presence-only methods listed in Table 16, Maxent
4
 was selected to 

create models representing the potentially suitable areas for the selected species. Maxent 

is a modeling platform based on ecological niche-theory (Hutchinson, 1957), which 

creates potential geographic distribution models from presence-only data (Phillips et al., 

2004; Phillips et al., 2006; Elith et al., 2011). Maxent uses environmental covariates, in 

conjunction with the species observations and a background sample to estimate the 

environmental space (or niche) that is the most uniform while adhering to environmental 

constraints (Phillips et al., 2004; Phillips et al., 2006; Elith et al., 2011). Maxent was 

selected for this study based on its ties to ecological theory, ability to create projections 

of suitable areas based upon future environmental variables, and its performance when 

using small sample sizes, correlated variables and biased data.  

                                                 
4
 http://www.cs.princeton.edu/~schapire/maxent/ 

  

http://www.cs.princeton.edu/~schapire/maxent/
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Table 17. A list of the twenty-two species chosen for species distribution modeling, their respective habitat types, and the various 

ways each species is important to the landscapes of Cyprus. Cultural uses of each plant are from Tsintides et al., 2002. 

Taxon Habitat Type Indicator Species Species of Concern Other Characteristics Cultural uses 

Arbutus andrachne 

Forests (Q. alnifolia and  

P. brutia forests) 

  

Indigenous; Cultural 

Edible fruit; liquor production; charcoal 

and firewood 

Cedrus brevifolia 

Forests (C. brevifolia 

forest) Yes 

Vulnerable; Habitats 

Directive Endemic; Cultural 

Ornamental; insect repellent; icon 

production 

Cistus creticus Forests and shrublands  
  

Indigenous; Cultural Labdanum production 

Cistus parviflorus Forests and shrublands  

  

Indigenous 

 

Cistus salviifolius Forests and shrublands  
  

Indigenous 
 

Ficus carica Forests 

  

Indigenous; Cultivated; 

Cultural 

Fruit production; symbolic (ties to ancient 

Greece) 

Helianthemum obtusifolium Forests and shrublands  
  

Endemic 
 

Juniperus foetidissima Forests 

 

Habitats Directive for 

endemic forests, coastal 
dunes, and arborescent 

matorral with Juniperus Indigenous 

 

Juniperus phoenicea Shrublands  

 

Habitats Directive for 

endemic forests, coastal 
dunes, and arborescent 

matorral with Juniperus Indigenous 

 

Olea europaea Forests 

  

Indigenous; Cultivated; 

Cultural 

Fruit and oil production; symbolic (ties to 

ancient Greece); ornamental; firewood 

Pinus brutia Forests Yes 

 

Indigenous 
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Taxon Habitat Type Indicator Species Species of Concern Other Characteristics Cultural uses 

Pinus nigra 

Forests 

((Sub)Mediterranean pine 
forest with endemic black 

pine) Yes 

 

Indigenous 

 

Pistacia atlantica 

   

Indigenous; Cultivated; 

Cultural Resin production 

Pistacia lentiscus Forests and sand dunes 

  

Indigenous; Cultural Fruit production; ornamental 

Pistacia terebinthus 
Pine forest and 
shrublands  

  

Indigenous; Cultural Fruit production; dye; ornament 

Prunus dulcis 
   

Adventive; Cultivated 
 

Pterocephalus multiflorus Forests and shrublands  

  

Endemic 

 

Punica granatum 
   

Naturalized; Cultivated; 

Cultural 

Fruit production; ornamental; dye; 

symbolic 

Quercus alnifolia 

Forests (Scrub and low 

forest vegetation) Yes 

Habitats directive for 
scrub and low forests 

vegetation with Q. 

alnifolia Endemic 
 

Quercus coccifera Forests and shrublands  

  

Indigenous 

 

Sarcopoterium spinosum Forests and shrublands  Yes 
 

Indigenous 
 

Thymus capitatus Forests and shrublands  Yes 

 

Indigenous 

 



 

80 

 

Niche-based models represent the realized niche of modeled species, based on 

observed data, environmental data and the study area under consideration (Phillips et al., 

2006). This definition of niche-based models, including Maxent, implies that the species 

of interest inhabit areas based upon interactions with other species (including humans), 

environmental limiters (e.g. resources or geographic barriers), and the ability of a species 

to disperse to other areas (Guisan and Thuiller, 2005; Phillips et al., 2006; Soberón, 

2007). Many SDMs, however, are static and do not model interactions and dispersal 

abilities explicitly (Guisan and Thuiller, 2005; Elith and Leathwick, 2009; Franklin, 

2009). Bias is an issue across all model types, since presence data often is assumed 

incorrectly to represent unbiased samples from across the distribution of a species (Reddy 

and Daválos, 2003; Phillips and Dudík, 2008). In light of the potential bias in presence-

only methods, resulting models can estimate biased distributions for the species under 

study (Phillips and Dudík, 2008). Models that implement the use of a background sample 

with the same sampling bias as the species of interest can reduce the impact of bias on 

predicted distributions (Dudík et al., 2005; Phillips and Dudík, 2008; Phillips et al., 

2009). Another way to reduce sampling bias is to create a grid to correct for the bias by 

coding the grid according to relative sampling effort (Phillips, 2010; Elith et al., 2011). 

Elith et al. (2006) evaluated sixteen approaches to presence-only SDMs based on 

54 species with varying geographic extents and prevalence across six regions of the 

world. Using independent presence/absence data to evaluate their models, the authors 

found that Maxent performed competitively, ranking among the top-performing presence-

only methods using the area under the Receiver Operating Characteristic curve (AUC; 
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see Methods, Threshold-independent validation for a discussion of the AUC) and a 

Pearson’s correlation coefficient as measures of model performance (Elith et al., 2006; 

Elith et al., 2011). Additionally, Maxent performs well with small sample sizes (Phillips 

et al. 2004; Phillips et al., 2006, Dudík et al., 2007; Phillips and Dudík, 2008) and it 

handles correlated variables well, thereby requiring only the removal of non-relevant 

variables (Elith et al., 2011). Elith and Leathwick (2009) still recommend reducing the 

number of variables and focusing on direct (or proximal) variables rather than indirect (or 

distal) variables, particularly when the model will be used to project to novel areas or 

climates. 

Methods 

Data acquisition 

 Field sampling 

This study incorporates presence-only observations of perennial plant species 

along with environmental variables at 660 locations on the island of Cyprus. Vegetation 

data were collected over four field seasons during the summers of 2008-2011 at 564 

locations (Figure 5); observations from 114 historical data points based on herbarium 

collections sampled between 1747 and 1974 (Miekle, 1977, 1985) expand these 

observations to include areas that were less disturbed in the past and species that were 

less represented in our database (see Figure 5). Initially, the perennial plant species were 

recorded at 131 randomly selected points from a sample transect beginning near Limasol 

on the southern coast of Cyprus, into the foothills of the Troodos Mountains, across the 

Mesaoria Plain, over the Kyrenia Range, and to the north coast of Cyprus (see random 
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points shown on Figure 5). A hand-held global positioning system receiver (GPS) was 

used to locate all the sample points (e.g., latitude and longitude). 

Since many of the randomly generated sample points fell on urban or heavily 

modified landscapes, and in order to more fully characterize the distribution of the 

perennial plant species in Cyprus, comparable data on the woody plant species and 

environmental variables were collected at 390 additional non-random sample points. The 

non-randomly generated sample points come from a series of transects that traverse the 

full elevational range of the island from sea level to the summit of the Troodos Massif 

(Figure 5). These non-random sample points were selected where vegetation was the least 

disturbed, where the sample transects could record indigenous woody plants and capture 

environmental variability (elevation and substrate) within Cyprus. Sample locales were 

chosen to cover a variety of vegetation types, ranging from coastal scrub to orchards to 

the maquis and forested landscapes of the higher elevations. Again, the location of each 

point was determined with a GPS. Perennial plant species for both the random and non-

randomly selected locations were recorded over an area of about 100 m
 
diameter.  In 

addition, aspect, substrate, plant species present and estimated vegetation cover were 

collected at each point. Nomenclature follows Trees and Shrubs in Cyprus (Tsintides et 

al., 2002), Flora of Cyprus (Miekle, 1977, 1985), and An Illustrated Flora of North 

Cyprus (Viney, 1994). 
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Climate data 

Climate data for potential inclusion as covariates for present-day and future 

distribution models were downloaded from WorldClim
5
. These data consist of 19 

bioclimatic variables that are derived from monthly mean, minimum, and maximum 

temperatures, and precipitation (Hijmans et al., 2005). In addition, soil and surface 

geology raster surfaces were created for inclusion as model variables, utilizing 

environmental grids with approximately 1-km
2
 pixels, since some species were reported 

to be restricted to specific substrates (Meikle 1977, 1985; Tsintides et al., 2002).  Prior to 

model creation, a correlation matrix (using Pearson’s r) was constructed for all covariates 

(Appendix A), and highly correlated (r ≥ 0.85) or redundant variables were pruned to 

reduce the number of variables used in model building (Table 18).  

Table 18. Pruned environmental variables utilized in modern and future model creation 

for species of interest. 

Variable Description 

BIO1 Mean Annual Temperature 

BIO2 

Mean Diurnal Range (mean of monthly 

temperature (maximum temperature – minimum 

temperature)) 

BIO3 Isothermality ((BIO2/BIO7)*100) 

BIO4 
Temperature Seasonality (standard 

deviation*100) 

BIO7 

Annual Temperature Range (BIO5 (maximum 

temperature of the warmest month) – BIO6 

(minimum temperature of the coldest month))  

BIO8 Mean Temperature of the Wettest Quarter 

BIO10 Mean Temperature of the Warmest Quarter 

BIO12 Annual Precipitation 

BIO15 Precipitation Seasonality (coefficient of variation) 

                                                 
5
 http://www.worldclim.org/bioclim  
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BIO16 Precipitation of the Wettest Quarter 

BIO17 Precipitation of the Driest Quarter 

Geology 
Surface geology (based on Geological Map of 

Cyprus, 1995) 

Bias grid 
Grid representing sampling effort to reduce 

sampling bias 

 

A bias grid was constructed as a continuous surface across the entire study area. 

This surface represents sampling effort across the area of interest and is helpful in 

reducing bias introduced during sampling (Phillips, 2010; Elith et al., 2011). In this study, 

many samples are non-random and are located near roads, thus the bias grid was 

constructed from the road network of Cyprus, and indicates that a priori sampling 

probabilities were higher along the roadways, but does not exclude sampling outside of 

these areas (Phillips, 2010). 

Maxent modeling 

Species distribution models were created using a bootstrapping method of data 

partitioning for modeling test/train data. The observation data were partitioned into a 

training data set consisting of 70% of the observations; the remaining 30% were used as 

testing data. The models were replicated 10 times and the test/train data were resampled 

with each model run (see Phillips et al., 2006). The final mapped distribution represents 

the average of all model runs.  

Models were calibrated in the same manner for each species modeled. For each 

model run a random seed was selected and all samples were added to the background, 

with all other options set at the recommended default values. Phillips and Dudík (2008) 

suggest adding the observation samples to the background when correcting for bias to 
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ensure that the background sample contains all of the environmental constraints present 

in the observation data. In the current version of Maxent (v 3.3.3k), the default output is a 

logistic format that assigns a value ranging from 0 to 1 to each pixel in the output map. In 

the best case scenario, the interpretation of each pixel is the probability of species 

presence in that pixel, with pixels that represent the characteristic environment of the 

species having a logistic output near 0.5 (Elith et al., 2011). In practice the logistic output 

is below 1 and is related to the default setting in Maxent of 0.5 for species prevalence 

(indicating the probability of presence within a pixel given “typical” conditions for the 

species of interest) but in presence-only sampling, actual species prevalence often cannot 

be determined. Thus, careful interpretation of the logistic output is necessary, especially 

when comparing species that differ in sampling intensity or rarity (Elith et al., 2011). 

With regard to Cypriot vegetation, cross-comparisons are not the purpose of the study, 

thus the default value of species prevalence of 0.5 was utilized. A more conservative 

approach, and the one applied to the species distributions discussed here, is to interpret 

the output as relative suitability for the species of interest, with higher pixel values 

indicating higher suitability for the species (Phillips et al., 2006). 

Model validation 

Threshold-dependent validation 

Threshold-dependent validation of the output maps requires implementation of a 

threshold rule to create a binary (suitable vs. unsuitable locations) map for each species. 

Maxent’s output for individual runs includes a list of the logistic threshold value, 

threshold rules, training/testing omission rates, and the p-values associated with each 
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rule. Guidelines for selection of an appropriate threshold vary according to the expected 

use of the model output, often with a consideration for balancing sensitivity (fraction of 

true presences accurately predicted) with specificity (fraction of true absences accurately 

predicted) (Franklin, 2009). 

The threshold of maximum training (sensitivity + specificity) was selected (Table 

19). This threshold represents the highest possible value of the sum of sensitivity and 

specificity (Manel et al., 2001) and can also be determined from the point along the 

Receiver Operating Curve (ROC) whose tangent is equal to 1 (Franklin, 2009). Freeman 

and Moisen (2008) determined that this threshold also minimizes the mean error rate of 

presences and absences. In addition, the application of a threshold allows for the 

evaluation of model performance using the omission rate and the proportional predicted 

area (Phillips et al., 2006) (Table 19). A one-tailed binomial test is used to determine if 

the model output is different from a randomly selected model with the same proportional 

predicted area (Phillips et al., 2006; resulting p-values are found in Table 19). 

Threshold-independent validation 

Models also were evaluated using the area under the ROC curve (AUC). The 

ROC plots are created by plotting predicted values for 1-Specificity along the x-axis 

versus predicted Sensitivity values along the y-axis. The AUC is calculated as the area 

occurring under the constructed ROC plot (Hanley and McNeil, 1982). The use of the 

AUC as a measure of model success is contested (e.g. Pearson et al., 2007); however, 

Phillips et al. (2006) argue that instead of interpreting the AUC as distinguishing 

presence from absence, in Maxent the AUC is interpreted as distinguishing presences 
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from a random background sample. Using this interpretation, AUC values range from 0.5 

(random) to 1.0, with values above 0.5 indicating model performance better than random 

prediction (Table 19). 
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Table 19. Species selected for modeling, sample size, and model building statistics. Grey shading indicates models that were not 

statistically significantly different from a random prediction across the same proportional area. 

Taxon n 

Training 

AUC 

Training 

AUC std 

dev 

Test 

AUC 

Test AUC 

std dev 

Threshold 

value 

Proportional 

predicted area p-value 

Success Rate 

(%) 

Juniperus foetidissima 7 0.9922 0.007884314 0.9341 0.1406922 0.3209 0.03 5.91E-02 97.5 

Cedrus brevifolia 14 0.9587 0.003462138 0.9718 0.0284749 0.1393 0.0559 6.69E-04 36.67 

Pinus nigra 16 0.9911 0.003173894 0.9902 0.0058824 0.1533 0.0315 1.22E-04 71.67 

Pterocephalus multiflorus 38 0.9703 0.0063454 0.9519 0.0219887 0.2132 0.096 3.18E-08 78.89 

Arbutus andrachne 40 0.9668 0.007074185 0.9367 0.0249914 0.1938 0.1177 2.69E-08 70 

Quercus alnifolia 68 0.9614 0.00309466 0.9447 0.014658 0.1894 0.1241 7.22E-15 72.22 

Cistus parviflorus 13 0.8911 0.04501413 0.7481 0.1415193 0.4376 0.1778 4.44E-01 60 

Juniperus phoenicea 14 0.955 0.026151933 0.8838 0.0481401 0.4342 0.0749 3.04E-02 72.22 

Pistacia lentiscus 62 0.9137 0.009118772 0.8233 0.0434874 0.3294 0.1977 1.98E-05 70.56 

Helianthemum obtusifolium 10 0.9039 0.047604521 0.6297 0.1827858 0.4471 0.1641 6.16E-01 92.5 

Pistacia atlantica 14 0.9093 0.024162624 0.7048 0.1500549 0.3577 0.2074 6.05E-01 65.72 

Cistus salviifolius 32 0.9414 0.00685335 0.8804 0.0427038 0.3907 0.1518 6.77E-04 47.5 

Quercus coccifera 43 0.9262 0.01768758 0.8469 0.0428579 0.311 0.2072 7.48E-04 79.74 

Thymus capitatus 74 0.8519 0.01151646 0.7518 0.0522338 0.4085 0.2349 6.95E-05 73.45 

Prunus dulcis 92 0.8715 0.01533566 0.8162 0.0303333 0.365 0.2826 1.34E-07 63.64 

Sarcopoterium spinosum 117 0.8736 0.01651319 0.7787 0.0306031 0.4419 0.1936 4.52E-06 59.62 

Pistacia terebinthus 128 0.9009 0.010691324 0.8448 0.0184346 0.3697 0.2486 3.98E-12 93 

Pinus brutia 195 0.8793 0.01317369 0.8041 0.3544322 0.3754 0.2462 2.69E-14 84.17 

Cistus creticus 122 0.8938 0.011838095 0.8258 0.0356002 0.389 0.2174 1.24E-09 60 

Punica granatum 11 0.8641 0.04560805 0.6308 0.2604714 0.4092 0.2703 6.11E-01 56.57 

Ficus carica 49 0.8964 0.020666771 0.7717 0.075179 0.3834 0.2096 5.53E-04 62.5 

Olea europaea 177 0.8393 0.0172573 0.7341 0.0481401 0.4485 0.2652 9.38E-07 85.46 
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Results 

Maps of suitable areas 

 Maxent produces a continuous surface of suitability for each species modeled, 

with potential values ranging from 0 to 1 across the study area (Figure 20). As indicated 

in the discussion of methods (see Data Acquisition), these models are not meant to 

compare species, but they do permit modeling of future species distributions based on 

climate changes (see Chapter 5) in which use of a standardized scale can lead to intuitive 

comparisons between species distributions. The final species distribution maps were 

created with a threshold value calculated from the maximum training sensitivity + 

specificity, since use of a threshold allows for the calculation of p-values to assist in 

validation of the modern-day models (Figure 21). 

