
Measuring Cognitive Load:  

A Comparison of Self-report and Physiological Methods  

by 

Stacey Joseph 
 
 
 
 
 

A Dissertation Presented in Partial Fulfillment  
of the Requirements for the Degree  

Doctor of Philosophy  
 
 
 
 
 
 
 
 
 
 

Approved January 2013 by the 
Graduate Supervisory Committee:  

 
Robert Atkinson, Chair 

Mina Johnson 
Brian Nelson 
James Klein 

 
 
 
 
 
 
 
 
 
 
 

ARIZONA STATE UNIVERSITY  

May 2013  



i 

ABSTRACT  
   

This study explored three methods to measure cognitive load in a learning 

environment using four logic puzzles that systematically varied in level of intrinsic 

cognitive load. Participants’ perceived intrinsic load was simultaneously measured with a 

self-report measure—a traditional subjective measure—and two objective, physiological 

measures based on eye-tracking and EEG technology. In addition to gathering self-report, 

eye-tracking data, and EEG data, this study also captured data on individual difference 

variables and puzzle performance. Specifically, this study addressed the following 

research questions: 1. Are self-report ratings of cognitive load sensitive to tasks that 

increase in level of intrinsic load? 2. Are physiological measures sensitive to tasks that 

increase in level of intrinsic load? 3. To what extent do objective physiological measures 

and individual difference variables predict self-report ratings of intrinsic cognitive load? 

4. Do the number of errors and the amount of time spent on each puzzle increase as the 

puzzle difficulty increases? Participants were 56 undergraduate students. Results from 

analyses with inferential statistics and data-mining techniques indicated features from the 

physiological data were sensitive to the puzzle tasks that varied in level of intrinsic load. 

The self-report measures performed similarly when the difference in intrinsic load of the 

puzzles was the most varied. Implications for these results and future directions for this 

line of research are discussed. 
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Chapter 1 

INTRODUCTION 

It is common practice in cognitive load research to measure cognitive load with 

self-report instruments (Paas, Tuovinen, Tabbers, & van Gerven, 2003). Typically, these 

measures produce survey data that are indicative of participants’ perception of cognitive 

load. There are a number of advantages of relying on self-report instruments including 

that they are relatively unobtrusive, easy to administer, and sensitive to changes in 

cognitive load (Paas, 1992). Nevertheless, there is current debate in the educational 

research literature concerning the construct of cognitive load as well as the reliability and 

validity of cognitive load measurement techniques (de Jong, 2010; Schnotz & Kirschner, 

2007; Sweller, 2010; Whelan, 2007). This is due, in part, to the subjective nature of self-

reports. Researchers are also exploring more objective measures of cognitive load using 

physiological techniques such as electroencephalography (EEG) and pupillometry 

(Anderson, Potter, Matzen, Shepherd, Preston, & Silva, 2011; Klingner, 2010). However, 

there remains a shortage of research comparing measurement methods to assess cognitive 

load including both traditional self-report instruments and recent advances in 

physiological measurement technologies. There are even fewer studies that examine 

multiple measurement methods in a controlled learning environment that allows for the 

systematic manipulation of intrinsic cognitive load.  

This study was designed to simultaneously explore physiological and self-report 

measures of cognitive load in a controlled learning environment where one source of 

cognitive load was manipulated. The goal of the exploration was to determine the extent 

to which these measures were sensitive to fluctuations in intrinsic cognitive load and to 
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establish the utility of physiological sensor data to assess cognitive load. In addition, the 

effects of individual differences on self-report rating of cognitive load were explored and 

puzzle performance data (number of puzzle errors and the time spent solving puzzles) 

were analyzed as a means to determine how these data trended as puzzle difficulty 

increased. Specifically, the following research questions were addressed:  

1. Are self-report ratings of cognitive load sensitive to tasks that increase in level 

of intrinsic load?  

2. Are physiological measures sensitive to tasks that increase in level of intrinsic 

load?  

3. To what extent do objective physiological measures and individual difference 

variables predict self-report ratings of intrinsic cognitive load? 

4. Do the number of errors and the amount of time spent on each puzzle increase 

as the puzzle difficulty increases?   

Discovering the relationships between physiological sensor data, self-report ratings of 

cognitive load, and task difficulty has potential to provide substantive validity evidence 

for the construct of cognitive load and to support the utility of physiological measures 

that produce digital signals to detect and monitor cognitive load. Using digital signals and 

tested algorithms to detect cognitive load in computer learning environments can function 

to trigger adaptations in learning content that will more effectively meet the needs of the 

learner. For example, when a learning system detects a state of high cognitive load it 

could trigger the display of a hint or provide a redirect to foundational learning content; 

alternatively, when a low, suboptimal, state of cognitive load is detected it could activate 

a feedback message of encouragement or elevate the learner to a more challenging path.     
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Theoretical Framework 

Over the past two decades, cognitive load theory has provided a framework for 

research on cognitive processes, which has led to the development of instructional design 

guidelines (Paas, Renkl, & Sweller, 2003) and effective learning environments (Ayres & 

van Gog, 2009). The theory is based partially on a multicomponent working-memory 

model (Baddeley, 2007) that presupposes that humans have a limited working memory 

(WM) capacity as well as two partially independent subsystems for temporarily storing 

and processing different types of sensory input: the visuospatial sketchpad  (VSSP) and 

the phonological loop (PL) (Paas, Tuovinen, Tabbers, & van Gerven, 2003). The VSSP is 

a storage system that integrates visual and spatial information, while the PL processes 

auditory information as well as visual representations of verbal information (Baddeley, 

2007; Gyselinck, Jamet, & DuBois, 2008). Cognitive load theory asserts that these WM 

subsystems are controlled by long-term memory schema that “can act as a central 

executive” (van Merriënboer & Sweller, 2005, p. 149) and coordinate cognitive tasks by 

directing attention to relevant information (Sweller, 2005). In theory, for learning to 

occur, information in WM must be connected to prior-knowledge schema and converted 

to long-term memory storage (Sweller, 2005). Well-designed instruction and effective 

learning activities can facilitate this process and even expedite the construction of a 

learner’s incomplete long-term memory schema. However, given that WM has limited 

capacity and that incoming information is processed in separate temporary storage 

systems, a learner can experience cognitive load that may interfere with learning. 

Cognitive load is experienced to the extent that the WM-processing demands for a task 

exceed the learner’s cognitive capacity (Mayer & Moreno, 2003). It is also moderated by 



4 

an interaction between individual differences (e.g., age, expertise level, and spatial 

ability) and characteristics of the learning task such as format, complexity, use of 

multimedia, time pressure, and instructional pace (Paas, Tuovinen et al., 2003; Wouters, 

Paas, & van Merriënboer, 2008). For example, learners who have high prior knowledge 

may be able to effectively process information under conditions of increased levels of 

cognitive load because their cognitive schemata in long-term memory compensate or 

substitute for necessary WM capacity. 

Sources of Cognitive Load 

Cognitive load theory accounts for three different sources of cognitive load: 

intrinsic, extraneous and germane. Intrinsic load is caused by the inherent difficulty of the 

learning task and is typically determined by the number of interacting elements (element 

interactivity) necessary to process the task (Sweller, 2005). Element interactivity is the 

extent to which relevant chunks of instructional information interact in WM (Paas, Renkl 

et al., 2003). As the number of interacting elements increases, the intrinsic cognitive load 

of the task increases. For example, highly complex information that needs to be 

processed simultaneously for understanding would cause high intrinsic load. Extraneous 

load is caused by the suboptimal design of instruction and is considered detrimental to the 

learning process. Extraneous load can occur when multiple sources of redundant 

information are presented or irrelevant details are included. Sweller (2010) indicates that 

“element interactivity is the major source of WM load underlying extraneous [load] as 

well” (p. 125). Consequently, element interactivity can be attributed as the cause of both 

intrinsic and extraneous cognitive load. If the element interactivity is high as a result of 

the instructional design, it is considered to add to extraneous load; if the element 
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interactivity is high because of the nature or difficulty of the cognitive task, then the load 

is considered intrinsic. In contrast, germane load is the WM load that is essential for 

learning: the effortful and necessary processing that promotes development of cognitive 

schema (Sweller et al., 1998) while overcoming the intrinsic load inherent to the 

instructional information (Sweller, 2010). Learners must expend effort on the learning 

process to make connections with prior knowledge and alter and expand their schema in 

long-term memory. Because these sources of cognitive load are assumed to be additive 

(Sweller, 2005), the challenge for researchers and instructional designers is determining 

how best to create learning environments to manage element interactivity, whether it is 

caused by intrinsic or extraneous cognitive load, so that a learner’s WM and cognitive 

capacity does not become overloaded.  

A first step in creating effective adaptive learning environments is determining 

how to measure cognitive load. For instance, identifying instructional elements in a 

computer-based learning environment that cause high levels of cognitive load could 

prompt the interface to display hints or worked examples to reduce cognitive load (Ayres, 

2006) and free up WM resources. However, measuring cognitive load is a complex task; 

cognitive load researchers have not yet agreed upon ideal measures of cognitive load, nor 

have they agreed upon which techniques measure which sources of cognitive load (Paas, 

Tuovinen et al., 2003). In the educational research literature, various subjective and 

objective methods have been used to measure total cognitive load (see Paas, Tuovinen et 

al., 2003, for a review). Recently, researchers have attempted to measure different 

sources of cognitive load with subjective rating scales (Ayres, 2006; Cierniak, Scheiter, 

& Gerjets, 2009; DeLeeuw & Mayer, 2008; Gerjets, Scheiter, Opfermann, Hesse, & 
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Eysink, 2009). However, this recent line of research has spurred debate. Some 

researchers “are in doubt whether learners will really be able to clearly distinguish 

different kinds of cognitive load by introspection” (Schnotz & Kürschner, 2007, p. 500) 

and argue that there is a need to explore “alternative approaches to the measurement of 

cognitive load” in order to “accurately and comprehensively measure cognitive load in 

the instructional design process” (Whelan, 2007, p. 4). 

Measuring Cognitive Load 

As research on applications of cognitive load theory in instructional design 

practices has evolved, so have the techniques used to measure cognitive load. In the late 

1980s when researchers were beginning to study cognitive load, measurement efforts 

primarily entailed the use of performance-based measures such as learning time, error 

rate, and achievement scores (Paas, van Merrienboer, & Adam, 1994). This focus was 

problematic because performance measures do not take into account variability in 

performance due to individual differences (e.g., level of prior knowledge or aptitude) that 

may influence one’s experience of cognitive load. For example, as discussed above, a 

student with high prior knowledge may perform well on a test despite high extraneous 

load because prior knowledge compensates for the load and frees up WM resources.  

