The Classification of Domain Concepts in Object-Oriented Systems
by

Maurice Carey

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

Approved April 2013 by the
Graduate Supervisory Committee:

Charles Colbourn, Co-Chair
James Collofello, Co-Chair
Hasan Davulcu
Hessam Sarjoughian
Jieping Ye

ARIZONA STATE UNIVERSITY
May 2013

ABSTRACT

The complexity of the systems that software engineers build has continuously grown since
the inception of the field. What has not changed is the engineers’ mental capacity to operate on about
seven distinct pieces of information at a time. The widespread use of UML has led to more abstract
software design activities, however the same cannot be said for reverse engineering activities. The
introduction of abstraction to reverse engineering will allow the engineer to move farther away
from the details of the system, increasing his ability to see the role that domain level concepts play
in the system. In this thesis, we present a technique that facilitates filtering of classes from existing
systems at the source level based on their relationship to concepts in the domain via a classification

method using machine learning.

We showed that concepts can be identified using a machine learning classifier based on
source level metrics. We developed an Eclipse plugin to assist with the process of manually clas-
sifying Java source code, and collecting metrics and classifications into a standard file format. We
developed an Eclipse plugin to act as a concept identifier that visually indicates a class as a domain

concept or not.

We minimized the size of training sets to ensure a useful approach in practice. This allowed
us to determine that a training set of 7.5 to 10% is nearly as effective as a training set representing
50% of the system. We showed that random selection is the most consistent and effective means of
selecting a training set. We found that KNN is the most consistent performer among the learning

algorithms tested. We determined the optimal feature set for this classification problem.

We discussed two possible structures besides a one to one mapping of domain knowledge to
implementation. We showed that classes representing more than one concept are simply concepts
at differing levels of abstraction. We also discussed composite concepts representing a domain
concept implemented by more than one class. We showed that these composite concepts are difficult

to detect because the problem is NP-complete.

DEDICATION

For Gwen.

You are the best wife, sometimes editor, endless source of encouragement, and my best friend.
I could not have completed this without you.

Thank you for being so patient!

For my daughters Lenore and Roselynn.
You are the joy of my life.

There is nothing you can’t accomplish if you set your mind to it.

For mom.

Unconditional really means a lot.

For dad.

You taught me to love science. This is the result.

For my sister Dottie.

I never would have started down this path without your help.

Thank you for making sure I got where I needed to be.

ii

ACKNOWLEDGEMENTS
I’d like to thank the following people:

The members of my committee: Dr. Charles Colbourn, Dr. James Collofello, Dr. Hasan Davulcu,
Dr. Hessam Sarjoughian, Dr. Jieping Ye for their advise, challenges, insights, and feedback that
have helped me to grow to a point where I can complete this work. Dr. Gerald Gannod for guiding

me down the right path when this research was just beginning.

Dr. Toni Farley, and Dr. Daniel McClary who were always there to talk through a problem either
over a beer or a coffee depending on the circumstances. Dr. Henri Naccache on whose
recommendation I spent a summer porting an old Java app he had written to a new system. I
learned a lot about how to write great Java code that summer. You are missed. Jason Brown who

volunteered to classify Panda. This work was instrumental in validating our results.

Richard Whitehouse who told a freshman class of CS students “if there is something not covered
in this class and you want to know it, get a book.” Many books and years later that is still the best
advise I ever received on advancing my education. Dr. Joseph Urban who taught me two important
lessons in one semester. No one likes a jackass in their office, and sometimes you have to become
the expert on a topic. Both of these have helped me further my career, and finish this work. Dr.
Perry Reinert for giving me the chance to prove I could write code for a living in the real world.
This experience helped me to realized the importance of software comprehension, and motivated

the development of these ideas.

My colleagues over the years in industry who have taught me invaluable lessons about being
pragmatic. Especially: Andy Allen, Robert Barth, Bill Dwyer, Neil Fritz, Preston Lee, David
Morgan, Ken Myers, Jeff Nickoloff, Chris Ostler, Chris Tranquill, Willie Wheeler, Andy Will, and

Catherine Yackshaw.

Joseph Oder for teaching me the importance of working smart and hard, and how to fish. Without

these lessons none that followed would have been as effective.

Finally, Amazon.com for delivering all those books I needed over the years so quickly, and being a

great place to work developing software.
iii

TABLE OF CONTENTS

Page

LISTOFTABLES s e e e e viii

LISTOFFIGURES e e X
CHAPTER

1 Introduction e e 1

1.1 Motivation oo e e e e e e 1

1.2 Goals 5

Goal 1: Accurate Concept Classification 5

Goal 2: Training Efficiency, 6

Goal 3: Feature Selection e 6

Goal 4: Composition e e 6

1.3 Organization. v it e e e e e e e e e 7

2 Background and Related Work oo oo L 8

2.1 Systems Studied 8

Panda 8

Scarab L 8

2.2 The Concept Assignment Problem 9

2.3 Object-Oriented Metrics o i i i e 9

Metrics Definitions Lo 9

2.4 Machine Learning 11

Support Vector Machines 11

k-Nearest Neighbors 13

Decision Tree Learning withID3 13

Imbalanced Data 14

Kennard-Stone algorithm oL oo 14

Precisionand Recall 15

2.5 Automated Reverse Engineering oL oL oL 15

Software Architecture Reconstruction 15

CHAPTER Page

CompariSon e e e 15

Latent Semantic Indexing, 16
CompariSOn v i e e e e e e e 16

Concept Assignment Problem Lo 17
CompariSOn v vt e e e e e e e e 17

Forward Engineering and Concept Identification 17
CompariSon i e e e e 18

Machine Learning Approach to the Concept Assignment Problem 18
CompariSOn o e e e e e e 18

Ontology Recovery by User Interface Mapping 18
CompariSON v v it e e e e e e e e e e 19

Webmining Techniques in Source Code 19
CompariSon i e e e e e e 19

2.6 Using Machine Learning in Software Testing 20
Program Verificationo 20
CompariSon i e e e e e 20

Error Detection 20
CompariSon e e e 21

3 Accurate Concept Classification, 22
3.1 Visionand Hypothesis, 22
3.2 Methodology e 23
Manual Classification oo 24
Selecting the Training Set, 24

Techniques for Classification 25

Metrics Collection 26
Generating a Classifier 26
Using the Classifier 26

CHAPTER Page

3.3 ToolSupport 26
Tool Support for Manual Classification 27

Tool Support for Metrics Collection 28

Tool Support for Generating a Classifier 29

Tool Support for Using the Classifier 30

34 EvaluationPlan 31
Statistical Analysis of Accurate Concept Classification 31
Threatsto Validity e 33

3.5 Preliminary Results L 35
Experiments e 36
Experiment 1: Panda Default Learner 37

Experiment 2: Panda KNN 37

Experiment 3: PandaSVMo oo 37
Experiment4: PandaID3. 38

Experiment 5: PandaID3 + AdaBoost 39

Experiment 6: PandaVote 40

Experiment 7: Scarab Default Learner 40

Experiment 8: Scarab KNN 0oL, 41

Experiment 9: ScarabSVM o 41

Experiment 10: ScarabID3 42

Experiment 11: ScarabID3 + AdaBoost 42

Experiment 12: ScarabVote 43
Discussionof Results. 43

4 Improvements, Practicality, and Validation of the Approach 45
4.1 Minimizing the Feature Set o 45
Results of Feature Set Selection 46
Validation of Feature Set Selection 48

vi

CHAPTER Page

4.2 Training Set Efficiency and Size 0oL, 50
Learning Curve Results 51
Recommendations Based on Learning Curves 59

4.3 External Validation 60

5 Limitsof Approach e 64

5.1 Composite COncepts ot i e e e e e 64

5.2 Type 1 Composite Concepts o v vt i i vt 66

5.3 Type 2 Composite CONCepts v v v v v vttt 67

6 Conclusion e 72

6.1 Contributions and Findings 72

6.2 Future Research 74

6.3 Significance L. 75

REFERENCES e 77

APPENDICES

A Post Feature Selection Confusion Matrices 83

B Post Validation Confusion Matrices oo 86

C DataSets e e e 89
C.1 Panda e 89
C.2 Scarab e 95

D Published Papers e 143
D.1 ICPC 2007 o e e e 143

vii

LIST OF TABLES

Table

2.1 Pandadatasetexamples.
3.1 Summary of Average Accuracy for Preliminary Results
3.2 Results of Hypothesis 2 #-test.
3.3 Precision and Recall forPanda KNN
3.4 Precision and Recall for PandaSVM oo oo
3.5 Precision and Recall forPandaID3 L.
3.6 Precision and Recall for Panda ID3 with AbaBoost
3.7 Precision and Recall for Panda Vote,
3.8 Precision and Recall for Scarab KNN L.
3.9 Precision and Recall for ScarabSVM oL Lo
3.10 Precision and Recall for ScarabID3 o .
3.11 Precision and Recall for Scarab ID3 with AdaBoost.
3.12 Precision and Recall for Scarab Vote L.
4.1 First Round of Forward Selection
4.2 First Round of Backward Elimination
4.3 First Round of Evolutionary Selection
4.4 Second Round of Forward Selection
4.5 Second Round of Backward Elimination
4.6 Second Round of Evolutionary Selection
4.7 Third Round of Evolutionary Selection
4.8 Summary of Average Accuracy for Preliminary versus Feature Selection Results
4.9 Post Feature Selection Precisionand Recall
4.10 Summary of Average Accuracy for Preliminary versus Corrected Panda Results
4.11 Post Validation Precisionand Recall
A.1 Post Feature Selection Precision and Recall for Panda KNN
A.2 Post Feature Selection Precision and Recall for PandaSVM

A.3 Post Feature Selection Precision and Recall for PandaID3

viii

Page

Table Page

A.4 Post Feature Selection Precision and Recall for Panda ID3 with Aba Boost 83
A.5 Post Feature Selection Precision and Recall for Panda Vote 84
A.6 Post Feature Selection Precision and Recall for Scarab KNN 84
A.7T Post Feature Selection Precision and Recall for ScarabSVM 84
A.8 Post Feature Selection Precision and Recall for ScarabID3 84
A.9 Post Feature Selection Precision and Recall for Scarab ID3 with Ada Boost 84
A.10 Post Feature Selection Precision and Recall for Scarab Vote 84
B.1 Post Validation Precision and Recall for Panda KNN 86
B.2 Post Validation Precision and Recall for PandaSVM 86
B.3 Post Validation Precision and Recall for PandaID3 86
B.4 Post Validation Precision and Recall for Panda ID3 with AbaBoost 86
B.5 Post Validation Precision and Recall for Panda Vote 87
C.1 Metrics DataforPanda 90
C.2 Metrics Datafor Scarab 96

1X

LIST OF FIGURES

Figure

1.1 Pandaclassdiagram
1.2 Panda class diagram after filtering oL,
3.1 Creatingaclassifier. e
3.2 Usingaclassifier. e
33 Overviewoftoolchain.
3.4 Buttons for quick annotations of sourceo Lo
3.5 Interface for showing metricsoutput
3.6 Interface for generating aclassifier
3.7 Interface for showing classificationoutput
3.8 Criteria for calculation of true error Lo
4.1 Learning Curve forKNNonPanda
4.2 Learning Curve forSVMonPanda oL
43 Learning Curve forID3onPanda.
4.4 Learning Curve for VoteonPanda
4.5 Learning Curve for KNNonScarab
4.6 Learning Curve forSVMon Scarab
47 Learning Curve forID3onScarab
4.8 Learning Curve for Voteon Scarab 0oL

Page

24

Chapter 1

Introduction

1.1 Motivation

The complexity of the systems that software engineers build has continuously grown. What has not
changed is the engineers’ ability to deal with a limited number of data at any given time;
psychologists tell us that the average person has working memory capacity to operate on about
seven distinct pieces of information at a time [40]. While improvements in the field, like the
widespread use of UML, has led to more abstract software design activities, the same cannot be
said for reverse engineering activities. The well known concept assignment problem is still being
solved at the line-by-line level of analyzing source code. The introduction of abstraction to the
problem allows the engineer to move farther away from the details allowing his own limited
resources to capture a broader picture of the system, increasing his ability to see the role that

domain level concepts play in the system.

Computers have been used for everything from recalculating massive spreadsheets to compiling
Java into byte code to typesetting this thesis. However, even classification problems that computers
have not traditionally been associated with have become familiar territory for machine learning
algorithms. These solutions show up even in the sorting of family photos, a task that has until

recently been achieved without automation.

Imagine you would like to see all the photos in your digital library of your daughter taken between
the ages of two and three that also include her mother in the photo. The time frame is easily
solvable by traditional search; however the question of a photo containing two specific people
requires a different approach. Thankfully the technology exists today so that using facial
recognition a machine learning algorithm can provide a classification of all of your photos given
just a few seconds of compute time and your assistance with training. Of course the resulting set of
photos may not be perfect, for example some might be your daughter and her aunt, but the

reduction in the size of the set to be considered, the ability to manually indicate errors by tagging

the false positives, and the increases in accuracy that come with further training or tagging of the

photos make this a compelling solution to the problem.

Classification can be applied to problems in reverse engineering and can achieve many of the
advantages seen in photo classification. Core concepts are classes in the system that are
implementations of the domain concepts in an ontology of the system. The alternative, a
non-concept class, is a class that only exists to support the implementation of the concept classes.
By associating the classes in a system with the domain concepts we can build a filter that allows
the engineer to view only those parts of the system that relate to the domain knowledge that is
captured in the implementation of those classes. This view can be used to assist in accelerating the
engineers understanding and comprehension of the system by hiding those aspects that do not

directly relate to the domain.

In this work, we present a technique that facilitates filtering of classes from existing systems at the
source level based on their relationship to the core concepts in the domain. Filtering the system in
this way allows software engineers to comprehend it faster, since the system is reduced to core
concepts. Filtering out non-domain classes also simplifies the visualization of the system.
Eliminating non-domain classes from the class diagram of a system reduces the complexity of the
diagram. Reduced complexity supports higher comprehension and faster learning of the system.
The technique presented involves collecting object-oriented metrics from an existing system that
are then used in machine learning methods to create a classifier of the system. The classifier is
used to identify classes that are likely related to domain level concepts. This approach can simplify
the process of reverse engineering and design recovery, as well as other activities that require a

mapping to domain level concepts.

Traditionally, concept identification has been approached in the concept assignment problem [7] as
a way of mapping source code to programming concepts. In our work we define concept
identification as the process of extracting domain knowledge from an existing software system. A
perfect concept identification system would take as input the source to an existing system, and

produce as output an ontology of the domain knowledge captured in that system.

From the perspective of forward engineering we can imagine the development process as a series
of refinements to the domain ontology that ultimately result in a program that can be executed on a
machine. Clearly this is a simplification of the real world process of developing software. In
practice, the domain is rarely understood well enough at the beginning of development to create a
complete and accurate ontology of the domain; however, over time the ontology could be
developed with feedback from the iterative development process. From the perspective of reverse
engineering we ask what is the relationship between source code artifacts and the domain
ontology. The importance of this question is that in practice we do not follow a perfect
deterministic development process, instead we act as humans always do. We make mistakes. We
learn from those mistakes. We work overtime to meet deadlines and only capture the newly
learned knowledge that is necessary to get the product out the door to our customers. This
knowledge is captured in the source of the system. We may have the best intention to capture that
knowledge in a more suitable place at a later time, but by the time the heat of the moment has
passed even if we stay motivated to record the knowledge we forget a minor detail or maybe a few.
Even the knowledge that is recorded is of limited value. The non-formal language in which the
knowledge is captured allows ambiguity. What is clear to the writer may not be to the reader.
Then, even if perfected, recorded knowledge quickly becomes outdated as the understanding of the
problem develops in new directions and as customers request new features. Andy Hunt and Dave
Thomas discuss many of these issues in the context of performing maintenance on an existing
project [28], particularly that even the most formal of languages, the source code, can be deceptive
due to the human element. The programmer decides for example to call a method readData,
formal language only enforces that he must create a unique identifier within a scope not that the
actual functionality of the method is consistent with reading data. Given the human element
involved in the development process we need a way of reverse engineering the domain ontology of
a system from the only representation of the system that is completely updated with the current

knowledge of the system. That representation is the source code of the system itself.

Concept classification allows us to filter the classes in a system to only those that we believe would
be a direct translation of a domain concept taken from our hypothetical domain ontology. A little

more formally, concept classification is the process of answering the question “Is this class a
3

member of the set of classes produced from an ontology of the domain knowledge of this system?”
for each class in the given system. The research investigation described in this work presents one

solution to the problem of producing a concept classification oracle.