 Figure 21 reveals models that fit the distribution of species observations, but do 

not create predictions that are restricted to the training data nor provide poor predictive 

ability across testing data, thus avoiding overfitting of the models across all species. 

When assessed using the AUC, the species models performed well with both training and 

testing data (Table 19). Visual examination of the models also reveals that models 

performed well based on historical descriptions of species distributions and did not 

exclude observations from areas described as a core area by previous authors 

 (e.g. Meikle 1977, 1985; Tsintides et al., 2002; see Table 17).  
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(s) (t) 

(u) (v) 

Figure 20. Continuous suitability maps for twenty-two species occurring on Cyprus. The 

maps have a standardized scale, where 1 (warmer colors) indicate that the model predicts 

higher suitability at that pixel. Cooler colors (near 0) indicate that the pixel is not 

predicted as environmentally suitable by the model. 

Environmental variable contribution 

 The percent contribution by environmental variable for each species is 

summarized in Table 20. Geological substrate contributed as a variable in model 

construction for each species. Among the most interesting results regarding geology, 

modeling of Quercus alnifolia incorporated only an 11.3% contribution from the geology 

variable, even though previous studies indicate this species is highly associated with, and 
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often restricted to, igneous formations (Meikle, 1977, 1985). In contrast, geology played 

a large role in model building for Cistus parviflorus (69.4%), Ficus carica (65.6%), 

Helianthemum obtusifolium (77.7%), Pistacia atlantica (64.8%) and Punica granatum 

(73.4%). Among these taxa, only Cistus parviflorus is mentioned by Meikle (1977, 1985) 

as influenced by geological substrate. 

 Pinus nigra’s model construction was most influenced by a 53.5% contribution by 

BIO12, annual precipitation. BIO12 influenced all models except those for Cistus 

parviflorus, Helianthemum obtusifolium, and Punica granatum. BIO1, mean annual 

temperature, and BIO17, precipitation of the driest quarter, also contributed to a majority 

of the models. BIO7, annual temperature range, was only included in modeling Olea 

europaea, as an 8.5% contributing variable. 
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Table 20. Percent contribution of the top five environmental variables to predictive suitability model construction for each species. 

Taxon Geology BIO1  BIO2  BIO3  BIO4 BIO7  BIO8 BIO10 BIO12 BIO15 BIO16 BIO17 

Top 5 

variable 

contribution 

(%) 

Arbutus andrachne 31.2 18.2 

      

9.5 

 

13.8 14.1 86.8 

Cedrus brevifolia 24.6 7.2 

      

36.3 

 

4.8 12.3 85.2 

Cistus creticus 17.8 6.1 

      

42.1 

 

12.9 6.2 85.1 

Cistus parviflorus 69.4 3.3 2.5 

    

1.2 

   

21.8 98.2 

Cistus salviifolius 54.5 8.4 

      

17.9 4.7 

 

6.3 91.8 

Ficus carica 65.6 7 

  

12.4 

   

4.1 

 

5.8 

 

94.9 

Helianthemum obtusifolium 77.7 2.9 4.2 

    

2.9 

   

6.2 93.9 

Juniperus foetidissima 62.2 7.6 

 

8.2 

   

6.4 5.7 

   

90.1 

Juniperus phoenicea 49.3 

 

3.8 5.4 

    

3.4 

  

30.7 92.6 

Olea europaea 23.7 9.5 

   

8.5 

  

20.6 

 

13 

 

75.3 

Pinus brutia 15.7 14.3 

    

15.3 9.3 17.4 

   

72 

Pinus nigra 5.1 

  

5.1 

    

53.8 

 

6.6 12.7 83.3 

Pistacia atlantica 64.8 

      

2.7 13.2 3.3 13.8 

 

97.8 

Pistacia lentiscus 37.2 

   

9.1 

   

29.2 

 

5.8 8.8 90.1 

Pistacia terebinthus 15.2 9.7 

     

8.1 24.9 

 

24.1 

 

82 

Prunus dulcis 21.2 30.3 

     

28.8 7.9 

  

3 91.2 

Pterocephalus multiflorus 10 

  

14.3 

    

18.3 

 

7 36.7 86.3 

Punica granatum 73.4 

 

3.4 9.3 6.6 

    

3.3 

  

96 

Quercus alnifolia 11.3 8.5 

      

32.8 

 

3.6 38.2 94.4 

Quercus coccifera 30.9 29.3 

 

3.1 

   

19.9 13.2 

   

96.4 

Sarcopoterium spinosum 28.4 

      

8.6 22.3 

 

17.9 8.6 85.8 

Thymus capitatus 56.4 

   

3.7 

   

13.9 

 

8.9 5.3 88.2 
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Model validation  

 Threshold-dependent validation 

 The selection of a logistic threshold allows the creation of a binary distribution 

(suitable vs. unsuitable) map for each species (Figure 21), in which values above the 

threshold are considered to indicate suitable areas and those under the threshold are 

excluded from the prediction. A threshold of maximum training sensitivity + specificity 

was chosen for all species. The binomial probability is calculated by Maxent (or an 

approximation thereof when training samples are greater than 25), producing a p-value, 

which indicates if the model produced a significantly better prediction than random. In 

this case, the null hypothesis states that the model is no better than a random prediction 

over the same proportional area (Phillips et al., 2006).  

The binomial probability for eighteen models resulted in p-values less than 0.05, 

indicating that the model results were better than a randomly predicted distribution over 

the same proportional predicted area (Table 19). Binomial probabilities for Quercus 

alnifolia, Pinus brutia and Pistacia terebinthus were the most significant at 7.22x10
-15

, 

2.69x10
-14

 and 3.98x10
-12

, respectively. Models for cultivated orchard species that occur 

in mid- to low-elevations also tended to perform well when evaluated using the binomial 

probability. Models constructed for Olea europaea, Ficus carica and Prunus dulcis had 

p-values of 9.38x10
-7

, 5.53x10
-4

 and 1.34x10
-7

, respectively. Success rates indicate how 

often a model correctly predicted a test point as occurring within the predicted suitable 

area for the threshold of maximum training sensitivity + specificity. Overall, modeling 

success rates varied from 36.67% (for Cedrus brevifolia) to 97.5% (for Juniperus 

foetidissima). Quercus alnifolia, Pinus brutia and Pistacia terebinthus (best performing 
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in terms of p-value) had success rates of 72.22%, 84.17% and 93%, respectively, thus 

performing well when using success rates as indicators of model performance. Models 

for cultivated species Olea europaea, Ficus carica and Prunus dulcis had success rates of 

85.46%, 62.5% and 63.64%, respectively, (Table 19).  

  

(a) (b) 

(c) (d) 
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(e) (f) 

(g) (h) 

(i) (j) 
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(s) (t) 

(u) (v) 

Figure 21. Red areas indicate the binary predicted suitable areas of occurrence based on 

a threshold of maximum training sensitivity + specificity. Yellow points are field 

observations for the specific species mapped. 
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Threshold-independent validation 

 Threshold-independent validation is based on the AUC for training and test data. 

The AUC indicates how well the model predicts presences in comparison to a random 

background sample; values above 0.5 are considered to indicate models that perform 

better than a random prediction. Training AUC (Table 19) ranged from 0.8393 for Olea 

europaea to 0.9922 for Juniperus foetidissima, indicating that the models perform well in 

predicting the occurrence of the data they are trained on (or created with) as the AUC is 

much higher than 0.5 and hence, model performance is much better than randomly 

predicted distributions for these species. Test AUC (Table 19) ranged from 0.6297 for 

Helianthemum obtusifolium to 0.9902 for Pinus nigra, indicating model performance 

better than random prediction for all species. Higher AUC values also demonstrate that 

models perform well when applied to withheld data and that they are not overly specific 

to the training data or constrained by the environmental predictors, an indicator that the 

models may perform well under new conditions. All species with fewer than 14 

observations had test AUCs under 0.7481, with the exception of Juniperus foetidissima 

(test AUC=0.9341). Pistacia atlantica (n=14) had the lowest test AUC (0.7048) of 

species with 14 or more observations. There is no apparent correlation between training 

AUC values and the number of observations for each species. 

Discussion 

 This study has produced continuous and binary suitability maps, while 

determining the effectiveness of Maxent in modeling of plant species distributions on 

Cyprus. This study attempts to predict the future distribution of twenty-two species, 

based upon their status as conservation, agricultural, cultural, or indicator species on 
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Cyprus; all are key taxa for maintaining vegetation habitats and biological diversity. (see 

Table 17). Conservation species are indicated by their occurrence on the European Red 

List of Vascular Plants (Bilz et al., 2011) or as a species that occur within a priority 

habitat according to Annex I of the Habitats Directive (Council of the European 

Communities, Council Directive 92/43/EEC, 2007). Cyprus is made up of seven general 

habitat categories: Coastal and Halophytic Habitats, Coastal Sand Dunes and Island 

Dunes, Freshwaters Habitats, Sclerophyllous Scrub (Matorral), Rocky Habitats and 

Caves, Natural and Semi-Natural Grassland Formations, and Forests. Four of the 15 

priority habitats occur within Coastal and Halophytic Habitats and four within the Forest 

Habitats. Indicator species are species that are considered to define a particular habitat 

type. Four species of orchard trees, Punica granatum (pomegranate), Prunus dulcis 

(almond), Olea europaea (olive) and Ficus carica (fig) were selected to represent the 

agricultural species of Cyprus (Table 17). These trees were selected on the basis of their 

long history as cultivars on the island and as sources of present-day agricultural products. 

In addition to Punica granatum, Olea europaea and Ficus carica, Arbutus andrachne, 

Cistus creticus, Cedrus brevifolia, Pistacia lentiscus and Pistacia terebinthus are species 

of cultural importance. Examples of cultural uses include wood for icon production, dye 

extraction or symbolic ties to ancient Greece. 

Maxent was selected as the modeling tool/platform, partially due to its ability to 

create effective models of species from relatively few observations. In this study, 

Maxent’s ability to create high performing models was demonstrated in models for high 

elevation species such as Juniperus foetidissima, Cedrus brevifolia, Quercus alnifolia and 

Pinus nigra. These species may have low sampling observations due to restrictions in 
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extent or detectability. However when evaluated using a threshold of maximum training 

sensitivity + suitability and a binomial probability, they produced binary prediction maps 

that produce better than random predictions over the same area (Table 19). Additionally 

these models performed exceptionally well when evaluated using both the test and 

training AUCs (all higher than 0.90). Juniperus foetidissima, Cedrus brevifolia, Quercus 

alnifolia and Pinus nigra are considered a species of concern under Annex I of the 

Habitats Directive, and Cedrus brevifolia has been declared a vulnerable species 

(European Red List, 2011). High performing models are required to model the current 

distributions of these and similar species to insure their survival and maintain species 

diversity. Additionally, models can be utilized to conduct targeted surveys in areas of 

predicted suitability, to assist in decision-making for establishing conservation or reserve 

areas, and to model the expected distribution of the species under future climate 

conditions. Although not currently on any lists for monitoring, high performing models 

for other high elevation species such as Pterocephalus multiflorus (an endemic species) 

and Arbutus andrachne (used historically) are important when considering the potential 

impacts of climate change, as these species will not be able to migrate elevationally in 

response to predicted changes in temperature and precipitation. 

Mid- and low-elevation species follow the overall trend of high performing 

models when evaluated using both threshold-dependent and –independent measures of 

performance. Models constructed for Cistus parviflorus, Helianthemum obtusifolium, 

Pistacia atlantica and Punica granatum did not produce models that are different from a 

model constructed over the same proportional predicted area using a random sampling of 

background points. In other words, these models do not differ significantly from 
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randomly constructed models. They tend to have lower (0.6297 to 0.7481) test AUCs but 

there is not a relationship between threshold-dependent and –independent measures of 

performance. Although these species have low observation numbers (Table 19), these 

results may reflect the parameterization of the models. For example, the suite of 

environmental variables selected for this study may not be those best suited to create 

predictions of habitat suitability for these particular species. In addition, the selection of a 

different method of thresholding the continuous predicted suitability maps may produce 

p-values that are statistically significant. Finally, the use of a cross-validation method 

(e.g. Phillips et al., 2006; Elith et al., 2011) for partitioning data into train/test datasets 

may increase the AUC for each of these species. 

 As a means of evaluating field observations for accuracy, identified species were 

compared against the botanical regions described by Meikle (1977). Misidentification of 

species may result in models that predict species for areas in which they are not 

environmentally compatible, or it may skew results toward misidentified sites, potentially 

impacting management decisions. Meikle’s botanical regions were created through his 

personal observations, and with reference to other previously published observations. 

When possible, Meikle visited botanical collections and verified the species’ 

classification, noting where the plant was collected (if available) for inclusion in his 

description of a species and its distribution on Cyprus (see Meikle 1977, 1985; further 

description in Chapter 2).Several species (Cistus creticus, Ficus carica, Juniperus 

foetidissima, Juniperus phoenicea, Pinus brutia, and Thymus capitatus) were observed 

outside of their historical botanical regions, as described by Meikle (1977, 1985).  For 

example, the observation of C. parviflorus in Division 5 is not easily explained, since C. 
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parviflorus was not noted by Meikle (1977, 1985) in this division. Observations 

occurring in Division 5 may represent a range extension of the species, or depending 

upon the area of observation (e.g. urban, suburban, roadside, forest, etc.), the 

observations may reflect plantings for roadside beautification/revegetation projects or 

landscaping plantings in yards or other urban features. Thymus capitatus was described as 

occurring in Region 8 and Ficus carica in Region 3 by Hand (2004). The observation of 

Juniperus foetidissima in Region 2 and Pinus brutia in Division 4 may represent a 

planted specimen or a misclassification (P. brutia is often misidentified as P. halepensis 

as their botanical classification is often discussed; see Hand, Hadjikyriakou, and 

Christodoulou, 2011). Juniperus phoenicea was described in Division 7 by Farjon (2005). 

Thus, with the exception of C. parviflorus many of the species observations still fall 

within their documented botanical regions based upon updates since the publication of 

Meikle’s books (1977, 1985). 

 The percent contribution of environmental variables may help to determine 

limiting factors in the distribution of a species. For the species modeled here, geology 

was a contributing variable in the development of all the models and may help direct 

conservation efforts, particularly for species of agricultural interest (i.e. Ficus carica and 

Punica granatum) where targeted substrate improvements are more likely to occur. Many 

predictions were also influenced by BIO12, annual precipitation, and BIO17, 

precipitation of the driest quarter, indicating that many of the Cypriot species are 

restricted by either low annual or seasonal precipitation, which may have potential 

consequences under climate change predictions of lower rainfall and higher temperatures 

(IPCC, 2007; EEA, 2010; Zacharidis, 2012). BIO1, annual mean temperature range, also 
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played a role in model construction for 14 of the 22 species, most notably Prunus dulcis 

and Quercus coccifera (29.3% and 30.3% contribution, respectively), indicating that the 

distributions of these species are influenced by temperature extremes (high or low 

temperature annually).  

Quercus alnifolia has been noted as being restricted to the igneous rocks of the 

Troodos Range and as occurring above 760m (Meikle 1977, 1985); however, geology 

only accounted for 11.3% of variable contribution, whereas BIO12, annual precipitation, 

and BIO17, precipitation of the driest quarter, accounted for 32.8% and 38.2%, 

respectively. This may indicate that the environmental requirements of Q. alnifolia 

require further study, as Tsintides et al. (2002) notes that this species can occur at 

elevations as low as 300m. With the results of the Maxent models, further study on the 

moisture requirements of Q. alnifolia would be interesting, in order to determine if 

moisture is indeed the limiting variable (as elevation can indicate changes to other 

environmental gradients in addition to precipitation).  

 The models created for the 22 species listed in Table 17 are the starting point to 

evaluate the impact of climate scenarios for 2030, 2050, and 2070 on habitat suitability in 

Cyprus, an area that currently lacks such predictions. Current modeling efforts have 

focused on the Mediterranean as a region, but it is important to look at Cyprus 

individually due to the high number of endemic species, many of which are species of 

concern. 

Conclusions 

 A majority of models (18 of 22) constructed to predict the present-day habitat 

suitability of selected plant species on Cyprus were statistically significant (at p < 0.05), 
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indicating that they perform better than random predictions for each of these species. 

Models for high elevation species Juniperus foetidissima, Cedrus brevifolia, Pinus nigra, 

Pterocephalus multiflorus, Arbutus andrachne and Quercus alnifolia performed well 

when evaluated using the AUC, a threshold-independent metric. The combined results of 

threshold-dependent (binomial probability) and threshold-independent methods of 

evaluation indicate these models are reliable and increase the credibility of their use for 

prediction into new climate scenarios.  

Models for three of the four orchard species (Olea europaea, Ficus carica  and 

Prunus dulcis) were also high performing, with p-values from the binomial probability 

indicating they function better than a random prediction over the same proportional 

predicted area. The test and training AUCs suggest that these models are well suited to 

predict into novel climate conditions, as the models performed well when predicting 

areas of suitability for test data.  Mid-elevation species (Cistus salviifolius, Quercus 

coccifera, Thymus capitatus, Sarcopoterium spinosum, Pistacia terebinthus and Cistus 

creticus) and low elevation species (Juniperus phoenicea and Pistacia lentiscus) follow 

the same trend, with significant p-values and good to excellent test and training AUC 

values. 

Several species with few observations did not have high test AUCs, indicating 

that additional tweaks to the models might be warranted. Although models for C. 

parviflorus, H. obtusifolium, P. atlantica and P. granatum are not statistically significant 

using the maximum training specificity + sensitivity rule at a 0.05 significance level, this 

does not mean these models cannot be used to predict future suitable areas; it only 

indicates that under this particular threshold rule the results are insignificant. Overall, 
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Maxent produced valuable models to use as a starting point in evaluating the impacts of 

climate change scenarios on habitat suitability, evaluation of potentially suitable habitat 

for conservation and preservation, refining survey data and supplementing other data for 

management decisions.