Other well-utilized measurement techniques include both subjective and objective 

methods. Subjective methods primarily include self-report ratings of cognitive load, 

whereas objective methods include performance data from dual-task methods (e.g., 

employing a primary task to teach content and occupy attention while assessing 

performance on a secondary task) and physiological data such as eye-movement, pupil 

dilation, and brain-wave activity. Although a number of studies have examined self-
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report measures in conjunction with dual-task methods (e.g., Brunken, Steinbacher, Plass, 

& Leutner, 2002; DeLeeuw & Mayer, 2008), few have explored self-report and 

physiological measures simultaneously. These two types of measurement techniques are 

described in the following sections. 

Subjective techniques. Self-report methods primarily include gathering data 

directly from learners who rate their experience of cognitive load on a Likert-type scale. 

Such methods are widely used to measure cognitive load as they are relatively easy to 

administer, especially in authentic learning environments, and have been shown to 

provide an indication of cognitive workload (Ayres, 2006). Researchers typically employ 

a one-item assessment question where participants rate the amount of mental effort 

required to solve a problem on a 7- or 9-point scale. Paas, Tuovinen et al. (2003) 

reviewed 27 cognitive load studies dated 1992 through 2003 to determine the 

measurement techniques that were being used in the field. Of the studies they reviewed, 

24 utilized a self-report measure; of these studies, 75% included a mental effort question 

on a 7-point or 9-point response scale. As an example, one of the initial studies (Paas, 

1992) was designed to test a self-report measure of cognitive load and three different 

problem-solving conditions; participants self-reported the amount of mental effort they 

used to solve statistics problem on a 9-point scale from “very, very low mental effort (1) 

to very, very high mental effort (9)” (p. 430). Participants were asked to provide a rating 

of mental effort after each problem they solved during the instructional phase, as well as 

on the posttest.   

More recent studies have used a variation of this item and rating scale. For 

example, Ayres (2006) utilized a question addressing the difficulty level of calculations 
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on a 7-point scale ranging from 1 (extremely easy) to 7 (extremely difficult). Participants 

were asked to provide a rating for how easy or difficult they found each calculation. 

Ayres indicated that “by asking students to rate task difficulty [for each calculation], 

students were providing an overall measure of cognitive load each time” (p. 393). 

DeLeeuw and Mayer (2008) conducted two studies in which they assessed cognitive load 

using a question about effort during the learning module and a question about difficulty at 

the end of the learning module. It is of note that the researchers reported a significant 

correlation between participants’ difficulty rating and effort rating (r = .33, p < .01).   

Measuring cognitive load with a one-question survey item is a common practice 

in cognitive load research; however, the difference between assessing cognitive load with 

a question about difficulty versus a question about mental effort is unclear. There is 

evidence from DeLeeuw and Mayer (2008) that data gathered using both items are 

significantly correlated and that perhaps the items can be used interchangeably. As noted 

earlier, self-report methods require participants to be introspective about their cognitive 

processes or have metacognitive insight into the effort required to complete learning 

tasks. Rating accuracy may be affected by participants’ ability to be introspective. More 

reliable and valid results may be attained by asking participants to judge the difficulty 

level of a problem as opposed to introspecting or making judgments about their cognitive 

processes. It also may be useful to use additional items as indictors of cognitive load, 

such as levels of stress and frustration. Recently, researchers have explored using a 

multiquestion assessment tool (Cierniak et al., 2009; Gerjets et al., 2009). 

Objective techniques. Even though subjective measures of cognitive load are 

widely used and are generally unobtrusive, physiological methods have also been used to 
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measure cognitive load. Eye-tracking techniques and EEG data offer less-obtrusive 

empirical techniques for exploring cognitive load (Amadieu, van Gog, Paas, Tricot, & 

Mariné, 2009). Data from the eye-tracker have been used in various disciplines to study 

attention and cognitive processing in the form of eye-gaze patterns (Duchowski, 2002) 

and pupil dilation (see Beatty, 1982, for a review). For example, cognitive overload and 

attention have been studied via pupil dilation in schizophrenic patients (Minassian, 

Granholm, Verney, & Perry, 2004). Results showed that there is increased pupil dilation 

in both patients and nonpatients for a complex task compared to an easy task. Pupil 

changes during mental activity have been related to task difficulty, as “the pupillary 

response appears to reflect the information processing load placed on the nervous system 

by cognitive tasks (Andreassi, 2000, p. 357). Other researchers have obtained similar 

experimental results among college students to support a link between cognitive effort 

and increased pupil dilation. Verney, Granholm, and Dionisio (2001) found participants’ 

pupillary dilation responses to be significantly more pronounced during task performance 

(cognitive load) compared to passive performance. For a visual search task where 

difficulty was manipulated by varying the number and type of distractors, Porter, 

Troscianko, and Gilchrist (2007) concluded that pupil dilation increased as the difficulty 

of the search task increased. Another study conducted by researchers in computing 

science used eye tracking to study task-evoked pupillary responses and cognitive load 

(Klingner, Kumar, & Panrahan, 2008). Exploring eye-tracking data, pupil-dilation data, 

and self-report data in one study may lend insight into how differentially sensitive these 

measures are to cognitive load, and it may provide information about the predictive 

validity of eye-gaze and pupil-dilation data. 
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Additionally, EEG is a well-used noninvasive neuroimaging technique designed 

to capture continuous brain-wave activity, such as alpha, beta, and theta waves. It has 

been established in the literature that EEG data vary predictably in response to changes in 

cognitive stimuli (Anderson, Potter, Matzen, Shepherd, Preston, & Silva, 2011; Gevins & 

Smith, 2003) and WM load (Klimesch, Schack, & Sauseng, 2005; Klimesch, Schimke, & 

Pfurtscheller, 1993), making EEG an appropriate choice for measuring cognitive load 

(Antonenko, Paas, Grabner, & van Gog, 2010). For example, research evidence suggests 

brain-wave activity in the alpha and theta bands is reactive to increases in task difficulty 

(Gevins & Smith, 2003; Gevins et al., 1998; Smith, Gevins, Brown, Karnik, & Du, 2001). 

Specifically, the lower-frequency alpha signals, from 8 to 10 Hz, tend to desynchronize 

or become lower in power as task difficulty increases, while theta signals, from 4 to 7 Hz, 

tend to synchronize or increase in power. EEG supplies a continuous measure of 

cognitive load that provides an opportunity for researchers to gather and analyze 

fluctuations in a stream of data over time as opposed to the few data points derived from 

self-report techniques. 

The device used to acquire EEG data for this study was an Emotiv EPOC, a 

neuro-signal wireless headset. It is designed as a low-cost video game controller that 

contains proprietary software algorithms created to measure affective constructs such as 

(a) engagement, (b) instantaneous excitement, (c) long-term excitement, (d) frustration or 

boredom, and (e) meditation. The algorithms are not publicly available, which leaves 

unclear the specific relationships between the constructs and (a) increases in intrinsic load 

for the tasks and (b) self-report difficulty ratings of those tasks. Consequently, both the 

affective constructs and the raw EEG data were considered independently as components 
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of the physiological data set that was analyzed with data-mining techniques to uncover 

prediction models that predict task difficulty and self-report ratings of difficulty. 

Individual Differences 

Cognitive load theory is based upon a multicomponent WM model, and individual 

differences have the potential to moderate the capacity of WM. In order to create a 

controlled experiment and systematically manipulate one source of cognitive load, it is 

necessary to explain or account for individual difference variables such as prior 

knowledge, WM capacity, spatial visualization, and self-efficacy. Prior knowledge, as in 

the expertise reversal effect, has been found to affect task performance and perception of 

cognitive load (Kalyuga, 2007; Kalyuga, Chandler, & Sweller, 1998; Kalyuga, Chandler, 

& Sweller, 2000; Lee, Plass, & Homer, 2006; Kalyuga, Ayres, Chandler, & Sweller, 

2003; for a review, see van Merriënboer & Sweller, 2005). The expertise reversal effect 

attempts to explain how the effectiveness of an instruction format can depend upon the 

extent of a learner’s prior knowledge. For example, learners who have a high level of 

domain-specific prior knowledge may perform worse on a task compared to learners with 

lower-level domain knowledge (Kalyuga, 2005). This effect was well demonstrated by 

Kalyuga et al. (1998) in a split-attention experiment: Novice students who studied 

integrated diagrams (text within diagram) learned more compared to novice learners who 

studied the same information separately. The advantage of the integrated instructional 

format was neutralized as novice students became more expert, and then it was eventually 

reversed to become a detriment. In fact, students with higher domain knowledge learned 

more with a diagram only (and no text) because the text became redundant information 

(van Merriënboer & Sweller, 2005) that interfered with learning.  
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Similarly, spatial visualization (Höffler, 2006; Mayer & Moreno, 2003; see 

Höffler, 2010, for a meta-analysis) and, to a lesser extent, WM capacity (van Gerven, 

Paas, van Merriënboer, & Schmidt, 2002) have been investigated to explain learner 

differences on task performance. As noted by Ekstrom, French, and Harman (1976), 

spatial visualization is “the ability to manipulate or transform the image of spatial 

patterns into other arrangements” (p. 173) via serial operations in short term visual 

memory (Carroll, 1974). Common measures of spatial-visualization ability include tasks 

such as paper-folding and mental rotation. Höffler (2010) conducted a meta-analysis of 

27 experiments published between 1994 and 2009 to determine the effects on learning 

outcomes when high-spatial-ability learners and low-spatial-ability learners studied 

various types of visualizations. Höffler found an overall mean effect size of r = 0.34, 

which indicated a medium effect size for high-spatial-ability learners. Specifically, 

learners with higher spatial ability who studied visualizations had better learning 

outcomes than learners with lower spatial ability.  

Despite the fact that cognitive load theory is based on a WM model (Baddeley, 

2007) and the experience of cognitive load is contingent upon available WM capacity, 

with few exceptions (e.g., van Gerven et al., 2002) WM capacity is not often included as 

a covariate in cognitive load research (de Jong, 2010). WM capacity has been shown to 

be related to performance in reasoning and reading comprehension (Engle, Cantor, & 

Carullo, 1992); learning in mobile (Doolittle & Mariano, 2008), hypertext (DeStefano & 

LeFevre, 2007), and e-learning (Tsianos, Germanakos, Lekkas, Mourlas, & Samaras, 

2010) environments; and self-regulation of emotion (Schmeichel, Volokhov, & Demaree, 

2008). Widely used measures of WM capacity include span tasks, such as operation-span 
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and reading-span tasks (Conway, Kane, Bunting, Hambrick, Wilhelm, & Engle, 2005). 

Span tasks utilize a dual-task methodology to measure the ability to control attention and 

thought by forcing WM storage while distractors are processed simultaneously (Conway 

et al., 2005). 