From a pragmatic perspective a software developer could use a concept classification tool in order
to filter a large system to show only those classes that are of the greatest interest at the domain
level. This allows the engineer to learn the domain more effectively. As an example of filtering
class diagrams, Figure 1.1 shows the complete class diagram of one package from the Panda

system, while Figure 1.2 shows the results of filtering all non-concepts from the diagram.

<< interface >> CommandRedo [- _ - _ [>f <<interface >>
P nclusion Undo Redo CUPS$parsersactions _parser parser
#action_obj
N +manager (=
ine ' ; KeysDialog
c X c i
ploweoyér CommandEquivElim
prover
Prover < Panda sym
 pigver
[Provercommand PanelPromptForLine’
T Deb:
| ebu
—prover —FBover 9
FormulaPanel y CommandConcludt
scanner
~ formulas|
~selectedList | | ¥ selectddList
> formulas
FormulaButton
_rootList | FormulaList Reason
—reada
CommandTrustMe: Counter
—parerft | | ~reason
wnerList
+subList

PanelWhichEquation

~ selectedList

CommandimplElim ‘CommandOrintro CommandOrElim || (C

|
—right | —
e leftFormula - - - — |- -
Formula

~rightFormula
<—

<name>
/F q\ﬂarmu\a +<role> Formulal
-

}» insertionPoint

[InsertionPoint

Figure 1.1: Panda class diagram

Other applications of this approach include data mining, and indexing. The open source
community has generated a great deal of software over the years. Much of open source software is
poorly documented. This issue is further complicated by the transient nature of contributors to
open source projects. Not only can our approach help a new contributor to a project learn the

domain of that software more effectively, but it can also be used as a way of indexing available

CommandAndElim
CommandUndo
C JEquivElim
ProverCommand
CommandConclude

~ prover
CommandNotEquivElim
? T CommandAddAssumption
|CommandlmpIEIim|

#prover

Prover

—prover

FZYYXZ

#formulas
~ formulas|

|CommandNotEquivIntrol

Reason

~ se|ected_Lis. #selegtedList |
—rootList

CommandAddConclusion

FormulaList -reason

ZownerList

parent

+sublList

CommandEquivintro
+formula

For istElement

Figure 1.2: Panda class diagram after filtering

open source contributions. Perhaps by providing an index of concepts we can achieve greater reuse
of existing software.

1.2 Goals

The following sections present the goals of this research. These goals include attaining a
significant level of accuracy in identifying concepts, attaining that accuracy with a small enough
training set to be practically useful, optimizing the features that must be collected from the
program source, and determining the practicality of generalizing the approach to composite
concepts.

Goal 1: Accurate Concept Classification

In Section 3.5, we show statistically significant evidence that the average accuracy achieved on the
concept classification problem is better than random guessing or a default learner. A default
learner is a simple learning algorithm that “learns” the median value of the training set. For
example, if the training set is made up of ten instances and six of those are false then the default

learner learns to answer false. In doing so, we address the following questions:

1. Is the average accuracy of a candidate learning algorithm significantly higher than the

average accuracy of a default learner on the core concept classification problem?

2. What learning algorithm has the highest accuracy?

Goal 2: Training Efficiency

In Section 4.2, we model the learning curve of the candidate learning algorithms to demonstrate the
expected accuracy given a training set of a given size. We define at least one training set selection
algorithm, designed such that we are able to build a classifier with higher accuracy than would be

possible given a randomly selected training set. In doing so, we address the following questions:

1. How does the accuracy vary with different sized training sets?

2. How large a training set is necessary for a given learning algorithm to achieve significant
concept classification accuracy?

3. Is it possible to develop a method of selecting a near ideal training set, where an ideal
training set is the training set of a given size which maximizes concept classification
accuracy for training sets of that size?

4. Is it possible to develop a method of selecting training sets that consistently produce

classifiers with average accuracy above that achieved via random selection?

Goal 3: Feature Selection

In Section 4.1, we optimize the metrics needed to make accurate predictions. In doing so, we

address the following questions:

1. What set of metrics is the best indicator for core concept classification?
2. Based on the metrics that are good indicators of core concept classification, are there

additional metrics that are useful to collect?

Goal 4: Composition

In Section 5.3, we will explore the use of the approach in classifying core concepts that cross class

boundaries. In doing so, we address the following question:

1. Is it possible to use this approach to classify composite concepts made up of more than one

class, which individually are not concepts?

1.3 Organization

The rest of the thesis is organized as follows. Chapter 2 contains relevant background information
and covers related work in the field. Chapter 3 details the approach and shows that it is possible to
attain accurate results. Chapter 4 addresses improvements that can be made in accuracy,
practicality of the approach in the real world, and validation of the approach via comparison of
another engineers’ classification results. Chapter 5 discusses the limitations of our approach as
well as classification approaches in general. Finally, chapter 6 discusses the contributions in this

work and concludes this thesis.

Chapter 2

Background and Related Work

This thesis makes use of ideas related to several areas of research. In this chapter, we provide the
technical background needed later.

2.1 Systems Studied

To evaluate our approach we studied two systems Panda and Scarab. Both systems were
completely manually classified in order to generate data sets. These data sets were gathered in
order to support our experimental evaluation of the approach. For listings of the data sets collected

see Table C.1 on page 90 for Panda and see Table C.2 on page 96 for Scarab in Appendix C.

Panda

Panda [26] is a natural deduction proof assistant written in Java and developed at Arizona State
University. The tool is used primarily to support education of natural deduction as a proof
technique. We had access to the original class and statechart diagrams that were used for
development of Panda and thus used that information as a sanity check during identification of

concepts. Panda’s size is 90 classes and about 9 thousand lines of code (KLOC).

The architecture of Panda is best described as a GUI based model view controller application. The
model consists of classes implementing logical constructs. The view consists of classes
implementing Java GUI elements. The controller consists of classes implementing the use cases

that can be applied in a proof.

Scarab

Scarab [53] is a web-based defect tracking system based on the Turbine [4] and Torque [3]
frameworks. Scarab was designed to be a replacement for defect tracking systems like

Bugzilla [12]. The size of Scarab is 580 classes and 128 KLOC.

Turbine is a model view controller framework for web-based applications. Torque is an
object-relational mapper for Java classes that allows objects to be persisted to the database. Scarab
therefore has the architecture of a MVC web application whose model is persisted to a database.

2.2 The Concept Assignment Problem

Biggerstaff et al. [7] describe the concept assignment problem as recognizing concepts in software
systems and building a model or human-level understanding of the concepts. We see the concept
assignment problem as a two part process. The first step is to identify concepts in the software
system. The second step is to build a model of the concepts. This thesis describes a new method of
identifying concepts that are represented by classes, and using the identification to produce an
abstraction of a recovered class diagram. Specifically, we describe an instance of the concept
assignment problem dealing only with object-oriented classes. Object-oriented design suggests
that we ignore the details of the implementation of a class, so we believe that analyzing
object-oriented software at the class level is a valid approach to solving the concept assignment
problem.

2.3 Object-Oriented Metrics

A metric is defined as a standard of measurement [25]. In this work, we use metrics as quantifiable
attributes of classes. We are initially more interested in what a set of metrics might say about the
class than what each individual metric implies. Since our focus is on attributes of classes, we are
most interested in class level metrics. However, we can also make use of lower level metrics that

can be averaged over a class.

Metrics Definitions

Several object-oriented metrics are used in our approach. These metrics are primarily designed to
capture information about the size and complexity of software at the class level. Section 2.3
provides a brief summary of the metrics used in our work. These metrics were chosen because
they were available to be analyzed. We have not optimized the metrics used, nor do we believe that
is an appropriate step to take at this time because we do not want to over optimize the metrics used

to the data set collected. The best way to view the role of the metrics collected here is as

incomplete indicators of the concepts, each metric potentially adding more information to the

decision making process.

Number of Attributes (NOF) The total number of instance and static attributes in the class.

Number of Static Attributes (NSF) The number of class or static attributes in the class.

Number of Methods (NOM) The total number of instance and static methods in a class.

Number of Overridden Methods (NORM) The total number of methods in the class that override
methods from an ancestor class.

Number of Static Methods (NSM) The number of static or class methods in the class.
Henderson-Sellers [25] refers to this as Number of Class Methods (NCM).

Number of Parameters (PAR) The number of parameters to a method. We do not use this metric directly
but instead use the average over the class.

Average Number of Parameters per Class (PARC) The number of parameters to each method in the

class averaged over the number of methods in the class calculated as in (2.1).

| NoM .
PARC = NOM J; PAR(j) (2.1)
Number of Subclasses (NSC) The total number of direct subclasses of this class, also called Number of
Children.
Method Lines of Code (MLOC) The number of lines of code contained in the body of all methods in the
class.
Lack of Cohesion of Methods (LCOM) LCOM [24] can be calculated as in (2.2) where (A j) is the
number of methods that access the attribute A, a is the number of attributes, and m is the number of
methods. LCOM is a measure of the cohesiveness of a class where smaller values indicate more

cohesive classes.
(Lre) -m
1—m

Nested Block Depth (NBD) The depth of nested blocks of code.

LCOM =

2.2)

McCabe Cyclomatic Complexity (VG) The maximum number of independent circuits through the
directed acyclic graph of a method [23]. We use the average over the class.
Weighted Methods per Class (WMC) The sum of McCabe Cyclomatic Complexity for the n methods in

the class i, calculated by the formula given in (2.3).
WMC =s;=) V;;(G) (2.3)
j=1

10

Depth of Inheritance Tree (DIT) The depth of the class in the inheritance hierarchy.

Specialization Index (SIX) Defined as 1\/0}1\3/(\)4#_ Designed so that higher values indicate classes that are
more specialized.
Uses (USES) The number of classes this class uses, or depends on. This is defined precisely in (2.4).

Used-By (USEDBY) The number of classes that make use of, or depend on, this class. This is defined

precisely in (2.5).
G is a directed graph.
V(G) = {v|vis aclass in the system}
E(G) = {(v1,v2)|vi is dependent on v, }
USES(G,v) = |[{e= (v,w)|e € E(G) Aw € V(G)}|| (2.4)
USEDBY (G,v) = |[{e = (w,v)|e € E(G) Aw € V(G)}| (2.5)

2.4 Machine Learning

The work described makes use of three different machine learning algorithms. Support Vector
Machines (SVM) with a radial basis kernel is the first algorithm that we used to classify results.
The second, k-nearest neighbors (KNN), is included to compare to other algorithms and is a simple
algorithm to implement when contrasted with SVM. The third, ID3 is used as a representative of
decision tree algorithms, which have a completely different operational mechanism than either
SVM or KNN. We use all the algorithms as a black-box that takes inputs that are vectors of real
numbers of length n, and outputs classification decisions. The tool that implements these

algorithms and data mining used is known as RapidMiner and formerly YALE [39].

Support Vector Machines

Support Vector Machines (SVM) were first introduced by Boser et al. [8]. SVM are an example of
a learning methodology known as supervised learning [16]. A learning methodology is an
approach to creating programs that calculate answers by analyzing given examples while
supervised learning uses examples consisting of input-output pairs. The goal in a learning problem

is to find a function that maps the given inputs to the desired outputs.

11

SVM have been applied to a diverse body of problems, while many times proving to be the most
accurate learning algorithm available [18, 30, 55, 42, 50]. Some examples of problems where

SVM have been applied include:

Text Categorization: the classification of text into existing categories. SVM outperformed other
machine learning approaches in this area [18, 30, 50].

Hand-written character recognition: the classification of hand-written characters to the
categories defined by the set of alphanumerics. This is an interesting problem domain
because SVM outperforms algorithms specifically designed for this domain [55].

Image recognition: the classification of objects appearing in computer images. SVM
outperformed other algorithms and had the property of being trained on fewer examples than

the dimensionality of the data [42].

SVM generate linear functions as their hypotheses. The hypotheses are then applied to attributes
that have been transformed to a high dimensional feature space. The transformation of attributes to
a feature space is carried out by the application of kernels to the example datum. An example of a
kernel is the radial basis function kernel shown in Equation (2.6) [49], which intuitively describes
aradius of influence, where i = 1,...,¢, j =1,...,¢, and o is a parameter to the kernel that scales

the radius of the support vectors influence.

oo X — X
K(X,‘,Xj) = eXp <—H1262JH> (26)

SVM used as binary classifiers must solve the optimization problem in Equation (2.7) [16].

min (W-W)
W.b
subjectto y; ((W-X;) +b) > 1, 2.7
where i=1,....¢0

Geometrically this translates into finding a linear separating hyperplane in the higher dimensional
space. The hyperplane is optimized for maximal margin and defined by the weight vector w and
bias b. In practice the dual representation is maximized, allowing optimization to take place in the

kernel space with slack terms introduced along with a penalty parameter C. In this context, X; € R"

12

are the n-dimensional training vectors, y; € {1, —1} are the classification labels for the training
vectors, and ¢ is the number of vectors. The set of classification labels {1, —1} correspond to

classes that are concepts (1), and those that are implementation details (—1).

In our data set, n = 14 so the vector X; has 14 dimensions, each related to a metric. Examples of
some sample vectors from the Panda data set are shown in Table 2.1. The metrics and their

ordering are as in Section 2.3.

Table 2.1: Panda data set examples.

Xi Vi
<0,0,3,31,11,0,0,1.75,4,0.444,2.75,0.5,0,1 > -1
<4,0,2,331,92,0,2,1.806,32,0.5,2.556,0.917,0,5 > 1
<0,0,8,51,16,0,0,1.071,14,0.862,1.143,0.929,0,1 > 1
< 1,0,2,24,10,0,2,1.667,2,0.5,3.333,0,0,1 > -1

AW =~

k-Nearest Neighbors

k-Nearest Neighbors (KNN) [41, 2, 1] is the simplest instance-based machine learning method.
The algorithm is based on all the training instances being points in an n-dimensional space R".
Instances are classified by calculating the Euclidean distance to all points in the training set. The
Euclidean distance, shown in Equation 2.8, is calculated from a,(X) (e.g., the rth attribute of the

learning instance vector X).

(a,(%:) — a, (X)) (2.8)

(agE

d(X;,X;) =

r=1

The class of the k nearest points is then used as a simple majority rules vote, the class of the
majority is assigned as the class of the point in question. An alternative is to weight the class of the

k nearest points based on the multiplicative inverse of their distance from the point in question.

Decision Tree Learning with ID3

Quinlan [47] describes the ID3 algorithm for inductive learning of decision trees. A decision tree
is a tree where each non-leaf node represents a test of one attribute of the feature, each branch
represents a possible value for the attribute, and each leaf node represents the final classification of

an instance. Evaluation of an instance is complete when the leaf node is reached by comparing the

13

values of the instance to the values of the branches of the decision tree beginning at the root, for

each attribute and following the branch for the matching value.

Several decision tree based algorithms [47, 48] have been successful classifiers in many
applications, and have been found to yield superior results in text classification [50]. ID3 has a few
properties that should be noted. First, it is designed for attributes that take on a discrete and
numerable set of values. Second, an interesting susceptibility to noise, non-systematic errors, is
encountered when noise is introduced to all attributes of a feature resulting in classification errors

that peak around a 40% noise level [47].

Imbalanced Data

Data sets that have a significantly higher number of representatives of one class versus the other
class are said to have a between-class imbalance [22]. He and Garcia define between-class
imbalance as significant imbalances where the class representation ratio is 100 : 1 or greater. Data
sets with imbalanced distributions lead to classifiers with imbalanced accuracy. He and Garcia
state accuracy imbalances tend to exhibit a majority class with close to 100% accuracy and
minority class with 0 to 10% accuracy [22]. The data sets studied in our work tend to exhibit a

ratio of 2 : 1 between-class imbalance so are unlikely to be affected by these issues.

Kennard-Stone algorithm

The Kennard-Stone algorithm [32] as applied to our work is a method of sorting a data set into a
deterministic order. The ordering is defined by the greatest difference between samples; the
difference is typically euclidean distance. We also refer to Reverse Kennard-Stone which is simply

the output of the Kennard-Stone algorithm in reverse order.

Definition 1 (Kennard-Stone algorithm). consists of the following steps:

1. Find the pair of samples with the greatest difference; this pair is now our list of ordered
samples L.

2. Find the difference between all samples not in L and all samples in L.

3. Select the sample with the greatest difference and append to L.

4. Repeat 2 until all samples are in L.

14

Precision and Recall

Precision and recall allow us to determine the suitability of our results when answering particular
questions. For example, when filtering class diagrams we might prefer that we display results that
are not truly concepts versus filtering those that are concepts. This means we prefer not to have
false negatives. Minimizing false negatives corresponds with a high recall rate for the concept
class. In another example, we might use the classifier in an information retrieval role where we ask
to see a concept or non-concept class. In this role we might decide that precision is more important
as we may not care that all concepts are returned but instead prefer that any concept that is
returned is truly a concept.

