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ABSTRACT 

In this thesis we deal with the problem of temporal logic robustness estimation. 

We present a dynamic programming algorithm for the robust estimation problem of 

Metric Temporal Logic (MTL) formulas regarding a finite trace of time stated sequence. 

This algorithm not only tests if the MTL specification is satisfied by the given input 

which is a finite system trajectory, but also quantifies to what extend does the sequence 

satisfies or violates the MTL specification. The implementation of the algorithm is the 

DP-TALIRO toolbox for MATLAB. Currently it is used as the temporal logic robust 

computing engine of S-TALIRO which is a tool for MATLAB searching for trajectories 

of minimal robustness in Simulink/ Stateflow. DP-TALIRO is expected to have near 

linear running time and constant memory requirement depending on the structure of the 

MTL formula. DP-TALIRO toolbox also integrates new features not supported in its 

ancestor FW-TALIRO such as parameter replacement, most related iteration and most 

related predicate. A derivative of DP-TALIRO which is DP-T-TALIRO is also addressed 

in this thesis which applies dynamic programming algorithm for time robustness 

computation. We test the running time of DP-TALIRO and compare it with FW-TALIRO. 

Finally, we present an application where DP-TALIRO is used as the robustness 

computation core of S-TALIRO for a parameter estimation problem. 
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Chapter 1  

INTRODUCTION 

1.1 Motivation of the Thesis 

Nowadays the use of cyber-physical system (CPS) can be found in a wide range of 

applications including automotive, aerospace, healthcare, transportation, infrastructure, 

military and so on. The so called CPS represents a combinatorial system of computation, 

networking and physical elements. While traditional embedded systems are designed to 

achieve specific goals independently, most CPSs are designed with feedback loops of 

which the inputs and outputs from physical elements would affect the final computation 

result of the whole system and vice versa. The potential of such system has been 

recognized gradually, and investments are made worldwide in developing the technology. 

With the trend of CPSs being more diverse and universal in everyday life and especially 

because of the critical areas where CPSs are used, it is essential to ensure correctness, 

security and reliability of such systems and software deployed. We have already paid 

extremely high price for software failures in the past. For example, the unmanned rocket 

Ariane 5 Disaster [8] in 1996 which lead to a loss of more than 370 million dollars. 

Ariane 5 explored 40 seconds after its launching due to software error. However the same 

program functioned perfectly on Ariane 4, the only change had been made is the physical 

part of the rocket. Thus, the need of system verification and validation is crucial for 

CPSs. 

Model Checking [25] is a tool that is very useful for verification of both software and 

hardware systems and it has got increased attention from academia as well as industries 
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of automobiles and avionics. Model checking works as follows: Engineers establish a 

model of a system by abstracting the dynamical characteristics of a physical object or a 

set of physical parts, such as internal combustion engine and transmission gearbox, with 

mathematical and logical models. And the model needs to be checked with some 

specifications automatically. However, model checking is only suitable for finite-state 

systems. It does not apply to systems with infinite state space including continuous 

systems and hybrid systems. In some cases, model checking problem is undecidable for 

systems whose state space is infinite space [26]. Recently, progress has been made to use 

temporal logic to capture more information and better express the characteristics of 

continuous and discrete-time signals. In this thesis, we mainly focus on Metric Temporal 

Logic (MTL) [3] which provides the ability to express the time-varying behaviors of 

continuous and hybrid systems. 

One of the main motivations of the work in this thesis is the great efforts done by 

Fainekos and Pappas [2] to apply robustness interpretation of MTL for continuous-time 

signals in metric spaces. One can obtain not only traditional Boolean value of 

satisfiability, but also the degree of how far away the specification is satisfied of falsified. 

It is very useful application-wise especially in the optimization setting of a control 

function to manage the behavior of the model of a physical system in [2]. The 

computation of temporal logic robustness was implemented in a MATLAB toolbox 

called FW-TALIRO which is one of the building blocks of the overall framework called 

S-TALIRO [21]. Both toolboxes are available at [27]. 



3 

 

However, industrial-scale systems can be quite complex. A system model can 

contain as much as thousands of blocks or complicated hierarchical structure with lookup 

tables and shared variables. The MTL formula may have dozens of predicates and 

temporal logical operators with all kinds of time constraints and the real-time trace can be 

multi-dimension with even millions of timed states. We found that FW-TALIRO does not 

scale well under such circumstances. In fact, it may take several minutes for 

FW-TALIRO to compute one robustness metric of a reasonable-size MTL formula over a 

real-value trace with ten-thousand timed states. It is almost impossible to use 

FW-TALIRO for optimization or falsification problem of these kinds of system since 

they usually require hundreds of robustness metric computations. In this thesis, we 

propose an improved algorithm to address the excessive time of computing robustness 

metric. 

Example 1.1.1: As an motivating example, we present a parameter estimation 

problem of a Simulink model for a four-speed automatic transmission [12, 13, 15] of a 

vehicle as shown in Fig 1.1. This example is presented in [11]. The model has two inputs: 

the percentage of throttle schedule and brake schedule. And the output is the RPM of the 

engine and the speed of the vehicle. In this example, we set the brake schedule to 0 for 30 

seconds. The throttle schedule at each point in time can be any value from 0 (fully closed) 

to 100 (fully open). At time 0 the vehicle is still so the speed and RPM is 0 initially. We 

are interested in solving problems such as “What is the maximum time that the RPM   

cannot exceed 4500 whatsoever”.  
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As demonstrated in [11], this time estimation problem can be posed as a parameter 

estimation problem in an MTL formula. Moreover, the parameter estimation problem is 

further reduced to an optimization problem where the cost function is the MTL 

robustness. This optimization problem is solved using stochastic search techniques and, 

thus, the robustness computation must be performed quickly.  

FW-TALIRO is not suitable to solve such problems due to the large number of 

robustness values needed to be computed and high running time of FW-TALIRO. Thus 

we need to develop a replacement that has much improved performance over 

FW-TALIRO. We came up with the solution to apply dynamic programming algorithm 

for temporal logic robustness and implemented in DP-TALIRO toolbox. 

 

Fig 1.1: The Simulink model of an automatic transmission controller 



5 

 

1.2 Contribution of the Thesis 

The main contribution of this thesis is that we have refined the dynamic 

programming algorithm for temporal logic robustness problem and we implement the 

algorithm into DP-TALIRO toolbox. As opposed to FW-TALIRO which uses formula 

rewriting techniques, DP-TALIRO shows tremendous improvement on the running time 

and memory used which as a result allows DP-TALIRO to handle larger size of input 

sequences and more complex specifications. 

DP-TALIRO also integrates features such as dynamic programming algorithm for 

polarity and parameter estimation [10]. The implementation details are provided in this 

thesis as well. We also present the algorithm for DP-T-TALIRO which is the toolbox for 

dynamic computing time robustness [9] as a derivative of DP-TALIRO. It is also 

integrated in S-TALIRO and it can run as a stand along toolbox as well. 

1.3 Thesis Structure 

This thesis is structured according to the following outline: 

 Chapter 1: The first chapter introduces the motivation of the thesis. 

 Chapter 2: In this chapter, we present the background and fundamentals of 

the work including Metric Temporal Logic, definition of robustness and 

time robustness as well as related researches. 

 Chapter 3: In this chapter, we present the dynamic programming algorithm 

along with implementation details and details of other features 

incorporated in the toolbox. 
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 Chapter 4: In this chapter, we analyze the running time or DP-TALIRO 

and compare it with FW-TALIRO.  

 Chapter 5: We present an application where DP-TALIRO is used as the 

robustness computation core of S-TALIRO for a parameter estimation 

problem. 

 Chapter 6: In the final chapter we make a conclusion and discuss some 

possible future work. 

 Appendices: The Appendices include the user manual of DP-TALIRO and 

DP-T-TALIRO. 
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Chapter 2  

BACKGROUND AND FUNDAMENTALS 

2.1 Metric Temporal Logic 

First, we recap the syntax and semantics of Metric Temporal Logic (MTL) here. 

MTL is originally defined in [3]. Given a finite set AP of atomic propositions, the MTL 

formula is defined recursively by time-constrained temporal operators as follows: 

               
 
  

 
   ┓ 

 
   

 
    

 | X 
 
  

Where p AP and I could be an open, closed or half-open half-closed interval whose 

left and right end-points are rational numbers or ∞.If I equals to [0,+ ∞) then I is omitted 

in the notation.  