Self-efficacy is also a relatively unstudied construct within the cognitive load 

research literature, and it is included as an exploratory measure. Perceived self-efficacy is 

a judgment about one’s capability (Bandura, 1977) to accomplish a task. As Pajares 

(2002) noted, “people’s accomplishments are generally better predicted by their self-

efficacy beliefs than by their previous attainments, knowledge, or skills. Of course, no 

amount of confidence or self-appreciation can produce success when requisite skills and 

knowledge are absent” (p. 16). It follows that self-efficacy may play a role in predicting 

performance. For example, Pajares and Miller (1994) conducted an experiment with 

undergraduate students (N = 350) to test the role of self-efficacy in solving mathematics 

problems. Their results showed that math self-efficacy was a better predictor of problem 

solving than prior knowledge in math. Likewise, Narciss (2004) conducted two 

experiments, and results revealed that motivation and achievement depended upon both 

self-efficacy and type of feedback. 

Overview of Study 

The overarching purpose of this study was to attempt to establish the utility of 

measuring cognitive load with physiological measures by assessing the responsiveness of 

self-report and physiological measures in an experimental environment where intrinsic 

cognitive load (element interactivity) was systematically manipulated. Secondarily, the 

effect of individual difference variables on self-report ratings of cognitive load was 
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explored and puzzle performance data were analyzed. As mentioned previously, there 

were four research questions:  

1. Are self-report ratings of cognitive load sensitive to tasks that increase in level 

of intrinsic load?  

2. Are physiological measures sensitive to tasks that increase in level of intrinsic 

load?  

3. To what extent do objective physiological measures and individual difference 

variables predict self-report ratings of intrinsic cognitive load?  

4. Do the number of errors and the amount of time spent on each puzzle increase 

as the puzzle difficulty increases?  

In order to answer these questions, an experimental environment was created to 

isolate and systematically manipulate levels of intrinsic load. The effect of the 

manipulation was assessed simultaneously using different measurement techniques: a 

self-report measure and physiological measures that utilized eye-tracking and EEG 

technology . In order to isolate intrinsic load, a computer-based logic puzzle environment 

was used, with puzzles that required very little instruction. This strategy was similar to 

Ayres (2006), in that there was a deliberate attempt to exclude instructional material in 

order to minimize effects of extraneous load and to use puzzle tasks that varied only in 

surface features. Level of intrinsic load was manipulated by varying the number of 

interacting elements presented across four puzzles. In this case, intrinsic load or element 

interactivity was defined as the interactions among the puzzle pieces as they were 

manipulated toward the goal state (see “Puzzle difficulty” below, in the method section, 

for a detailed description). Three types of process measures were used to explore the 
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impact of increasing the level of intrinsic load across puzzle tasks: self-report, 

physiological, and puzzle performance. . Self-report measures were subjective cognitive-

load ratings measured after each puzzle. Physiological measures included eye-tracking 

(fixation durations and pupil data) and EEG (brain activity and Emotiv EPOC construct 

data). Puzzle performance measures included (a) time to complete each puzzle task and 

(b) number of moves required to complete each puzzle task over and above the required 

minimum (errors). In an attempt to control for individual differences, WM capacity, 

spatial visualization ability, puzzle prior knowledge, and puzzle self-efficacy were 

measured. A description of the variables is summarized in Table 1. 

Pilot Study 

Prior to examining these research questions, we conducted a pilot study to 

validate that perceived cognitive-load ratings were sensitive to manipulations of element 

interactivity (i.e., intrinsic load) in the logic puzzle environment (Schink Joseph & 

Atkinson, 2010). The pilot addressed the question of whether self-report ratings of 

cognitive load are sensitive to tasks that vary in levels of intrinsic load. The study 

revealed that participant ratings of perceived cognitive load increased as the element 

interactivity of the puzzles increased; the effect was significant when the puzzle with the 

least element interactivity (the easiest puzzle) was compared to each of the other puzzles 

that increased in element interactivity. This finding indicated that participant ratings of 

cognitive load were sensitive to manipulations of element interactivity (i.e., intrinsic 

load) within the puzzle tasks.  

Interestingly, pairwise comparisons of difficulty ratings on the three more-

difficult puzzles (requiring more moves to complete) were not significant. It appears that 
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in this puzzle environment, subjective ratings are significantly sensitive to manipulations 

of element interactivity under specific conditions. When differences in element 

interactivity are most variable—for example, the difference between an easy puzzle 

compared to more difficult ones—these differences can be detected by self-report ratings. 

However, perhaps when element interactivity reaches a certain threshold, as in the three 

more difficult puzzles, self-report ratings of cognitive load are less sensitive. 

Data Mining 

In this experiment, analyzing physiological sensor data with conventional 

inferential statistics is problematic, as it includes multiple heterogeneous variables and 

very large data sets. Consequently, an alternate data-analysis method is necessary to 

efficiently discover the most important variables for predicting the difficulty level of the 

puzzle (Research Question 2) and for predicting self-report difficulty ratings for each 

puzzle task (Research Question 3), while avoiding issues of multicollinearity and 

theoretical assumptions required for inferential statistics. Data mining is an appropriate 

technique to accomplish this result; it is a procedure that utilizes machine-learning 

algorithms to identify useful patterns of information in large, complex data sets and to 

make predictions about specific attributes (Tan, Steinbach, & Kumar, 2006). Such 

patterns, or classifications of data, can be extracted via data-mining techniques from even 

“large, noisy, messy data sets” (Nisbet, Elder, & Miner, 2009, p. 17).  

There are a number of examples in educational research where data-mining 

classifiers (e.g., linear regression, decision trees, Bayesian classifiers, and neural 

networks) have been used to predict outcome variables such as academic success, course 

outcomes, metacognitive skills, and other factors that impact learning (e.g., motivation, 
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engagement; see Hamalainen & Vinni, 2011, for examples). The classifier Random 

Forest (RF; Breiman, 2001) is an ensemble of decision trees where “each tree is 

constructed using a different bootstrap sample from the original data” (Baydogan, 

Runger, & Tuv, 2011, p. 6). Breiman (2001) noted strengths of this particular classifier: 

(a) It gives useful internal estimates of error, strength, correlation, and variable 

importance; (b) overfitting is not an issue; and (c) it accommodates data sets with many 

variables where each of the variables contains little information. RF can also 

simultaneously handle both categorical and continuous types of data. These strengths are 

important to utilize when aggregating and analyzing the thousands of data points 

typically extracted during eye tracking, pupillometry, and EEG studies. 

  



18 

Chapter 2 

METHOD 

Participants and Design 

Participants were 56 undergraduate college students (37 women and 19 men) 

from a large southwestern university who ranged in age from 18 to 36 (M = 21.5, Mdn = 

20). Other self-identified demographic data from the sample indicated that their primary 

spoken language was English (98%, 2% Spanish). The ethnic composition of the sample 

was 57% White, 18% Hispanic, 7% African American, 7% Asian/Pacific Island descent, 

and 10% indicating they belonged to another, or more than one, racial or ethnic group. 

Students were recruited from pools of undergraduates who attended either an 

introductory psychology class or an introductory educational technology class. They were 

paid $20 to participate.  

To examine the research questions outlined above, a one-way within-subjects 

design was used. The factor was puzzle difficulty, with four levels of difficulty, or level 

of intrinsic cognitive load. Puzzle order was counterbalanced according to a Latin square 

design to ensure that each puzzle appeared in each position one time and was never 

preceded or followed by the same puzzle. This design was chosen to minimize the 

influence of puzzle order on puzzle performance. Participants were randomly assigned to 

one of the four counterbalanced conditions. 

Problem-Solving Environment 

The computer environment consisted of puzzle tasks and electronic measures that 

were automated by a program built in QuicKeys. The puzzle tasks, developed by Hearn 

(2009), consisted of seven modified Subway Shuffle puzzles designed for Mac OS X—
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three practice puzzles and four experimental puzzles. Subway Shuffle, a one-player 

game, is a sequential-movement puzzle that can be considered a variant of a sliding-block 

puzzle (Hearn, 2006). A sliding-block puzzle essentially consists of puzzle pieces that are 

any shape, are contained within a defined space, and move independently from each 

another in a sliding fashion from one position to another; the purpose of the puzzle is to 

arrange the pieces into a predefined pattern or to move a certain piece to a specified 

position (Hordern, 1986).  

Puzzle description. Each Subway Shuffle puzzle consisted of movable colored 

tokens (subway cars), stations, and different-colored stationary subway tracks (see 

Appendices A and B for an image of each puzzle). The goal of the puzzles was to slide 

the red subway car (target car) to unoccupied stations along the red track to reach the 

final destination marked with a red ring (see Figure 1 for labeled example). Each puzzle 

contained only one target car, four or five cars of other colors, six or seven stations, and 

six or nine segments of colored track. There were three or four colors (for cars and 

tracks) used in each puzzle: blue, red, yellow, and green (see Table 2, for summary). In 

order to advance the target car, it was necessary to move other subway cars that occupied 

stations blocking the target car’s path. Only one subway car could move at a time, and a 

car could move only on the track that was the same color as the car (i.e., a blue subway 

car could move only along a blue color track) to an unoccupied station.  

Puzzle difficulty. Puzzle difficulty increased as each of the following elements 

were altered: number of moves required to complete the puzzle and quantity of subway 

cars, tracks, colors, and subway stations. Varying these elements caused an increase in 

the number of moves required of nontarget subway cars relative to moves required of the 
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target car and thereby increased the difficulty of the puzzle. For example, for each of the 

puzzles, the target car was required to move 3–5 times to reach its destination in the 

fewest number of moves, while the nontarget subway cars were required to move 8–18 

times (see Table 3). The experimental puzzles (listed in order from easier to harder) 

required the following number of nontarget car moves: Puzzle 1 – 8, Puzzle 2 – 10, 

Puzzle 3 – 14, and Puzzle 4 – 18. An increase in the number of required nontarget car 

moves (element interactivity) caused an increase in working memory load as puzzle 

solvers must create a spatial mental path that leads to the goal state and must 

simultaneously select correct moves and inhibit moves that incorrectly appear to advance 

the target car to its destination. The solution path is determined by the number of required 

nontarget cars moves, and it becomes more difficult to solve as the number of required 

nontarget car moves increases. Performance on this type of puzzle is similar to what is 

required to solve the Tower of Hanoi task (Handley, Capon, Copp, & Harper, 2002). 

