
Undergraduate Signal Processing Laboratories on the Android Platform

by

Suhas Ranganath

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved April 2013 by the

Graduate Supervisory Committee:

Andreas Spanias, Chair

Cihan Tepedelenlioglu

Konstantinos Tsakalis

ARIZONA STATE UNIVERSITY

May 2013

i

ABSTRACT

The field of education has been immensely benefited by major breakthroughs in

technology. The arrival of computers and the internet made student-teacher interaction

from different parts of the world viable, increasing the reach of the educator to hitherto

remote corners of the world. The arrival of mobile phones in the recent past has the

potential to provide the next paradigm shift in the way education is conducted. It

combines the universal reach and powerful visualization capabilities of the computer with

intimacy and portability. Engineering education is a field which can exploit the benefits

of mobile devices to enhance learning and spread essential technical know-how to

different parts of the world. In this thesis, I present AJDSP, an Android application

evolved from JDSP, providing an intuitive and a easy to use environment for signal

processing education. AJDSP is a graphical programming laboratory for digital signal

processing developed for the Android platform. It is designed to provide utility; both as a

supplement to traditional classroom learning and as a tool for self-learning. The

architecture of AJDSP is based on the Model-View-Controller paradigm optimized for

the Android platform. The extensive set of function modules cover a wide range of basic

signal processing areas such as convolution, fast Fourier transform, z transform and filter

design. The simple and intuitive user interface inspired from iJDSP is designed to

facilitate ease of navigation and to provide the user with an intimate learning

environment. Rich visualizations necessary to understand mathematically intensive signal

processing algorithms have been incorporated into the software. Interactive

demonstrations boosting student understanding of concepts like convolution and the

relation between different signal domains have also been developed. A set of detailed

ii

assessments to evaluate the application has been conducted for graduate and senior-level

undergraduate students.

iii

DEDICATION

To Almighty

iv

ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude to my advisor, Professor Andreas

Spanias, for his invaluable guidance and support. His patience, enthusiasm and vision

helped me achieve more than I ever thought possible.

Next, I would like to express my appreciation to Professors Kostas Tsakalis and

Cihan Tepedelenlioglu for being a part of my supervisory committee. Your advices will

benefit a lot in my academic life.

Thank you my colleagues and friends who give me invaluable assistance during my work

and life. Special thanks to Jayaraman Thiagarajan, Karthikeyan Natesan Ramamurthy,

Deepta Rajan, Mahesh Banavar, Xue Zhang, Alex Fink, Henry Braun, Prasanna Sattigeri,

Mohit Shah and Girish Kalyanasundaram. Thank you all for assisting me to test and

publish the software.

I would like to thank NSF for financing the project and SenSIP center for having

provided materials for the project.

v

TABLE OF CONTENTS

 Page

LIST OF FIGURES ... vii

CHAPTER

1 INTRODUCTION .. 1

The Role of Software Technology in Engineering Education 2

Interactive Software Tools in DSP Education 3

Emergence of Mobile Devices ... 5

Signal Processing Laboratories for the Android Platform 7

Organization of the Thesis .. 10

2 OVERVIEW, ARCHITECTURE AND IMPLEMENTATION 11

AJDSP Overview .. 12

Application Architecture ... 14

System Implementation .. 16

Performing Simulations .. 21

3 INTRODUCTION .. 22

List of Implemented Functions ... 22

Signal Generation Blocks ... 25

Signal Channeling Blocks ... 27

Time Domain Signal Processing Blocks .. 28

Frequency Domain Signal Processing Blocks 29

Signal Display Blocks ... 40

Demonstrations ... 42

vi

4 LABORATORIES AND ASSESSMENTS ... 44

Laboratories ... 45

Evaluations .. 48

5 CONCLUSIONS AND FUTURE DIRECTIONS 53

Conclusions ... 53

Future Directions ... 54

REFERENCES .. 56

vii

LIST OF FIGURES

Figure Page

1.1 FFT Simulation in AJDSP .. 1

1.2 Rise in application downloads on the Google Play store 5

1.3 Filter design simulation in AJDSP with impulse response, z-domain

representations, input parameters and filter coefficients 7

2.1 Function list view and search ... 11

2.2 PZ Placement demo .. 15

2.3 System architecture .. 16

2.4 Performing a FFT simulation ... 17

3.1 Functions in AJDSP : Part 1 .. 21

3.2 Functions in AJDSP : Part 2 .. 22

3.3 Plot of a triangular signal ... 23

3.4 User interface of a MIDI generator .. 25

3.5 DTMF generator ... 27

3.6 Convolution of two rectangular signals ... 29

3.7 FFT of a rectangular signal .. 30

3.8 Impulse response of a filter .. 31

3.9 Input menu of filter coefficient .. 35

3.10 Input menu of a kaiser filter ... 36

3.11 Frequency response of a bandpass filters .. 37

3.12 Frequency response of a low pass filter with bartlett window 39

viii

3.13 User interface of an FIR Design block ... 40

3.14 User interface of an IIR Design block .. 41

3.15 User interface of PZ2Coefficient block .. 42

3.16 FFT of a rectangular signal illustrated using plot 45

3.17 Frequency response of a high pass Chebyshev II filter 46

3.18 Convolution of two non-causal rectangular signal 48

4.1 Block diagram for comparing signal resolution characteristics for different

windows ... 52

4.2 Bandpass filter design using (a) AJDSP (b)Matlab 54

4.3 Evaluations with graduate students ... 55

4.4 Evaluations with undergraduate students .. 56

4.5 Educational Value of the application ... 57

4.6 Effectiveness in improving DSP understanding 58

9

Chapter 1

INTRODUCTION

The use of software technologies in STEM education has proved to be a valuable supplement to

traditional teaching methods. Modern educational software has assisted students and educators in

understanding complex systems through simulation, building mathematical models and creating

visual representations of algorithms. Several toolkits utilizing the processing and graphical

capabilities of modern computer have been developed. Recent years have witnessed the

exponential growth of smartphones and tablet based computers. The high processing speed,

convenience of use and intuitive user interface of these devices make them a suitable platform

for developing tools for engineering education. Android-JDSP (AJDSP), a graphical

programming laboratory evolved from JDSP and iJDSP
11, 33, 34

 for undergraduate and graduate

signal processing students is presented in this thesis. The laboratory has been developed as a

standalone application developed exclusively for the Android Platform. The main workspace of

AJDSP with a simulation for fast a Fourier transform of a rectangular signal is shown in Fig 1.1.

10

1.1 The Role of Software Technology in Engineering Education

1.1.1 Overview

Conventional teaching methodologies in engineering education focus mainly on the

understanding of theoretical concepts, manual illustration of algorithms, and their application in

different scenarios. In addition to traditional teaching methodologies, the use of interactive

animations, real-time demonstrations and audio-visual features can better enhance student

understanding
 1

. Incorporating visual representations of algorithms in classroom teaching can

foster a better understanding of complex technological concepts as well as cultivate student

interest
 2

. Furthermore, increasing the level of interactivity in classrooms is shown to improve

learning potential
3
. These factors motivate the usage of computer based interactive educational

tools in engineering education.

1.1.2 Importance of graphical programming

Text-based programming languages require learning the syntax associated with the language and

then map the structure to the given problem. Graphical programming on the other hand, provides

Fig 1.1: FFT Simulation in AJDSP on the application workspace.

11

an extra layer of abstraction between the general programming syntax and the end user, allowing

them to visualize the program flow easily.

Graphical programming is performed by connecting visual modules on a workspace, which is

then interpreted into machine-readable code. Although the representations differ, they contain

the same programming concepts found in most traditional languages. Graphical programming

languages include all the standard constructs, such as data types, loops, event handling, variables,

recursion, and object-oriented programming. They support diagrammatic modeling of processes

and tasks in terms of block diagrams and flowcharts, providing a more intuitive programming

experience to the end user.

