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ABSTRACT 

 

Improving the quality of Origin-Destination (OD) demand estimates increases the 

effectiveness of design, evaluation and implementation of traffic planning and 

management systems. The associated bilevel Sensor Location Flow-Estimation problem 

considers two important research questions: (1) how to compute the best estimates of the 

flows of interest by using anticipated data from given candidate sensors location; and (2) 

how to decide on the optimum subset of links where sensors should be located. In this 

dissertation, a decision framework is developed to optimally locate and obtain high 

quality OD volume estimates in vehicular traffic networks. The framework includes a 

traffic assignment model to load the OD traffic volumes on routes in a known choice set, 

a sensor location model to decide on which subset of links to locate counting sensors to 

observe traffic volumes, and an estimation model to obtain best estimates of OD or route 

flow volumes.  

The dissertation first addresses the deterministic route flow estimation problem 

given apriori knowledge of route flows and their uncertainties. Two procedures are 

developed to locate ―perfect‖ and ―noisy‖ sensors respectively. Next, it addresses a 

stochastic route flow estimation problem. A hierarchical linear Bayesian model is 

developed, where the real route flows are assumed to be generated from a Multivariate 

Normal distribution with two parameters: ―mean‖ and ―variance-covariance matrix‖. The 

prior knowledge for the ―mean‖ parameter is described by a probability distribution. 

When assuming the ―variance-covariance matrix‖ parameter is known, a Bayesian A-

optimal design is developed. When the ―variance-covariance matrix‖ parameter is 

unknown, Markov Chain Monte Carlo approach is used to estimate the aposteriori 
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quantities. In all the sensor location model the objective is the maximization of the 

reduction in the variances of the distribution of the estimates of the OD volume.  

Developed models are compared with other available models in the literature. The 

comparison showed that the models developed performed better than available models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

I dedicate this dissertation to my lovely dad, mom and Siyao. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

ACKNOWLEDGMENTS 

 

I want to thank my advisor – Dr. Pitu Mirchandani for his mentoring, guidance 

and support through the course of my Ph.D. study. My career has been and will be 

continuously influenced by his dedication to research, his passion for the field of 

operations research, and his caring for students.  

Thanks go as well to members of my dissertation committee, Dr. Alan Murray, Dr. 

Ram Pendyala, Dr. George Runger and Dr. Muhong Zhang. I want to thank them for their 

participation, supporting and constructive comments for my research proposal. I would 

also like to thank Dr. Monica Gentili. I have benefited from the constructive interactions 

with her on the research related to sensor location.    

Very special thanks go to my colleague and friend, Zhuoyang Zhou, who was 

supportive through my Ph.D. study. I was always amazed with her talents and kindness.  

I would like to express my deep appreciation to my beloved husband, Siyao Xu 

for his unconditional support throughout my studies. I must thank my parents for their 

long time encouragement and support.  

 

 

 

 

 

 

 

 



v 
 

TABLE OF CONTENTS 

Page 

LIST OF FIGURES ......................................................................................................... viii 

LIST OF TABLES .............................................................................................................. x 

CHAPTER 

 1  INTRODUCTION ............................................................................................ 1 

1.1  Motivation .............................................................................. 1 

1.2  Research Overview ................................................................ 4 

1.3  Research Contributions ........................................................ 13 

1.4  Dissertation Organization .................................................... 15 

 2  LITERATURE REVIEW ............................................................................... 17 

2.1  Type of Sensors.................................................................... 17 

2.2  Traffic Assignment Models ................................................. 20 

2.3  OD Demand Estimation Models .......................................... 23 

2.4 Sensor Location Models ...................................................... 29 

 3  LOCATING SENSORS TO ESTIMATE ROUTE FLOWS USING DATA 

FROM NOISE-FREE SENSORS AND ASSUMING AN 

UNCERTAINTY INTERVAL FOR PRIOR MEANS................. 40 

3.1  Problem Description ............................................................ 40 

3.2  Notation................................................................................ 40 

3.3  Route Flow Estimation Model ............................................. 43 

3.4  New Location Model Formulation....................................... 44 

3.5 Algorithm ............................................................................. 46 



vi 
 

CHAPTER                                                                                                                      Page 

3.6  Experimental Results ........................................................... 47 

3.7  Chapter Conclusions ............................................................ 54 

 4  LOCATING SENSORS TO ESTIMATE ROUTE FLOWS USING DATA 

FROM NOISY SENSORS AND ASSUMING NORMAL 

DISTRIBUTIONS FOR PRIOR UNCERTAINTIES .................. 56 

4.1  Introduction and Problem Description ................................. 56 

4.2  Bayesian Linear Model of Deterministic Route Flows........ 64 

4.3  Locating Sensors to Maximize Variance Reduction ............ 69 

4.4  Algorithm ............................................................................. 70 

4.5 Experimental Result ............................................................. 73 

4.6  Chapter Conclusions ............................................................ 84 

 5  LOCATING SENSORS TO ESTIMATE STOCHASTIC ROUTE FLOWS 

WITH KNOWN VARIANCE AND ASSUMING NORMAL 

DISTRIBUTIONS FOR PRIOR UNCERTAINTIES .................. 86 

5.1  Introduction and Problem Description ................................. 86 

5.2  Hierarchical Linear Bayesian Model of Stochastic Route 

Flows .................................................................................... 92 

5.3  Sensor Location Model for Stochastic Route Flow Mean 

Estimation ............................................................................ 97 

5.4  Algorithm ........................................................................... 101 

5.5  Experimental Result ........................................................... 106 

5.6  Chapter Conclusions .......................................................... 122 



vii 
 

CHAPTER                                                                                                                      Page 

 6  LOCATING SENSORS TO ESTIMATE STOCHASTIC ROUTE FLOWS 

WITH UNKNOWN VARIANCE AND ASSUMING NORMAL 

DISTRIBUTION FOR PRIOR UNCERTAINTIES .................. 124 

6.1  Introduction ........................................................................ 124 

6.2  Hierarchical Linear Model for Stochastic Route Flow 

Estimation .......................................................................... 128 

6.3  Bayesian Computation for Posterior Route Flow Mean .... 129 

6.4  Sensor Location Modeling for Stochastic Route Flow 

Estimation .......................................................................... 135 

6.5  Experimental Result ........................................................... 138 

6.6  Chapter Conclusions .......................................................... 145 

 7  SUMMARY AND FUTURE RESEARCH .................................................. 148 

7.1  Summary of Research Results ........................................... 148 

7.2  Directions of Future Research ........................................... 151 

REFERENCES ............................................................................................................... 154 

 

 

  



viii 
 

LIST OF FIGURES 

Figure               Page  

 1   Relationship between traffic assignment and OD estimation models ................... 5 

 2   A network example with 6 nodes and 6 links ........................................................ 5 

 3  Illustration of Sensor Location Flow-Estimation Problem .................................. 12 

 4  Dissertation Organization .................................................................................... 15 

 5  Relationship among the seven categories of existing sensor location models .... 38 

 6  Procedure for the computational experiments for RVR-perfect .......................... 48 

 7  Topologies of experiment networks .................................................................... 50 

 8  Procedure for the computational experiments for RVR-noisy ............................ 75 

 9  Route flow posterior variance using RVR-noisy in network 1 ............................ 80 

 10   Route flow posterior variance using RVR-noisy in network 2 ............................ 80 

 11  Procedure for the computational experiments for Chapter 5 ............................. 108 

 12  Relative Posterior Variances from Bayesian Estimation when Link 

Measurements are Independent (Network 1) ..................................................... 113 

 13  Relative Posterior Variances from Bayesian Estimation when Link 

Measurements are Independent (Network 2) ..................................................... 114 

 14  Relative SSE from Bayesian Estimation when Link Measurements are 

Independent (Network 1) ................................................................................... 116 

 15   SSE from Bayesian Estimation when Link Measurements are Independent 

(Network 2) ........................................................................................................ 117 

 16  Relative Posterior SSE from Bayesian Estimation when Link Measurements are 

Independent (Houston Network) ....................................................................... 118 



ix 
 

Figure               Page  

 17  Posterior SSE from Bayesian Estimation when Link Measurements are 

Independent and Observe a Few Links (Houston Network) ............................. 119 

 18  Relative Posterior SSE Relative SSE from Bayesian Estimation when Link 

Measurements are Dependent (Network 1) ....................................................... 121 

 19  Relative Posterior SSE Relative SSE from Bayesian Estimation when Link 

Measurements are Dependent (Network 2) ....................................................... 121 

 20  Posterior SSEs from Bayesian Estimation when Link Measurements are 

Dependent and Observe a Few Links (Houston Network) ................................ 122 

 21  Procedure for the computational experiments for Chapter 6 ............................. 141 

 22  Posterior SSEs Estimated using MCMC Method with Good Prior for Φ ......... 144 

 23  Posterior SSEs Estimated using MCMC Method with Bad Prior for Φ ............ 145 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

LIST OF TABLES 

Table               Page  

 1  OD pairs and corresponding routes for the network of Figure 2 ........................... 6 

 2  RMAE Results using RVR-perfect for Grid Network 1 ...................................... 51 

 3  RMAE Results using RVR-perfect for Grid Network 2 ...................................... 52 

 4  RMAE Results using RVR-perfect for Problem Instances for N=1 to N=1/2|A| . 53 

 5  P-values for Paired-t Tests Comparison of RMSE of RVR-perfect .................... 54 

 6  SSE Results using RVR-noisy for Grid Network1 .............................................. 78 

 7  SSE Results using RVR-noisy for Grid Network 2 ............................................. 79 

 8  SSE Results using RVR-noisy for Problem Instances for N=1 to N=1/2|A| ........ 82 

 9  SSE Results using RVR-noisy for Problem Instances for N=1 to N=1/4|A| ........ 83 

 10  P-values for Paired-t Tests Comparison of SSE of RVR-noisy .......................... 84 

 11  Posterior Variances from Bayesian Estimation using Different Sensors 

Location. .. ......................................................................................................... 111 

 12  Posterior SSE for Five Sensor Location Models when Link Measurements are 

Independent ........................................................................................................ 115 

 13  Posterior variances and bias from Bayesian Estimation when Link Measurements 

are Dependent .................................................................................................... 120 



1 
 

Chapter 1  

INTRODUCTION 

1.1  Motivation 

According to the U.S. Department of Transportation (FHWA, 2011), the number 

of registered vehicles in the US has increased steadily since 1960 and reaches 246 million 

in 2009. The total vehicle miles traveled in 2009 reached 3 trillion and consumed 172 

billion gallons of fuels. In most recent two decades, transportation averagely consumed 

9~10 percent of annual Gross Domestic Product (GDP), over 70% of which are related to 

the highway and transit. The rapid growth in travel demand and the slow growth in 

supply of roads and public transportation cause large increases in congestion on capacity-

limited transportation networks. The annual cost of traffic congestion is more than $100 

billion and $750 for every U.S. commuter. According to Urban Mobility Report (2011), 

traffic congestion threatens the economic competitiveness and productivity of the nation 

and is currently becoming a global issue.  

Origin-Destination (OD) trip demands, which specify the amount of trips between 

each pair of origin and destination nodes, are required by many traffic planning and 

management applications. Examples of transportation planning and management 

decisions are: how links in the traffic network should be constructed; how to evaluate the 

effects for speed limit and number of lanes; how to introduce road tolls, etc. (Peterson, 

2007). Mathematical models can represent a system of traffic flows and its observed 

travel patterns (Ortúzar and Willumsen, 1994; Oppenheim, 1995). The predicted travel 

patterns then provide useful information to support the decision-making in planning and 

managing transportation systems. In practice, travel demand models are tools to predict 
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travel patterns under various conditions. However, complex traffic demand is difficult to 

estimate because of its dynamic and stochastic structure. For example, stochastic 

dynamic traffic demand varies significantly by the time of day and the day of week. 

Lacking the ability of providing high-quality OD demand estimates limits the 

effectiveness of the evaluation and implementation of traffic planning and management 

decisions, and restricts the potential of technology deployments to control traffic 

congestion and enhance the mobility in traffic networks.  

Traditional methods of obtaining an OD demand utilize home interviews, 

roadside surveys (or direct sampling estimation) or physical and/or behavioral models 

(for example, the gravity-type trip distribution model). These procedures are usually 

costly and time-consuming and they have seldom been researched or applied frequently. 

The OD demands are often estimated from link flow volumes which are measured using 

traffic sensors or detectors. Much research has been conducted to study the relationship 

between measured link traffic counts and the corresponding traffic demand estimates.  

The quality of estimated OD demands from link counts depends on several factors, 

such as (1) the route-choice and traffic loading assumptions, (2) the quality of observed 

data from sensors, (3) the dependencies between link flows due to network topology and 

traffic loading, (4) the choice of OD estimation methods, and (5) where the sensors are 

located (Larsson et al., 2010). The first factor is paramount because different traffic 

loading assumptions, such as equilibrium or near-equilibrium assumption, are involved in 

each estimation model, implicitly or explicitly. The observed data from sensors is the 

direct input of OD demand estimation model, and the reliability of the counting devices 

and the accuracy of data can be improved through technologies and data collecting 
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methods respectively. The third factor comes from the complexity of the problem 

scenario. The last two factors reveal two important research questions:  

 How to compute the best estimates of the flows of interest by using anticipated 

data from given candidate sensors location; 

 How to decide on the optimum subset of links where counting sensors are to be 

located. 

These two research questions constitute the bilevel Sensor Location Flow-

Estimation (SLFE) problem defined by Gentili and Mirchandani (2011, 2012). The upper 

level is an optimization model that selects the best location set based on lower level 

solutions for each candidate set, while the lower level is an optimization model that 

computes estimates to minimize the expected estimation errors using the anticipated data 

from sensors.  

To date, the potential benefits of enhancing travel demand modeling capability in 

modeling both levels of SLFE problem together have not been adequately addressed. The 

theoretical and algorithmic aspects of the stochastic OD demand estimation problem and 

the corresponding sensor location problem are still relatively undeveloped. In order to 

enhance the methodological capabilities required for traffic planning and management 

decision, the following challenging questions need to be addressed: 

(1) How to effectively amalgamate information from different sources, e.g. a-priori 

knowledge of modelers and observations from sensors, especially when there are 

uncertainties in the prior knowledge? 

(2) What is the optimal strategy to locate the sensors in a network in order to 

optimize the OD estimates? 
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(3) How to consistently handle the implicit or explicit traffic assignment or traffic 

loading assumptions at both levels of SLFE problem? 

(4) What are the decision strategies for SLFE problem for deterministic and 

stochastic traffic demands?   

1.2  Research Overview 

1.2.1  Traffic Loading Assumption 

Traffic assignment model, or traffic loading model, aims to determine the number 

of trips on different links of the network given the travel demands between different OD 

pairs from the mathematical description of the route choice behaviors. Suppose q is the 

OD flows in a network; x and v are the corresponding route and link flows loaded by the 

actual/assumed methods. Figure 1 illustrates the relationship between traffic assignment 

(flow direction with solid line) and OD estimation (flow direction with dotted line). 

―Traffic assignment model‖ splits the OD volumes q into route volumes according to 

specific traffic assignment rules as shown in Eq. (1.1). The link flows v are 

simultaneously obtained from the network topology as Eq. (1.2) — link flow on a 

particular link is the summation of flows on routes that pass through it. Eq. (1.3) 

expresses the relationship between OD flows q and link flows v when both traffic loading 

method and network topology are known. As an inverse approach, ―OD estimation model‖ 

uses the link flows v as input and allocates such link flows into OD pairs based on the 

measurement model in Eq. (1.3). 

 ( )assignx q  ( 1.1 ) 
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 ( )topv x  ( 1.2 ) 

 _ ( )assign topv q  ( 1.3 ) 

 

 

 

Figure 1  Relationship between traffic assignment and OD estimation models 

Usually, the relationship expressed by Eq. (1.2) depends on a defined parameter

i

a , where 1i

a  if link a is a part of route i, and 0i

a  otherwise.  

As an example of above relationships, consider the simple network (from Yang et. 

al, 1991) shown in Figure 2. It includes 4 OD pairs: 1-5, 1-6, 2-5 and 2-6. Each OD pair 

is connected by two different routes: one using link a3, the other using link a4.  

3 4

a1

a2 a6

a5

a3

a4

2

1 5

6
 

Figure 2  A network example with 6 nodes and 6 links 

 

 

 

 

 

Eq.(1.1) 

OD Flow q Route Flow x Link Flow v 

Eq.(1.2) 

Eq.(1.3) 
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Table 1 OD pairs and corresponding routes for the network of Figure 2 

OD Route Links OD Route Links 

1-5 R1 a1-a3-a5 2-5 R5 a2-a3-a5 

R2 a1-a4-a5 R6 a2-a4-a5 

1-6 R3 a1-a3-a6 2-6 R7 a2-a3-a6 

R4 a1-a4-a6 R8 a2-a4-a6 

 

Table 1 contains the information about OD pairs and the corresponding routes in 

the network of Figure 2. For example, OD pair 1-5 contains two routes R1 and R2. When 

xi is flow on route Ri, the relationships between OD flow vector q and route flow vector x 

describing Eq. (1.1), for the network of Figure 2 are: 

 1 2 1 5x x q    ( 1.4 ) 

 3 4 1 6x x q    ( 1.5 ) 

` 5 6 2 5x x q    ( 1.6 ) 

 7 8 2 6x x q    ( 1.7 ) 

For example, 1

3 1  (since link a3 is on route R1), but 1

4 0  (since link a4 is not 

on route R1). The relationships in Eq. (1.2) between connect route flows x and link flows 

v on links a3 an a4 are: 

 1 3 5 7 3x x x x v       ( 1.8 ) 

 2 4 6 8 4x x x x v       ( 1.9 ) 
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The coefficients for route flows ix
 
in the set of linear equations above are the link 

route parameters i

a . All these coefficients define the link-route topology through the 

incidence matrix H. The incidence matrix H for link flows v3 and v4 due to the eight route 

flows in the network can be written as: 

1 2 3 4 5 6 7 8  

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

 
 
 

 

Often, a major underlying traffic loading assumption is used in estimating static 

OD trips. The assumption is that the link flows observed are from an equilibrated flow 

pattern where Wardrop’s First Principle (Wardrop, 1952) holds (that is, all used routes 

between an origin and a destination have equal and minimum travel times, while other 

routes between that OD pair have no flow from that OD demand). In the corresponding 

mathematical network equilibrium models, a very large number of routes (some could be 

quite unusual) may result for an OD pair. Furthermore, it is generally believed that not all 

travelers perceive cost in the same way so that a perceived travel time may differ from 

actual travel time. Therefore the observed OD flow patterns are unlikely to be in a 

deterministic equilibrium where every traveler minimizes his/her actual travel time (e.g., 

Daganzo and Sheffi, 1977; Mirchandani and Soroush, 1987; Ortúzar and Willumsen, 

1994). This dissertation assumes that a route choice set (or simply a choice set when no 

confusion may arise) is associated with each OD pair and includes all the routes that may 

be used for that OD pair. This is a generalization of the equilibrium assumption. Indeed, 

it includes equilibrium flows when the choice set is obtained from a traffic equilibrium 

model. However, this model also allows the case when the observed link flows come 

3 

4 

          Route 

Link 
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either from nearly equilibrated or other OD flow patterns that only use OD choice sets. 

The only assumption the developed models use is that the route choice set for each OD 

pair is known and its cardinality is not large. Thus, in the models developed in this 

dissertation, the observed data need not be restricted to an equilibrated pattern but, due to 

sensors errors, traveler perceptions, and modeling approximations, need only fit a traffic 

loading model with finite sets of OD routes. Hence, the assumption of known route 

choice set in this dissertation is a more general model since these route sets could be 

loaded so that equilibrium or near-equilibrium traffic pattern results.  

These OD routes may have been empirically observed or may be from census data; 

they may have come from a traffic loading model (possibly from a traffic equilibrium 

model where only routes with significant flows are identified as important); they may be 

from a minimum total cost flow model; they may be a set of ―efficient‖ routes (e.g., Dial, 

1997), or they may have been developed using some other reasonable procedure. 

Furthermore, by assuming knowledge of the route choice sets, the typical OD 

estimation problem can be converted to a route flow estimation problem. Thus, this 

dissertation focuses on estimating the route flows when the route choice set for each OD 

pair is known.  

1.2.2  Demand Modeling 

The traditional traffic models used in traffic planning assume steady-state flows 

and try to model the total or average behavior of traffic flow in given periods of time.  

These models input the deterministic OD demands and output total link or path flows in 

selected periods (hour, day, week, etc.). The deterministic OD demands are usually 

referred to as OD matrices, the element of which represents the number of trips moving 
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regularly from one zone to another at a specific time. In the deterministic OD estimation 

problem, the traffic demand to be inferred is the OD matrix that represents the mean or 

expected number of trips for each OD pair. 

However, in reality, the static traffic demand has a stochastic nature that needs to 

be considered. In addition to the steady-state flows described by the deterministic 

demands, the normal periodic variations could be included in demand models. Daily 

variations may be caused from some frequently-occurring events, such as varying trip-

taking behavior, minor accidents, weather-related traveler decision making, road 

maintenance and traffic signal failures. The resulting stochastic OD demands can be 

described by two parameters for the steady-state flow pattern and periodic variations 

respectively. The stochastic OD demand estimation problem is to infer one or both of 

these parameters from sensor data.  

In this dissertation, both deterministic and stochastic traffic demand patterns are 

addressed.   

1.2.3  Types of Information  

In the problem space, assume there are two roles taking actions and each role has 

the control of certain types of information. The first role is the personification of ―Nature‖ 

who is aware of the ―actual‖ OD demands in the network, as well the ―real‖ traffic 

assignment rules and the corresponding ―actual‖ route flows and link flows.  

The second role in the problem space is the ―modeler‖, who does not have the 

same privilege of knowing the ―real‖ traffic demand but is interested in inferring it from 

the sources on hand. Two types of information are usually available to the modeler — 

observations and a-priori information.  
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In this dissertation, observations refer to as the link flow volumes from counting 

sensors or detectors. The traffic sensors located on a lane or a set of lanes of the road 

count the number of vehicles passing over them per hour. The traffic ―counts‖ are then 

translated to link flow volumes, which are used as observation information by the route 

flow estimation models. In addition, when the link data is collected from noise-free or 

―perfect‖ sensors, then no measurement errors are assumed and the observation equals to 

the real link flow. If ―noisy‖ sensors are used (as most cases in practice), then a random 

measurement error may be added to the real link flows to model observed flows. The 

measurement error   is usually modeled having Gaussian distribution with mean zero and 

a known variance. Error variance describes the reliability of a particular sensor or 

detector and can be estimated from the same type of sensors at similar locations or from 

studies related to sensor errors.  

A-priori information represents the prior estimates of traffic volumes without the 

awareness of any observations. These prior route flows can be obtained from survey data 

or historical data. They could also be derived from a calibrated static traffic assignment 

models for planning purposes, or the priors on the routes could be such that the resulting 

flows are not too far from the mathematically developed flows using an equilibrium 

model since it is known that travel time is the predominant factor that travelers use in 

selecting routes from their origins to their destinations. In practice, it is common that the 

prior information may come from an out-of-date study, naturally with perception errors.  

The simplest version of apriori information is a point value or a mean value, 

which represents the expected value of flow volumes. The modeler can represent the 

uncertainty of information by a confidence interval or a parameter denoting the degree of 
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belief. In general, this uncertainty is based on one or more of these factors: (a) quality of 

historical data (empirical uncertainty); (b) our subjective estimation (e.g., the subjective 

probability that a given team will win, the kind of subjectivity gamblers use), and (c) 

physical models, (e.g., the probability a six will come up with a roll of a die is 1/6). One 

may imagine that the uncertainties will be based on the planners’ subjective feeling of the 

numbers they have based the combination of empirical evidences and anecdotal 

observations. The prior information can usually be expressed as a probability distribution, 

with a specified mean and variance. A prior distribution has a variance of zero if the 

mean is known precisely, while it has a very large variance if it is assumed that very little 

is known about the mean value.  

1.2.4  Problem Description 

The problem addressed in this dissertation is the Sensor Location Flow-

Estimation (SLFE) problem, where the upper level decides on the optimum subset of 

links where sensors are to be located, and the lower level computes the best estimates of 

the flows of interest by using anticipated data from given candidate sensors location. In 

general, the upper level is an optimization model that selects the best location set based 

on lower level solutions for each candidate set, while the lower level is an estimation 

model, also an optimization model that calculates the best estimates by minimizing the 

expected estimation errors using the anticipated data from sensors.  
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Figure 3 Illustration of Sensor Location Flow-Estimation Problem 

The SLFE problem is illustrated in Figure 3. Consider estimating OD demands as 

a statistical decision problem. The estimation problem can be considered as a statistical 

two-person zero-sum game of the ―modeler‖ against ―Nature‖. Nature controls the real 

OD demand for a network and assigns them onto routes and obtains the corresponding 

links flows. Nature also chooses a probability distribution for the random measurement 

error and a probability distribution for the random perception error. The prior route flows 

result by adding the perception errors to the real route flows. With given sensors’ location 

(the choice by modeler), the measurement errors are added to the ―selected‖ real link 
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flows if the detectors are not accurate. Nature’s actions are depicted in the large gray box 

with dashed line in Figure 3.    