Individual Difference Measures 

Working memory capacity. WM capacity was measured using an operation span 

task initially designed by Turner and Engle (1989). The task was adapted by 

Lewandowsky, Oberauer, Yang, and Ecker (2010) for electronic administration via the 

Psychophysics Toolbox (Brainard, 1977; Pelli, 1997) in Matlab. A structural equation 

model analysis indicated that the factor loading for the electronic version of the OS task 

and WM is .77 (standardized estimate). For a series of 15 trials: 

▪ Participants viewed a sequence of solved mathematics equations followed by 

consonants (excluding Y and Q) and then judged the accuracy of each equation 

and remembered the consonants for later recall. 
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• After viewing a trial, participants indicated if the equation was solved correctly 

(yes or no) and then recalled the consonants, one at a time, in the order they were 

displayed. 

• The length of the consonant list varied from four to eight (consonants lists were 

not repeated) and there were three trials per list length, with a total of 15 trials. 

• Trial order, consonants, and equations were randomized into one order and 

presented to all participants. 

• There was no time limit for recall, 500 ms between trials, and a self-paced break 

after every three trials (Lewandowsky et al., 2010, p. 573). 

Spatial visualization. The paper-folding test (Ekstrom, French, & Harman, 1976) 

was used to assess spatial visualization ability. The test included a direction sheet and 

two paper-folding activity sheets that contained 10 items each. Each item was organized 

into two corresponding columns, a left-hand (LH) column and a right-hand (RH) column. 

For each item, the LH column contained images of a piece of square paper in a sequence 

of two to four folds; the final folded image was hole-punched with one hole. The RH 

column contained five images of the paper as it might appear unfolded. Participants 

circled the image that correctly identified the piece of paper from the LH as it would 

appear unfolded. There was a 3-minute time limit for each activity sheet.  

Prior knowledge. The Participant Data Survey (Appendix C) was used to gather 

participant data regarding demographics, vision issues, and puzzle prior knowledge. 

Prior-knowledge questions included items designed to gather information about the types 

of puzzles participants played and the frequency with which they played. There was also 

an image of a puzzle similar to the experimental puzzles and a corresponding question 
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used to determine if participants had previous experience playing the experimental 

puzzles.  

Self-efficacy. The Cognitive Load and Puzzle Self-Efficacy Survey (Appendix D) 

captured puzzle self-efficacy data. There were two questions, modeled after Bandura 

(2006), for which participants rated their response on a 9-point scale: (a) “How confident 

are you that you can solve more puzzles like this?” and (b) “How certain are you that you 

can solve more puzzles like this?”  

Exit survey. The Exit Survey (see Appendix E) was used to obtain opinion data 

about the puzzle environment. There were five questions designed to explore 

participants’ perception of overall task difficulty, and participants rated their responses to 

each on a Likert-type scale. These data are supplemental and will be used for exploratory 

analyses.  

Self-report Measure of Cognitive Load 

The Cognitive Load and Puzzle Self-Efficacy Survey (see Appendix D) contained 

three cognitive load questions, and participants rated their response to each on a 9-point 

scale. The measure of cognitive load was similar to Ayres (2006): “How difficult was this 

puzzle to solve?”  

Physiological Measures of Cognitive Load 

Eye tracking. A 24-inch, 60Hz Tobii T60 XL Eye Tracker monitor was used 

along with Tobii Studio software (Tobii Technologies, n.d.) to record eye tracking data. 

The computer problem-solving environment was sent from a 13-inch Apple MacBook 

Pro to the eye tracker. The eye-tracking software recorded pupil dilation data at rate of 16 
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samples per second for the left and right pupil as well as the number, duration, and 

locations of eye fixations.  

EEG. The Emotiv EPOC wireless headset was used to collect EEG data 

continuously from 14 scalp locations (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, 

F4, F8, AF4) at a rate of 128 samples per second (see Pivik, Broughton, Coppola, 

Davidson, Fox, & Nuwer, 1993, for location description). In addition to recording a 

participant’s head movement data (GYROX, GYROY), the EEG brain wave activity for 

each channel was sent via a logger software component (Gonzalez-Sanchez, Chavez-

Echeagaray, Atkinson, Burleson, 2011) to two separate log files. One log file stored a 

record of raw brain wave data for each channel as microvolts, and one log file stored the 

corresponding affective data, transformed by algorithms in the integrated TestBench 

software program, as the following constructs: excitement, engagement, boredom, 

frustration, and meditation. The constructs are described below (Emotiv, 2010): 

• Engagement: experienced as alertness and the conscious direction of attention 

towards task-relevant stimuli. It is characterized by increased physiological arousal 

and beta waves along with attenuated alpha waves. The opposite pole of this 

detection is a sign of lack of engagement. 

• Instantaneous excitement: experienced as an awareness or feeling of physiological 

arousal with a positive value. Excitement is characterized by activation in the 

sympathetic nervous system, which results in a range of physiological responses 

including pupil dilation, eye widening, sweat gland stimulation, heart rate and 

muscle tension increases, and blood diversion.  
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• Long-term excitement: experienced and defined in the same way as instantaneous 

excitement, but the detection is designed and tuned to be more accurate when 

measuring changes in excitement over longer time periods, typically measured in 

minutes. 

• Frustration: experienced as a disconnection from what is expected and what is 

actually happening. Also, frustration is experienced when the difficulty level of a 

task is increased disproportionate to the skill level of a participant.  

• Meditation: experienced as calm and a clearness of the mind. It is considered 

similar to sleep, but in a conscious state.   

Puzzle Performance Measures  

Time on puzzle. The eye tracking software recorded the time participants took to 

complete each puzzle.  

Puzzle errors. The number of moves it took participants to solve each puzzle was 

recorded manually. The number of errors for each puzzle was calculated by subtracting 

the minimum number of moves required to solve the puzzle from the total number of 

moves it took for participants to complete the puzzle. For example, 15 moves were 

required to solve Puzzle 2; the number of errors recorded for a participant who took 22 

moves to solve this puzzle was 7.  

Procedure 

Study participants completed the 1-hour experiment in a computer lab on the eye-

tracking computer monitor. The automated puzzle environment was run on an Apple 

MacBook Pro connected through a switching hub to a PC. The researcher administered 

the study and was present for the duration of the experiment. Each participant was 
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randomly assigned to one of the experimental conditions according to a master list of ID 

numbers that preserved the anonymity of the participants and identified the order of the 

experimental puzzles. 

Each participant was asked to sign a consent form. After the form was signed, 

participants were given information about the study. They were told, for example, that 

they would complete a series of puzzles and surveys on the eye-tracking monitor while 

wearing an EEG headset.  

After a short explanation of the study, each participant completed the spatial 

ability test.  Next, they were fitted with the EEG headset as the researcher explained the 

physical attributes of the headset as well as the form of the data collected. To ensure 

optimum signal transmission, each sensor was adjusted until the headset visualization 

tool for each sensor showed a green light. When the headset was properly fit, the 

participant was seated at the eye-tracking monitor and his/her eye movements were 

calibrated using Tobii calibration software. When calibration was satisfactory, the 

researcher started the automated program that corresponded to the randomly assigned ID 

number and began a recording for EEG data log files and the eye-tracking data. The 

sequence of activities was launched in the following order: (a) the operation span task, 

(b) Participant Data Survey, (c) Practice Puzzles 1, 2, and 3, (d) Cognitive Load and 

Puzzle Self-Efficacy Survey, (e) Problem-Solving Puzzles 1, 2, 3, and 4, presented in the 

randomly assigned order, each alternating with the Cognitive Load and Puzzle Self-

Efficacy Survey, then finally (f) the Exit Survey. When the participant completed the 

final activity, the experimenter terminated the EEG and eye-tracking recordings, provided 

a debriefing explanation of the experiment, and answered the participant’s questions. 
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Scoring 

Working memory capacity. The OS task used to measure WM was scored in 

accordance with Lewandowsky et al. (2010). Partial credit was awarded for each of the 

consonants remembered correctly for each of the 15 trials. For example, for a list length 

of three, a score for two correctly remembered consonants was 2/3. The total OS score 

for each participant was calculated as an average across the 15 trials. The minimum 

possible score was 0, and the maximum possible score was 1. 

Paper-folding test. The paper-folding test, used to measure spatial-visualization 

ability, was scored with a correction-for-guessing formula: number of correct responses 

minus number of incorrect responses times 1/(n – 1) where n is the number of response 

options (Ekstrom et al., 1976). Because there were five response options, 1 point was 

given for each correct response, and .25 was subtracted for each incorrect response. The 

minimum possible score was 0, and the maximum score possible was 20.  
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Chapter 3 

RESULTS 

The results of analyses for, self-report, physiological, and puzzle performance 

data were reported for each of the following research questions:  

1. Are self-report ratings of cognitive load sensitive to tasks that increase in level 

of intrinsic load?  

2. Are physiological measures sensitive to tasks that increase in level of intrinsic 

load? 

3. To what extent do objective physiological measures and individual difference 

variables predict self-report ratings of intrinsic cognitive load? 

4. Do the number of errors and the amount of time spent on each puzzle increase 

as the puzzle difficulty increases?   

The puzzle performance and self-report data for each of the four puzzles were 

inspected with SPSS functions for accuracy, missing values, and multivariate 

assumptions. These data included (a) number of errors, (b) amount of time taken to 

complete each puzzle, and (c) self-report ratings of cognitive load (CL). This inspection 

revealed that time and error data were substantially skewed and kurtotic. As a result, 

these data were logarithmically transformed. Mahalanobis distance was used to evaluate 

multivariate outliers with p < .001; no statistically significant outliers were found. A 

subsequent evaluation of multicollinearity conducted using SPSS indicated 

multicollinearity was not evident. Additionally, paper-folding scores, the measure of 

spatial visualization ability, were analyzed for gender differences and none were found. 
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Self-report Ratings of CL  

Self-report ratings of CL were analyzed to answer the first research question: Are 

self-report ratings of cognitive load sensitive to tasks that increase in level of intrinsic 

load? These analyses were also an attempt to replicate the pilot study results (Schink 

Joseph & Atkinson, 2010) reported previously and to provide additional evidence that 

perceived CL ratings were sensitive to manipulations of element interactivity (i.e., 

intrinsic load) in the logic puzzle environment. A one-way within-subject ANOVA was 

conducted to evaluate the effect of varying the number of interacting elements across four 

puzzles on self-reported ratings of CL. The means and standard deviations for the self-

report difficulty rating are reported in Table 15. The results of the test were statistically 

significant, Wilks’ lambda = .34, F(3,51) = 33.28, p < .001, multivariate η2 = .66. 