2.5 Automated Reverse Engineering

The topics covered in this section are works related by their goal of automated reverse engineering.

Software Architecture Reconstruction

Software architecture reconstruction is a recent development that represents a reverse engineering
process designed to recover architecture specific information. As Favre [21] points out, software
architecture is not well defined. Software architecture can only be defined in terms of the audience
to which it is presented. An experienced software engineer should recognize the overloaded use of
the term to have slightly differing meanings based on who is the target audience. Obviously, the
project manager, technical lead, upper management, customers, fellow engineers with similar
experience, the newest addition to the team who finished his degree only a few months ago, as well
as other stakeholders all have a different perspective on the software architecture. van Deursen et
al. [54] seem to ignore this ambiguity but the approach of view-driven software architecture
reconstruction called Symphony is introduced. This thesis essentially codifies best practices that

have been observed by the authors in the actual practice of software architecture reconstruction.

Comparison

Placed in the context of software architecture reconstruction and in the vocabulary of Symphony
our work would be a type of mapping from a source view to a target view, the target view being a
static graph of the core concept classes described by a UML class diagram. That said, the scope of

15

software architecture reconstruction processes far exceeds the scope of our research. It is not our
goal to provide an automated method for complete recovery of a software architecture but instead
to automatically build up a view of the domain knowledge embodied in the core-concept filtered
class diagrams. Further, our target audience is primarily those with a technical understanding of

the software.

Latent Semantic Indexing

Marcus et al. [36, 44, 35, 34, 43] describe a method of using latent semantic indexing to map
natural language concepts to the locations of those concepts in source code. This approach allows

an engineer familiar with the domain of the software to find usages of concepts in the source code.

Marcus et al. use an information retrieval based approach to locate concepts in the systems’
source. Specifically, the approach uses Latent Semantic Indexing (LSI) to uncover semantic
similarities between queries and the system source, which is broken up into blocks or modules
prior to analysis. Queries can either be user generated, or partially automatically generated queries
based on top terms that are related to a user specified term. Queries are compared for similarity to
blocks or modules of the system source, which is modularized based on language dependent
boundaries. For example, a language like C would be broken into procedures whereas Java might

be broken into classes.

Comparison

This approach shares some common goals with ours. One specific instance is concept location for
the purpose of easing maintenance of the system and improving developer comprehension.
However, the approach assumes developer knowledge of the domain. Our approach attempts to
locate all domain concepts in an effort to recover a source based description of the domain. The
approaches could be used in a complementary fashion, with our approach locating the classes that
represent core concepts in the domain and the latent semantic indexing approach to locate further

details within the core classes.

16

Concept Assignment Problem

Biggerstaff et al. [7, 5, 6] describe the assignment of human oriented concepts to implementation
oriented concepts. This process is a matching between preexisting notions about the system or
existing domain knowledge to textual representations of the system implementation. This is
basically the reverse of our approach. They make use of a concept assignment assistant called
DESIRE, which includes tools for analyzing code and constructing alternative views of the code.
DESIRE also features a Prolog-based inference engine as well as a knowledge-based pattern
recognizer. Together the features of DESIRE allow a developer to analyze the system, and create
and collect rules in the inference engine. The rules and patterns collected provide more automated

support to the developer over time as the analysis of the system is completed.

Comparison

The concept assignment problem addresses the recovery of programming concepts, whereas we
recover domain concepts. In addition to the different goals there are differences in approach as
well. The approach used by Biggerstaff et al. uses source code where we use metrics based on the
source code. We use a machine learning approach that does not involve declaratively creating an
expert system. There is a strong case for the methods used to recognize programming concepts,
using at times a filtering of the source code based on the developers domain knowledge. Our
approach could be added to the toolset used by Biggerstaff et al. as an additional filtering
technique facilitating greater automation than their methods alone. The important point to
remember with this work is it assumes significant domain knowledge exists with developers using
tools to apply that knowledge. Our work assumes that a developer may not know all domain

concepts a priori, but could recognize one if presented with it in the source code.

Forward Engineering and Concept Identification

Svetinovic et al. [52] discuss concept identification from a forward engineering perspective
illustrated in several case studies. The claims of misuse or misunderstanding of object-oriented
domain analysis are worth noting since the automated identification of concepts requires that those
concepts be represented within the implementation, implying they where designed into the

17

software. They identify many of the concerns we have raised in our discussion of external validity.
Primarily, there is not one single agreed upon way of designating what is and is not a concept in a
software system, according to their paper this is a fundamental difficulty with object-oriented

domain analysis.

Comparison

There is no direct comparison to our work as the authors are attempting to illustrate a weakness of
the object-oriented domain analysis process. However, if the concepts that are found to be missing
in a domain analysis are also found to be missing in object-oriented design and later
implementation then it would not be possible for us to recover or identify a concept that is not
present in the system. The authors do state that the findings on OODA do not necessarily extend to
OOD or later implementations of the systems. It is possible that concepts that are ignored or

misunderstood at the time of analysis are later found or corrected during design or implementation.

Machine Learning Approach to the Concept Assignment Problem

Merlo et al. [38] describe a design recovery process which uses a machine learning approach to
link text from source code to concepts identified by a domain analysis. This is essentially a partial
automation of a portion of the work performed by Biggerstaff et al. [7]. The machine learning

algorithm used is based on neural networks.

Comparison

The approach differs from ours in that a change in domain requires a new neural net to be trained.
That is not necessarily the case with our SVMs as they can be applied to programs from very

different domains but currently without significant accuracy.

Ontology Recovery by User Interface Mapping

Hsi et al. [27] approach recovery of ontology by manual construction of an interface map. The
interface map is a depth first traversal of all elements of the softwares interface. The approach then
uses the interface map to generate a semantic network. The semantic network is then used as the

basis for calculating graph theoretic measures that are used as indicators of core concepts of the

18

ontology. The measures or metrics are made use of on an individual basis and no attempt to

combine metrics is made.

Comparison

The approach differs from our work in that it is completely based on construction and analysis of a
graph. Our work does make use of graph metrics and could easily be extended to include
additional metrics. Their evaluation does not include any comparison to a control group in order to
express the accuracy of the approach. Each of the various methods introduced to recover the
ontology produce differing ontologies, and no method of reconciling differing results is presented.
Advantages of our approach include the use of a control group in the form of the manual
classification results to show the accuracy of the approach, and we only produce one ontology
based on the metrics that we use. That said, the metrics used in the paper do appear to show strong

evidence of core concepts.

Webmining Techniques in Source Code

Zaidman et al. [58] show that webmining techniques can be applied to source code to uncover
important classes, similar in nature to our core concept classes. This paper demonstrates the use of
webmining techniques originally designed to identify important hubs on the web. Web hubs are
those sites that provide links to authorities on a topic. The technique uses an execution trace to
uncover important or core classes in the system. A log of execution is converted into a compact
call graph where each vertex is a class and a directed edge is weighted with the number of calls to
methods on the class. The HITS algorithm is used to find the hubs and authorities in the graph.

Hubs in this case are considered important classes in the system to enable program comprehension.

Comparison

The goal of this approach, to find the most important classes in a system, is similar to ours. This
approach requires defining execution scenarios, ours does not. It is not clear how many scenarios
would be required to uncover all important classes in the system. Based on the published findings
it appears we achieve similar accuracy, using a static approach. Rather than viewing this as a

competing approach it would be far more interesting to use the results as a metric in one of our

19

features. So this could very well be a complementary approach, if the user is willing to create
execution scenarios.

2.6 Using Machine Learning in Software Testing

The works described in this section are related by their use of machine learning techniques but
primarily describe approaches to improving software testing.

Program Verification

Bowring et al. [9] present an approach that classifies program behaviors based on similarities of
Markov models built from the event transitions collected from program execution traces. An event
transition is defined as “a transition from one program entity to another”. Here an example of a
program entity is a source and sink node in a control flow graph when the transition is a branch.
The paper presents a method of collecting behaviors with unknown classification that can be
compared to known behaviors in order to decide if these behaviors are “pass” or “fail” behaviors.
In other words, the software is analyzed to collect a set of execution traces that lead to both passing
and failing tests, for known errors. These are then used as a baseline of comparison to other
execution scenarios in order to classify those scenarios as either passing or failing to detect latent
errors.

Comparison

The goal of this work, to classify the program behavior, differs from our goal of locating concepts.
What is significant is the use of machine learning in order to classify behaviors of the system.
There is a similarity in the approach of applying machine learning to software engineering
activities, which we believe helps prove the usefulness of applying these techniques to software
engineering problems. Specifically, machine learning is used as a tool to augment the knowledge
of the engineer by creating classifiers that can potentially detect similar behavior in code that was
not directly analyzed by the engineer. This is exactly the way we use machine learning to augment
the engineer’s ability to detect core concepts of the domain knowledge.

Error Detection

Brun and Ernst [11] present an approach designed to uncover latent errors using machine learning.

Errors are learned by presenting a machine learner with runtime properties that are converted into
20

feature vectors for two separate programs, one with errors and one with the errors corrected. It is
not necessary to correct all errors in the program. This data allows the machine learning algorithm

to learn a characterization of code that leads to error conditions.

Comparison

Though the goal of our work is very different from this paper, the spirit of the approach is similar
in the application of machine learning. The premise that it is possible to characterize code based
on source which is transformed into a mathematical vector representation of the code is similar to
our collection of metrics based on source size and complexity but obviously with a different
transformation. In fact, the similarities would seem to warrant further investigation. It appears that
many types of classifiers could be generated from source given an appropriate transformation of

the source to a feature vector.

21

Chapter 3

Accurate Concept Classification

In this chapter we discuss the possibility of accurate concept classification using machine learning.
We show conclusive statistical evidence that it is possible to detect concept classifications using
machine learning. In the following chapters we determine if this is practical and what limitations
exist with an approach of this type.

3.1 Vision and Hypothesis

The ability to automatically classify the classes that make up a system as either core domain or
non-core concepts is a key advantage to the software engineer. This information can be used to
quickly filter the class diagram of the system and see a view of the most important classes in the
system. The filtered class diagram can be further refined by application of techniques developed by
Egyed [20] and supported by tools, like the one developed by Kaynak [31]. This allows the
relationships between the filtered classes to be built despite the missing classes that have been

filtered out of the system.

This new view of the system provides the software engineer with a simplified perspective of a

complex system. The simplification makes it easier for the engineer to:

e capture a snapshot of the state of the architecture,
e learn the primary system interactions, and

e discover the important components of an unfamiliar system.

These technology innovations allow the engineer to work at a faster pace with larger, more

complex systems.

To support this vision we have a simple informal hypothesis. We believe that there exists a set of
metrics that capture properties of a system that can be used by a machine to classify concepts of
that system. In this chapter we show this is true by demonstrating that a classifier can perform

significantly better than random chance. We purposefully do not limit the metrics used in this set

22

of experiments so as to eliminate any bias on our part from interfering with potential unexpected
discovery. Instead we train using all the metrics we had implementations available for at the time,
as given in Section 2.3.

3.2 Methodology

Our approach consists of several steps to generate a classifier that can automatically identify
classes as either core or non-core concepts in a system. Figure 3.1 shows an outline of the steps in

creating a classifier, and Figure 3.2 shows an outline of the process of using the classifier.

1. The analyst must supply a training set in order for a learning algorithm to generate a
classifier. This training set is partially provided by the Manual Classifications as seen in
Figure 3.1.

2. A set of metrics is collected from the subject system. This is shown in Figure 3.1 as System
Metrics Data, which along with Manual Classifications makes up the training set for the
learning algorithm.

3. A learning algorithm is used to produce a classifier from the collected metrics and the
training set provided by the analyst. This classifier is shown in both Figure 3.1 as the output
of the learning algorithm and Figure 3.2 as one of the inputs to the learning algorithm.

4. The classifier is then used to provide classifications for the classes in the system that have not

been manually classified. This is shown in Figure 3.2 as the output of the learning algorithm.

System Metrics

Data
Mg_nuall P Learr.nng Classifier
Classifications Algorithm

Figure 3.1: Creating a classifier.

23

System Metrics
Data

Learning Classification
Algorithm Result

Figure 3.2: Using a classifier.

The result of this process is the complete classification of a system that can be used to filter or
otherwise operate upon class diagrams, source, etc. The following subsections describe the details

of each of these steps.

Manual Classification

Manual classification is the process of capturing expert analyst knowledge in a machine readable
format. This machine readable format can be any representation that shows the mapping between a
class and the given classification. Our toolset uses Java annotations to markup the actual program
source, but an external database could be used in its place. An analyst completing this task must

answer two questions.

1. What is the best class to classify next?

2. What is the classification of this class?

There is potential to provide some automated support for the first question by application of a
heuristic to calculate potential information gain from each of the unclassified classes in the system.
This is discussed in Section 3.2. The second question is a bit harder to answer and mostly depends

on the experience and expertise of the analyst. We discuss potential approaches in Section 3.2.

Selecting the Training Set

There are several possible approaches to the selection of what should be in the training set. The
training set could be selected randomly, it could be selected by greatest difference among
members, or it could be selected based on the least difference among members. We are not limited

24

to these techniques alone, however we focus on these in this work as a starting point for the

exploration of training set selection for this problem.

Techniques for Classification

While it is not possible to give a complete description of the precise decision making process that
occurs when classifying the system, we discuss the general techniques used on the systems we
have classified. If we could describe the process of arriving at these decisions then the problem of

classifying systems would be solved.

First, we can make use of the observation of Ivar Jacobson, in Object-Oriented Software
Engineering [29], that the objects making up a system can be divided into three stereotypes
including entity, control, and boundary. Entity objects are those that are most closely related to the
core object concepts of the domain. Control objects are most closely related to use cases or actions
within that domain. Boundary objects mostly consist of the implementation details we would

classify as non-core concepts in the domain, however there can be exceptions to this heuristic.

Second, we need to recognize that not all software is designed equally. In the ideal case we are
presented with a system where each domain concept is perfectly encapsulated in a single class
representation which has crisp separation of concerns with both other concepts and
implementation details in the system. On the other end of the spectrum we have a single class that
implements everything, meaning this is either a very simple domain or the worst design possibility.
Most systems lie somewhere between the two extremes and we hope closer to the former. In
practice what this means is sometimes classes represent both a core domain concept, and some
implementation level detail we don’t care much about. However, this does not defeat our technique
as the classification system can still identify these concepts mixed with implementation as long as
we provide examples. The important thing we must recognize is that we are not pursuing a
theoretical framework to identify precisely a concept. We are trying to identify the concepts as they

are presented in the imperfect software even if they include some extra implementation details.

25

Metrics Collection

Metrics collection is the process of analyzing program source to calculate the desired metrics. For
the most part metrics are calculated from the AST of the source code. This process can be
completely automated and takes advantage of the rich set of tools that exist in the domain of
compilers. Each metric collected can be written as a set of operations on the AST of a class, or a set

of ASTs for several classes. For more information on the metrics used see Chapter 2 Section 2.3.

Generating a Classifier

A classifier is generated using a machine learning algorithm. Machine learning algorithms vary a
great deal, however for the supervised learning methods we consider, the inputs can be roughly
divided into two sets. First, we have the training set that consists of a set of feature vectors made
up of the metrics we have collected as well as the classification of the given class. Second, we have
some set of parameters to the learning algorithm that varies depending on what algorithm is
selected. Regardless of what learning algorithm is used the inputs plus the algorithm give us a
classifier that may be expressed in various ways by different algorithms but can be used to classify

further examples taken from the system.

Using the Classifier

Once the classifier is generated it can be used to provide a classification for any class for which the
same set of metrics can be calculated. Though this would include classes from other
object-oriented systems, we limit our use of the classifier to classes in the same system as those
used to build the classifier. The primary reasoning behind this limitation is we have not yet found
evidence that the classifier is generalizable across domain boundaries [13].

3.3 Tool Support
We have created a tool set that allows easy markup of the system source with annotations, assisting
in the manual classification step of the process. The tool, which is implemented as an Eclipse [19]
plugin, collects metrics from the source and generates an SVM classifier, and then shows

classification results to the user. Figure 3.3 shows an overview of the tool chain process for

26

generating classifications. The following sections provide a description of the tool features that

support each of the activities in our approach.

Eclipse Machine
Classification
View

Eclipse Metrics
Generator

Manual

Classifications Metrics

Eclipse/
RapidMiner ML
Algorithm

Classification
Decisions

Eclipse
Machine

Classification
View

XRFF
Document

Custom XML

Figure 3.3: Overview of tool chain.