The modeler chooses an estimation method (an estimator) for traffic demand and 

the sensors’ location (an experimental design). Considering traffic data collection as an 

experiment, locating the sensors in the traffic network is an experimental design problem. 

For a given design, the route flows will be estimated according to the estimation method, 

and the goodness of the estimation is valued by a loss function, e.g. the quadratic loss. 

The modeler intends to make several decisions based on the information out of the large 

gray box of Figure 3. The three tasks of the modeler in the problem space (shown in three 

small gray boxes in Figure 3) are: 

(1) Select an the estimation method (estimator) 

(2) Select the sensors’ location (design) 

(3) Estimate route flows according to the estimator and design  

For a given estimator, tasks 2 and 3 define the both levels of SLFE problem. 

Tasks 1 and 2 together can provide an optimal statistical decision strategy. Bayes strategy 

is one type of optimal statistical decision strategy that is related to the Bayesian estimator, 

which provides a natural and mathematically convenient way of combining prior 

knowledge with the observations. The Bayes strategy provides the guideline or objective 

about how to decide the sensors’ location when Bayesian approach is applied to estimate 

the traffic demand.  

1.3  Research Contributions 

The aim of this dissertation is to develop a decision framework for locating 

sensors to obtain the high-quality OD volume estimates in traffic networks. The major 
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contribution of this dissertation is that it develops the decision framework for the recently 

defined Sensor Location Flow-Estimation problem. The developed framework is an 

integration of several well-defined problems in traffic modeling, such as a traffic 

assignment model to load the OD volumes on routes and corresponding links, a sensor 

location model to make the decision about which subset of links to observe, and an 

estimation model to obtain best estimates of OD or route flow volumes. Each sub-

problem is an optimization problem with specific objective. The advantage of integrating 

the individual problems is to improve the quality of traffic demand estimates. Within the 

decision framework, the sensor location problem is the focus of this dissertation.  

The second major contribution of this dissertation is that the proposed decision 

framework is compatible with both deterministic and stochastic demand estimation 

problems in traffic networks. The traditional traffic demand modeling problem focuses on 

deterministic demands, or deterministic OD matrix estimation. This dissertation expands 

the capability of traffic demand estimation to stochastic demands. Specifically, four types 

of location models are developed for scenarios (1) when demand is deterministic and data 

is from noise-free or ―perfect‖ counting sensors, (2) for deterministic demand and noisy 

sensors, (3) stochastic demand with known variance and noisy sensors, and (4) stochastic 

demand with unknown variance and noisy sensors, respectively.  

As the third contribution, this dissertation develops an experimental environment 

which can handle the evaluation and comparison of different sensor location models in 

terms of OD estimation qualities. The experimental environment has the following 

features:  

(1) The sensor location method being used is independent of the environment; 
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(2) The relationship between the choice of sensor location method and the quality of 

the estimated OD demand can be isolated and evaluated; 

(3) The environment is capable of handling both deterministic and stochastic OD 

demand situations; 

(4) The environment can provide the caparison of sensor location methods with 

minimum effect of traffic assignment assumptions which are coupled implicitly or 

explicitly with OD demand estimation. 

1.4  Dissertation Organization 

This dissertation includes seven chapters. The interconnection among the 

remaining chapters, and assumptions of the corresponding models addressed are shown in 

Figure 4.  

Question:
How to locate sensors to monitor flows in traffic network?

Perfect 
sensors

Noisy 
sensors

Flow observability 
problem

Flow estimation 
problem

Equilibrium 
assumption

Route choice set 
assumption

Chapter3

Chapter 4

Deterministic OD 
estimation

Stochastic OD 
estimation

Chapter5 Chapter6

Unknown 
variance

Known 
variance

Review in 
Chapter2

Review in 
Chapter2

 

Figure 4 Dissertation Organization 

The remainder of this dissertation is organized as follows: 
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Chapter 2 provides a comprehensive review and discussions on the sub-problems 

in SLFE.  

Chapters 3 and 4 focus on deterministic route flow estimations. Prior information 

for the deterministic route flow is assumed as a prior distribution or a confidence interval. 

In Chapter 3, a new linear integer programming model is presented to locate ―perfect‖ 

sensors in order to maximize the reduction in uncertainties of route flows estimates from 

a Generalized Least Squares (GLS) estimator. A greedy algorithm is developed to solve 

the model. In Chapter 4, a new model is presented to locate ―noisy‖ sensors to minimize 

the variances in route flow posteriors using a linear Bayesian estimator. A sequential 

algorithm is proposed to obtain the optimal sensor locations.  

Chapters 5 and 6 address the stochastic route flows and estimate them by 

hierarchical linear Bayes estimator. In Chapter 5, the route flow variances are assumed to 

be known. The posterior distribution for the route flow mean is estimated by a Bayesian 

approach. In Chapter 6, the route flow variances are unknown. In the model developed 

the route flow means are estimated by a Markov Chain Monte Carlo algorithm. The 

sensor location objective is formulated to minimize the approximation of expected 

posterior variances.  

Chapter 7 summarizes the research works in this dissertation and points out some 

future directions in both the application and algorithm development research.   
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Chapter 2  

LITERATURE REVIEW 

This chapter reviews topics relevant to Sensor Location Flow-Estimation problem. 

Section 2.1 introduces the traffic detection techniques and the potentials and challenges 

when applying to the traffic demand modeling. Traffic assignment problem, which is the 

inverse of the OD estimation problem, is reviewed in section 2.2. Section 2.3 reviews OD 

demand estimation models from the aspect of different available information. The sensor 

location models for OD demand estimation is reviewed in section 2.4.       

2.1  Type of Sensors 

Sensors are widely used in all aspects of engineering and science, such as 

automotive and transportation, physics, chemistry and biology, etc. A traffic sensor is a 

device that indicates the presence or passage of vehicles and provides data or information 

to support traffic management applications, such as signal control, freeway mainline and 

ramp control, incident detection, and data gathering of vehicle volume and classifications 

to meet State and Federal reporting requirements (Klein et al., 2006). Intelligent 

Transportation Systems (ITS) are highly dependent on traffic sensors, such as automatic 

traveler surveillance, real-time traffic adaptive signal control, and emergency information 

services, etc.  

Traffic detectors can be categorized into ―in-roadway‖ sensors and ―over-roadway‖ 

sensors (Klein et al., 2006). In-roadway sensors are embedded in the pavement or 

subgrade of the roads, taped or attached to the surface of the road. Over-roadway sensors 

are located above the road or alongside the road.  
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Sensors can also be categorized as ―passive‖ sensors and ―active‖ sensors. For 

example, the inductive loop detector embedded on the lane of a road is a passive sensor 

that the vehicle does not actively generate a signal on its own; when the vehicle passes 

over the loop, the change in the magnetic field sends an electrical signal to indicate the 

passage of the vehicle. Generally, such loop detectors are used to count the number of 

vehicles passing over them in a period of time and the vehicles movement monitored by 

the passive sensors is anonymous. Other examples of passive sensors include passive 

acoustic, passive infrared and microwave radar detectors. In addition, images of the 

moving flows can be obtained with cameras installed on links and nodes and the image 

information can be processed for flow volumes, speeds, travel times, queues and turning 

ratios. Usually passive sensors provide measurements at point.  

Active sensors include Vehicle-ID sensors and Path-ID sensors. Vehicle-ID 

sensors can identify vehicles on the network with an identification number. The examples 

of vehicle-ID sensors are license plate readers that use camera images, and Automatic 

Vehicle Identification (AVI) readers that use RFID tags or bar-codes. A purpose of 

license plate readers could be to monitor travel times, while AVI readers are normally 

used to collect tolls on equipped vehicles. Vehicle-ID sensors are able to provide point-

to-point measurement data. Path-ID sensors are located to measure the flow volumes on 

each planned route for some special vehicles with electronic tags containing 

identification information, such as commercial trucks, buses, emergency vehicles, and 

trucks carrying hazardous material, and they can monitor paths and their flows in the 

network. With advances in Geographic Information System (GIS) and telecommunication, 

Automatic Vehicle Location (AVL) technologies, such as Global Positioning System 
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(GPS), electronic distance measuring instruments (DMI’s), cellular telephone and 

smartphone tracking, have been widely use in recent years to dramatically increase the 

quality and quantity of traffic data. AVL can provide semi-continuous path trajectory for 

individual equipped vehicles (Zhou, 2004).  

Above traffic devices are available to collect and process different types of traffic 

data, such as point, point-to-point and path measurements, which formulate different 

measurement models for traffic monitoring. The relationship between unknown route 

demands and the measurements for both point and point-to-point type is:  

 v̂ = Hx +ε , where ~ ( , )N ε 0   ( 2.1 ) 

where v̂ includes both link count and vehicle identification counts; H is the parameter to 

indicate linear the route-link choice relationship; ε is the measurement error with known 

variance-covariance matrix Σ. Flow measurements at points from counting sensors 

directly apply to Eq. (2.1). Point measurements from counting sensors are the only type 

of observation data considered in this dissertation. The reasons include: 

(1) The counting sensor is the most predominant device in traffic planning practice 

with low installation cost and high accuracy (Klein et al., 2006); 

(2) Although advanced sensor devices provide a data rich environment, the derivation 

from data to demand estimates usually relies on other parameters which are 

difficult to estimate (such as the vehicle-ID market penetration rate); 

(3) The linear measurement model from counting sensors (see Eq. (2.1)) is the 

foundation of OD estimation models and provides the general form of the 

relationship between observations and flows of interest to be estimated. 
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2.2  Traffic Assignment Models 

In traffic planning, there is a traditional four-step process to model traffic 

demands. This approach was originally developed in the 1950s and still widely used for 

traffic planning. The first phase, ―trip generation‖, is designed to estimate the number of 

trips originating in, and/or ending in given zones (demands on nodes). The second phase, 

―trip distribution‖, forms the travel demands (origin-destination demands or OD demands) 

by connecting the node demands in the network to each other. ―Mode split‖ procedure 

partitions the OD demands into different travel modes. Finally, in phase ―trip 

assignment‖, the OD demand for each mode is assigned on the traffic network based on 

reasonable assumptions and hence route flows or link flows can be calculated. 

Because there are many possible routes from each origin to destination, the 

assignment procedure must use some assumptions on how the routes are chosen. The 

most common assumption is that each traveler chooses the route with least instantaneous 

generalized cost. The generalized cost for a route is assumed to be the summation of the 

travel costs on all included links. The generalized link cost is usually a function of free 

flow travel time (the constant link characteristic) and the congestion level on the links. In 

most models, the link cost function is an exponential or a higher order polynomial 

function which is monotonically non-decreasing with link flow. The link cost grows 

rapidly when its flow approaches the maximum capacity.  

The most widely used assumption to assign the OD travel demand over alternative 

routes is based on Wardrop’s First Principle (Wardrop, 1952), which states: 

―The journey times on all the routes actually used are equal, and less than those 

which would be experienced by a single vehicle on any unused route.‖ 
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Any traffic assignment which can satisfy this criterion is called a user-equilibrium. 

Define ix  as the route flow on route i between OD pair j (OD is the set containing all OD 

pairs in a network; 
jR is the route choice set for OD pair j); av is the link flow variable for 

link a ( A  is the set of links in a network) and ac is the cost on link a depending on the 

link volume av , the user-equilibrium (UE) assignment of OD demand 
jq onto links in the 

network can be obtained by optimally solving the following mathematical program: 

 
0

min ( ) ( )
av

v aa A
f v c s ds


   ( 2.2 ) 

                        s.t. ,
j

i ji R
x q j OD


    ( 2.3 ) 

 ,
j

i

a i aj OD i R
x v a A

 
     ( 2.4 ) 

 0, ,i jx i R j OD      ( 2.5 ) 

The objective function Eq. (2.2) minimizes a convex function so that user-

equilibrium results given the linear constraints (Beckmann el al., 1956). Eq. (2.3) 

represents a set of flow conservation constraints. These constraints ensure that the OD 

demand for each OD pair j equals the summation of all alternative routes connecting each 

O and D. A set of definitional constraints Eq. (2.4) express the link flows av in terms of 

the route flows ix (link flow volume on any link a equals to the sum of route flows on it). 

The link-route parameter i

a  
is defined to assist the formulation of Eq. (2.4), where i

a  is 

1 means route i include link a. 

This formulation was first developed by Beckmann et al. (1956), who also proved 

the existence and uniqueness of the solution when the link cost is a monotonically 
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increasing function of link flow volume. The application of Frank and Wolfe’s algorithm 

to the solution of the mathematical formulation of UE was first suggested by Bruynooghe 

et al. (1968) and applied by Murchland (1969). Incremental assignment techniques and 

capacity restraint methods are two heuristics widely used in practice to find the UE flow 

pattern over a network (Sheffi, 1985).    

In the deterministic UE assignment described above, each traveler chooses his/her 

path with least generalized cost. This assumption does not consider the variation in the 

travelers’ different perception of travel time (cost). Daganzo and Sheffi (1977) extended 

the Wardrop’s user equilibrium condition to the principle of stochastic user equilibrium 

(SUE) as: 

―In a stochastic user equilibrium network no user believes he/she can improve the 

travel time by unilaterally changing routes.‖ 

The definition of SUE assumes the link cost to be random and flow dependent. 

Mathematically this is modeled by adding an error term to the generalized cost of each 

route. The randomness in the cost comes from the variability in travelers’ perception.  

The problem to find a SUE flow pattern can be formulated by an unconstrained 

minimization program (Daganzo, 1979; Sheffi and Powell, 1982; Daganzo, 1982). The 

method of successive averages (MSA) is an algorithm that has been applied in practice to 

obtain a SUE solution (Sheffi and Powell, 1982).   

A time-dependent (dynamic) traffic model considers the influence of traffic 

conditions in a certain time period on any succeeding time period. In a time-dependent 

traffic assignment model, the interaction between time and vehicle volumes needs to be 

additionally described. Dynamic traffic assignment (DTA) models describe the dynamics 
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of network flow propagation and travelers’ behavior in response to past and/or current 

time dependent information. Peeta and Ziliaskopoulos (2001) provided a state-of-art 

review and detailed discussion of DTA formulation approaches, model objectives, 

assumptions, solution methodologies, traffic flow modeling strategies, operational 

requirements and capability, etc. 

In this dissertation, the traffic assignment assumption is that a known route choice 

set is associated with each OD pair and includes all the routes that may be used for that 

OD pair. This assumption allows the equilibrated pattern when the choice set is obtained 

from a traffic equilibrium model. However, it also allows the case when the observed link 

flows come either from nearly-equilibrated or other OD flow patterns that only use OD 

choice sets. The only assumption the developed models use is that the route choice set for 

each OD pair is known and its cardinality is not large. Based on this assumption, the OD 

estimation problem is converted to the route flow estimate problem since route flows give 

easily and directly both OD volumes and link flows.  

2.3  OD Demand Estimation Models 

Generally, monitoring flows x from flow volumes observed by sensors v̂  depend 

on a system of linear equations as   

 ˆ v Hx  ( 2.6 ) 

where matrix H defines the route-link relationship. The row amounts in Eq. (2.6) come 

from the measurement data by sensors. If the data-to-flow matrix H is full rank, the 

unique solution to the system of linear equations can be determined by matrix inversion 

operations, and this formulates the ―flow-observability problem‖ (Gentili, 2002). 
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Otherwise, additional information, such as the a-priori route flow information, is required 

to formulate the ―flow-estimation problem‖ (Gentili and Mirchandani, 2011, 2012).  

In traffic networks, the number of counting sensors (the number of rows in Eq. 

(2.6)) is generally less than the total number of ODs (the number of columns in Eq. (2.6)). 

Hence, in practice, there are usually not enough linear independent equations of 

measurement to result in a unique solution of OD estimates without using additional 

information. The OD estimation problem attempts to find OD demand estimates which 

reproduce the observed link flow counts when the demands are assigned on the network.  

According to Abrahamsson (1998), an estimated OD matrix is produced by 

combining the prior information q̂  and observations v̂  using the general formulation as 

follows: 

 1 1 2 2
ˆ ˆmin ( , ) ( ) ( )F F F  q v q,q v, v  ( 2.7 ) 

                                s.t  _ ( )assign topv q  ( 2.8 ) 

In this model, OD volumes are estimated by minimizing two distances: the 

distance between estimated OD matrices q and prior OD q̂  (measured by distance 

function 1
ˆ( )F q,q ) and the distance between estimated link flows v and observed v̂

(measured by the distance function 2
ˆ( )F v, v ). Usually the distance measure 1F  is mainly 

the minimum-information metric (such as maximum entropy) and 2F  is often a Euclidean 

metric. In objective function Eq. (2.7), different weights 1 and 2 are assigned to the 

distance measures 1F  and 2F respectively and the values of the weights depend on the 

reliability of the corresponding means. If prior OD matrix q̂ is more reliable than 
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observations v̂ , then the weight 1  should be larger than 2 . On the other hand, 2 is 

greater than 1  if observations v̂ are more reliable than prior OD matrix q̂ . Constraint 

defined by Eq. (2.8) describes the general relationship between link flow estimates v and 

OD volume estimates q, in particular the relationship defined by traffic assignment and 

network topology.  

The deterministic OD estimation models can be categorized into:  

(1) Approaches based on traffic modeling concept, such as the gravity distribution 

model.  

(2) Statistical inference approaches, includes the Maximum Likelihood, Generalized 

Least Squares and Bayesian Inference approaches. In this category, the traffic 

volumes and the prior OD matrix are assumed to be generated by some 

probability distributions, and the OD estimates are obtained by estimating the 

parameters of the probability distributions.  

In the first category, Van Zuylen and Willumsen (1980) first proposed two gravity 

type models based on entropy maximization and information minimization principles to 

find an OD matrix that reproduces the observed link flows. Fisk (1988) extended the 

entropy model to the congested networks by introducing the constraints of user-

equilibrium conditions. The proposed model has two levels; it maximizes the entropy at 

the upper level and solves the user-equilibrium problem at the lower level. Fisk (1989) 

showed that the extended entropy model has the same solution as a combined trip 

distribution and assignment model when the observed flow pattern is a user-equilibrium 

flow. For the combined model, the number of trips originating in and ending in each zone 

(O and D respectively) may be expressed as constraints. The observed traffic counts are 
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reproduced by a combined model if observed counts for all links are available and if they 

are consistent with user-equilibrium. Fisk and Boyce (1983) proposed a method to 

estimate the weighted average link cost by the importance of various link types when the 

observations are only available on a subset of links in the network. Kawakami et al. 

(1992) extended Fisk and Boyce’s combined model to include two modes of travel - large 

size trucks and cars. Tamin and Willumsen (1989) presented both a gravity-opportunity 

model and an intervening opportunity model and applied the gravity model to a small test 

problem without congestion. Nguyen (1977) presented a formulation of the equilibrium 

based OD matrix estimation problem for congested network and analyzed the properties 

of the solution. Jörnsten and Nguyen (1979) and LeBlanc and Farhangian (1982) 

formulated the entropy maximizing and minimum least squares models with the 

equilibrium assignments; while Jörnsten Nguyen’s model does not require a prior OD 

matrix, LeBlanc and Farhangian’s method does.   

Maximum Likelihood (ML) is the first type of statistical inference approach 

reviewed. ML approach maximizes the likelihood of observing the prior OD matrix q̂ and 

the observed link traffic counts v̂ conditional on the estimated OD matrix q. With the 

assumption that the prior OD q̂  is statistically independent of link flow observation v̂ , the 

likelihood of q̂  and v̂ is: 

     ˆ ˆˆ ˆ( , | ) ( | ) ( | )L L L q v q q q v q  ( 2.9 ) 

By assuming the Poisson probability distribution for the OD priors and traffic 

count observations, Spiess (1987) provided a formulation using ML approach to 

maximize the likelihood ˆ ˆ( , | )L q v q with the assumption that the proportion of flow on 
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each link that is associated with each OD is known. The proposed optimization problem 

was solved by a cyclic coordinate ascent algorithm and tested on small examples.  

Generalized-least-squares (GLS) is another type of statistical estimator. The prior 

OD q̂ is assumed to have a random perception error η with respect to the true OD trips q 

as defined in Eq. (2.10), and traffic count observation v̂  is assumed including a random 

measurement error ε as in Eq. (2.11).  

 ˆ q q +η  ( 2.10 ) 

 ˆ v v(q) +ε  ( 2.11 ) 

One advantage of GLS approach is that no distributional assumptions need to be 

made for the error terms η and ε, but assumes zero means and known dispersion matrices 

Z and W respectively. Assuming q̂  and v̂ are mutually independent, the GLS estimator 

can be obtained by solving the following optimization problem: 

 
1 11 1

ˆ ˆ ˆ ˆmin ( ) ' ( ) ( ( )) ' ( ( ))
2 2

     q q Z q q v v q W v v q  ( 2.12 ) 

 s.t. 0q   ( 2.13 ) 

Cascetta (1984) developed expressions for the mean and variance of the GLS 

estimator when non-negativity constraints in Eq. (2.13) are not active. GLS approach 

combines the two sources of information from observation and priors through the 

dispersion matrices Z and W. If either dispersion matrix is close to zero, this reflects a 

great belief in this part of the information because the matrix inverse (Z
-1

 or W
-1

) wights 

this part highly in objective function. Bell (1991) derived the solution to GLS estimator 

by considering non-negative constraints in Eq. (2.13). In both approaches by Cascetta 

(1984) and Bell (1991), proportional assignment is assumed for the link flow patterns. 
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Yang et al. (1992) extended the GLS model by formulating a bilevel programming to 

integrate the GLS model on the upper level and the equilibrium assignment problem on 

the lower level. A heuristic algorithm was applied to the small problems for testing.   

Bayesian inference approach is the statistical inference approach that considers 

the prior OD knowledge as a prior probability function ( )f q , and the observed link flow 

counts given OD estimates as a likelihood ˆ( | )L v q . Then the posterior probability of OD 

matrices conditional on observed link flows can be derived by combining the prior 

distribution of OD volumes and the observations using Bayes theorem: 

 ˆ ˆ( | ) ( | ) ( )f L f q v v q q   ( 2.14 ) 

Maher (1983) assumed that the link flow observations follow the Multivariate 

Normal (MVN) distribution. He also assumed the prior distribution ( )f q  as MVN with the 

OD trips/links proportions known. Hence the posterior OD information is MVN 

distributed and the updating equations for posterior mean and variance can be derived 

from Bayes’ Theorem.  

Lo et al. (1996) formulated the statistical models and developed the corresponding 

Bayesian estimator by assuming that the link flow observations are independent Poisson 

random variables and the OD trips/links proportions are random variables as well. With 

the fixed routing assumption (there is only one given route between each OD pair), 

Tebaldi and West (1998) presented a Bayesian approach to infer the independent-

Poisson-distributed OD flows based on observed counts on all links in the network. The 

posterior distributions for OD flows were obtained by an iterative simulation method, 

Markov Chain Monte Carlo (MCMC).  
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Hazelton (2000) derived the joint distribution of the link flows and the full 

likelihood distribution under the standard assumption of Poisson distributed number of 

OD flows. After approximating this likelihood function to MVN, which is more 

mathematically tractable, the posterior OD flows and route choice probabilities were 

updated by Bayesian estimator.  

If the travel demand to be estimated is assumed varying over time, generic 

formulation of estimating the time-dependent OD demand is an extended model from the 

general formulation in Eq. (2.7) and Eq. (2.8), where the DTA assumption is formulated 

in constraint Eq. (2.8). Zhou (2004) provided a thorough review for the state-of-the-art 

research on dynamic OD demand estimation. 

2.4 Sensor Location Models 

As discussed in section 2.3, if the number of noisy-free sensors to be used is 

sufficient and the data-to-flow matrix H is full rank, the flow monitoring problem is a 

flow-observability problem; otherwise a flow-estimation problem must be solved to 

estimate route flows. In particular, following two classes of sensor location problems 

arise (Gentilli and Mirchandani, 2012): 

(1) The Sensor Location Flow-Observability Problems: identify the optimum location 

of sensors on the network that allows the unique determination of the solution of 

the linear system of equations associated with the located sensors. 

(2) The Sensor Location Flow-Estimation Problems (SLFE): identify the optimum 

location of sensors on the network to best improve the quality of the related 

estimates (OD trips estimates, link flows estimates, route flows estimates, etc.) 
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that can be obtained using the system of linear equations associated with the 

located sensors. 