Follow-up analyses were conducted for the six-pairwise comparisons among the 

CL ratings on the four puzzles to determine which of the average puzzle difficulty ratings 

were statistically significant. A Holm’s sequential Bonferroni procedure was used to 

control for Type I error with alpha set at .008 (.05/6). The results indicated that as the 

number of interacting elements in the puzzles increased, participants progressively 

endorsed higher ratings of CL. This effect was statistically significant when the CL rating 

of Puzzle 1, the puzzle with the least element interactivity—the easiest puzzle—was 

compared to the CL ratings of each of the other puzzles that had more element 

interactivity, Puzzle 2, 3 and 4, p < .01. The comparison was also significant when Puzzle 

2, an easier puzzle, was compared to Puzzle 4, the most difficult puzzle, p < .01. While 

these finding indicated participant ratings of CL were sensitive to variations in element 

interactivity (i.e., intrinsic load), they also suggest that CL ratings were not particularly 



29 

sensitive to differentiating puzzles that were somewhat similar in difficulty. For example, 

the differences between the mean CL rating for Puzzles 2 and 3 and for Puzzles 3 and 4 

were not statistically significant.  

Physiological Data 

EEG wave data, Emotiv construct data, and pupil data were analyzed with data-

mining techniques to answer the second research and third research questions: Are 

physiological measures sensitive to tasks that increase in level of intrinsic load? To what 

extent do objective physiological measures and individual difference variables predict 

self-report ratings of intrinsic cognitive load? As mentioned previously, the goal of data 

mining was to discover the variables, or features, that were most important for predicting 

the difficulty level of the puzzle tasks and for predicting the self-report ratings of CL. 

Prior to analysis, physiological data were initially screened, reviewed and 

prepared for data mining. These data included the EEG wave and construct data from the 

Emotiv headset and the fixation and pupil data from the eye tracker. This process led to 

the elimination of 12 participants due to lost data files from technical difficulties with the 

eye-tracking and Emotiv software, leaving 44 cases for analysis. As noted previously, the 

physiological data streams from the Emotiv headset and the eye-tracking software were 

stored in separate log files and sampled at different rates of time. For each participant, 

there were two Emotiv log files sampled at 125 samples per second and one eye-tracking 

file sampled at 16 samples per second. To analyze the time-series data, it was necessary 

to link each timestamp in the eye-tracking file with the corresponding timestamps in the 

two EEG files and compile the physiological data into one file for each participant. This 
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was accomplished with software (Gonzalez-Sanchez, Chavez-Echeagaray, Atkinson, & 

Burleson, 2011) that generated 44 combined data files, one for each participant.  

Generally, the procedure for using a data-mining technique to build prediction 

models includes the following steps: data preprocessing, feature extraction, and feature 

selection using decision-tree construction (see Figure 2). The procedure used to 

accomplish each of the steps with these data is reported in its entirety in Baydogan, 

Runger, and Atkinson (in press); below is a brief explanation from their research. 

• Data preprocessing: Raw data were preprocessed to make the data more 

appropriate for data mining. Raw data typically contains noise, or artifacts, from 

sources other than the target. For example, raw EEG data from the Emotiv headset 

contained noise from facial muscle movements, eye movement, and eye blinks. 

Additionally, because the Emotiv headset was designed as a video game control 

device and not as high-quality research instrument, it is unclear each node captured 

more noise than is typical (Campbell, 2010). Techniques such as filtering and 

dimensionality reduction were used to reduce noise and separate artifacts from the 

data. 

• Feature extraction: Distinctive features or variables in the data set were generated 

by transforming EEG wave data from microvolts into a wave-frequency domain 

using a fast Fourier transform (FFT) algorithm. To further characterize the wave-

frequency data, each of the brain waves frequencies (alpha, theta, and beta) 

detected at each of the 14 headset nodes was represented by a mean, a minimum, 

and a maximum wave value. This combination created a feature set that included 

126 variables. The Emotiv construct data consisted of a feature set of 35 variables. 
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There were five measures of variability (variance, minimum, maximum, skewness 

and kurtosis) and two measures of central tendency (mean and median) for each of 

the five constructs. Although measures of variability and central tendency do not 

contain information about how the data behave over time, they do provide 

information about the characteristics of the signal distribution. Pupil data was 

extracted as left and right eye data for pupil size, fixation duration, and pupil 

location creating a feature set of six variables. 

• Feature selection and decision tree construction: Ensembles of decision trees were 

used to select relevant features or variables to predict the difficulty level of the 

puzzle and to predict the self-report difficulty ratings of each puzzle. To evaluate 

the performance of the prediction model, the number of cases correctly and 

incorrectly predicted by the model were calculated and displayed in a confusion 

matrix (Tan, Steinbach, & Kumar, 2006). The correctly predicted cases aggregate 

in the cells on the diagonal of the confusion matrix from the upper-left corner to 

the lower-right corner, and incorrectly predicted cases deviate from the diagonal. 

In general, the cases inaccurately predicted by the model appear in cells farther 

from the diagonal. The classification method provided a measure of variable 

importance that is useful for identifying a subset of features, from many, that are 

most relevant for the prediction tasks. However, the method does not produce a 

statistical criterion for each feature that can be evaluated with a significance test to 

determine which variables in the prediction model are statistically significant 

predictors. Consequently, a statistical criterion was calculated for each feature in 

accordance with the procedure described in Tuv, Borisov, Runger, and Torkkola 
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(2009).  Tuv et al. used an algorithm (called ACE) to remove irrelevant features 

from the data set by generating a subset of random artificial features and variable 

importance scores to which true relevant features were compared. “Higher variable 

importance scores are expected from a true relevant variable than from an 

artificially generated contrast variable” (p. 1246). With a sufficient amount of data, 

importance variables can be selected from among those that have statistically 

significantly higher variable importance scores than the contrast variables. Paired 

t-tests evaluating the difference between values for the artificial and true relevant 

variables were used as a test of significance. 

Predicting Puzzle Type. EEG wave data, Emotiv construct data, and pupil data 

were analyzed to answer the second research question: Are physiological measures 

sensitive to tasks that increase in level of intrinsic load? Results are reported for each of 

the three sets of physiological measures. 

EEG data analysis. These analyses were also conducted, in part, to replicate 

findings in the literature indicating that alpha waves decrease and theta waves increase as 

a task becomes more difficult. Such results were intended to validate that the EEG data 

captured by the Emotiv software were useful for differentiating tasks that varied in 

difficulty. As noted in Baydogan, Runger, and Atkinson (in press), below is a brief 

description of the procedure for each of the data-mining steps with these data: 

• Preprocessing. The raw EEG signal data were acquired from participants and 

initially stored in the EEG log file as units in microvolts. To remove artifacts and 

reduce signal noise, the signal data were low-pass filtered and transformed using 

independent component analysis (ICA). ICA was used to separate the original 
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signal from noise. Subsequently, the noise was filtered and the clean signal data 

were reconstructed.  

• Feature extraction. As mentioned previously, the FFT algorithm was used to 

transform the EEG signals into wave-frequency data. The values for the wave data 

were computed by band-pass filtering the signals within specific frequency ranges 

for alpha (8–12 Hz), beta (13–30 Hz), and theta (4–7 Hz). Thereafter, the values 

were squared and an average was calculated.  

• Feature selection and decision tree construction. A Random Forest classification 

algorithm was applied to the EEG spectrum information for 44 participants as a 

method to classify the difficulty level of the puzzles. Of the 126 features from the 

EEG signal data, 29 features had variable importance values and p values > 0.  

Each feature is described in Table 4. The confusion matrix depicting the 

classifications is displayed in Table 5. These results show the percentage of the 

observed samples that were classified, or predicted, by the algorithm containing 

the 29 features. The puzzle classifications ranged in accuracy from a low of 45% 

for Puzzle 4 to a high of 71% for Puzzle 3. The algorithm appeared to provide 

better classification accuracy of Puzzles 1, 2, and 3 than Puzzle 4. For example, 

55% of the samples from Puzzle 1, the puzzle with the least number of interacting 

elements, were classified accurately as Puzzle 1. None of the Puzzle 1 samples 

were classified as Puzzle 4, the puzzle with the most interacting elements, which 

indicates that the classification algorithm distinguished well between the easiest 

puzzle and the most difficult puzzle. The algorithm also performed well for 

accurately classifying Puzzles 2 and 3. However, for Puzzle 4, 45% of the samples 



34 

were accurately classified as Puzzle 4, and 45% of the samples were inaccurately 

classified as Puzzle 3. This suggests that when the algorithm was applied to the 

Puzzle 4 samples, the samples were classified equally as Puzzle 3 and Puzzle 4, 

indicating that the algorithm did not distinguish Puzzle 4 samples well from Puzzle 

3. It is likely there were some similarities between the two puzzles that reduced the 

accuracy of the prediction model, a possibility that is revisited in more depth in the 

discussion section. 

Emotiv construct data analysis. Raw data for each Emotiv affective construct 

were analyzed to create models with construct features that predicted tasks varying in 

level of intrinsic load. 

• Preprocessing. To reduce noise in the affective construct signals generated by the 

Emotiv algorithms, data were smoothed by calculating an average for observed 

values in a 500 ms window. In other words, averages were calculated and recorded 

every 500 ms beginning from time 0. These average values were used for further 

analysis.  

• Feature extraction. As mentioned previously, a feature set of 35 variables was 

used to describe the construct data. It consisted of five measures of variability 

(variance, minimum, maximum, and skewness and kurtosis) and two  measures of 

central tendency (mean and median) for each of the five constructs. 

• Feature selection and decision-tree construction. A Random Forest classification 

algorithm was applied to the Emotiv construct data for 44 participants to classify 

the difficulty level of the puzzles. In total, 14 of the 126 features extracted from the 

Emotiv construct data had p values > 0.  Each feature is described in Table 6. Of 
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the four puzzles, the algorithm was most accurate predicting puzzle samples from 

Puzzles 1, 2, and 4 (see Table 7 for classification accuracy). Of the Puzzle 3 

samples, 23% were classified as Puzzle 3, and 36% were classified as Puzzle 2 and 

36% as Puzzle 4. These findings indicate that the algorithm for the Emotiv 

construct data did not distinguish Puzzle 3 samples well from Puzzles 2 and 4.   

Pupil data analysis. An analysis was conducted to determine if any features from 

the pupil-dilation data predicted the difficulty level of the puzzle. Unlike the data analysis 

of the raw EEG and Emotiv constructs, no features were extracted.   

Predicting self-report ratings. EEG wave data, Emotiv construct data, and pupil 

data were analyzed to answer the third research question: To what extent do objective 

physiological measures and individual difference variables (spatial ability, WM capacity, 

and self-efficacy) predict self-report ratings of intrinsic cognitive load? The relationship 

between the average values for the two self-report measures, self-efficacy rating and 

difficulty rating, was explored for each of the puzzles to determine the usefulness of 

including the self-efficacy rating as a predictor in the model. Moderate to high 

correlations between the predictor variable (self-efficacy rating) and the outcome variable 

(difficulty rating) was found across the puzzles. Consequently, self-efficacy rating was 

eliminated from the model.  