1.1.3 Existing Graphical Programming/Simulation Applications

The higher level of abstraction and intuitive usage of graphical programming languages make it a

popular choice for developing educational software. Examples of educational applications using

graphical applications include CiMPLE
4
 developed by ThinkLAB for teaching robotic

technology, GnuRadioCompanion
5
 a signal processing toolkit for radio technology and

LadderLogic
6
, a programming interface for simulating relay logic in Programmable Logic

Controllers. LabView
7
 is a popular graphical programming language developed by National

Instruments. It provides toolboxes for data acquisition, instrument control, and industrial

automation applications. Simulink
8
 is a block-based simulation environment from Mathworks,

Inc. used for designing models and analyzing dynamic systems. Educational applications

employing visual programming have been developed in several universities. Scratch
9
 is a web

based programming language developed by Lifelong Kindergarten Group at the MIT Media Lab,

enabling users to create interactive stories, games and art
10

. J-DSP
11

, developed at the SenSIP

center of Arizona State University, is a visual programming interface to perform digital signal

12

processing labs over the internet. Most graphical programming languages are designed for PCs

and very few applications exist on the mobile platform.

1.2 Interactive Software Tools in DSP Education

Digital Signal Processing (DSP) is one of the major fields of education and research in electrical

and computer engineering. Investigating the application of complex mathematical paradigms in

the real world forms an integral part of signal processing.

Modern computers are capable of executing intricate mathematical computations, allowing the

student to concentrate on the underlying concepts. Several programming environments

supporting signal-processing education have been developed in last decade.

1.2.1 Existing DSP Education Software

The authors in
 12

 describe a suite of java-based tools to assist in signal processing education. A

basic waveform generator, an audio receiver and a graphic equalizer integrated into a tool for

teaching real time DSP is presented in Morrow, et.al
13

. MentorDSP
14

 is an interactive learning

resource for signal processing techniques and statistical analysis. However, these tools feature

dialog based user interface and do not support graphical programming environments.

MATLABTM
15

 by Mathworks, Inc. is a commercial simulation environment to perform

numerical computations and signal visualization in a scripting environment. Although MATLAB

implements efficient techniques for computing mathematical algorithms, it lacks a sophisticated

graphic user interface. J-DSP
11, 34

 was proposed as a non-commercial, web based visual

programming environment, in order to address DSP education challenges not catered to by other

existing tools.

13

1.2.2 The J-DSP Programming Environment

J-DSP was developed as a standalone Java applet allowing users to run programs directly on a

browser
16

. The primary objective of the J-DSP software was to enable undergraduate students to

have hands on experience signal processing concepts and to facilitate the understanding of

related mathematical algorithms
17

. In addition to signal processing, JDSP has been successfully

extended to multidisciplinary areas such as digital communications, control systems, genomic

signal processing
17

, earth systems signal processing
18

, RF power amplifiers
19

, and sensor

networks
20

. AJDSP is developed as a standalone, graphical programming environment based on

JDSP for the Android platform.

1.3 Emergence of Mobile Devices

1.3.1 Growth of the Mobile Market

In recent years, the rise of mobile devices has opened up a new platform for education software

technologies. Since the first iPhone was introduced in 2007, the popularity of smartphone

devices and tablet PCs have increased exponentially. The first Android powered device was

introduced by Google in October 2008. By the end of 2010 Android had become the world's

leading smartphone platform, overtaking Symbian from Nokia. Statistics show that the sale of

Android and iOS units shipped in 2011 has outpaced that of personal computers units 21. By

2012, 500 million devices were running on Android with 1.3 million activations per day.

Android is presently the leading smartphone environment, capturing 68% of the market. Both

Apple and Google have developed their

14

Fig 1.2: Rise in application downloads on the Google Play store
23

online distribution systems, encouraging a large number of third-party developers to build

applications catering to niche markets. A recent survey indicates that, there are about 675,000

apps in the Android ecosystem and Google’s Play Store has reached more than 25 billion

downloads
22

. The rise of mobile devices reflected in the number of application downloads is

illustrated in Fig 1.2.

1.3.2 Mobile Technology for Interactive Learning

The powerful processors and interactive user interfaces make mobile devices an attractive

platform for education technologies. Understanding the effectiveness of smartphones and tablets

in classroom instruction has been a subject of considerable research in recent years. The

advantages of handheld devices over personal computers in K-12 education have been

investigated in
24

. The study shows that easy accessibility and maneuverability of handheld

devices has been found to boost student interest. The application of mobile technologies in

higher education in
25

 indicates that smartphones assist students in grasping complex principles

and leads to increase in class participation. The use of smartphones in engineering and

15

mathematics courses has demonstrated that mobile devices can broaden the scope and

effectiveness of technical education in classrooms
26, 27

.

1.3.3 Existing Mobile Education Apps

Several applications related to signal processing and education are present in the Android

ecosystem. Examples of educational apps include Electrical Engineering
28

, a basic circuit toolkit

by GK Soft and Signal Processing Study Guide
29

, a guide providing concise explanations of

concepts accompanied by a comprehensive set of exercises. AndroSpectro
30

, an audio analysis

application from AndroiDSP and Speedy Spectrum Analyzer
31

, an FFT based spectral analysis

visualizer are some of the signal processing based applications. A well-known tool for signal

processing simulations is MATLAB Mobile, featuring a command-line interface
32

. It provides a

lightweight version of MATLAB that runs on a remote computer. However, this application does

not support a sophisticated graphic user interface and relies heavily on a stable internet

connection. In order to overcome these limitations, iJDSP, a standalone iOS version of the J-DSP

software was proposed in
33, 34

. iJDSP has been the recipient of NEEDS premier award for best

courseware of 2012. AJDSP has been inspired by iJDSP in several aspects. AJDSP was proposed

as a graphical programming environment for conducting signal processing laboratories on the

Android platform
35, 36

.

16

1.4 Signal Processing Laboratories for the Android Ecosystem

Fig 1.3: Filter design simulation in AJDSP with impulse response, z-domain representations, input

parameters and filter coefficients.

AJDSP is designed exclusively for the Android platform using the Android SDK 37. The

modules appear in AJDSP as graphical blocks brought into the workspace by a drag-n-drop

process and connected to each other to establish signal and data flow. Modern mathematical

methods are used to implement a comprehensive list of signal processing algorithms enabling

students to perform undergraduate DSP laboratories. A view supporting dynamical entry of input

parameters is associated with each block. An intuitive user interface has been designed to

immerse the user in a rich and interactive learning setting. Compelling demonstrations encourage

students to visualize concepts like convolution and frequency response in an autodidactic

environment. Interoperability of the application is preserved by adapting the user interface to suit

a diverse set of Android devices. The block diagram for filter design simulation in Android

JDSP, along with input user interface and the signal display modules is illustrated in Fig 1.3.

17

1.4.1 Contributions

Following is the list of contributions made in this thesis:

 A architecture for graphical applications on Android devices has been designed and

developed. The Model-View-Controller
38

, a popular paradigm for software architecture,

has been optimized for the Android platform.

 A rich suite of signal processing functions required to perform undergraduate DSP

laboratories has been implemented. The algorithms are ported from JDSP 11 and

modified to suit the Android environment.

 An intuitive user interface has been designed to maintain consistency, increase usability

and facilitate ease of navigation. User interfaces have been developed in XML to separate

the application presentation with program code.

 The architecture of the JDSP was rewired to make it suitable to the Android environment.

The programming constructs for accessing and visualizing data had to be modified to

optimize it for the Android environment. User Interfaces are drawn using code different

from the iOS version of the application. Android supports a variety of devices of different

screen resolutions. The interface had to be customized to all the devices.

 A set of laboratory exercises demonstrating the application of AJDSP in an

undergraduate DSP course has been created or adapted from
39

with the advice of

Dr.Spanias. These exercises are designed to illustrate signal processing concepts such as

z-domain and frequency domain representation of signals, the Fast Fourier transform

digital filter design and convolution.

 An extensive assessment methodology to identify the impact of employing mobile

devices to perform DSP simulations and laboratories has been developed. The evaluation

18

to assess the interactive capabilities of the AJDSP framework and its ability to sustain

student interest has been designed.

 Two workshops
42

; one for graduate students of signal processing and another for

students of EEE407/591. Digital Signal Processing of Arizona State University. The

workshops were organized to test the robustness of the application and to evaluate the

effectiveness of the application in fostering student understanding. Results of the

assessment has been collected and analyzed. The changes proposed in the workshop have

been incorporated in improving the application.