With the rationalization of good flow estimation, most sensor location models that 

have been reported in the literature are related to some type of covering problems, which 

are simply proxies for estimation optimization. These will be reviewed next. The notation 

used in these formulations is described below: 

Parameters: 

R: Route-choice set for a network 

A: Set of all the links in the network 

OD: Set of ODs in a network 

N: Number of sensors to locate 

(0,1)i

a  : Link-route parameter. 1i

a   if route i uses link a, otherwise, 0i

a   

(0,1)j

a  : Link-OD parameter. 1j

a  if the OD pair j uses link a, otherwise, 

0j

a   

ˆ jq : Prior mean of flow on OD pair j 

(0)

j : Prior variance of flow on OD pair j 

(1) ( )j y : Posterior variance of flow on OD pair j using the link count observations 

from sensors’ location y 

(0)

i : Prior mean of flow on route i 

(0)

i : Prior variance of flow on route i 

(1) ( )i y : Posterior variance of flow on route i using the link count observations 

from sensor allocation y 
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av : Prior mean of flow on link a; 
(0)i

a a ii R
v  


   

Decision Variables: 

(0,1)ay  : 1ay  if locating sensor on link a, otherwise 0ay     

(0,1)i  : 1i   if that route i is covered by a located sensor, otherwise 0i    

(0,1)jo  : 1jo  if that OD pair j is covered by a located sensor, otherwise 

0jo   

(1) Link flow coverage model 

The link flow coverage (LFC) method intends to locate sensors so that link flow 

volume covered (or intercepted) is maximized (Lam and Lo, 1990). By using this method, 

the link can be ranked in descending order of the prior link flows av  on each link a. The 

location model can be formulated by the following integer programming program:  

[LFC] max a aa A
v y

  ( 2.15 ) 

                        s.t.  
aa A

y N


  ( 2.16 ) 

 {0,1},ay a A    ( 2.17 ) 

The objective function Eq. (2.15) maximizes the total link flow volumes that will 

be observed by sensors. The constraint Eq. (2.16) is the budget constraint. The direct 

objective of LFC method is to cover links with large traffic flows, but not the quality of 

OD estimates.  

(2) OD-pair coverage model  
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OD-pair coverage (ODC) method tries to locate sensors to maximize the number 

of OD pairs covered, where an OD pair is ―covered‖ if at least one route in its choice set 

is observed. The model can be formulated as the following integer programming program:  

[ODC_1] max j

j OD
o

   ( 2.18 ) 

                        s.t. ,j j

a aa A
y o j OD


    ( 2.19 ) 

 
aa A

y N


  ( 2.20 ) 

 {0,1},ay a A    ( 2.21 ) 

 {0,1},jo j OD    ( 2.22 ) 

Given the budget constraint Eq. (2.20), the objective function Eq. (2.18) and 

constraint Eq. (2.19) together maximize the total number of OD pairs covered by sensors. 

An inverse formulation [ODC_2] is to minimize the number of sensors used in Eq. (2.23) 

given that each OD pair has to be covered by at least one sensor, as formulated by 

constraint Eq. (2.24):  

[ODC_2]    min aa A
y

  ( 2.23 ) 

                         s.t.  1,j

a aa A
y j OD


    ( 2.24 ) 

 {0,1},ay a A     ( 2.25 ) 

The first model belonging to this category was proposed by Lam and Lo (1990). 

Yang et al. (1991) extended the model by defining the number of available sensors N in 

budget constraint Eq. (2.20) as a variable, instead of a parameter. Yang and Zhou (1998) 

proposed an ODC model where only the links carrying maximum fraction of OD 

demands are eligible in the coverage constraint Eq. (2.24). Ehlert et al. (2006) modified 
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the formulation [ODC_2] by assigning costs to candidate links. Chootinan et al. (2005) 

proposed a two-objective formulation for the tradeoff between the coverage of OD-pairs 

(quality) and the number of link flow detectors being used (cost). A genetic algorithm 

was used to generate non-dominated solutions. Gan and Yang (2001) and Gan et al. 

(2005) provided the screen-line based traffic counting location models to select the 

optimal locations for a given number of traffic counting stations to separate as many O-D 

pairs as possible. Chen et al. (2007) investigated the effect of locating additional sensors 

to augment OD coverage.   

(3) Route cardinality coverage model 

Route cardinality coverage (RCC) model locates sensors to maximize the number 

of routes covered (or intercepted). The model can be formulated as the following integer 

programming program:  

[RCC_1] max i

i R


  ( 2.26 )  

 s.t. ,i i

a aa A
y i R 


    ( 2.27 ) 

 
aa A

y N


  ( 2.28 ) 

 {0,1},ay a A    ( 2.29 ) 

 {0,1},i i R     ( 2.30 ) 

In formulation [RCC_1], the objective function Eq. (2.26) and constraint Eq. 

(2.27) together maximize the total number of routes covered by sensors given the budget 

constraint Eq. (2.28). An inverse formulation [RCC_2] is to minimize the number of 

sensors used given that each route has to be covered by at least one sensor:  

[RCC_2] min aa A
y

  ( 2.31 ) 
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 s.t. 1,i

a aa A
y i R


    ( 2.32 ) 

 {0,1},ay a A     ( 2.33 ) 

Gentili and Mirchandani (2005) and Castillo et al. (2008) both considered the case 

that all routes should be covered by using a minimum number of sensors similar to 

formulation [ODC_2] regardless of flows on the routes.   

(4) OD-demand coverage model 

OD-demand coverage (ODDC) method locates sensors to maximize total OD 

demands coverage. The basic formulation of [ODDC] is shown as:  

[ODDC]       ˆmax j j

j OD
q o

  ( 2.34 )  

                         s.t. ,j j

a aa A
y o j OD


    ( 2.35 )  

 
aa A

y N


  ( 2.36 ) 

 {0,1},ay a A    ( 2.37 ) 

 {0,1},jo j OD    ( 2.38 ) 

The objective function Eq. (2.34), together with constraint Eq. (2.35), maximizes 

the total demand captured in the network given the budget constraint Eq. (2.36). [ODDC] 

is a weighted version of [ODC_1]—the weights are the prior OD flow volumes.  

Hodgson (1990) proposed the first model of this type to locate the sensors on the 

nodes, instead of links. Yim and Lam (1998) proposed the model to select links according 

to the contribution of covering an OD demand.  

(5) Route flow coverage model 
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Route flow coverage (RFC) method intends to locate sensors to maximize the 

total route flow intercepted. Similar to ODDC, the RFC formulation is a weighted version 

of RCC, while the weights are the prior route flows. The formulation is: 

[RFC] (0)max i

ii R
 

  ( 2.39 )  

                         s.t. ,i i

a aa A
y i R 


    ( 2.40 )  

 
aa A

y N


  ( 2.41 ) 

 {0,1},ay a A    ( 2.42 ) 

 {0,1},i i R     ( 2.43 ) 

The maximal flow-intercepting rule proposed by Yang and Zhou (1998) belongs 

to this category because it requires that the links should be chosen as to intercept as many 

route flows as possible. Ehlert et al. (2006) extended the formulation by additional 

constraint that requires that all OD-pairs should be covered. 

(6) OD demand variance reduction model 

OD demand variance reduction (ODVR) method tries to obtain the sensor 

allocation y by maximizing the variance reduction for the OD demand estimates. The 

general formulation is:  

[ODVR]       (1) (0)max ( ( ) )j jj OD
 


 y  ( 2.44 )  

                        s.t.  
aa A

y N


  ( 2.45 ) 

 {0,1},ay a A    ( 2.46 ) 

The objective function Eq. (2.44) maximizes the total variance reduction in OD 

estimates by using different sensors allocation y. This objective function is equivalent as 
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minimizing the total variances in OD estimates (1)( ( ))jj OD


 y . The posterior variance 

(1) ( )j y  can be obtained by the OD estimation models using sensor location y as the input.  

Zhou and List (2010) proposed a sensor location model to determine the location 

of both counting sensors and AVI sensors, the objective of which is to minimize the 

posterior variance of OD demands. In their model, 
(1) ( )j y is obtained from a Kalman 

filter approach using the observations from sensors’ location y. A scenario-based 

stochastic optimization procedure and a beam search algorithm were developed to find 

the solution. 

(7) Route flow variance reduction model 

Route flow variance reduction (RVR) method tries to obtain the sensor allocation 

y by maximizing the variance reduction for the OD demand estimates. The general 

formulation is:  

[RVR]       (1) (0)max ( ( ) )i ii R
 


 y  ( 2.47 )  

                         s.t.  
aa A

y N


  ( 2.48 ) 

 {0,1},ay a A    ( 2.49 ) 

RVR model uses the quality of flow estimate as the direct objective in the 

formulation. Both RVR and ODVR models can be used in the upper level of SLFE 

problem and the posterior variance (1) ( )i y is calculated from a specific estimator in the 

lower level of SLFE.  

Wang et al. (2012) and Wang and Mirchandani (2013) proposed the first two 

models in this category. The first model assumed a special situation that noise-free or 
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―perfect‖ sensors are used, and the second model assumed the counting devices are 

―noisy‖ sensors introducing random measurement errors.  These are described in detail in 

Chapters 3 and 4 to follow.  

The seven types of models described above rely on different sources of 

information. The information includes the network structures and assignment (network 

topology, link choice set, etc.), average values (point values) of the flows of interest, and 

the reliability (variance) of the information. ODC and RCC models depend on the 

information of network structure and link choice set only; LFC model employs the point 

value of link flow priors; ODDC and RFC models require both network structure and the 

point value (average) of prior flow volumes for the flow of interest; ODVC and RVD 

models require the reliabilities of the prior information in addition. The relationship 

between the seven categories, in terms of the information resources by each formulation, 

is illustrated in Figure 5. The outer corner defines the boundary of all types of available 

information. Each corner represents one type of flows in priors: the upper corner is the 

link flows, the lower left corner is the OD flows and the lower right corner is the route 

flows. The inner circle indicates the prior information of different type. Hence, ODC and 

RCC should be placed in Figure 5 in the sets of difference between the outer triangle and 

inner circle (this area includes network topologies and link choice sets only). The inner 

triangle specifies the usage of reliabilities as available information. Therefore, LFC, 

ODDC and RFC models fill the areas within the inner circle but out of inner triangle in 

Figure 5 because they do not rely on the reliability of information. ODVR and RVR 

models require all information in the problem space and fill the areas within the inner 

triangle in Figure 5. The difference between ODVR and RVR is the traffic assignment 
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assumption for the demand pattern. ODVR usually requires the equilibrium assignment 

between each OD, while RVR allow more generalized flow patterns in the network.  This 

dissertation focuses on RVR model.   

 

 

Figure 5 Relationship among the seven categories of existing sensor location models 

Gentili and Mirchandani (2011, 2012) first define the SLFE problem as a bilevel 

problem, where the upper level decides the optimum subset of links where sensors are 

located, and the lower level computes the best estimates of the flows of interest by using 

anticipated data from given candidate sensors location. They also have surveyed sensor 

location models and discussed ―rules‖ or objectives for location models that appeared in 

the literature. They observed that most existing location models (other than ODVR and 

RVR) focus on the location decisions that use proxies for OD estimation quality but do 

not explicitly attempt to minimize an estimation error. The proxies (such as maximizing 
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OD flow coverage) are heuristic evaluation criteria that capture only indirectly the quality 

of OD estimates.   

Larsson et al. (2010) also reviewed the existing models for sensor location 

problem. They conducted computational experiments to compare the performances of 

sensor location models in terms of the quality of OD estimates using different link 

allocation by assuming the equilibrium demand patterns. 
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Chapter 3  

LOCATING SENSORS TO ESTIMATE ROUTE FLOWS USING DATA FROM 

NOISE-FREE SENSORS AND ASSUMING AN UNCERTAINTY INTERVAL FOR 

PRIOR MEANS 

3.1  Problem Description 

In this chapter, the flow of interest to be estimated is the deterministic OD 

demand with the traffic assignment assumption of a known route choice set. This chapter 

first introduces a route flow estimation model that will be used to obtain a good point 

estimate of flows on all the routes in a traffic network. The route flow estimates represent 

the mean or average of the flow volumes. In the estimation stage, the route flow priors 

and observations from link sensors are available. In this chapter, a route flow prior is 

assumed known as a mean kx  and a confidence level ku for any route k, which represent 

the magnitude and reliability of the prior information for route k. The counting sensors 

used in this chapter are assumed as ―perfect sensors‖, which means the data collected 

from the counting sensors are error free. The second stage of this chapter is to derive a 

model for the location decision of limited number of sensors — the observations from 

which are used in the estimation model in estimation stage. The objective of the second 

stage is to locate sensors on a subset of links to maximize the reduction of uncertainties in 

route flow estimates. A new integer programming model is developed to solve this 

location problem. 

3.2  Notation 

Parameters: 



41 
 

R: Route-choice set for a network 

A: Set of all the links 

N: Number of sensors to locate 

M: A large number 

(0,1)k

a  : Link-route parameter. 1k

a  means that route k uses link a, otherwise 

0k

a   

kx : Route flow prior of k
th

 route  

ku : Confidence level (max % error) on route flow prior of k
th

 route  

av : Link flow prior on link a 

av : Link flow observation on link a 

Decision Variables: 

(0,1)az  : 1az   represents locating sensor on link a otherwise 0az  . 

kx : Actual route flow of k
th

 route (variable in ESTR model) 

ˆkx : Flow estimate on k
th

 route (solution of ESTR model)  

k : percentage estimation error ( ku ) on route flow prior of k
th

 route  

ˆ
av : Link flow estimate on link a 

Among these parameters, k

a , kx , ku and av relate to prior information. The first 

parameter k

a  are obtained from definitions of the given route choice sets. The latter three, 

kx , ku and av are from models’ knowledge to the prior route flows. As discussed earlier, 

prior information can be derived from survey data or historical data, or derived using 

some reasonable traffic loading models. Such information on flows usually has errors 
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compared to the true information. As in most prior-to-posterior estimation schemes, they 

are used to obtain an estimate for each flow variable among possibly infinite feasible 

solutions. In our computational laboratory experiments, errors in kx are randomly 

generated. av is simply obtained from k

a and kx . The following expression represents the 

relationship between route flows and link flows: 

 k k

a ak R
x v


  ( 3.1 ) 

The equation indicates that the flow on a link is equal to the sum of all route flows 

that use the link. 

The crux of the chapter's thesis is the Bayesian thinking that the planners have 

different confidence levels on mean values of the data-based parameters such as a prior 

mean on a route flow. In the model to be presented, the level uncertainty of the prior 

means is represented by a confidence interval [ , ]u u . If the confidence interval is small 

then it means that the decision-maker has very high confidence in the given prior mean. 

Vice versa, if the confidence interval is large then the decision-maker is not too confident 

about the reliability of the given prior. In general, this uncertainty can be based on one or 

more of these factors: (a) historical data (empirical uncertainty); (b) planner’s subjective 

reliability, the kind of uncertainties used in decision making when the situation is new 

and there is no empirical information, and (c) physical reasoning, (e.g., the probability we 

will get a six with a toss of a fair die is 1/6). In the context of our estimation problem, we 

anticipate that the uncertainties will correspond to the planners’ subjective reliabilities 

that are based mostly on empirical evidences but tempered by anecdotal observations on 

the numbers they have before them. 
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3.3  Route Flow Estimation Model 

Once the sensors are located, the procedure of estimating flow variables from 

observations is analogous to obtaining a posteriori knowledge based on observation 

evidence and prior knowledge. If the flows of interest are OD volumes, the corresponding 

problem is to estimate an OD matrix so that the induced link flows are as close as 

possible to the observed link flows from the counting sensors.  With the assumption of 

given route flow priors, the problem of finding best route flow estimates from link flow 

sensor observations can be formulated as: 

[ESTR] 

2

min
k k

kk R

x x

x

 
 
 

  ( 3.2 ) 

                         s.t (1 ) ,k k

a a ak R
x M z v a A


      ( 3.3 ) 

 (1 ) ,k k

a a ak R
x M z v a A


      ( 3.4 ) 

 0,kx k R    ( 3.5 ) 

The solution of the optimization problem ESTR gives the best route flow 

estimates ˆkx  and the corresponding link flow estimates ˆ
av . 

In this model, the continuous variables are the route flows kx . The objective 

function Eq. (3.2) attempts to minimize the total estimation error, where each component 

error is the relative distance between an estimated route flow to its route flow prior. 

Objective value in Eq. (3.2) is the sum of squared relative errors, where the relative error 

is the fraction of deviation of route flow estimate from its prior. When 1az   (that is, 

when a sensor is located on link a), constraints Eq. (3.3) and Eq. (3.4) together force Eq. 

(3.1) which relates observed link flows to estimated route flows. When 0az  there is no 
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restriction for link flow estimates on that link, which means this link flow estimate has no 

information coming from the flows on this link since this link is not directly observed. 

That is, in this model, when link a is observed then link flow estimate ˆ
av is equal to the 

link flow observed ( av ), while unobserved link flows are computed from the estimated 

route flows. The idea of ESTR is to estimate route flows close to the priors, under the 

constraint that route flow estimates are consistent with observed link flows. Note that 

ESTR assumes location decisions, described by variables za, are known; this model is 

assumed to be used after the locational decisions are made. In subsection 3.4, we will use 

this ESTR formulation to develop the sensor location model RVR-perfect. 

3.4  New Location Model Formulation 

Since RVR-perfect aims to locate sensors to obtain the best possible route flows 

estimates, we try to take into account ESTR to formulate the sensor location model. 

Because future link flow observations from sensors ( av ) in ESTR cannot be obtained 

before sensors are located, this observation information is not available for sensor 

location decisions. However, prior flows are available information for location decision 

making. In particular, known are route flow priors with their reliabilities, and 

corresponding link flow priors that are consistent with Eq. (3.1).  

We assume that along with the route priors we have an idea of their reliability in 

terms of a confidence interval. For example one may have a good prior and say that the 

flow on a route k is kx + 1% error, while a bad prior may be kx + 15% error. This 

uncertainty will be explicitly taken into account in the model development below. 
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Suppose prior flow for route k is kx then we can state (1 )k k kx x    where k comes 

from a range [ , ]k ku u ; that is, (0,1)ku   represents our uncertainty in the route prior. 

Locating a sensor on a link gives us the actual flow on that link, and hence it 

reduces the sum of the uncertainties of the route flows that use that link. In particular, we 

have 

 
1

k
k k k k k k k k k k k

a a a a a a kk R k R k R k R k R
v x x x x x


     

    
    


      ( 3.6 )  

and locating on link a makes the second term on the right hand side of Eq. (3.6) going to 

zero. Hence, the problem becomes to locate sensors to maximize the reduction of 

uncertainty and thus RVR-perfect formulates as:  

 max
1

k
k k

a aka A k R
x z




 

 
   

   ( 3.7 )  

                         s.t. 
aa A

z N


  ( 3.8 ) 

 ,k k ku u k R      ( 3.9 ) 

 {0,1},az a A    ( 3.10 ) 

Since we are maximizing, each term of Eq. (3.7) is maximized by letting  

k ku    because the value of ku is bounded by the expression in Eq. (3.9) and (0,1)ku 

as we assumed. Then we can simplify the formulation to  

[RVR-perfect] max
1

k
k k

a aka A k R

u
x z

u


 

 
 

 
   ( 3.11 ) 

                           s.t. 
aa A

z N


  ( 3.12 ) 

 {0,1},az a A    ( 3.13 ) 
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This formulation is quite similar to LFC except the weight for link a is not  ̃  but 

the measures of uncertainties of the route flows that use the link. This is a linear-integer 

programming formulation for the RVR-perfect problem whose solution gives an optimal 

location set for each sets of priors ,k kx u . Constraint Eq. (3.12) is the limitation on the 

number of sensors to be located. Eq. (3.13) is the binary constraint for location variables 

za.  

3.5 Algorithm 

A greedy algorithm can solve the above model by first calculating 

1

k
k k

a kk R

u
x

u


 
  for each link a, then sorting the calculated values and selecting the N 

links with largest values.  

The algorithm for solving [RVR-perfect] is: 

GREEDY ALGORITHM TO SOLVE [RVR_PERFECT] 

Input: kx , ku , k

a  , N 

Output: az  

(1) For each link a A , calculate
1

k
k k

a kk R

u
x

u


 
 . 

(2) Sort all links in set A according to the descending order of the  

values calculated in step (1). 

(3) Select the first N links with largest values calculated in step (1). 
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The running time for this algorithm is polynomial because step (1) and (3) can be 

conducted in constant time and the run time of step (2) depends on the sorting algorithm 

(e.g. Quicksort in       and merge sort in         ).    

3.6  Experimental Results 

3.6.1  Experiment Setup 

Figure 6 gives the scheme of the experimental procedure. First (Steps 1-2), 

problem scenarios are generated by defining the network (network supply), loading the 

assumed traffic flows (demand) and obtaining the ―actual‖ network traffic. Assumed 

prior route and link flows are generated by relating them to actual flows plus some 

perception errors (Step 3). The perception error for a route flow prior is obtained by first 

generating reliability for each route k denoted by
max(0, )ku u ; and then generating a 

random error in range [ , ]k ku u  and adding it to the actual route flow. Link flow priors 

are then computed using Eq. (3.1). In Step 4, RVR-perfect is solved by the algorithm in 

section 3.5 and other location models are solved using Cplex to obtain location decisions

az . Then, fixing these decisions, estimates for route and link flows are obtained using the 

estimation model ESTR (Step5). To evaluate each location model, the route estimates are 

compared with actual route flows (Step 6).  
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+
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Figure 6 Procedure for the computational experiments for RVR-perfect 
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When evaluating the quality of route flow estimates, the following Relative Mean 

Absolute Error (RMAE) criterion was used: 

 
ˆ1

100%
| |

k k

kk R

x x
RMAE

R x


   ( 3.14 ) 

where |R| is the number of routes in the given scenario. Hence, for a problem instance, 

four RMAEs are calculated in Step 6 one for each location model: RVR-perfect, LFC, 

RCC and RFC. 

Finally, note that for each network scenario, we can have different problem 

instances by locating different number of sensors between 1 and (say) m, the number of 

possible sensor sites. Furthermore, we can have different priors, ranging from quite 

accurate priors with errors less than 5% to less accurate priors with errors ranging 

between 10% and 15%. Hence, each problem instance in our computational experiments 

is defined by: 

(1) Network supply 

(2) Traffic demand 

(3) Reliability of priors on traffic flows to be estimated 

(4) Number of sensors to be located.  

Solving the location model for each problem instance, for the four models being 

compared, gives us a score for each model, as defined by the RMAE.    

Three sets of network scenarios were used in the computational experiments.  

(1) A grid network with 16 OD pairs, 43 routes and 48 links (grid network 1).  

(2) A grid network with 16 OD pairs, 204 routes and 112 links (grid network 

2).  
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(3) Houston data used by Mirchandani et al. (2009), with 1768 routes and 468 

links with flows.  

The network topologies for grid network 1 and 2 are displayed in Figure 7.  
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Figure 7 Topologies of experiment networks 

For all the three scenarios, OD demands are loaded by a traffic equilibrium 

approach, to obtain near equilibrium actual route and link flows in step 2. (We 

reemphasize that the model and method developed here does not depend on equilibrium 

flows, but simply on a known route choice set.) 

3.6.2 Numerical Results 

Table 2 gives the RMAE results for the four location models (RVR-perfect, LFC, 

RCC, RFC) and three priors with different reliability ranges for grid network 1. For 

example, the columns marked with [0,0.1]u indicate that errors in priors range from 

0%-10%. The table gives the averaged RMAE scores for every five instances for five 

numbers of sensor locations. For example, the first row in Table 2 represents the average 

RMAE scores for N=1 to N=5.  
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The best scores are in italicized and underlined in Table 2. In general, our 

proposed RVR-perfect outperforms other models in most cases. Note that, on the 

instances corresponding to values of N from 36 to 48 all models perform the same since 

most of the links are now with sensors and all models have the same locations and 

estimation errors. Since in real cases the decision-makers are interested in locating 

sensors only on few links due to budget considerations, our study focus is to monitor 

fewer than half of the links and compare the models for these ranges. The last row of 

Table 2 sums all of the average RMSE scores and emphasizes the advantage of RVR-

perfect compared to other models for grid network 1. Observe, however, that LFC model 

sometimes has the best score, and often is the second best when RVR-perfect is the best.  

Nevertheless as it will be discussed later, RVR-perfect statistically significantly 

outperforms LFC. 