 

109 

 

Chapter 5 

MAXENT MODELING OF FUTURE VEGETATION 2030-2070 

Introduction 

Mediterranean ecosystems contain approximately 20 percent of the Earth’s 

vascular plants (Heywood and Watson, 1995; Cowling et al., 1996; Groombridge and 

Jenkins, 2002; Yates et al., 2010). The Mediterranean Basin is described as a biodiversity 

hotspot, as it is high in endemic species, although the region experiences various 

pressures, including climate change, that threaten the persistence of species (Myers et al., 

2000). In Cyprus, approximately 2000 plant taxa have been identified, with 144 endemic 

species, many of which are local endemics to one of the island’s two large mountain 

ranges. Bilz et al. (2011) included 45 Cypriot endemics in the European Red List of 

Vascular Plants, categorizing 10 plants as critically endangered (Allium marathasicum, 

Arabis kennedyae, Astragalus macrocarpus, Centaurea akamantis, Crypsis 

hadjikyriakou, Delphinium caseyi, Limonium mucronulatum, Maresia nana var. glabra, 

Salvia veneris and Scilla morrisii), 5 as endangered (Brassica hilarionis, Onosma troodi, 

Peucedanum kyriakae, Solenopsis antiphonitis and Tulipa cypria), 25 as vulnerable 

(Allium exaltatum, Arum sintenisii, Astragalus echinus var. chionistrae, Brachypodium 

glaucovirens, Cedrus brevifolia, Clinopodium troodi, Crocus cyprius, Cynoglossum 

troodi, Cyperus cyprius, Erysimum kykkoticum, Ferula cypria, Hedysarum cypruim, 

Lactuca tetrantha, Onosma caepitosa, Origanum cardiofolium, Papaver cyprium, 

Ranunculus kykkoensis, Scilla lochiae, Sedum microstachyum, Serapias politisii, Sideritis 

cypria, Silene gemmate, Taraxacum aphrogenes and Taraxacum holmboei), 1 as near 
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threatened (Ophrys kotschyi), and 4 as data deficient (Alyssum akamasicum, Phlomis 

brevibracteata, Phlomis cypria and Phlomis cypria subsp. cypria). 

Anthropogenic climate change is expected to increase mean annual temperatures 

in Europe at a rate greater than the global mean (increases of 1.8°C to 4.0°C), with 

temperatures predicted to increase between 1.1°C and 6.4°C between the present (1980-

1999 average) and the end of the 21
st
 century, depending upon the climate scenario under 

consideration (IPCC, 2007; EEA, 2010). The Mediterranean is most likely to experience 

the predicted increase in temperature over the summer months, with a decrease of 5-20% 

in mean annual precipitation across the Mediterranean Basin (IPCC, 2007; EEA, 2010). 

The Meteorological Service of Cyprus (2013) recorded a 17% decrease in mean annual 

precipitation from 1901-1930 (559 mm) to 1971-2000 (462 mm). In addition, 

temperature increases were noted across the island, with a 1°C increase since the 

beginning of the 20
th

 century. 

The predicted changes in temperature and precipitation are expected to have 

profound effects on ecosystem function; the diversity and composition of communities; 

and the distribution, dispersal, and abundance of individual species (Parmesan and Yohe, 

2003; Rosenzweig et al., 2008; Yates et al., 2010; Butler et al., 2012). Future changes in 

species distributions are not unexpected, given species’ responses to past changes in 

climate. For example, in the Holocene, dispersal events that crossed large physical 

barriers over long distances have been recorded in the pollen record (Pitelka, 2004; 

Thomas et al., 2004). Within the past 30 years, species have shifted their ranges to higher 

elevations or toward the poles (Parmesan, 2006), restricted their ranges (Thuiller et al., 

2005), changed in abundance (Parmesan and Yohe, 2003; Root et al., 2003), and possibly 
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gone extinct (Pounds et al., 1999) in response to climate changes. Thomas et al. (2004) 

projected species extinction rates of 11% or 34% by 2050 based on assumptions 

regarding species’ ability to disperse to projected areas of suitable environmental 

conditions under conditions of mean temperature increase of 0.8°C to 1.7°C and CO2 

increase by 500 parts per million by volume (ppmv), a scenario less severe than the IPCC 

(2007) has predicted for mean changes in temperature. Mediterranean species are 

predicted to decline by as much as 62% in response to increased temperatures and 

decreased precipitation (Zacharidis, 2012). 

This study attempts to predict the future distribution of twenty-two species, based 

upon their status as conservation, agricultural, cultural, or indicator species on Cyprus 

(see Table 17). Conservation species are indicated by their occurrence on the European 

Red List of Vascular Plants (2011) or as a species that occurs within a priority habitat 

according to Annex I of the Habitats Directive (Council of the European Communities, 

Council Directive 92/43/EEC, 2007). Cyprus is made up of seven general habitat 

categories: Coastal and Halophytic Habitats, Coastal Sand Dunes and Island Dunes, 

Freshwaters Habitats, Sclerophyllous Scrub (Matorral), Rocky Habitats and Caves, 

Natural and Semi-Natural Grassland Formations, and Forests. Four of the 15 priority 

habitats occur within the Coastal and Halophytic Habitats and four within the Forest 

Habitats categories. Indicator species are species that define a particular habitat type. 

Four species of orchard trees Punica granatum (pomegranate), Prunus dulcis (almond), 

Olea europaea (olive) and Ficus carica (fig) represent the agricultural species of Cyprus 

(Table 17). These trees were selected due their long history as cultivars on the island and 

their importance for present-day agricultural products. In addition to Punica granatum, 
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Olea europaea and Ficus carica, Arbutus andrachne, Cistus creticus, Cedrus brevifolia, 

Pistacia lentiscus and Pistacia terebinthus are species of cultural importance. Examples 

of cultural uses include wood for icon production, dye extraction or symbolic ties to 

ancient Greece.  

Cyprus presents itself as an interesting case study due to its species diversity and 

for its potential for habitat loss and species extinctions due to climate change. More 

specifically, the following question will be addressed: 

How will the current species’ distributions change with respect to IPCC AR4 A1b and A2 

climate scenarios for 2030, 2050, and 2070? 

This question produces the following predictions (see Methods for a description of the 

scenarios): 

1. Under an A1b scenario: We would expect minimal changes to most species 

distributions with the exceptions of high elevation or coastal species. For 

high-elevation species, Cyprus has only two major mountain ranges, both of 

which are relatively low in elevation (1952 m maximum). Thus, movement to 

higher elevation is not possible as a response to global warming for some of 

the higher elevation species. Similarly, there is no adaptive option for species 

to spread northward, since Cyprus’ latitude only varies by approximately 250 

km. With increases in temperature and sea level, species currently restricted to 

the coast will likely expand their ranges inland. 

2. Under an A2 scenario: We would expect species that are limited by high 

temperature or low precipitation to disperse to higher elevation. For some 

species this may cause a restriction in modern distributions. Generalists will 
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likely expand into new habitats currently unavailable to them due to resource 

competition or other limiting factors. We would expect the loss of high 

elevation species and species with modern limited distributions by the end of 

the 21
st
 century. 

Methods 

Selection of climate scenarios and model 

 Future IPCC Assessment Report 4 (AR4) gas-emission scenarios (from the IPCC 

Special Report on Emissions Scenarios; SRES, 2000) are grouped into four qualitative 

categories (A1, A2, B1, and B2) with differing driving forces and resulting greenhouse 

gas (GHG) emissions. The A1 storyline depicts rapid economic growth, population that 

peaks mid-century, and rapid introduction of new and efficient technologies. This 

storyline is further divided into three scenarios, A1FI, A1T and A1b, to explore differing 

approaches to energy system technologies (IPCC, 2000). To model future distributions of 

Cypriot vegetation, SRES scenarios A1b and A2 were selected. Like all A1 scenarios, the 

A1b scenario depicts rapid economic growth, global population peaking mid-century 

with declines later in the century, and the quick introduction and adoption of new and 

more efficient technology. This scenario assumes a balanced approach (versus fossil 

intensive – A1FI or non-fossil energy sources – A1T) to use of all available energy 

sources, with new technologies and improvements applying to all forms of energy supply. 

The A2 scenario depicts a heterogeneous world, with high population growth rates, slow 

economic development, and slow technological change (IPCC, 2000). Based on ensemble 

predictions of future climate, the A1b scenario’s most likely estimate of temperature 

change between 2090 and 2099 (relative to 1980-1999) is 2.8°C, with a range of 1.7°-
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4.4°C for the Mediterranean. The A2 scenario’s most likely estimate of temperature 

change over the same time period is 3.4°C, with a range of 2.0°-5.4°C (IPCC, 2007). 

These two story lines represent mid- and high-emissions scenarios, with minimal 

differences in temperature predictions by 2050, but diverging temperatures thereafter 

(Wilby et al., 2009; Jones and Thornton, 2013). At the time of data acquisition, B1 

scenarios (low-emissions scenario) were not available at the selected data resolution and 

time slices. 

 In addition to selection of the GHG-emissions scenarios, decisions on the 

appropriate atmosphere-ocean global climate model(s) (AOGCM) were required. 

Twenty-three models were utilized in the IPCC AR4 (2007) to create ensemble 

predictions of future climate conditions; however, not all models are available at the 

desired resolution of 1 km
2
, at time slices of 2030, 2050, and 2070 (representing the time 

periods of 2021-2040, 2041-2060, and 2061-2080, respectively), or include the option to 

download the derived bioclimatic variables. From the remaining available models, MRI-

CGCM2.3.2 (Meteorological Research Institute, Japan; Yukimoto et al., 2006) was 

selected as it reliably simulates current climate (Yukimoto et al., 2006) and was the most 

conservative model available during data acquisition, providing more conservative 

estimates of temperature increase than the ensemble best estimate predictions, with an 

average temperature increase of 2.4°C for SRES A1b and 2.7°C for SRES A2 over the 

period of 2080-2099. 



 

115 

 

Bioclimatic grids were downloaded from the Climate Change, Agriculture and 

Food Security (CCAFS) Global Climate Model (GCM) Data Portal
6
 and consist of 19 

bioclimatic variables derived from the monthly estimates of precipitation and maximum 

and minimum temperatures (Ramírez-Villegas and Bueno-Cabrera, 2009) at 

approximately 1 km
2
 resolution (30-arc second x 30-arc second), matching the resolution 

of modern species predictions (see Chapter 3). These data are downscaled from the 

original 100 to 200 km resolution AOGCM projections using the delta method of 

statistical downscaling (Ramirez-Villegas and Jarvis, 2010). This methodology does not 

improve data accuracy, but in the absence of a regional climate model, or the long-term 

meteorological data necessary to produce a regional climate model or use a different 

downscaling method, this is the best option for agricultural, species distribution and other 

ecological/biological assessments that require higher spatial resolution data as predictor 

variables (Ramirez-Villegas and Jarvis, 2010). The delta downscaling method applies a 

thin-plate spline spatial interpolation to the original AOGCM outputs. To create the new 

climate surfaces, the anomalies from the 1961-1990 baseline data are calculated for each 

time step and then applied to the higher spatial resolution baseline data. This method is 

based on the assumptions that changes in climate vary over large distances, and that 

relationships between climatic variables are maintained throughout time.  These 

assumptions, however, may not hold true in landscapes of highly variable topography 

(Ramirez-Villegas and Jarvis, 2010).  

 

                                                 
6
 http://www.ccafs-climate.org/ 
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Maxent and future prediction of species distributions 

 Predictions of future distributions were created for 22 species (see Table 17) using 

the same predictive bioclimatic variables as modern models (see Chapter 4) after 

determining that correlations between variables were not highly variable over time 

(Appendices B through G) (see Elith et al., 2010) and were not indirect environmental 

predictors of species occurrence (e.g. monthly estimates of bioclimatic variables or 

elevation) (Phillips et al., 2006). Geology was assumed to remain constant across time 

slices. Since the modern models were constructed using a bootstrapping method of data 

partitioning and replicated 10 times, future scenarios also were generated for each model 

run. Prediction of future climates often involves novel conditions that are not sampled in 

the training of the model, thus Maxent performs “clamping,” by restricting values for 

future environmental variables to the maximum value encountered in the same variable 

used during training (Elith et al., 2011).  The final mapped distribution represents the 

average of all model runs. These data are first presented as continuous surfaces of 

predicted suitability. Thresholds are applied to the continuous predictions (see Table 19 

for threshold values) and a binary presence/absence map is created for any species 

maintaining predicted suitable areas above threshold values throughout the time steps 

(Table 21). The presence/absence maps allow for the calculation of change in area 

occupied as well as the examination of any shifts in species distribution. Any species 

without predicted suitable habitat above the threshold values at any time step are assumed 

to not persist to subsequent time steps, thus losing all suitable areas of occurrence. 
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Model validation 

 Unlike modern models, future models of species distributions are difficult to 

validate since these distributions cannot be observed. However, Maxent features built-in 

applications that allow for the visualization of similarities between modern and future 

climate conditions (multivariate environmental similarity surfaces, MESS).  Maxent 

maps the variable in each grid cell that is most dissimilar, and displays the effect of 

constraining the data (“clamping”) to training data maximum values (Phillips et al., 2006; 

Phillips and Dudík, 2008; Elith et al., 2010; Elith et al., 2011). 
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Table 21. Predicted suitable area for each species modeled. Models were constructed using climate scenarios A1b and A2 and species 

responses were modeled across three time steps: 2030, 2050 and 2070. 

 

Predicted suitable area (square km) for each time slice/climate scenario 

    

Taxon Modern 2030 A1b 2050 A1b 2070 A1b 2030 A2 2050 A2 2070 A2 

Overall change in 

suitable area (Modern - 

A1B 2070; %) 

Overall change in 

suitable area (Modern - 

A2 2070; %) 

Arbutus andrachne 1088.8427 0 0 0 79.37840506 0 0 -100 -100 

Cedrus brevifolia 517.1309 0 0 0 0 0 0 -100 -100 

Cistus creticus 2011.1674 0 0 0 0 0 0 -100 -100 

Cistus parviflorus 1644.8278 0 0 0 0 0 0 -100 -100 

Cistus salviifolius 1404.3018 0 0 0 0 0 0 -100 -100 

Ficus carica 1939.0096 252.2818616 8550.861852 4503.349119 6132.571235 7174.707523 8166.544624 132.2499651 321.1709227 

Helianthemum obtusifolium 1518.0891 158.7568101 0 0 0 0 0 -100 -100 

Juniperus foetidissima 277.53 0 0 0 0 0 0 -100 -100 

Juniperus phoenicea 692.8999 0 0 0 0 0 0 -100 -100 

Olea europaea 2453.3652 4316.299016 3656.122182 1005.983747 2636.777713 2452.085384 3377.904802 -58.9957603 37.68454862 

Pinus brutia 2277.5962 76.23470585 2171.51023 0 1309.350721 535.2147906 1404.447622 -100 -38.33640826 

Pinus nigra 291.4065 0 0 0 0 0 0 -100 -100 

Pistacia atlantica 1918.6574 0 0 0 0 0 0 -100 -100 

Pistacia lentiscus 1828.9227 4251.067257 4269.143528 2779.816027 5466.892927 3269.447179 3353.541133 51.99199107 83.36155665 

Pistacia terebinthus 2299.7986 2371.921054 382.7453789 1894.078774 2878.842552 139.1086901 2085.844426 -17.64153721 -9.303170021 

Prunus dulcis 2614.3326 4390.961872 4798.856845 9101.795139 6132.571235 8190.122368 6703.938566 248.1498543 156.4302096 

Pterocephalus multiflorus 888.096 0 0 0 0 0 0 -100 -100 

Punica granatum 2500.5453 1457.890509 92.73912671 92.73912671 92.73912671 0 0 -96.29124389 -100 

Quercus alnifolia 1148.0491 74.66285625 0 0 0 0 0 -100 -100 

Quercus coccifera 1916.8072 0 0 0 0 0 0 -100 -100 

Sarcopoterium spinosum 1790.9936 1865.785481 249.9240872 3561.025281 6917.710112 6009.966965 4522.211314 98.82959272 152.4973464 

Thymus capitatus 2173.0599 3264.73163 756.8455849 3708.779143 4658.176305 1131.731716 4849.156032 70.67081968 123.1487513 
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Results 

Trends 

 The overall trends were examined visually from the continuous prediction maps 

(Figures 22-43) and the binary presence/absence maps (Figures 44-52). The continuous 

prediction maps provide probability of suitability for species occurrence at each pixel 

across the entire study area. This type of map is helpful when comparing areas of 

suitability for a single species across multiple time slices. Since the predictions of 

suitability cover the study area, it is possible to visually discern changes to the overall 

pattern of potential distribution. The continuous maps are important for inclusion as the 

source for thresholds used to create binary presence/absence maps. When examining the 

continuous prediction maps for A1b scenarios, Cistus parviflorus, Ficus carica, 

Helianthemum obtusifolium, Olea europaea, Pinus brutia, Pistacia lentiscus, Pistacia 

terebinthus, Prunus dulcis, Punica granatum, Sarcopoterium spinosum, and Thymus 

capitatus all appear to persist throughout all time steps (Figures 22-43). Suitable areas are 

not predicted in 2050 for C. parviflorus (Figure 25d). It does, however, appear along the 

coastline in the 2070 prediction, but is more restricted in range, and habitat suitability 

scores are lower than modern predictions (Figure 25f). Pinus brutia also appears to 

expand its range by 2050 (Figure 32d), particularly toward the Akamas Peninsula and 

along the northern reaches of the Karpas Peninsula, but the suitability scores decline by 

2070 (Figure 32f).   Ficus carica, P. lentiscus, P. terebintus, P. dulcis, S. spinosum, and 

T.  capitatus all appear to expand into new suitable areas by 2070. The A2 scenario 

produces similar results, with F. carica, H. obtusifolium, O. europaea, P. lentiscus, P. 

terebinthus, P.  dulcis, P. granatum, S. spinosum, and T. capitatus appearing to maintain 
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suitable areas through all time steps (Figures 22-43).  Cistus parviflorus (Figure 25g) 

does have suitable areas predicted in 2070, and P. brutia (Figure 32g) is added to the list 

of species with suitable areas by this time. 