1.5 Organization of the thesis

The rest of the thesis is organized as follows. Chapter 2 presents an overview of the

application, describes the application architecture and the development methodology.

Chapter 3 describes the signal processing functions available in AJDSP. A description of

the laboratory exercises and associated assessment results in provided in Chapter 4. The

laboratory exercises include continuous/ discrete convolution, frequency and z-domain

response, filter design and FFT. Possible extensions of the software in interdisciplinary

areas and health monitoring along with the concluding remarks are discussed in Chapter

5.

19

Chapter 2

OVERVIEW, ARCHITECTURE AND IMPLEMENTATION

AJDSP is a standalone, graphical programming platform that exploits the resources of the

Android platform to create an interesting student-learning environment. Mobile devices, which

have risen in popularity in recent times, combine portability and powerful processing capabilities

with friendly user interfaces to provide a compelling platform for engineering education

applications. AJDSP is aimed at utilizing these features of smartphone technology to develop

novel learning environments for the signal processing community. It employs a graphical

interface suitable to put across intricate concepts in an easily understandable manner. Several

algorithms, necessary to build a sound understanding of signal processing concepts are

implemented as graphical modules. Compelling visualizations helps users to easily visualize the

workings of the implemented algorithms. A set of interactive demonstrations have been built in

to better assist students in understanding and educators to put across concepts like the

convolution and z-transform. Developing the application on Android devices enables us to have

a larger reach among educators and students. The software can be used both as a supplement to

traditional classroom teaching and as a medium of self-learning. Using AJDSP, the students can

learn using a block diagram system level approach with inputs and outputs, establish and run

DSP algorithms with various configurations on their Android devices, access the application

anywhere/anytime without the need for Internet connectivity, use the multi-touch interface to

view interactive demos on convolution and z-transforms and perform undergraduate signal

processing laboratories.

20

2.1 AJDSP Overview.

In this section, I present a brief overview of the signal processing functions and interactive

demonstrations in AJDSP.

2.2.1 Existing Signal Processing Functions

A comprehensive list of signal processing functions, including signal generation, signal

processing and signal display units are incorporated into the application. All functions in AJDSP

are organized as graphical blocks that can be visually added to the main simulation workspace.

AJDSP has capabilities to generate deterministic as well as random signals. In addition to

conventional signals such as rectangular, triangular and exponential signals, MIDI and DTMF

waveform generators are also integrated into the

Fig 2.1 Function list view and search.

21

software. AJDSP has a rich suite of time and frequency domain signal processing functions.

Modern mathematical techniques are used to implement algorithms like the fast Fourier

transform, filter design and z-domain transformations on the Android platform. Visualization

tools for time, frequency and z-domain signals are included in the application. Fig 2.1 shows a

complete list of modules along with the block search functionality. A comprehensive description

of the various signal processing functions in AJDSP is given in Chapter 3.

2.2.2 Brief Overview of Interactive Demonstrations

The interactive demonstrations are included in AJDSP to assist the students in understanding

DSP related concepts. Two demonstrations, one involving convolution and the other illustrating

the relationship between z-domain and frequency domain representations, are included in the

application.

The PZ Placement demonstration is designed to assist students in understanding the relationship

between z-domain and frequency domain representations. The user interface for this

demonstration is shown in Fig 2.2. Poles and zeros can be added on the left panel and the

frequency responses are plotted on the right hand panel. The users can move individual poles and

zeros and examine the corresponding changes in the frequency response. The second

demonstration is based on the process of convolution.

22

This provides a graphical illustration of discrete and continuous time convolution processes. Two

input signals are selected from a drop down menu and added to the demo workspace. Each step

of the convolution procedure including flipping, shifting and progressive multiplication of the

signal samples is illustrated with animations. The impact of the demonstration on student

understanding is assessed through a questionnaire and the results are presented in Chapter 4.

2.3 Application Architecture.

The architecture of AJDSP is based on the Model-View-Controller (MVC) Paradigm illustrated

in Fig 2.3(a). This paradigm separates the representation of information from the user's

interaction with it. The model stores application data and block parameters. The controller acts

mediates between the model and the view, handling events common to both. The view comprises

of the user interfaces, including the application workspace.

Fig 2.2 PZ Placement demo. The interactive movement of poles and zeros result in change of

frequency response. This demonstration was highly rated in the assessments

23

We employ a modified version of the MVC paradigm to design the architecture of AJDSP. The

block diagram of the architecture is shown in Fig 2.3.

2.3.1. Model

The graphical modules along with the block parameters, algorithm implementations and the

input interface constitute the model component. The model contains the configuration

information of the blocks as well as the algorithm parameters. The algorithm parameters are

dynamically set by the user through the user interface. Each module has a Part Calculator

implementing the signal processing algorithms related to the function. The implementation of the

DSP modules is described in Section 2.4.1

2.3.2. View

The View renders blocks into a form suitable for interaction. It provides functionalities for

selection, movement and deletion of blocks. It constitutes the main workspace of the software

and comprises of the user interface for connection of blocks, designing block

Fig 2.3 System architecture.

24

diagrams and performing graphical simulations. Development of the user interface and the

mechanisms of event handling are described in sections 2.4.2 and 2.4.3 respectively.

2.3.2. Controller

The main control functions of the program are handled by the Controller. The Controller has two

main methods: creation of blocks and updating the block parameters during simulations. Block

creation is performed as follows: The block data and parameters are sent to the Parts Controller

which uses the data to create a customized module component for each block. A graphical user

interface of the module is then rendered on the workspace by the View component. The updating

of the blocks is implemented as follows: Parameters are updated during simulations or from user

input and sent to the Parts Controller. The Parts Controller recalculates the parameters using the

corresponding calculator and assigns the altered data to the pins. Each module then updates the

blocks connected to it and the change is transmitted along all the blocks in the simulation.

2.4 System Implementation

2.4.1 Overview of the Android SDK

Android is an open source linux-based operating system registered under the Apache license. It

has a large community of developers writing applications in a customized version of Java. A

detailed description of the Android SDK can be found in 37. Activities, intent, xml components,

canvas, bitmaps and threads are some of the SDK components used in AJDSP. A brief

description of these is given below.

25

 Activities and Intents: An activity is a component providing a screen for user interaction.

Each activity typically has a specific function such as taking a photo, composing emails

and checking the inbox. An application usually is composed of multiple loosely-bound

activities. One activity designated as the ‘main’ activity and is launched at startup. Each

activity is capable of starting another activity in response to user navigation. The

activities of the Android SDK are started by messages called intents. The intent is an

object carrying a description of the operation to be performed. Intents can also hold a data

object which needs to be transferred between activities.

Activities and intents constitute basic building blocks of the AJDSP application. The

view window for the main workspace is provided by the StartView Activity and provides

the environment to create graphical simulations. Typically, the user interface of every

module has a dedicated Activity which is accessed from the PartList through an Intent.

Intents are also used to get back to the main workspace from the user interface and to

navigate between user interfaces of the same graphical module.

 User Interface: User interface elements are built using View and ViewGroup objects. A

View is an object that renders something on the screen that the user can interact with. A

ViewGroup is an object that holds other View objects and defines the layout of the

interface. The layout can be rendered in two ways: in a separate xml class and along with

the application program. Declaring the user interface in XML keeps the presentation

separate from the application code, enabling the user interface to be modified without

changing the code which uses it.

AJDSP uses the XML interface to draw the user interface menus for each module. Some

of the examples are the user interface for the Part List (Fig 2.1), Signal Generator, FFT

26

and FIR Design modules. Some of the modules require customized views and need to be

rendered by code. The PZ Plot View, Convolution demo and the PZ Placement demo (Fig

2.2) are examples of modules requiring customized views.

 Canvas and bitmaps: Canvas is used to create custom graphics or make changes to an

existing view. Canvas is generally used when the view needs to dynamically updated.

The canvas can be modified either in the main UI thread by calling invalidate () or from a

separate thread. The canvas performs the drawing on an underlying Bitmap which is then

placed on the view window.