Table 2 RMAE Results using RVR-perfect for Grid Network 1 

   ̃            ̃           ̃           

 N RVR LFC RCC RFC RVR LFC RCC RFC RVR LFC RCC RFC 

1-5 0.90 0.89 0.94 0.94 2.30 2.31 2.28 2.32 3.39 3.44 3.50 3.38 

6-10 0.85 0.83 0.84 0.84 2.08 2.14 2.06 2.08 3.14 3.11 3.25 3.19 

11-15 0.74 0.75 0.80 0.80 1.82 2.00 2.00 2.03 3.01 3.17 2.94 2.98 

16-20 0.63 0.67 0.62 0.62 1.68 1.77 1.89 1.83 2.72 2.78 2.73 2.74 

21-25 0.59 0.60 0.60 0.60 1.56 1.44 1.73 1.73 2.36 2.49 2.60 2.60 

26-30 0.57 0.59 0.60 0.60 1.30 1.26 1.70 1.70 2.20 2.26 2.59 2.59 

31-35 0.53 0.52 0.57 0.57 1.26 1.26 1.52 1.52 2.14 2.14 2.41 2.41 

36-48 0.52 0.52 0.52 0.52 1.26 1.26 1.26 1.26 2.14 2.14 2.14 2.14 

Total 5.32 5.37 5.48 5.48 13.25 13.43 14.44 14.47 21.09 21.54 22.14 22.02 
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We have similar comparisons among the RMAE scores for the four location 

models applied to the grid network 2 where there are many more routes for each OD pair. 

The average RMAEs are shown in Table 3. The RVR-perfect model performs the best in 

most cases and on the overall performance as indicated in the last row. 

Table 3 RMAE Results using RVR-perfect for Grid Network 2 

   ̃             ̃            ̃            

N RVR LFC RCC RFC RVR LFC RCC RFC RVR LFC RCC RFC 

1-20 1.31 1.34 1.33 1.34 2.35 2.36 2.33 2.34 3.59 3.59 3.58 3.55 

21-40 1.24 1.28 1.30 1.30 2.13 2.18 2.21 2.21 3.35 3.38 3.35 3.35 

41-60 1.19 1.21 1.29 1.29 2.07 2.07 2.19 2.19 3.26 3.26 3.33 3.34 

61-80 1.16 1.16 1.21 1.21 2.05 2.05 2.11 2.11 3.19 3.19 3.22 3.22 

81-112 1.16 1.16 1.16 1.16 2.05 2.05 2.05 2.05 3.18 3.18 3.18 3.18 

Total 6.07 6.16 6.29 6.30 10.65 10.72 10.89 10.91 16.56 16.59 16.65 16.62 

 

Table 4 tabulates the problem instances when at most half the links can be 

detectorized, that is, average scores for all instances from N=1 to N=½ | |. Table 4 shows 

that the average value of RMSE is always lower when using RVR-perfect.  
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Table 4 RMAE Results using RVR-perfect for Problem Instances for N=1 to N=1/2|A| 

    RVR LFC RCC RFC 

Grid Net 1 prior1 0.747 0.754 0.765 0.765 

 

prior2 1.907 1.960 2.006 2.012 

 

prior3 2.948 3.029 3.019 2.993 

Grid Net 2 prior1 1.253 1.284 1.310 1.312 

 

prior2 2.190 2.215 2.246 2.252 

  prior3 3.414 3.420 3.427 3.418 

Houston prior1 1.203 1.204 1.205 1.204 

 

prior2 2.448 2.451 2.458 2.456 

  prior3 3.650 3.655 3.658 3.659 

 

Because of the random effects in the framework of the RVR-perfect problem, 

average scores is only one way to compare the performance. Further comparison was 

conducted using statistical paired-t tests to compare RVR-perfect scores with those of 

each of the other models. Here one is interested in testing if the mean of scores of RVR-

perfect is significantly lower than the mean of scores of each of the other models. The 

hypothesis for the paired-t test is: 

0 _: RVR p othersH     

1 _: RVR p othersH    

If the P-value for a paired-t test is lower than 0.05, it means we can reject H0 at 95% 

confidence level and have a statistical indication that RVR-perfect is better than the 

compared model. For each network scenario, we conducted three similar paired-t tests to 

compare RMAE of RVR-perfect with the scores of LFC, RCC and RFC separately; the p-
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values are shown in Table 5. The table shows that RVR-perfect significantly outperforms 

all the other models in all the three scenarios because the p-values of the paired-t test are 

essentially zero.  

Table 5 P-values for Paired-t Tests Comparison of RMSE of RVR-perfect  

with Other Location Models 

Alternative hypothesis:                        

Grid Net 1 0.000 0.000 0.000 

Grid Net 2 0.000 0.000 0.000 

Houston  0.000 0.000 0.000 

 

3.7  Chapter Conclusions 

In this chapter, a new linear integer programming model in the location stage of 

SLFE problem was developed and evaluated in terms of the quality of the point estimates 

of route flows. In this model, prior knowledge on routes and flows is explicitly modeled. 

As in many other models that have appeared in the literature, the route choice set is 

assumed to be known to generalize the equilibrium flow patterns. In this model we 

assume that we have both priors for the route flows and their reliabilities. In other words, 

for each route flow prior we have a confidence interval for the actual flow on the route.  

The model was shown to be similar to the LFC (link flow coverage) that has 

appeared in the literature but the RVR-perfect model explicitly considers the level of 

uncertainties in the priors in the computation of the ―weights‖ attached to prior link flows. 

Computational experiments for three sets of network scenarios were conducted. In the 

experiments described in the chapter, the LFC performed well but in most cases RVR-
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perfect performed better than LFC. The better performance of RVR-perfect compared to 

LFC is statistically significant with a p-value of 0.05. The evaluation showed that RVR-

perfect also performed significantly better than the other two models RCC and RFC.  
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Chapter 4  

LOCATING SENSORS TO ESTIMATE ROUTE FLOWS USING DATA FROM 

NOISY SENSORS AND ASSUMING NORMAL DISTRIBUTIONS FOR PRIOR 

UNCERTAINTIES 

4.1  Introduction and Problem Description 

4.1.1  Introduction to Bayes’ Theorem and Bayesian Linear Estimation 

Let   ,      be a set of mutually exclusive and exhaustive events and let   be an 

event. Then, Bayes’ Theorem, or referred as Bayes’ Rule, is stated as, for each 1,2,...,i    

 

1

( | ) ( )
( | )

( | ) ( )

i i
i

i ij

P A B P B
P B A

P A B P B







 ( 4.1 ) 

Eq. (4.1) can be interpreted in the following way. Starting with an initial prior 

probability ( )iP B  of the interested event iB , when thinking of the iB s as set of hypotheses, 

the occurrence of event iB  is equal to say that hypothesis i is true. The posterior 

probability ( | )iP B A
 
is the proper description of how likely hypothesis i is true when 

event A is known to have occurred. Observing event A changes the prior probability 

( )iP B to posterior probability ( | )iP B A . Notice that the posterior probabilities for all 

events sum to one. This is because all iB  are mutually exclusive, which result that one 

and only one hypothesis is true. The denominator in Eq. (4.1) is a weighted average of 

the probabilities ( | )iP A B  with the weights being the ( )iP B . The occurrence of A 

increases the probability of iB  if ( | )iP A B  is greater than the average of all the ( | )iP A B s.  

Bayes’ Theorem can be restated in terms of random variables instead of events as: 
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( ) ( | )

( )
( ) ( | )

f f
f

f f d




x y x
x | y

x y x x
 ( 4.2 ) 

where y is the data and x is the parameter to inference about. The prior density ( )f x  

represents the prior information about parameter x. Bayes’ Theorem constructs the 

posterior density ( )f x | y  as the proportional to the product of the prior density ( )f x and 

the likelihood ( | )f y x .  

The Bayesian method comprises the following principal steps: 

(1) Obtain the likelihood function ( | )f y x . This step simply describes the 

process giving rise to the data x in terms of the unknown parameters x.  

(2) Obtain the prior density ( )f x . The prior distribution expresses what is 

known about parameter x prior to observe the data y.  

(3) Apply Bayes’ Theorem to derive the posterior density ( )f x | y . The 

posterior will express what is known about parameter x after observing the data y.  

(4) Derive appropriate inference statements from the posterior distribution. 

This step is designed to bring out the information expressed in the posterior distribution. 

Examples of inferences include: point estimates, interval estimates or probabilities of 

hypotheses. A good inference is the one which effectively conveys information about x 

from the posterior distribution. 

Consider a linear model in the form 

 y = Hx +ε  ( 4.3 ) 

where y is an     vector of observations, H is an     matrix of known coefficients, x 

is a     vector of parameters and ε is an     vector of random errors. The elements 
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of ε are assumed to have zero mean and known variance-covariance Σ. The linear model 

as Eq. (4.3) can be used to derive the likelihood function ( )f y | x,  as the conditional 

distribution of y given parameters ( )x, .When using the likelihood function ( )f y | x,

from a linear model Eq. (4.3), the four-step Bayesian method is called Bayesian linear 

estimation.  

In this chapter, the route flows will be estimated by Bayesian linear model and the 

sensor location problem will be addressed within this Bayesian platform.    

4.1.2 Problem Description 

The flow of interest in this chapter is the deterministic OD demand. With the 

assumption of a known route choice set, this chapter first introduces a model for good 

point estimates of route flow volumes in a traffic network. The counting devices used in 

this chapter are ―noisy sensors‖, which introduces random measurement errors into 

observation data. The route flows are estimated by a linear Bayesian method and the 

estimates represent the means of the route flow volumes. In this chapter, the prior 

knowledge for route flow i is assumed to have a probability distribution with mean
0

i   

and variance 
(0)

ii . The mean
0

i  represents the magnitude of the prior information and the 

variance 
(0)

ii is the measurement about how reliable the mean value 
0

i  is. The 

uncertainty of the prior information describes the model’s knowledge towards the 

perception errors in decision space. Conjugate prior distribution (MVN) is chosen in this 

chapter in order to produce a mathematical tractable result of posterior distribution.  This 

chapter then develops a decision model for the location of limited number of noisy 

sensors — the observations from which will be used in the Bayesian estimation model. 
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The objective of second stage is to maximize the uncertainty reduction in the posterior 

knowledge of route flows. A new integer programming model and a sequential algorithm 

are developed to obtain the location solution. 

4.1.3  Notations 

We will first provide the notation only so that readers familiar with this problem 

can quickly get to the modeling constructs.  Readers unfamiliar with this topic can come 

back to this notation section to follow the modeling developments. Since there is 

significant notation, we classify notation as it relates to (a) network topology, (b) 

definition of route flows, (c) links flows, (d) observations or measurements, and (e) 

decision variables.  

Network Topology Parameters: 

R: Route-choice set for a network 

A: Set of all the links in the network 

A’: Set of links where sensors are located 

Af: Set of links feasible for sensors to be located 

|R|: Number of routes in a network 

|A|: Number of links in a network 

N: Number of sensors to locate 

(0,1)i

a  : Link-route parameter. 1i

a  if route i 3uses link a, otherwise, 0i

a 

 

1 | |

1 1

1 | |

| | | |

R

R

A A

 

 

 
 

  
 
 

H   

Route Flows: 
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ix : Route flow parameter (real mean) of i
th

 route  

1 2 | |( , ,..., ) 'Rx x xx   

0

i : Mean of prior distribution of ix  

(0) (0) (0)

0 1 2 | |( , ,..., ) 'R  μ   

(0)

ij : Covariance of prior distribution between ix  and jx  (variance of prior 

distribution if i j ) 

(0) (0)

11 1| |

(0) (0)

| |1 | || |

R

R R R

 

 

 
 

  
 
 

0V   

iu : Prior’s reliability of route i 

maxu : Bound of prior’s reliability 

i : Real error in route flow prior of route i 

1

i : Mean of posterior distribution of ix    

(1) (1) (1)

1 2 | |( , ,..., ) 'R  1μ   

(1)

ij : Covariance of posterior distribution between ix  and jx  (variance of posterior 

distribution if i j ) 

(1) (1)

11 1| |

1

(1) (1)

| |1 | || |

R

R R R

 

 

 
 

  
 
 

V   

Link Flows: 

av : Real link flow on link a 

1 2 | |( , ,..., ) 'Av v vv   
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ˆ
av : Potential link flow observation if a sensor is locatedon link a 

1 2 | |
ˆ ˆ ˆ ˆ( , ,..., ) 'Av v vv  

a : Measurement error on link a 

2

a : Variance of link flow measurement on link a 

2

1

2

| |

0

0 A





 
 

   
 
 

  

at : Sensor’s reliability when located on link a 

maxt : Bound of sensors’ reliability  

av : Mean of Link flow prior means on link a 

Observations by sensors:  

ny : Link flow observed by sensor n 

1 2( , ,..., ) 'Ny y yY   

ng : An instance of link flow observed by sensor n 

1 2( , ,..., ) 'Ng g gg   

2

n : Variance of observation by sensor n 

Decision Variables for Location Models: 

(0,1)ay  : 1ay  if locating sensor on link a, otherwise 0ay   (used for existing 

location models) 

(0,1)naz  : 1naz  if locating n
th 

sensor on link a, otherwise 0naz  . 
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11 1| |

1 | |

A

N N A

z z

z z

 
 

  
 
 

z   

1 | |[ ,..., ]n n n Az zz   

Among these parameters, i

a are obtained from definitions of the given route 

choice sets. x is a column vector for the means or real route flow with elements ix for 

i=1,…,|R|. x has a prior distribution and we will discuss later. ˆ
av represents the flow 

observed on link a in the link set A, and it is the elements of v̂ , which is a |A|-dimension 

column vector. The relationship between ˆ
av  and ix  is  

 ˆ ,k k

a a ak R
v x a A 


      ( 4.4 ) 

or 

 ˆ v Hx +ε   ( 4.5 ) 

where a is the random measurement error from sensor if one is located on link a. Eq. 

(4.4) indicates that the observation of link flow on link a is equal to the sum of all route 

flows that use link a, plus a random measurement error coming from the device. This 

relationship always exists for entire link set A, however, we can measure only those in set 

A’ where sensors are located. If link a is not covered by a sensor, Eq. (4.4) will not be 

active in the analysis (for estimating route flows).  

The decision variables in this problem are binary and defined as naz ( 1,...,n N , 

1,...,| |a A ), where n is the subscript for sensors and a is the subscript for links. N is the 

number of sensors’(a given limit) and |A| is the total number of links. 1naz  means the n
th

 

sensor is located on link a. Note that each sensor can only be located on only one link; 
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and for each specific link a, we only allow at most one sensor. These restrictions can be 

expressed as 

 
| |

1
1, 1,...,

A

naa
z n N


    ( 4.6 ) 

 
1

1,
N

nan
z a A


    ( 4.7 ) 

 We can define a matrix z for the decision variables, using naz as elements. The 

dimension of z is N by |A|, and the number of binary variables for each problem is N*|A|.  

Since v̂ is a column vector with dimension |A|, the rows in Eq. (4.5) that can be 

accessed by the estimation model include only the rows (i.e., links) where a sensor is 

located, in particular when 1naz  By the definition of  , the matrix multiplication ˆzv   

selects the links with sensors. 

Take an example of a four-link network with link flow volume ˆ (1,20,30,4) 'v , 

0 1 0 0

0 0 0 1

 
  
 

z

 

indicates that the first sensor is located on link 2 (in row 1, ―1‖ 

appears in column 2 of z) and the second sensor is located on link 4 (in row 2, ―1‖ 

appears in column 4 of z). Hence ˆ (20,4) 'zv  simply selects the volumes for link 2 and 4.  

Therefore, we can modify Eq. (4.5) by Eq. (4.8) 

 ˆY = zv = z(Hx +ε) = zHx + zε   ( 4.8 )  

which eliminates the links without sensors and captures actual observations collected by 

candidate sensors z.   

We assume the random measurement error follows a normal distribution with 

mean zero and variance 2

a  and observations on different links are independent, that is 

~ (0, )MVNε Σ , where Σ is a diagonal ―dispersion‖ matrix for link flow observations. 
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Note that the parameter Σ can be estimated from the same type of sensor at similar 

locations or related studies in other areas. Because of Eq. (4.5), ˆ ~ ( , )MVNv | x Hx Σ is the 

conditional probability of link flows v̂ given route flow x. This conditional probability 

can be used for the likelihood function of the potential link flow observations v̂ . Again, 

because of the nature of SLFE problem, which is a sequential decision-making procedure 

for first locating sensors and then estimating flow of interest, the likelihood that is used 

for computing the posterior distribution, is only available for the links with sensors at the 

estimation stage. Hence, given sensors’ location, the accessible measurement errors 

considering the sensors’ location is ~ (0, )MVNzε zΣz' (Mardiaet al., 1979), and from Eq. 

(4.8) link flow observations Y can be expressed as | ~ ( , )MVNY x zHx zΣz' .  

Recall that route flow x has prior information. In this chapter, we assume the prior 

distributions are multivariate normal (MVN) which provides accurate approximation for 

the true distribution of traffic volumes (Maher, 1983). Define prior distribution 

~ ( )MVN 0 0x μ ,V , where 0μ and 0V are mean and variance of prior distribution. MVN is 

the conjugate prior distribution for the likelihood chosen in this chapter, which gives the 

mathematically tractable procedures to obtain posterior distribution for the estimates.   

4.2  Bayesian Linear Model of Deterministic Route Flows 

4.2.1  Route Flow Estimation with Observations from Multiple Links 

As the lower level of SLFE problem, the procedure of estimating flow variables 

from observations, which is analogous to obtaining a posteriori knowledge based on 

observation evidence and prior knowledge, will be conducted once the sensors are 

located. If the flows of interest are route flow volumes, the corresponding problem is to 



65 
 

reproduce the estimated link flows that are close to the observed link flows from the 

counting sensors 

Originated from the Bayesian statistical approach of Maher (1983), the Bayesian 

method in this chapter is developed as follows: 

With given locations z, if ~ ( )MVN 0 0x μ ,V and Y = zHx + zε , where

~ (0, )MVNε Σ , so that | ~ ( , )MVNY x zHx zΣz' , the posterior distribution of x given 

observations Y = g is also MVN. 

The probability densities of x and |Y xare: 

 

/2
1

01/2

0

(2 ) 1
( ) exp ( ) ' ( )

| det | 2

n

p
 

 
  

 
0 0x x -μ V x -μ

V
  ( 4.9 ) 

 
/2

1

1/2

(2 ) 1
( | ) exp ( ) '( ') ( )

| det ' | 2

p

f
 

 
     

Y x Y - zHx z z Y - zHx
z z

 ( 4.10 ) 

By Bayesian theorem, the posterior as: 

 ( ) ( ) ( | ) ~ ( )f p f MVN 1 1x | Y = g x Y = g x μ ,V   ( 4.11 ) 

Therefore, ( )f x | Y = g   

1 1
exp exp

2 2

   
     

   

-1 -1

0 0 0(g - zHx)'(zΣz') (g - zHx) (x -μ )'V (x -μ )   


1

exp
2


 



-1 -1 -1 -1
g'(zΣz') g - x'H'z'(zΣz') g - g'(zΣz') zHx + x'H'z'(zΣz') zHx   

           
-1 ' -1 -1 ' -1

0 0 0 0 0 0 0 0+x'V x -μ V x - x'V μ +μ V μ  

1
exp

2

 
  

 

-1

1 1 1(x -μ )'V (x -μ )   

 
1

exp
2

 
  

 

-1 ' -1 -1 ' -1

1 1 1 1 1 1 1 1x'V x -μ V x - x'V μ +μ V μ   
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Equating the corresponding terms gives that 

 
-1 -1

1 1 0 0μ = V (V μ + H'z'(zΣz') g)   ( 4.12 ) 

 
-1 -1 -1

1 0V = (V + H'z'(zΣz') zH)   ( 4.13 )  

Further matrix operations on Eq. (4.12) and Eq. (4.13) give that 

 
-1

1 0 0 0 0μ = μ + V H'z'(zΣz'+ zHV H'z') (g - zHμ )   ( 4.14 ) 

  -1

1 0 0 0 0V = V V H'z'(zΣz'+ zHV H'z') zHV  ( 4.15 ) 

Therefore, for the prior distribution of route flow ~ ( )MVN 0 0x μ ,V  and the 

posterior distribution ~ ( )MVN 1 1x | Y g μ ,V , Eq. (4.14) and Eq. (4.15) update for the 

mean vector and dispersion matrix for any given sensors’ location  .   

The change in posterior variance is 

    -1

1 0 0 0 0V V V H'z'(zΣz'+ zHV H'z') zHV  ( 4.16 ) 

From Eq. (4.16), the posterior dispersion matrix varies according to the different 

sensors’ location matrix z. Because 0zΣz'+ zHV H'z'  is positive definite, its inverse is 

positive definite as well. Therefore, Eq. (4.16) indicates that the posterior variances 1V  

always involves a variance reduction comparing to 0V . The trace of Eq. (4.16) is the 

amount of variances reduction in posterior using above Bayesian’ approach to update 

route flows information. 

4.2.2 Route Flow Estimation with Observations from Single Links 

When using Eq. (4.14) and Eq. (4.15) as the updating equations for mean and 

dispersion matrix of route flows, the matrix inverse is a time-consuming operation in 

objective function. Maher indicated that because of the sequential nature of Bayes’ 
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Theorem, one can iteratively conduct the Bayesian procedure using independent 

individual observations, such that the posterior from one observation becomes the prior 

for the next. The sequence of selecting links for measurements does not have effect on 

the posterior distribution in the final step. 

Suppose that a single observation of the nth sensor is taken from location
 nz , 

which is a |A|-dimension row vector — the n
th

 row from z in particular. If 1naz  , the n
th

 

sensor is located on link a and then the dispersion matrix Σ contains a single element

'

n nz Σz  , which can be defined as the uncertainty brought in by sensor n. The sensors’ 

uncertainty is simplified as
| |2 2

1

A

n na aa
z 


 , because for each n, there is one and only one 

naz to be non-zero. Matrix H becomes a row vector with only a
th

 row from original H left. 

Such reduced matrix H can be described by 

 
| | | |1 | | 1 | |

1 1
[ ,..., ] [ ,..., ]

A A R R

na a na a n na a
z z h h 

 
  nz H   ( 4.17 ) 

Because the inverse of a scalar n n n 0 nz Σz '+ z HV H'z '  is the reciprocal, the 

updating equations become:  

 0 n
1 0 n n 0

n n n 0 n

V H'z '
μ = μ + (g - z Hμ )

z Σz '+ z HV H'z '
  ( 4.18 ) 

 
1  0 n n 0

0

n n n 0 n

V H'z 'z HV
V = V

z Σz '+ z HV H'z '
 ( 4.19 ) 

The elements (1)

i  and (1)

ij ( 1,...,| |,i R  1,...,| |j R ) of 1μ and 1V  are given by  

 

 

| | (0)

| |1(1) (0) (0)

| | | | 12 (0)

1 1

( )

R j

n ij Rj r

i i n n rR R ri j

n n n iji j

h
g h

h h


  

 





 

  





 
 ( 4.20 ) 
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| | | |(0) (0)

1 1(1) (0)

| | | |2 (0)

1 1

R Rj i

n ij n ijj i

ij ij R Ri j

n n n iji j

h h

h h

 
 

 

 

 

 


 

 
 ( 4.21 ) 

Denoting
| | (0)

1

R j

n ijj
h 

 by i

nS  ( 1,...,| |,i R  1,...,n N ) and
| |

1

R i i

n ni
h S

 by nT , 

| | (0)

1

R r

n rr
h 

 is the mean of link flow prior (calculated as the summation of prior means of 

routes passing that link) denoted as nv . Then Eq. (4.20) and Eq. (4.21) are simplified as  

 
(1) (0)

2
( )

i

n
i i n n

n n

S
g v

T
 


  


 ( 4.22 ) 

 
(1) (0)

2

i j

n n
ij ij

n n

S S

T
 


 


 ( 4.23 ) 

i

nS describes the variation on flow of route i influenced by the nth. nT is the 

variation on all routes influenced by sensor n’s observation. 2

n is the variation of 

measurement sensor n itself. If sensor’s location is decided (n is fixed), 2

n nT  will be 

fixed. The route i with large variation i

nS will be given large weight for sharing the 

information from observation ng . The rationale behind is that if the prior route 

information is not reliable (i.e., has a large variance), it requires more information from 

observations in order to produce a reliable posterior and vice versa. If the observation is 

not reliable ( 2

n is large), the corresponding ratio will become lower and the observation 

will be considered with less weight in computation of the distributions of the 

corresponding routes.   
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4.3  Locating Sensors to Maximize Variance Reduction 

Because the trace of Eq. (4.16) measures the total variance reduction of posterior 

from prior, the strategy for sensor location is to select a subset of links which have largest 

potential to reduce the variance of the posterior distributions. The objective function of 

the sensor location model is to maximize the trace of Eq. (4.16) by selecting different 

decision variable z. This new sensor location model to maximize variance reduction 

using Bayesian estimator can be formulated as 

[RVR-noisy] max tr -1

0 0 0(V H'z'(zΣz'+ zHV H'z') zHV )   ( 4.24 ) 

                           s.t. 
| |

1
1, 1,...,

A

naa
z n N


    ( 4.25 ) 

 
1

1,
N

nan
z a A


    ( 4.26 ) 

 (0,1)naz  , 1,..., ,n N a A     ( 4.27 ) 

We can simplify the formulation for independent observations. Suppose N sensors 

are to be located in the network. Instead of solving [RVR-noisy] directly, we can use an 

iterative method that locates one link with capability to reduce most posterior variance at 

a time. After selecting one link, the route flow mean and variance are updated using Eq. 