Tool Support for Manual Classification

In order to support the process of manual classification, we have added a simple plugin to Eclipse

that allows annotations to be inserted into Java source files in a single step. The interface consists

27

of two Eclipse actions in a new Eclipse view called the “Machine Classification View”, which can
be seen in Figure 3.4. The first action classifies the currently selected class as a core concept, this
inserts the complete annotation necessary to support the remainder of the classification process.
The second action classifies the currently selected class as a non-core concept. Together these two
actions ease the process of classifying classes by replacing a significant amount of typing with a

simple click. The possibility of introducing mistakes is also lessened a great deal.

Problems|Javadoc| Declaralion|Classificalion and Metrics View[& Machine Classification View &3 l iiiv¥y~=Eo

E Class: Panda.CommandAddAssumption has CORE_CONCEPT classification true by Maurice Carey on 2006/08/28

Figure 3.4: Buttons for quick annotations of source

Tool Support for Metrics Collection

To support generation of the metrics data required for classification we have implemented a
method to automatically calculate measurements using the Abstract Syntax Tree (AST) included
with the Java Development Tool (JDT) plugin in Eclipse. The metrics can be viewed in the new
Eclipse view “Classification and Metrics View” that is shown in Figure 3.5. In addition to viewing
the metrics associated with a class this view also displays the current classification as defined by

the annotation of the class.

Functionality has also been added to allow the export of the classification and metrics to a file.
Currently, there is support for a custom XML format file and a eXtensible attribute-Relation File

Format (XRFF) [45] file. XRFF is an XML version of the Attribute-Relation File Format

28

Problems|Javad0c|Declaralion w’ Classi!lcation and Metrics View =3 | Machine Classification View i i¥=0d

Class: Panda.CommandAddAssumption has CORE_CONCEPT classification true by Maurice Carey on 2006/08/28
Metric: DIT Value: 3

Metric: LCOM Value: 0.5

Metric: LOC Value: 18

Metric: MLOC Value: 7

Metric: NED Value: 1.0

Metric: NOF Value: 1

Metric: NOM Value: 3

Metric: NORM Value: 0

Metric: N5C Value: 0

Metric: N5SF Value: 0

Metric: NSM Value: O

Metric: PAR Value: 0.6666666666666666
Metric: SIX Value: 0.0

Metric: USEDBY Value: 2

Metric: USES Value: 5

Metric: VG Value: 1.0

Metric: WMC Value: 3.0

o] el el el el el el el o] el el el el el o] el el el

Figure 3.5: Interface for showing metrics output

(ARFF) [46], which is designed to capture the data-sets necessary for performing machine learning
experimentation. The export features are not necessary for the methodology defined in our
approach but are designed to support evaluation of the approach through experimentation using

external toolsets.

Tool Support for Generating a Classifier

A classifier can be generated using the Machine Classification View’s “Create SVM Learner”
feature, which runs the SVM machine learning algorithm in order to generate a kernel used for
further classifications. The training set is selected as all classes currently selected in the Eclipse Ul
that have annotations applied. This feature is primarily useful in the current experimental phase of
the tool, where we typically have classified the entire system and want to perform comparisons of
the machine generated classification and the manual classification. Currently, SVM is the only
classifier implemented but the framework supports the addition of other classifiers. At the time of
implementation of this tool we had seen the highest accuracy using SVM hence the decision on
classifier implementation. However, now we know other algorithms can exceed the performance of
SVM. This choice does not effect our ability to evaluate the performance of other machine learning
algorithms using external toolsets, and was primarily implemented to demonstrate feasibility of the

approach.

29

Problems|javadoc| Declaration | Classification and Metrics View | @ Machine Classification View 22 i

Lo%|
Lo%|

Class: Panda.CommandManager has CORE_CONCEPT classification true by Maurice Carey on 2006/08/28
Class: Panda.CommandManager has predicted-core-classification classification true by SVM Learner on Fri Feb 27 09:56:51 MST 2009

M

\&/

Figure 3.6: Interface for generating a classifier

Tool Support for Using the Classifier

The “Machine Classification View” shown in Figure 3.7 displays results of classification output
from the generated classifier. The display consists of both the manual classification (where

available) and the automated classification once a classifier has been generated.

Problems|javadoc| Declararion| Classification and Metrics View[2 Machine Classification View 22 l i ¥ =0

Class: Panda.CommandManager has CORE_CONCEPT classification true by Maurice Carey on 2006/08/28
Class: Panda.CommandManager has predicted-core-classification classification true by SVM Learner on Fri Feb 27 09:56:51 MST 2009

o]
o]

M
&

Figure 3.7: Interface for showing classification output

30

3.4 Evaluation Plan
Statistical Analysis of Accurate Concept Classification

In order to evaluate the accuracy of the classifier, we perform a statistical analysis of the
classification results. We calculate the sample error from the test set using Equation (3.1) [41]
where n is the number of samples in the test set S, f is the function specified by our manual
classification mapping the data point x to one of the two classes, # is the hypothesis generated by
the learning algorithm, and the quantity & (f(x),%(x)) is defined in Equation (3.2). When the
hypothesis disagrees with the manual classification, the sample error increases and 8 (f(x),h(x)) is
1 for any instance x where the predicted classification i(x) does not match the expected
classification f(x). This allows us to calculate the accuracy of predictions made over a single test

set by computing the sample accuracy as in Equation (3.3).

errors(h) = % Y 6(f(x),h(x)) (3.1
xes
1, if f(x) # h(x
8(f(x),h(x)) = : (3.2)

0, otherwise

accuracys(h) = 1—errors(h) (3.3)

We can estimate the true error, the error of the whole population, from the sample error using
Equation (3.4) if we can meet the criteria in Figure 3.8. Here zy is chosen based on the confidence

level of the estimate.

errorg(h) = errors(h) (3.4)

N ZN\/errors(h)(ln— errors(h))

Criteria 1 through 4 of Figure 3.8 are met by the methods of selecting the data set and the size of
the data set. Criterion 5 is more interesting because the dependency on the probability distribution
requires that we test for a significant difference in the distributions of the test samples and the
distribution of the population.

31

n > 30,

the hypothesis commits r errors over the n samples,

the sample, or test set, S contains n data points which are drawn independently of each other,
the sample is chosen independently of the hypothesis, and

the sample is chosen according to the probability distribution Z of the population.

N

Figure 3.8: Criteria for calculation of true error

In order to confirm Criterion 5 we can perform the Kolmogorov-Smirnov hypothesis test on the
population and sample distributions to test for significant difference. We formulate our hypothesis

for this test in Hypothesis 1.

Hypothesis 1. There is no significant difference in the distribution of the population and the

sample data.

The p-value of the Kolmogorov-Smirnov hypothesis test is the statistical significance, and ¢ is the
probability of rejecting the null hypothesis when it is in fact true. We reject the null hypothesis if
the p-value is less than . Rejection of the hypothesis implies that there is a significant difference
in the distribution of the sample and the distribution of the population, which then implies that

Criterion 5 is not met.

Having shown how we can calculate and verify the true error, we really do not need to concern
ourselves with the estimate of true error. We can easily calculate an average accuracy of
hypothesis generated by the learner by running multiple iterations of the same experiment each
with randomly sampled training sets. By doing this we eliminate the need to verify Hypothesis 1
for each experiment. Further, we are far more interested in the average accuracy of a hypothesis
generated from a randomly selected training set than in the estimated accuracy of some specific
hypothesis over some randomly selected test set. This is because of the nature of our approach. We
classify some subset of a system, train on that subset, and generate a classifier or a hypothesis as it
is referred to in the equations above. So, really we are interested in a learning algorithm that on
average generates a hypothesis that is accurate. If we were trying to generate a single hypothesis

that was accurate over more than one system, we would be more interested in the true error. This

32

is the method we use in the experiments that we run to establish accuracy of the approach as shown

later in Section 3.5.

Using a #-test we have a toolset in place to detect situations where, for example, the accuracy is
good, but there is no significant difference between the expected value (or mean) of the sample
distribution and the measured accuracy. This could happen, as an example, in the case where the
distribution of the expected results is 80% negative. The accuracy of the observed results could be
80% just by always guessing negative. The #-test can help to discover these situations by testing

Hypothesis 2.

Hypothesis 2. There is no significant difference in the mean of the sample data and the accuracy

measured on that sample data.

Rejecting Hypothesis 2 is a strong indicator that the accuracy is significantly different from the
distribution of the data. Intuitively, a significant difference in the accuracy and the mean indicates
that the classifier has learned something other than the expected value of the data set.

Threats to Validity

The threats to validity include internal and external factors. The internal factors include errors in
the statistical analysis, and overfitting of the data set. The external factors include manual
classification errors, and inaccurate or poor definition of the concepts in the domain. We describe

each in further detail below.

The primary internal threat to validity that should be addressed is the difficulty in deciding what
constitutes a good result. The difficulty stems from the distribution of classifications where there
are more negatives than positives. In other words there are fewer classes representing concepts
than implementation. It has been shown in Section 3.4 that the accuracy of the prediction can not
be used in isolation, but must be considered along with the #-test analysis of the distributions’
expected value versus the accuracy. This gives a more complete picture of the result showing some
indication as to how significant the accuracy is. The assumption here was that results that had
better than average accuracy along with a significant difference in mean were good results that

support our hypothesis.
33

Overfitting is a threat to validity that effects any machine learning approach, but is only a
secondary threat to the validity of our approach. Overfitting means that results need not generalize
well to other data sets, because the machine has learned a pattern for a specific data set. In other
words if the SVM is overfitted to the data then we could not expect good results from a different
data set classified with the same machine. At this point we are not that concerned about
generalization to other data sets as we have a practical application of the approach in the
classification of a single large system. In future work the potential of overfitting may play a larger
role in the threat to internal validity of our approach if our approach is expected to produce general

results.

The primary external threat to validity is misclassification during the manual classification process.
There are two possible scenarios that result in the introduction of inaccurate analysis into the
system and they are either a logical error or a typographic error on the part of the engineer. We
have worked with enough software engineers to know that each has a different opinion on any
given subject, and these differing opinions would appear in the system as logical errors. However,
this assumes that one of the engineers is “more correct” than the other within some externally
specified system of objective truth that likely does not exist, and this ignores the possibility of
having more than one correct representation of the system. We must concede that any accurate
automated classification is only as accurate as the engineer who trained it, but this really is not
problematic as long as the engineer is consistent and in fact is representative of the results of a
manual classification. The typographic errors that could have been introduced into our data set
were minimized by careful data entry, along with rechecking each result against the class. Though
we believe we have minimized the errors as much as possible we have no way to measure this
using the current process, and as is the case with many machine learning applications we can not

predict the effect of a classification error on the resulting classifier.

A secondary external threat to validity is the design of the software itself. If poorly designed
software systems are introduced it is difficult to predict the results. As an example, imagine a
single concept being represented by two classes. There may be instances where the lack of

cohesion makes sense but it may not be possible to decide where.

34

A third external threat to validity is the selection of the software itself. It might be argued that the
systems we classify here are not representative of software in general, or it may be that these
systems are special in some way that our technique works well enough here but not on other
systems. It is true that the systems we have selected may not represent the use of software in
general, and they are special in the sense that we developed criteria for there selection but this did
not include any sorting based on performance. This is unavoidable as we are looking only at
systems written in Java, that have open source, and that are currently maintained. Our goal is to
select a few systems that have different functionality within that space of currently maintained
open source Java software projects. There are at least two ways to approach this issue. We could
show that the systems we have selected are a reasonably representative sample of the population of
all software. This is logistically impossible given the lack of access to commercial software, or the
metrics from that software. Even given the data and time to process it the scope of the work to
determine in what dimension the measurement should take place is well beyond our current
knowledge of these systems. For example, we might say that we measure all classes in the given
population using the metrics we have defined here then go on to show that the classes in the
systems we have experimented with are representative of those from the population, but then the
question still remains: Is there something special about the relationships of those metrics in the
systems we have chosen? We believe that regardless of how we measure we would arrive at the
same issue of these measures being unsuitable for determining applicability of our approach to any
given system because statistical analysis simply is not the correct tool to mitigate this threat.
Ultimately it is only with a deeper understanding of the underlying reason for the success of our
approach that a formulation of a solution to this threat can be found.

3.5 Preliminary Results

In our initial investigations we have shown that statistically significant accuracy can be achieved.
We form Hypothesis 2 based on the first question in our first goal. We can reject this hypothesis if
a r-test shows a significant difference in the average accuracy of an experiment verses the median
of the data set. Rejection of this hypothesis implies that statistically significant accuracy can be a

achieved and we have an affirmative answer to our question.

35

Experiments

This section shows the results of the ten experiments we have conducted using the approach
outlined in Section 3.4. We do not count experiments 1 and 7 as they are designed to collect the
baseline accuracy given a simple learner that finds the median value of the classification outcome.
The results are summarized in Table 3.1, which shows the average accuracy, the size of the training

set, and the total size of, or number of classes in, the system.

Table 3.1: Summary of Average Accuracy for Preliminary Results

Experiment Average Accuracy | Training Set Size | Classes in System
1 Panda Default 69.39% 35 90
2 Panda KNN 73.54% 35 90
3 Panda SVM 75.65% 35 90
4 Panda ID3 81.09% 35 90
5 Panda ID3 + Ada Boost 78.91% 35 90
6 Panda Vote 73.54% 35 90
7 Scarab Default 69.74% 200 580
8 Scarab KNN 75.18% 200 580
9 Scarab SVM 76.25% 200 580
10 Scarab ID3 81.81% 200 580
11 Scarab ID3 + Ada Boost 83.25% 200 580
12 Scarab Vote 81.18% 200 580

Table 3.2: Results of Hypothesis 2 #-test.

Experiment p-value | Reject Hypothesis 2
Panda KNN < 0.001 Yes
Panda SVM < 0.001 Yes
Panda ID3 < 0.001 Yes
Panda ID3 + Ada Boost | < 0.001 Yes
Panda Vote < 0.001 Yes
Scarab KNN < 0.001 Yes
Scarab SVM < 0.001 Yes
Scarab ID3 < 0.001 Yes
Scarab ID3 + Ada Boost | < 0.001 Yes
Scarab Vote < 0.001 Yes

36

Experiment 1: Panda Default Learner

For this experiment we used the data set collected from Panda using the methods outlined in
Section 3.2 of Chapter 3. The process of classifying Panda took approximately four hours but
given our previous experience with the software this may not be an indicator of the time required
for an engineer looking at the system for the first time. We followed the process outlined in
Section 3.4 of Chapter 3 to split the data into training and test sets, and used the training set to
generate the default classifier used in this experiment. The experiment was repeated 30 times and
the average accuracy was calculated as the mean of the accuracies for each run. The purpose of this

experiment is to establish a baseline value for accuracy by learning the median value of the system.

Results are shown in Table 3.1. Accuracy was 69.39% for this sample, which represents the the
expected value of the data set used in the 7-test analysis shown in Table 3.2.

Experiment 2: Panda KNN

For this experiment we used the data set collected from Panda using the methods outlined in
Section 3.2 of Chapter 3. We followed the process outlined in Section 3.4 of Chapter 3 to split the
data into training and test sets, and used the training set to generate the KNN classifier used in this

experiment.

We used a KNN classifier with a K value of 3 and distance calculation based on simple Euclidean
distance, meaning the classification is based on a majority rules vote of the three closest training
set data points in n dimensional space. Results are shown in Table 3.1. Average accuracy was
73.54% for this sample with 30 runs of the experiment. The #-test analysis (as indicated in

Table 3.2) showed that the accuracy of the test versus the expected value of the results collected
from the software were significantly different at the 99.9% confidence level, in other words the
probability that the accuracy is different than the mean of the distribution is over 99.9%. Precision
and recall for this experiment are shown in Table 3.3.

Experiment 3: Panda SVM

For this experiment we used the data set collected from Panda using the methods outlined in

Section 3.2 of Chapter 3. We followed the process outlined in Section 3.4 of Chapter 3 to split the
37

Table 3.3: Precision and Recall for Panda KNN

actual true

actual false

class precision

predicted true 244 169 59.08%
predicted false 146 701 82.76%
class recall 62.56% 80.57%

Table 3.4: Precision and Recall for Panda SVM

actual true

actual false

class precision

predicted true 131 8 94.24%
predicted false 259 862 76.90%
class recall 33.59% 99.08%

data into training and test sets, and used the training set to generate the SVM classifier used in this
experiment. The purpose of this experiment was to attempt to identify evidence for the hypothesis
using a fairly small system. We wanted to see if it was worth while to commit to the process for a
larger system. The data set for Panda is under 100 elements and while a larger data set would
better capture any generalizable properties of the hypothesis, this data set was simple to obtain and

encouraged further analysis.