The MTL formula supports standard propositional constants and operators: true, false, 

and ( ), or ( ), indicate ( ), equivalent ( ) as well as temporal logic operators such as 

always (G), eventually (F), until (U) and release (R). „Eventually‟, „always‟ and „release‟ 

can be derived from „until‟.  

              

                              ┓  ┓ . 

          
 
    

 ┓ ┓ 
 
  ┓ 

 
  

Then, we define satisfaction problem. Given a trace which is a timed state sequence 

        where   denotes a finite sequence of states and   is the timestamps which is 

a finite sequence of real numbers and         meaning the length of   and   are the 
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same. Intuitively, a sequence s represents an execution of a system model. We can 

interpret a sequence s as at time    the system was in state   . 

We define the notation   as an observation map so that      represents the set 

of p. The formal definition is     AP → P(X) such that for every      we have the 

corresponding set       . 

We define that a trace   at time    satisfies a formula  , written as          

inductively over the structure of the MTL formula as follows: 

                is always true; 

                 is always false; 

              iff          ; 

         
 
  

 
    iff          

 
 and          

 
; 

         
 
  

 
    iff          

 
 or          

 
; 

       ﹁ 
 
    iff          

 
; 

           
    iff for all     that         

 
; 

           
    iff exist     that         

 
; 

        
 
    

 iff exist     while          
 

 with         and for 

all                
 
; 
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2.2  Robustness 

2.2.1  Space robustness 

By contrast with traditional use of temporal logic which a verdict evaluates to 

whether a certain trace meets or violates an MTL formula. In this thesis we use the 

concept of robustness degree for finite timed state sequences as introduced in [2]. The 

robustness degree expresses how much error the signal could tolerate or how far away is 

the signal to meet certain specification. Note that since the robustness here is essentially 

the distance between the given signal and the boundary of the set of signals that satisfy 

the requirement, we denote the robustness mentioned here as space robustness, as 

opposed to time robustness that we will introduce later. In the rest of the paper, when we 

say „robustness‟ we mean space robustness and we will specifically say „time robustness‟ 

if we need to use time robustness. 

 

Fig 2.1: The definition of distance and depth 
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Fig 2.2: Two signals sig1 and sig2 satisfy the specification G(x<0.9) 

Why we need space robustness? Here we present an example illustrating the 

importance of space robustness. As shown in Fig 2.1, the distance defined is the shortest 

distance from the point to any points inside set C. Similarly the depth defined is the 

shortest distance from the point to any points outside set C. Thus this value defines how 

robust certain signal is according to certain specification expressed by MTL. For instance, 

consider sig1 and sig2 in Fig 2.2. The specification here requires that the input signal 

should always be less than 0.9. Even though sig1 and sig2 both meet this requirement, 

obviously sig1 meets the specification by a good margin while sig2 barely meets the 

specification and sig1 would have the better ability to resist noise interferences than sig2. 

Thus with the notion of robustness degree we would be able to capture this kind of 

characteristic of signals. 
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Furthermore, the solution given in this thesis would not merely consider space 

robustness, but also time robustness as defined in [9]. Time robustness defines how 

robust an MTL formula is regarding a sequence at a certain point in time. In a nutshell 

time robustness indicates how faraway the trace could shift in time to the future or to the 

past without changing the satisfaction or violation status of an MTL formula.  

The formal definition of space robustness degree is given as follows. Here, the 

distance and depth notion is based on the generalized metric d. We refer reader to [4] 

regarding the details of generalized metric. 

First we define the distance from a point to a set. Let X and C be two sets, C   X, x 

be a point and x   X, and d be a metric that induce the topology on set X. Then we could 

define the Signed Distance from point x to set C to be: 

             
                    

                   
  

While            := inf{d(x, y) | y    } ; 

               :=              ; 

That is to say this distance defined is the shortest distance from the point to any 

points inside set C. Similarly the depth defined is the shortest distance from the point to 

any points outside set C. Thus this value defines how robust a certain signal is according 

to certain specification expressed by MTL. Noted that here we use the extended 

definition regarding supremum (⊔) and infimum (⊓). To be specific, we define the 

supremum of empty set to be the smallest element of the domain and the infimum of 

empty set to be the largest element of the domain.  
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2.2.2 Discrete-Time Robust Semantics 

In this section we combine MTL formula and robustness notion [15]. Here we 

introduce the semantics which maps a discrete-time trace s regarding an MTL formula ϕ 

to a value from a partially ordered set Ѵ. We denote the robustness value of formula ϕ 

regarding trace s at sampling point i by [ϕ]d(s,i). We define                      . 

The robust semantics of any MTL formula ϕ is defined recursively as follows: 

[true]d(s,i)  := + ∞ 

[p]d(s,i)    :=  Distd(s(i),  (p)) 

[┓ ϕ] d(s,i)   :=   - [ϕ] d(s,i)  

[ϕ1∧ϕ2] d(s,i)  :=   [ϕ1] d(s,i) ⊓ [ϕ2] d(s,i)  

[ϕ1UI ϕ2] d(s,i)  :=  
            

 ([ϕ2] d(s,i’) ⊓ ⊓         [ϕ1] d(s,i’’)) 

Where                              . 

And because   ϕ           , we can derive the discrete-time robust semantics for 

[  ϕ]d(s,i) as follows: 

  [  ϕ] d(s,i)  :=  
            

 [ϕ] d(s,i’) 

2.2.3 Time robustness 

In this section we briefly recap time robustness. Originally, a notion of time 

robustness was introduced in [2] for timed state sequences that are generated by 

dynamical systems. In this thesis, we use the more general notion of past and future time 
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robustness as introduced in [9]. Time robustness is introduced in order to quantify the 

satisfaction problem of signals regarding time and to obtain the characteristic of 

time-shifting events.  

The formal definition of left and right time robustness regarding discrete time is 

shown below: 

θ
                                                                       

θ
                                                                       

Here we defined the time robustness of MTL formula   regarding a trace   at 

sampling point i. And then we apply this rule inductively to the rules of MTL formula 

introduced in section 2.1. 

Considering the signal in Fig 2.3, signal1 is 3sin(2t), signal2 is a constant with value 

is 2.5 and signal3 is 3sin(2t-3.14) which is essentially signal1 shifted right for  . 

Suppose we have an MTL formula            where p1 is x>2. The formula requires 

that the signal eventually reach a value which exceeds 2 in time 0 to time 1 including 

time 0 and time 1. If we apply space robustness computation here, we will get that the 

space robustness degree for signal1 is 1, space robustness degree for signal2 is 0.5 and 

space robustness degree for signal3 is -2. However, by observation signal2 satisfies the 

requirement all the time during interval [0, 1] while signal1 fail to meet the requirement 

about half of the time. To some sense, signal2 is more robustness with regard to time than 

signal1 over formula  . Also signal3 is signal1 shifted right and space robustness could 

not catch this characteristic in this case. Thus, in order to quantify the satisfaction 
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problem regarding time and capture the effect of shifting events the time robustness is 

introduced. In this thesis, we implemented a dynamic programming algorithm for time 

robustness in MATLAB toolbox DP-T-TALIRO.  

 

Fig 2.3: Signal1 is 3sin(2t); Signal2 is 2.5; Signal3 is 3sin(2t-3.14) 

2.2.4 Polarity 

The polarity of a parameter is formally defined in [10]. It is mainly used in parameter 

estimation problem. Essentially, given a MTL formula  , if we increase the value of the 

parameter p and it becomes easier to satisfy the formula then we say the polarity        

is positive. Similarly the polarity is negative if we increase the value of the parameter and 

it becomes harder to satisfy the MTL formula. 
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Let „+‟ and „-‟ indicate positive and negative polarities respectively. And „ ‟ and „⊥‟ 

indicate undefined and mixed polarities and c denotes for a constant number. We can 

inductively define the polarity of a magnitude parameter p in a MTL formula   as 

follows: 

                           

               

               

    ﹁            

             =            =                

Operations   and   are defined as follows: 

    + - ⊥ 

    + - ⊥ 

+ +  ⊥ ⊥ 

- - ⊥ - ⊥ 

⊥ ⊥ ⊥ ⊥ ⊥ 

And  
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+ - 

- + 

⊥ ⊥ 

Timing parameters satisfy rules: 

                    

                    

We call a formula a fine formula if the polarity of every parameter is either + or -. 