(4.22) and Eq. (4.23). The posterior becomes the prior and process repeats for another 

unselected link.  We define Af  as the set of links which have not been selected yet and 
fA  

is the set of selected links (and cannot be selected again). The process is repeated until all 

N links are determined. For each sensor n, its location is decided by the model, 

formulated as: 

[RVRS-noisy] 
2

| |

21

( )
max

i
R n

i
n n

S

T 
   ( 4.28 ) 
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                            s.t. 
| |

1
,

Ai i

n na aa
h z 


   1,...,| |i R    ( 4.29 ) 

  
| |2 2

1

A

n na aa
z 


  ( 4.30 ) 

 
| | (0)

1
,

Ri j

n n ijj
S h 


  1,...,| |i R   ( 4.31 ) 

 
| |

1

R j i

n n nj
T h S


  ( 4.32 ) 

 
| |

1
1

A

naa
z


  ( 4.33 ) 

 0,na fz a A    ( 4.34 ) 

 (0,1)naz  , 1,..., ,n N a A     ( 4.35 ) 

The objective function Eq. (4.28) in formulation [RVRS-noisy] maximizes total 

variance reduction 
| | (0) (1)

1
( )

R

ii iii
 


 . Constraints Eq. (4.29) to Eq. (4.32) are introducing 

notations to simplify objective function Eq. (4.28). Constraint Eq. (4.33) restricts sensor n 

will be located on only one link. Constraint Eq. (4.34) forces the decision of sensor’s 

location be made only from the feasible links’ set 
fA . Constraint Eq. (4.35) is the binary 

constraint for decision variables.   

4.4  Algorithm 

Locating only one sensor in the network for problem MVRS can be solved by a 

greedy algorithm: for each candidate link, calculate the objective value
2

| |

21

( )i
R n

i
n n

S

T 
  and 

select the one with largest objective value. The solution of MVRS can be found by 

  | |  time.  

Therefore, the entire algorithm for solving [RVR-noisy] is: 
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BAYESIAN BASED LOCATION ALGORITHM [RVR-NOISY] 

Input: 0μ , 0V , H,  N 

Output: 1 2( , ,..., ) 'Nz z z z , 1μ , 1V  

(1)       Set : 1n  .  

Set
fA A . 

Set fA  .  

            (2) For each link
fa A , calculate

2
| |

21

( )i
R n

i
n n

S

T 
 . 

            (3)      Select the link 
fa A with largest value calculated in Step 2 and nz is a 

row vector with only non-zero element in ath column. Remove link a 

from
fA and add it into 

fA . 

            (4)      Using observation on link a to update posterior using Eq. (4.14) and 

Eq. (4.15) for 1μ , 1V .  

 (5)       Increment n by 1. 

 (6)       If 1n N    then stop.  

  Else set 0  1μ μ , 0  1V V  and go to Step 2.  

 

The running time for this algorithm is polynomial because the entire algorithm 

will run for N loops; each loop consists of a preprocessing (step 2) and a searching (step 3) 

process that can be conducted in polynomial time.  
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The optimality of above algorithm can be proved by the sequential nature of 

Bayes’ Theorem. Assume our sensor location z containing two independent observations

2( , ) '1z z , the likelihood is: 

 2 2( | ) ( , | ) ( | ) ( | )l l l l  1 1z x z z x z x z x  ( 4.36 ) 

The posterior route flows when using observation z is: 

 1 2( ) ( ) ( | ) ( ) ( | ) ( | )p p l p l l x | z x z x x z x z x   ( 4.37 ) 

where ( )p x  is the prior distribution of route flows. 

Now consider a two-stage process of sequentially updating priors using 

observations 1z and 2z . The first posterior probability for route flow x after applying 

observation 1z can be derived as: 

 ( ) ( ) ( | )p p l1 1x | z x z x   ( 4.38 ) 

Updating posterior probability ( )p 1x | z using Eq. (4.38) and then using it as the 

prior probability in the next stage, the second posterior probability is: 

 2( ) ( ) ( | )p p l1 2 1x | z ,z x | z z x   ( 4.39 ) 

Substituting Eq. (4.38) in Eq. (4.39) gives the posterior probability when 

sequentially using observations 1z and 2z as: 

 2( ) ( ) ( | ) ( | )p p l l1 2 1x | z ,z x z x z x   ( 4.40 ) 

Because the right hand sides of Eq. (4.37) and Eq. (4.40) are the same 

( 2( ) ( | ) ( | )p l l1x z x z x ), we have that: 

 ( ) ( )p p 1 2x | z x | z ,z  ( 4.41 ) 
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Eq. (4.41) confirms that updating for route flow distribution from ( )p x to ( )p x | z  

directly using both observations at the same time is equivalent to a two-stage process that 

sequentially updates the distribution using individual sensor measurements.  

Therefore, the posterior with all N observations (solution for model RVR-noisy) 

can be obtained by a series of application of Bayesian updates using individual sensor 

measurements. 

4.5 Experimental Result 

4.5.1 Experiment Setup 

The proposed RVR-noisy model and algorithm are applied to two experiment 

networks and the performances are compared with three existing models: Link Flow 

Coverage (LFC), Route Flow Coverage (RFC) and RVR-perfect model from chapter 3. 

The reason to select LFC and RFC in comparison is that both models are widely reported 

and rely on network structures and the magnitude of prior information; RVR-perfect 

model relies on the variance or degree of believe of prior information (no measurement 

errors considered). All the experiments were conducted in Matlab.  

Figure 8 shows the scheme of the experimental procedure. First (Steps 1-2), 

problem scenarios are generated by defining the network (supply), loading the assumed 

traffic flows (demand) and obtaining the ―actual‖ mean of network traffic ix  and av . 

Assumed route flow prior distribution (mean and variance), sensors’ reliabilities and 

potential link flow observations are generated by linking the reliabilities to the actual 

values (Step 3). For each route, the prior’s reliability is first randomly generated by 

u
i
(0,u

max
); then the prior’s variance is calculated by 

(0) i i

ii x u  ; the prior’s mean is 
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generated from a normal random generator 
(0) (0)~ ( , )i

i iiN x  ; all covariance are assumed 

to be zero in the initial priors. Similar logic is used to generate sensors’ reliabilities and 

potential observations. For each link, the sensor’s reliability at  is randomly generated 

within range max[0, ]t  and variance of link flow measurement is calculated by 2

a a av t  ; the 

potential observation on such link is generated from a normal random generator

2ˆ ~ ( , )a a av v  . In Step 4, RVR-noisy and other location models are solved using Matlab to 

obtain location decisions z. Then, with these decisions, posterior mean and variance of 

route flows are obtained using the Bayesian estimation model in section 4.2 (Step 5). To 

evaluate each location model (Step 6), the posterior means are compared with actual 

route flows in terms of the bias. Total variances (trace of 1V ) are compared as well. The 

evaluation criterion is the sum-squared error (SSE) of the posterior distribution, which is 

defined by the summation of variance and squared bias:  

 
2 (1) 2 (1)( )i

i iii R i R
SSE BIAS Variance x 

 
        ( 4.42 )  

where ix is the true mean value of the route flow i. Because SSE measures the 

combination of bias and variance, if the magnitude of variance is significantly lower than 

the squared bias, SSE will be dominated by the effect of bias. Because our proposed 

RVR-noisy already minimizes the posterior variances, the criterion SSE is more sensitive 

for showing the effect of bias.  
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Figure 8 Procedure for the computational experiments for RVR-noisy 
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Finally, note that for each network scenario, we can have different problem 

instances by locating different number of sensors between 1 and (say) N, the number of 

possible sensor sites. Furthermore, we can have priors with different qualities, in 

particular prior variance and bias; sensors can have various reliabilities. Hence, each 

problem instance in our computational experiments is defined by: 

(1) Network supply 

(2) Traffic demand 

(3) Reliability of priors on traffic flows to be estimated 

(4) Reliability of sensors 

(5) Number of sensors to be located.  

Solving the location model for each problem instance, for the four models being 

compared, gives us a score for each model, as defined by the SSE.    

Two sets of network scenarios were used in the computational experiments.  

(1) A grid network with 16 OD pairs, 43 routes and 48 links.  

(2) A grid network with 16 OD pairs, 204 routes and 112 links.  

4.5.2 Numerical Results 

Four network scenarios are tested with two initial prior distributions. We 

simulated two sets of link flow observations for each grid network. When generating the 

experiments, u
max 

is set to be 0.15 and t
max

 is 0.1. This parameter setting reflects that we 

assume counting devices are more accurate then our prior knowledge in practice. 

Table 6 shows the SSE results for the four comparative location models. The table 

gives the averaged SSE for every five instances locating different numbers of sensor 

locations. For example, the first row in Table 6 represents the average SSE scores for 
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N=1 to N=5. The best scores are in bold in Table 6. In general, our proposed RVR-noisy 

(denoted by RVR-N in the following tables) outperforms other models in most cases, 

especially when few sensors are in use. The row marked as ―Total‖ in Table 6 sums all of 

the SSE scores and emphasizes on the advantage of RVR-noisy compared to other models 

for grid network 1. Observe, however, that RVR-perfect (denoted by RVR-P in the 

following tables) model sometimes has the best score, and often is the second best when 

RVR-noisy is the best.   
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Table 6 SSE Results using RVR-noisy for Grid Network1  

  

        obs_1          obs_2 

  

RVR-N RVR-P LFC RFC RVR-N RVR-P LFC RFC 

p
ri

o
r_

1
 

1-5 481.04 486.86 821.60 832.85 288.16 288.61 825.64 823.68 

6-10 455.34 462.25 808.11 566.57 270.54 269.36 800.22 402.88 

11-15 441.49 441.76 474.10 502.76 259.35 248.85 253.25 294.90 

16-20 437.53 437.47 472.21 491.71 226.68 223.72 248.50 286.06 

21-25 439.34 440.04 469.49 478.66 220.23 220.38 249.93 263.22 

26-30 440.92 441.22 452.77 455.85 218.40 222.44 237.03 262.63 

31-34 441.26 441.88 445.33 447.31 218.02 217.22 221.08 222.92 

 

Total 3136.91 3151.49 3943.63 3775.71 1701.37 1690.57 2835.65 2556.28 

p
ri

o
r_

2
 

1-5 114.36 156.33 140.54 122.59 118.80 128.93 139.14 127.45 

6-10 136.22 150.23 162.73 147.97 103.33 116.14 130.70 123.33 

11-15 125.14 150.63 139.41 151.94 106.75 101.83 127.85 126.88 

16-20 129.06 145.52 133.88 152.74 100.66 94.94 108.52 119.38 

21-25 140.50 140.12 137.63 155.63 83.66 85.28 103.27 109.53 

26-30 137.87 135.17 136.93 146.41 83.94 85.73 91.05 107.55 

31-34 134.66 134.12 135.57 143.75 87.50 86.82 86.75 97.41 

 

Total 917.80 1012.13 986.69 1021.03 684.63 699.68 787.27 811.53 

 

We have similar comparisons in Table 7 among the SSE scores for the four 

location models applied to the grid network 2. The RVR-noisy model performs the best 

in most cases and on the overall performance in the rows marked ―Total‖. 
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Table 7 SSE Results using RVR-noisy for Grid Network 2 

 

 

obs_1 obs_2 

 

SSE RVR-N RVR-P MFC RFC RVR-N RVR-P MFC RFC 

p
ri

o
r_

1
 

1-10 31.47 33.11 46.28 42.94 34.80 34.25 47.20 40.78 

11-20 21.89 22.28 38.84 44.33 22.68 24.35 42.88 40.49 

21-30 19.82 19.82 29.95 43.42 20.69 18.77 37.42 42.53 

31-40 17.80 18.33 21.62 40.71 17.42 18.38 23.41 45.02 

41-50 17.74 18.08 20.04 29.26 18.86 20.04 21.58 35.59 

51-60 17.45 17.83 18.49 24.71 19.60 19.66 20.50 30.81 

61-69 17.28 17.19 17.22 19.87 19.37 19.32 19.30 24.06 

 

Total 143.46 146.63 192.43 245.23 153.41 154.77 212.29 259.28 

p
ri

o
r_

2
 

1-10 14.19 13.33 20.60 15.02 13.21 13.06 24.92 15.41 

11-20 11.84 11.66 18.00 14.11 8.78 10.33 23.03 13.13 

21-30 10.52 10.29 11.89 13.81 7.74 7.70 17.39 17.77 

31-40 9.66 9.58 12.02 12.42 7.68 7.97 16.68 18.77 

41-50 9.58 9.91 9.84 11.26 7.56 7.84 8.23 17.11 

51-60 9.09 8.77 8.98 10.55 7.63 7.91 7.57 14.22 

61-69 8.63 8.61 8.60 9.71 7.73 7.71 7.67 9.03 

 

Total 73.50 72.15 89.91 86.88 60.32 62.52 105.48 105.44 

 

Figure 9 and Figure 10 plot the average posterior variances when locating 

different number of sensors using RVR-noisy. Figure 9 and Figure 10 indicate that, for an 

instance, the more sensors in use, the lesser the posterior variances. However, the 

marginal reduction in posterior variances decreases when N is increased. In addition, the 
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majority (more than 70%) posterior variances can be reduced when using data from up to 

25% links in a network.  

 

Figure 9 Route flow posterior variance using RVR-noisy in network 1 

 

Figure 10  Route flow posterior variance using RVR-noisy in network 2 

In practice, the decision-makers are more interested in locating sensors only on 

few links due to budget considerations. Table 8 and 9 tabulate the problem instances 
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when at most half the links can be detectorized, that is, average scores for all instances 

from N=1 to N=1/2|A| and from N=1 to N=1/4|A| respectively. In each cell of the tables, 

the number on the top represents the value of SSE, while the rest two values are the 

variance and bias from the instance. Table 8 shows that the average SSE for RVR-noisy 

and RVR-perfect are always lower than the average SSE for LFC and RFC. For RVR-

noisy and RVR-perfect, the average SSEs are close because when more noise sensors are 

used, more bias could be introduced in the estimates. Table 9 focuses on model 

performance when locating fewer sensors. RVR-noisy outperforms among all the 

instances in terms of SSE, variance and bias.   
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Table 8 SSE Results using RVR-noisy for Problem Instances for N=1 to N=1/2|A| 

 

  RVR-N RVR-P MFC RFC 

  

SSE SSE SSE SSE 

 

(1
st
 50%) Var Bias Var Bias Var Bias Var Bias 

N
et

w
o

rk
 1

 

prior_1,obs_1 456.73 460.47 674.34 618.45 

 

7.00 21.21 7.03 21.29 9.10 25.79 8.72 24.64 

prior_1,obs_2 268.31 264.66 581.99 482.60 

  6.15 16.19 6.19 16.08 8.62 23.95 8.74 21.71 

prior_2,obs_1 125.29 152.03 145.76 142.06 

 

7.27 10.86 7.48 12.02 8.57 11.71 8.65 11.46 

prior_2,obs_2 109.06 113.49 130.58 126.16 

  7.04 10.10 7.15 10.31 8.22 11.06 8.92 10.75 

N
et

w
o

rk
 2

 

prior_1,obs_1 23.52 24.16 36.05 43.31 

 

2.01 4.64 2.03 4.70 2.27 5.81 2.44 6.37 

prior_1,obs_2 24.99 24.63 39.95 41.78 

  2.04 4.79 2.06 4.75 2.29 6.14 2.45 6.24 

prior_2,obs_1 11.83 11.46 16.16 14.09 

 

1.90 3.15 1.91 3.09 2.17 3.74 2.22 3.39 

prior_2,obs_2 9.58 10.02 21.13 15.92 

  1.90 2.77 1.91 2.85 2.18 4.35 2.23 3.65 
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Table 9 SSE Results using RVR-noisy for Problem Instances for N=1 to N=1/4|A| 

    RVR-N RVR-P MFC RFC 

  

SSE SSE SSE SSE 

 

(1
st
 25%) Var Bias Var Bias Var Bias Var Bias 

N
et

w
o

rk
 1

 

prior_1,obs_1 469.48 475.78 816.39 721.42 

 

7.97 21.48 7.99 21.63 10.30 28.39 9.58 26.65 

prior_1,obs_2 280.05 280.14 816.26 648.46 

  7.14 16.52 7.17 16.52 10.01 28.39 9.60 25.24 

prior_2,obs_1 125.46 153.29 150.35 133.21 

 

8.30 10.82 8.51 12.03 9.34 11.87 9.36 11.07 

prior_2,obs_2 112.52 123.60 136.18 125.04 

  8.17 10.22 8.29 10.74 9.08 11.27 9.59 10.70 

N
et

w
o

rk
 2

 

prior_1,obs_1 27.61 28.80 43.85 43.51 

 

2.23 25.38 2.24 26.56 2.47 41.38 2.56 40.71 

prior_1,obs_2 29.92 30.54 45.82 40.55 

  2.26 27.66 2.27 28.27 2.47 43.35 2.57 37.75 

prior_2,obs_1 11.51 12.14 24.24 14.45 

 

2.10 9.41 2.11 10.02 2.35 21.88 2.37 11.88 

prior_2,obs_2 13.39 12.80 19.67 14.74 

  2.10 11.28 2.11 10.69 2.36 17.32 2.36 12.17 

 

Because of the random effects in the experiment framework, average score is only 

one way to compare the performance. Further comparisons are conducted using statistical 

paired-t tests to compare SSE scores with those of other models. Here one is interested in 

testing if the mean of estimation scores using RVR-noisy is significantly lower than that 

of each of the other models. The hypothesis for the paired-t test is: 
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0 _: RVR p othersH     

1 _: RVR p othersH    

If the P-value for a paired-t test is lower than 0.05, it means we can reject H0 at 95% 

confidence level and have a statistical indication that RVR-noisy is better than the 

compared model. In addition, if the 95% confidence interval does not include zero, it is a 

statistical proof that both means are different. We conduct three similar paired-t tests to 

compare SSE scores of RVR-noisy versus the SSE of RVR-perfect, LFC and RFC 

separately; the P-values and 95% confidence intervals by Minitab are shown in Table 10. 

The table shows that RVR-noisy significantly outperforms all the other models because 

the P-values are essentially zero and none of the confidence intervals include the value of 

zero.  

Table 10 P-values for Paired-t Tests Comparison of SSE of RVR-noisy  

with Other Location Models 

Alternative hypothesis:         p-value 95% Confidence Interval 

       0.000 (-2.18307, -0.83229) 

     0.000 Upper bound is -21.9645 

     0.000 Upper bound is -21.1212 

 

4.6  Chapter Conclusions 

In this chapter, Bayesian statistical procedure is used to combine the prior 

information and observation data to obtain the route flow estimates. In the Bayesian 

linear model, conjugate prior distributions are assumed for the route flows. A linear 
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integer program is formulated with the objective function of maximizing the expected 

variance reduction in Bayesian procedure. The solution of the new model provides the 

optimal subset of links on which to locate sensors. A sub-model for optimally selecting a 

single link is developed in order to simplify the solution procedure. The proposed 

algorithm iteratively solves this sub-model and provides the optimal set of links at the 

end of solution process. The optimality of proposed solution algorithm is proven by 

sequentially applying the Bayes Theorem.   

The experimental results also show that the proposed model RVR performs 

significantly better than the other two models LFC and RFC. The RVR-perfect performs 

well but in most cases RVR-noisy performs the best. The outperformance of RVR-noisy 

and RVR-perfect are statistically compared and the statistical evidence indicates that 

RVR-noisy outperforms RVR-perfect, which confirms the advantage of considering the 

reliabilities of measurement devices in the sensor location problems.  
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Chapter 5  

LOCATING SENSORS TO ESTIMATE STOCHASTIC ROUTE FLOWS WITH 

KNOWN VARIANCE AND ASSUMING NORMAL DISTRIBUTIONS FOR PRIOR 

UNCERTAINTIES 

5.1  Introduction and Problem Description 

5.1.1  Introduction to Hierarchical Linear Models  

In the four-step Bayesian method described in section 4.1.1, the statistical model 

and prior model together can form an ordered structure, in which the distribution of the 

data Y is conditioning on parameter x as ( )f y | x , and the distribution of x is written 

conditionally on hyperparameters γ as ( | )f x γ . The distribution of γ is ( )f γ . 

Theoretically one could write the distribution of γ conditionally on some more parameter 

and extend to include further stages with new hyperparameters. Such models are called 

hierarchical models because the distribution of parameter in each level of the hierarchy 

depends on the parameters in the next level (Clark and Gelfand, 2006).   

The parameters (Y, x, γ) described above form a three-stage hierarchical model 

and they can be viewed as three entities with stochastic features. First, the data y is 

presumed to be drawn from some populations regarding underlying process x. Second, 

the process x involves uncertainty that will be estimated by parameter γ. Third, the 

parameter γ is uncertain and expected to vary depending upon how and where the data is 

obtained. Because each entity is stochastic, the joint distribution of (y, x, γ) is 

  | , |( ) ( ) ( )f f f f  Y Y x γ x γx,γ γ, ,  ( 5.1 ) 

which is  
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       |                             |                         . 

It is usually assumed that the distribution of parameters at any stage of the 

hierarchy depends only on parameters at the next lower level, and independent of 

parameters at all levels below that. This assumption is based on a judgment that if we 

know process x then known parameter γ would not add any additional information about 

data Y, because the prior knowledge about γ has been introduced as a way of  

 ( ) ( | ) ( )f f f d x x γ γ γ  . ( 5.2 ) 

By this assumption, the likelihood  | ,f Y x γ  in Eq. (5.1) is equivalent as

 |f Y x and the joint distribution in Eq. (5.1) becomes to  

  ( ) ( ) (| | )f f f f  Y Y x x γx,γ γ, . ( 5.3 ) 

A hierarchical model specifies the full joint distribution of all quantities in the 

way of equation Eq. (5.3). The joint distribution on the left side of Eq. (5.3) is provided in 

terms of three distributions on the right side. Usually the distributions on the right side 

may be easier to consider individually rather than the entire joint distribution.   

Now consider a linear model in the form 

 Y = Hx +ε , ( 5.4 ) 

where Y is an     vector of data, H is an     matrix of known coefficients, x is a 

    vector of process and ε is an     vector of random errors. The elements of ε  are 

assumed to have zero mean and known variance Σ. In addition, the uncertainty in x is 

expressed as a random deviation δ from parameter γ 

 x = γ +δ , ( 5.5 ) 
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where γ is an 1n  vector of parameter and δ is an     vector of random errors. The 

elements of δ are assumed to have zero mean and known variance Φ. And finally 

parameter γ is described as prior distribution ( )f γ . 

Assume the random errors ε , δ and the prior for γ are all normally distributed, the 

three-stage hierarchy is 

~ ( , )MVN Y | x Hx , 

~ ( , )MVN x | γ γ , 

0 0~ ( , )MVNγ μ V . 

The joint posterior distribution of x and γ can be derived using Bayesian method 

and inferences will be made from the derived posterior distribution.   

5.1.2  Problem Description 

The traffic demand is assumed to follow the stochastic demand pattern, which 

includes the regular traffic demand pattern (the long-term demand information under 

normal conditions) and the random fluctuations (the inherent stochastic nature and any 

effect of unobserved factors). This chapter first introduces a hierarchical linear model for 

stochastic route flows x in a traffic network. The stochastic nature of route flow x is 

described by a probability distribution with two parameters mean γ and variance-

covariance Φ. The mean γ is to describe the regular demand information, and the 

variance-covariance Φ describes the day-to-day variations inherent in route flows. This 

chapter assumes the variance-covariance Φ is known. The prior knowledge for the route 

flow mean γ is described as a multivariate normal distribution (MVN) with the mean 0μ  

and the variance-covariance 0V . The reason for the choice of prior distribution for γ is 
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that MVN is the conjugate prior distribution for the parameter of mean. The noisy sensors 

in use introduce the measurement errors from counting devices and the measurement 

errors are randomly distributed with a mean of zero and a known variance Σ. Σ is 

determined by the reliability of the measuring device. Therefore, the mean of route flows 

γ is to be estimated based on link flow observations from a subset of links Y by using 

Bayesian estimation approach.   