We used a SVM classifier based on a radial basis function kernel as in Equation (2.6) of

Section 2.4 with the slack term of C = 0. Results are shown in Table 3.1. Accuracy was 77.55%
for this sample. The #-test analysis (as indicated in Table 3.2) showed that the accuracy of the test
versus the expected value of the results collected from the software were significantly different at
the 99.9% confidence level. These results were encouraging for a data set of this size, prompting
us to proceed with the data collection effort for Scarab. Precision and recall for this experiment are

shown in Table 3.4.

Experiment 4: Panda ID3

For this experiment we used the data set collected from Panda using the methods outlined in
Section 3.2 of Chapter 3. We followed the process outlined in Section 3.4 of Chapter 3 to split the
data into training and test sets, and used the training set to generate the ID3 classifier used in this

experiment.

38

Table 3.5: Precision and Recall for Panda ID3

actual true

actual false

class precision

predicted true 287 119 70.69%
predicted false 103 751 87.94%
class recall 73.59% 86.32%

Table 3.6: Precision and Recall for Panda ID3 with Aba Boost

actual true

actual false

class precision

predicted true 319 289 52.47%
predicted false 71 581 89.11%
class recall 81.79% 66.78%

We used an ID3 classifier with a minimal leaf size of 2 and minimal gain of 0.02. Results are
shown in Table 3.1. Average accuracy was 81.09% for this sample with 30 runs of the experiment.
The #-test analysis (as indicated in Table 3.2) showed that the accuracy of the test versus the
expected value of the results collected from the software were significantly different at the 99.9%

confidence level. Precision and recall for this experiment are shown in Table 3.5.

Experiment 5: Panda ID3 + Ada Boost

For this experiment we used the data set collected from Panda using the methods outlined in
Section 3.2 of Chapter 3. We followed the process outlined in Section 3.4 of Chapter 3 to split the
data into training and test sets, and used the training set to generate the ID3 decision tree with ada

boosting classifier used in this experiment.

We used an ID3 classifier with a minimal leaf size of 2 and minimal gain of 0.02. The Ada Boost
was configured for 10 iterations. Results are shown in Table 3.1. Average accuracy was 78.91%
for this sample with 30 runs of the experiment. The #-test analysis (as indicated in Table 3.2)
showed that the accuracy of the test versus the expected value of the results collected from the
software were significantly different at the 99.9% confidence level. Precision and recall for this

experiment are shown in Table 3.6.

39

Table 3.7: Precision and Recall for Panda Vote

actual true actual false | class precision

predicted true 227 34 86.97%

predicted false 163 836 83.68%
class recall 58.21% 96.09%

Experiment 6: Panda Vote

For this experiment we used the data set collected from Panda using the methods outlined in
Section 3.2 of Chapter 3. We followed the process outlined in Section 3.4 of Chapter 3 to split the
data into training and test sets, and used the training set to generate the SVM, ID3, and KNN

classifiers used in this experiment.

We used all classifiers as configured in previous experiments but with a simple majority rules vote
in order to arrive at the classification value. Results are shown in Table 3.1. Average accuracy was
73.54% for this sample with 30 runs of the experiment. The #-test analysis (as indicated in

Table 3.2) showed that the accuracy of the test versus the expected value of the results collected
from the software were significantly different at the 99.9% confidence level. Precision and recall

for this experiment are shown in Table 3.7.

Experiment 7: Scarab Default Learner

For this experiment we used the data set collected from Scarab using the methods outlined in
Section 3.2 of Chapter 3. Classification of Scarab required significantly more time than classifying
Panda with over 40 hours of effort expended. We followed the process outlined in Section 3.4 of
Chapter 3 to split the data into training and test sets, and used the training set to generate the
default classifier used in this experiment. The experiment was repeated 30 times and the average
accuracy was calculated as the mean of the accuracies for each run. The purpose of this experiment

is to establish a baseline value for accuracy by learning the median value of the system.

Results are shown in Table 3.1. Accuracy was 69.74% for this sample, which represents the the

expected value of the data set used in the 7-test analysis shown in Table 3.2.

40

Table 3.8: Precision and Recall for Scarab KNN

actual true actual false | class precision

predicted true 1299 659 66.34%

predicted false 1341 5401 80.11%
class recall 49.20% 89.13%

Experiment 8: Scarab KNN

For this experiment we used the data set collected from Scarab using the methods outlined in
Section 3.2 of Chapter 3. We followed the process outlined in Section 3.4 of Chapter 3 to split the
data into training and test sets, and used the training set to generate the KNN classifier used in this

experiment.

In this experiment we used a value of k = 3. Results are shown in Table 3.1. The only parameter to
the k-nearest neighbor algorithm is k. Average accuracy was 75.18% for this sample with 30 runs
of the experiment. The -test analysis (as indicated in Table 3.2) showed that the accuracy of the
test versus the expected value of the results collected from the software were significantly different

at the 99.9% confidence level. Precision and recall for this experiment are shown in Table 3.8.

Experiment 9: Scarab SVM

For this experiment we used the data set collected from Scarab. Classification of Scarab required
significantly more time than classifying Panda with over 40 hours of effort expended. This may
have been a function of less familiarity with the system as well as the larger size. The process
outlined in Section 3.4 was used to split the data into training and test sets, generate an SVM
classifier for this experiment, and collect results. The purpose of this experiment was to validate
the approach for a much larger data set than that used in the Panda experiment. Scarab is also a

program that is more representative of systems in actual use.

The SVM classifier used was based on a radial basis function kernel with parameter of C = 0.
Results are shown in Table 3.1. Average accuracy was 72.49% for this sample with 30 runs of the

experiment. The #-test analysis (as indicated in Table 3.2) showed that the accuracy of the test

41

Table 3.9: Precision and Recall for Scarab SVM

actual true

actual false

class precision

predicted true 618 257 70.63%
predicted false 2022 5803 74.16%
class recall 23.41% 95.76%

Table 3.10: Precision and Recall for Scarab ID3

actual true

actual false

class precision

predicted true 1926 634 75.23%
predicted false 714 5426 88.37%
class recall 72.95% 89.54%

versus the expected value of the results collected from the software were significantly different at

the 99.9% confidence level. Precision and recall for this experiment are shown in Table 3.9.

Experiment 10: Scarab ID3

For this experiment we used the data set collected from Scarab using the methods outlined in
Section 3.2 of Chapter 3. We followed the process outlined in Section 3.4 of Chapter 3 to split the
data into training and test sets, and used the training set to generate the ID3 classifier used in this

experiment.

We used an ID3 classifier with a minimal leaf size of 2 and minimal gain of 0.02. Results are
shown in Table 3.1. Average accuracy was 81.81% for this sample with 30 runs of the experiment.
The t-test analysis (as indicated in Table 3.2) showed that the accuracy of the test versus the
expected value of the results collected from the software were significantly different at the 99.9%

confidence level. Precision and recall for this experiment are shown in Table 3.10.

Experiment 11: Scarab ID3 + Ada Boost

For this experiment we used the data set collected from Scarab using the methods outlined in
Section 3.2 of Chapter 3. We followed the process outlined in Section 3.4 of Chapter 3 to split the
data into training and test sets, and used the training set to generate the ID3 decision tree with ada

boosting classifier used in this experiment.

42

Table 3.11: Precision and Recall for Scarab ID3 with Ada Boost

actual true actual false | class precision

predicted true 2400 1413 62.94%

predicted false 240 4647 95.09%
class recall 90.91% 76.68%

We used an ID3 classifier with a minimal leaf size of 2 and minimal gain of 0.02. The Ada Boost
was configured for 10 iterations. Results are shown in Table 3.1. Average accuracy was 83.25%
for this sample with 30 runs of the experiment. The #-test analysis (as indicated in Table 3.2)
showed that the accuracy of the test versus the expected value of the results collected from the
software were significantly different at the 99.9% confidence level. This experiment has the
highest average accuracy of any experiment we have performed. This seems to indicate that ID3
with boosting may be a good candidate for further evaluation. Precision and recall for this

experiment are shown in Table 3.11.

Experiment 12: Scarab Vote

For this experiment we used the data set collected from Scarab using the methods outlined in
Section 3.2 of Chapter 3. We followed the process outlined in Section 3.4 of Chapter 3 to split the
data into training and test sets, and used the training set to generate the SVM, ID3, and KNN

classifiers used in this experiment.

We used all classifiers as configured in previous experiments but with a simple majority rules vote
in order to arrive at the classification value. Results are shown in Table 3.1. Average accuracy was
81.18% for this sample with 30 runs of the experiment. The #-test analysis (as indicated in

Table 3.2) showed that the accuracy of the test versus the expected value of the results collected
from the software were significantly different at the 99.9% confidence level. Precision and recall

for this experiment are shown in Table 3.12.

Discussion of Results.

Looking at the precision and recall we see some patterns emerging. It appears that ID3 is able to
achieve respectable precision and recall results considering we have yet to filter the feature set. It

also seems that applying Ada Boost to ID3 helps to reduce the number of false negatives.
43

Table 3.12: Precision and Recall for Scarab Vote

actual true actual false | class precision

predicted true 1180 383 75.50%

predicted false 1460 5677 79.54%
class recall 44.70% 93.68%

Table 3.2 gives us an indicator of how well the accuracy is measured. A small p-value is an
indicator that there is a significant difference between the accuracy and the mean. Imagine a coin
that is unfairly biased towards heads such that the expected value of heads is 80%. If we were to
play a game where the coin is flipped repeatedly and the player must try to guess the result, the
player would eventually discover the bias and begin guessing heads every round of the game. This
learned strategy would lead to a measured accuracy of the player at about 80%, in other words
there would be no significant difference between the expected value of the experiment and the
accuracy of the guess. In our results we believe that the machine is really making good predictions,
because there is a statistically measurable difference between the expected value of the data set and
the classification guess of the machine for all of the classifiers’ predictions. So the results show
support for rejecting Hypothesis 2. By rejecting Hypothesis 2 we find support for our informal
hypothesis that there exist a set of metrics that capture properties of a system which can be used by
a machine to classify concepts of that system. In the following chapter we determine if it is

practical to use this approach.

44

Chapter 4

Improvements, Practicality, and Validation of the Approach

In this chapter we address improvements that can be made to the approach, the practicality of using
such an approach in the real world, and validation of the approach. We address improvements and
practicality via feature set minimization and training set efficiency. We validate via a study of a
third party applying the approach independently to one of the software systems we have studied.

4.1 Minimizing the Feature Set

The primary motivations for minimizing the feature set is to increase understanding of what the
machine learning algorithms are learning, to simplify the computations involved in the process,

and to potentially increase the accuracy of the classification process.

Feature set selection is used to discover the optimal set of metrics which provide the highest level
of classification accuracy for a problem. While feature set selection is a computationally complex
problem, a solution can be approximated via one of several algorithms including Sequential

Forward Selection [56] also known as forward selection, Sequential Backward Selection [37] also

known as backward elimination, and Evolutionary Selection [51].

The sequential forward selection algorithm works by first selecting the single feature that has the
greatest predictive accuracy of the classification. Next, other features are added one at a time; the
one with the greatest increase is made part of the selection. This process continues until no further
improvements are made. However, additional iterations can be made to ensure that local optima do
not fool the algorithm. In our use of forward selection, we use a minimum 5% increase in relative

performance as a stopping criterion and allow 6 speculative iterations.

The backward elimination algorithm works by starting with the full feature set and eliminating one
feature in each iteration. Each iteration consists of a cross validation on the input data for each
remaining feature resulting in a performance metric. The feature with the lowest decrease in

performance is then eliminated. This process continues until no further features can be eliminated

45

without a specified decrease in performance. Similar to forward selection there is also a specified
number of additional iterations that can help to reduce local optima. In our use of backward
elimination, we selected a 10% decrease in relative performance as a stopping criterion and allow

6 speculative iterations.

The evolutionary selection algorithm generates a population of individuals each with a feature
switched on with a given probability. Once initialized, the algorithm mutates each individual in the
population by setting used features to unused and vice versa with a given mutation probability
resulting in an increase to the population. After the mutation step, the algorithm randomly selects
two individuals from the population and performs crossover with the given crossover probability.
Finally, each individual in the population is conceptually mapped to a section of a roulette wheel
proportional to the individual’s fitness and the given population size. Then individuals are drawn at
random. As long as fitness improves from one generation to the next we loop back to the mutation
step, unless we exceed a maximum number of generations. In our experiments, we use a
population size of 5, a feature initialization probability of 0.5, a mutation probability of 1/n where
n is the number of attributes, a crossover probability of 0.5, and a maximum number of generations

of 60.

Results of Feature Set Selection

To determine the set of features with the highest contribution to performance in this learning
problem we perform several rounds of feature selection. We use multiple rounds, because the
feature selection algorithms are heuristics. By eliminating the features that contribute the least to
performance after each round we are able to find a better heuristic solution in the next round.
Repeating the accuracy experiments described in Section 3.5 may help to verify that this
assumption is true; however it is possible given the heuristic nature of these algorithms that an
important feature is eliminated. Given the aggressive nature of our evolutionary algorithm along

with validation in Section 4.1 this appears to be an exceedingly rare possibility.

We begin our analysis of the first round of selection by looking at the metrics VG, and WMC in
Table 4.1 on page 47, Table 4.2 on page 48, and Table 4.3 on page 49. VG was not found to

contribute to increased accuracy by any of the selection algorithms used with any of the machine
46

learning methods. Therefore we eliminate VG from consideration. VG is related to WMC as it is
calculated as WMC averaged over the number of methods in the class. WMC is selected only by
the more aggressive evolutionary selection algorithm for use with ID3, so is also eliminated in the
first round of selection.

Table 4.1: First Round of Forward Selection

Metric KNN | SVM | ID3
DIT 1 1 1
LCOM 0 1 0
LOC 0 0 0
VG 0 0 0
MLOC 0 0 0
NBD 0 0 0
NOF 0 0 0
NOM 1 0 0
NORM 0 0 1
PARC 0 0 0
NSF 0 0 1
NSM 0 0 0
NSC 0 0 0
SIX 0 1 0
USEDBY 1 1 1
USES 0 0 0
WMC 0 0 0

Next we look at several other metrics besides WMC that were only selected in one instance of the
feature selection runs. These include NBD, NOF, NORM, NSF, and NSC. There is little evidence
to suggest any of the metrics selected in individual experimental instances have significant

contribution to performance. Therefore we eliminate these metrics from consideration as well.

We begin the second round of selection with the ten remaining metrics listed in Table 4.4 on

page 49, Table 4.5 on page 50, and Table 4.6 on page 50. We repeat the experiments in the first
round but the metrics previously eliminated have been filtered from the input. For this round we
eliminate any metric that is not selected by at least one experimental instance. Metrics not found to

contribute to accuracy in this round are LOC, NOM, and NSM.

47

Table 4.2: First Round of Backward Elimination

Metric KNN | SVM | ID3
DIT 0 1 1
LCOM 0 0 0
LOC 1 0 0
VG 0 0 0
MLOC 0 0 0
NBD 0 0 0
NOF 0 0 0
NOM 0 0 0
NORM 0 0 0
PARC 0 0 0
NSF 0 0 0
NSM 0 0 0
NSC 0 0 0
SIX 0 0 0
USEDBY 1 1 1
USES 0 0 0
WMC 0 0 0

We begin the third round of selection with the seven metrics listed in Table 4.7 on page 51. For this
round we only perform the evolutionary selection based experiments as the previous forward
selection and backward elimination showed little difference from round one to round two. From

the results we see DIT, LCOM, PARC, and USEDBY are selected for all three learning algorithms.

Validation of Feature Set Selection

In order to validate our feature selection results we repeat the experiments performed in
Section 3.5 with the input metrics filtered to remove those metrics eliminated by our feature
selection criteria. The expectation is that our accuracy results should either stay the same or

improve over previous results.

We can see in Table 4.8 that the accuracy has improved significantly over the results prior to
feature selection. The repeated experiments are marked with FS to signify the input metrics have
been filtered to include only those metrics identified by our feature selection process. No other

aspect of the experiment was changed. Default experiments are not repeated for the filtered

48

Table 4.3: First Round of Evolutionary Selection

Metric KNN | SVM | ID3
DIT 1 1 1
LCOM 1 0 0
LOC 0 1 1
VG 0 0 0
MLOC 0 1 1
NBD 1 0 0
NOF 0 1 0
NOM 0 1 0
NORM 0 0 0
PARC 1 1 1
NSF 0 0 0
NSM 1 1 1
NSC 1 0 0
SIX 0 0 1
USEDBY 1 1 1
USES 1 1 0
WMC 0 0 1

Table 4.4: Second Round of Forward Selection

Metric KNN | SVM | ID3
DIT 1 1 1
LCOM 0 0 0
LOC 0 0 0
MLOC 0 0 0
NOM 0 0 0
PARC 0 0 0
NSM 0 0 0
SIX 0 0 0
USEDBY 1 1 1
USES 0 0 0

features as these experiments do not depend on the input metrics and produce the same results.