2.3 Related work 

The concept of robustness interpretation of requirements of MTL formulas form over 

continuous and hybrid systems is introduced in [2]. It first forwards the concept of  -ball 

which is an open ball centered at any point of the trace with radius   which assist to 

explain the robustness degree notion. It defined the discrete-time robustness semantics of 

MTL formulas in a recursive way. Moreover, it defined the procedure of recursively 

computing robustness degree of an MTL formula over a finite timed state sequence. The 

algorithm is implemented as a MATLAB toolbox called FW-TALIRO (ForWard 

algorithm for TemporAl LogIc RObustness) within the software toolbox S-TALIRO [21]. 



17 

 

As the name suggests, FW-TALIRO is based on formula rewriting techniques. More 

details of FW-TALIRO could be found in [2, 18, 19, 20] 

One of the works that motivated this thesis is the work done by Rosu and Havelund 

in [5]. In that paper they presented a dynamic programming algorithm for Linear 

Temporal Logic (LTL) [7] formula over finite discrete time signals. Given an LTL 

formula the algorithm tests whether a finite trace satisfies the formula or not. And the 

algorithm achieved linear running time and constant memory usage depending merely on 

the size of LTL formula.  

In [9], the authors analyzed the behaviors of continuous and hybrid dynamical 

system admitting uncertain parameters in continuous time and space. They presented 

several variants of robustness estimation including time robustness and space robustness 

in order to reason a trajectory satisfying or violating a given requirement over continuous 

and hybrid systems. In that paper they provided strategies to compute these robustness 

variants and the sensitivity of them regarding the parameters of the system or the 

parameters of the formula. The algorithm is implemented in a MATLAB toolbox called 

Breach [17] which focuses on simulation of temporal logic properties and reachability 

analysis and parameter synthesis of dynamic systems. 

There have been other efforts in computing robustness degrees for MTL. The authors 

in [6] introduce a different kind of temporal logic to specify properties of a timed state 

sequence. They introduced the first application of temporal logic offline monitoring to 

continuous and hybrid systems. The idea of using Metric Temporal Logic as a formal 

specification to form real-time system is introduced in [3]. It first gives quantitative 
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temporal properties to a real-time system and then reasons about the system by turning 

quantitative temporal operators into metric temporal operators. Thati and Rosu in [29] 

presented a general monitoring algorithm for checking time stamped traces against 

requirements represented by MTL and sublogics of MTL. 

Authors in [18] introduced a framework based on discrete time analysis for testing 

Metric Interval Temporal Logic (MITL) [28] specifications regarding continuous time 

signals. And the parametric identification problem is introduced in [10] with the notion of 

polarity and validity domain as well as the algorithm to compute the validity domains. At 

the time of this thesis was written it was not possible to experimentally compare the 

algorithms in [9, 10] with the algorithms presented here. Such comparison will be 

delegated to future work. 
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Chapter 3  

DP-TALIRO 

This chapter provides an overview of the main algorithm of DP-TALIRO toolbox 

and describes some main new features included in DP-TALIRO. 

3.1 DP-TALIRO Overview 

We introduce MATLAB toolbox S-TALIRO first to help readers understand what 

DP-TALIRO does since DP-TALIRO is one of the building blocks of S-TALIRO. 

S-TALIRO is a tool for the temporal logic falsification problem. It turns the temporal 

logic falsification problem into an optimization problem by using the temporal logic 

robustness as a cost function. Using stochastic optimization techniques, it minimizes the 

temporal logic robustness in order to find counterexamples to the MTL properties.  

The overview of the framework of S-TALIRO is shown in Fig 3.1. The dynamical 

characteristic of the physical system is captured and abstracted in a Simulink/Stateflow 

model. It outputs traces become one of the inputs of DP-TALIRO, which are then 

checked against specifications represented by MTL formulas and atomic propositions 

represented as predicates. DP-TALIRO computes the robustness metric of these traces 

with respect to the MTL formula. Then, one of the optimization techniques is chosen to 

let S-TALIRO regulate the physical model. The optimization algorithm aims to determine 

what output trace of the model must be analyzed next based on the information of 

robustness metric. S-TALIRO is equipped with Monte Carlo [22], Ant Colony 

Optimization [23] and other optimization algorithms. The user can implement other 

stochastic optimization methods as well. In the end, S-TALIRO would output a falsified 
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trace if one can be found. Otherwise the least robust trace would be outputted if the 

process time-out and no falsifying traces can be found. The reader is referred to [15, 16, 

21, 22] for more details about S-TALIRO. 

As we can see in Fig 3.1, the main components of S-TALIRO toolbox are a temporal 

logic robust computation block and the stochastic optimization algorithm. FW-TALIRO 

was used as the main temporal logic robust computation block. FW-TALIRO is 

developed based on formula rewriting techniques and it is suitable for online monitoring. 

But for offline monitoring it is too slow which makes S-TALIRO almost impossible to 

use on large-scale traces and MTL formulas. DP-TALIRO is developed for such 

circumstances to replace FW-TALIRO as the temporal logic robustness computation 

block of S-TALIRO. 

  

Fig 3.1: overview of S-TALIRO toolbox 
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3.2 Dynamic programming algorithm of DP-TALIRO 

In this section we present the details of the dynamic programming algorithm for 

computing the space robustness metric of MTL formulas with respect to timed state 

sequences. We also present details of the implementation of DP-TALIRO.  

First, we explain how the dynamic programming algorithm works regarding LTL 

formulas. In [5], a dynamic programming algorithm is first introduced to test the 

satisfiability problem of LTL formula with respect to a finite trace of events. This 

algorithm achieves linear running time and constant memory requirement depending on 

the size of the LTL formula by visiting the trace of events backwards in time. We 

develop our algorithm based on this algorithm and expand it for temporal logic robust 

estimation problem regarding MTL formulas.  

First we parse the LTL formula in a tree fashion. We assign subformulas from top 

down of the parsing tree. The key idea of dynamic programming algorithm for LTL 

formula is to compute robustness values backwards on the time axis from the last 

sampling point of the input trace backwards to the first sampling point of the input trace 

and to compute robustness from bottom up of the LTL formula parsing tree. We store and 

reuse the temporal logic robustness values of all the subformulas of the sampling point at 

the very next timed state to compute the temporal logic robustness value of the sampling 

point at the current timed state. Afterward, robustness values of the sampling point at the 

current timed state are stored and used to compute the robustness for the previous 

sampling point while the robustness values stored before are discarded. This process 

repeats all the way from the last sampling point of the trace to the initial sampling point 



22 

 

of the trace. The robustness of the subformula at root node of the LTL formula parsing 

tree at the first sampling point of the trace is the robustness value of the LTL formula.  

We next present an example to explain how this algorithm works by drawing a 

dynamic programming table.  

Example 3.2.1: Consider the LTL formula               . We parse this formula 

as follows in Fig 3.2: 

 

Fig 3.2: Parsing tree of formula                of Example 3.2.1 

Then we assign subformulas from top down. The corresponding subformulas are:  

   
 

       
 
  

   
 

             
 
  

 
  

   
 

         
 
 ; 

   
 

      

   
 

      

We draw a dynamic programming table (Table 3.1) to demonstrate how the dynamic 

programming algorithm works. Each subformula represents a row in the dynamic 
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programming table and each column represents different sampling point of the input trace. 

We start from filling the rightmost column which represents the last sampling point of the 

trace and moving to the left columns one by one.  

R[I, J]  J = i J = i+1 

     
 
                                       

     
 
                                       

     
 
 R[1,i] ⊔ R[3,i+1] R[1,i+1] 

     
 
 R[2,i] ⊓ R[3,i] R[2, i+1] ⊓ R[3, i+1] 

     
 
 R[4,i] ⊓ R[5,i+1] R[4, i+1] 

Table 3.1: Dynamic programming table for LTL formula 

Here, the trace is        .      denotes the signal value of time t. Here, we 

assume time J = i+1 is the last sample of the given trace. Thus, time J = i+1 defines the 

boundary conditions.  