The second task of this chapter is to derive a decision model for the location of 

limited number of noisy sensors — the observations from which will be used in the 

hierarchical Bayesian estimation model. The objective for locating sensors is to maximize 

the expected uncertainty reductions by hierarchical Bayesian estimator when using the 

observed traffic data from the candidate set of links.  

5.1.3  Notation 

The notation is first defined in this chapter. Similar to previous chapters, the 

notation is classified as it relates to (a) network topology, (b) definition of route flows, (c) 

links flows, (d) observations or measurements, and (e) decision variables.  

Network Topology Parameters: 

R: Route-choice set for a network 

A: Set of all the links in the network 

A’: Set of links where sensors are located 

Af: Set of links feasible for sensors to be located 

|R|: Number of routes in a network 

|A|: Number of links in a network 

N: Number of sensors to locate 
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       : Link-route parameter.   

   if route iuses link a, otherwise,  
    

  [

  
    

| |

   

 | |
   | |

| |
] 

Route Flows: 

  : Real route flow of i
th

 route  

            | |   

  : The parameter to describe the mean of route flow    

            | |  

  : The parameter to describe the variation of route flow    (random deviation of 

   from  ) 

            | |   

   : Covariance of flows between routes i and j(variance of route flow i if i =j) 

  [

      | |

   
 | |   | || |

] 

  
 : Mean of prior distribution for parameter   

      
   

   
   

    | |
   

   

   
   

: Covariance of prior distribution between parameter   and    (variance of 

prior distribution if i =j) 

   [

   
   

   | |
   

   

 | | 
   

  | || |
   

] 

  
 : Mean of posterior distribution for parameter   
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    | |
   

   

   
   

: Covariance of posterior distribution between parameter   and   (variance of 

posterior distribution if i =j) 

   [

   
   

   | |
   

   

 | | 
   

  | || |
   

] 

Link Flows: 

  : Real link flow on link a 

           | |   

 ̂ : Potential link flow observation if a sensor is locatedon link a 

 ̂    ̂   ̂    ̂| |   

  
 : Variance of link flow measurement on link a 

  [
  

   
   
   | |

 
] 

  : Measurement error on link a 

            | |  

Observations by sensors:  

  : Link flow observed by sensor n 

                

  : An instance of link flow observed by sensor n 

                

  
 : Variance of observation by sensor n 

Decision Variables for Location Models: 
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        :     if locating sensor on link a, otherwise      (used for 

existing location models) 

         :      if locating n
th 

sensor on link a, otherwise       . 

  [

      | |

   
      | |

] 

   [        | |] 

5.2  Hierarchical Linear Bayesian Model of Stochastic Route Flows 

5.2.1  Route Flow Mean Estimation with Observations from Multiple Links 

The stochastic route flow demand will be modeled by a three-stage hierarchical 

Bayesian model. The first hierarchy describes the relationship between link flow 

observations v̂  and route flows x as  

 v̂ = Hx +ε . ( 5.6 ) 

Eq. (5.6) indicates a linear relationship between v̂ and x. A random measurement 

error a  is associated with each link observation from the sensor. We assume a  is from 

a normal distribution 2(0, )aN   where 2

a  is known as the reliability of the device. When 

observations on different links are independent, we have ~ (0, )MVN ε , where  is a 

diagonal ―dispersion‖ matrix and the diagonal elements are 2

a  for link a.  

The linear relationship Eq. (5.6) only exists for the link set A’, where sensors are 

located. Hence, the matrix multiplication ˆzv identifies the links with sensors, and Eq. (5.6) 

can be modified to Eq. (5.7) as 

 ˆ ( )  Y = zv = z Hx +ε zHx zε . ( 5.7 ) 
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In the first hierarchy, the distribution of link flow observation Y given z, H, x and 

 ,which defines the likelihood, is ( , ')MVN zHx z z  .  

The second hierarchy is to model the stochastic feature in route demand x. By 

defining two parameters γ and δ to describe the mean and variation in route flow demand, 

x is expressed as 

 x = γ +δ . ( 5.8 ) 

The random deviation term δ is assumed to have MVN distribution with zero 

mean and known variance Φ, the element 
ij of which, represents the covariance 

between route i and j. In the second hierarchy, the hierarchical prior distribution for x 

given γ and Φ is ~ ( , )MVN x γ . The parameter representing route flow means γ is the 

parameter to be estimated.  

In the final hierarchy, the prior distribution of γ is 0 0( , )MVN μ V , which 0μ  and 

0V are known and to be updated from observation data Y by Bayesian method.  

To sum up, the three-stage hierarchy to model the stochastic route flow is 

~ ( , ')MVN Y | x zHx z z , 

~ ( , )MVN x | γ γ , 

0 0~ ( , )MVNγ μ V . 

Maher (1983) indicated that multivariate normal seems to be the accurate 

approximation for random variables concerned with counts, so that it is an appropriate 

choice for the distribution of γ and the random errors ε and δ in order to produce 

mathematical tractable results.  
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Following from these assumptions, the posterior distribution of γ is also MVN. 

This will be shown in the following theorem: 

Theorem. If Y = zHx zε  where ~ (0, )MVN ε , then , ~ ( , ')MVN Y | x z zHx z z , 

and the conditional distribution ~ ( , )MVN x | γ γ is the hierarchical prior distribution 

for x given γ and the prior distribution for γ is 0 0( , )MVN μ V . It follows the Bayes’ 

Theorem then the posterior distribution of γ given observation Y is also MVN. 

When substituting Eq. (5.8) into Eq. (5.7), it gives 

  Y = zHx zε zHγ+(zHδ+ zε) . ( 5.9 ) 

Replacing zH by A and (zHδ+ zε)  by B, Eq. (5.9) corresponds to the standard 

form of linear model 

 Y = Aγ + B . ( 5.10 ) 

Since ~ ( )MVNzHδ 0,zHΦH'z'  and ~ ( )MVNzε 0,zΣz'  (see Mardiaet al. 1979 

for details), the error term in Eq. (5.10) B = zHδ+ zε  is distributed as 

~ ( )MVNzHδ+ zε 0,zHΦH'z'+ zΣz' . 

Then the distribution of the data Y given parameter γ  is

( )MVN zHγ, zHΦH'z'+ zΣz' , which gives the likelihood function as 

 
1( ) exp{ ( ) '( ) ( ) / 2}f  Y | γ Y - zHγ zHΦH'z'+ zΣz' Y - zHγ . ( 5.11 ) 

Replacing zHΦH'z'+ zΣz'  by W, Eq. (5.11) is simplified as 

 
1( ) exp{ ( ) ' ( ) / 2}f  Y | γ Y - Aγ W Y- Aγ . ( 5.12 ) 

Because the prior distribution of γ  be ( )MVN 0 0μ ,V , it gives 

 ( ) exp{ ( ) ' ( ) / 2}f   -1

0 0 0γ γ -μ V γ -μ . ( 5.13 ) 
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Because MVN is the conjugate prior distribution, by Bayes’ Theorem

( | ) ( ) ( )f f fγ Y Y | γ γ , the posterior distribution is 1 1| ~ ( )MVNγ Y μ ,V . 

From the derivation in chapter 4, the updating equations for 1μ and 1V  are 

 
1 

-1 -1

1 0 0μ V (V μ + A'W Y) , ( 5.14 ) 

 -1 -1 -1

1 0V = (V + A'W A) , ( 5.15 ) 

or 

 -1

1 0 0 0 0μ = μ + V A'(W + AV A') (Y - Aμ ) , ( 5.16 ) 

 
1   -1

0 0 0 0V V V A'(W + AV A') AV . ( 5.17 ) 

Substituting A = zH  and W = zHΦH'z'+ zΣz'  in Eq. (5.14) and Eq. (5.15) gives 

alternative updating equations as 

 -1 -1

1 1 0 0μ = V (V μ + H'z'(zHΦH'z'+ zΣz') Y) , ( 5.18 ) 

 -1 -1 -1

1 0V = (V H'z'(zHΦH'z'+ zΣz') zH) . ( 5.19 ) 

Substituting A = zH  and W = zHΦH'z'+ zΣz'  in Eq. (5.16) and Eq. (5.17) gives 

   -1

1 0 0 0 0μ = μ V H'z'(zΣz' zHΦH'z'+ zHV H'z') (Y zHμ ) , ( 5.20 ) 

   -1

1 0 0 0 0V = V V H'z'(zΣz' zHΦH'z'+ zHV H'z') zHV . ( 5.21 ) 

Similar to the updating equation in Eq. (4.13) for deterministic route flow 

estimation, Eq. (5.19) shows the similar format that the precision of posterior (inverse of 

variance-covariance) is the summation of prior precision and precisions related with the 

linear measurement models. The variances in the first and second hierarchies are 

combined with equal importance in the way of zΣz' zHΦH'z'  to produce the total 

variances related with link flow measurements from candidate sensors’ location z and the 
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route flow variances which have been observed by sensors z. Hence, the posterior 

variances when using link data from candidate set z is determined by the uncertainty of 

sensors zΣz' , the inherent variance in route flows zHΦH'z' , and the prior variances 

0zHV H'z' .  

Updating equation Eq. (5.18) expresses the posterior mean of parameter γ  as a 

matrix-weighted average of the prior mean 0μ  and the observation data Y. If the prior 

information is more reliable (variance of prior information is lower than the variance in 

the linear measurement model), then the prior mean    should contribute more when 

producing the posterior means. Otherwise, the observations Y should have more weight 

when calculating posterior means.   

In addition, rearranging Eq. (5.21) will give the change of variances in route flow 

mean estimates due to the Bayesian estimator, such that 

    -1

1 0 0 0 0V V = V H'z'(zΣz' zHΦH'z'+ zHV H'z') zHV . ( 5.22 ) 

In Eq. (5.22), because  0zΣz' zHΦH'z'+ zHV H'z' is positive definite, 

 -1

0(zΣz' zHΦH'z'+ zHV H'z') is also positive definite. Therefore, the variances in 

posterior are always reduced comparing to prior variances.  

5.2.2  Route Flow Mean Estimation with Observations from Single Link 

Define the single observation by the nth sensor as nY , and nz  indicates the 

location of such sensor n. The posterior updating equations from single observation nY  

are revised from Eq. (5.20) and Eq. (5.21) as:  

 

'

0 n
1 0 n n 0' '

n n n 0 n

V H'z
μ = μ + (Y - z Hμ )

z Σz + z H(V +Φ)H'z
 , ( 5.23 ) 
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'

0 n n 0
1 0 ' '

n n n 0 n

V H'z z HV
V = V -

z Σz + z H(V +Φ)H'z
 . ( 5.24 ) 

The elements 
(1)

i   and 
(1)

ij   (i=1,…,|R|; j=1,…,|R|) of 1μ  and 1V  are given by  

 
 

| | (0)

| |1(1) (0) (0)

| | | | 12 (0)

1 1

( )
( )

R j

n ij Rj r

i i n n rR R ri j

n n n ij iji j

h
Y h

h h


  

  





 

  
 




 
 ( 5.25 ) 

 
  

 

| | | |(0) (0)
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1 1
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 ( 5.26 ) 

The updating equations Eq. (5.25) and Eq. (5.26) could be iteratively applied 

using only one observation data in each step.  

5.3  Sensor Location Model for Stochastic Route Flow Mean Estimation 

When the lower level of SLFE problem is a Bayesian estimator, the upper level 

sensors’ location becomes a Bayesian experimental design problem that the statistical 

inference about the route flows can be improved by appropriately selecting which subset 

of links to be located with sensors. Decision theory provides a mathematical foundation 

for the optimal designs, particularly in this dissertation for decisions on sensor locations 

for data collection. In order to conduct a more informative experiment, prior information, 

observational studies or subjective beliefs from observations can be valuable. The 

Bayesian approach to experimental design provides a way to incorporate all information 

into the upper level of SLFE problem.   

According to Lindley (1972), the two-part decision theoretic approach involves 

specification of a utility function which reflects the purpose and costs of the experiment. 

The Bayesian solution is to find the best location of sensors to maximize the expected 
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utility. In the estimation stage, given the observed data, the best estimates are found to 

maximize the posterior expected utility, where the expectation is taken with respect to the 

posterior distribution of route flows and properly reflects uncertainty in estimates after 

observations are collected. Assuming z is the subset of links with sensors located on, Y is 

the link count data observed from a sample space  ;   is the decision selected from 

possible decision rules D to address the terminal goal of the experiment (e.g. obtaining 

best estimates of route flows); the unknown parameters are θ and the parameter space is 

 . A general utility function is of the form ( , , , )U d θ z Y  which represents the costs and 

consequences of using links   and corresponding observations Y and route flow 

parameter θ . The optimization problem in estimation stage is formulated as: 

 max ( , , , ) ( | , ) ( , )d U d p d U


 θ z Y θ z Y θ z Y . ( 5.27 ) 

In the sensor location stage, the optimization problem involves finding the best 

design that maximizes the pre-posterior expected utility, which is obtained by integrating 

posterior expected utility function Eq. (5.27) over possible outcomes in the sample space. 

The general formulation to find the optimal design for optimal locations z*: 

 *( ) max max ( , , , ) ( | , ) ( | )d
y

U U d p p d d


  z θ z Y θ z Y Y z θ Y . ( 5.28 ) 

Usually, when the goal of conducting an experiment is to obtain the point estimate 

of parameters, a quadratic loss function is an appropriate utility function which leads to 

the pre-posterior expected utility as 

 ( ) ( ) ( ) ( | , ) ( | )
y

U p p d d


    z θ θ A θ θ θ Y z Y z θ Y  , ( 5.29 ) 

where A  is a symmetric nonnegative definite matrix to assign weights to parameters 

according to different levels of interest. In this case, a design can be chosen to maximize 
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the expected utility in Eq. (5.29). According to Chaloner and Verdinelli (1995), the 

Bayesian procedure yields an expected utility  

 ( ) { }U tr  1z AV  ,   ( 5.30 ) 

where 1V  is the posterior variance-covariance matrix in Eq. (5.19) or Eq. (5.21). A 

design that maximize ( )U z  in Eq. (5.30) is called Bayesian A-optimality criterion. If A  

is the identity matrix (it means that the modeler treats each route with importance), the 

sensor location problem to provide Bayesian A-optimal design is formulated as: 

[A-opt_1] min tr -1 -1 -1

0(V + H'z'(zHΦH'z'+ zΣz') zH)   ( 5.31 ) 

                         s.t. 
| |

1
1, 1,...,

A

naa
z n N


    ( 5.32 ) 

 
1

1,
N

nan
z a A


    ( 5.33 ) 

 (0,1)naz  , 1,..., ,n N a A     ( 5.34 ) 

The objective function Eq. (5.31) minimizes the total posterior variances, which 

satisfies the Bayesian A-optimal criterion that the trace of posterior variance matrix is 

minimized. Constraint Eq. (5.32) ensures that every sensor n has to be located on one and 

only one link. Constraint Eq. (5.33) forces that each link allows at most one sensor to be 

located on. Constraint Eq. (5.34) is the binary constraint for decision variable    . 

Constraints Eq. (5.32) to Eq. (5.34) indicate the design problem is an exact design which 

the number of observations at each potential point is an integer. Finding optimal exact 

designs is often a difficult problem (Clyde, 2001).  In order to simplify the computational 

effect to evaluate the objective value, e.g. reducing the number of the matrix inverse 

operations, the alternative formulation for Bayesian A-optimal design is 
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[A-opt_2] max (tr -1

0 0 0(V H'z' zΣz'+ zHΦH'z'+ zHV H'z') zHV )  ( 5.35 ) 

 s.t. (5.32) – (5.34) 

The interpretation of objective function Eq. (5.35) is to maximize the total 

variance reduction in posterior distribution of x by choosing the sensor locations z that 

provide observation data.  

When considering selecting single link from the candidate set, formulation [A-

opt_2] can be revised to [A-opt_3] as: 

[A-opt_3] 
2

| |

21

( )
max

i
R n

i
n n n

S

T Q  
  ( 5.36 ) 

                         s.t. 
| |

1
,

Ai i

n na aa
h z 


   1,...,| |i R   ( 5.37 ) 

 
| |2 2

1

A

n na aa
z 


  ( 5.38 ) 

 
| | (0)

1
,

Ri j

n n ijj
S h 


  1,...,| |i R   ( 5.39 ) 

 
| |

1

R j i

n n nj
T h S


  ( 5.40 ) 

  | | | |

1 1

R Ri j

n n n iji j
Q h h 

 
    ( 5.41 ) 

 
| |

1
1

A

naa
z


  ( 5.42 ) 

 0,na fz a A    ( 5.43 ) 

 (0,1)naz  , 1,..., ,n N a A     ( 5.44 ) 

The objective function Eq. (5.36) in formulation [A-opt_3] maximizes total route 

flow variance reduction by selecting only one link from candidate set Af. Constraints Eq. 

(5.37) to Eq. (5.41) are introducing notations to simplify objective function Eq. (5.36). 
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Constraint Eq. (5.42) restricts sensor n will be located on only one link. Constraint Eq. 

(5.43) forces the candidate location of sensors only from the feasible links’ set Af  (  
̅̅ ̅ is 

the set of links which have been located with sensors and are not available any more). 

Constraint Eq. (5.44) is the binary constraint for decision variables.   

5.4  Algorithm 

5.4.1  A Sequential Method for Independent Observations 

Instead of solving formulation [A-opt_2] which has an objective function of a 

complex form, one can iteratively select the location of one sensor by solving [A-opt_3] 

each time from link set Af . At the end of the iteration, updating set Af  and the prior 

variances V0 to posterior variance estimates which becomes prior V0 required for the next 

iteration. The process is repeated until N links are determined for locating the sensors.  

To locate only one sensor in the network, formulation [A-opt_3] can be solved by 

a greedy algorithm: for each candidate link, calculate the objective value 

2
| |

21

( )i
R n

i
n n n

S

T Q  
  and select the one with largest objective value. The solution of 

[A_opt_3] can be found by   | |  | |   time.  

Therefore, the sequential method for solving [A-opt_2] is as follows: 
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BAYESIAN BASED SEQENTIAL LOCATION ALGORITHM [SEQ] 

Input: 0V , H,  N 

Output: 1 2( , ,..., ) 'Nz z z z , 1V  

(1)       Set : 1n  . 

Set fA A . 

Set 'A   . 

            (2) For each link fa A , calculate
2

| |

21

( )i
R n

i
n n n

S

T Q  
 . 

            (3)      Select the link fa A with largest value calculated in Step 2 and nz  is 

a row vector with only non-zero element in ath column. Remove link a 

from fA  and add link a into 'A . 

            (4)       Using the observation on link a to update posterior variance 1V  by Eq. 

(5.24).  

 (5)       Increment n by 1. 

 (6)       If 1n N    then stop.  

  Else set 0 1V V
 
and go to Step 2.  

 

The algorithm runs for N loops and within each loop the running time is 

polynomial   | |  | |          | |     | |  | |   (preprocessing in step 2 

runs for   | |  | |  , searching for largest value of variance reduction in step 3 runs for 
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(  | | ), and updating for posterior mean and variance-covariance runs for   | |  ). 

The complexity for this optimality algorithm is     | |  | |  . 

This method is same as the algorithm developed and implemented in Chapter 4, 

which has been proven to provide an optimal solution for deterministic route flow 

estimation with the independent observations (see section 4.4 for details).  

The three stage hieratical linear model can be revised to a linear model as below: 

 ~ MVNY | γ (zHγ, z(HWH'+Σ)z')    

 ~ ( )MVN 0 0γ μ ,V    

Although the independent assumption for link flow measurement provides a 

diagonal matrix Σ , the entire variance term in likelihood distribution Eq. (5.45) is 

diagonal only if when the route flows x are independent and the variance-covariance 

matrix Φ  is diagonal. Therefore, the above sequential procedure gives optimal solution 

with the assumption that route flows x are independent and link flow measurement errors 

are independent as well. When the route flow x are dependent, such sequential procedure 

can be used to provide high-quality near-optimal solution.  

5.4.2  A Greedy Heuristic for Independent Observations 

Because the method in section 5.4.1 is not efficient for large networks, another 

greedy heuristic can be used to find a solution within reasonable computational time. This 

greedy heuristic selects all the N links at one time based on the value of variance 

reduction by single link. The heuristic is as follows: 
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BAYESIAN BASED GREEDY LOCATION HEURISTIC [GRE] 

Input: 0V , H,  N 

Output: 1 2( , ,..., ) 'Nz z z z  

            (1) For each link a A , calculate 
2

| |

21

( )i
R n

i
n n n

S

T Q  
 .    

            (2)      Sort the links according to the values calculated in step (1). 

(3) Select the first N links with largest values calculated in step (1).  

 

The heuristic will operate the three steps without any looping. The run time in 

step (1) is   | |  | |  ; the run time in step (2) depends on the sorting algorithms in use 

(e.g. the quicksort algorithm can be run in   | |  ); and the last step is conducted in 

    . The total run time for the heuristic is   | |  | |  .  

5.4.3  A Sequential Method for Dependent Observations 

When the link flow observations are dependent and the correlations between some 

pairs of link measurements are substantial, the previous proposed methods (SEQ and 

GRE) are not accurate because they do not accurately calculate the covariance between 

measurements. For this case, the sequential method is adjusted to consider the covariance 

between pairs of measurements. Initially the solution link set is empty. In each iteration, 

one link is added to the solution link set which has been established by previous iterations. 

The criterion to select a link is that the variance reduction from prior variance 0V  by this 

additional link (together with the existing link set) is minimized. Unlike the sequential 

procedure in section 5.4.1, this method does not update the variance-covariance matrix 
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iteratively. However, the approach for link selection is greedy because the solution in 

each step is a local optimum.    

 

BAYESIAN BASED SEQUENCIAL LOCATION HEURISTIC FOR 

DEPENDENT OBSERVATIONS [DSEQ] 

Input: 0V , H,  N 

Output: 1 2( , ,..., ) 'Nz z z z  

(1)       Set : 1n  . 

Set fA A . 

Set 'A   . 

            (2) For each link fa A , using the links z from set { } 'a A   to calculate 

the potential variance reduction value

( -1

0 0 0V H'z' zΣz'+ zHΦH'z'+ zHV H'z') zHV . 

            (3) Select the link   with largest value calculated in Step 2. Remove link a 

from fA  and add link a into 'A . 

            (4) Increment n by 1. 

 (5)       If 1n N    then stop.  

  Else, go to Step 2.  

 

The approach has the same complexity as the sequential method in section 5.4.1, 

which is     | |  | |  . 
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5.5  Experimental Result 

5.5.1 Experiment Setup 

We apply the proposed sequential procedure in section 5.4.1 (SEQ) and the 

greedy heuristic in section 5.4.2 (GRE) to three problem scenarios and the performances 

are compared with two existing models: Link Flow Coverage (LFC) and Route Flow 

Coverage (RFC). The reason to select LFC and RFC for comparison is that both models 

are often studied for deterministic route flow estimation and rely on different sources of 

information. For each scenario, the baseline is provided by a sensor location model 

―Random‖ (Rand), which selects a random set of links to observe. The ―Rand‖ model 

provides the effect of variance reduction by incrementing the number of sensors. All the 

experiments are conducted in Matlab.  

Figure 11 shows the scheme of the experimental procedure. First (Steps 1-2), 

problem scenarios are generated by defining the network (supply), loading the assumed 

traffic flows (demand) and obtaining the ―actual‖ mean of network traffic on routes γ . 

The ―actual‖ variance-covariance matrix Φ  can be obtained from other models which are 

independent with this experiment, for example, a Bayesian model learning the variance-

covariance on routes from link observations. By simulating the random perception errors 

and measurement errors, route flow prior distribution (mean and variance), sensors’ 

reliabilities and potential link flow observations are generated by linking the errors to the 

actual values (Step 3). The prior’s reliability is first randomly generated by 

~ ( )U max
u 0,u ; then the diagonal elements of prior’s variance-covariance matrix 0V  is 

calculated by 
(0) i i

ii u  ; all covariance are assumed to be zero in the initial priors; the 
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prior’s mean is generated from a normal random generator ~ ( )N0 0u γ,V . The random 

deviation from γ  is generated by ~ ( )Nδ 0,Φ  and such deviation is added to the ―actual‖ 

route flow mean values. Hence the ―actual‖ value of link flows is calculated by using the 

link-route parameter H by v = H(γ +δ) . The sensors’ reliability t is randomly generated 

from ~ ( )U max
t 0,t ; and the diagonal elements in variance-covariance matrix of link flow 

measurement Σ  can be calculated by 
2 a a

a v t  ; a random correlation coefficient for each 

pair of observations is simulated to produce the covariance Σ ; in the potential 

observation on such link was generated from a normal random generator ~ ( )NY v,Σ . In 

Step 4, [A-opt_2] and other location models are solved to obtain location decisions . 