(a) 

 

(b) (c) 

(d) (e) 
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(f) (g) 

Figure 22. Continuous suitability maps for Arbutus andrachne from present (Figure 22a) 

through 2070 A1b (Figure 22f) and A2 (Figure 22g) climate scenarios. Warmer colors 

indicate predicted suitability at a pixel to be near 1 (completely suitable for occurrence) 

and cooler colors indicate suitability predictions closer to 0 (completely unsuitable for 

occurrence).  

(a) 

 

(b) (c) 
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(d) (e) 

(f) (g) 

Figure 23. Continuous suitability maps for Cedrus brevifolia from present (Figure 23a) 

through 2070 A1b (Figure 23f) and A2 (Figure 23g) climate scenarios. Warmer colors 

indicate predicted suitability at a pixel to be near 1 (completely suitable for occurrence) 

and cooler colors indicate suitability predictions closer to 0 (completely unsuitable for 

occurrence).  
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(a) 

 

(b) (c) 

(d) (e) 
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(f) (g) 

Figure 24. Continuous suitability maps for Cistus creticus from present (Figure 24a) 

through 2070 A1b (Figure 24f) and A2 (Figure 24g) climate scenarios. Warmer colors 

indicate predicted suitability at a pixel to be near 1 (completely suitable for occurrence) 

and cooler colors indicate suitability predictions closer to 0 (completely unsuitable for 

occurrence). 

 

(a) 

 

(b) (c) 
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(d) (e) 

(f) (g) 

Figure 25. Continuous suitability maps for Cistus parviflorus from present (Figure 25a) 

through 2070 A1b (Figure 25f) and A2 (Figure 25g) climate scenarios. Warmer colors 

indicate predicted suitability at a pixel to be near 1 (completely suitable for occurrence) 

and cooler colors indicate suitability predictions closer to 0 (completely unsuitable for 

occurrence). 
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(a) 

 

(b) (c) 

(d) (e) 
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(f) (g) 

Figure 26. Continuous suitability maps for Cistus salviifolius from present (Figure 26a) 

through 2070 A1b (Figure 26f) and A2 (Figure 26g) climate scenarios. Warmer colors 

indicate predicted suitability at a pixel to be near 1 (completely suitable for occurrence) 

and cooler colors indicate suitability predictions closer to 0 (completely unsuitable for 

occurrence). 

 

(a) 

 

(b) (c) 
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(d) (e) 

(f) (g) 

Figure 27. Continuous suitability maps for Ficus carica from present (Figure 27a) 

through 2070 A1b (Figure 27f) and A2 (Figure 27g) climate scenarios. Warmer colors 

indicate predicted suitability at a pixel to be near 1 (completely suitable for occurrence) 

and cooler colors indicate suitability predictions closer to 0 (completely unsuitable for 

occurrence). 
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(a) 

 

(b) (c) 

(d) (e) 
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(f) (g) 

Figure 28. Continuous suitability maps for Helianthemum obtusifolium from present 

(Figure 28a) through 2070 A1b (Figure 28f) and A2 (Figure 28g) climate scenarios. 

Warmer colors indicate predicted suitability at a pixel to be near 1 (completely suitable 

for occurrence) and cooler colors indicate suitability predictions closer to 0 (completely 

unsuitable for occurrence). 

 

(a) 

 

(b) (c) 
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(d) (e) 

(f) (g) 

Figure 29. Continuous suitability maps for Juniperus foetidissima from present (Figure 

29a) through 2070 A1b (Figure 29f) and A2 (Figure 29g) climate scenarios. Warmer 

colors indicate predicted suitability at a pixel to be near 1 (completely suitable for 

occurrence) and cooler colors indicate suitability predictions closer to 0 (completely 

unsuitable for occurrence). 
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(a) 

 

(b) (c) 

(d) (e) 
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(f) (g) 

Figure 30. Continuous suitability maps for Juniperus phoenicea from present (Figure 

30a) through 2070 A1b (Figure 30f) and A2 (Figure 30g) climate scenarios. Warmer 

colors indicate predicted suitability at a pixel to be near 1 (completely suitable for 

occurrence) and cooler colors indicate suitability predictions closer to 0 (completely 

unsuitable for occurrence). 

 

(a) 

 

(b) (c) 
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(d) (e) 

(f) (g) 

Figure 31. Continuous suitability maps for Olea europaea from present (Figure 31a) 

through 2070 A1b (Figure 31f) and A2 (Figure 31g) climate scenarios. Warmer colors 

indicate predicted suitability at a pixel to be near 1 (completely suitable for occurrence) 

and cooler colors indicate suitability predictions closer to 0 (completely unsuitable for 

occurrence). 
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(a) 

 

(b) (c) 

(d) (e) 
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(f) (g) 

Figure 32. Continuous suitability maps for Pinus brutia from present (Figure 32a) 

through 2070 A1b (Figure 32f) and A2 (Figure 32g) climate scenarios. Warmer colors 

indicate predicted suitability at a pixel to be near 1 (completely suitable for occurrence) 

and cooler colors indicate suitability predictions closer to 0 (completely unsuitable for 

occurrence). 

 

(a) 

 

(b) (c) 
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(d) (e) 

(f) (g) 

Figure 33. Continuous suitability maps for Pinus nigra from present (Figure 33a) 

through 2070 A1b (Figure 33f) and A2 (Figure 33g) climate scenarios. Warmer colors 

indicate predicted suitability at a pixel to be near 1 (completely suitable for occurrence) 

and cooler colors indicate suitability predictions closer to 0 (completely unsuitable for 

occurrence). 
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(a) 

 

(b) (c) 

(d) (e) 
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(f) (g) 

Figure 34. Continuous suitability maps for Pistacia atlantica from present (Figure 34a) 

through 2070 A1b (Figure 34f) and A2 (Figure 34g) climate scenarios. Warmer colors 

indicate predicted suitability at a pixel to be near 1 (completely suitable for occurrence) 

and cooler colors indicate suitability predictions closer to 0 (completely unsuitable for 

occurrence). 

 

(a) 

 

(b) (c) 
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(d) (e) 

(f) (g) 

Figure 35. Continuous suitability maps for Pistacia lentiscus from present (Figure 35a) 

through 2070 A1b (Figure 35f) and A2 (Figure 35g) climate scenarios. Warmer colors 

indicate predicted suitability at a pixel to be near 1 (completely suitable for occurrence) 

and cooler colors indicate suitability predictions closer to 0 (completely unsuitable for 

occurrence). 
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(a) 

 

(b) (c) 

(d) (e) 



 

142 

 

 

(f) (g) 

Figure 36. Continuous suitability maps for Pistacia terebinthus from present (Figure 

36a) through 2070 A1b (Figure 36f) and A2 (Figure 36g) climate scenarios. Warmer 

colors indicate predicted suitability at a pixel to be near 1 (completely suitable for 

occurrence) and cooler colors indicate suitability predictions closer to 0 (completely 

unsuitable for occurrence). 

 

(a) 

 

(b) (c) 
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(d) (e) 

(f) (g) 

Figure 37. Continuous suitability maps for Prunus dulcis from present (Figure 37a) 

through 2070 A1b (Figure 37f) and A2 (Figure 37g) climate scenarios. Warmer colors 

indicate predicted suitability at a pixel to be near 1 (completely suitable for occurrence) 

and cooler colors indicate suitability predictions closer to 0 (completely unsuitable for 

occurrence). 
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(a) 

 

(b) (c) 

(d) (e) 
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(f) (g) 

Figure 38. Continuous suitability maps for Pterocephalus multiflorus from present 

(Figure 38a) through 2070 A1b (Figure 38f) and A2 (Figure 38g) climate scenarios. 

Warmer colors indicate predicted suitability at a pixel to be near 1 (completely suitable 

for occurrence) and cooler colors indicate suitability predictions closer to 0 (completely 

unsuitable for occurrence). 

 

(a) 

 

(b) (c) 
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(d) (e) 

(f) (g) 

Figure 39. Continuous suitability maps for Punica granatum from present (Figure 39a) 

through 2070 A1b (Figure 39f) and A2 (Figure 39g) climate scenarios. Warmer colors 

indicate predicted suitability at a pixel to be near 1 (completely suitable for occurrence) 

and cooler colors indicate suitability predictions closer to 0 (completely unsuitable for 

occurrence). 
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(a) 

 

(b) (c) 

(d) (e) 
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(f) (g) 

Figure 40. Continuous suitability maps for Quercus alnifolia from present (Figure 40a) 

through 2070 A1b (Figure 40f) and A2 (Figure 40g) climate scenarios. Warmer colors 

indicate predicted suitability at a pixel to be near 1 (completely suitable for occurrence) 

and cooler colors indicate suitability predictions closer to 0 (completely unsuitable for 

occurrence). 

 

(a) 

 

(b) (c) 
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(d) (e) 

(f) (g) 

Figure 41. Continuous suitability maps for Quercus coccifera from present (Figure 41a) 

through 2070 A1b (Figure 41f) and A2 (Figure 41g) climate scenarios. Warmer colors 

indicate predicted suitability at a pixel to be near 1 (completely suitable for occurrence) 

and cooler colors indicate suitability predictions closer to 0 (completely unsuitable for 

occurrence). 
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(a) 

 

(b) (c) 

(d) (e) 
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(f) (g) 

Figure 42. Continuous suitability maps for Sarcopoterium spinosum from present (Figure 

42a) through 2070 A1b (Figure 42f) and A2 (Figure 42g) climate scenarios. Warmer 

colors indicate predicted suitability at a pixel to be near 1 (completely suitable for 

occurrence) and cooler colors indicate suitability predictions closer to 0 (completely 

unsuitable for occurrence). 

 

(a) 

 

(b) (c) 
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(d) (e) 

(f) (g) 

Figure 43. Continuous suitability maps for Thymus capitatus from present (Figure 43a) 

through 2070 A1b (Figure 43f) and A2 (Figure 43g) climate scenarios. Warmer colors 

indicate predicted suitability at a pixel to be near 1 (completely suitable for occurrence) 

and cooler colors indicate suitability predictions closer to 0 (completely unsuitable for 

occurrence). 

 

The presence/absence maps are produced by applying a logistic threshold to the 

continuous prediction to create a binary map that only shows pixel values (probability of 

suitability for occurrence) above the threshold as suitable and pixel values below the 

threshold as unsuitable for the species of interest. The presence/absence maps are useful 

for calculating changes to the predicted area of suitability over multiple time slices. Each 

end-use of the presence/absence map (e.g. planning for future conservation sites, 

selecting species for protection or creating a network of protected areas) will dictate the 
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type of threshold applied to the continuous suitability maps. In this case, the application 

of a threshold of maximum training sensitivity + specificity produced interesting results 

under the selected climate scenarios in that areas predicted as suitable first contract and 

then expand for several species (Figures 44-52). For example, under the A1b scenario, 

Olea europaea’s distribution contracts and advances to higher elevations under the A1b 

scenario, but expands its distribution under the A2 scenario, both to the southeast and to 

higher elevation. Ficus carica expands in suitable areas from 2030 to 2050, but its 

distribution is reduced by 2070, although this distribution is more widespread than at 

present. Ficus carica continuously expands across the landscape under all A2 scenarios, 

and suitable areas are predicted over most of the island by 2070. Pinus brutia appears to 

experience a large range extension between 2030 and 2050 under the A1b scenario. 

However, when the 2050 prediction is compared to the modern prediction the change is 

not very pronounced, and P. brutia does not have any predicted suitable areas by 2070. 

The overall range of Pinus brutia does not change dramatically from the present to 2070 

under the A2 scenario. Pistacia lentiscus increases its range in extent and elevation under 

both climate scenarios, stretching up a large portion of the Troodos Range, the Kyrenia 

Mountains, and along the Karpas Peninsula. Pistacia terebinthus experiences a reduction 

in suitable areas in 2050 under both climate scenarios, with an increase in its area of 

suitability by 2070. Predicted areas of suitability under the A2 scenario do not differ 

substantially from the modern predicted suitable area. Prunus dulcis, Sarcopoterium 

spinosum, and Thymus capitatus fare well under both climate scenarios, expanding across 

the Troodos Range and foothills, the Karpas Peninsula, and Kyrenia Mountains. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 44. Binary suitability (presence/absence) maps for Ficus carica under climate 

scenarios A1b and A2 for 2030, 2050 and 2070. The area marked in red indicates the area 

of predicted suitability for occurrence based on a logistic threshold of maximum training 

sensitivity + specificity. 

 



 

155 

 

 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 45. Binary suitability (presence/absence) maps for Olea europaea under climate 

scenarios A1b and A2 for 2030, 2050 and 2070. The area marked in red indicates the area 

of predicted suitability for occurrence based on a logistic threshold of maximum training 

sensitivity + specificity. 
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(a) (b) 

(c) (d) 

 

(e) 

Figure 46. Binary suitability (presence/absence) maps for Pinus brutia under climate 

scenarios A1b and A2 for 2030, 2050 and 2070. The area marked in red indicates the area 

of predicted suitability for occurrence based on a logistic threshold of maximum training 

sensitivity + specificity. 

 



 

157 

 

 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 47. Binary suitability (presence/absence) maps for Pistacia lentiscus under 

climate scenarios A1b and A2 for 2030, 2050 and 2070. The area marked in red indicates 

the area of predicted suitability for occurrence based on a logistic threshold of maximum 

training sensitivity + specificity. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 48. Binary suitability (presence/absence) maps for Pistacia terebinthus under 

climate scenarios A1b and A2 for 2030, 2050 and 2070. The area marked in red indicates 

the area of predicted suitability for occurrence based on a logistic threshold of maximum 

training sensitivity + specificity. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 49. Binary suitability (presence/absence) maps for Prunus dulcis under climate 

scenarios A1b and A2 for 2030, 2050 and 2070. The area marked in red indicates the area 

of predicted suitability for occurrence based on a logistic threshold of maximum training 

sensitivity + specificity. 
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(a) (b) 

(c) 

 

(d) 

 

Figure 50. Binary suitability (presence/absence) maps for Punica granatum under 

climate scenarios A1b and A2 for 2030, 2050 and 2070. The area marked in red indicates 

the area of predicted suitability for occurrence based on a logistic threshold of maximum 

training sensitivity + specificity. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 51. Binary suitability (presence/absence) maps for Sarcopoterium spinosum under 

climate scenarios A1b and A2 for 2030, 2050 and 2070. The area marked in red indicates 

the area of predicted suitability for occurrence based on a logistic threshold of maximum 

training sensitivity + specificity. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 52. Binary suitability (presence/absence) maps for Thymus capitatus under 

climate scenarios A1b and A2 for 2030, 2050 and 2070. The area marked in red indicates 

the area of predicted suitability for occurrence based on a logistic threshold of maximum 

training sensitivity + specificity. 
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Table 21 provides the estimated areas (km
2
) for the presence/absence maps and 

the overall change (%) between the modern prediction and each of the 2070 predictions. 

If a species did not persist above the threshold value at a time step, it was assumed that 

the species would not occur in the next time step. Eight species persisted through the A1b 

scenario; however only five increased their areas of predicted suitability (F. carica, P. 

lentiscus, P. dulcis, S. spinosum, and T. capitatus). The same number of species persisted 

through the A2 scenario; however, O.  europaea increased in suitable area, P. brutia 

declined by approximately 38% (instead of 100%), and P. granatum lost all suitable area 

(as opposed to losing approximately 96% under A1b). 

Model validation 

 Clamping 

 Clamping maps (Figures 53-74) indicate pixels and/or regions where future 

covariate values were constrained to the maximum or minimum values found in the 

training data. Clamping is necessary as SDMs can potentially behave in ways that are 

ecologically unviable under new climate conditions (Elith et al., 2010). Under new 

environmental conditions that are outside of the training range of the environmental 

covariates, the model is response is constant, or forced to behave in a predictable manner 

and remain within the range of known values in the training data. Thus models may 

predict species into areas that are considered suitable for occurrence only because the 

environmental covariates are constrained to the training data for that species. The 

predicted area of occurrence may contain environmental covariate values that overlap 

with the training data, but the predicted range extends outside that of the training data, 

meaning the location is potentially not suitable for species occurrence. The clamping 
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maps indicate areas of clamping with warmer colors highlighting the areas where the 

prediction is potentially influenced by covariates outside of the training range. Maps for 

C. salviifolius indicate clamping across a large proportion of the island, but values within 

the area of the modern prediction remain low. In addition, H. obtusifolium, J. phoenicea, 

O. europaea, P. brutia, P. lentiscus, P. terebinthus, Pterocephalus multiflorus, S. 

spinosum, and T. capitatus exhibited clamping across a portion of the island.     
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 53. Clamping maps for Arbutus andrachne under climate scenarios A1b and A2 

for 2030, 2050 and 2070. Warmer colors indicate areas where clamping, or restriction of 

environmental variables used to create the predictions to their values in the training data 

for present-day vegetation, has occurred. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 54. Clamping maps for Cedrus brevifolia under climate scenarios A1b and A2 for 

2030, 2050 and 2070. Warmer colors indicate areas where clamping, or restriction of 

environmental variables used to create the predictions to their values in the training data 

for present-day vegetation, has occurred. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 55. Clamping maps for Cistus creticus under climate scenarios A1b and A2 for 

2030, 2050 and 2070. Warmer colors indicate areas where clamping, or restriction of 

environmental variables used to create the predictions to their values in the training data 

for present-day vegetation, has occurred. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 56. Clamping maps for Cistus parviflorus under climate scenarios A1b and A2 for 

2030, 2050 and 2070. Warmer colors indicate areas where clamping, or restriction of 

environmental variables used to create the predictions to their values in the training data 

for present-day vegetation, has occurred. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 57. Clamping maps for Cistus salviifolius under climate scenarios A1b and A2 for 

2030, 2050 and 2070. Warmer colors indicate areas where clamping, or restriction of 

environmental variables used to create the predictions to their values in the training data 

for present-day vegetation, has occurred. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 58. Clamping maps for Ficus carica under climate scenarios A1b and A2 for 