Bitmaps are used in AJDSP to display UI components such as block diagrams and

buttons. The main application of bitmaps is to maintain the uniformity of the UI across

different screen sizes of Android devices. Bitmaps of different sizes are loaded in the

application and are selected according to the screen size and resolution of the mobile

device.

2.4.1 Implementing Graphical Modules

Each graphical module in AJDSP implements a specific signal processing construct. The

PartObject class contains the parameters and methods for drawing, setting and retrieving the

block data and connections of the block.

Block parameters fall into two main categories: the algorithmic parameters and the block display

parameters. The algorithmic parameters are the input and output variables of the signal

processing algorithms implemented by the module. The input parameters are entered by the user

using the UI of the module and processed in the PartsCalculator class. The calculator computes

the output parameters using the implemented algorithm and returns them to the PartObject

instance. The position of the blocks and the corresponding pins in the workspace are stored in the

27

block display parameters. They are dynamically updated by user actions such as block selection,

block movement, block deletion and establishing connections. These parameters serve to

remember the position of the module in the workspace helping to choose the right blocks to

process user actions.

The Android SDK uses bitmaps for rendering graphical objects into the workspace. A composite

bitmap made up of a rectangular bitmap for the part and circular bitmap for the pins is used to

render the blocks. The module also stores the ego-centric network of the block. When a new

block is connected, it is assigned as a child to the parent block. Any changes occurring in the

parent block is reflected in the corresponding parameters of the child block.

2.4.2 Implementing User Interfaces

The user interface is designed using XML which facilitates the presentation of the application

separated from the code which executes. This enables the modification of the user interface

without changing the application code.

Relative layouts are mainly used in designing the xml layouts. Declaring elements in relative

layouts helps in eliminating the need for nested view groups and reduces the UI hierarchy. Most

of the layouts in AJDSP are constructed using the existing elements such as Linear Layouts,

Relative, Buttons, Spinner and Edit Text. Some of the modules such

as PZPlot, PZPlacement and MIDI require custom user interfaces and implementations handled

in a separate thread. The user interface for the PZ Plot is shown in Fig 2.2.

2.4.3 Event handling

Creation of a graphical simulation involves user action such as movement, placement and

connection of the blocks. Accordingly, the application has capabilities to handle different user

inputs. Response to gesture recognition is handled using the MotionEvent and LongClickListener

28

interfaces provided by the Android SDK. The application mainly implements three gestures;

double tapping to select the input parameters of the bloc, sliding to move the block along with

the connections, and long press to delete the blocks and connections. The ACTION_DOWN,

ACTION_MOVE of the MotionEvent interface and the onLongClick method of the

LongClickListener interface are used to handle the corresponding user actions.

The user interface of the each module is accessed by double tapping of the block. This is

detected by two activations on the ACTION_DOWN pointer within a short time period. The

appropriate block selected by the comparing the coordinates stored in the block display

parameters and the input coordinates. Block movement is performed by placing a finger on the

block and dragging it across the canvas. The block is first selected and then the

ACTION_MOVE pointer is activated. The coordinates of the block is continuously updated

resulting in the movement. Connections and blocks are deleted by using the long press gesture

which triggers the LongClickListener interface. The appropriate parts are selected by comparing

the part coordinates with the input coordinates.

2.6 Performing Simulations

Students can learn DSP concepts by implementing them as simple block diagrams using AJDSP.

An example simulation of a Fast Fourier Transform using AJDSP is described.

The functions are selected through the Function List view accessible by pressing the ‘+’ button

in the main workspace. The Functions List view displays a comprehensive list of functions. The

Signal Generator, FFT and the Plot blocks are selected and added to the main workspace as

shown in Fig 2.4(a). The function parameters of each block can be accessed by double tapping

on the respective blocks and setting the fields to the required values. A connection is established

between two blocks by tapping on the output pin of the first block and then tapping on the input

29

 (a)

(b)

(c)

(d)

Fig 2.4 (a) Placement of the blocks (b) Procedure for block connection (c) Block Diagram for FFT (d) FFT

of a rectangular signal using AJDSP Plot module.

pin of the second block. This is shown in Fig 2.4(b). The blocks are connected to complete the

simulation as shown in Fig 2.4(c). The signal display can be viewed by double tapping on the

Plot block. The Fast Fourier Transform of a rectangular signal is shown in Fig 2.4(d).

30

Chapter 3

SIGNAL PROCESSING FUNCTIONS

In this chapter the functionalities implemented in Android JDSP is described. A total of 25 signal

processing modules have been developed. The modules are divided into signal generation, time

signal processing, frequency signal processing, signal display and interactive demonstrations.

The signal generation blocks generate deterministic, acoustic and random signals to provide a

diverse set of signals for the processing modules. The time and frequency signal processing

modules implement basic DSP algorithms like FFT, Filter design, signal compression and

convolution. The signal display modules are visualization tools for time, frequency and z-domain

signals and are used to visualize the output of the algorithms. The interactive demonstrations try

to put across concepts like the process of convolution and the relation between z and frequency

domain representations using animations and interactive displays. This chapter described each of

the modules in detail. Section 3.1 given a comprehensive list of the available functions. Section

3.2 describes the signal generation functions. Section 3.3 and 3.4 describes the time and

frequency signal processing functions respectively. Section 3.5 describes the signal visualization

modules while Section 3.6 describes the interactive demonstrations.

3.1 List of Implemented Functions

Given below is a comprehensive list of functions presently implemented in AJDSP.

 Signal Generator

 PZ Placement

 Frequency Response

 PZ Plot

 Plot

31

 FFT

 Convolution

 Filter

 Filter Coefficients

 Kaiser Filter

 Parks-McClellan

 FIR Design

 IIR Design

 Adder

 Down Sampler

 Convolution Demo

 MIDI

 DTMF

 PZ2Coefficient

 BW Expansion

 Junction

 Up Sampler.

A detailed illustration of each function is provided below. The underlying signal processing

concepts required for developing the modules were taken from 39. The pin diagram of the

AJDSP functions are shown in Fig 3.1 and 3.2

32

Fig 3.1. Functions in AJDSP : Part 1

Fig 3.2. Functions in AJDSP : Part 2

33

3.2 Signal Generation Blocks

3.2.1 Signal Generator

The Signal Generator is the basic input function of AJDSP. It supports a variety of discrete time-

domain signals. It supports periodic and non-periodic impulses, triangular, delta, exponential,

sinusoid, sinc and random signals. The pulse width, amplitude of the signal and time shift can be

defined by the user. Random signals can have uniform, normal, and Rayleigh distributions with

user specified mean and variance. The pin configuration of the signal generator block is given in

Fig 3.1 and plot of a triangular signal is shown in Fig 3.3.

Fig 3.3. Plot of a triangular signal

34

3.2.2 MIDI

The MIDI signal generator simulates a piano keyboard and generates Musical Instrument Digital

Interface (MIDI) sounds at the frequencies described by the MIDI standard. The sounds are

generated by sequence of pre-recorded tones with a sampling frequency of 8KHz. Fig 3.4

illustrates the user interface of the MIDI signal generator. The left hand plot pane shows the time

domain output of the MIDI player and the right hand plot pane shows the frequency spectrum of

the MIDI block’s output. The pin diagram of the MIDI generator is shown in Fig 3.1.

Fig 3.4. User interface of a MIDI generator.

35

3.1.3 DTMF

This block generates Dual-Tone-Multi-Frequency (DTMF) tones used in landline telephony

applications. This block generates a single tone of length and are generated by sequence of pre-

recorded tones with a sampling frequency of 8KHz. The generated tones can be used in a DSP

simulation. The DTMF view and the corresponding waveform are illustrated in Fig 3.5. The pin

configuration is illustrated in Fig 3.2.

3.3 Signal Channeling Blocks

3.3.1 Mixer

The Mixer block adds or subtracts two input signals and gives the result at the output pin. The

plus/minus options can be input by the user. The pin configuration of the Mixer block is

illustrated in Fig 3.2.