Table 3.1 is populated from top down and from right to left. We fill R[1, i+1] first 

applying a distance computation of atomic proposition    with respect to the input trace 

at sample i. Next, we fill R[2, i+1] applying the same semantic for atomic proposition   . 

We fill R[3, i+1], R[4, i+1] and R[5, i+1] in order based on the discrete-time robust 

semantics defined in Section 2.2.2. Then, we fill R[1,i] to R[5,i] in order applying 

semantics in Section 2.2.2 using a distance computation if the subformula is an atomic 

proposition or a supremum/infimum operation or previously computed values. The 

robustness value for the formula               with respect to trace s at the initial 

time is the value of R[5, i] when i = 1. 
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The worst case running time of the algorithm above is O(| || |) which is linear 

regarding the size of the formula and the length of the trace. This is easy to verify since 

the number of rows of the dynamic programming table above grows linearly according to 

the size of the LTL formula and the number of the columns of the table equals to the 

length of the trace. 

Example 3.2.1 illustrates how a dynamic programming algorithm works for LTL 

formulas. MTL formulas are essentially LTL formulas combined with time constraints 

and the algorithm is more complicated. So the algorithm for MTL formulas has some 

similarity with the algorithm for LTL formulas.  

First, we parse the MTL formula in a tree fashion. We assign subformulas from top 

down of the parsing tree. We still compute robustness values backwards in time from the 

last sampling point to the first sampling point and compute robustness from bottom up of 

the MTL formula parsing tree. For MTL formulas, we store and reuse the temporal logic 

robustness values of all the subformulas with indices           ) in order to compute 

the temporal logic robustness of the sampling point at the current state. The robustness 

value of the subformula at root node of the MTL formula parsing tree at the first 

sampling point of the trace is the robustness value of the MTL formula.  

Here we use another example to illustrate dynamic programming algorithm for MTL 

formulas. 

Example 3.2.2: Consider MTL formula                   .  

Atomic proposition:  (p) = {    | x>0} and input signal as follows: 
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t(time) 0 0.2 0.4 0.6 0.8 

X(value) 5 4 3 2 1 

Table 3.2: Input signal of Example 3.2.2 

First we could easily compute the robustness of formula       regarding the input 

signal which is X-0 shown below 

t(time) 0 0.2 0.4 0.6 0.8 

p 5 4 3 2 1 

Table 3.3: Robustness of formula       regarding the input signal of Example 

3.2.2 

And we parse this MTL formula simply as follows: 

 

Fig 3.3: Parsing tree of formula                   of Example 3.2.2 

We assign the subformulas: 

     
 

       
 
  

     
 

     

Filling the dynamic programming table for MTL formulas is similar to what we did 

for the dynamic programming table of LTL formulas. Accord to the algorithm we should 

use the results in column which indices belongs to            through            to 

compute the results in column       . Noted that here we use different boundary 
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conditions according to different temporal logic operators. In this example, the robustness 

would be set to negative infinity (-∞) if boundary condition is triggered to indicate that 

the set of indices is an empty set. We fill the dynamic programming table as follows: 

i(index) 1 2 3 4 5 

t(time) 0 0.2 0.4 0.6 0.8 

 
 

    5 4 3 2 1 

 
 

                  3 ⊔ 2 ⊔ 1 2 ⊔ 1 1 -∞ -∞ 

Table 3.4: Dynamic programming table for MTL formula of Example 3.2.2 

As shown in the table above, we start by filling   at index i=5. We search for the 

results of subformula  
 
 from time 0.8+0.3 to 0.8+1.1 and the result is the empty set 

since the timed state sequence is not defined. Thus, we apply the boundary condition and 

since the temporal logic operator here is „eventually‟ operator we set the result as 

negative infinity. Next, we fill the table at index i=4. We search for the results of 

subformula  
 
 from time 0.6+0.3 to 0.6+1.1 and again we can find none and we set the 

robustness as negative infinity. For row  
 
 column i=3, we search for the results of 

subformula  
 
 in between time interval [0.4+0.3, 0.4+1.1] which is the result in column 

i=5. We apply the same rule and fill the table all the way down to column t=0 and the 

result is 3 ⊔ 2 ⊔ 1 which is 3 ultimately. So the robustness of MTL formula   

               regarding this given input signal is 3. 

We can observe from Example 3.2.2 that even though we apply the dynamic 

programming algorithm for MTL formula we still have to store results of subformula  
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in column i=3, i=4 and i=5 in order to compute the result of  
 
 in column i=1. In fact, 

the columns of results needed to be stored depend on the time constraints of the temporal 

logic operators. The pseudocode for the dynamic programming algorithm of MTL 

formulas is presented in Algorithm 3.1 from [15]. 
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Algorithm 3.1 Temporal Logic Robustness Computation 

Input: The MTL formula   , the trace         , the distance metric d and 

the observation map   

Output: Return the value stored in s[1,1] 

 

1. Procedure DP-TALIRO            

2.   for j ← |   | to 1; for i ← |   | to 1 do 

3.      if ψi = T then s[i, j] = T 

4.      else if ψi = p then s[i, j] ← Distd ( (j) , (p)) 

5.      else if ψi = ┓ψk then s[i, j] ← - s[k, j] 

6.      else if ψi = ψk1 ∨ ψk2 then 

7.         s[i, j] ← s[k1, j]   s[k2, j] 

8.      else if ψi = ψk1  I ψk2 then 

9.         if j = |   | then s[i, j] ← Kϵ (0, I) ⊓ s[k2, j] 

10.         else if ℐ = [0, +∞) then 

11.            s[i, j] ← s[k2, j]   (s[k1, j] ⊓ s[i, j+1]) 

12.         else 

13.            bl ← min  (j, I);  

14.            bu ← max  (j, I); 

15.            smin ←⊓j≤j‟<bl s[k1, j‟]; 

16.            s[i, j] ← ⊥; 

17.            for j‟ ← bl to bu do 

18.               s[i, j] ← s[i, j]   (s[k2, j‟] ⊓ smin); 

19.               smin ← smin ⊓ s[k1, j‟]; 

20.            end for 

21.            if sup I = +∞ then 

22.               s[i, j] ← s[i, j]   (s[k1, j] ⊓ s[i, j+1]) 

23.            end if 

24.         end if 

25.      end if 

26.      else if ψi = ℱI ψk1 then 

27.         if j = |   | then s[i, j] ← Kϵ (0, I) ⊓ s[k1, j] 
28.         else if ℐ = [0, +∞) then 

29.            s[i, j] ← s[k1, j]   s[i, j+1] 
30.         else 

31.            bl ← min  (j, I);  

32.            bu ← max  (j, I); 
33.            s[i, j] ← ⊥; 
34.            for j’ ← bl to bu do 

35.               s[i, j] ← s[i, j]   s[k1, j’]; 
36.            end for 
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37.            if sup I = +∞ then 

38.               s[i, j] ← s[k1, bl]   s[i, bl+1] 
39.            end if 
40.         end if 
41.      end if 
42.   end for 

43. end procedure 
 

where k, k1, k2 > i; Kϵ (a, A) = T if a   A and ⊥ otherwise; and  (j, I) = 

 
-1
(( (j) + RI) ⋂ ( (j+1) + RI)) if sup I = +∞ and  (j, I) =  

-1
( (j) + RI) 

otherwise. 

 

The worst case running time of Algorithm 3.1 is O(| || |c) where c equals to 

max0 j       j max  j I   . Here I is the time constraints of any temporal logic operators 

in the MTL formula. We already know the worst case running time of dynamic 

programming algorithm of LTL formula is O(| || |). And here „c‟ stands for the maximum 

sampling point possible from any point j of the trace up to bu which is the maximum 

sampling point allowed according to the time constraints and the structure of the trace. In 

another word, „c‟ is the biggest number of iterations in line 17 and line 34 of Algorithm 

3.1.  

There are however two hidden factors that would affect the running time of the 

algorithm above. One is the time cost to compute the distance function which is based on 

the sets and the structure of state-space and the details are addressed in [2]. Another 

factor is the time to compute bl and bu in line 13 and 14 and line 31 and 32. Since the 

traces DP-TALIRO deals with can have thousands of sampling points with non-constant 

steps between any two sampling points, and since for each sampling points bl and bu are 

different, there are thousands of bl and bu needed to be calculated. We found that the time 

computing bl and bu grows exponentially when the length of the input trace grows. The 
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time taken to compute bl and bu drastically slows down the computation speed of 

DP-TALIRO toolbox. In order to address this problem, we propose an algorithm to 

compute bl and bu in linear time. The pseudocode for the time-stamp computation is 

presented in Algorithm 3.2. 