2030, 2050 and 2070. Warmer colors indicate areas where clamping, or restriction of 

environmental variables used to create the predictions to their values in the training data 

for present-day vegetation, has occurred. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 59. Clamping maps for Helianthemum obtusifolium under climate scenarios A1b 

and A2 for 2030, 2050 and 2070. Warmer colors indicate areas where clamping, or 

restriction of environmental variables used to create the predictions to their values in the 

training data for present-day vegetation, has occurred. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 60. Clamping maps for Juniperus foetidissima under climate scenarios A1b and 

A2 for 2030, 2050 and 2070. Warmer colors indicate areas where clamping, or restriction 

of environmental variables used to create the predictions to their values in the training 

data for present-day vegetation, has occurred. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 61. Clamping maps for Juniperus phoenicea under climate scenarios A1b and A2 

for 2030, 2050 and 2070. Warmer colors indicate areas where clamping, or restriction of 

environmental variables used to create the predictions to their values in the training data 

for present-day vegetation, has occurred. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 62. Clamping maps for Olea europaea under climate scenarios A1b and A2 for 

2030, 2050 and 2070. Warmer colors indicate areas where clamping, or restriction of 

environmental variables used to create the predictions to their values in the training data 

for present-day vegetation, has occurred. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 63. Clamping maps for Pinus brutia under climate scenarios A1b and A2 for 

2030, 2050 and 2070. Warmer colors indicate areas where clamping, or restriction of 

environmental variables used to create the predictions to their values in the training data 

for present-day vegetation, has occurred. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 64. Clamping maps for Pinus nigra under climate scenarios A1b and A2 for 2030, 

2050 and 2070. Warmer colors indicate areas where clamping, or restriction of 

environmental variables used to create the predictions to their values in the training data 

for present-day vegetation, has occurred. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 65. Clamping maps for Pistacia atlantica under climate scenarios A1b and A2 for 

2030, 2050 and 2070. Warmer colors indicate areas where clamping, or restriction of 

environmental variables used to create the predictions to their values in the training data 

for present-day vegetation, has occurred. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 66. Clamping maps for Pistacia lentiscus under climate scenarios A1b and A2 for 

2030, 2050 and 2070. Warmer colors indicate areas where clamping, or restriction of 

environmental variables used to create the predictions to their values in the training data 

for present-day vegetation, has occurred. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 67. Clamping maps for Pistacia terebinthus under climate scenarios A1b and A2 

for 2030, 2050 and 2070. Warmer colors indicate areas where clamping, or restriction of 

environmental variables used to create the predictions to their values in the training data 

for present-day vegetation, has occurred. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 68. Clamping maps for Prunus dulcis under climate scenarios A1b and A2 for 

2030, 2050 and 2070. Warmer colors indicate areas where clamping, or restriction of 

environmental variables used to create the predictions to their values in the training data 

for present-day vegetation, has occurred. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 69. Clamping maps for Pterocephalus multiflorus under climate scenarios A1b 

and A2 for 2030, 2050 and 2070. Warmer colors indicate areas where clamping, or 

restriction of environmental variables used to create the predictions to their values in the 

training data for present-day vegetation, has occurred. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 70. Clamping maps for Punica granatum under climate scenarios A1b and A2 for 

2030, 2050 and 2070. Warmer colors indicate areas where clamping, or restriction of 

environmental variables used to create the predictions to their values in the training data 

for present-day vegetation, has occurred. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 71. Clamping maps for Quercus alnifolia under climate scenarios A1b and A2 for 

2030, 2050 and 2070. Warmer colors indicate areas where clamping, or restriction of 

environmental variables used to create the predictions to their values in the training data 

for present-day vegetation, has occurred. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 72. Clamping maps for Quercus coccifera under climate scenarios A1b and A2 

for 2030, 2050 and 2070. Warmer colors indicate areas where clamping, or restriction of 

environmental variables used to create the predictions to their values in the training data 

for present-day vegetation, has occurred. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 73. Clamping maps for Sarcopoterium spinosum under climate scenarios A1b and 

A2 for 2030, 2050 and 2070. Warmer colors indicate areas where clamping, or restriction 

of environmental variables used to create the predictions to their values in the training 

data for present-day vegetation, has occurred. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 74. Clamping maps for Thymus capitatus under climate scenarios A1b and A2 for 

2030, 2050 and 2070. Warmer colors indicate areas where clamping, or restriction of 

environmental variables used to create the predictions to their values in the training data 

for present-day vegetation, has occurred. 
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Multivariate environmental similarity surfaces (MESS maps) 

 MESS maps indicate how novel an environment is and display the differences 

between the training and predicted environments, with warmer colors (increasingly 

negative values) highlighting where the values for at least one predictor variable are 

outside the range of values in the training data. The number of MESS maps produced 

depends upon the number of times the Maxent program is parameterized, with one MESS 

map produced for all models for a species run under the same parameterization. Six 

MESS maps were produced, one for each climate scenario and time step (Figure 75) as 

models for each scenario/time step were run at the same time and thus have the same 

reference data. A similar trend is apparent across the six maps, in which the most 

differences in training and predicted climate covariates occur at high elevations within 

the Troodos and Kyrenia Ranges, as well as across the central part of the Mesaoria Plain 

and the Karpas Peninsula. The area and intensity of novel environments increase over 

time. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 75. MESS (Multivariate environmental similarity surfaces) maps illustrate where 

the values of at least one future environmental variable is outside of the range of the 

training data for present-day environmental variables. Warmer colors indicate larger 

differences between the predictor covariables and the training data. 
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Most dissimilar variable/Limiting factor (MoD maps) 

 Maps that illustrate the variable most responsible for the novel environment are 

referred to as MoD or limiting factor maps. Six maps were produced (Figure 76), one for 

each climate scenario and time step. The MoD is extracted at each pixel and is the 

variable that has the smallest value of similarity between the training data and the 

projected climate covariates (Elith et al., 2010). The variable is then mapped to highlight 

where a particular variable is influencing the MESS and hence, the prediction. These 

maps show that three variables are responsible for the novel environments depicted by 

the MESS maps. BIO4 (temperature seasonality) primarily influences the Mesaoria Plain 

and Karpas Peninsula indicating that the variation in monthly temperatures in the future 

climate data is outside the variation in monthly temperatures for the training data. Thus 

BIO4 is the least similar to training conditions and is the limiting factor in the ability of 

the model to project over the new environmental space. BIO10 (mean temperature of the 

warmest quarter) influences the coastal areas for most scenario/time steps. This indicates 

that species may be predicted to occur here as the model is clamped to restrict predictions 

so as only to occur within known extremes of the training data. However, the species may 

not actually be suited for the increased temperatures that are predicted to occur in the 

climate model. BIO7 (temperature annual range) influences the Mesaoria Plain near 

Morfou Bay and skirts the Troodos foothills in a north to southwest fashion. The MoD 

maps do not indicate the variable that limits the distributions of species, but indicates the 

variable that is the most different from the present-day training variables, thus limiting 

the model’s ability to predict into the new environmental space. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 76. Limiting factor or most dissimilar variable (MoD) maps highlight the 

variables that are the most different in the future from the same environmental variable in 

the training data. BIO4, BIO7 and BIO10 area all temperature-related data, indicating the 

most drastic changes under future climate scenarios are in temperature. 
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Discussion 

Endemic species and species of concern 

Under both A1b and A2 climate scenarios, all four endemic species (Cedrus 

brevifolia, Helianthemum obtusifolium, Pterocephalus multiflorus, and Quercus alnifolia) 

are predicted to lose all suitable environments as soon as 2030. Modeling results for 

Cedrus brevifolia and Q. alnifolia represent a likely scenario as these species are 

currently restricted in range, only occurring at higher elevations in the Troodos Range. 

Although locally abundant (Meikle, 1977, 1985), C. brevifolia is primarily restricted to 

the Cedar Valley (Tripylos area of the Pafos Forest) along the western slopes of the 

Troodos. Many observations of this species outside of this range represent extensive 

planting in the forest, along roadsides, and mountain villages (Tsintides et al., 2002; 

personal observation). Cedrus brevifolia also is listed as Vulnerable under the European 

Red List of Vascular Plants (Bilz et al., 2011), indicating the species is considered as 

threatened when ranked according to the IUCN Red List Categories and Criteria, version 

3.1 (IUCN, 2012). Cedrus brevifolia forests and scrub, and low forest vegetation 

containing Q. alnifolia are listed as priority habitat types under Annex I of the Habitats 

Directive (Council of European Communities, 2007), indicating a habitat type that 

requires the designation of special areas of conservation. The model predictions in 

conjunction with the current status of C. brevifolia and Q. alnifolia habitats indicate that 

these species are highly likely to contract in known extent due to present-day restrictions 

on expansion to higher elevation, as well as climate change. 

Endemic forests and coastal dunes with Juniperus spp. are also included as 

priority habitats under Annex I of the Habitats Directive (Council of the European 
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Communities, 2007). In addition, Mediterranean arborescent matorral with Juniperus 

spp. appears in Annex I, indicating conservation of this habitat type requires designation 

of special areas of conservation; it is not a priority habitat type at this time, however. 

Juniperus phoenicea occurs in coastal maquis (a type of matorral), and although 

considered locally abundant (Meikle, 1977, 1985), is predicted to lose all suitable areas of 

occurrence by 2030. Although there are only 14 observations for this species, they are 

widely dispersed across Cyprus’ coastlines. Given the restricted nature of coastal dunes 

and modern J. phoenicea ranges (J. phoenicea is not restricted to coastal dune habitats), 

the modeling results present the highly likely scenario that this species will lose all 

suitable environments under either climate scenario by 2030. Juniperus foetidissima is 

also highly likely to lose all suitable environments under either climate change scenario 

by 2030, as it is currently restricted to the higher elevations of the Troodos, often within 

the endemic Pinus nigra forests 

The modeling results for H. obtusifolium should be interpreted with extreme 

caution, as sample size was low (n = 10) and the modern model was statistically 

insignificant (p = 0.605) and thus the null hypothesis cannot be rejected. This species has 

been observed across all botanical divisions of Cyprus (Hand et al., 2011; see Figure 2 

for botanical divisions) and is not a current species of concern (see Table 17). Thus, the 

modeling results for H. obtusifolium are likely the product of small sample size and poor 

sampling distribution across its entire known range (see Figure 21h). Similar precautions 

apply to model results for P. multiflorus. This species has been observed in all botanical 

divisions except 4 and 8; however, observations for this study were limited to the 

Troodos Range (Divisions 2 and 3). Modeling results were significant (p = 3.18 x 10
-8

) 
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and a sample size of 38 is adequate, but with limited coverage across the known range for 

the species, the model’s performance in terms of biological significance likely is very 

poor. 

Although the availability of suitable habitat is predicted to decline, this represents 

the limited availability of habitat for the expansion or relocation of the species, in some 

cases as soon as 2030. However, longer-lived tree species may persist beyond this time 

frame particularly on the shady and/or cooler slope faces. These refuges may allow for 

the regeneration of species as long as the environmental conditions remain suitable and 

the species are not impacted by competition, disease or human-related development. The 

spatial resolution of the climate variables (1 km
2
) influences the ability of the model to 

detect small regions where environmental (microclimatic) conditions remain amenable to 

species regeneration. 

Range-expanding species 

 Under A1b and A2 climate scenarios, five species expanded their modern 

distributions (Table 21; Figures 44-52): Ficus carica, Pistacia lentiscus, Prunus dulcis, 

Sarcopoterium spinosum and Thymus capitatus. Pinus brutia also expands its range under 

the A2 climate scenario. Under A1b, Ficus carica expands across the Mesaoria Plain, 

along the southern coast, and into higher elevation areas of the Troodos. Under A2, this 

species expands across the entire island, with small areas in the Kyrenia Mountains, the 

Karpas Peninsula, and the Mesaoria Plain predicted as unsuitable. Pistacia lentiscus, 

Sarcopoterium spinosum and Thymus capitatus expand across the southwestern coast into 

higher elevations of the Troodos and Kyrenia ranges, and along the northeastern extent of 

the Karpas Peninsula under both climate scenarios. Prunus dulcis is predicted to increase 
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its suitable areas under both climate scenarios, with most of the island considered as 

suitable by 2070 under the A1b scenario. Under the A2 scenario, only a few places along 

the northern coastline, across the Mesaoria Plain and the Akamas Peninsula are predicted 

as unsuitable. The results for Pistacia lentiscus and the cultivated trees Ficus carica and 

Prunus dulcis and were unexpected. Although primarily restricted to cultivated areas at 

this time, Ficus carica and Prunus dulcis are known across the island as escapees. The 

models indicate that the areas suitable for their cultivation increase (assuming soil, 

moisture, and nutrient availability), accompanied by areas of increased environmental 

suitability for escapees. Pistacia lentiscus is commonly found on dry, rocky slopes 

(Meikle, 1977, 1985). It was assumed, however, that low elevation temperatures would 

exceed the environmental range of the modern distributions, causing the species to 

disperse to higher elevations, but remain within the precipitation (dryness) range of its 

modern distributions. It is possible that all three species are generalists and could exist in 

other areas on the island, but are presently restricted due to limitations on expansion or 

competition with other species. A common criticism of climate-based models is that 

species interactions, nutrient requirements, and dispersal abilities are rarely incorporated 

(Araujo et al., 2005; Guisan and Thuiller, 2005; Dormann, 2007; Franklin, 2010), often 

because appropriate data often are unavailable, particularly for rare species and species of 

conservation concern (Guisan and Thuiller, 2005). 

Model validation 

 Models were evaluated using three tools built into Maxent: clamping, MESS 

maps, and MoD maps. Together these tools allow modelers to assess how model results 

are influenced when projecting potential species distributions into future climate 
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conditions. Some of these climate conditions are novel, since they do not occur at present 

across the known range of a species of interest. Additionally, it is not known how most 

species will react to these new climate conditions and interact with other species under 

new conditions (Dormann, 2007; Fitzpatrick and Hargrove, 2009; Elith et al., 2010). 

 Clamping 

Phillips et al. (2006) address the issue of prediction into novel (or non-analogous) 

climatic conditions by “clamping” predictions based upon the minimum or maximum 

values under which the model was trained. Thus, when novel climates exceed training 

values in one or more of the predictor variables, the model response is not excessive 

(Elith et al., 2010). Although this method addresses the issue of projecting into 

environmental conditions under which the model was not trained, it does not 

accommodate the possibility of novel combinations of climatic conditions that do not 

exist in the training or future climate data sets (Fitzpatrick and Hargrove, 2009).  

Clamping was observed across a portion of the island for Cistus salviifolius, 

Helianthemum obtusifolium, Juniperus phoenicea, Olea europaea, Pinus brutia, Pistacia 

lentiscus, Pistacia terebinthus, Pterocephalus multiflorus, Sarcopoterium spinosum, and 

Thymus capitatus. Locations where high degrees (Figures 53-74, warmer colors) of 

clamping overlap with predicted distributions should be interpreted cautiously since these 

predictions were held to conditions within the known training data set and may not 

accurately represent future climatic conditions or species combinations. Cistus 

salviifolius has very weakly predicted suitable areas under future conditions, even where 

clamping did not occur. This species is predicted predominately in the Troodos Range 

and along its foothills, although it occurs today across the island and at elevations up to 
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1400 m. Helianthemum obtusifolium exhibited clamping in areas of known occurrence, 

indicating that climate conditions under future scenarios are very different from present 

conditions at sites where it is observed. This species also occurs across a larger 

geographical extent and elevational range than exhibited in the observation data.   

Juniperus phoenicea presently is distributed along the coastlines and up to approximately 

300 (-500) m. Meikle (1977, 1985) indicates that this species occurs in localized 

abundances, but clustered observation points do not necessarily improve SDM 

predictions of suitable areas as new information is not added to the environmental 

conditions under which the species occurs. Clamping for Olea europaea, Pinus brutia, 

Pistacia lentiscus, Pistacia terebinthus, Pterocephalus multiflorus, Sarcopoterium 

spinosum and Thymus capitatus occurred primarily outside of any predicted suitable 

areas, thus their predicted distributions should reflect the most suitable climate conditions 

for these species.  

Multivariate environmental similarity surfaces (MESS maps) 

The MESS maps illustrate where novel climates are predicted on the basis of the 

reference points selected during model training (Elith et al., 2010). Increasing negative 

numbers (warmer colors) indicate the level of dissimilarity of at least one predictor 

variable that is outside of the range of environmental conditions within the reference set 

of points (Elith et al., 2010). In Maxent, the observation training data are used as the set 

of reference points (Phillips, 2010). For Cyprus the most dissimilar, or novel, predicted 

environments occur within the Troodos and Kyrenia Ranges across all scenario/time 

steps (Figure 75). Over time, environmental conditions become increasingly dissimilar 

over a broad geographic extent across the island, as illustrated by growing differences 
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between the Mesaoria Plain and Karpas Peninsula. The Mesaoria Plain has a long history 

of human land uses. Much of the Plain is under cultivation (current or fallow), under 

urban development, or falls within or near the buffer zone. As a result, many species that 

once occurred on the Plain are now absent. This situation skews modeling results, as 

approximately 35 points fall within the Plain, all of which were along roadsides. Thirteen 

historical points provide information predating the impacts of modern development (see 

Figure 5). The middle section of the Plain is sampled minimally due to the impacts of the 

urban outskirts of Nicosia and the inaccessibility of roadside stopping points.  

Hypotheses 

 In response to the question “How will the current species’ distributions change 

with respect to IPCC AR4 A1b and A2 climate scenarios for 2030, 2050, and 2070?” 

SDMs were generated to evaluate two climate scenarios over the three time steps. The 

following predictions were generated: 

 Prediction 1: Under an A1b scenario: Minimal changes are expected for most 

species distributions with the exceptions of high elevation or coastal species. For high-

elevation species, Cyprus has only two major mountain ranges, both of which are 

relatively low in elevation (1952 m maximum), thus further expansion to higher elevation 

is not possible for some species. In addition, northward expansion entails little change in 

climate since Cyprus’ latitude only varies by approximately 250 km. With increases in 

temperature and sea level, species currently restricted to the coast will likely expand their 

ranges inland. 