Both sequential algorithm and the greedy method based heuristic proposed in section 5.4 

are implemented to solve [A-opt_2]. Then, with these sensor location decisions  , 

posterior distribution for route flow means is obtained using the Bayesian estimation 

model in section 5.2 (Step 5). To evaluate each location model (Step 6), the posterior 

means are compared with actual route flow means in terms of the bias and total variance 

(trace of 1V ). The evaluation criterion is the sum-squared error (SSE) of the posterior 

distribution, which is defined by the summation of variance and squared bias:  

  
2

2 (1) (1)i

i ii

i R i R

SSE BIAS Variance   
 

       ( 5.45 )  

where 
i  is the true mean value of the route flow i. Because our proposed model already 

ensures the minimum posterior variances, the criterion SSE is sensitive to show the effect 

of bias provided by the comparative locational models.  
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Figure 11 Procedure for the computational experiments for Chapter 5 
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Finally, note that for each network scenario, we can have different problem 

instances by locating different number of sensors between 1 and (say) N, the number of 

possible sensor sites. Hence, each problem instance in our computational experiments is 

defined by: 

(1) Network supply 

(2) Traffic demand 

(3) Reliability (variance) of priors on traffic flows to be estimated 

(4) Reliability (variance) of sensors 

(5) Number of sensors to be located.  

Solving each problem instance by each of the four models, gives us an SSE score 

for each model. Because of the stochastic nature of the experiment framework, for each 

network supply and traffic demand, we run the experiments several times, each of which 

uses different priors and observations generated randomly. The average SSEs is 

calculated in the end to evaluate the performance of four models.  

Three sets of network scenarios are used in the computational experiments.  

(1) A grid network with 16 OD pairs, 36 routes and 34 links (grid network 1, 

left side of Figure 7).  

(2) A grid network with 16 OD pairs, 145 routes and 69 links (grid network 2, 

right side of Figure 7).  

(3) Houston data used by Mirchandani et al. (2009), with 1768 routes and 468 

links with flows.  

When generating the experiments, u
max 

is set to be 0.15 and t
max

 is 0.1, which 

means the maximum measurement error is within 10% deviation from the actual link 
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flow, while the maximum perception error in prior is within 15% off from the actual 

mean of route flow. This parameter setting reflects that we assume counting devices are 

generally more accurate than our prior knowledge in practice. We assume that each 

testing network has unique ―real‖ route flow distribution with parameters γ  and Φ , and 

the unique route choice set with link route parameter H. For the first two test networks, 

1000 scenarios with different priors and observations are randomly generated within the 

specific range. Because of the large scale of the last network, only 30 scenarios are 

generated for experiments. The last network from practice is used to validate the 

conclusions studied from first two testing networks.  

5.5.2 Numerical Results for Independent Measurements 

This section shows the numerical results for cases when measurement errors are 

assumed to be independent. Five sensor location models are first compared using the 

posterior variances for the route flow means var( )γ | Y  in 1000 randomly generated 

scenarios. The results are shown in Table 11. Each cell in Table 11 represents the average 

posterior variances in 1000 scenarios when locating certain number of sensors in the 

network. For example, the first row (named as ―0~20%‖) averages the posterior variances 

when locate sensors to cover from zero to twenty percent of links, while the row named 

as ―21%~40%‖ averages the posterior variances when covering 21% to 40% of links in 

the network.   
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Table 11 Posterior Variances from Bayesian Estimation using Different Sensors Location  

    SEQ GRE LFC RFC Rand 

N
et

w
o

rk
 1

 

0~20% 8.89 9.05 9.93 9.69 10.22 

21%~40% 7.05 7.40 8.27 8.10 8.81 

41%~60% 6.25 6.53 7.33 7.19 7.62 

61%~80% 5.87 6.01 6.54 6.39 6.66 

81%~100% 5.71 5.73 5.93 5.80 5.93 

  Total 33.77 34.72 38.01 37.17 39.24 

n
et

w
o

rk
2
 

0~20% 2.34 2.39 2.49 2.51 2.60 

21%~40% 1.98 2.05 2.18 2.27 2.33 

41%~60% 1.82 1.87 1.97 2.08 2.09 

61%~80% 1.74 1.76 1.82 1.90 1.90 

81%~100% 1.71 1.71 1.72 1.75 1.75 

  Total 9.59 9.78 10.18 10.51 10.67 

 

As the baseline, random selection of sensors’ location (Rand) performs worst in 

variance reduction from the results in Table 11. The sequential procedure (SEQ) has the 

best performance to reduce the variances in posterior route flow means because the 

average posterior variances are minimal comparing to other models. The greedy heuristic 

(GRE) is the second best model in terms of variances reduction, and its performance is 

close to SEQ. The other two comparison models LFC and RFC perform worse than our 

proposed procedures but can show extra effects in variance reduction comparing to the 

baseline when using sensors’ location from random choices.  

Figure 12 and Figure 13 plots the average of relative posterior variances for each 

of the sensor location models. The x-axis is the number of sensors in use, while the y-axis 
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is the average of relative posterior variances. When assuming the prior variances of route 

flow means (  ) as one, and the posterior variances when all the links in the network are 

covered by sensors (  ) as zero, any values of posterior variances when using link flow 

measurements from i sensors (  ) can be scaled as: 

 Relative posterior =
0

i N

N

v v

v v




  ( 5.46 ) 

From Figure 12 and Figure 13, the percentage of variance reduction by Bayesian 

estimation can be easily illustrated and compared since all the posterior variances have 

been scaled between zero and one. First, in both figures for networks 1 and 2, the 

baseline scenario, which is established by randomly selecting the sensors’ location, 

indicates that the reliability of posterior information is increasing when incrementing the 

number of sensors, and the marginal effect of variance reduction is constant. Therefore, 

the performances of different location models are shown as how fast the curves decrease 

in Figure 12 and Figure 13. SEQ gives best performance in variance reductions in both 

test networks, in particular 80% of the variances are reduced when 40% of the links are 

measured. The variance reduction by GRE is close to but not as good as SEQ, e.g. 80% 

of the variance reductions by GRE require additional 10% of link coverage (50% of the 

links need to be measured). The curves for other comparison model LFC are between the 

baseline and our proposed procedures (SEQ and GRE). This is because LFC does not 

directly address the variance reduction objective and does not rely on the reliability of 

prior information and potential measurement errors. The performance of RFC model is 

close to but does not have a steady pattern in both test networks compared to LFC. An 

explanation for this is that due to different network topologies and traffic assignments, 
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RFC model has varied performances. When all routes in a network have been covered by 

limited number of links and the covered route flows has been maximized, the additional 

link is selected randomly because the routes covered by such link have already covered. 

Hence, the effect of such additional links on variance reductions is similar as in baseline 

scenario. This is why the curves of ―Rand‖ and ―RFC‖ overlap in Figure 12 after more 

than half of the network is covered.   

 

Figure 12 Relative Posterior Variances from Bayesian Estimation when Link 

Measurements are Independent (Network 1) 
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Figure 13 Relative Posterior Variances from Bayesian Estimation when Link 

Measurements are Independent (Network 2) 
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Table 12 Posterior SSE for Five Sensor Location Models when Link Measurements are 

Independent 

    SQU GRE LFC RFC Rand 

N
et

w
o

rk
 1

 
0~20% 186.82 193.47 255.64 237.51 279.01 

21%~40% 133.95 145.96 198.85 181.12 233.45 

41%~60% 122.13 129.56 164.71 157.25 190.16 

61%~80% 118.65 121.93 142.92 135.37 158.04 

81%~100% 118.21 118.76 124.99 121.00 128.25 

  Total 679.76 709.69 887.10 832.25 988.91 

n
et

w
o

rk
2
 

0~20% 20.31 21.14 25.04 25.84 27.68 

21%~40% 15.66 16.60 20.68 22.77 23.50 

41%~60% 14.54 15.10 17.71 19.64 20.14 

61%~80% 14.22 14.40 15.58 16.98 17.29 

81%~100% 14.08 14.12 14.21 14.75 15.01 

  Total 78.81 81.35 93.22 99.97 103.61 

 

Figure 14 and Figure 15 plots the average of relative posterior SSEs for each of 

the sensor location models. The x-axis is the number of sensors in use, while the y-axis is 

the average of relative posterior SSEs. Same as posterior variances, posterior SSEs are 

scaled between zero and one.  

The patterns in Figures 14 and Figure 15 are similar to observed patterns in Figure 

12 and Figure 13. The baseline established by ―Rand‖ model shows constant marginal 

effects on SSEs when locating one sensor at a time in network; other models show faster 

improvements in the estimation quality of the posterior distributions. Among all the 

comparison models, SEQ performs best and GRE is the second best model in terms of 
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posterior SSEs. LFC and RFC models are significantly worse than our proposed 

procedures. Again, the non-steady pattern of RFC curves is because of the characteristic 

of the model.  

When comparing the performance of different location models by posterior SSEs, 

our proposed procedures SEQ and GRE show more benefits. 80% of SSE reduction can 

be achieved by covering only 18% of the links in a network (from Figure 14 and 15), 

while 80% of SSE reduction requires 40% of the links to be measured (Figure 12 and 

Figure 13). Therefore, in practice, in order to obtain better route flow estimates (e.g. a 80% 

SSE reduction), analysts can invest in sensors to provide a 18% of links coverage. In 

additional, 50% of SSE reduction can be achieved by measuring less than10% of the links.  

 

 

Figure 14 Relative SSE from Bayesian Estimation when Link Measurements are 

Independent (Network 1) 
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Figure 15 Relative SSE from Bayesian Estimation when Link Measurements are 

Independent (Network 2) 
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Figure 16 Relative Posterior SSE from Bayesian Estimation when Link Measurements 

are Independent (Houston Network) 
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Figure 17 Posterior SSE from Bayesian Estimation when Link Measurements are 

Independent and Observe a Few Links (Houston Network) 
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Table 13 Posterior variances and bias from Bayesian Estimation when Link 

Measurements are Dependent 

    Posterior variances Posterior bias 

    DSEQ LFC RFC Rand DSEQ LFC RFC Rand 

N
et

w
o

rk
1
 

0~20% 8.92 9.95 9.72 10.25 163.91 240.07 217.17 272.78 

21%~40% 7.07 8.30 8.13 8.81 105.69 164.86 144.96 213.51 

41%~60% 6.26 7.35 7.22 7.63 89.93 123.78 119.45 165.38 

61%~80% 5.88 6.57 6.40 6.68 83.94 102.71 96.23 124.11 

81%~100% 5.72 5.95 5.82 5.95 81.89 87.59 83.58 93.02 

  Total 33.86 38.11 37.28 39.32 525.37 719.00 661.39 868.80 

N
et

w
o

rk
2
 

0~20% 2.34 2.49 2.50 2.60 17.03 20.42 21.17 24.61 

21%~40% 1.97 2.18 2.27 2.32 11.44 15.00 17.41 19.43 

41%~60% 1.81 1.97 2.08 2.08 9.81 12.03 14.37 15.03 

61%~80% 1.74 1.82 1.90 1.89 9.21 10.26 11.70 11.78 

81%~100% 1.70 1.72 1.74 1.75 9.02 9.09 9.54 9.66 

  Total 9.57 10.18 10.49 10.64 56.50 66.80 74.20 80.51 

 

Figure 18 and Figure 19 plot the average of relative posterior SSEs for each of the 

sensor location models in networks 1 and 2. The patterns in Figure 18 and Figure 19 are 

similar to the results for the independent measurement cases. The baseline scenario by 

model ―Rand‖ indicates that the marginal effect on SSE reduction due to each additional 

sensor is nearly constant. DSEQ gives best performance in SSE reductions in both test 

networks; in particular note approximately 80% of the SSE reduction occurs with only 20% 

of the links providing measurements. The curves for models LFC and RFC are between 

the baseline and our proposed procedure DSEQ.  
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Figure 18 Relative Posterior SSE Relative SSE from Bayesian Estimation when Link 

Measurements are Dependent (Network 1) 

 

Figure 19 Relative Posterior SSE Relative SSE from Bayesian Estimation when Link 

Measurements are Dependent (Network 2) 
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The last experiment is to examine the sensor location models’ performance in 

Houston network when observations are taken dependently. We focus the comparison on 

the cases when a small number of sensors are available. The pattern in Figure 20 

validates the earlier conclusions for small networks and illustrates the significant 

outperformance of the proposed method DSEQ.   

 

Figure 20 Posterior SSEs from Bayesian Estimation when Link Measurements are 

Dependent and Observe a Few Links (Houston Network) 
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route flow was assumed to be known. The posterior distribution for the mean of route 

flows was updated from the link measurements on a subset of links using a Bayesian 

approach. We then proposed a sensor location model, the objective of which is to 

maximize the total variance reductions, with a constraint on the numbers of sensors. The 

objective function of sensor location model is formulated by minimizing the trace of 

variance reduction matrix, which forms a Bayesian A-optimal design model. Three 

solution methods were proposed and tested. First, the SEQ method, for the cases with 

independent link flow observations, sequentially selects one link at a time providing 

largest value of additional variance reduction, and updates the posterior variance for next 

iteration. The second method (GRE) calculates variance reduction by all single links, and 

selects first N links with largest values. GRE is proposed for the cases with independent 

link measurements in order to overcome the computational burden of SEQ. The last 

method (DSEQ) was designed for the cases when the measurements are dependent. 

Starting from an empty link set, DSEQ sequentially adds on link, at a time which 

maximizes the variance reduction with respect to posterior distribution due to all the 

selected links. All the proposed methods show significant advantage in terms of SSE of 

posterior distribution.       
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Chapter 6  

LOCATING SENSORS TO ESTIMATE STOCHASTIC ROUTE FLOWS WITH 

UNKNOWN VARIANCE AND ASSUMING NORMAL DISTRIBUTION FOR PRIOR 

UNCERTAINTIES 

6.1  Introduction  

6.1.1  Problem Description 

The traffic demand interest in this chapter is the stochastic traffic demand. First, a 

hierarchical linear model for stochastic route flows x in a network is developed. The 

counting sensors used in this chapter are ―noisy sensors‖, the measurement errors from 

which are randomly distributed with a mean of zero and a known variance-covariance Σ . 

Different from chapter 5, this chapter assumes that the mean γ and variance-covariance

Φ  of route flows are both unknown and their prior knowledge are described by conjugate 

prior distributions. Hence, the third hierarchy of the Bayesian linear hierarchical model in 

chapter 5 is extended to include a prior distribution of the variance-covariance matrixΦ . 

The conjugate prior distribution for parameter of mean γ is multivariate normal 

distribution (MVN) with the mean 0μ and variance-covariance 0V . The mean 0μ represents 

the magnitude of the prior information and the variance 0V is the measurement of the 

reliability for the prior information. The conjugate prior distribution for route flow 

variance-covariance Φ is inverse-Wishart distribution (IW) with parameters 0Φ and d, 

where 0Φ is the scale parameter and d is the degree of freedom.  

The first task of this chapter is to obtain the consistent Bayesian estimation of 

posterior route flow means |γ Y for a given set of link flow observations Y. The second 
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task of this chapter is to determine the strategy to locate limited number of noisy sensors 

in the traffic network, which will be a good design in order to improve the estimation 

quality.  

6.1.2  Notation 

The notation is first defined in this chapter. Similar to previous chapters, the 

notation is classified as it relates to (a) network topology, (b) definition of route flows, (c) 

links flows, (d) observations or measurements, and (e) decision variables.  

Network Topology Parameters: 

R: Route-choice set for a network 

A: Set of all the links in the network 

A’: Set of links where sensors are located 

Af: Set of links feasible for sensors to be located 

|R|: Number of routes in a network 

|A|: Number of links in a network 

N: Number of sensors to locate 

  
       : Link-route parameter.   

    if route i uses link a, otherwise,   
    

  [

  
    

| |

   

 | |
   | |

| |
] 

Route Flows: 

  : Real route flow of i
th

 route  

            | |   

  : The parameter to describe the mean of route flow    
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            | |  

  : The parameter to describe the variation of route flow    (random deviation of 

  from  ) 

            | |   

   : Covariance of flows between routes i and j(variance of route flow i if i =j) 

  [

      | |

   
 | |   | || |

] 

  
 : Mean of prior distribution for parameter   

      
   

   
   

    | |
   

   

   
   

: Covariance of prior distribution between parameter   and    (variance of 

prior distribution if i =j) 

   [

   
   

   | |
   

   

 | | 
   

  | || |
   

] 

  
 : Mean of posterior distribution for parameter   

      
   

   
   

    | |
   

   

   
   

: Covariance of posterior distribution between parameter   and   (variance of 

posterior distribution if i =j) 

   [

   
   

   | |
   

   

 | | 
   

  | || |
   

] 

  : First parameter of prior distribution of   

d: Second parameter of prior distribution of   
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Link Flows: 

  : Real link flow on link a 

           | |   

 ̂ : Potential link flow observation if a sensor is locatedon link a 

 ̂    ̂   ̂    ̂| |   

  
 : Variance of link flow measurement on link a 

  [
  

   
   
   | |

 
] 

  : Measurement error on link a 

            | |  

Observations by sensors:  

  : Link flow observed by sensor n 

                

  : An instance of link flow observed by sensor n 

                

  
 : Variance of observation by sensor n 

Decision Variables for Location Models: 

        :     if locating sensor on link a, otherwise      (used for 

existing location models) 

         :      if locating n
th 

sensor on link a, otherwise       . 

  [

      | |

   
      | |

] 
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   [        | |] 

6.2  Hierarchical Linear Model for Stochastic Route Flow Estimation 

The stochastic route flow demand is modeled by a three-stage hierarchical 

Bayesian model. The first hierarchy of the model describes the relationship between link 

flow observations  ̂ and route flows    is  

 v̂ = Hx +ε .  ( 6.1 ) 

Eq. (6.1) indicates a linear relationship between v̂ and x. Random measurement 

error ε is assumed generated from a multivariate normal distribution ( )MVN 0,Σ , whereΣ

is the variance-covariance matrix that is related to the reliability of the sensors and 

assumed to be known. Because this linear relationship only exists for the link set A’, 

where sensors are located, Eq. (6.1) will be modified by Eq. (6.2) 

 ˆ ( )  Y = zv = z Hx +ε zHx zε . ( 6.2 ) 

Hence, in the first hierarchy, the distribution of link flow observation Y given x, 

which is the likelihood, is ( ')MVN zHx,zΣz . Other parameters z, H andΣ are constant.  

The second hierarchy is to model the stochastic feature in route demand x. By 

defining two parameters γ and δ to describe the long term pattern and random fluctuations 

in route flow demand, x is expressed as 

 x = γ +δ . ( 6.3 ) 

Parameter δ for random fluctuation is assumed to have MVN distribution with 

zero mean and variance-covarianceΦ . In the second hierarchy, the conditional prior 

distribution given γ and δ  for x is ( , )MVN γ Φ .  



129 
 

In the final hierarchy, the prior knowledge for parameters γ and Φ are both 

described as probability distributions. Choose the conjugate prior distribution for γ of 

( )MVN 0 0μ ,V , and conjugate prior distribution forΦ  of ( , )IW d0Φ , where 0μ , 0V , 0Φ  and 

  are known. The posterior of route flow mean γ  from using link flow observation Yare 

interested to be inferred.  

To sum up, the three-stage hierarchy to model the stochastic route flow is 

~ ( )MVNY | x zHx,zΣz' , 

~ ( )MVNx | γ,Φ γ,Φ , 

~ ( )MVN 0 0γ μ ,V , ~ ( , )IW d0Φ Φ  

The posterior distribution for route flow mean |γ Y will be calculated for a given 

sensor location z.  

6.3  Bayesian Computation for Posterior Route Flow Mean 

The Bayesian method consists of combining the prior distribution and likelihood 

to derive the posterior distribution by Bayes’ theorem. The posterior distribution could be 

written as the product of the likelihood and the prior distribution. In order to express the 

posterior information in a usable form, and to serve as formal inferences, it is important 

to calculate relevant summaries of the posterior distribution, such as the mean and 

variance. In the models of chapters 4 and 5, the prior distributions and likelihoods are of 

sufficiently convenient forms to obtain the necessary results by straightforward 

mathematics. However, in practice, the combination of likelihood and prior in the more 

complex models will generally produce a posterior distribution too complex for 

mathematical summarization, even if the two constituents separately are sufficiently 
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simple. Our proposed hierarchical linear model in section 6.2 is such a complex one. For 

these complex models, we need general computational tools to calculate a variety of 

summaries from posterior distribution with mathematical complexity.  

Popular computing tools in Bayesian practice are Markov Chain Monte Carlo 

(MCMC) methods. The advantage of MCMC method in Bayesian computation is their 

ability to enable inference from posterior distributions of high dimension by reducing the 

problem to one of recursively treating a sequence of lower-dimensional problems. Like 

traditional Monte Carlo methods, MCMC methods work by producing a sample of values  

( ){ , 1,..., }g g Gθ from this distribution. A histogram or kernel density estimate based on 

such a sample is typically sufficient for reliable inference. The accuracy of the estimate 

can be increased by the Monte Carlo sample size G. However, unlike traditional Monte 

Carlo methods, MCMC algorithms produce correlated samples for the posterior, since 

they arise from recursive draws from a particular Markov chain, which is, starting from 

an arbitrary (0)
θ , and ( 1)i

θ is independent of ( 1)i
θ , ( 2)i

θ , … given the immediately 

preceding value, ( )i
θ . Because of the Markov property of ( )i

θ , the sequence has only a 

one-step memory. Based on results in Markov chain theory, subject to appropriate 

conditions, the distribution of ( )i
θ converges to the invariant (or stationary) distribution of 

that chain when i becomes large. Therefore, when the required conditions hold, all the 

( )i
θ  for sufficiently large i can be regarded as sampled from the invariant (stationary) 

distribution, which is from the true posterior distribution. The estimates for posterior 

distribution can be made from the samples ( )i
θ  drawn from the stationary distribution 

when i become large.  
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One MCMC algorithm is known as Gibbs sampling. Assume our model features k 

parameters 1( ,..., )k θ . Gibbs sampler involves successive sampling from the complete 

conditional densities 

1 1 1( | ,..., , ,..., , )p p p kp       y   

which conditions on both the data y and the other parameter i  when i p . Given an 

arbitrary set of starting values (0) (0)

2{ ,..., }k  , the Gibbs sampling algorithm proceeds as 

follows: 

For ( 1: )t T , repeat: 

Step 1: Draw ( )

1

t  from 

( 1) ( 1) ( 1)

1 2 3( | , ,..., , )t t t

kp      
y  

Step 2: Draw   
   

from 

( ) ( 1) ( 1)

2 1 3( | , ,..., , )t t t

kp     
y  

… 

Step k: Draw   
   

from 

( ) ( ) ( )

1 2 1( | , ,..., , )t t t

k kp      y  

These distributions are always known up to proportionality constant because they 

take the form of the [likelihood] * [prior with everything fixed but 
p ] in step p. Such 

successive samples may involve simple sampling from standard densities (Normal, 

gamma, etc.), or sampling from non-standard densities. The latter case involves the 

rejection sampling approach. If the full conditionals are non-standard but a certain 

mathematical form (log-concave), the adaptive rejection sampling (Gilks and Wild, 1992) 
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may be used within the Gibbs sampling for those parameters. Otherwise, alternative 

schemes based on the Metropolis-Hastings algorithm (Metropolos et al. 1953) may be 

used to sample from non-standard densities. The collection of complete conditional 

distributions uniquely determines the joint posterior distribution ( )p θ | y , as well as all 

marginal posterior distributions ( ), 1,...,ip i k | y .  

Under mild regularity conditions (Roberts and Smith 1993), the k-tuple, 

( ) ( )

1( ,..., )t t

k  obtained at iteration t converges in distribution to a draw from the true joint 

posterior distribution 1( ,..., | )kp   y . For t sufficiently large (greater than 0t ), 

( )

0{ , 1,..., }t t t T θ is a correlated sample from the true posterior. The time from 0t   to 

0t t  is known as the burn-in period. Hence, the statistics for the posterior distribution 

can be estimated, such as a histogram of the ( )

0{ , 1,..., }t

i t t T   , and a sample mean to 

estimate the posterior mean as: 

 
0

( )

1
0

1ˆ ( | )
T t

i it t
E

T t
 

 



y   ( 6.4 ) 

In practice, statisticians run m parallel Gibbs sampling chains in order to assess 

sampler convergence. The samples drawn from the burn-in period should be discarded 

and the remaining samples are used to obtain the posterior mean estimates as: 

 
0

( )

,

1 10

1ˆ ( | )
( )

m T
t

i i j

j t t

E
m T t

 
  




 y   ( 6.5 ) 

where j indicates the chain number. 