We extract from the input MTL formula and store the higher bound value of a time 

interval of an MTL subformula in „ubd‟ and the lower bound value in „lbd‟. We use 

„Highi‟ and „Lowi‟ to indicate the temporal maximum and minimum index of sampling 

points thus define the range in which we search for a maximum mapping index with 

respect to current time stamp and store in bu and a minimum mapping index and store in 

bl.  
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Algorithm 3.2 Time-stamp Bounds Computation 

Input: The trace         and the length of the trace   = |   | 
Output: Return bl and bu 

 

1. bu = -∞; 

2. bl = ∞; 

3. for i ←   to 0 

4.   if ubd = +∞ then bu =  ; 

5.   else 

6.     if bu = -∞ then  

7.       Highi =  ; 

8.     else  
9.       Highi = bu; 

10.     Lowi = 0; 

11.     end if 
12.     for j ← Highi to Lowi 

13.        if j   0 

14.       TempU = ubd + time(i); 

15.       if time(j) < TempU 

16.      bu = j; 

17.      break; 

18.         end if 

19.        end if 

20.     end for 

21.   end if 

22.     if bl = ∞ then  

23.       Highi =  ; 

24.     else 
25.       Highi = bl; 

26.     Lowi = Highi – 1; 

27.     end if 
28.     for j ← Highi to Lowi 

29.       if j   0  

30.         TempL = lbd + time(i); 

31.         If time(j) > TempL 

32.        bl = j; 

33.        Lowi = j-1; 

34.         end if 

35.       end if 

36.     end for 

37. end for 

We compute bu by finding the first/maximum sampling point which meets the 

requirement of (j, I) in Algorithm 3.1 and compute bl by finding the last/minimum 
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sampling point which meets the requirement of (j, I). It is easy to verify that bl and bu is 

non-increasing every iteration since the trace is monotonic. 

Initially we set the value of bu to negative infinity and the value of bl to infinity 

indicating neither bu nor bl is set. 

To set the value for bu, we start by searching from the last sampling point backwards 

in time until the first sampling point we found which time stamp is smaller than „ubd‟ 

plus current time stamp. The index value of this sampling point we found is stored in bu 

as the maximum index with respect to the current time stamp and we terminate the „for‟ 

loop. We search the value for bu regarding next time stamp by starting from the index last 

bu indicates and backwards in time. 

To set the value for bl, we start by searching from the last sampling point backwards 

in time until the last sampling point we found which time stamp is bigger than „lbd‟ plus 

current time stamp. We search the value for bl regarding next time stamp by starting from 

the index last bl indicates and backwards in time. 

The worst case running time of Algorithm 3.2 is O(2| |). We traverse all the sampling 

points backwards in time once and all the sampling points stored in bu and bl once more 

and make as many comparisons.  

Algorithm 3.2 computes from the last sampling point backwards to the first sampling 

point because Algorithm 3.1 does so and, thus, we can save computation time by 

executing both algorithms together and traverse the input trace once.  
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Noted that for an MTL formula or subformula which has the time constraints of [0, 

∞), it is actually an LTL formula and DP-TALIRO would treat it as an LTL formula thus 

saving computation time since computing an LTL formula is faster than computing an 

MTL formula given other conditions being equal. 

3.3 Dynamic programming algorithm for time robustness 

We have introduced the dynamic programming algorithm for space robustness 

computation of MTL formulas. In this section, we apply similar approach for time 

robustness computation.  

In order to compute time robustness, we only need to replace the distance 

computation in line 4 of Algorithm 3.1 with time-distance computation.  

Algorithm 3.3 Time-distance Computation 

1. if CurSign = PrevSign 

2.   if CurSign 

3.     T_rob = |PrevT_rob| + |CurTime – PrevTime|; 

4.   else 

5.     T_rob = - (|PrevT_rob| + |CurTime – PrevTime|); 

6. else 

7.     T_rob = 0; 

Algorithm 3.3 presents the pseudocode of computing time-distance and itself is 

computed dynamically. This algorithm could be used for computing both past time 

distance and future time distance. It keeps updating „CurSign‟ and „PrevSign‟ by looking 

up the space robustness value. We illustrate this algorithm by presenting another 

example. 

Example 3.3.1: Consider MTL formula       where atomic proposition:  (p) = 

{    | x>0} and input signal as follows: 
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t(time) 0 0.2 0.4 0.6 0.8 

X(value) 3 1 -1 -3 -5 

Table 3.5: Input signal of Example 3.3.1 

First, we could easily compute the space robustness of formula       regarding the 

input signal which is X-0 shown below: 

t(time) 0 0.2 0.4 0.6 0.8 

p 3 1 -1 -3 -5 

Table 3.6: Robustness of formula   = p regarding the input signal of Example 3.3.1. 

And then we apply Algorithm 3.3 and compute the future time robustness and past 

time robustness: 

t(time) 0 0.2 0.4 0.6 0.8 

p 3 1 -1 -3 -5 

θ
 

 0.2 0 -0.4 -0.2 0 

θ
 

 0 0.2 0 -0.2 -0.4 

Table 3.7: Time robustness of formula   = p regarding the input signal of Example 

3.3.1 

We compute the future time robustness θ
 

 from right to left and start with filling 

the rightmost column and since it is the boundary of the input trace we set the time 

robustness to 0 to indicate that there are no robustness values in the future which have the 

same sign as the robustness value at current time. Then, we fill the column t = 0.6, we 

look up the space robustness of the current column and the previous column and find that 

they have the same sign because both of them are negative numbers. So we accumulate 
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the time-distance by adding the time interval which is 0.2 on the previous time robustness 

which is 0. We multiply the time-distance by -1 which indicates that the space robustness 

at current time is negative and the result is -0.2. Then, we fill the column t = 0.4 and so 

on. Similarly we compute the past time robustness θ
 

 from left to right and fill the 

leftmost column with 0 because of the boundary condition. We fill the column t = 0.2 by 

adding the time interval which is 0.2 on the previous time robustness which is 0 and 

multiple 1 and the result is 0.2. Finally we fill the column t = 0.8 with past time 

robustness -0.4.  

Noted that here we set both future time robustness and past time robustness to 0 

whenever the signs are different between current column and the previous column. The 

reason is that somewhere between these two sampling points the trace reach the boundary 

of satisfying or violating the requirement of the MTL formula. Since there is no way to 

know where exactly this boundary point lies given a discrete time trace, we choose to set 

the time robustness to 0 in order to make sure the correctness of the toolbox. Dynamic 

programming of time robustness is separately implemented as the DP-T-TALIRO 

toolbox. DP-T-TALIRO is also integrated in S-TALIRO yet it could run alone as a 

toolbox as well. 

3.4 Most related iteration and predicate 

DP-TALIRO can return the most related iteration and most related predicate 

automatically. Here, „most related iteration‟ means if the robustness value is changed at 

this specific iteration the output robustness value may be affected as well. Similarly, 

„most related predicate‟ means if the robustness value of the specific predicate is changed 
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the output robustness value will be affected as well. When there is a tie (means several 

different iterations or different predicates affect the output robustness equally), it will 

only show one of them.  

In this section, we illustrate how the feature „most related iteration‟ and „most related 

predicate‟ works. We consider a room with a heater and two sensors. The heater is turned 

on all the time so that the room temperature increases monotonically. The sensors are set 

at different threshold values. If the room temperature exceeds the threshold values the 

sensors will be activated and they will beep. 

Example 3.5.1: There is a heater in the room and it is always turned on. The room 

temperature signal is shown as follows: 

Time(t) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Temperature(X) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Table 3.8: Temperature regarding time as input signal of Example 3.5.1. 