 Prediction 2: Under an A2 scenario: Species distributions will be limited by high 

temperature or low precipitation, and will expand to higher elevations. For some species 
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this may cause a restriction to modern distributions. Generalists will likely expand into 

new habitats currently unavailable to them due to resource competition or other limiting 

factors. High elevation species and species with modern limited distributions will be lost 

by the end of the 21
st
 century. 

 Evaluating prediction 1 

 Contrary to Prediction 1, a majority (14 of 22) species are predicted to lose all 

suitable areas by 2070, with 11 of those eliminations occurring by 2030. Pistacia 

terebinthus and O. europaea will reduce their ranges by 2070 (by approximately 18% and 

59%, respectively), with both species increasing their suitable areas at higher elevations, 

losing suitable area along the southern foothills of the Troodos, and losing small areas in 

the Kyrenia Mountains. Punica granatum will lose approximately 96% of its suitable 

area by 2070, leaving fragmented parcels across the lower elevations of the island. All 

other species will increase their ranges between the modern and 2070 predictions, an 

effect not expected among F. carica, P. lentiscus, and P. dulcis (see Range expanding 

species under Discussion). 

 Evaluating prediction 2 

 Similar trends exist under the A2 climate scenarios according to which 14 of 22 

species are predicted to lose all suitable areas by 2070, with 12 of those losses occurring 

by 2030. The same species expand in range under the A2 scenario, with the addition of 

O. europaea, expanding its range by approximately 38%. Pinus brutia does not lose all of 

its suitable areas under this scenario, but is predicted to become more restricted in area, 

losing approximately 38% of its suitable area, most of this occurring along the foothills 

of the Troodos. Known generalists S. spinosum and T. capitatus would increase their 
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predicted suitable areas considerably, with expanded areas of approximately 152% and 

123%, respectively. 

Conclusions 

This research generates models that assess how species will respond to predicted 

climate change on Cyprus, in particular under scenarios of global warming. Species 

distribution model predictions for outcomes under A1b scenarios did not meet the 

expectations highlighted in Prediction1 with SDMs indicating the loss of suitable habitat 

for many of the modeled species, including endemics and species of concern such as C. 

brevifolia, P. nigra, P. multiflorus, and Q. alnifolia. Under A2 scenarios, predicted SDM 

results are closer to expectations discussed under Prediction 2, with losses of suitable area 

for higher elevation species (P. nigra, J. foetidissima), coastline species (J. phoenicea), 

and restrictions to the ranges of other species (P. brutia, P. terebinthus). Under both 

scenarios, generalist species are predicted to gain suitable areas. 

Under the selected climate model and scenarios selected, endemic and indigenous 

tree species such as Quercus alnifolia and Cedrus brevifolia experience a reduction to 

their suitable areas of occurrence as soon as 2030. The only exception to this is Pinus 

brutia, which has a 38% reduction to areas of suitability by 2070 under the A2 scenario, 

but no suitable areas by 2070 under A1b. Cultivated orchard species Prunus dulcis and 

Ficus carica are predicted to fare exceptionally well under both climate scenarios, 

expanding their areas of suitable occurrence. Generalist species Sarcopoterium spinosum 

and Thymus capitatus also increase in suitable areas of occurrence, potentially filling in 

areas where they are currently restricted due to competition with other species. The 

decline in occupied habitats will potentially leave large areas of highly reflective, 
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calcareous soils exposed. This may impact those species predicted to persist through the 

climate scenarios as albedo will increase and soil moisture content will decline in 

conjunction with increasing temperatures. 

Species distribution models assume that the species are currently in pseudo-

equilibrium with their environment as the sampling points only represent the relationship 

between the species and environmental variables over a limited period of time and/or 

space (Guisan and Thuiller, 2005). An additional assumption is that factors restricting the 

species’ environments historically will remain limiting factors in the future (Guisan and 

Thuiller, 2005); however, it is unknown how species will respond to a new suite of 

climate conditions or to other species under these conditions and in the case of Cypriot 

trees, many are likely restricted in range due to historical and present-day agricultural 

practices. SDMs provide a method for assessing potential changes to species distributions 

throughout time in order to support management and conservation decisions (Guisan and 

Thuiller, 2005). Due to the number of indigenous species and rapid land cover transitions 

in Cyprus, the degree of expected climate change and sea level impacts are likely to 

severely reduce available habitats for many species.
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Chapter 6 

DISCUSSION 

The species of the Mediterranean Basin have experienced changes through the 

modification of landscapes throughout human history. In Cyprus, the relatively recent 

population movements due to political instability in the late 1950s through 1974 resulted 

in the accelerated abandonment of agricultural systems and growth of urban areas, 

particularly in southern Cyprus. Although Butzer and Harris (2007) propose Cyprus biota 

to be resilient to human transformations of the landscape, they do not account for rapidly 

changing landscapes due to population migrations or the combined impact of land cover 

changes and climate change to species. Vegetation on Cyprus faces additional pressures 

under climate change due to its limited elevation and north-south extent, thus limiting the 

potential of species to expand their ranges. Coupled with land cover modifications to 

artificial surfaces, species may be left with few areas of available habitat. Given these 

pressures, it is important to address the combined effect of land cover changes and 

climate change on future distributions of vegetation in Cyprus. 

Land cover was not explicitly included in the Maxent models of species for three 

reasons: 1) land cover, especially forests, shrub lands and grasslands, are not independent 

from climate data (Thuiller et al., 2004); 2) land cover is considered an indirect 

environmental variable that may not have the same relationships to future distributions of 

species (Guisan and Zimmermann, 2000; Thuiller et al., 2004); and 3) land cover 

transformations, their drivers and rates were not conducted as part of the land cover 

assessment in this dissertation. However, simple models created through the overlay of 

existing land cover and the binary species distribution maps can highlight areas that are 



 

202 

 

 

of interest for conservation or management objectives. This method will exclude areas 

currently classified as artificial areas and water from consideration as future suitable 

areas of occurrence. Bare soils were included to account for fields that might be fallow 

but misclassified as bare rock/ground. Using present-day land cover is a conservative 

estimator of the interaction between land cover and species occurrence as coastal and 

urban areas are still predicted to expand in the future. Additional declines in agriculture 

may occur, particularly in southern Cyprus, which may create the potential for suitable 

areas of expansion for some species and may reduce the effects predicted by the SDMs 

for potential areas of future occurrence. To highlight the possible interactions of climate 

change and land cover, only species that maintained any predicted suitable habitats under 

the two climate scenarios by 2070 were included in this analysis (Table 21).  

Figures 77 to 85 illustrate the combined effect of present-day land cover (2011) 

and future species distributions. These maps are compared to the binary presence/absence 

maps created for each climate scenario in 2070 to determine if land cover influences the 

potential distributions of species (Figures 44-52). Olea europaea, Pinus brutia, Punica 

granatum, Pistacia lentiscus and Pistacia terebinthus do not experience reductions to 

predicted areas of suitability with the inclusion of land cover types. These species are 

primarily restricted to the forests and shrub and/or herbaceous land covers in the 

predictions, thus changes to artificial areas will have little impact on these species. With 

the exception of Punica granatum, these species are currently found in similar land cover 

types, so only the conversion from forests to shrubs or forests/shrubs to agriculture will 

influence the local distributions. Changes to climate conditions will most influence the 

potential suitable areas of occurrence. Punica granatum is predicted to only occur in 
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small patches across Cyprus by 2070 under the A1b scenario and does not have any areas 

predicted as suitable under A2 in 2070. Punica granatum currently grows as an 

ornamental or orchard species, although it is usually intermixed with other orchard 

species or planted along the boundaries of orchards or fields. It is not likely to persist 

outside of cultivation under future climate conditions but may exist outside of predicted 

areas of suitability due to care by humans. 

Ficus carica and Prunus dulcis (Figures 77 and 80, respectively) are influenced 

by coastal development and are slightly restricted in potential areas of occurrence where 

the predictions overlap. These species may be restricted due to conversion of orchards, 

particularly near Limasol, to more developed areas to support coastal tourism and 

retirement communities. Both species are also influenced by Nicosia and the surrounding 

villages, which have experienced growth due to the population migrations of 1974 and 

increase to service-based jobs in Nicosia. Development along the coast and around 

Nicosia is expected to continue as fewer people live in the mountain villages and 

maintain their agricultural lands full time. 

Generalist species Sarcopoterium spinosum and Thymus capitatus are slightly 

influenced by coastal development between Larnaka and Limasol (Figures 84 and 85). 

Potential suitable areas of occurrence are also reduced near Ayia Napa for Sarcopoterium 

spinosum and near Nicosia for Thymus capitatus. The reductions to potential areas of 

occurrence appear slight, thus changes to climate conditions will most likely influence 

the extent of expansion into new areas. 
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(a) (b) 

Figure 77. Maps of potentially suitable areas for Ficus carica under A1b (a) and A2 (b) 

climate scenarios in 2070. The maps indicate a conservative estimate of the land cover 

categories where Ficus carica would occur by 2070, as it assumes that land cover 

remains static. 

(a) (b) 

Figure 78. Maps of potentially suitable areas for Olea europaea under A1b (a) and A2 

(b) climate scenarios in 2070. The maps indicate a conservative estimate of the land 

cover categories where Olea europaea would occur by 2070, as it assumes that land 

cover remains static. 
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(a) 

 

Figure 79. Map of potentially suitable areas for Pinus brutia A2 (a) climate scenarios in 

2070. The maps indicate a conservative estimate of the land cover categories where Pinus 

brutia would occur by 2070, as it assumes that land cover remains static. 

(a) (b) 

Figure 80. Maps of potentially suitable areas for Prunus dulcis under A1b (a) and A2 (b) 

climate scenarios in 2070. The maps indicate a conservative estimate of the land cover 

categories where Prunus dulcis would occur by 2070, as it assumes that land cover 

remains static. 
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(a) 

 

Figure 81. Maps of potentially suitable areas for Punica granatum under A1b (a) climate 

scenarios in 2070. The maps indicate a conservative estimate of the land cover categories 

where Punica granatum would occur by 2070, as it assumes that land cover remains 

static. 

(a) (b) 

Figure 82. Maps of potentially suitable areas for Pistacia lentiscus under A1b (a) and A2 

(b) climate scenarios in 2070. The maps indicate a conservative estimate of the land 

cover categories where Pistacia lentiscus would occur by 2070, as it assumes that land 

cover remains static. 
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(a) (b) 

Figure 83. Maps of potentially suitable areas for Pistacia terebinthus under A1b (a) and 

A2 (b) climate scenarios in 2070. The maps indicate a conservative estimate of the land 

cover categories where Pistacia terebinthus would occur by 2070, as it assumes that land 

cover remains static. 

(a) (b) 

Figure 84. Maps of potentially suitable areas for Sarcopoterium spinosum under A1b (a) 

and A2 (b) climate scenarios in 2070. The maps indicate a conservative estimate of the 

land cover categories where Sarcopoterium spinosum would occur by 2070, as it assumes 

that land cover remains static. 
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(a) (b) 

Figure 85. Maps of potentially suitable areas for Thymus capitatus under A1b (a) and A2 

(b) climate scenarios in 2070. The maps indicate a conservative estimate of the land 

cover categories where Thymus capitatus would occur by 2070, as it assumes that land 

cover remains static. 

 

 For the species under consideration in this simplistic model of future interactions 

between climate and land cover, a majority of the species have little to no impacts to 

potential distributions by artificial land covers. The exceptions are Ficus carica and 

Prunus dulcis whose extents are restricted by development along coastlines and in the 

urban areas. A more complex evaluation of the interactions would include a land cover 

transitions model in order to predict at each time step the influence of land cover change 

on species distributions. Additionally, this type of model would allow the restriction of 

expansion into areas previously predicted as transitioning to a land cover that is 

unsuitable for species occurrence. The simplified model illustrated here does provide a 

conservative approach to investigating if interactions between land cover and climate will 

influence species distributions. In Cyprus, it appears that many of the species modeled 

are highly influenced by climate alone as few species have remaining suitable areas for 

occurrence by 2030 (Table 21) and of species with remaining suitable habitat, only two 

species have substantial reductions to predicted areas of suitability. The incorporation of 
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land change variables such as fragmentation or interactions with other species to better 

model the interactions of land cover change and climate due to the correlated nature of 

conversions from functional habitat to urban or agricultural lands (Thuiller et al., 2004; 

de Chazal and Rounsevell, 2009).  Loss of habitat is not of concern for many cultivated 

species as a majority of them are predicted to expand their ranges under climate change 

(see Table 21 for exceptions). However, cultivated species only sometimes occur as 

escapees outside of cultivation and are not presently widely distributed outside of human 

influenced areas.  

Thuiller et al. (2004) also found that although the inclusion of land cover 

variables to model present-day distributions increases the predictive abilities of those 

models, the relationships between land cover and species distributions may not be 

correlated in the same manner under future climate scenarios. In comparison, Yates et al. 

(2010) found that land cover change influenced the prediction of future distributions in 

Banksia spp. Remnant habitat areas were calculated from a series of air photos and 

applied in concert with two dispersal ability scenarios to create overlays of predicted 

areas restricted to areas of overlap with remnant areas (no dispersal) to the ability of 

species to expand beyond current remnant areas into the entire predicted space (Yates et 

al., 2010). This approach could be very useful to examine the influences of land cover 

transitions in Cyprus as a more localized spatial scale; however, the spatial resolution of 

Landsat imagery do not allow for this type of analysis using a pixel-based classification 

technique. At the scale of analysis (30 meter pixels), species distributions are primarily 

driven by changes to climate variables over the study period. 
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The methodology and results presented as a result of land cover change and 

predictive modeling of suitable habitat provide a tool for conservation planning within 

non-profit and government organization in Cyprus. The Mediterranean Basin is known as 

a diversity hot spot and Cyprus is no exception. The high number of endemic plant 

species warrant protection to maintain levels of biological diversity on the island. In 

addition, plant communities provide the structure, nutrients and protection of other 

species on the island. Although change some change to environments is unpredictable 

and inevitable, certain types of change can be mitigated for or protected against through 

long-term planning by non-profit and government land managers and conservationists. 

Land cover transitions, particularly from grasslands, shrublands or forests to 

agricultural or artificial surfaces reduce present-day habitat availability and connectivity. 

Land cover transitions may place a larger role than implicated in this research as the scale 

of analysis (30 m) may be too course to capture the loss of habitat for range restricted 

species or the locations of present-day refuges for plant species. However, the results 

presented her highlight the need for concern regarding loss of habitat along coastlines due 

to development. The predicted climate changes are exceptionally challenging in Cyprus, 

as many habitats for large trees and shrubs will disappear as soon as 2030, indicating a 

rapid approach to conservation of individual species and habitats is warranted. Species 

distribution modeling presents a tool to locate potential habitat for at least one species; 

however, overlapping suitable areas could be utilized in planning for protected areas. 

Species distribution modeling also provides a starting point for locating areas that may 

act as future refuges for sensitive species, particularly those of present-day conservation 

concern as these species are most likely the most sensitive to environmental changes. 
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Chapter 7 

CONCLUSIONS 

This dissertation examined the spatial and temporal changes to land cover and 

species distributions from 1973-2070. Two approaches were utilized to assess the 

separate influences of climate change and land cover changes to predicted areas of 

suitable for species occurrence. The results of the two approaches were used to evaluate 

the combined influences of climate change and land cover change to suitable habitat. 

First, Landsat data from 1973 to 2011 provide a glimpse into the major land cover 

transitions and their relationship to political events of 1974. Second, on-the-ground 

species observations collected between 2008 and 2011 were used to construct potential 

species distribution maps for 2011 – 2070. Future distributions were constructed under 

two climate change scenarios (A1b and A2) at 2030, 2050, and 2070. 

The approaches were selected based on their ability to address the overarching 

research objectives:  

1. Inference of how the landscapes of Cyprus have changed since 1974 through the 

use of satellite imagery and on-the-ground field observations of plant 

distributions;  

2. Construction of modern potential vegetation models of plant species distributions 

based on the field observations; 

3. Predict changes to the vegetation distribution under multiple climate scenarios; 

and, 

4. Link changes of land cover and vegetation to enable detailed interpretation of 

changes in landscape configuration over time. 
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Each of these objectives was further defined by a specific research question and 

predictions as outlined in Chapters 3 through 5. The key findings of this research indicate 

that urban areas of Cyprus, particularly along the southern coast, increased in extent 

between 1973 and 2011 with the largest increases occurring between 1984 and 2001. 

Agricultural areas declined in southern Cyprus along the Troodos foothills, largely 

replaced by shrubs and/or herbaceous cover indicating a trend of agricultural 

abandonment following population relocations of the late 1950s to 1974. This trend 

continued as urban areas increased in size and the economic sector shifted to 

predominately service-based industries. At the spatial resolution of this study, agricultural 

areas were not consolidated in southern Cyprus into a more homogeneous landscape 

except along the eastern portions of the Mesaoria Plain. Increases to heterogeneity were 

observed over much of southern Cyprus due to continuous conversions to land cover, for 

example changes from agricultural lands to grassland/shrub cover to forest with each time 

step and at differing rates between pixels. Homogeneity may increase as agricultural 

lands fully transition into shrub lands or forested areas. Increases to homogeneity were 

observed across the northern portion of the Mesaoria Plain into the Karpas Peninsula, 

indicating a shift to larger agricultural plots or a more contiguous configuration of 

agriculture in this area. 