They are included here only for comparison.

In Table 4.9 the difference in precision and recall are shown between the initial experiments as
discussed in Section 3.5 and the experiments performed here after filtering based on feature
selection. Complete confusion matrices for each post feature selection experiment performed are

49

Table 4.5: Second Round of Backward Elimination

Metric KNN | SVM | ID3
DIT 1 0 0
LCOM 0 0 0
LOC 0 0 0
MLOC 0 0 0
NOM 0 0 0
PARC 0 0 0
NSM 0 0 0
SIX 0 0 0
USEDBY 1 1 1
USES 0 0 0

Table 4.6: Second Round of Evolutionary Selection

Metric KNN | SVM | ID3
DIT 1 1 1
LCOM 1 1 0
LOC 0 0 0
MLOC 0 1 1
NOM 0 0 0
PARC 1 1 0
NSM 0 0 0
SIX 0 0 1
USEDBY 1 1 1
USES 0 1 0

found in Appendix A. There are a few interesting trends. First, SVM increased in recall of
concepts significantly for both Panda and Scarab. Second, ID3 with Ada Boost has better recall of
concepts prior to feature selection. Third, KNN also increase in recall of concepts for both Panda
and Scarab. Finally, ID3 is nearly identical in concept recall performance after feature selection,
most of the performance increase seen in Table 4.8 was based on increased non-concept recall.

4.2 Training Set Efficiency and Size

We examine training set efficiency and size in order to determine if adequate accuracy can be
achieved with a reasonably sized training set. The terms adequate and reasonable are obviously

vague. An issue exists in defining adequate accuracy and a reasonably sized training set since these

50

Table 4.7: Third Round of Evolutionary Selection

Metric KNN | SVM | ID3
DIT 1 1 1
LCOM 1 1 1
MLOC 0 0 1
PARC 1 1 1
SIX 1 0 0
USEDBY 1 1 1
USES 0 1 0

are both very dependent on the needs and opinions of the user of the approach. For many,
manually classifying 10% of a large system with the expectation of producing a classifier that can
predict concepts with 80 to 90% accuracy is reasonable. For others it may not be. This largely

depends on why concepts are being discovered.

In this section rather than trying to determine the needs of an individual user of this technique we
instead describe the accuracy that can be expected using this approach for varying sizes of training
sets. This in turn enables the user of this approach to determine if it is adequate for their needs. We
also examine different techniques for picking training sets. We compare the accuracy obtained for
each of three different selection techniques on varying sized training sets. We treat different

learning algorithms in hopes of identifying any failures or advantages of particular algorithms.

Learning Curve Results

A learning curve shows the relationship between predictive performance and learning effort as
measured by the size of the training set [15]. By examining the learning curves we can determine
what training set size is needed to obtain a given performance level, what algorithms are best
suited to the problem, and which method of training set selection is most effective. We present the
learning curves here grouped in each of the figures by dataset and learning algorithm. We use
diamonds to represent points on the learning curve for the random training set selection method,

we use circles for the Kennard-Stone method, and triangles for the reverse Kennard-Stone method.

Figure 4.1 shows the learning curves for the KNN algorithm executed on the Panda dataset for

each of the training set selection methods. We can see the challenges of a very small dataset in this

51

Table 4.8: Summary of Average Accuracy for Preliminary versus Feature Selection Results

Experiment Average Accuracy | Training Set Size | Classes in System
1 Panda Default 69.39% 35 90
2 Panda KNN 73.54% 35 90
2-FS Panda KNN 88.41% 35 90
3 Panda SVM 75.65% 35 90
3-FS Panda SVM 89.29% 35 90
4 Panda ID3 81.09% 35 90
4-FS Panda ID3 84.21% 35 90
5 Panda ID3 + Ada Boost 78.91% 35 90
5-FS Panda ID3 + Ada Boost 82.86% 35 90
6 Panda Vote 73.54% 35 90
6-FS Panda Vote 87.75% 35 90
7 Scarab Default 69.74% 200 580
8 Scarab KNN 75.18% 200 580
8-FS Scarab KNN 88.37% 200 580
9 Scarab SVM 76.25% 200 580
9-FS Scarab SVM 86.29% 200 580
10 Scarab ID3 81.81% 200 580
10-FS Scarab ID3 84.52% 200 580
11 Scarab ID3 + Ada Boost 83.25% 200 580
11-FS Scarab ID3 + Ada Boost 84.40% 200 580
12 Scarab Vote 81.18% 200 580
12-FS Scarab Vote 87.75% 200 580

figure. With 90 data points in the complete system the first four data points in the figure represent
training sets of size 4, 6, 9, and 11 respectively. When we move to the fifth data point for random
selection representing a training set of size 13 we see a drop in performance. This is due to the
relatively small number of data points in the training set. The probability of a single data point
being added to the training set having an adverse effect on performance is higher since the single
data point represents a greater portion of the addition to the set. This effect is lessened as the
training set grows to a larger portion of the complete system. Looking at Kennard-Stone we see
that we never achieve accuracy greater than that expected of a default learner. Reverse
Kennard-Stone does eventually achieve accuracy better than that expected of a default learner but

it begins with abysmal results, and seems to be even more affected by the small data set size than

52

Table 4.9: Post Feature Selection Precision and Recall

Recall Precision
true true predicted predicted
Experiment Concept | Non-Concept | Concept | Non-Concept

2 Panda KNN 62.56% 80.57% 59.08% 82.76%

2-FS Panda KNN 80.26% 92.07% 81.94% 91.23%

3 Panda SVM 33.59% 99.08% 94.24% 76.90%

3-FS Panda SVM 71.54% 97.24% 92.08% 88.40%

4 Panda ID3 73.59% 86.32% 70.69% 87.94%

4-FS Panda ID3 73.33% 89.08% 75.07% 88.17%

5 Panda ID3 + Ada Boost 81.79% 66.78% 52.47% 89.11%
5-FS Panda ID3 + Ada Boost | 73.85% 86.90% 71.64% 88.11%
6 Panda Vote 58.21% 96.09% 86.97% 83.68%

6-FS Panda Vote 78.21% 94.83% 87.14% 90.66%

8 Scarab KNN 49.20% 89.13% 66.34% 80.11%

8-FS Scarab KNN 80.72% 91.70% 80.90% 91.61%

9 Scarab SVM 23.41% 95.76% 70.63% 74.16%

9-FS Scarab SVM 71.06% 92.92% 81.39% 88.05%

10 Scarab ID3 72.95% 89.54% 75.23% 88.37%

10-FS Scarab ID3 72.23% 89.87% 75.64% 88.14%

11 Scarab ID3 + Ada Boost 90.91% 76.68% 62.94% 95.09%
11-FS Scarab ID3 + Ada Boost | 75.76% 88.17% 73.61% 89.30%
12 Scarab Vote 44.70% 93.68% 75.50% 79.54%
12-FS Scarab Vote 76.52% 92.64% 81.91% 90.05%

random selection since there are three points where additional learning results in reduced

performance.

Figure 4.2 shows the learning curves for the SVM algorithm executed on the Panda dataset for
each of the training set selection methods. The challenges of a small data set are still present in this
case. Comparing to Figure 4.1, there are some similarities with the performances of each of the
different training set selection types though they appear to reach the higher levels of accuracy only
after larger training sets. For example the random selection method eventually reaches the same

steady state accuracy level but only after seeing about 17% more of the system.

Figure 4.3 shows the learning curves for the ID3 numerical algorithm executed on the Panda
dataset for each of the training set selection methods. The learning curves illustrate an issue with
the ID3 numerical algorithm applied to this problem. Notice that the performance tends to vary a

great deal from one training set size to another. This effect is created by two properties of the ID3

53

Accuracy

Accuracy

091

0.8T1

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Random

Reverse Kennard-Stone
A A A A

Kennard-Stone

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Training Set Size (Percentage of System Classified)

Figure 4.1: Learning Curve for KNN on Panda

Random

Reverse Kennard-Stone

Kennard-Stone

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Training Set Size (Percentage of System Classified)

Figure 4.2: Learning Curve for SVM on Panda

54

097

0.81

0.71

06T

Kennard-Stone
051

Accuracy

0.4r1

Reverse Kennard-Stone

031

0.21

0.1t

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Training Set Size (Percentage of System Classified)

Figure 4.3: Learning Curve for ID3 on Panda

numerical algorithm. First, ID3 is susceptible to over-fitting of training data as it creates a perfect
classifier for the training set [47, 41]. Second, the original ID3 algorithm was designed for discrete
data and has been adapted to continuous numerical data via use of a binning technique. This
binning technique when used on the incomplete data present in the training set produces bins that
could be said to have a certain noise level. To illustrate, consider a simple example of one attribute
with values 1.1, 1.2, and 1.3 where 1.1 and 1.2 are classified in the A class and 1.3 is in the B class.
Our ID3 numerical algorithm chooses some value c that divides the examples into appropriate
classes. Let us assume this value is simply a linear interpolation between values on a class
boundary, so 1.25 is selected. We now have two leaf nodes in our decision tree, one node says
anything with value less than 1.25 is class A, and one says anything greater than 1.25 is class B.
Now if we have an example in our test set which is class B but has an attribute value of 1.22 we
have a classification error. This error is based on noise in the system introduced by the binning
algorithm. It is also interesting that by introducing additional values into the training set the cut

point of the classification boundary can move about the test point such that the classifier becomes

55

more or less accurate for that sample based on the training set. Quinlan [47] examined the
consequences of noise on attributes and found that if noise is present on all attributes, as it would
be in our problem based on binning of continuous values, the degradation in classification
performance can be up to 30%. Given the small size of the Panda data set, we cannot say for
certain that this is the cause of the variances in the learning curve, however if we encounter similar
variances in the larger Scarab data set we would be inclined to believe that ID3 is not an

appropriate algorithm for this problem.

097

0.8T
Random

0.71

06T

051 Kennard-Stone

Accuracy

0471

0371

Reverse Kennard-Stone

0.21

017

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Training Set Size (Percentage of System Classified)

Figure 4.4: Learning Curve for Vote on Panda

Figure 4.4 shows the learning curves for the Vote algorithm executed on the Panda dataset for each
of the training set selection methods. This is interesting because basically we are averaging the
results of KNN, SVM, and ID3 via a majority rules vote. This is reflected in the learning curves
which display an averaging of the properties from the learning curves of each of the individual
algorithms. What is clear in this figure is that random selection is the most consistently performing

selection method for the Panda data set for the learning algorithms tested.

56

Kennard-Stone

0971

Random

N N " N " AA/A—k—A——/

Reverse Kennard-Stone

0.871

0.71

06T

051

Accuracy

0471

0371

021

0.1t

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Training Set Size (Percentage of System Classified)
Figure 4.5: Learning Curve for KNN on Scarab

Figure 4.5 shows the learning curves for the KNN algorithm executed on the Scarab dataset for
each of the training set selection methods. Our analysis of Panda is obviously limited due to the
small data set; however here we see clear patterns emerging. The initial data point with 5% of the
system classified, which is a training set with 29 data points, shows very poor results for
Kennard-Stone. After the first data point Kennard-Stone nearly matches the random selection
method until the training set grows to 174 data points at 30% of the system classified then it

surpasses the random selection method.

Figure 4.6 shows the learning curves for the SVM algorithm executed on the Scarab dataset for
each of the training set selection methods. As with the Panda training set, there is a similarity to
the results for KNN in Figure 4.5. It is interesting that the highest performance levels are below
those reached in the KNN experiments. This seems to indicate that the additional power of the

SVM algorithm is not being put to good use with this particular problem.

Figure 4.7 shows the learning curves for the ID3 numerical algorithm executed on the Scarab

dataset for each of the training set selection methods. We again encounter the swinging variances
57

Accuracy

Accuracy

Random

081 Kennard-Stone

0.71

Reverse Kennard-Stone

0571

0.4r1

0.1t

0 L L L L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Training Set Size (Percentage of System Classified)

Figure 4.6: Learning Curve for SVM on Scarab

Kennard-Stone

0971

0.85T1

0.8 1

0.75 1
Random

0.551

Reverse Kennard-Stone

04571

0.4 L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Training Set Size (Percentage of System Classified)

Figure 4.7: Learning Curve for ID3 on Scarab

58

in the learning curves generated for the ID3 numerical algorithm on the Scarab data set. This
confirms our suspicion that the numerical properties of the ID3 numerical algorithm make it
inappropriate for this particular problem due to the continuous numerical data.

17

Kennard-Stone

0971

0.81

0.77
Reverse Kennard-Stone

06T

057

Accuracy

0.4r1

0371

0.21

0.1t

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Training Set Size (Percentage of System Classified)

Figure 4.8: Learning Curve for Vote on Scarab

Figure 4.8 shows the learning curves for the Vote algorithm executed on the Scarab dataset for
each of the training set selection methods. As with the Panda data set we are averaging the results
of KNN, SVM, and ID3 via a majority rules vote. However, it is interesting here that now the
Kennard-Stone selection method achieves the highest performance levels on all but four data
points.

Recommendations Based on Learning Curves

For training set selection Reverse Kennard-Stone may be interesting for experimental comparison
but overall results show that it is an ineffective method of optimizing training set selection. Indeed,
random selection produces learning curves with less variance across training set sizes. In practice
this translates to greater consistency than the other selection methods. Based on the work of Wu et.

al. [57] we know that it is possible to find optimal training set selectors for some data sets.
59

Kennard-Stone exceeds the performance of random selection on the Scarab data set. However,

there is not enough evidence to determine if this would be the case in general for any given data set.

Based on the learning curves both KNN and SVM seem to be appropriate learning methods for this
problem. KNN does have a clear advantage in the latter part of the Kennard-Stone learning curve
for Scarab, and maintains a slight performance advantage with random selection as well. Given the
variances encountered in the Kennard-Stone learning curves it is difficult to make a
recommendation based on that data. Since KNN is simpler to implement it may have an advantage
there but SVM should not be ignored as there may be potential for further improvements. ID3 with
numerical binning is not a good choice given the variance of the learning curve as there is no way

to determine if we have trained with enough data to ensure adequate performance for our needs.

The performance of an appropriate learning algorithm given a randomly selected training set size
of between 7.5% and 10% on a sufficiently large system is not dramatically improved by further
classifying the system. We can see this is true for Scarab when using either KNN or SVM.

4.3 External Validation

In order to validate the approach we want to determine how another engineer would classify a
system, and compare his classification to our own. To accomplish this we asked a student in our
computer science program to examine the Panda system and provide a classification. We explained
that core concepts are those concepts that describe the domain of the system, and we simply want
to identify the classes which are representative of core concepts. We did not answer questions
about the software but did give a brief demo using the software. We also gave a brief introduction
to the domain of the software. Panda is a proof assistant, and the student was not familiar with
logical proofs of this form. The student was aware that we were attempting to evaluate our

approach but did not have access to our existing classification.

Comparing the results of our student’s classification versus our classification of Panda, there were
12 classifications on which we do not agree out of the 90 classes in the system. We examine each

of the differences to determine why the discrepancies exist.

60

The first set of discrepancies exist in four classes called AbstractCommand, CommandManager,
CommandRedo, and CommandUndo. We originally classified these as concepts, however our
student classified them as non-concepts. The Panda system implements a large set of classes that
represent use cases a user would want to execute in the logical proof domain. Most of these classes
represent domain specific use cases and so are clearly concepts. However, CommandManager
manages a command history. This is a convenience for the user to allow undo and redo of
commands previously executed, but are not concepts in the logical proof domain. The
CommandRedo and CommandUndo classes represent the redo and undo use cases that are not
concepts in the logical proof domain. The AbstractCommand class is the base class for all
commands, however it does not include any domain specific knowledge and therefore is not a
concept in the logical proof domain. So, in this case we made a mistake in our initial classification

that our student did not.

The second set of discrepancies exist in seven classes called FormulaPanel, InsertionPoint,
PanelGetAssumptions, PanelGetConclusion, PanelPromptForLine, PanelSelectCommand, and
PanelWhichEquation. Each of these classes model GUI based user interactions with the logical
proof domain, but do not contain domain specific knowledge. We did not classify these as concepts
though our student did. Our student made a mistake in this classification that we think is related to
the use of domain terms in the class names. A similar class in this set PanelGetInputLine does not
include domain terminology in the name and was correctly classified by the student as a

non-concept.

The final discrepancy is the scanner class. This class is an implementation of a tokenizer for the

Panda specific logical proof language. Our student mistakenly classified this as a domain concept.