3.3.2 Junction

The Junction block propagates its input signal to its two outputs. The input signal can be either

time-domain, frequency-domain, or filter coefficients. The Junction block essentially allows

other blocks to share the same signal or parameters. The pin configuration of the Junction block

is illustrated in Fig 3.2.

Fig 3.5 (a) DTMF (b) Signal Waveform of dial tone “5”

36

3.4 Time Domain Signal Processing Blocks

3.4.1 Convolution

This module performs time domain convolution of the two input signals. The following

algorithms are implemented in the block.

where x1 and x2 are the input signal and y is the output signal. The pin configuration of the

Mixer block is illustrated in Fig 3.2. The result of convolving two rectangular signals is

illustrated in Fig 3.6.

Fig 3.6. Convolution of two rectangular signals

.

37

3.4.2 Downsampler

This block down–samples the input signal by an integer factor M. The integer factor is input by

the user. The following equation is implemented:

where x is the input signal and y is the output signal. The pin diagram of the convolution block is

given in Fig 3.2.

3.4.3 Upsampler

This block up–samples the input signal by an integer factor L. The integer factor is input by the

user. The following equation is implemented

where x is the input signal and y is the output signal. The pin diagram of the upsampler block is

given at 3.1.

3.5 Frequency Domain Signal Processing Blocks

3.5.1 FFT

The FFT block computes the discrete Fourier transform (DFT), of the input signal using the

Cooley-Tukey algorithm 40. The Cooley-Tukey algorithm is a common fast Fourier transform

algorithm that uses a “divide and conquer” approach to break down a DFT of any composite

size, N, into many smaller DFTs. The possible FFT lengths supported are 8, 16, 32, 64, 128 and

256. The FFT block takes in a signal and computes the magnitude and phase of the Fourier

transform. The frequency domain representation of a triangular signal is given in Fig 3.7. The

block diagram is given at Fig 3.2.

38

Fig 3.7. FFT of a rectangular signal

The equation of the FFT is given below.

3.5.2 Window

This block performs a window operation on the input signal. The users can select from the

following windows: Rectangular, Triangular, Bartlett, Hamming, Hanning, Blackmann and

Kaiser. A mathematical characterization of each of them is given below.

39

 Rectangular Window

w(n) =






1 0 ≤ n ≤ M

0 otherwise

 Bartlett

w(n)=






2n/M 0 ≤ n ≤ M/2

2-2n/M M/2 < n ≤ N

 Hanning

w(n)=






.5 - .5cos (2πn/M) 0 ≤ n ≤ M

 0 otherwise

 Hamming

w(n)=






.54 - .46cos (2πn/M) 0 ≤ n ≤ M

 0 otherwise

 Blackmann

w(n)=






.42 - .5cos (2πn/M) + .08cos (4πn/M) 0 ≤ n ≤ M

 0 otherwise

The pin diagram of the window function is shown in Fig 3.1.

40

3.5.3 Filter

A digital filter which alters the input signal according to the numerator and denominator

coefficients has been implemented. The transfer function characterizes the filter and is composed

of the numerator and denominator coefficients which are defined in Equation in the z-domain.

where a and b are the coefficients of the filter. The order of the filter is the greater of N or M.

The pin diagram of the Filter function is given in Fig 5.17. The impulse response of a filter with

transfer function is shown in Fig 3.8

Fig 3.8. Impulse response of a filter with

41

Fig 3.9. Input menu of filter coefficient block.

3.5.3 Filter Coefficient

The Filter Coefficients block acts as an input to the filter block and sets the coefficients of the

transfer function. AJDSP has the capability to add a maximum of 11 filter coefficients. The input

menu to the filter is shown in Fig 3.9. The pin diagram is given by Fig 3.2.

3.5.4 Kaiser

This block designs Kaiser FIR filters based on the windowing method. The design process

involves calculating the Fourier series of the ideal filter and then multiplying it with a Kaiser

window that best fits the filter specifications. The module takes filter type, cut off frequencies

and tolerances for the pass and stop bands. The parameter window of the Kaiser Filter is shown

in Fig 3.10 .The module implements the following equation.

42

The Kaiser Window is given by

w(n)=






I0 (m,β)/ I(β) 0 ≤ n ≤ M

 0 otherwise

Where I0 represents the zeroth order modified Bessel function. Parameter M represents the

length of the window. Parameter β controls the shape of the Kaiser window. It is a rectangular

window when β equals to 0. The shape of the window changes, as β increases. The β parameter

is given by the below equation.

Where is the transition band of the filter and A is equal to the smaller of PB and SB.

w(n)=








.1102 (A-8.7) A > 50

 0.5842 (A-21)
0.4

 +0.07866 (A-21) 21 ≤ A ≤ 50

 0 A < 21

3.5.5 Parks McClellan

This block designs FIR filters using the Parks-McClellan algorithm with min-max

implementation. Parks-McClellan designs FIR filters by minimizing the maximum difference

between the impulse response of the designed filter (Hd) and the ideal filter for a certain filter

order M (H). This is mathematically described in the following equation. The filter is designed

by minimizing the following expression

2

43

Fig 3.10. Input Menu of a Kaiser filter

Fig 3.11. Frequency response of a bandpass filter

44

The pin diagram of the Parks McClellan block is shown in Fig 5.23. The frequency response of a

bandpass Parks-McClellan filter with cutoff with Wp1=0.4, Ws1=0.25, Wp2=0.6, Ws2=.75 is

shown in Fig 3.11.

3.5.6 FIR Design

This function designs a finite impulse response (FIR) filter based on the windowing method42.

This method is a technique implemented by representing the frequency response of an ideal filter

in a Fourier series and then truncating and smoothing the response using a window. Window

type, filter type, cutoff frequencies and filter order are the parameters input by the user. The

frequency response of a low pass filter with a Bartlett window and cut off frequency of .2π is

shown in Fig 3.12 and user interface is shown in Fig 5.13. The pin diagram of the block is shown

in Fig 3.2.

Fig 3.12. Frequency response of a low pass filter with bartlett window.

45

3.5.7 IIR Design

The block designs an infinite (length) impulse response (IIR) filter based on the bilinear

transformation 42. Butterworth, Chebyshev -I & -II, and Elliptic filters are supported. The block

diagram is shown in Fig 3.2. The frequency response of a low pass Chebyshev II filter is shown

below. The IIR filter are determined by the normalized passband cutoff frequency Wp, gain at

passband edge PB, normalized stopband cutoff frequency Ws and gain at stopband edge SB. The

mathematical representations of highpass filters are given byButterworth

 Chebyshev I

Fig 3.13. User interface of FIR Design block

46

 Chebyshev II

Where is the Mth order Chebyshev’s polynomial

 Elliptic

where UM the Jacobian elliptic is function also called as the Rational Normalized function. The

user interface showing a Chebyshev II high pass filter with Wp1=.4 and Ws1=.2 is given by Fig

5.14. The pin diagram of an IIR filter is given in Fig 3.2.

Fig 3.14. User interface of an IIR Design block.

47

3.5.8 Bandwidth Expansion

This function performs the Bandwidth Expansion of a filter. The bandwidth coefficient is taken

as the input and this factor is multiplied to the z domain transformation. The transfer function of

the input is

This block multiplies the z domain by a factor of g which and produces an output whose transfer

function is

where g is the factor of expansion. The pin diagram of the Bandwidth expansion filter is given by

Fig 3.2.

Fig 3.15. User interface of PZ2Coefficient block.

48

3.5.9 PZ2Coeff

This block enables the user to dynamically add poles and zeros as conjugate pairs on a PZ plane

and calculates the corresponding filter coefficients. The user interface is shown in Fig 3.15. The

users can move the poles and zeros around and the block calculates the corresponding filter

coefficients. Capabilities to add zeros, poles and reset the pole zero diagram are supplied. The

pin diagram of the block is shown in Fig 3.2

3.5 Signal Display Blocks

3.5.1 Plot

The plot function is the primary time domain signal display function of AJDSP. It renders the

input signals to a two dimensional graph.

Fig 3.16. FFT of a rectangular signal illustrated using plot.