Atomic proposition:  (sensor1) = {    | X > 4}  

Atomic proposition:  (sensor2) = {    | X > 3}  

The MTL formula is shown as follows: 

 = ( [0, 2]sensor1)\/(  [0,2]sensor2); 

Formula ( [0,2]sensor1)\/(  [0,2]sensor2) says that from time 0 to 2 either eventually 

sensor1 is activated and start to beep or sensor2 is activated and start to beep. Apparently 

according to the input trace, the maximum environmental temperature it could reach is 2 

which is below the threshold values of both sensor1 and sensor2 so neither would be 
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activated. Here, the „most related predicate‟ function can provide information on which 

sensor is closer to be activated and the „most related iteration‟ function can provide 

information on which sampling point of the input trace is the most related sensor that is 

closest to be activated. If we had to consider a bunch of sensors, it would be tedious to 

solve the same problem manually. Thus, the „most related predicate‟ and the „most 

related iteration‟ function can provide useful information automatically. 

For Example 3.5.1 the robustness value is -1, the „most related predicate‟ is „sensor2‟ 

and the „most related iteration‟ is time t = 2. The robustness value is -1 meaning that the 

specification (the MTL formula   ) is not met and the distance from meeting the 

requirement is 1. To be specific, the maximum environmental temperature is 2 at time 2 

and in order to meet the specification which is to activate either „sensor1‟ or „sensor2‟ the 

environmental temperature should at least reach 3. The distance between 2 and 3 here is 1. 

The input trace and atomic propositions are shown in Fig 3.5. The temperature grows as 

time increases. The last sampling point is clearly the closet to both threshold values of 

„sensor1‟ and „sensor2‟. Thus, it is the most related iteration and „sensor2‟ is closer to the 

input trace. Thus it is the most related predicate. 



38 

 

 

Fig 3.4: most related iteration and predicate result of Example 3.5.1  
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Chapter 4  

EXPERIMENTS AND APPLICATION 

4.1 Running time comparison between DP-TALIRO and FW-TALIRO 

In this section, we will analyze the running time of DP-TALIRO and compare it with 

FW-TALIRO over LTL and MTL formulas.  

Example 4.1.1: Given the input sequence: Signal = t + 0.5sin(2t) 

Atomic proposition   p
1
  = {     | x   2 } 

Atomic proposition   p
2
  = {     | x  2 } 

MTL specification to be   =   ( [0, 6.28]( p2/\ [0, 3.14] p1)); 

 Formula   states that atomic proposition p
2
 and eventually p

1
 from time 0 to 3.14 

hold within time interval [0, 6.28] should happen infinite often. 

We use DP-TALIRO and FW-TALIRO to compute the robustness using the setting 

above regarding the input sequence of different length 1, 5, 10, 20, 40 and 60 respectively 

and record the computation time in the table below. 
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Index Trace 

Length 

DP-TALIRO FW-TALIRO 

1 1 0.003 0.003 

2 5 0.003 0.004 

3 10 0.003 0.016 

4 20 0.003 0.267 

5 40 0.003 6.222 

6 60 0.004 27.56 

Table 4.1: Time comparison between DP-TALIRO and FW-TALIRO 

As we can see in Table 4.1, running time of FW-TALIRO grows exponentially and it 

takes over 25 seconds to compute robustness over a trace with merely 60 sampling points 

regarding a moderate sized MTL formula. Meanwhile, DP-TALIRO takes no more than 

0.005 sec to compute the same robustness.  

Example 4.1.2: We consider a more complex model of a powertrain system [30]. The 

system is modeled in Checkmate [31]. This is the same example as used in [15]. The 

Stateflow chart for the shift scheduler is shown in Fig 4.1. The system has 3 main 

components, 6 continuous state variables and 2 Stateflow charts. 
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Fig 4.1: The shift scheduler of Example 4.1.2 

 The challenge problem proposed in [30] is that whether the powertrain system will 

switch from second gear to first to second from speed 0 to 100km/hr with respect to 

constant road grade and throttle input. Here, the road grade and throttle position are the 

initial parameters for the system and constant values of them must be chosen in order to 

ensure the initial acceleration of the vehicle is greater than zero. 

The LTL specification that represents the requirement for gear transition “second to 

first to second” is shown below.     and     are atomic propositions indicating that the 

system is in state first_gear and second_gear. 

     ┓                      
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 Applying S-TALIRO to the above problem we get one trajectory falsify    when 

road grade   0.128 and throttle   44.2. S-TALIRO equipped with DP-TALIRO used 

1466 simulations and took 49.9 sec altogether. Each robustness computation time is about 

0.011 sec.  

We also consider a more useful property states that the gear transition from second to 

first to second should not happen within 2.5 sec. To put another way, whenever the 

system operates in first gear, then it should not operates in second gear within 2.5 sec. 

The MTL specification that represents this requirement is: 

          ┓                         ┓      

 Another useful property to be considered for powertrain systems is to verify that the 

oscillation between gears is within acceptable limits. Such as, whenever the system is in 

transition from gear 2 to gear 1, then the derivative of the torque   is under certain limits. 

The LTL specification that captures this requirement is: 

                

 Where                     . 

 We compare average computation time of robustness with respect to          

between DP-TALIRO and FW-TALIRO as shown in Table 4.2. We remark that we did 

following tests on an Intel Core Duo at 2.10GHz with 3.00 GB RAM and Windows Vista 

32-bit operating system. 
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Spec. DP-TALIRO(sec) FW-TALIRO(sec) 

   0.011 60< 

   0.036 0.067 

   0.018 0.009 

Table 4.2: Comparison of DP-TALIRO and FW-TALIRO of Example 4.1.2 

 We can see that robustness computation time of DP-TALIRO is acceptable for all 

three formulas. But in certain circumstances such as formula    in this example, 

FW-TALIRO outperforms DP-TALIRO. 

4.2  Running time analysis of DP-TALIRO 

 In this section, we test the ability of DP-TALIRO of handling the large scale of data 

required by S-TALIRO. We use the same trace and MTL formula as in Example 4.1.1 

and increase the trace length to test the performance of DP-TALIRO. 

Trace 

Length 

DP-TALIRO 

100 0.004 

600 0.006 

3,600 0.021 

21,600 0.113 

129,600 0.642 

Table 4.3: Running time of DP-TALIRO regarding different lengths of input trace 
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Fig 4.2: Running time of DP-TALIRO regarding large numbers of sampling points 

 It takes less than 0.7 sec for DP-TALIRO to compute the robustness over 129600 

sampling points and the running time grows almost linearly as shown in Fig 4.2. 

 Next we test the running time of DP-TALIRO regarding different MTL formulas. 

Here, we still use the same input trace with 129600 sampling points and test the running 

time regarding 25 different MTL and LTL formulas. The result is shown in Table 4.4. 
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Index Formula: Time: 

1 G [0,1] p1 0.208 

2 G (3.14,∞) p1 0.213 

3 G (p
1
  F ┓  ) 0.408 

4 G (F [0,6.28](      F [0,3.14] p1)) 0.719 

5      p
1
 0.178 

6      p
1
 0.174 

7 F p
1
 0.174 

8 G    0.165 

9 X p
1
 0.126 

10 G [0,1] p1   X    0.140 

11 p
1
 U    0.173 

12 p
1
 R    0.172 

13 p
1
 U    U p

1
 0.276 

14 p
1
 R    R p

1
 0.280 

15 p
1
 U    R p

1
U    0.390 

16 p
1
 U [0.1,2]    R [0.1,2] p1 U [0.1,2]    0.653 

17 F [0.1,3] p1 0.254 

18 (G p
1
   F [21.9911,∞)   ) 0.363 

19 G (p
1
 F (0,1) ┓p

1
) 0.465 

20 G (p
1
 F (0,5) (G (0,10) ┓p

1
)) 0.898 
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21 G (F (     F p
1
)) 0.428 

22 F p
1
   G (p

1
  F   ) 0.603 

23 G (p
1
 F ┓p

1
) 0.452 

24 G (┓p
1
   F (G ┓p

1
) p

1
) 0.513 

25 
(G (0,10)(┓p

1
   F [10,20] G ┓p

1
))   p

1
 U [0,20] 

   R [20,30] p1 U    

2.864 

Table 4.4: Running time of DP-TALIRO with respect to 129600 sampling points 

As we can see the running time regarding most formulas is less than 1 second with 

one exception which is formula 25. Formula 25 is a complex MTL formula and it takes 

some extra time to compute the robustness. However, even for formula 25, the running 

time might still be acceptable for certain applications. We have experimentally 

demonstrated that timing constrains and multiple nested temporal operators have an 

impact on the robustness computation time. The experimental analysis agrees with the 

theoretical time complexity analysis in Section 3.3. 
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Chapter 5  

DP-TALIRO APPLICATION 

In this section, we present an application of DP-TALIRO as part of S-TALIRO on a 

parameter estimation problem. We demonstrate DP-TALIRO on the example from [11]. 