EEG data analysis. Below is a brief description of each step used in the data-

mining process for these data (Baydogan, Runger, & Atkinson, in press): 

• Preprocessing and feature extraction. The raw EEG signal data were preprocessed 

and the features were extracted as previously reported. 
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• Feature selection and decision-tree construction. A Random Forest classification 

algorithm was applied to the (a) EEG spectrum information, (b) paper-folding 

scores, and (c) WM capacity scores for 44 participants to classify the self-report 

rating of difficulty. The self-report ratings of difficulty were aggregated across 

puzzles generating a total of 176 responses. From the EEG signal data, 37 features 

were extracted that had variable importance values and p values > 0. None of the 

features from the distributions of paper-folding scores or WM capacity scores were 

identified as important. Each EEG feature is described in Table 8. The confusion 

matrix depicting the classifications is displayed in Table 9. These results show the 

percentage of the observed samples that were classified, or predicted, by the 

algorithm containing the 37 features. The algorithm correctly predicted the 

difficulty rating for participants on the scale between 2 and 8 with accuracy rates 

ranging from a low of 22% to a high of 64%. The algorithm appeared to provide 

better classification accuracy when the observed difficulty rating was 3, 7, or 8 (all 

above 50%) compared to when the observed difficulty rating was 2, 4, 5, or 6. The 

response-rating classification accuracy was 0% for predicting a difficulty rating of 

1 and 9. It is worth noting that the algorithm was not drastically off the mark; it 

predicted puzzle rating 2 and 3 instead of 1.  Similarly, it predicted 7 or 8 rather 

than correctly predicting 9.  

Emotiv construct data analysis. Raw data for each Emotiv affective construct and 

each individual difference variable were analyzed to create models with construct 

features that predicted tasks varying in level of intrinsic load. 
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• Preprocessing and feature extraction. These data were preprocessed and 

transformed as previously described. 

• Feature selection and decision tree construction. A Random Forest classification 

algorithm was applied to the (a) Emotiv construct information, (b) paper-folding 

scores, and (c) WM capacity scores for 44 participants as a method to classify the 

self-report rating of difficulty. The self-report ratings of difficulty were aggregated 

across puzzles, generating a total of 176 responses. There were 11 features 

extracted from the data that had variable importance values and p-values > 0. All 

of the features identified as important were features from Emotiv affective 

construct data—none were features from the distributions of paper-folding scores 

or WM capacity scores. Each feature is described in Table 10. The response rating 

classifications ranged in accuracy from 0% for predicting a difficulty rating of 8 to 

83% for predicting a difficulty rating of 9. The algorithm appeared to provide 

better classification accuracy when the observed difficulty rating was 4, 7, or 9 

compared to when the observed difficulty rating was 1, 2, 3, 5, 6, or 8 (see Table 

11 for classification accuracy).   

Pupil data analysis. An analysis was conducted to determine if any features from 

the pupil dilation data predicted the self-report difficulty ratings of each puzzle. Unlike 

the data analysis of the raw EEG and Emotiv constructs, no features were extracted. 

Puzzle Performance: Errors and Time 

Error and time data were analyzed to answer the fourth research question: Do the 

number of errors and the amount of time spent on each puzzle increase as the puzzle 

difficulty increases? As mentioned previously, the number of errors committed and the 
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amount of time it took to complete each puzzle were logarithmically transformed because 

their respective distributions were substantially skewed and kurtotic. Two one-way 

repeated-measures ANOVAs were conducted to evaluate the effect of varying the 

number of interacting elements across four puzzles on the number of errors committed 

and the amount of time participants spent completing each puzzle. Results of the analyses 

for both the average number of errors, Wilks’ lambda = .27, F(3,50) = 44.72, p < .001, 

multivariate η2 = .73, and the average amount of time, Wilks’ lambda = .21, F(3,49) = 

62.55, p < .001, multivariate η2 = .79, were statistically significant.  

Follow-up tests were conducted on the six pairwise comparisons for the average 

number of errors on each puzzle and for the average amount of time spent on each 

puzzle.  A Holm’s sequential Bonferroni procedure was used to control for Type I error 

with alpha set at .008 (.05/6). Results of each pairwise comparison for the average 

number of errors committed per puzzle were all statistically significant at p < .01, with 

the exception of the comparison between Puzzle 2 and Puzzle 3, p = .32. Likewise, 

results of each of the pairwise comparisons for the average amount of time spent solving 

puzzles were all statistically significant at p < .001, with the exception of the comparison 

between Puzzles 2 and 3, p = .31. These results suggest, with the exception of Puzzles 2 

and 3, that both the average number of errors and the average amount of time spent 

solving the puzzles increased as the puzzles became more difficult. It appears there was 

little or no difference between the number of errors on Puzzle 2 and Puzzle 3 and little or 

no difference between the amount of time spent solving Puzzle 2 and Puzzle 3. The 

means and standard deviations for errors and time are reported in Tables 12 and 13, 

respectively. The transformed data are also provided.  
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Because some violations of parametric test assumptions (e.g., normality) make 

their conclusions inaccurate, post hoc nonparametric analyses were conducted (Howell, 

2002).  Nonparametic analyses typically rely on the median, making them less 

susceptible to outliers that can inflate the variance and bias the mean. Nonparametric 

analyses were conducted on the median values for the number of errors and for the 

amount of time spent solving puzzles. Results of this test for both errors, X2(3, N = 53) = 

53.78, p < .001, Kendall’s W = .34, and time, X2(3, N = 52) = 76.58, p < .01, Kendall’s W 

= .50, were statistically significant. These nonparametric results replicated the results 

from the parametric repeated-measures ANOVAs in that they were statistically 

significant and had large effect sizes.  

Follow-up tests were conducted on the six-pairwise comparisons for the median 

number of errors on each puzzle and for the amount of time spent on each puzzle. A 

Holm’s sequential Bonferroni procedure was used to control for Type I error with alpha 

set at .008 (.05/6) for each set of tests. Results of each pairwise comparison for the 

median number of errors were statistically significant, p < .01, with the exception of 

Puzzles 2 and 3, p = .90. Similarly, pairwise comparisons of the median amount of time 

were statistically significant, p < .001, with the exception of Puzzles 2 and 3, p = .53. 

These findings indicate that the differences in the median number of errors on each 

puzzle and the differences in the median amount of time spent solving each puzzle were 

significantly different and, with the exception of Puzzles 2 and 3, the medians increased 

as the difficulty—element interactivity—of the puzzles increased. These findings also 

replicate the follow-up tests conducted on the mean values reported in the parametric 
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analysis. Table 14 contains the median number of errors and median amount of time 

spent on each puzzle. 
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Chapter 4 

DISCUSSION 

Research Questions 

Are self-report ratings of cognitive load sensitive to tasks that increase in 

level of intrinsic load? This effect was statistically significant when the mean CL rating 

of Puzzle 1, the puzzle with the least element interactivity (the easiest puzzle) was 

compared to the mean CL ratings of each of the other puzzles, which had higher levels 

element interactivity. The comparison was also significant when the mean CL rating for 

Puzzle 2, an easier puzzle, was compared to the mean CL rating for Puzzle 4, the most 

difficult puzzle, p < .01. These findings indicate that participant ratings of CL were 

sensitive to variations in element interactivity (i.e., intrinsic load), and ratings increased 

as the difficulty level of the puzzles increased. However, results also suggest that in this 

environment, self-report CL ratings were less sensitive to the difficulty level of the 

puzzles when puzzles were somewhat similar in difficulty. For example, when the 

difference in the element interactivity of two puzzles was smaller—as in Puzzles 2 and 3 

or Puzzles 3 and 4—the difference in mean CL ratings was not statistically significant. In 

general, self-report ratings were sensitive to differentiating the easier puzzles from the 

more difficult ones but not sensitive for differentiating puzzles that were somewhat 

similar in difficulty. 

Perhaps in this environment self-report CL ratings are sensitive to puzzles 

differing in element interactivity when the differences are large and reach a certain 

threshold, as when the two easier puzzles (Puzzles 1 and 2) are compared with the most 

difficult puzzle (Puzzle 4). It is also possible that the nonsignificant findings in mean CL 
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ratings for Puzzles 2 and 3 are an indication that there may yet be an undefined aspect of 

element interactivity—the number of nontarget car moves—that contributes to Puzzle 2 

and Puzzle 3 functioning as similarly difficult puzzles.  

Are physiological measures sensitive to tasks that increase in level of intrinsic 

load? 

EEG data. The algorithm created with the 29 features extracted from the EEG 

physiological data appeared to accurately differentiate easier puzzles from the most 

difficult puzzle. For example, the algorithm accurately classified 55% of Puzzle 1 

samples and 52% of Puzzle 2 samples, and it did not classify any of the samples from 

these two puzzles as Puzzle 4. These findings were consistent with the results of the 

analysis for self-report CL ratings. However, the EEG data appeared to better distinguish 

between Puzzles 2 and 3 than did the average self-report CL ratings; over half of Puzzle 2 

samples were accurately classified with EEG data, but there was no statistically 

significant difference in average CL ratings between Puzzles 2 and 3. Neither EEG data 

nor self-report ratings of CL distinguished well the difficulty levels of Puzzles 3 and 4. 

Specifically, for Puzzle 4, the algorithm of EEG features accurately classified 45% of the 

samples but also inaccurately classified 45% of the samples as Puzzle 3. Likewise, the 

average CL ratings for Puzzles 3 and 4 were statistically indistinguishable. Overall, the 

results indicate that EEG data collected in this puzzle environment were sensitive to 

puzzle tasks that increased in level of intrinsic load. Furthermore, with only the exception 

of Puzzles 3 and 4, the algorithm of extracted EEG features functioned better to 

distinguish puzzles from one another than did the analyses for self-report CL ratings. It is 

unclear why the algorithm did not function well to classify Puzzle 3; perhaps participants 
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experienced the difficulty level of Puzzles 3 and 4 similarly and therefore EEG data were 

less sensitive to variations of difficulty for these two puzzles. 

Emotiv construct data. The algorithm consisting of 14 Emotiv construct features 

accurately classified approximately 60% to 86% of the samples for Puzzles 1, 2 and 4, 

indicating the algorithm distinguished well between the difficulty levels of these puzzles. 

However, the algorithm did not function well to distinguish Puzzle 3 samples from 

Puzzle 2 and 4 samples, the reason for which is unclear. It is interesting to note that when 

results from the EEG data analysis and the Emotiv construct data analysis are examined 

simultaneously, it is evident that the difficulty level of each of the four puzzles is well 

distinguished. The algorithm of EEG spectral features was most accurate for classifying 

Puzzle 3, and the algorithm of Emotiv features was most accurate for classifying Puzzles 

1, 2, and 4. These results indicate that it is useful to collect and analyze both EEG 

spectral features and Emotiv construct features to identify algorithms that function well at 

differentiating tasks varying in difficulty. 