Robust species distribution models for the present were created using field 

observations from 2008 to 2011, supplemented by historical accounts across areas that 

were not accessible for sampling (Figure 5). The models performed well using threshold-

based and threshold-independent performance assessments. High AUC values for training 

and test data indicate that models were constructed that extrapolate well across the 
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present-day climate conditions. These models were then used as a baseline to construct 

potential distribution models under two SRES climate scenarios (IPCC, 2007) for the 

years 2030, 2050 and 2070. A1b scenarios assume rapid economic growth, declines of 

population mid-century and the introduction and quick adoption of new, efficient energy 

technologies. A2 scenarios assume high population growth rates, slow economic 

development and slow technological change. The A2 scenario is considered the extreme 

case out of the two. Little difference is predicted in temperature up to 2050 with 

diverging predictions of temperature after this time. Similar results were observed for 

both climate scenarios in that most of the species selected for modeling were not 

predicted to retain any areas of potential occurrence by 2030 (Table 21). Endemic species 

such as Quercus alnifolia, Cedrus brevifolia and Helianthemum obtusifolium quickly lose 

suitable habitat under both climate change scenarios and are absent from the landscape by 

2030. Orchard species Prunus dulcis and Ficus carica are predicted to increase their 

potentially suitable areas under both climate scenarios. Sarcopoterium spinosum and 

Thymus capitatus, two indigenous and generalist species are also predicted to expand 

their potential areas of occurrence, possibly moving into agricultural areas as they are 

abandoned as well as into habitats where they are restricted possibly due to interactions 

with other species. The loss of species may influence species that are predicted to persist 

under increased temperatures. For example, as the soils are exposed the soil moisture is 

reduced, a process that is accelerated by higher temperature. Additionally, the loss of 

species may allow for the introduction or expansion of invasive species, which would put 

additional pressures on species that are able to respond to climate change by shifting their 

distribution. 
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Land cover changes and climate are both drivers to changes in biological diversity 

(e.g. Sala et al., 2000; de Chazal and Rounsevell, 2009) and although often mentioned, 

few studies have combined these drivers in their assessments (Thuiller et al., 2008). The 

problem of non-inclusion of both drivers is the possibility of over or under estimating the 

effects on species (de Chazal and Rounsevell, 2009). To evaluate the possible combined 

effects of climate change and land cover changes, a simple and conservative 

methodology was adopted that utilized a land cover classification for 2011 and the 

predicted areas of suitability for species that maintained areas of suitability through 2070 

under at least one of the climate scenarios. At the scale of analysis (30 m pixels) most 

species distributions were the result of interactions with climatic shifts and the land cover 

did not further restrict the predicted areas of suitability. The two major exceptions were 

Ficus carica and Prunus dulcis, whose distributions are influenced by urban 

development, particularly along the southern coast. 

The results of species distribution models indicate the necessity to include species 

distribution models as a tool in decision-making for conservation efforts aimed at specific 

plant species or vegetation communities at the national scale. Land cover changes should 

be included at a local scale of analysis as well as along any areas of expected urban 

development, particularly future coastal developments as coastal species are likely to 

become restricted in range due to rising sea levels, increased temperatures and pressures 

of urbanization. 
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APPENDIX A  

PEARSON’S CORRELATION ANALYSIS FOR SPECIES DISTRIBUTION 

MODELING OF MODERN VEGETATION  



 

 

 

2
3
1
 

 

bio1proj1 bio2proj2 bio3proj1 bio4proj1 bio5proj1 bio6proj1 bio7proj1 bio8proj1 bio9proj1 

bio1proj1 1         

bio2proj2 0.500419 1        

bio3proj1 0.6753 0.733175 1       

bio4proj1 -0.35837 0.076774 -0.59636 1      

bio5proj1 0.79049 0.843646 0.595612 0.133174 1     

bio6proj1 0.889604 0.21015 0.673463 -0.69826 0.471026 1    

bio7proj1 -0.01151 0.6666 -0.01159 0.77691 0.586342 -0.43839 1   

bio8proj1 0.954702 0.390361 0.748456 -0.61515 0.626193 0.972985 -0.25548 1  

bio9proj1 0.922045 0.587404 0.49318 0.025151 0.914723 0.666417 0.320023 0.771076 1 

bio10proj2 0.924607 0.556082 0.47085 0.019779 0.899287 0.67305 0.298204 0.775136 0.997613 

bio11proj1 0.957151 0.395835 0.749293 -0.60938 0.63143 0.971008 -0.24833 0.999795 0.775854 

bio12proj -0.88569 -0.72784 -0.69746 0.121197 -0.88084 -0.64734 -0.30302 -0.77392 -0.89536 

bio13proj -0.83613 -0.7719 -0.69172 0.071182 -0.88803 -0.57749 -0.37449 -0.71568 -0.86381 

bio14proj -0.9508 -0.4712 -0.71157 0.462497 -0.703 -0.88243 0.094066 -0.94255 -0.82531 

bio15proj -0.05378 -0.46449 0.143356 -0.77573 -0.51711 0.346066 -0.84468 0.204936 -0.37336 

bio16proj -0.86455 -0.73151 -0.6467 0.042334 -0.89517 -0.59634 -0.36446 -0.73147 -0.90433 

bio17proj1 -0.93475 -0.43775 -0.7193 0.526067 -0.66113 -0.90077 0.15357 -0.95327 -0.78536 

bio18proj -0.90134 -0.57406 -0.85372 0.554165 -0.69378 -0.87638 0.097907 -0.93056 -0.74587 

bio19proj -0.91391 -0.65785 -0.68628 0.196811 -0.8545 -0.71809 -0.21121 -0.82884 -0.89742 

geology3 -0.41067 -0.17709 -0.15599 0.042637 -0.35747 -0.30494 -0.08419 -0.36357 -0.41789 

soils3 -0.52816 -0.26692 -0.19565 -0.00542 -0.49375 -0.36262 -0.17008 -0.44592 -0.5617 

 

 

 

 

 



 

 

 

2
3
2
 

 

bio10proj2 bio11proj1 bio12proj bio13proj bio14proj bio15proj bio16proj bio17proj1 bio18proj 

bio1proj1 

         bio2proj2 

         bio3proj1 

         bio4proj1 

         bio5proj1 

         bio6proj1 

         bio7proj1 

         bio8proj1 

         bio9proj1 

         bio10proj2 1         

bio11proj1 0.779755 1        

bio12proj -0.88564 -0.77964 1       

bio13proj -0.85239 -0.72159 0.990242 1      

bio14proj -0.82738 -0.94448 0.857321 0.805515 1     

bio15proj -0.36563 0.197631 0.323246 0.40751 -0.05592 1    

bio16proj -0.8956 -0.73771 0.995458 0.992163 0.827583 0.40165 1   

bio17proj1 -0.78706 -0.95435 0.82528 0.775164 0.948402 -0.12167 0.791685 1  

bio18proj -0.73261 -0.93178 0.850076 0.808648 0.925703 -0.13626 0.80384 0.929735 1 

bio19proj -0.89164 -0.83233 0.967777 0.948592 0.890591 0.237912 0.959195 0.869436 0.870244 

geology3 -0.42829 -0.36536 0.371143 0.371742 0.371008 0.160655 0.380235 0.395429 0.316926 

soils3 -0.57182 -0.44864 0.510654 0.506279 0.491722 0.246466 0.525789 0.501952 0.403544 

 

 

 

 

 



 

 

 

2
3
3
 

 

bio19proj geology3 soils3 

bio1proj1 

   bio2proj2 

   bio3proj1 

   bio4proj1 

   bio5proj1 

   bio6proj1 

   bio7proj1 

   bio8proj1 

   bio9proj1 

   bio10proj2 

   bio11proj1 

   bio12proj 

   bio13proj 

   bio14proj 

   bio15proj 

   bio16proj 

   bio17proj1 

   bio18proj   

 bio19proj 1  

 geology3 0.386399 1 

 soils3 0.526046 0.505841 1 
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APPENDIX B  

PEARSON’S CORRELATION ANALYSIS FOR SPECIES DISTRIBUTION 

MODELING OF FUTURE VEGETATION – A1B 2030 SCENARIO  



 

 

 

2
3
5
 

 

bio1a1b30 bio2a1b30 bio3a1b30 bio4a1b30 bio5a1b30 bio6a1b30 bio7a1b30 bio8a1b30 bio9a1b30  

bio1a1b30 1          

bio2a1b30 0.4221828 1         

bio3a1b30 0.5667105 0.8206995 1        

bio4a1b30 -0.3071841 0.0384155 -0.5211259 1       

bio5a1b30 0.7852518 0.8080638 0.627246 0.1389364 1      

bio6a1b30 0.8770254 0.1433174 0.535223 -0.6770154 0.4509872 1     

bio7a1b30 -0.0070021 0.6781782 0.1436649 0.7500513 0.592235 -0.4520796 1    

bio8a1b30 0.9516748 0.3442856 0.6453112 -0.5796988 0.6294416 0.9685734 -0.2453642 1   

bio9a1b30 0.9141204 0.4792208 0.3897419 0.1008013 0.8935911 0.6287795 0.3253833 0.7509162 1  

bio10a1b30 0.9237553 0.4481125 0.3768557 0.0760659 0.8764547 0.652356 0.286973 0.7675487 0.9979773  

bio11a1b30 0.9556962 0.3524866 0.6473863 -0.5700979 0.6381023 0.9653746 -0.233821 0.9995917 0.75892  

bio12a1b30 -0.8834369 -0.6479889 -0.6346307 0.0900186 -0.8717205 -0.6287057 -0.303593 -0.7724148 -0.8820565  

bio13a1b30 -0.8342285 -0.6458238 -0.5760449 -0.0148351 -0.8669818 -0.5434328 -0.3758405 -0.6946173 -0.8722823  

bio14a1b30 -0.9505288 -0.399406 -0.6041068 0.4210999 -0.6974208 -0.8780972 -0.0957463 -0.9423535 -0.8130054  

bio15a1b30 0.1863312 -0.1229605 0.3716642 -0.8603173 -0.2090306 0.537502 -0.6941512 0.4372013 -0.1639559  

bio16a1b30 -0.8626453 -0.6446832 -0.5876296 0.0113545 -0.880319 -0.5775948 -0.3583284 -0.7294935 -0.8928122  

bio17a1b30 -0.9422789 -0.4052489 -0.6507524 0.5055535 -0.6724123 -0.9066865 0.1465493 -0.9669836 -0.7714103  

bio18a1b30 -0.8901395 -0.5514259 -0.782958 0.5210303 -0.7070652 -0.8482737 0.0591836 -0.9221902 -0.7154913  

bio19a1b30 -0.9235994 -0.569229 -0.585444 0.1282416 -0.8555682 -0.6949543 -0.2276423 -0.8256894 -0.9095079  

geology -0.3049781 -0.1304671 -0.2311103 0.2073571 -0.1898531 -0.2961508 0.0776257 -0.3215253 -0.2284787  

soils 0.3622231 0.143383 0.2062699 -0.1314844 0.2843846 0.3382472 -0.0211569 0.3563759 0.3232032  
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6
 

 

 

bio10a1b30 bio11a1b30 bio12a1b30 bio13a1b30 bio14a1b30 bio15a1b30 bio16a1b30 bio17a1b30 bio18a1b30 

bio1a1b30 

         bio2a1b30 

         bio3a1b30 

         bio4a1b30 

         bio5a1b30 

         bio6a1b30 

         bio7a1b30 

         bio8a1b30 

         bio9a1b30 

         bio10a1b30 1         

bio11a1b30 0.7749388 1        

bio12a1b30 -0.8755661 -0.7817347 1       

bio13a1b30 -0.8634056 -0.7053363 0.9902563 1      

bio14a1b30 -0.8242522 -0.9450498 0.8559842 0.7977868 1     

bio15a1b30 -0.1442204 0.4265471 0.0120471 -0.1263223 -0.3073521 1    

bio16a1b30 -0.8854901 -0.7396559 0.9957614 0.9962719 0.8267337 0.0945953 1   

bio17a1b30 -0.7855524 -0.9682876 0.8332602 0.7649416 0.9613812 -0.3917785 0.7972396 1  

bio18a1b30 -0.716065 -0.924761 0.8483839 0.7792478 0.9208778 -0.4091043 0.8036676 0.9416769 1 

bio19a1b30 -0.9094014 -0.8328471 0.9728994 0.9516448 0.8932523 -0.0217247 0.9685238 0.8816358 0.8542396 

geology -0.2317216 -0.3207286 0.2983757 0.2658695 0.2979774 -0.2295484 0.275966 0.3046326 0.3236102 

soils 0.3283005 0.3572929 -0.3476493 -0.334729 -0.0346772 0.0369904 -0.3403414 -0.4009807 -0.3574024 
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bio19a1b30 geology soils 

bio1a1b30 

   bio2a1b30 

   bio3a1b30 

   bio4a1b30 

   bio5a1b30 

   bio6a1b30 

   bio7a1b30 

   bio8a1b30 

   bio9a1b30 

   bio10a1b30 

   bio11a1b30 

   bio12a1b30 

   bio13a1b30 

   bio14a1b30 

   bio15a1b30 

   bio16a1b30 

   bio17a1b30    

bio18a1b30    

bio19a1b30 1   

geology 0.3011464 1  

soils -0.376375 0.0104381 1 
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APPENDIX C  

PEARSON’S CORRELATION ANALYSIS FOR SPECIES DISTRIBUTION 

MODELING OF FUTURE VEGETATION – A1B 2050 SCENARIO  



 

 

2
3
9
 

 

bio1a1b50 bio2a1b50 bio3a1b50 bio4a1b50 bio5a1b50 bio6a1b50 bio7a1b50 bio8a1b50 bio9a1b50  

bio1a1b50 1          

bio2a1b50 0.525446 1         

bio3a1b50 0.667816 0.736718 1        

bio4a1b50 -0.30935 0.096769 -0.58434 1       

bio5a1b50 0.799506 0.851033 0.588657 0.17537 1      

bio6a1b50 0.867892 0.204065 0.662083 -0.69437 0.446398 1     

bio7a1b50 0.058775 0.687962 0.023224 0.781644 0.628859 -0.41503 1    

bio8a1b50 0.950908 0.411597 0.751349 -0.58382 0.627388 0.967248 -0.20255 1   

bio9a1b50 0.912953 0.606768 0.461988 0.101993 0.921216 0.611911 0.404943 0.74683 1  

bio10a1b50 0.930576 0.566844 0.460742 0.054407 0.899124 0.653526 0.346323 0.778058 0.996239  

bio11a1b50 0.950908 0.411597 0.751349 -0.58382 0.627388 0.967248 -0.20255 1 0.74683  

bio12a1b50 -0.88316 -0.75667 -0.70708 0.091474 -0.88624 -0.61844 -0.3637 -0.77254 -0.88346  

bio13a1b50 -0.84823 -0.74121 -0.62605 -0.01515 -0.88625 -0.54376 -0.42861 -0.70657 -0.88948  

bio14a1b50 -0.94545 -0.51805 -0.72167 0.410517 -0.72093 -0.85555 0.010389 -0.93282 -0.8122  

bio15a1b50 0.362111 0.020953 0.56062 -0.80354 -0.02122 0.633819 -0.5723 0.568772 0.042086  

bio16a1b50 -0.86177 -0.76122 -0.65703 0.011689 -0.89991 -0.56455 -0.42443 -0.7284 -0.89424  

bio17a1b50 -0.94494 -0.47574 -0.74197 0.501754 -0.67763 -0.90568 0.097975 -0.9671 -0.77337  

bio18a1b50 -0.89363 -0.53259 -0.84429 0.576939 -0.63717 -0.88373 0.120037 -0.94348 -0.69166  

bio19a1b50 -0.86482 -0.75905 -0.65904 0.017441 -0.89976 -0.57072 -0.41892 -0.73313 -0.89513  

geology -0.30275 -0.1697 -0.27958 0.208031 -0.19203 -0.28799 0.054995 -0.32035 -0.22632  

soils 0.363466 0.170851 0.240364 -0.13365 0.280974 0.337896 -0.00792 0.356645 0.319773  

 

 

 

 

 

 

 

 

 

 



 

 

2
4
0
 

 

bio10a1b50 bio11a1b50 bio12a1b50 bio13a1b50 bio14a1b50 bio15a1b50 bio16a1b50 bio17a1b50 bio18a1b50 

bio1a1b50 

         bio2a1b50 

         bio3a1b50 

         bio4a1b50 

         bio5a1b50 

         bio6a1b50 

         bio7a1b50 

         bio8a1b50 

         bio9a1b50 

         bio10a1b50 1         

bio11a1b50 0.778058 1        

bio12a1b50 -0.87539 -0.77254 1       

bio13a1b50 -0.87793 -0.70657 0.990607 1      

bio14a1b50 -0.83106 -0.93282 0.863311 0.817158 1     

bio15a1b50 0.075525 0.568772 -0.22397 -0.11264 -0.45648 1    

bio16a1b50 -0.88361 -0.7284 0.995688 0.99722 0.834152 -0.1433 1   

bio17a1b50 -0.80338 -0.9671 0.826387 0.769728 0.953305 -0.53598 0.790592 1  

bio18a1b50 -0.70921 -0.94348 0.837135 0.767134 0.927786 -0.63024 0.78825 0.942707 1 

bio19a1b50 -0.88489 -0.73313 0.995191 0.996022 0.836383 -0.14686 0.999053 0.793763 0.791139 

geology -0.23104 -0.32035 0.297179 0.268317 0.29712 -0.31038 0.274973 0.292123 0.352466 

soils 0.336122 0.356645 -0.34763 -0.33849 -0.34677 0.113221 -0.33961 -0.40261 -0.3481 

 

 

 

 

 



 

 

2
4
1
 

 

bio19a1b50 geology soils 

bio1a1b50 

   bio2a1b50 

   bio3a1b50 

   bio4a1b50 

   bio5a1b50 

   bio6a1b50 

   bio7a1b50 

   bio8a1b50 

   bio9a1b50 

   bio10a1b50 

   bio11a1b50 

   bio12a1b50 

   bio13a1b50 

   bio14a1b50 

   bio15a1b50 

   bio16a1b50 

   bio17a1b50    

bio18a1b50    

bio19a1b50 1   

geology 0.275498 1  

soils -0.33962 0.010438 1 
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APPENDIX D  