49

The function displays magnitude, phase, real and imaginary parts of the signal according to user

input. The signal can be plotted in both linear and dB scales. Values of the signal can be viewed

by clicking the Values button on the right hand corner of the top bar. The zoom function of the

plot block allows the user to examine the property of the signals in different resolutions. The plot

of the FFT of a rectangular signal is plotted in dB and is shown in Fig 3.16.

3.5.2 Frequency Response

This function is the primary frequency domain display function of AJDSP. It takes filter

coefficients as the input, calculates the frequency spectrum of the signal and displays it using the

Activity of the Plot Part. Options for calculating the phase and the magnitude of the signal are

provided and the selected option is sent to the plot activity to be displayed.

Fig 3.17. Frequency response of a high pass Chebyshev II filter

50

3.5.3 PZ Plot

The magnitude of the frequency response for a low pass Parks McClellan Filter with cut-off

frequency of .2 is shown in Fig 3.17. This function displays the z-domain representation of a

given signal. It calculates the position of the poles and zeros by applying the z domain

transformation to the input filter coefficients. It displays the poles and zeros to the in a z-plane as

shown in Fig 3.18. The poles and zeros are displayed by clicking the “Values” button on the

right of the top bar. The pin diagram of the frequency response module is shown in Fig 3.1.

3.6 Demonstrations

3.6.1 Convolution Demo

The demo presents a graphical animation of the process of convolution. Both continuous and

discrete convolution is supported. The user can select from causal and non-causal

rectangular, triangular, sinc, delta and exponential input signals. The animation is rendered using

a SurfaceView object controlled by a thread. The animation is rendered creating a list of signals

which is sequentially let into the SurfaceView window. This demo takes two signals and

illustrates the process of graphical convolution through attractive animations.

3.6.2 PZ Placement Demo

This demo is meant to demonstrate the relationship between z-domain and frequency domain.

The user interface for this demonstration is shown in. Poles and zeros can be added on the left

panel and the magnitude and phase of the frequency response is plotted in the right hand panel.

The users can move the poles and zeros around and examine the corresponding changes in the

frequency response. The placement panel is created using a SurfaceView and controlled by a

Thread Object.

51

Chapter 4

LABORATORIES AND ASSESSMENTS

In this chapter the evaluation methodology and the insights from the feedback obtained is

described. Two workshops were conducted, one for graduate and the other for undergraduate

students. The goal of the graduate student workshop was primarily to assess the robustness and

the accuracy of the software while the undergraduate workshop was conducted to assess the

ability of the application to foster understanding of signal processing concepts. The evaluation

also assessed the interactive capabilities of the AJDSP framework and its ability to sustain

student interest. General assessments about the aesthetics and the usability can be incorporated to

obtain an overall subjective opinion about the application. The impact of the designed

laboratories on student understanding of DSP will also be tested. Furthermore, the exercise

compared user experience between desktop and mobile versions of JDSP. Command line and

graphical interfaces for signal processing applications was also compared with regards to ease of

use and their ability to foster conducive learning environments. The pedagogy adopted for the

use of AJDSP include the following: (a) lecture on the pertinent signal processing concepts, (b) a

pre-quiz on the concepts involved in the laboratory exercise, (c) simulation exercises and

laboratories using AJDSP, (d) a post-quiz to test student understanding of the concepts. This

chapter is organized as follows. Section 4.2 brief descriptions of the exercises and briefly states

the objective of each exercise. Section 4.3 describes the evaluation results and discusses insights

gained. Section 4.4 discusses the overall feedback obtained from the evaluations and planned

improvements for the software.

52

4.2 Laboratories

4.2.1 Discrete and Continuous Convolution

This exercise introduces the concepts of continuous and discrete time convolution and enables

students to visualize the convolution demonstrations. The Convolution Demo block helps the

students to visualize the process of convolution through an animated demonstration. The effect

of causality in continuous and discrete convolution is also demonstrated effectively. For a given

set of input signals, the Convolution Demo block animates the convolution procedure and plots

the resulting impulse response on the same plot screen. The students are asked to make

observations of both continuous and discrete convolutions. Two sets of signals: (a) causal

triangular and non-causal triangular, and (b) causal delta and causal exponential are examined for

discrete convolution while another two sets of signals i.e. (a) non-causal rectangular and non-

causal rectangular (b) non-causal exponential and non-causal triangular are used as input signal

for continuous signals. This exercise evaluates the effectiveness of the convolution demo block

in helping students understand the process of convolution.

4.2.2 Fast Fourier Transform

The second exercise focuses on frequency and z-domain representations. This is aimed at

evaluating the utility of FFT and PZ placement modules of AJDSP. The effectiveness of

different windows in resolving the frequency spectrum of a signal is studied in the first part. The

input signal is composed by adding two sinusoids with closely spaced frequencies. Different

types of windows, such as Rectangular and Bartlett, are applied to the input signal. The resulting

signal is then transformed to the frequency domain using

53

Fig 4.1. Block diagram for comparing signal resolution characteristics for different

windows.

the FFT block to compare the resolution capabilities of the two windows. The block diagram is

illustrated in Fig 4.1. Students were asked to compare the resolution capabilities of the two

windows and relate the window properties to resolution capabilities. The second part had two

main aims: (a) to evaluate the PZ Placement module. (b) to compare desktop and mobile

environments regarding ease of use and support of conducive learning environments. Students

were asked to design a low pass filter using 3 sets of zeros and 2 sets of poles. This exercise was

performed both on desktop using JDSP and mobile tablets using AJDSP and students were asked

to compare their experience. The results of this evaluation are presented in Section 4.2.

4.2.3 Filter Design

The third exercise focuses on filter design. The main objectives of this exercise are (a) evaluate

the filter design modules (b) measure the capability of the software to support learning of filter

design (c) compare the command line and graphical programming interfaces for signal

processing applications on mobile devices. The first part focuses on IIR filter design and students

are asked to design low pass filters using IIR design block. Filter specifications including the

pass-band and stop-band cutoff frequencies and tolerances was provided and the filter was

designed using Butterworth, Chebyshev 1, Chebyshev 2 and Elliptic filters.

54

Fig 4.2: Bandpass filter design using AJDSP.

Students examined and compared the different characteristics of the filters including pass and

stop band ripples and phase characteristics. The second part focuses on FIR filter design and

compares graphical programming interfaces to command line interfaces in mobile devices. The

design of band pass FIR filters are first introduced and students were asked to design a 14 order

band pass filter with a rectangular window using AJDSP with the block diagram shown in Fig .

A code snippet of Matlab shown in Fig was given and students were asked to execute it using the

Matlab app for Android. The two modes of programming was then compared using the following

criterion (a) ease of use b) consistency with previously known methods c) intuitiveness of the

user interface d) supporting learning environments. The results of these evaluations are presented

in Section 4.3.

4.3 Evaluations

A detailed evaluation methodology was designed to evaluate the application. The evaluations are

based on the exercises presented in 4.2 and test various aspects of the software such as

educational value addition, robustness and usability of the software. Two workshops were held

to evaluate the application, one for graduate students who have taken an initial course in DSP

55

and the other for undergraduate students who are presently undergoing a senior level DSP class.

Both the workshops followed the pedagogy shown in Section 4.1 but the objectives of each

workshop differed. The objective of the workshop to graduate students was mainly to test the

robustness and usability of the application while giving less importance to education value

gained. The workshop for the undergraduates on the other hand laid emphasis on the educational

value gained by using the software. I now describe both the workshops and the feedback

obtained.

4.3.1 Workshop for Graduate Students

The workshop for graduate students was attended by 20 students. Students were mainly PhD

students and Post Doctorals working in signal processing and related fields such as

communication, machine learning, computer vision and audio processing. These students had the

experience to gauge the effectiveness of the application in teaching DSP concepts and to give

valuable feedback on the robustness and usability of the application. The questionnaires were

designed to obtain feedbacks on three main categories: The ability of the application to assist in

DSP education, the usability of the application and the efficiency and robustness of the

application. The feedback is divided into these categories and is summarized in Fig 4.3.