Eye tracking data. None of the features from the eye tracking data (pupil dilation, 

fixation duration, and fixation count) were significant predictors of puzzle difficulty. It 

was expected that pupil dilation would surface as a significant predictor of puzzle 

difficulty, as research has shown pupil dilation to increase as task complexity increases 

(Minassian et al., 2004) and also as the difficulty of a visual search task increases (Porter 

et al., 2007). There are at least two potential explanations of the lack of findings. Pupil 

dilation has been reported to be an index of learning, where pupil dilation increases at the 

start of a learning task but then constricts over the duration of the task as learning occurs 

(Sibley, Coyne, & Baldwin, 2011). Perhaps the sampling window for which eye-tracking 
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data were collected and analyzed was too long to detect changes in pupil and eye 

movement data over each of the puzzle tasks. It may be necessary to use a shorter 

window of time to detect more subtle changes in pupil dilation, fixation duration, and 

fixation count.  

An alternative explanation is that in the puzzle environment, pupil diameter and 

eye movement data did not accurately predict puzzle difficulty. Inconsistent findings for 

the effect of cognitive load on pupil diameter are noted in the literature. For example, 

Schultheis and Jameson (2004) studied the relationship between pupil diameter and 

reading task difficulty as a means to assess cognitive load. They measured pupil response 

while participants read text passages that varied in difficulty (easy and difficult) on a 

computer screen. The results of the study indicated that although there was a trend toward 

differences in pupil diameter between the easy and difficulty text passage conditions, it 

was not statistically significant. The authors hypothesized that pupil size may vary 

between tasks that are easy and difficult but perhaps only in certain segments of the task 

(Schulthesis & Jameson, 2004, p. 233). Other researchers have reported findings 

consistent with this hypothesis. Siegle, Ichikawa, and Steinhauer (2008) studied eye 

blinks and pupil responses as measures of cognitive load. Their results suggested pupil 

dilation was indicative of information processing and “sustained cognitive load was 

accompanied by sustained pupil dilation” (p. 682). Perhaps the segments in the tasks 

hypothesized by Schultheis and Jameson (2004) where pupil diameter differed between 

tasks occurred during periods of sustained cognitive load. It is likely that in the puzzle 

environment the amount of cognitive load imposed by a puzzle task fluctuated for a 

participant over its duration and capturing such changes with pupil dilation data is 
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somewhat ineffective. This result suggests that pupil response is not an appropriate 

measure of task difficulty for this type of puzzle task.  

To what extent do objective physiological measures and individual difference 

variables predict self-report ratings of intrinsic cognitive load? The algorithms for the 

EEG spectral features and the Emotiv construct features appeared to accurately classify 

more samples from ratings that were either low (i.e., when students rated the difficulty of 

the puzzle as a 3 or 4) or high (i.e., when students rated the difficulty of the puzzle as a 7 

or 8). These findings are consistent with the results of the self-report CL rating analysis, 

in that CL ratings were useful for differentiating the easier puzzles (Puzzles 1 and 2), 

with low ratings, from the most difficult puzzle (Puzzle 4), with high ratings. Pupil-

dilation data and eye-movement data did not predict the self-report CL rating of the 

puzzles. It is possible that pupil response did not predict CL ratings because of the 

reasons discussed previously.   

 Individual difference variables (spatial ability and WM capacity) did not predict 

self-report ratings of intrinsic cognitive load. It appears that in this puzzle environment 

spatial ability and WMC as measured with paper-folding and an operation span task 

(administered electronically) did not contribute to ratings of difficulty. These findings 

may be due to the type of individual difference measures used. For example, the paper-

folding task that was used to measure spatial-visualization ability may not be an accurate 

measure of the spatial-visualization process necessary to solve the tasks used in this 

puzzle environment. Similarly, there is evidence in the literature indicating that using 

only a single task of WM capacity is insufficient and the results are “likely to reflect 

more variance due to specific features of that task than variance due to the construct that 
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it is meant to measure” (Lewandowsky et al., 2010, p. 577). Using the multiple measures 

put forth by these researchers may be a promising direction for more accurate 

measurement of WM capacity. 

Do the number of errors and the amount of time spent on each puzzle 

increase as the puzzle difficulty increases? Results from the analyses indicated that the 

average number of errors on each puzzle and the average amount of time spent solving 

each puzzle were statistically different from puzzle to puzzle, except between Puzzles 2 

and 3. For the other puzzles, both the average number of errors and the average amount 

of time spent increased as the difficulty—element interactivity—of the puzzles increased. 

The insignificant statistical results for Puzzle 2 and Puzzle 3, showing that they did not 

differ in the average number of errors or the average amount of time spent solving the 

puzzles, were unexpected. Even though Puzzles 2 and 3 differed in element 

interactivity—Puzzle 2 required 10 nontarget car moves, and Puzzle 3 required 14 

nontarget car moves (see Table 3)—it appears there may be another aspect of element 

interactivity that could account for the unexpected findings.  

Implications 

Overall, when studied simultaneously, the algorithms derived from the EEG 

spectral features and the Emotiv construct features were the most useful of the tested 

measures for differentiating the difficulty of the puzzles. The algorithm of Emotiv 

construct features accurately classified approximately 60% or more of the samples for 

Puzzles 1, 2, and 4 while the algorithm of EEG spectral features accurately classified 

71% of the samples for Puzzle 3. It is unclear why Emotiv feature algorithm appears to 
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accurately classify more puzzle samples than the EEG feature algorithm. Taken together, 

the algorithms functioned better than self-report ratings to differentiate puzzles. 

Integrating digital signals from physiological measures of cognitive load into a 

learning environment has the potential to create efficient personalized learning 

experiences by triggering adaptations in the system to respond to the needs of the learner. 

When sub-optimal states of cognitive load are detected, the system can trigger an 

adjustment in the learning environment to either reduce the cognitive overload or increase 

the interest and challenge. This benefit is substantial despite that using data mining 

methods to derive algorithms of features from big data sets can be time consuming and 

complex.   

While self-report ratings were generally sensitive to the puzzle tasks as they 

increased in element interactivity. Higher ratings of cognitive load were associated with 

more difficult puzzles. This result suggests the self-report measure is a reasonably 

reliable measure of intrinsic cognitive load, which supports this contention by Ayres 

(2006). However, the self-report measure was not as sensitive for differentiating puzzles 

that were somewhat similar in difficulty. Unlike the data mined results, self-report CL 

ratings provided an indication of difficulty, or the amount of element interactivity present 

in a task. From the CL rating analysis, an inference can be drawn about the difficulty 

level of a task. 

In this puzzle environment, eye tracking data and individual difference variables 

did not appear to be important variables for differentiating difficulty levels of the puzzles. 

These results may be due to the sampling techniques and individual difference measures 

used.  
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Limitations and Future Directions 

The overall goal of this study was to attempt to establish the utility of measuring 

cognitive load with physiological measures by assessing the responsiveness of self-report 

and physiological measures in an experimental environment where intrinsic cognitive 

load (element interactivity) was systematically manipulated. The somewhat inconsistent 

results from two of the dependent measures underscore the challenge of operationally 

defining and manipulating element interactivity for a given task. Specifically, the 

performance data (errors and time) and the average CL self-report ratings for Puzzles 2 

and 3 were not statistically different (although CL ratings trended in the expected 

direction). Even though a small pilot study conducted to test the logic puzzle environment 

provided preliminary evidence that self-report ratings of CL varied with increasing levels 

of element interactivity, results with a larger sample indicate perhaps there is another 

aspect of element interactivity that may have contributed to the unexpected findings. 

Further exploration of the operational definition of element interactivity (number of 

nontarget car moves) can shed light on this hypothesis. As in the TOH puzzle, it is likely 

an aspect of element interactivity involves participants’ ability to “inhibit goal compatible 

but incorrect responses….where the correct subgoal involves moving discs [target and 

nontarget cars] away from the goal state” (Handley et al., 2002, p. 512). Identifying such 

recursive moves in the puzzle environment is a first-step toward a deeper understanding 

of element interactivity. It follows though that individual differences may mediate one’s 

inhibitory processes. As a future direction for this project, it will be beneficial to 

investigate alternate ways to characterize element interactivity accounting for the effort 
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required to inhibit “goal compatible but incorrect responses [moves]” (Handley et al., 

2002, p. 512) and to control for individual differences in such ability.  

Another direction for future research is to replicate the study using other learning 

stimuli that allows for systematic variation in element interactivity. More specifically, it 

would be useful to utilize stimuli that is well accepted by the educational psychology 

research community and that has a distinct definition of element interactivity. Matching 

tasks (Gevins et al., 1989) and span tasks may be promising stimuli as they typically 

include a mental manipulation of a specific number of elements.  

Finally, conducting a microanalysis of the puzzle data to explore the relationships 

between specific puzzle strategies and the physiological measures may help identify the 

segments in the puzzles that are perceived as easy and difficult, and relate those 

experiences to the physiological measures. As mentioned, even though each puzzle can 

be characterized on a scale of difficulty from easy to difficult, it is likely that each 

participant experiences variations of difficulty within each puzzle. The physiologic 

measures provide continuous time series data that lend themselves well to this type of 

microanalysis. These types of future studies will help identify and link participants’ 

experience of cognitive load with physiological indicators and thus facilitate the 

opportunity to use such digital input to manipulate learning environments according the 

level of cognitive load experienced. However, a post-task self-report measure of CL 

appears to have reliably functioned in the puzzle environment to detect variations in 

element interactivity when the variation is substantial. It is beneficial for the research 

community to have access to a variety of methods for measuring cognitive load and an 

understanding of best-practices for each method. 
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Table 1 

Description of Dependent/Process Measures used to Assess Cognitive Load 

Description Source 

Self-report  

Perceived difficulty Self-report survey 

Puzzle performance  

Time Log file 

Errors (number of moves 
over minimum) Log file 

Physiological  

Fixation duration Eye tracker 

Fixation count Eye tracker 

Pupil dilation (left/right) Eye tracker 

EEG node data (AF3, F7, F3, 
FC5, T7, P7, O1, O2, P8, 
T8, FC6, F4, F8, AF4) 

EPOC headset 

EPOC affective construct 
data (excitement, 
engagement, boredom, 
frustration, and 
meditation) 

EPOC headset 

Head movement (GYROX, 
GYROY) EPOC headset 
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Table 2 

Puzzle Description 

  Puzzle elements 

Puzzle Level Cars Tracks Stations Colors 

1 1 5 9 6 4 

2 2 5 9 6 4 

3 3 5 6 6 3 

4 4 6 9 7 3 
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Figure 1. Image of practice puzzle C with labeled components.  
This puzzle contains four target cars (one target car and three nontarget cars), seven 
tracks, five stations, and three colors. 
 