Overall there was strong agreement between our classification and our student’s classification. In
fact 86.6% of our responses where the same. Interestingly enough this is on the order of the same
performance as the classifiers we have built. In other words our classifiers are accurate to the same

level as two engineers’ opinions of the correct classification.

Table 4.10 on page 62 shows the results of correcting the data set classifications on

AbstractCommand, CommandManager, CommandRedo, and CommandUndo. We see our original
61

Table 4.10: Summary of Average Accuracy for Preliminary versus Corrected Panda Results

Experiment Average Accuracy | Training Set Size | Classes in System
1 Panda Default 69.39% 35 90
1-FSC Panda Default 73.53% 35 90
2 Panda KNN 73.54% 35 90
2-FS Panda KNN 88.41% 35 90
2-FSC Panda KNN 94.29% 35 90
3 Panda SVM 75.65% 35 90
3-FS Panda SVM 89.29% 35 90
3-FSC Panda SVM 93.49% 35 90
4 Panda ID3 81.09% 35 90
4-FS Panda ID3 84.21% 35 90
4-FSC Panda ID3 88.57% 35 90
5 Panda ID3 + Ada Boost 78.91% 35 90
5-FS Panda ID3 + Ada Boost 82.86% 35 90
5-FSC Panda ID3 + Ada Boost 88.49% 35 90
6 Panda Vote 73.54% 35 90
6-FS Panda Vote 87.75% 35 90
6-FSC Panda Vote 95.24% 35 90

preliminary results versus the results with feature selection and correction of the classification
errors found in external validation marked with FSC. We have also included the results after
feature selection, marked with FS, for comparison. For KNN and SVM the feature selection had
more affect on the accuracy than the correction of classification errors. The ID3 numerical based
experiments were more affected by the error corrections than by the feature selection though the
increases in accuracy were on the same order as those noticed for KNN and SVM so we are seeing

that they were less improved by feature selection not more improved by error correction.

In Table 4.11 the difference in precision and recall are shown between the initial experiments as
discussed in Section 3.5, the feature selection experiments, and the validation experiments
performed after correction of the Panda data set. The complete confusion matrices for each post
validation experiment performed are found in Appendix B. If any doubts remain regarding the
ability of a machine to solve the concept classification problem the results here should eliminate

them. KNN has over 90% recall on both the concept and non-concept classes. While the results for

62

Table 4.11: Post Validation Precision and Recall

Recall Precision
true true predicted predicted
Experiment Concept | Non-Concept | Concept | Non-Concept

2 Panda KNN 62.56% 80.57% 59.08% 82.76%

2-FS Panda KNN 80.26% 92.07% 81.94% 91.23%
2-FSC Panda KNN 91.82% 95.16% 87.07% 97.04%

3 Panda SVM 33.59% 99.08% 94.24% 76.90%

3-FS Panda SVM 71.54% 97.24% 92.08% 88.40%
3-FSC Panda SVM 79.39% 98.49% 94.93% 93.09%

4 Panda ID3 73.59% 86.32% 70.69% 87.94%

4-FS Panda ID3 73.33% 89.08% 75.07% 88.17%
4-FSC Panda ID3 76.36% 92.90% 79.25% 91.72%

5 Panda ID3 + Ada Boost 81.79% 66.78% 52.47% 89.11%
5-FS Panda ID3 + Ada Boost | 73.85% 86.90% 71.64% 88.11%
5-FSC Panda ID3 + Ada Boost | 82.73% 90.54% 75.62% 93.66%
6 Panda Vote 58.21% 96.09% 86.97% 83.68%

6-FS Panda Vote 78.21% 94.83% 87.14% 90.66%
6-FSC Panda Vote 88.48% 97.63% 92.99% 95.98%

KNN are the most accurate, each of the other machine learning algorithms has also performed well

enough to support the hypothesis.

This set of experiments provides further evidence to support our hypothesis that we have identified
a set of metrics that serve to detect core domain concepts in source code. Looking just at KNN we

see an improvement that averaged 5.29 more correct classifications based on only 4 corrections

implying that the algorithm has learned from those corrections.

63

Chapter 5

Limits of Approach

In this chapter we discuss the limits of the approach with respect to composite concepts. We
identify the types of composite concepts and discuss the limits of our approach with each type.

5.1 Composite Concepts

We define a composite concept as a domain concept from an idealized representation of the
domain for which there is no one-to-one mapping to a class in the software system. We consider
two possible scenarios based on one-to-many relationships. First, we have the situation where
multiple concepts map to one class. Second, we have the situation where one concept maps to

multiple classes.

Separation of concerns is a software design principle that states each module of a software system
should address a separate concern [17]. We might think of multiple concepts mapping to one class
as not having correct separation of concerns. For example, when modeling the concept of a car that
has a relationship with the concept of an engine, our software system might have been
implemented as a single car class perhaps we are modeling traffic patterns or the movement of
people. Perhaps our car class has a method that increases revs via acceleration for example,
however this is a method that could be implemented quite differently if further details of the car
were modeled. Given the level of detail needed to implement the software requirements there is no
need to implement an engine class. Consider also the example of fees calculated for a shopping
cart application. Possible fees include taxes and shipping charges. This shopping cart application
has no knowledge of either taxes or shipping charges but instead only the abstract concept of a fee.
A separate external software system is responsible for the calculation of fees and provides an
interface to the shopping cart application to retrieve fees for a given cart. Each fee consists of an
amount in a given currency and a label to present to the shopping cart user. So in this example we
have a domain that includes concepts of taxes and shipping charges but these concepts do not exist

in the shopping cart application. Instead there is only the abstract concept of a fee. We call this a

64

type 1 composite concept and we expect to encounter these whenever software is modeling an

abstraction.

The situation where one concept maps to multiple classes would primarily appear to be a
theoretical construct as we have not actually witnessed such entities in the real world. The closest
situation observed is two classes that are very tightly coupled. However, even in this case it does
not appear that a single concept is being represented by the combination but rather each class
represents two distinct yet tightly bound concepts. However, for thoroughness we show that it is
computationally difficult to identify such entities in the general case. If more specific information
were known about what these entities look like if they do exist in real world implementations then
it may be possible to optimize identification based on the constraints found. We call this a type 2

composite concept.

The idea of a composite concept is based on the assumptions that there exists some idealized
domain for which there should exist some one-to-one mapping to the implementation of those
concepts, and that it is possible to incorrectly map the domain to the implementation. This seems
to be inaccurate in at least one respect. First, we are working to identify a domain representation
from a given implementation; this is like drawing a map from a given territory. The idea that the
domain representation we recover from software is incorrect compared to some idealized domain
is like saying that the map we have created by measuring the territory is incorrect because it does
not appear as we expected prior to measuring. In this case we are simply discovering that the
territory is not what we expected. Second, as Albert Korzybski said “the map is not the

territory” [33] meaning that the model is not the thing, or in our case the domain is not the
implementation. We should not forget that the domain, regardless of how formally it is defined, is
simply a model of reality and that the reality being modeled is the software implementation. The
difficulty of refining a model to accurately depict the thing being modeled is humorously
addressed by a character of Lewis Carroll’s in saying “we now use the country itself, as its own
map, and I assure you it does nearly as well.” [14] Since our approach bases the model on the
reality encountered in implemented software we expect it to do “nearly as well” as any model

derived prior to understanding the reality of the system. So from the perspective of formal

65

modeling we have identified limits to this approach that we might like to overcome. However,
from a pragmatic perspective interested in modeling the reality of the software as implemented we
have identified an important property of the approach in that it can only detect the structures
present in the software and not fantasies that exist only in the minds of the observer.

5.2 Type 1 Composite Concepts

Consider a thought experiment based on a graph where each vertex is a class in the system, and
each edge is a relationship between classes. Then very little information is lost in the translation of
the ideal representation to the system when mapping two concepts to one class. The classification
approach we use is primarily dependent on dependency relationships between classes as
represented by the USES and USED-BY metrics. In an ideal representation of the domain
concepts we would see two vertices representing the two concepts in question but in our
implementation we find only one vertex representing both concepts. Consider the transformation
necessary to merge two vertices from our ideal representation to a single vertex. The effect on the
edges in the system is limited to removing edges between the two vertices, and replacing the the
two ideal representations in all other relationships with the new composite concept. Any edges
representing dependencies outside the two affected vertices remain such that we have merged the
dependencies of the two vertices into a single new vertex. This represents little loss of information
in the metrics we are observing. This, along with a few examples, could form an argument for
explaining why our system is able to detect type 1 composite concepts. However, we should first

examine the idea of the ideal representation.

We consider that there is no ideal representation that works for every situation in every system we
are modeling. Looking at our car example above we might say that a single class representation is
equally valid if all we are concerned about in our system is transportation of a few people. In this
case we could easily argue that the correct representation of the car at the domain level abstracts
away the concept of engine, tires, etc. Let us not forget that the domain we are trying to recover is
the model which the developers of our software were working to implement. We can conclude that

every concept in our domain is some level of abstraction of some other composition of concepts

66

that we have chosen to ignore in our particular domain, and therefor every domain concept we are

detecting in our experiments is at some level of abstraction a type 1 composite concept.

So we have the question “Is our approach limited such that these type 1 composite concepts are not
recognized or are more difficult to recognize?” The answer is if these limits to our approach
existed we would not find accurate results for any class since we have shown that any particular
concept can be broken down as a composite concept at a different level of abstraction.

5.3 Type 2 Composite Concepts

We formally define a composition of classes as a type 2 composite concept if there exists a
relationship between two or more classes in the system S such that together they form a domain
concept but individually they have no corresponding domain concept. Given this mapping we
could define a functional notation f.(P;) which maps the partition P, C S to boolean values, such
that if all the classes in P, form a composite concept then f. is 1, and f. is O otherwise. Let us
assume that we can use this mapping to develop a classifier classifier(P;) to return a pair
(label,confidence). Given this classifier we would like to classify the complete system such that
for every class and partition of classes forming a composite concept we have minimized the error

in the system, or maximized the confidence.

Naively, we can construct a brute force implementation of this algorithm which looks at all of the
combinations of classes, computes the confidence on those classifications, and eventually gives us
the highest confidence solution. However, ideally we would be able to construct a solution that
runs in polynomial time so that we might solve reasonably large problems of this nature.

Unfortunately we are unable to construct such an algorithm as this problem is NP-complete.

Definition 2 (BIN-PACK algorithm). BIN-PACK(A,V) calculates the number of bins B of size V

needed to hold the A = ay, ..., a, items, also finds the B-partitioning of S = 1, ..., n that results.

Definition 3 (Algorithm for optimal partitioning of concept composition).
COMPOSITE-CONCEPT(S,,k) calculates the partitioning of S such that of those partitions is

less than or equal to the constant k. Each element of S must appear in one and only one partition.

67

Theorem 1. COMPOSITE-CONCEPT is in NP.

Proof. The following is a verifier V for COMPOSITE-CONCEPT.

V =“On input ((S, @,k), Py, ...,P,):

1. Test whether @(P;) < k for each P, C S.

2. Test whether PxﬂPy =0 forx,y € {0,....,n} Ax#y.
n

3. Test whether U P =S.

i=0
4. If all three pass, accept; otherwise, reject.”

Theorem 2. COMPOSITE-CONCEPT is NP-complete.

Proof. We already know that COMPOSITE-CONCEPT € NP, so we now show that
BIN-PACK <p COMPOSITE-CONCEPT. In other words BIN-PACK is polynomial time reducible to

COMPOSITE-CONCEPT.
Given BIN-PACK(A,v) we find a mapping to COMPOSITE-CONCEPT(S, @, k).

Let us define S, the set of classes, given A, the set of items in our BIN-PACK problem, as follows:

S={f()lx 4} 5.1)

or equivalently:
S=f(A) (5.2)

where f(x) is a function mapping the items in A to classes in S, and f~!(x) is the inverse. The set S

is easily computed given A in polynomial time on the order of O(n) where n is the cardinality of A.

Let us define w as follows:

oP)=Y) (5.3)

xeP;

which states that @ has the value of the sum of the size values for each item in the partition. The

function w is independent of the input to BIN-PACK and so this step of the transformation is

68

computed in constant time, because no part of the transformation regarding @ will change based

on input.

Let us define k = v. This assignment is a constant time step in the transformation of BIN-PACK to

COMPOSITE-CONCEPT.

Now executing an algorithm that solves COMPOSITE-CONCEPT results in a partitioning of S such
that @ for each partition is less than or equal to k, or tells us that no such solution exists. Given the
mapping above, either P; contains a set of classes whose integer properties f~! sums to less than v
resulting in a partitioning of S that satisfies the constraint k = v, or there is no subset of § that can
be placed in that partition to meet those restraints. If the constraints are met then we find the
answer to BIN-PACK is the sets f~!(P) where i € {1,...,B}, because @(P;) < k therefore

Z ! (x) < k and k = v which implies that Z a < v precisely the condition for a solution to

XEP; acA;
BIN-PACK.

Since, we can reduce BIN-PACK to COMPOSITE-CONCEPT in a series of steps that are polynomial
time and COMPOSITE-CONCEPT is in NP, COMPOSITE-CONCEPT is NP-complete because

BIN-PACK is NP-complete. O

Theorem 2 shows that using our technique it is not practically possible to detect type 2 composite
concepts. Our technique looks for an optimal match of a composite concept among many potential
composite concepts, since we assume the definition of our detection function can produce a
spectrum of values for “compositeness”. However, some other technique might define a simple
decision algorithm to the detection of composite concepts. We would assume the this algorithm
would take a subset of classes in the system and return either true if that subset is a composition of
classes which represents a concept in the domain, or false otherwise. We now show that this
technique is also limited in detecting type 2 composite concepts by the impracticality of solving

NP-complete problems.

Definition 4 (Algorithm for detection of concept composition).
COMPOSITE-CONCEPT-DECISION(S,) determines if there exists a subset of S such that the

subset includes classes which make up a composite concept.
69

Theorem 3. COMPOSITE-CONCEPT-DECISION is in NP.

Proof. The following is a verifier V for COMPOSITE-CONCEPT-DECISION.

V =“On input ((S, o), P):

1. Test whether a(P) is true.
2. Test whether P C S.

3. If both pass, accept; otherwise, reject.”

Theorem 4. COMPOSITE-CONCEPT-DECISION is NP-complete.

Proof. We already know that COMPOSITE-CONCEPT-DECISION € NP, so we now show that
SUBSET-SUM <p COMPOSITE-CONCEPT-DECISION. In other words SUBSET-SUM is

polynomial time reducible to COMPOSITE-CONCEPT-DECISION.
Given SUBSET-SUM(T,7) we find a mapping to COMPOSITE-CONCEPT-DECISION(S, t).

Define S, the set of classes, given T, the set of integers in our SUBSET-SUM problem, as follows:

S={fx)|xeT} (5.4

or equivalently:

S=f£(T) (5.5

where f(x) is a function mapping the integers in T to classes in S, and f~!(x) is the inverse. The

set S is easily computed given 7 in O(n) time where n is the cardinality of T'.

Define o as follows:

a(P) =trueiff) ' (x) =t (5.6)

xepP

so that a(P) is true if and only if the sum of f~!(x) where x € P is equal to ¢. The function « is
independent of the input to SUBSET-SUM and so this step of the transformation is computed in

constant time, because no part of the transformation regarding ¢ will change based on input.

70

Now executing an algorithm that solves COMPOSITE-CONCEPT-DECISION results in the detection
of P such that o is true for P, or tells us that no such subset exists. Given the mapping above,
either P contains a set of classes whose integer properties f sums to ¢ resulting in a subset of S that
satisfies the constraint such that « is true, or there is no subset of S for which « is true. If the
constraints are met then we find the answer to SUBSET-SUM is the set f~! (P), because in that
situation ot(P) = true therefore Y f ~!(x) =1 precisely the condition for a solution to

xeP
SUBSET-SUM.

Since, we can reduce SUBSET-SUM to COMPOSITE-CONCEPT-DECISION in a series of steps that
are polynomial time and COMPOSITE-CONCEPT-DECISION is in NP,

COMPOSITE-CONCEPT-DECISION is NP-complete because SUBSET-SUM is NP-complete. O

So, finding composite concepts is a fundamentally difficult problem regardless of the technique
that is used to detect those composite concepts. In Section 1.2 we ask “Is it possible to use this
approach to classify composite concepts made up of more than one class, which individually are
not concepts?” Given this result we find that it is not possible to use this or any other approach to

optimally classify type 2 composite concepts in a reasonable amount of time.

71

Chapter 6

Conclusion

The primary contribution of this thesis is showing that concept identification using a machine
learning based classification approach is possible. Prior work in the field does not attempt concept
identification via machine learning classification. In the following sections we discuss our
contributions and findings, suggest areas for future work, and finally wrap up with a discussion of
the significance of the work in this field.