Suppose we have a single chain of N post-burn-in samples of a parameter , a 

variance estimate from independent samples is given by 
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2

( ) 2

1

1
var ( )

( 1)

N
t

iid N

t

s

N N N

  


  

   ( 6.6 ) 

where ( )

1

1
( | )

N
t

N

t

E
N

  


  y is the posterior mean estimator, and   

2 ( ) 2

1

1
( )

1

N
t

N

t

s
N

 


 

θ

 is the sample variance. This estimate is an underestimate 

because the MCMC samples have positive autocorrelation. Define the autocorrelation 

time for  as  

 
1

( ) 1 2 ( )k

k

   




     ( 6.7 ) 

where ( )k   is the autocorrelation at lag k for the parameter  . Hence, the effective 

sample size (ESS) is defined as 

 / ( )ESS N    ( 6.8 ) 

The variance estimate is then 

 
2

( ) 2

1

( )
var ( )

( 1)

N
t

ESS N

t

s

ESS N N

  
 



  

   ( 6.9 ) 

For the correlated samples, we have ( ) 1    and ESS N , so that var varESS iid . 

In practice, ( )  is estimated using sample autocorrelations estimated from the MCMC 

chain.  

Because the MCMC method is based on the assumption that after the burn-in-

period, the Markov chain goes to a stationary mode and all the samples are drawn from 

true posterior. The challenge for implementing MCMC is convergence diagnosis, which 

is to decide when it is safe to stop the simulation procedure and summarize the output. 

The most common approach is to run a few parallel sampling chains with different 
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starting points that are initially over-dispersed with respect to the true posterior. After 

running the m chains for 2N iterations each, we try to see whether the variation within the 

chains equals the total variation across all chains during the latter half iterations. The 

convergence is monitored by the statistic by Gelman and Rubin (1992): 

 
1 1ˆ

2

N m B df
R

N mN W df

  
  

 
 ( 6.10 )  

where B/N is the variance across the m parallel chains, W is the average of the m within-

chain variances, and df is the degrees of freedom of an approximating t density to the 

posterior distribution.  

The hierarchical linear model for Bayesian route flow estimation model proposed 

in section 6.2 will be solved by MCMC algorithms which have been coded in the general 

purpose MCMC software WinBUGS (Spiegelhalter et al., 2003). WinBUGS is the 

Windows successor to Bayesian inference Using Gibbs Sampling. In WinBUGS, the 

parameters are updated using conditional distributions, or using Metropolis-Hastings 

algorithm if the prior distribution and the likelihood are not a conjugate pair. WinBUGS 

has an interactive environment that allows the user to specify models hierarchically and 

display plots for convergence diagnostics, model checks and comparisons.   

In the proposed hierarchical linear models for stochastic route flows, the full 

conditional distributions are all in closed form. For example, with a normal prior at the 

first stage for route flow x, the conditional posteriors for the parameters γ  and Φ  arising 

from normal and inverse Wishart priors in the third-stage are also normal and inverse 

Wishart respectively. The remaining conditional distribution, for x given γ  and Φ , is the 

standard posterior arising from a single-stage linear model with normal prior (the 
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proposed model in Chapter 4). Therefore, Gibbs sampler can be implemented 

conveniently because the samplers can be drawn from each of the full conditional 

distributions with closed form.   

Based on the proposed hierarchical linear model for stochastic route flows, with a 

given sensors location z, the mean of posterior route flow mean ( )E γ | zY  can be 

estimated by Eq. (6.5) using the samples drawn from MCMC algorithms coded in 

WinBUGS. The variance of posterior route flow mean var ( )ESS γ | zY  is estimated 

according to Eq. (6.9) using the MCMC samples. This methodology for route flow mean 

estimate is different from the previous chapter. With the known variance Φ  in chapter 5, 

the variance of posterior route flow mean can be calculated by: 

 var( , )   -1 -1 -1

1 0γ | z Y V (V + H'z'(zHΦH'z'+ zΣz') zH)   ( 6.11 ) 

which is independent of the value of observation Y. However, the posterior variance 

estimates by MCMC var ( )ESS γ | zY  depends on the observation Y’s value. In other words, 

the posterior variance in chapter 5 can be accurately predicted before actually making the 

observation; but in the model of chapter 6 we do not have ability to precisely predict 

posterior variance before obtaining the observations.  

6.4  Sensor Location Modeling for Stochastic Route Flow Estimation 

Although the convergence of MCMC algorithm can be diagnosed with the 

assistant of Gelman and Rubin’s method, the assumption behind is that the process is 

stationary. Non-stationary process will not converge even when the burn-in-period N is 

set to be large. Therefore, the modeler has to ensure that the process is stationary in order 

to applying MCMC algorithm. For the Sensor Location Flow-Estimation problem, the 
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Markov chain process is stationary only when all routes are covered (observed) by 

sensors, which means the route coverage is a hard constraint in sensor location model in 

order to apply MCMC to estimate posterior route flows. Route coverage (or OD coverage) 

constraint specifies that the subset of links where sensors are located should ensure that 

each route (or OD pair) is observed by at least one located sensor. OD coverage is 

proposed by Yang et al. (1991) as a rule to determine sensors’ location for OD estimation 

problem. It has been shown that if there are any OD pairs not observed by any sensors, 

then the corresponding ―relative deviation between the estimated trips and the true ones‖ 

can tend to infinite. The OD coverage constraint ensures a finite error in the OD 

estimation.       

The objective of optimal sensor location model is to minimize the expected 

posterior variances (or maximize the expected variance reduction), in particular minimize 

the trace of posterior variance-covariance matrix. This strategy will provide a sensor 

location model with Bayesian A-optimality. The conditional posterior route flow mean γ  

given route flow variance-covariance Φ  is shown as: 

 var( , , )   -1 -1 -1

1 0γ |Φ z Y V (V + H'z'(zHΦH'z'+ zΣz') zH)   ( 6.12 ) 

Because the variance-covariance matrix of posterior mean var( , )γ | z Y does not 

have a close form expression when integrating the variance-covariance Φ  out of Eq. 

(6.12), var( , )γ | z Y has to be estimated from MCMC samples. In the sensor location stage 

before obtaining observation Y, we can approximate the variance reduction by 

substituting the scale parameter 0Φ  of conjugate prior distribution of Φ  in the 

conditional posterior variance in Eq. (6.12). The sensor location model is formulated as:  
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 max tr -1

0 0 0 0(V H'z'(zΣz'+ zHΦ H'z'+ zHV H'z') zHV )    ( 6.13 ) 

                             s.t.
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 (0,1)naz  , 1,..., ,n N a A     ( 6.17 ) 

  The objective function Eq. (6.13) maximizes the approximated variance 

reduction in the posterior distribution. Constraint Eq. (6.14) ensures that every sensor n 

has to be located on one and only one link. Constraint Eq. (6.15) forces that each link 

allows at most one sensor to be located on. Constraint Eq. (6.16) is the route coverage 

constraint that forces every route is observed by at least one sensor. Constraint Eq. (6.17) 

is the binary constraint for decision variable   .  

The linear approximation of objective function Eq. (6.13) can be formulated as 

follows: we first calculate the variance reduction 

tr -1

0 0 0 0(V H'z'(zΣz'+ zHΦ H'z'+ zHV H'z') zHV ) for each single sensor a, which is 

notated by vra; then approximate the variance reduction from multiple links by the 

summation of variance reduction by single link vra from all corresponding links. 

Therefore, the approximated linear model is formulated as: 

[LRVR]

          

| |

1

max
A

a

a

vr


   ( 6.18 ) 

 s.t. (6-14) – (6-17) 
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Then the sensor location model can be solved by the solution engines of linear 

integer optimization models.   

6.5  Experimental Result 

6.5.1 Experiment Setup 

We applied the proposed sensor location model LRVR and modified models of 

existing methods Link Flow Coverage (LFC) and Route Flow Coverage (RFC), which 

include additional set of route coverage constraints in the formulations. Because route 

coverage is a mandatory in all the sensor location models, the objective function of RFC 

becomes redundant because all routes have been observed. Hence, RFC model is same as 

locating sensors at random links with the route coverage constraint. The route flow mean 

is updated by MCMC procedures using the link observations from three different sensor 

location models. All the three sensor location models are solved by the linear mixed 

integer program solver in Matlab. Then the route flow means are estimated by MCMC 

algorithms which are coded in WinBUGS.   

Figure 21 shows the scheme of the experimental procedure. First (Steps 1-2), 

problem scenarios are generated by defining the network (supply), loading the assumed 

traffic flows (demand) and obtaining the ―actual‖ mean of network traffic on routes γ . 

The ―actual‖ variance-covariance matrix Φ  can be obtained from other models which are 

independent with this experiment, for example, a Bayesian model learning the variance-

covariance on routes from link observations. By simulating the random perception errors 

on route flows and measurement errors, route flow prior distributions for the mean 

(multivariate normal distribution ~ ( )MVN 0 0γ μ ,V ) and the variance-covariance (inverse-
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Wishart distribution ~ ( , )IW d0Φ Φ ), sensors’ reliabilities Σ and potential link flow 

observations Y are generated by linking the errors to the actual values (Step 3). The 

reliability of the prior distribution of parameter γ  for was first randomly generated by 

max~ (0, )Uu u ; then the diagonal elements of prior’s variance-covariance matrix 0V is 

calculated by (0) i i

ii u  ; all covariance are assumed to be zero in the initial priors; the 

mean of the prior distribution of parameter γ is generated from a normal random 

generator ~ ( )MVN0 0μ γ,V . The scale parameter 0Φ for the prior distribution of Φ is 

simulated by adding a small deviation to each cell of Φ  (note 0Φ  is symmetric matrix). 

The degree of freedom d for the prior distribution of Φ  is set to equal to the number of 

routes. The random deviation from γ  is generated by ~ ( , )Nδ 0 Φ  and such deviation is 

added to the ―actual‖ route flow mean values. Hence the ―actual‖ value of link flows can 

be calculated using the link-route parameter by v = H(γ +δ) . The sensors’ reliability t is 

randomly generated from 
max~ ( )Ut 0,t ; and the diagonal elements in variance-

covariance matrix of link flow measurement Σ  can be calculated by 2 a a

a v t  ; the 

potential observation on such link is generated from a normal random generator  

~ ( )NY v,Σ . In Step 4, the location model is solved to obtain location decision z. 

Particularly for the proposed model, we first calculate the variance reduction by single 

sensor on link a; then the location variable z is solved from the mixed integer linear 

model LRVR by the solution engine in Matlab. The location solutions for LFC and RFC 

are obtained by the solver in Matlab as well. Then, with these sensor location decision  , 

posterior distribution for route flow means γ | z,Y are obtained using the MCMC 
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algorithm in WinBUGS (Step 5). In MCMC implementation, in order to ensure the model 

convergence, we setup the burn-in-period as 10000, and the extra 5000 samples is drawn 

to calculate the posterior quantities. To evaluate each location model (Step 6), the sum-

squared error (SSE) of the posterior distribution are compared as:  

  
2

2 (1) (1)i

i ii

i R i R

SSE BIAS Variance   
 

         ( 6.19 )  

where    is the true mean value of the route flow i.   
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Figure 21 Procedure for the computational experiments for Chapter 6 
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Finally, note that for each network scenario, we can have different problem 

instances by locating different number of sensors N (   ).  t is the minimum number of 

sensors to cover all routes in a network. The value of t is solved by a linear integer model 

formulated as: 

 min t   ( 6.20 ) 

 s.t. 1,i

a a

a A

y i R


     ( 6.21 ) 

 
a

a A

y t


   ( 6.22 ) 

 (0,1),ay a A    ( 6.23 ) 

Solving each problem instance by each of the location models gives us a score as 

defined by the SSE. Because of the stochastic nature of the experiment framework, for 

each network supply and traffic demand, we can run the experiments several times--each 

with priors and observations randomly generated. The average SSEs is calculated in the 

end to evaluate the performance of three models. A grid network with 16 OD pairs, 36 

routes and 34 links (grid network 1) is used to conduct all the experiments.  

When generating the experiments, u
max 

is set to be 0.15 and t
max

 is 0.1, which 

means the maximum measurement error is within 10% deviation from the actual link 

flow, while the maximum perception error in prior is within 15% off from the actual 

mean of route flow. For each test network, 20 scenarios with different priors and 

observations are randomly generated within the specific range, and the priors and 

observations are used to first generate the locational solution z, and then the posterior 

mean of route flow parameter γ .   
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6.5.2 Numerical Results 

For the experiment network, 20 random generated scenarios (priors and 

observations) are used to conduct the experiment to compare the performance of three 

sensor location models. The SSE results are plotted in Figure 22. The minimum number 

of sensors required to observe all routes in experiment network is eight. From Figure 22, 

our proposed model LRVR outperforms the other two comparison models LFC and RFC 

when observing less than half of the networks. RFC is the worst performer in posterior 

SSE because it does not optimize the sensors location (any choice of sensors’ location is 

equivalent for RFC with route coverage constraint). The performance of LFC and RFC 

are comparable when the number of sensors in use is large (when more than half of the 

links are observed). This is because the linear approximation of variance reduction for 

multiple links ignores the covariance between link measurements. The effect of such 

correlations will be essential when more links are in use. Therefore, the proposed LRVR 

is more suitable to the cases when the budget is only for few sensors in comparison to the 

total number of links.       
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Figure 22 Posterior SSEs Estimated using MCMC Method with Good Prior for Φ 

In the objective function Eq. (6.13), we use the value of the scale parameter 0Φ  

for route flow variance-covariance Φ  to roughly estimate the total variance reduction. 

Because the prior distribution for the route flow variance-covariance Φ  is inverse-

Wishart distribution, which requires another parameter d for the degree of freedom, the 

formulation of LRVR does not capture the information of the confidence about the scale 

parameter 0Φ . Figure 23 plots the SSE results for the average of 10 randomly generated 

scenarios (priors and observations) when setting a small degree of freedom d for the 

inverse-Wishart prior distribution (equals to the number of routes in the network), which 

represents the large uncertainty for the prior knowledge of route flow variance-

covariance Φ . From Figure 23, the performance of LRVR is between that of LFC and 

RFC. This result indicates that the proposed approximation of variance reduction is less 

effective when a very vague prior knowledge for route flow variance-covariance is used.   
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Figure 23 Posterior SSEs Estimated using MCMC Method with Bad Prior for Φ 

6.6  Chapter Conclusions  

In this chapter, a hierarchical linear Bayesian model was proposed for the 

stochastic route flow estimation. In the hierarchical model, the stochastic nature of the 

route flows in the network is modeled as a multivariate normal distribution with two 

parameters: mean and variance-covariance matrix. The variance-covariance matrix was 

assumed to be unknown and its prior knowledge was described as an inverse-Wishart 

distribution. Because the posterior distribution for the mean of route flows has no closed 

form in proposed model, MCMC was used to draw samples and estimate the posterior 

quantities, such as mean and standard deviation. In order to build a stationary Markov 

chain, all routes must be observed by at least one of the links so that the route coverage 

constraints are satisfied in the sensor location model. A sensor location model was 

proposed, the objective of which is to maximize the total variance reduction, with the 

route coverage constraint and the budget constraint. By replacing the value of scale 
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parameter 0Φ  into the conditional posterior variance var( )γ |Φ,Y , the variance 

reduction is approximated in order to solve the no closed form issue of marginal posterior 

variance var( )γ | Y . Then the total variance reduction by multiple links is approximated 

by the summation of variance reduction by all the corresponding links individually. 

Therefore, an integer linear model LRVR was formulated to select the subset of links by 

optimizing the linear approximation of total variance reduction of route flow mean γ .         

The proposed model LRVR was tested with the experiment framework on a grid 

network. The experiment framework includes the procedures to generate the stochastic 

network scenarios, decide the optimal subset of links with sensors by solving the sensor 

location models (LRVR, LFC and RFC), and estimate the mean of posterior distribution 

for route flow mean γ . The experiment results show the advantage of proposed integer 

linear model LRVR compared with traditional sensor location models LFC and RFC, 

especially when observing only a small number of links in the network. The limitation of 

LRVR model is as follows:  

(1) Because the objective function of LRVR model is a linear approximation by 

assuming the total variance reduction by multiple links is the summation of that 

by each of the single links, the approximation does not count the effect of 

covariance between measurements on pairs of links; this approximation may be 

too much when the correlation among link measurements cannot be neglected.   

(2) The degree of freedom in the prior distribution of the route flow variance-

covariance matrix has not been used in the sensor location model. Hence, when 

the prior knowledge for route flow variance-covariance matrix is too vague (when 

d is small), the estimation for the marginal posterior variance var( )γ | Y  is not 
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very accurate when substituting the value of the scale parameter 0Φ  in the 

conditional posterior variance var( )γ |Φ,Y . In this case, the traditional sensor 

location model, for example LFC, works better than LRVR.  
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Chapter 7  

SUMMARY AND FUTURE RESEARCH 

7.1  Summary of Research Results 

Improving the quality of Origin-Destination (OD) demand estimates increases the 

effectiveness of design, evaluation and implementation of traffic planning and 

management systems. The quality of estimated OD demands from link counts depends on 

several factors, such as (1) the route-choice and traffic loading assumptions, (2) the 

quality of observed data from sensors, (3) the dependencies between link flows due to 

network topology and traffic loading, (4) the choice of OD estimation methods, and (5) 

where the sensors are located. The last two factors reveal two important research 

questions:  

 How to compute the best estimates of the flows of interest by using anticipated 

data from given candidate sensors location; 

 How to decide on the optimum subset of links where counting sensors are to be 

located. 

The aim of this dissertation is to develop a decision framework to obtain the high-

quality OD volume estimates in traffic networks. Three major contributions were made in 

this dissertation: 

(1)  It developed the decision framework for the recently defined Sensor Location 

Flow-Estimation problem. The developed framework is an integration of several 

well-defined problems in traffic modeling, such as (a) a traffic assignment model 

to load the OD traffic volumes on routes in a known route set, (b) a sensor 

location model to decide on which subset of links to locate counting sensors to 
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observe traffic volumes, and (c) an estimation model to obtain best estimates of 

OD or route flow volumes. 

(2)  The proposed decision framework is compatible with estimates of both 

deterministic and stochastic demands (route flows) in traffic networks. Four new 

location models and several algorithms were developed to locate both noise-free 

and noisy sensors in such deterministic and stochastic scenarios. 

(3)  This dissertation developed an experimental environment which can handle the 

evaluation and comparison of different sensor location models in terms of OD 

estimation qualities.  

Chapter 3 first introduced a model to obtain good estimates of deterministic route 

flows in a traffic network using observation data from links, given apriori knowledge of 

route flows and their uncertainties; the uncertainties in the case were in terms of 

confidence intervals. A linear integer programming model was developed for location 

decisions of limited number of ―perfect‖ (or noise-free) sensors. A greedy algorithm was 

proposed to optimally and efficiently solve the linear integer model.  

In chapter 4, noisy sensors were considered which included error terms that were 

normally distributed. Also the uncertainties in prior knowledge of flows were modeled 

with a multivariate normal distribution. A Bayesian statistical procedure was used to 

produce the posterior route flow estimates by combining the likelihood (that is the 

anticipated distribution of observed values given the distribution of route flows) and the 

prior distribution of route flows. A sensor location model was proposed to obtain optimal 

location of these ―noisy‖ sensors. A sequential procedure was developed to solve the 
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sensor location model in polynomial time which was shown to be optimal when error 

measurements were statistically independent.  

In chapter 5, the problem of estimating stochastic route flows was addressed. The 

stochastic real route flows are assumed to be generated from a Multivariate Normal 

distribution with two parameters: ―mean‖ and ―variance-covariance matrix‖, and the 

―variance-covariance matrix‖ parameter was assumed to be known. A three-stage 

hierarchical linear Bayesian model was developed: the first hierarchy describes the 

relationship between link flow observations and route flows to be estimated; the second 

hierarchy defines the distribution of stochastic route flows; and the final hierarchy 

introduces the prior distribution of the ―mean‖ parameter of stochastic route flows. A 

Bayesian A-optimal design was developed to choose the sensors’ location in order to 

maximize the pre-posterior expected reduction of uncertainties. Three solution methods, 

SEQ, GRE and DSEQ, were proposed for both independent and dependent measurements. 

First, the SEQ method, for the cases with independent link flow observations, 

sequentially selects one link at a time providing largest value of additional variance 

reduction, and updates the posterior variance for next iteration. The second method (GRE) 

calculates variance reduction by all single links, and selects first N links with largest 

values. GRE is proposed for the cases with independent link measurements in order to 

overcome the computational burden of SEQ. The last method (DSEQ) was designed for 

the cases when the measurements are dependent. Starting from an empty link set, DSEQ 

sequentially adds one link at a time, which maximizes the variance reduction with respect 

to posterior distribution due to all the selected links. 
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In chapter 6, the ―variance-covariance matrix‖ parameter of the route flows was 

assumed to be unknown and its prior knowledge was described by an inverse-Wishart 

distribution. The three-stage hierarchical linear Bayesian model in chapter 5 was 

extended by introducing the prior distribution for the ―variance-covariance matrix‖ 

parameter of the route flows in the final hierarchy. Because the posterior distribution for 

the ―mean‖ parameter of route flows has no closed form in the Bayesian model, Markov 

Chain Monte Carlo approach was used to estimate the aposteriori quantities. For stability 

of the solution approach, it was required that all routes have to be observed by at least 

one sensor in order to obtain a stationary Markov chain. The sensor location model was 

developed to maximize an approximate variance reduction function.  

In all cases the objectives of the sensor location models were the maximization of 

uncertainties reduction or the maximization in the reduction of variances of the posterior 

distribution of the estimates of the route flow volumes. Developed models were 

compared with other available models in the literature. The comparison showed that the 

models developed in this research performed better than available models in the literature.  

7.2  Directions of Future Research 

This dissertation addressed the recently defined Sensor Location Flow-Estimation 

problem and developed sensor location models for four specific scenarios. A number of 

future research problems can be solved to generalize the developed framework and 

enhance the ability to obtain the high-quality OD volume estimates in traffic networks.  

The limitations that we have identified with the model in Chapter 6 (estimate 

stochastic demand with unknown variance and noisy sensors) are (i) the neglect of the 

correlations among link measurements and (ii) the effect of poor quality of the prior 
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knowledge of ―variance-covariance matrix‖ parameter for the stochastic route flow, on 

the for sensor location decisions. One direction for future research would be to derive a 

more accurate prediction of posterior variances before taking observations. Such 

prediction of posterior variances can be used as the criterion to choose the sensor 

locations. The modified model would incorporate the correlations among link 

measurements (such as the parameter to describe the variance-covariance matrix for link 

measurement errors) and the uncertainties of ―variance-covariance matrix‖ parameter 

(such as the term to define the degree of freedom of the prior distribution).  

Another possibility would be to develop OD estimation methods which would 

allow models outside of the conjugate families. The models in this dissertation assumed 

the traffic demand is generated from multivariate normal (MVN) distribution, which is a 

probability distribution in  a conjugate family and easily produces mathematical tractable 

results of posterior quantities. Because the traffic demands and observations are 

concerned with counts (number of trips), the true distribution is probably some 

multivariate form of the Poisson distribution (Maher, 1983). However, MVN provides an 

accurate approximation for counts with means which are not too small (say, greater than 

1000 vehicles). It would be very valuable to extend the framework and reformulate the 

sensor location problem under the Poisson assumption for OD demands. The aim would 

be to analyze the sensitivity of assumed distribution to the quality of estimated OD 

demands, and enhance the ability of proposed framework with different amount of 

volumes.  

The third possible direction for future research would be to examine if 

equilibrium is reachable for the given route-choice set. If the given route-choice set could 
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result traffic equilibrium in the network, instead of comparing route flow estimates with 

real route flows, the proposed framework would be extended with the comparison of OD 

estimates (summation of route flow estimates from all the alternative routes connecting 

each OD pair) to real OD demands, the result of which directly demonstrate the quality of 

demand estimates at the OD trips matrix level.  

This dissertation focused on estimating OD demand (the lower level of Sensor 

Location Flow-Estimation problem) by using the Bayesian approach. Based on the 

literature review in Chapter 2, there are several other statistical methods, such as 

Maximum Likelihood and Generalized Least Squares, which could be used to provide 

OD estimates. Hence, a future research direction could be investigate with other OD 

estimation methods at the lower level of Sensor Location Flow-Estimation problem, other 

than Bayesian approach.. The sensitivity of OD estimation methods to the quality of 

demand estimates could be analyzed and the ability of proposed framework to obtain 

high quality demand estimates could be further enhanced.  

Last but not least, the framework would be applied to some actual large scale networks 

(like Houston network tested in this dissertation) to compare with existing OD estimates 

and provide additional insights to traffic planners and the traffic modeling community. 
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