The questions were followed the Likert scale formatting style 44 were asked in form of a

statement having five possible responses (a) Strongly Agree (b) Agree (c) Neutral (d) Disagree

(e) Strongly disagree. A set of questions were asked on each of the mentioned areas and the

average responses were plotted in Fig 4.3. Questions meant to test the educational value of the

software focused on the concepts put forth in the exercises and obtained feedback on the

effectiveness of the application in teaching them. The feedback is shown in Fig 4.3 (a) and it

56

(a) (b)

(c) (d)

Fig 4.3 Evaluations with Graduate students on (a) Educational value (b) User Interface (c) Robustness (d)

Satisfaction of Speed

(a)
(a) (b)

(c) (d)

Fig 4.3 Evaluations with Graduate students on (a) Educational value (b) User Interface (c) Robustness (d)

Satisfaction of Speed

(b)

(a) (b)

(c) (d)

Fig 4.3 Evaluations with Graduate students on (a) Educational value (b) User Interface (c) Robustness (d)

Satisfaction of Speed

(c)

(d)

Fig 4.3 Evaluations with graduate students on (a) Educational value (b) User Interface (c)Robustness (d)

Satisfaction of Speed

indicates that the application will be highly effective in teaching basic DSP concepts like

convolution, Fourier transform and filtering. Questions related to the usability of the application

focused on the ease of use, screen size and the visual appeal of the user interface. The feedback

is plotted in Fig 4.3 (b) and shows that the user interface is largely satisfactory. Most of the

problems faced was related to issues in proportion of UI components to the screen size and was

resolved subsequently. Questions related to robustness focused on the system stability, ease of

adaptability to the environment and processing speed of the application. The feedback is

57

illustrated in Fig 4.3 (c) and (d) and it shows that the application is robust and has satisfactory

processing speed.

4.3.2 Workshop for Undergraduate Students

The workshop for undergraduate students was attended by 15 people. The attendees were mainly

senior undergraduate presently taking an introductory Digital Signal Processing course in

Arizona State University (EEE 407). The students had been introduced to the basic concepts of

DSP such as convolution, filter design and frequency transformation. The objectives of this

workshop were as follows; 1) Evaluate the effectiveness of the application in teaching signal

processing concepts to students 2) Compare the suitability of command line and graphical

programming interfaces in signal processing education 3) Test the robustness of the application.

Questions were in a similar format as the workshop held for graduate students. Two additions to

the previous format was made to fulfill the workshop objectives: 1) the questions of the

workshop was more detailed and were designed to guide the students to the underlying concepts

behind the simulations 2) an additional exercise was designed asking the students to design band

pass filters in MatLAB and AJDSP . This was designed in order to compare the suitability of

command

Fig 4.4: Evaluations with undergraduate students on (a) User interface (b) Application

speed.

58

line and graphical interfaces for signal processing educational laboratories for mobile devices .

The evaluations for the suitability of the user interface and robustness of the application provided

by the undergraduates is presented in Fig 4.4. The satisfaction of the students on the user

interface has considerably improved from the evaluations obtained from the graduate workshop.

This may be attributed to the improvements done to the software by incorporating the feedback

from the graduate workshop. The students were asked to evaluate the effectiveness of the

software in teaching basic signal processing concepts like filtering, convolution and frequency

domain transformations. The questions were formatted similar to the questions on robustness and

the responses are shown in Fig 4.5. The application was effective in putting across DSP concepts

to students. The effectiveness of the application in teaching convolution was especially highly

rated. This can be attributed to the interactive convolution animation. Students were also asked to

compare command line programming interfaces, provided MatLAB and graphical programming

interfaces provided in AJDSP and asked their preference for DSP educational applications on

mobile devices. Graphical programming interfaces were unanimously chosen by the students.

The reasons given were (a) knowledge of the syntax is required in the case of command line

interfaces (b) graphical programming is more intuitive (c) understanding of the concepts is easier

in graphical programming interfaces. (d) working internet connection is required for MatLAB to

run on mobile devices.

59

In order to measure the effectiveness of the application of the application in putting across

different DSP concepts, the answers given in pre-quiz and the post-quiz was compared and

illustrated in Fig 4.6. Students achieved an overall improvement of 11.36% after using the

application. The effectiveness was also measured across different concepts like FFT,

Convolution, Filtering and z-transform. Improvements in student performance were observed in

all concepts with FFT and convolution registering the highest improvement of nearly 30% and

25% respectively.

(a)

(b)

(c)

Fig 4.5: Suitability of the application in teaching DSP concepts (a) Filtering (b) FFT (c) Convolution

60

Fig 4.6: Effectiveness in improving DSP understanding.

61

Chapter 5

CONCLUSIONS AND FUTURE DIRECTIONS

Technological education can be hugely benefited from the emergence of mobile phones. These

devices provide mobility, good processing capabilities and an intimate learning environment.

Employment of graphical programming enables the student to concentrate on the underlying

concepts rather than the programming aspects. There have been previous attempts at building

applications for different levels of education. In this thesis, AJDSP, a DSP education application

developed for the Android platform is introduced. AJDSP is a graphical programming language

directed at undergraduate and graduate signal processing students. It features an exhaustive

implementation of basic DSP algorithms, an intuitive user interface and compelling signal

visualization tools. It has been developed as a native application of Android and makes use of the

device processors for analysis and visualization. AJDSP can be used as a supplement to

traditional classroom education and to facilitate self-learning.

The thesis first surveys various existing applications and brings out the need for a signal

processing educational application for mobile devices. AJDSP is then introduced as a graphical

programming application for Android operating system aimed at DSP educators and students.

The main features of AJDSP including signal processing modules, interactive animations

focusing on particular concepts and the intuitive user interface were then explained. The

architecture of AJDSP was then described as a derivative of the Model-View-Controller

paradigm optimized for the Android platform. The implementation process involving algorithm

implementation, user interface design,

62

handling user actions and maintaining compatibility with the wide range of Android devices was

discussed. Implementation of various DSP algorithms on AJDSP was then explained. Algorithms

were divided into signal generation, signal connection, time and frequency signal processing,

signal display and demonstration modules. The applications along with the concepts depicted in

each module are described. Two workshops were conducted, one for graduate signal processing

students and another for undergraduate DSP students presently taking a senior level DSP course.

The objectives of the workshop were to evaluate the user experience, robustness and the

potential learning benefits that can be derived from the application. The workshop showed the

app was robust and the user interface was reasonably easy to use and intuitive. Feedback from

the workshop was obtained to determine improvements and possible future directions for

application development.

5.2 Future Directions

5.2.1 Application in Health Monitoring

Mobile devices can act as a useful personal health monitoring devices and as educational tools

for students of such disciplines. A number of existing applications explore the potential

applications in health monitoring. Sensors present in mobile devices can collect various signals

useful for health monitoring such as ECG, skin temperature and irregularities on the body

surface. Signal processing algorithms implemented in AJDSP can be used to derive useful

insights from these signals. AJDSP can be used to build non-invasive physiological signal

monitoring tools. The tools can be used to introduce concepts in wireless sensing for health

monitoring to students, and demonstrate the application of DSP concepts to health monitoring

systems. The relation between human activity and health can be demonstrated using different

signal analysis tools. For instance, parameters such as pulse rate, blood pressure, oxygen

63

saturation, and skin conductance can be shown to vary based on physical activity and stress.

These extensions can be used to reach a wider set of students and also to broaden the application

areas of the software.

5.2.2 Extension to other domains.

The existing function modules can be extended to applications related to speech and image

processing. The microphone embedded in the device can be used to collect sound and voice

signals. Simple filtering and Fourier transform can be used to demonstrate basic characteristics

of audio signals. Various concepts like sound compression, spectral distribution and

psychoacoustic modeling can be demonstrated to graduate students specializing in speech

processing.

Extensions to other domains such as image processing, computer vision and social networks can

serve to reach a wider audience of educators and students and can also use to show the

application of basic signal processing algorithms in diverse areas.

64

REFERENCES

[1] Holliday, W. G., Harvey, D. A. 1976. “Adjunct labeled drawings in teaching physics to

junior high school students”. Journal of Research in Science Teaching. (Vol 13): 37–43.

[2] Thornton, P., Houser, C. 2004. “Using mobile phones in education”. IEEE International

Workshop Wireless and Mobile Technologies in Education: 3 – 10.