 

 

 

moveable colored token or  
subway car (nontarget car) 
subway track 

red subway car (target car) 
destination station with red ring 
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Table 3 

Puzzle Difficulty: Target Car and Nontarget Car Moves 

  Puzzle Moves 

Puzzle Level Movesa  Target car  Nontarget car  

1 1 11 3 8 

2 2 15 5 10 

3 3 19 5 14 

4 4 23 5 18 

 
a The minimum number of moves required to solve the puzzle.  
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Figure 2. The data mining process used to discover the sensor features important for 
predicting the difficulty level of the puzzle and for predicting the self-report difficulty 
ratings of each puzzle (reprinted with permission; Baydogan, Runger, & Atkinson, in 
press). 
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Table 4 
 
EEG Spectral Features 

Featuresa Min p value Final importance 

T8_theta_min 0 100% 
O1_theta_min 0 96.23% 

O2_theta_min 0 90.99% 
AF3_theta_min 0 85.76% 

F4_alpha_min 0.00452485 84.62% 
F4_theta_min 3.82E-07 78.29% 

O1_alpha_min 0 77.27% 
F8_theta_min 8.69E-07 75.10% 

AF3_alpha_min 4.24E-06 74.69% 
F4_beta_min 1.35E-07 71.94% 

FC6_beta_min 0 71.46% 
O2_alpha_min 0.018185 69.14% 

P8_theta_max 7.67E-07 67.67% 
O2_alpha_max 0.0433842 65.38% 

O2_beta_min 2.50E-05 65.20% 
FC6_theta_min 0.000467568 63.20% 

F8_alpha_min 2.65E-07 62.05% 
FC5_theta_min 0.00523358 61.82% 

T7_alpha_min 3.82E-06 61.45% 
P8_alpha_max 0.000274333 58.41% 

AF4_theta_max 2.31E-05 57.97% 
T7_theta_min 0.00155745 57.83% 

P7_theta_min 0 57.03% 
F7_theta_min 0.0236898 54.84% 

T8_alpha_max 0.00198814 53.34% 
FC5_alpha_min 0.00022344 50.77% 

O2_theta_max 0.0034853 50.25% 
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F7_beta_min 0.0355958 48.56% 
FC6_theta_max 0.0167877 47.62% 
a The features are identified as electrode placement_wave type_min or max. For example, 
“F7_theta_min” identifies the minimum value of theta activity associated with the frontal 
F7 node and “AF4_theta_max” identifies the maximum theta activity at the anterior 
frontal AF4 node. 
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Table 5 

Confusion Matrix for EEG Spectral Features  

Observed 
puzzle 

Predicted puzzle 

1 2 3 4 

1 55% 39% 7% - 

2 7% 52% 41% - 

3 2% 18% 71% 9% 

4 - 9% 45% 45% 
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Table 6 

Emotiv Features and p Values for Predicting Puzzle 

Feature p value 

Frustration_kurtosis 0.00 

Engagement/Boredom_mean 0.000 

Engagement/Boredom_max 0.000 

Engagement/Boredom_median 0.037 

Engagement/Boredom_min 0.000 

Short Term Excitement_kurtosis 0.000 

Short Term Excitement_max 0.026 

Long Term Excitement_variance 0.000 

Short Term Excitement_min 0.000 

Long Term Excitement_min 0.000 

Short Term Excitement_skew 0.000 

Long Term Excitement_skew 0.000 

Meditation_kurtosis 0.000 

Frustration_variance 0.000 
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Table 7 

Confusion Matrix: Emotiv Features for Predicting Puzzle 

Observed 
puzzle 

Predicted puzzlea 

1 2 3 4 

1 59% 27% 2% 11% 

2 - 86% 2% 12% 

3 5% 36% 23% 36% 

4 - 20% 5% 75% 

a n = 44. 
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Table 8 

EEG Spectrum Features for Predicting Difficulty Ratings 

Featuresa Min p value Final importance 

FC6_beta_min 0 100% 
T7_beta_min 0 86.51% 

F7_beta_min 0 80.75% 
F3_beta_min 0 79.63% 

AF3_theta_min 0 77.81% 
F7_alpha_min 0 74.84% 

T8_beta_min 0 72.82% 
FC5_theta_min 0 70.81% 

F8_beta_min 9.03E-08 68.00% 
AF4_theta_min 0 67.61% 

FC5_beta_min 7.01E-05 66.65% 
F7_beta_mean 0.000119819 63.49% 

O2_theta_min 0 56.36% 
P7_beta_min 4.08E-05 54.98% 

O2_beta_min 2.49E-07 54.44% 
FC5_theta_max 0 54.02% 

T7_beta_mean 0.00537507 53.74% 
F8_theta_min 3.52E-06 52.10% 

FC6_alpha_max 3.21E-07 51.59% 
F4_theta_min 0 50.28% 

F3_theta_max 2.11E-08 49.95% 
F3_theta_min 6.36E-05 49.31% 

AF3_alpha_min 9.91E-05 49.17% 
F4_beta_min 1.66E-06 48.06% 

T8_theta_min 0.000471057 47.90% 
F4_theta_max 0 47.90% 

F3_alpha_max 1.99E-07 47.83% 
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FC6_theta_min 3.50E-08 46.95% 
AF4_alpha_max 0.0232589 45.97% 

O2_alpha_min 1.46E-06 45.04% 
O1_beta_min 3.75E-09 44.23% 

P7_alpha_max 0 44.01% 
O1_theta_min 0.000968231 40.01% 

FC6_alpha_min 8.18E-05 39.34% 
P7_theta_max 0.0299127 37.05% 

T7_theta_max 0.0166537 35.28% 
O1_theta_max 0.0363198 30.55% 
a The features are identified as electrode placement_wave type_min or max. For example, 
“F7_theta_min” identifies the minimum value of theta activity associated with the frontal 
F7 node and “AF4_theta_max” identifies the maximum theta activity at the anterior 
frontal AF4 node. 
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Table 9 

Confusion Matrix: EEG Spectral Features for Predicting Self-report Difficulty Ratings 

Observed 
difficulty 

rating 

Predicted difficulty ratinga 

1 2 3 4 5 6 7 8 9 

1 0% 79% 21%       

2  35% 53% 12%      

3  4% 57% 35% 4%     

4  3% 17% 45% 24% 7% 3%   

5   17% 43% 22% 17%    

6   4% 22% 17% 22% 35%   

7    3% 3% 20% 63% 10%  

8       36% 64%  

9       33% 67% 0% 

Note. The predictions were from 44 participants aggregated across the four puzzles. 
Participants rated their perception of puzzle difficulty on a scale from 1 (not at all 
difficult) to 9 (extremely difficult). 
a n = 176.  
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Table 10 

Emotiv Features and p Values for Predicting Self-report Rating of CL 

Featurea p value 

Short Term Excitement_max 0.000 

Short Term Excitement_variance 0.000 

Short Term Excitement_mean 0.000 

Engagement/Boredom_max 0.000 

Engagement/Boredom_variance 0.000 

Long Term Excitement_max 0.000 

Short Term Excitement_median 0.000 

Long Term Excitement_variance 0.000 

Engagement/Boredom_min 0.000 

Frustration_median 0.000 

Frustration_max 0.000 

a The features are identified as Emotiv construct_min or max. For example, “Short Term 
Excitement _max” identifies the maximum value of Short Term Excitement associated 
with the construct. 
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Table 11 

Confusion Matrix: Emotiv Features for Predicting Self-report Rating of CL 

Observed 
difficulty 

rating 

Predicted difficulty ratinga 

1 2 3 4 5 6 7 8 9 

1 29% 2% 14% 36%           
2 18% 6% 24% 47% 6%         
3   4% 22% 61% 13%         
4   7% 7% 64% 18% 4%       
5     4% 48% 26% 4% 17%     
6       26% 43% 4% 26%     
7       3% 20% 3% 70%   3% 
8           9% 82% 0%  9% 
9             17%   83% 

Note. The predictions were from 44 participants aggregated across the four puzzles. 
Participants rated their perception of puzzle difficulty on a scale from 1 (not at all 
difficult) to 9 (extremely difficult). 
a n = 176.  
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Table 12 

Puzzle Errors: Means and Standard Deviations for Original and Transformed Data 

 Original data  Transformed data 

Puzzlea Mean SD  Meanb SD 

1  2.79 3.79  .41 0.38 

2 14.06 16.08  .93 0.51 

3 13.58 16.80  .82 0.61 

4 28.19 31.51  1.22 0.50 
a n = 53. 
b Logarithmic units. 
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Table 13 

Time to Solve Puzzle: Means and Standard Deviations for Original and Transformed 
Data 

 Original data  Transformed data 

Puzzlea Meanb SD  Meanc SD 

1  41.39 23.12  1.55 0.30 

2 93.28 63.76  1.87 0.36 

3 88.97 73.35  1.80 0.46 

4 145.12 87.29  2.07 0.37 
a n = 52. 
b Seconds. 
c Logarithmic units. 
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Table 14 

Median Values for Puzzle Errors and Time 

Puzzle Errorsa Timeb 

1  2 34.88 

2 10 74.28 

3 6 67.15 

4 15 119.26 
a n = 53. 
b n = 52. 
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Table 15 

Self-report Ratings of Cognitive Load  

Puzzlea Mean SD 

1 3.31 1.725 

2 5.19 2.047 

3 5.28 2.149 

4 6.02 2.042 

Note. Cognitive load measure is self-reported rating on difficulty scale from 1 (not at all 
difficult) to 9 (extremely difficult). 
a n = 54. 
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APPENDIX A  

PRACTICE PUZZLES 
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Puzzle A - 3 moves 
 
 
 
 
 
 
 
 
 
 
 
 
 
Puzzle B - 10 moves 
 
 
 
 
 
 
 
 
 
 
 
 
 
Puzzle C - 12 moves 
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APPENDIX B  

EXPERIMENTAL PUZZLES  
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Puzzle 1: level 1 - 11 moves   Puzzle 3: level 3 - 19 moves 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Puzzle 2: level 2 - 15 moves   Puzzle 4: level 4 - 23 moves 
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APPENDIX C  

PARTICIPANT DATA SURVEY 
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APPENDIX D  

COGNITIVE LOAD & PUZZLE SELF-EFFICACY SURVEY  
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APPENDIX E  

EXIT SURVEY 
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APPENDIX F  

IRB APPROVAL 
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APPENDIX G 

LICENSING AGREEMENT 
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