PEARSON’S CORRELATION ANALYSIS FOR SPECIES DISTRIBUTION 

MODELING OF FUTURE VEGETATION – A1B 2070 SCENARIO  
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4
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bio1a1b70 bio2a1b70 bio3a1b70 bio4a1b70 bio5a1b70 bio6a1b70 bio7a1b70 bio8a1b70 bio9a1b70  

bio1a1b70 1          

bio2a1b70 0.4325117 1         

bio3a1b70 0.5728304 0.82615 1        

bio4a1b70 -0.27829 0.050066 -0.50304 1       

bio5a1b70 0.7867932 0.816634 0.641686 0.158107 1      

bio6a1b70 0.8711725 0.150347 0.539593 -0.66467 0.448091 1     

bio7a1b70 0.0032953 0.680449 0.156177 0.754804 0.596157 -0.45062 1    

bio8a1b70 0.9481914 0.352854 0.653108 -0.56426 0.627113 0.968062 -0.24317 1   

bio9a1b30 0.9127592 0.487766 0.395611 0.134293 0.891699 0.616842 0.33646 0.741088 1  

bio10a1b70 0.9220972 0.459434 0.3841 0.110811 0.87597 0.639093 0.30077 0.757111 0.998132  

bio11a1b70 0.9507943 0.356169 0.652822 -0.55813 0.631553 0.966104 -0.23698 0.999826 0.746185  

bio12a1b70 -0.889939 -0.64784 -0.64285 0.078233 -0.86929 -0.63653 -0.2964 -0.77899 -0.88183  

bio13a1b70 -0.844178 -0.63697 -0.56649 -0.04511 -0.86805 -0.54514 -0.37724 -0.69709 -0.88373  

bio14a1b70 -0.944309 -0.41914 -0.61273 0.382119 -0.70379 -0.86235 0.071668 -0.93056 -0.81051  

bio15a1b70 0.0038337 -0.38379 0.104109 -0.77947 -0.43734 0.415345 -0.80972 0.265068 -0.32067  

bio16a1b70 -0.862596 -0.65821 -0.60085 -0.01154 -0.88375 -0.57149 -0.36924 -0.72572 -0.89077  

bio17a1b70 -0.947582 -0.39151 -0.62845 0.466297 -0.66949 -0.90478 0.144029 -0.96585 -0.77955  

bio18a1b70 -0.882623 -0.5693 -0.79237 0.490037 -0.71438 -0.83871 0.03986 -0.9132 -0.70857  

bio19a1b70 -0.895114 -0.64217 -0.64233 0.091343 -0.8732 -0.65259 -0.28589 -0.79115 -0.88289  

geology -0.302954 -0.12963 -0.22725 0.204515 -0.18818 -0.29409 0.076199 -0.32217 -0.22377  

soils 0.3620143 0.146917 0.209419 -0.12543 0.281938 0.335901 -0.02013 0.356362 0.318979  
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bio10a1b70 bio11a1b70 bio12a1b70 bio13a1b70 bio14a1b70 bio15a1b70 bio16a1b70 bio17a1b70 bio18a1b70 

bio1a1b70 

         bio2a1b70 

         bio3a1b70 

         bio4a1b70 

         bio5a1b70 

         bio6a1b70 

         bio7a1b70 

         bio8a1b70 

         bio9a1b30 

         bio10a1b70 1         

bio11a1b70 0.761914 1        

bio12a1b70 -0.87649 -0.78447 1       

bio13a1b70 -0.87621 -0.7034 0.988698 1      

bio14a1b70 -0.82052 -0.9328 0.866562 0.809839 1     

bio15a1b70 -0.29968 0.25953 0.218251 0.335787 -0.1123 1    

bio16a1b70 -0.88401 -0.73176 0.99459 0.996954 0.830993 0.30898 1   

bio17a1b70 -0.7943 -0.96725 0.833505 0.765821 0.952906 -0.17834 0.791842 1  

bio18a1b70 -0.70803 -0.91479 0.859007 0.785228 0.906038 -0.15988 0.810366 0.918553 1 

bio19a1b70 -0.87929 -0.79558 0.989145 0.97544 0.86922 0.226838 0.984539 0.843011 0.860106 

geology -0.22775 -0.32235 0.295726 0.264884 0.289043 -0.10966 0.273394 0.292905 0.308239 

soils 0.324561 0.356755 -0.34947 -0.33668 -0.33642 -0.04017 -0.3398 -0.39804 -0.35631 
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bio19a1b70 geology soils 

bio1a1b70 

   bio2a1b70 

   bio3a1b70 

   bio4a1b70 

   bio5a1b70 

   bio6a1b70 

   bio7a1b70 

   bio8a1b70 

   bio9a1b30 

   bio10a1b70 

   bio11a1b70 

   bio12a1b70 

   bio13a1b70 

   bio14a1b70 

   bio15a1b70 

   bio16a1b70 

   bio17a1b70    

bio18a1b70    

bio19a1b70 1   

geology 0.297001 1  

soils -0.36341 0.010438 1 
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APPENDIX E 

PEARSON’S CORRELATION ANALYSIS FOR SPECIES DISTRIBUTION 

MODELING OF FUTURE VEGETATION – A2 2030 SCENARIO 
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bio1a230 bio2a230 bio3a230 bio4a230 bio5a230 bio6a230 bio7a230 bio8a230 bio9a230  

bio1a230 1          

bio2a230 0.4221828 1         

bio3a230 0.5667105 0.8206995 1        

bio4a230 -0.3071841 0.0384155 -0.5211259 1       

bio5a230 0.7852518 0.8080638 0.627246 0.1389364 1      

bio6a230 0.8770254 0.1433174 0.535223 -0.6770154 0.4509872 1     

bio7a230 -0.0070021 0.6781782 0.1436649 0.7500513 0.592235 -0.4520796 1    

bio8a230 0.9516748 0.3442856 0.6453112 -0.5796988 0.6294416 0.9685734 -0.2453642 1   

bio9a230 0.9141204 0.4792208 0.3897419 0.1008013 0.8935911 0.6287795 0.3253833 0.7509162 1  

bio10a230 0.9237553 0.4481125 0.3768557 0.0760659 0.8764547 0.652356 0.286973 0.7675487 0.9979773  

bio11a230 0.9556962 0.3524866 0.6473863 -0.5700979 0.6381023 0.9653746 -0.233821 0.9995917 0.75892  

bio12a230 -0.8834369 -0.6479889 -0.6346307 0.0900186 -0.8717205 -0.6287057 -0.303593 -0.7724148 -0.8820565  

bio13a230 -0.8342285 -0.6458238 -0.5760449 -0.0148351 -0.8669818 -0.5434328 -0.3758405 -0.6946173 -0.8722823  

bio14 230 -0.9505288 -0.399406 -0.6041068 0.4210999 -0.6974208 -0.8780972 -0.0957463 -0.9423535 -0.8130054  

bio15 230 0.1863312 -0.1229605 0.3716642 -0.8603173 -0.2090306 0.537502 -0.6941512 0.4372013 -0.1639559  

bio16a230 -0.8626453 -0.6446832 -0.5876296 0.0113545 -0.880319 -0.5775948 -0.3583284 -0.7294935 -0.8928122  

bio17a230 -0.9422789 -0.4052489 -0.6507524 0.5055535 -0.6724123 -0.9066865 0.1465493 -0.9669836 -0.7714103  

bio18a230 -0.8901395 -0.5514259 -0.782958 0.5210303 -0.7070652 -0.8482737 0.0591836 -0.9221902 -0.7154913  

bio19a230 -0.9235994 -0.569229 -0.585444 0.1282416 -0.8555682 -0.6949543 -0.2276423 -0.8256894 -0.9095079  

geology -0.3049781 -0.1304671 -0.2311103 0.2073571 -0.1898531 -0.2961508 0.0776257 -0.3215253 -0.2284787  

soils 0.3622231 0.143383 0.2062699 -0.1314844 0.2843846 0.3382472 -0.0211569 0.3563759 0.3232032  
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bio10a230 bio11a230 bio12a230 bio13a230 bio14a230 bio15a230 bio16a230 bio17a230 bio18a230 

bio1a230 

         bio2a230 

         bio3a230 

         bio4a230 

         bio5a230 

         bio6a230 

         bio7a230 

         bio8a230 

         bio9a230 

         bio10a230 1         

bio11a230 0.784515 1        

bio12a230 -0.87985 -0.78287 1       

bio13a230 -0.89512 -0.7326 0.991029 1      

bio14 230 -0.83093 -0.94515 0.85806 0.824146 1     

bio15 230 0.148723 0.636107 -0.23382 -0.1523 -0.53702 1    

bio16a230 -0.88255 -0.74182 0.996644 0.996008 0.82796 -0.16096 1   

bio17a230 -0.80146 -0.96987 0.833254 0.791781 0.965926 -0.61641 0.797759 1  

bio18a230 -0.73991 -0.9449 0.853438 0.794524 0.938819 -0.64 0.811676 0.952481 1 

bio19a230 -0.90114 -0.85065 0.960835 0.949102 0.90196 -0.32681 0.951345 0.89573 0.877683 

geology -0.23461 -0.32083 0.298627 0.281519 0.297977 -0.3129 0.278207 0.302987 0.350029 

soils 0.333342 0.357444 -0.34808 -0.33664 -0.34677 0.142702 -0.34063 -0.39485 -0.34566 
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bio19a230 geology soils 

bio1a230 

   bio2a230 

   bio3a230 

   bio4a230 

   bio5a230 

   bio6a230 

   bio7a230 

   bio8a230 

   bio9a230 

   bio10a230 

   bio11a230 

   bio12a230 

   bio13a230 

   bio14 230 

   bio15 230 

   bio16a230 

   bio17a230    

bio18a230    

bio19a230 1   

geology 0.313062 1  

soils -0.38195 0.010438 1 
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APPENDIX F 

PEARSON’S CORRELATION ANALYSIS FOR SPECIES DISTRIBUTION 

MODELING OF FUTURE VEGETATION – A2 2050 SCENARIO 
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bio1a250 bio2a250 bio3a250 bio4a250 bio5a250 bio6a250 bio7a250 bio8a250 bio9a250  

bio1a250 1          

bio2a250 0.51911 1         

bio3a250 0.64915 0.735704 1        

bio4a250 -0.28967 0.086971 -0.59055 1       

bio5a250 0.799907 0.842312 0.567928 0.187645 1      

bio6a250 0.867626 0.200996 0.651507 -0.68002 0.443746 1     

bio7a250 0.061873 0.681577 0.013222 0.778787 0.631743 -0.41434 1    

bio8a250 0.949566 0.409358 0.739086 -0.57043 0.625986 0.967036 -0.20075 1   

bio9a250 0.91435 0.592584 0.438084 0.118762 0.92023 0.613764 0.403663 0.746567 1  

bio10a250 0.928417 0.55379 0.431432 0.080573 0.898938 0.647702 0.352683 0.771875 0.996757  

bio11a250 0.949566 0.409358 0.739086 -0.57043 0.625986 0.967036 -0.20075 1 0.746567  

bio12a250 -0.88447 -0.74955 -0.6885 0.074841 -0.8863 -0.61968 -0.3641 -0.77132 -0.88439  

bio13a250 -0.85991 -0.71508 -0.59151 -0.03535 -0.88496 -0.55458 -0.41904 -0.71338 -0.90169  

bio14 250 -0.95019 -0.48978 -0.69847 0.408786 -0.70821 -0.87258 0.035536 -0.94203 -0.81154  

bio15a250 0.353143 -0.09818 0.464516 -0.82381 -0.08723 0.653937 -0.65425 0.57406 0.023343  

bio16a250 -0.86194 -0.75702 -0.64996 0.008276 -0.89659 -0.5704 -0.41716 -0.73014 -0.88842  

bio17a250 -0.94697 -0.45712 -0.70796 0.473705 -0.67377 -0.90147 0.095514 -0.96458 -0.78198  

bio18a250 -0.88902 -0.53944 -0.83647 0.560334 -0.63977 -0.87935 0.1109 -0.93863 -0.69015  

bio19a250 -0.86194 -0.75702 -0.64996 0.008276 -0.89659 -0.5704 -0.41716 -0.73014 -0.88842  

geology -0.30317 -0.16721 -0.27932 0.202315 -0.19085 -0.29162 0.058426 -0.32101 -0.2278  

soils 0.362896 0.170431 0.236816 -0.12828 0.281108 0.333132 -0.00267 0.356054 0.320193  
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bio10a250 bio11a250 bio12a250 bio13a250 bio14a250 bio15a250 bio16a250 bio17a250 bio18a250 

bio1a250 

         bio2a250 

         bio3a250 

         bio4a250 

         bio5a250 

         bio6a250 

         bio7a250 

         bio8a250 

         bio9a250 

         bio10a250 1         

bio11a250 0.771875 1        

bio12a250 -0.87511 -0.77132 1       

bio13a250 -0.89143 -0.71338 0.989672 1      

bio14 250 -0.82793 -0.94203 0.85607 0.81756 1     

bio15a250 0.060425 0.57406 -0.13781 -0.04493 -0.4652 1    

bio16a250 -0.87701 -0.73014 0.996826 0.995021 0.826005 -0.06656 1   

bio17a250 -0.80582 -0.96458 0.832156 0.787736 0.964559 -0.53689 0.797817 1  

bio18a250 -0.70032 -0.93863 0.83269 0.764594 0.929045 -0.58771 0.790122 0.938663 1 

bio19a250 -0.87701 -0.73014 0.996826 0.995021 0.826005 -0.06656 1 0.797817 0.790122 

geology -0.23076 -0.32101 0.296932 0.275601 0.297977 -0.27553 0.277581 0.293257 0.352433 

soils 0.333162 0.356054 -0.34806 -0.33853 -0.34677 0.105788 -0.34066 -0.40207 -0.34285 
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bio19a250 geology soils 

bio1a250 

   bio2a250 

   bio3a250 

   bio4a250 

   bio5a250 

   bio6a250 

   bio7a250 

   bio8a250 

   bio9a250 

   bio10a250 

   bio11a250 

   bio12a250 

   bio13a250 

   bio14 250 

   bio15a250 

   bio16a250 

   bio17a250    

bio18a250    

bio19a250 1   

geology 0.277581 1  

soils -0.34066 0.010438 1 
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APPENDIX G 

PEARSON’S CORRELATION ANALYSIS FOR SPECIES DISTRIBUTION 

MODELING OF FUTURE VEGETATION – A2 2070 SCENARIO 
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bio1a270 bio2a270 bio3a270 bio4a270 bio5a270 bio6a270 bio7a270 bio8a270 bio9a270  

bio1a270 1          

bio2a270 0.51911 1         

bio3a270 0.64915 0.735704 1        

bio4a270 -0.28967 0.086971 -0.59055 1       

bio5a270 0.799907 0.842312 0.567928 0.187645 1      

bio6a270 0.867626 0.200996 0.651507 -0.68002 0.443746 1     

bio7a270 0.061873 0.681577 0.013222 0.778787 0.631743 -0.41434 1    

bio8a270 0.949566 0.409358 0.739086 -0.57043 0.625986 0.967036 -0.20075 1   

bio9a270 0.91435 0.592584 0.438084 0.118762 0.92023 0.613764 0.403663 0.746567 1  

bio10a270 0.928417 0.55379 0.431432 0.080573 0.898938 0.647702 0.352683 0.771875 0.996757  

bio11a270 0.949566 0.409358 0.739086 -0.57043 0.625986 0.967036 -0.20075 1 0.746567  

bio12a270 -0.88447 -0.74955 -0.6885 0.074841 -0.8863 -0.61968 -0.3641 -0.77132 -0.88439  

bio13a270 -0.85991 -0.71508 -0.59151 -0.03535 -0.88496 -0.55458 -0.41904 -0.71338 -0.90169  

bio14a270 -0.95019 -0.48978 -0.69847 0.408786 -0.70821 -0.87258 0.035536 -0.94203 -0.81154  

bio15a270 0.353143 -0.09818 0.464516 -0.82381 -0.08723 0.653937 -0.65425 0.57406 0.023343  

bio16a270 -0.86194 -0.75702 -0.64996 0.008276 -0.89659 -0.5704 -0.41716 -0.73014 -0.88842  

bio17a270 -0.94697 -0.45712 -0.70796 0.473705 -0.67377 -0.90147 0.095514 -0.96458 -0.78198  

bio18a270 -0.88902 -0.53944 -0.83647 0.560334 -0.63977 -0.87935 0.1109 -0.93863 -0.69015  

bio19a270 -0.86194 -0.75702 -0.64996 0.008276 -0.89659 -0.5704 -0.41716 -0.73014 -0.88842  

geology -0.30317 -0.16721 -0.27932 0.202315 -0.19085 -0.29162 0.058426 -0.32101 -0.2278  

soils 0.362896 0.170431 0.236816 -0.12828 0.281108 0.333132 -0.00267 0.356054 0.320193  
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bio10a270 bio11a270 bio12a270 bio13a270 bio14a270 bio15a270 bio16a270 bio17a270 bio18a270 

bio1a270 

         bio2a270 

         bio3a270 

         bio4a270 

         bio5a270 

         bio6a270 

         bio7a270 

         bio8a270 

         bio9a270 

         bio10a270 1         

bio11a270 0.771875 1        

bio12a270 -0.87511 -0.77132 1       

bio13a270 -0.89143 -0.71338 0.989672 1      

bio14a270 -0.82793 -0.94203 0.85607 0.81756 1     

bio15a270 0.060425 0.57406 -0.13781 -0.04493 -0.4652 1    

bio16a270 -0.87701 -0.73014 0.996826 0.995021 0.826005 -0.06656 1   

bio17a270 -0.80582 -0.96458 0.832156 0.787736 0.964559 -0.53689 0.797817 1  

bio18a270 -0.70032 -0.93863 0.83269 0.764594 0.929045 -0.58771 0.790122 0.938663 1 

bio19a270 -0.87701 -0.73014 0.996826 0.995021 0.826005 -0.06656 1 0.797817 0.790122 

geology -0.23076 -0.32101 0.296932 0.275601 0.297977 -0.27553 0.277581 0.293257 0.352433 

soils 0.333162 0.356054 -0.34806 -0.33853 -0.34677 0.105788 -0.34066 -0.40207 -0.34285 
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bio19a270 geology soils 

bio1a270 

   bio2a270 

   bio3a270 

   bio4a270 

   bio5a270 

   bio6a270 

   bio7a270 

   bio8a270 

   bio9a270 

   bio10a270 

   bio11a270 

   bio12a270 

   bio13a270 

   bio14a270 

   bio15a270 

   bio16a270 

   bio17a270    

bio18a270    

bio19a270 1   

geology 0.277581 1  

soils -0.34066 0.010438 1 

 

 



 

 

 

 

 

 