The problem defined in [11] states that given a hybrid system and an MTL formula with 

one unknown parameter in a predefined range, find the optimal range of the parameter of 

time that makes the hybrid system violate all the MTL formulas with the values of the 

parameter in the resulting range. S-TALIRO relies on the temporal logic robustness 

computation function of DP-TALIRO and turns the parameter estimation problem into an 

optimization problem using falsification methods and stochastic search methods. 

We consider the motivation problem in Example 1.1.1. Its Stateflow chart is shown 

in Fig 5.1. 
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Fig 5.1: Finite State Machine for the automatic drivetrain in Example 4.3.1 

 We can use S-TALIRO which equipped with DP-TALIRO to solve problems such as 

“How quick we can reach and exceed 3250 RPM” or “What is the maximum time that the 

RPM   cannot exceed 4500 whatsoever”. We can write the specification for the 

problem of “What is the maximum time that the RPM   cannot exceed 4500 whatsoever” 

as   θ     0 θ ﹁p  where p is (      ). The robustness of this specification as a 

function of θ and the input which is the throttle schedule μ is shown in Fig 5.2. The 

parameter starts from 0 second to 30 seconds and the throttle schedule span from 0 per 

cent to 100 percent. 
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Fig 5.2: Robustness as a function of parameter θ and input μ in Example 4.3.1 

The boundary values of parameter   and input   which make the robustness 0-that 

RPM   equals to 4500-is shown by the blue contour under the surface and we can infer 

from the graph that      . Thus, we say that for any            ,        

regarding this model.   
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Chapter 6  

CONCLUSION AND FUTURE WORK 

We think MTL is a promising approach for formalizing system requirements of 

embedded control software. Thus, in this thesis, we have presented a toolbox 

DP-TALIRO which is based on dynamic programming algorithm for computing temporal 

logic robustness for MTL specifications. We have demonstrated that DP-TALIRO has 

much improved performance over its ancestor FW-TALIRO. The experiments show that 

DP-TALIRO has an approximated linear running time regarding LTL and MTL 

specifications. Also we have integrated new features to increase the flexibility and 

usability of DP-TALIRO. 

There are several new directions worth exploring further. Currently DP-TALIRO 

only supports future time temporal logic operators. In the future, we would like to support 

past time temporal logic [14, 24] by including past time temporal logic operators such as 

„since‟, „sometime in the past‟ and „always in the past‟. In order to further increase the 

running speed, more work could be done by letting DP-TALIRO automatically detect and 

omit irrelevant parts of the input trace and adjust the length of the input trace. 
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APPENDIX A  

DP-TALIRO USER GUIDE 
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DP-TALIRO is a tool that computes the robustness estimate of a propositional 

temporal logic specification with respect to a finite timed state sequence. DP-TALIRO 

stands for dynamic programming temporal logic robustness computation engine. 

DP-TALIRO is implemented in MATLAB C (MEX) with dynamic programming based 

algorithm for both Linear Temporal Logic (LTL) and Metric Temporal Logic (MTL) 

specifications. The specification is an LTL formula when there is no temporal operator 

with timing constraints. The time and memory requirements of such formulas are linear 

with respect to the size of the formula and the input signal. For MTL formulas, the time 

and memory requirements also depend on the real time constraints. 

Version 1.1 supports multi-dimensional signals and time parameter as an input with 

specified parameter value or range. The time parameter is used in time constraints to 

provide more flexibility. DP-TALIRO version 1.1 can also output the most related 

iteration and the most related predicate, as well. Here, the most related iteration means 

that if the robustness value is changed at this specific iteration the output robustness value 

could be affected as well. Similarly, the most related predicate means if the robustness 

value of the specific predicate is changed the output robustness value would be affected 

as well. When there is a tie i.e., several different iterations or different predicates affect 

the output robustness, it will only show one of them. DP-TALIRO is integrated into 

S-TALIRO but it can still be run as a stand along tool. 

In this section, we describe the use of function DP-TALIRO in MATLAB. To 

compile and set up the MATLAB path to DP-TALIRO, one could run 

setup-dp-taliro or setup_staliro. 
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The use interface is as follows: 

 [rob_dp,aux] = dp_taliro(phi,Pred,seqS,seqT,seqL,A,G) 

Or 

rob_dp = dp_taliro(phi,Pred,seqS,seqT,seqL,A,G) 

User can decide whether they want to output auxiliary information (most related 

iteration and most related predicate) or not. 
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Output arguments 

rob The robustness estimate. This is a double precision floating point number in 

case continuous system trajectories or a HyDis object for hybrid system 

trajectory robustness. To get the continuous state robustness type get(rob,2). 

aux 
A structure that contains information on the most related iteration and most 

related predicate. 

aux.i indicates the most related iteration for robustness 

  aux.pred indicates the most related predicate index of the robustness 

Input arguments 
 

phi 
An MTL or LTL formula. The following indicates the correspondence 

between the symbols of the logic operators and the input ASCII characters and 

how to define the timing constraints on the temporal operators. If there are no 

timing constraints following any temporal operators then it is an LTL formula.  

Syntax:  

phi := p | (phi) | !phi | phi \/ phi | phi /\ phi | phi -> phi | phi <-> phi |  

               | X_{a,b} phi | phi U_{a,b} phi | phi R_{a,b} phi |                 

| <>_{a,b} phi | []_{a,b} phi 

p a predicate (it can be any lowercase string) 

! „not‟ 

\/ 'or' 

/\ 'and' 

-> 'implies' 

<-> 'if and only if' 

{a,b} where { is [ or (, and } is ] or ) is for defining                    

open or closed timing bounds on the temporal operators. 

For example, {a,b} can be [0,1] or (1,2] 

X_{a,b} the 'next' operator with time bounds {a,b}. It                  

means that the next event should occur within time {a,b} from the 

current event. If timing constraints are not needed, then simply use 

X. 

U_{a,b} the 'until' operator with time bounds {a,b}. If                  

no time bounds are required, then use U.   

R_{a,b} the 'release' operator with time bounds {a,b}. If                  

no time bounds are required, then use R. 

<>_{a,b} the 'eventually' operator with time bounds {a,b}. If no timining 

constraints are required, then simply use <>. 

[]_{a,b} the 'always' operator with time bounds {a,b}. If no timining 

constraints are required, then simply use []. 
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Examples: 

* Always 'a' implies eventually 'b' within 1 time unit: 

                  phi = '[](a -> <>_[0,1] b)'; 

* a is true until b becomes true after 4 and before 7.5 time units:  

                  phi = 'a U_(4,7.5) b'; 

Pred 
Pred(i).str the predicate name as a string 

Pred(i).A, 

Pred(i).b 

a constraint of the form Ax<=b 

Pred(i).loc a vector with the control locations on which the predicate 

should hold in case of trajectories of hybrid systems. If the 

control location vector is empty, then the predicate should 

hold in any location,  

Pred(i).par the timing parameter name (aka. parameter), one predicate 

could only have either „str‟ field or „par‟ field. Meaning it 

could either be a traditional predicate or a timing parameter.
1
 

Pred(i).value the value of the parameter 

Pred(i).range search range of a parameter
2
 

Examples: 

  Define a predicate „p1‟ x   1.5 hold in control location 1 or 2: 

Pred(1).str = 'p1'; 

Pred(1).A = 1; 

Pred(1).b = 1.5; 

Pred(i).loc = [1,2] 

  Define a parameter „t‟ with value 2.5 in formula phi = 'F_(t,7.5) p1': 

Pred(2).par = 's'; 

Pred(2).value = 2.5; 

seqS 
The sequence of states from a Euclidean space X. Each row must be a 

different sampling instance and each column a different dimension in the state 

space. 

For example, a 2D signal sampled at 3 time instances is: 

        seqS = [0.1  0.2; 0.15  0.19; 0.14  0.18]; 

seqT 
The time-stamps of the trace. It must be a column vector. 