[3] Chou, C. 2003. “Interactivity and interactive functions in web-based learning systems: a

technical framework for designers”. British Journal of Educational Technology (Vol.34): 265–

279.

[4] ThinkLABS. 2009. “CiMPLE”. http://www.thinklabs.in/.

[5] Blossom, E. “GNURadioCompanion”. http://gnuradio.org/redmine/projects/gnuradio/wiki

/GNURadioCompanion.

[6] Kamen, Edward W. 1999. Industrial Controls and Manufacturing: Academic Press.

[7] National Instruments. 1986. “LabVIEW”. http://www.ni.com/labview/.

[8] MathWorks.Inc.1984. “Simulink”. http://www.mathworks.com/products/simulink/.

[9] Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K.,

Millner, A., Rosenbaum, E., Silver, J., Silverman, B., Kafai, Y.2009. “Scratch: Programming for

All”. Communications of the ACM (November 2009).

[10] MIT Media Lab.2006. “Scratch”. http://scratch.mit.edu/.

[11] Spanias, A., Atti, V.2005. “Interactive online undergraduate laboratories using j-dsp” IEEE

Transactions on Education (Vol. 48, No 4):735– 749.

[12] Shaffer, J. Hamaker, J. Picone, J.1998. “Visualization of signal processing concepts”. IEEE

International Conference on Acoustics, Speech and Signal Processing.(Vol.3): 1853,1856.

[13] Welch,T.B. Morrow,M.G. Wright,C.H.G. and Ives,R.W. 2004. “commDSK: a tool for

teaching modem design and analysis”. ASEE Computer Education Journal. (Vol. XIV): 82–89.

[14] Sicard, E, ni2designs.2008. “MentorDSP”. http://www.mentordsp.com/.

[15] MathWorks.Inc.1983. “MATLAB”. http://www.mathworks.com/products/matlab/.

[16] Clausen,A., Spanias,A., Xavier, Tampi,M.1988. “A java signal analysis tool for signal

processing experiments”. IEEE International Conference on Acoustics, Speech, and Signal

Processing (vol. 3): 1849–1852.

http://www.thinklabs.in/
http://www.ni.com/labview/
http://www.mathworks.com/products/simulink/
http://scratch.mit.edu/
http://www.mentordsp.com/

65

[17] Spanias,A. Chakravarthy,N., Song,Y. and Iasemidis,L.2004. “Teaching genomics and

bioinformatics to undergraduates using J-DSP”. ASEE Annual Conference and Exposition.

[18] Ramamurthy, K., Spanias, A., Hinnov, L., Ogg, J. 2008. “On the use of J-DSP in earth

systems”. ASEE Annual Conference and Exposition.

[19] Santucci, R., Gupta, T., Shah, M., Spanias, A.2010. “Advanced functions of JavaDSP for

use in electrical and computer engineering courses”. ASEE Annual Conference and Exposition.

[20] Kwon, V. Berisha, V. Atti, V, Spanias, A. 2009. “Experiments with sensor motes and Java-

DSP”. IEEE Transactions on Education (Vol. 52 No. 2):257–262.

[21] Taylor,C. 2012. “Smartphone Sales Overtake PCs for the First Time [STUDY]”.

http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/.

[22] Android.2012. “Google Play hits 25 billion downloads”.

http://officialandroid.blogspot.ca/2012/09/google-play-hits-25-billion-downloads.html.

[23] Google Play.2012. “Google Play App Installs” http://3.bp.blogspot.com/-

Y7ycBYyZGco/UGLZa5az3_I/AAAAAAAAJvw/IXNgxKGlU_8/s1600/25%2BBillion%2BGra

ph.jpg.

[24] Soloway,E. Norris,C. Blumenfeld,P, Fishman,B, Krajcik,J., Marx,R.2001. “Log on

education: Handheld devices are ready-at-hand”. Communications of ACM. (Vol. 44, No. 6):15–

20.

[25] Thornton,P., Houser,C. 2005. “Using mobile phones in english education in japan”. Journal

of Computer Assisted Learning (Vol. 21, no. 3): 217–228.

[26] Potts,J., Moore,N. Sukittanon,S. 2011. “Developing mobile learning applications for

electrical engineering courses”. Proceedings of IEEE in Southeastcon: 293 –296.

[27] Yerushalmy, J., Ben-Zaken,O.2004. “Mobile phones in education: A case of mathematics”.

The Institute for Alternatives in Education, University of Haifa, 2004.

[28] GK Soft. “Electrical Engineering”.

https://play.google.com/store/apps/details?id=an.ElectricalEng.

[29] MobileReference. “Signal Processing Study Guide”.

https://play.google.com/store/apps/details?id=com.mobilereference.signal.

[30] AndroiDSP. “AndroSpecto”.

https://play.google.com/store/apps/details?id=com.augury.androspectro \

http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/
http://officialandroid.blogspot.ca/2012/09/google-play-hits-25-billion-downloads.html
http://3.bp.blogspot.com/-Y7ycBYyZGco/UGLZa5az3_I/AAAAAAAAJvw/IXNgxKGlU_8/s1600/25%2BBillion%2BGraph.jpg
http://3.bp.blogspot.com/-Y7ycBYyZGco/UGLZa5az3_I/AAAAAAAAJvw/IXNgxKGlU_8/s1600/25%2BBillion%2BGraph.jpg
http://3.bp.blogspot.com/-Y7ycBYyZGco/UGLZa5az3_I/AAAAAAAAJvw/IXNgxKGlU_8/s1600/25%2BBillion%2BGraph.jpg
https://play.google.com/store/apps/details?id=an.ElectricalEng

66

[31] Electron Chaos. “Speedy Spectrum Analyzer”.

https://play.google.com/store/apps/details?id=com.electronchaos.SpeedySpectrumAnalyzer.

[32] MathWorks.Inc. “Matlab Mobile”.

https://play.google.com/store/apps/details?id=com.mathworks.matlabmobile.

[33] Liu,J, Hu,S, Thiagarajan,J.J, Zhang,X. Ranganath,S., Banavar,M.K, Spanias,A.2012.

“Interactive DSP Laboratories on Mobile Phones and Tablets”. IEEE International Conference

on Acoustics, Speech, and Signal Processing.

[34] Hu,S. ,Liu.J, Spanias,A. Thiagarajan,J.J, Ramamurthy,K.N., Zhang,X., Ranganath,S.,

Banavar,M.K.2012. “A Mobile DSP Simulation App for Design, Testing and Education”. IEEE

International Conference on Emerging Signal Processing Applications.

[35] Ranganath, S. Thiagarajan, J.J.,Ramamurthy, K.N., Hu,S. Banavar, M. Spanias, A.2012.

“Work in progress: Performing signal analysis laboratories using Android devices”. Frontiers in

Education Conference: 1, 2.

[36] Ranganath, S. Thiagarajan, J.J.,Ramamurthy, K.N., Hu,S. Banavar, M. Spanias, A.2011.

“Undergraduate Signal Processing Laboratories for the Android Operating System”. Frontiers in

Education Conference.

[37] Android Developers. “Android Software Development Kit”.

http://developer.android.com/sdk/index.html.

[38] Buschmann, F, Meunier,R. Rohnert,H., Sommerlad,P., Stal, M. 1996. Pattern-Oriented

Software Architecture: Wiley.

[39] Spanias,A. 2007. Digital Signal Processing:An Interactive Approach: Lulu.

[40] Cooley,J., Tukey,J. 1965. “An algorithm for the machine calculation of complex fourier

series” Mathematics of Computation (vol. 19, no. 90): 297–301.

[41] Likert, R. 1932. "A Technique for the Measurement of Attitudes". Archives of Psychology

(140): 1–55.

[42] Ranganath,S. Rajan, D. Spanias,A. “AJDSP Signal Analysis Workshop”

http://jdsp.engineering.asu.edu/AJDSP_Workshop_2013/index.html

https://play.google.com/store/apps/details?id=com.electronchaos.SpeedySpectrumAnalyzer
https://play.google.com/store/apps/details?id=com.mathworks.matlabmobile
http://developer.android.com/sdk/index.html