For example: 

              seqT = [0 0.1 0.2]'; 

It should be a monotonically increasing sequence. 

Enter [] or ignore if you are interested only about LTL properties. 

                                                             
1
 Note that a parameter is not a field of predicate but a different type of predicate. We 

include parameter in the predicate as a special type in order to keep the interface 

unchanged for better compatibility. 
2
 If a parameter has both „value‟ and „range‟ field, the „range‟ field would be omitted and 

the specific parameter would have a certain value instead of a defined range. 
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seqL 
This is the sequence of locations in case of hybrid system trajectory. It is 

assumed that each location has a unique numerical (integer) value. It can be 

omitted in case the predicates refer to global conditions on the continuous 

state space. 

CLG 
The control location graph. This is the adjacency matrix or graph of the 

control locations of the Hybrid Automaton. It can be omitted in case the 

predicates refer to global conditions on the continuous state space. 

GRD 
Guard set for each edge of the CLG. For each edge (i,j) of CLG, the set that 

enables the transition is a polytope of the form Ax <= b. This is a 2D array of 

stractures: 

           GRD(i,j).A 

           GRD(i,j).b 
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To setup DP-TaLiRo run setup_dp_taliro. 

For the hybrid distance metric with distances to the location guards the  

Matlab package MatlabBGL is required: 

http://www.mathworks.com/matlabcentral/fileexchange/10922 

SVN repository for the current version: 

https://subversion.assembla.com/svn/s_taliro/truck/dp_taliro 

 

License: 

This program is free software; you can redistribute it and/or modify   

it under the terms of the GNU General Public License as published by   

the Free Software Foundation; either version 2 of the License, or      

(at your option) any later version.                                     

 

This program is distributed in the hope that it will be useful,         

but WITHOUT ANY WARRANTY; without even the implied warranty of          

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the           

GNU General Public License for more details.                            

 

You should have received a copy of the GNU General Public License       



61 

 

along with this program; if not, write to the Free Software             

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 
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APPENDIX B  

DP-T-TALIRO USER GUIDE 
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DP-T-TALIRO is a tool that computes the time robustness estimate of a 

propositional temporal logic specification with respect to a finite timed state sequence. It 

is developed based on DP-TALIRO. DP-T-TALIRO is implemented in MATLAB C 

(MEX) with dynamic programming based algorithm for both Linear Temporal Logic 

(LTL) and Metric Temporal Logic (MTL) specifications. The specification is an LTL 

formula when there is no temporal operator with timing constraints. Version 1.0 supports 

multi-dimensional signals. DP-T-TALIRO is integrated into S-TALIRO but it can still be 

run as a stand along tool. 

In this section, we describe the use of function DP-T-TALIRO in MATLAB. To 

compile and set up the MATLAB path to DP-T-TALIRO, one could run 

setup-dp-t-taliro or setup_staliro. 

The use interface is as follows: 

rob = dp_t_taliro(phi,Pred,seqS,seqT,seqL,A,G) 
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Output arguments 

rob The robustness estimate. This is a structure consist of two floating point 

numbers indicating past time and future time robustness. To get the future 

time robustness type rob.ft. To get the past time robustness type rob.pt. . 

Input arguments 
 

phi 
An MTL or LTL formula. The following indicates the correspondence 

between the symbols of the logic operators and the input ASCII characters and 

how to define the timing constraints on the temporal operators. If there are no 

timing constraints following any temporal operators then it is an LTL formula. 

Syntax:  

phi := p | (phi) | !phi | phi \/ phi | phi /\ phi | phi -> phi | phi <-> phi |  

               | X_{a,b} phi | phi U_{a,b} phi | phi R_{a,b} phi |                 

| <>_{a,b} phi | []_{a,b} phi 

p a predicate (it can be any lowercase string) 

! „not‟ 

\/ 'or' 

/\ 'and' 

-> 'implies' 

<-> 'if and only if' 

{a,b} where { is [ or (, and } is ] or ) is for defining                    

open or closed timing bounds on the temporal operators. 

For example, {a,b} can be [0,1] or (1,2] 

X_{a,b} the 'next' operator with time bounds {a,b}. It                  

means that the next event should occur within time {a,b} from the 

current event. If timing constraints are not needed, then simply use 

X. 

U_{a,b} the 'until' operator with time bounds {a,b}. If                  

no time bounds are required, then use U.   

R_{a,b} the 'release' operator with time bounds {a,b}. If                  

no time bounds are required, then use R. 

<>_{a,b} the 'eventually' operator with time bounds {a,b}. If no timining 

constraints are required, then simply use <>. 

[]_{a,b} the 'always' operator with time bounds {a,b}. If no timining 

constraints are required, then simply use []. 

Examples: 

* Always 'a' implies eventually 'b' within 1 time unit: 

                  phi = '[](a -> <>_[0,1] b)'; 

* a is true until b becomes true after 4 and before 7.5 time units:  

                  phi = 'a U_(4,7.5) b'; 

Pred 
Pred(i).str the predicate name as a string 
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Pred(i).A, 

Pred(i).b 

a constraint of the form Ax<=b 

Pred(i).loc a vector with the control locations on which the predicate 

should hold in case of trajectories of hybrid systems. If the 

control location vector is empty, then the predicate should 

hold in any location,  

Pred(i).par the timing parameter name (aka. parameter), one predicate 

could only have either „str‟ field or „par‟ field. Meaning it 

could either be a traditional predicate or a timing parameter.
3
 

Pred(i).value the value of the parameter 

Pred(i).range search range of a parameter
4
 

Examples: 

  Define a predicate „p1‟ x   1.5 hold in control location 1 or 2: 

Pred(1).str = 'p1'; 

Pred(1).A = 1; 

Pred(1).b = 1.5; 

Pred(i).loc = [1,2] 

  Define a parameter „t‟ with value 2.5 in formula phi = 'F_(t,7.5) p1': 

Pred(2).par = 's'; 

Pred(2).value = 2.5; 

seqS 
The sequence of states from a Euclidean space X. Each row must be a 

different sampling instance and each column a different dimension in the state 

space. 

For example, a 2D signal sampled at 3 time instances is: 

        seqS = [0.1  0.2; 0.15  0.19; 0.14  0.18]; 

seqT 
The time-stamps of the trace. It must be a column vector. 

For example: 

              seqT = [0 0.1 0.2]'; 

It should be a monotonically increasing sequence. 

Enter [] or ignore if you are interested only about LTL properties. 

seqL 
This is the sequence of locations in case of hybrid system trajectory. It is 

assumed that each location has a unique numerical (integer) value. It can be 

omitted in case the predicates refer to global conditions on the continuous 

state space. 

CLG 
The control location graph. This is the adjacency matrix or graph of the 

control locations of the Hybrid Automaton. It can be omitted in case the 

predicates refer to global conditions on the continuous state space. 

                                                             
3
 Note that a parameter is not a field of predicate but a different type of predicate. We 

include parameter in the predicate as a special type in order to keep the interface 

unchanged for better compatibility. 
4
 If a parameter has both „value‟ and „range‟ field, the „range‟ field would be omitted and 

the specific parameter would have a certain value instead of a defined range. 
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GRD 
Guard set for each edge of the CLG. For each edge (i,j) of CLG, the set that 

enables the transition is a polytope of the form Ax <= b. This is a 2D array of 

stractures: 

           GRD(i,j).A 

           GRD(i,j).b 
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To setup DP-T-TaLiRo run setup_dp_t_taliro. 

For the hybrid distance metric with distances to the location guards the  

Matlab package MatlabBGL is required: 

http://www.mathworks.com/matlabcentral/fileexchange/10922 

SVN repository for the current version: 

https://subversion.assembla.com/svn/s_taliro/truck/dp_t_taliro 

 

License: 

This program is free software; you can redistribute it and/or modify   

it under the terms of the GNU General Public License as published by   

the Free Software Foundation; either version 2 of the License, or      

(at your option) any later version.                                     

 

This program is distributed in the hope that it will be useful,         

but WITHOUT ANY WARRANTY; without even the implied warranty of          

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the           

GNU General Public License for more details.                            

 

You should have received a copy of the GNU General Public License       
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along with this program; if not, write to the Free Software             

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 

 

 