6.1 Contributions and Findings

Our contributions include the following:

1. We have shown that accurate concept identification is possible using machine generated

classifiers.

2. We discovered the optimal set of metrics to include in the feature set, and defined the USES

and USEDBY metrics.

3. We have shown that a training set size of 7.5 to 10% of the system can yield results nearly as

accurate as training sets using half the system.
4. We proved that problems involving detection of concepts crossing class boundaries are

NP-Complete.

In this paper we have covered a lot of ground. So it is interesting to look back and see where we
started and where the results have taken us along with what we developed to get from the initial

idea to the completed work.

We began with a simple informal question “Is it possible to identify concepts based on metrics
using SVM?” Our initial results were a proof of concept. We found an open source solution that
would generate metrics from Java code. We manually classified Panda, and then generated a data
set from the combination of the metrics and the classifications. After some manual formatting of
the data we were able to import it into MATLAB and run a SVM classifier. We did some testing

similar to that found in Section 3.5 and found that there was a statistically significant result.
72

At this point the real work began. There were so many questions to answer, which are formalized
in Section 1.2. We found ourselves skeptical of the initial results but intrigued by the implication
that we could identify concepts using a machine learning approach. There were a lot of challenges

to overcome.

Our initial results were statistically significant, but there can be a large gap between statistically
significant and practically useful. We had achieved average accuracy as high as 70%, but we would
need to increase performance to have a shot at a pragmatic tool. There were multiple paths to

explore.

We would need to examine the feature set and determine what we needed to add and what should
be removed to maximize performance, but at the same time we did not want to have an adverse
effect on our analysis of learning algorithms. We developed a new metrics collector. The open
source tool we had used initially was not suited to the task of generating machine readable files,
and we knew we would want to add additional metrics. Initial results showed a strong reliance on
metrics related to the structure of the software, for example DIT. Our initial set of metrics did not
include USES or USEDBY so we added these to our metrics collector in the hope of improving
accuracy. This turned out to be a good decision. As discussed in Section 4.1, USEDBY and DIT
were the two common metrics selected by each of the three feature selection algorithms. Together

USEDBY and DIT are more than capable of producing statistically significant results.

We wanted to examine different learning algorithms to determine if superior performance is
possible with an algorithm other than SVM. The number of experiments we wanted to perform
would grow with each additional learning algorithm we decided to examine. We needed a better
method of collecting data sets. MATLAB had a disadvantage because each of the learning
algorithms implemented in MATLAB would take different inputs. We were concerned that
producing an automated transformation of the common data set format to the input format for each
algorithm could introduce errors in the transformation phase. If we found differences in algorithms
it would be challenging to ensure that those originated in the algorithm and not in the automated
transformation of the data set. Our search for a tool with common inputs yielded RapidMiner.

RapidMiner accepts input from XRFF and implements many of the machine learning algorithms of

73

interest. XRFF is an XML based file for storing machine learning data sets. To speed the process
of creating XRFF we developed an Eclipse plugin that would use our metrics collector and
annotations on Java source files to generate the required XRFF file. We developed the annotations
to allow adding classification information directly to Java source code so that the source would be

the authority for all date necessary to produce and test classifiers.

We needed to minimize the size of training sets to ensure a useful approach in practice, but we did
not want to artificially introduce a limit on size that some use cases might comfortably exceed. In
order to map out the effects of different sized training sets, changes in training set selection
methods, and determine effectiveness of learning algorithms we produced learning curves for each
of the different selection methods and learning algorithms. A learning curve shows the relationship
between performance and the size of a training set. This allowed us to determine that a training set
of 7.5 to 10% is nearly as effective as a training set representing 50% of the system. We showed
random selection is the most consistent and effective means of selecting a training set. We also

found that KNN was the most consistent performer among the learning algorithms we tested.

Finally, we needed to know the limits of this approach. How would the structure of concepts
encoded in software systems affect our ability to detect them using classifiers? We discussed two
possible structures besides a one to one mapping of domain knowledge to implementation. Classes
that represent more than one concept are simple to detect using our approach. We discussed what
we call Type 1 composite concepts in Section 5.2 and showed that these are concepts at differing
levels of abstraction. Almost any concept can be further refined into a set of related concepts, but
the correct level of abstraction is determined by the domain that is actually being implemented. We
discussed Type 2 composite concepts in Section 5.3. Type 2 composite concepts represent a
domain concept implemented by more than one class. These Type 2 composite concepts probably
do not exist, and as we have shown are difficult to detect due to NP-Completeness of the problem
for any classification algorithm including our approach.

6.2 Future Research

While exploring this topic we have discovered additional questions that could be good topics for
future exploration.

74

Understanding why USEDBY and DIT are good indicators of domain concepts may indicate other
metrics that we have yet to consider. Currently the structural metrics, like USEDBY, and USES,
only count generic dependencies. Perhaps separating dependencies into more specific relationships
could provide further improvements in accuracy. For example, composition and delegation could

be tracked separately.

There is potential to improve on the training set sizes in future work. Reduction of the size of
training sets needed to attain appropriate accuracy make the approach more efficient for an
engineer to utilize in practice. We investigated training sets that are selected randomly, by the
Kennard-Stone method, and with the reverse Kennard-Stone method, but perhaps there is a better
way to go about this training process. It might be interesting to examine a combination of

Kennard-Stone with random selection.

We have explored several different learning algorithms representative of several categories of
learning algorithms but still more exist that we have not tested. Since we already see variance in
the abilities of different algorithms it is reasonable to test additional algorithms to determine if
superior performance can be achieved on the classification problem.

6.3 Significance

With out the introduction of new tools and techniques software engineers will continue to struggle
with identifying the important domain knowledge contained in existing software systems resulting
in higher development costs. Fred Brooks famously asserted that maintenance accounts for 90% of
software costs [10]. While an exact accounting cannot be generalized so succinctly most practicing
engineers would agree to the qualitative point that maintenance is the most expensive aspect of
software development. The expense of maintaining existing software can be roughly divided into
two categories; discovery of the existing system, and executing the required changes. It is the
discovery process that we hope to accelerate via use of our approach. Tools that assist in directing
study of the system toward domain concepts speed the engineer’s comprehension tasks allowing

him to make needed changes at a quicker pace.

Internal documentation artifacts, those meant to capture the tribal knowledge of the developers, are

notoriously outdated but are meant to assist in the discovery process. In practice documentation
75

rarely exists, and when it does it may be a snapshot of an earlier system that has evolved out of
existence. The benefits of using these outdated documents can be overwhelmed by the
misinformation that only applied to an earlier version of the system. Alone this does not account
for the necessity of our approach; other approaches might work equally well in an environment
with outdated or partially complete documentation particularly those that do matching of

components of the software to knowledge contained in documents.

In an industry where the difference between market leadership and runner up can be measured not
just in profits but the survival of a business it could be argued that time spent on internal
documentation results in a competitive disadvantage. The creative work of the engineer is in the
software that is developed. Time spent documenting is time not spent creating the next software
release. Allocation of scarce creative resources to document software could be considered
misallocation of funds given the opportunity loss represented by not delivering new software
features. This would be an especially egregious mistake if it were possible to automate the
recovery of that documentation at a later date. It is in this hyper-competitive environment that our

approach excels.

When we frame internal documentation as an artifact with greatest value to future development,
then we see that we are paying up front in effort invested for documentation that has an unknown
value later. Our approach to identifying domain knowledge from the source is more suited to this
environment where we can chose to pay the cost of learning about the domain at the time we have
found a need to modify the software. In this respect our approach is unique in application when

compared to competitive approaches.

76

REFERENCES

David W. Aha, Dennis Kibler, and Marc K. Albert. Noise-tolerant instance-based learning
algorithms. In Instance-Based Learning Algorithms 65, pages 794—799. Morgan Kaufmann,
1989.

David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-based learning algorithms.
Mach. Learn., 6(1):37-66, 1991.

Apache Software Foundation. Torque. [Online] Available http://db.apache.org/torque/.
Apache Software Foundation. Turbine. [Online] Available http://jakarta.apache.org/turbine/.

Ted J. Biggerstaff. Design recovery for maintenance and reuse. Computer, 22(7):36-49,
1989.

Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas Webster. The concept assignment
problem in program understanding. In ICSE °93: Proceedings of the 15th international
conference on Software Engineering, pages 482-498, Los Alamitos, CA, USA, 1993. IEEE
Computer Society Press.

Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E. Webster. Program understanding and
the concept assignment problem. Communications of the ACM, 37(5):72-82, 1994.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for
optimal margin classifiers. In COLT ’92: Proceedings of the fifth annual workshop on
Computational learning theory, pages 144—152, New York, NY, USA, 1992. ACM Press.

James F. Bowring, James M. Rehg, and Mary Jean Harrold. Active learning for automatic
classification of software behavior. In ISSTA '04: Proceedings of the 2004 ACM SIGSOFT
international symposium on Software testing and analysis, pages 195-205, New York, N,
USA, 2004. ACM.

Frederick P. Brooks, Jr. The Mythical Man-Month: Essays on Softw. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1978.

Yuriy Brun and Michael D. Ernst. Finding latent code errors via machine learning over
program executions. In ICSE "04: Proceedings of the 26th International Conference on
Software Engineering, pages 480-490, Washington, DC, USA, 2004. IEEE Computer
Society.

Bugzilla Organization. bugzilla.org. [Online] Available http://www.bugzilla.org/.

Maurice M. Carey and Gerald C. Gannod. Recovering concepts from source code with
automated concept identification. In ICPC ’07: Proceedings of the 15th IEEE International
Conference on Program Comprehension, pages 27-36, Washington, DC, USA, 2007. IEEE
Computer Society.

77

[14] Lewis Carroll. Sylvie and Bruno Concluded. Macmillan and Co., 1893.
[15] Paul R. Cohen. Empirical Methods for Artificial Intelligence. MIT Press, 1995.

[16] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines and
other kernel-based learning methods. Cambridge University Press, 2000.

[17] Edsger Wybe Dijkstra. Selected Writings on Computing: A Personal Perspective.
Springer-Verlag, New York, NY, USA, 1982.

[18] Susan Dumais, John Platt, David Heckerman, and Mehran Sahami. Inductive learning
algorithms and representations for text categorization. In CIKM ’98: Proceedings of the

seventh international conference on Information and knowledge management, pages
148-155, New York, NY, USA, 1998. ACM Press.

[19] Eclipse Organization. Eclipse. [Online] Available http://www.eclipse.org.

[20] Alexander Egyed. Automated abstraction of class diagrams. ACM Trans. Softw. Eng.
Methodol., 11(4):449-491, 2002.

[21] J. M. Favre. Cacophony: metamodel-driven software architecture reconstruction. In WCRE
2004: Proceedings of the 11th Working Conference on Reverse Engineering, pages 204-213,
2004.

[22] Haibo He and E.A. Garcia. Learning from imbalanced data. Knowledge and Data
Engineering, IEEE Transactions on, 21(9):1263 —1284, sept. 2009.

[23] Brian Henderson-Sellers. Modularization and mccabe’s cyclomatic complexity.
Communications of the ACM, 35(12):17-19, December 1992.

[24] Brian Henderson-Sellers. A Book of Object Oriented Knowledge. Prentice Hall, Sydney,
Australia, 2nd edition, 1995.

[25] Brian Henderson-Sellers. Object-Oriented Metrics: Measures of Complexity.
Object-oriented series. Prentice Hall PTR, 1996.

[26] Greg Hodgdon. PANDA : Proof Assistant for Natural Deduction Analysis. Technical Report
of MCS Project, Arizona State University, November 2001.

[27] I Hsi, C. Potts, and M. Moore. Ontological excavation: unearthing the core concepts of the
application. In WCRE 2003: Proceedings of 10th Working Conference on Reverse
Engineering, pages 345-353, 2003.

[28] Andy Hunt and Dave Thomas. Software archaeology. IEEE Softw., 19(2):20-22, 2002.

[29] Ivar Jacobson. Object-oriented software engineering. ACM, New York, NY, USA, 1992.

78

[30] Thorsten Joachims. A statistical learning learning model of text classification for support
vector machines. In SIGIR ’01: Proceedings of the 24th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 128—136, New
York, NY, USA, 2001. ACM Press.

[31] Cihan Kaynak. Semantic inconsistency and computational intractability in transitive
abstraction rules. Master’s thesis, Miami University, August 2008.

[32] R. W. Kennard and L. A. Stone. Computer aided design of experiments. Technometrics,
11(1):pp. 137-148, February 1969.

[33] Alfred Korzybski. A non-Aristotelian system and its necessity for rigour in mathematics and
physics. In a paper presented before the American Mathematical Society at the New Orleans,
Louisiana, meeting of the American Associate of the Advancement of Science, December 28,
1931. Reprinted in Science and Sanity, 1933, p. 747-61.

[34] Jonathan I. Maletic and Andrian Marcus. Supporting program comprehension using semantic
and structural information. Software Engineering, International Conference on, 0:0103,
2001.

[35] Andrian Marcus. Semantic driven program analysis. Software Maintenance, IEEE
International Conference on, 0:469-473, 2004.

[36] Andrian Marcus, Andrey Sergeyev, Vaclav Rajlich, and Jonathan I. Maletic. An information
retrieval approach to concept location in source code. In WCRE ’04: Proceedings of the 11th
Working Conference on Reverse Engineering (WCRE’04), pages 214-223, Washington, DC,
USA, 2004. IEEE Computer Society.

[37] T. Marill and D. Green. On the effectiveness of receptors in recognition systems. Information
Theory, IEEE Transactions on, 9(1):11 — 17, jan 1963.

[38] Ettore Merlo, Ian McAdam, and Renato De Mori. Feed-forward and recurrent neural
networks for source code informal information analysis. Journal of Software Maintenance,
15(4):205-244, 2003.

[39] Ingo Mierswa, Michael Wurst, Ralf Klinkenberg, Martin Scholz, and Timm Euler. Yale:
Rapid prototyping for complex data mining tasks. In Lyle Ungar, Mark Craven, Dimitrios
Gunopulos, and Tina Eliassi-Rad, editors, KDD ’06: Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 935-940, New
York, NY, USA, August 2006. ACM.

[40] George A. Miller. The magical number seven, plus or minus two. The Psychological Review,
63:81-97, 1956.

[41] Tom M. Mitchell. Machine Learning. WCB/McGraw-Hill, 1997.

79

[42]

[43]

Massimiliano Pontil and Alessandro Verri. Support vector machines for 3d object
recognition. IEEE Trans. Pattern Anal. Mach. Intell., 20(6):637-646, 1998.

Denys Poshyvanyk, Yann-Gael Gueheneuc, Andrian Marcus, Giuliano Antoniol, and Vaclav
Rajlich. Feature location using probabilistic ranking of methods based on execution scenarios
and information retrieval. IEEE Transactions on Software Engineering, 33(6):420-432, 2007.

Denys Poshyvanyk and Andrian Marcus. Combining formal concept analysis with
information retrieval for concept location in source code. International Conference on
Program Comprehension, 0:37-48, 2007.

Weka Project. Xrff. [Online] Available
http://weka.sourceforge.net/wekadoc/index.php/en: XRFF_(3.5.4), January 2007.

Weka Project. Arff. [Online] Available
http://weka.sourceforge.net/wekadoc/index.php/en: ARFF_%283.5.1%29, July 2008.

J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81-106.

J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1993.

Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. The MIT Press, 2002.

Fabrizio Sebastiani. Machine learning in automated text categorization. ACM Comput. Surv.,
34(1):1-47, 2002.

J. Sklansky and W. Siedlecki. A note on genetic algorithms for large-scale feature selection.
In Handbook Of Pattern Recognition And Computer Vision, chapter 5, pages 88—107. August
1993.

Davor Svetinovic, Daniel M. Berry, and Michael Godfrey. Concept identification in
object-oriented domain analysis: Why some students just don’t get it. In RE ’05:
Proceedings of the 13th IEEE International Conference on Requirements Engineering
(RE’05), pages 189-198, Washington, DC, USA, 2005. IEEE Computer Society.

Tigris. Scarab. [Online] Available http://scarab.tigris.org/.

A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and C. Riva. Symphony:
view-driven software architecture reconstruction. In WICSA 2004: Proceedings of Fourth
Working IEEE/IFIP Conference on Software Architecture, pages 122—-132, 2004.
Vladimir N. Vapnik. Statistical Learning Theory. Wiley, 1998.

A.W. Whitney. A direct method of nonparametric measurement selection. Computers, IEEE
Transactions on, C-20(9):1100 — 1103, sept. 1971.

80

[57] W. Wu, B. Walczak, D.L. Massart, S. Heuerding, F. Erni, [.R. Last, and K.A. Prebble.
Artificial neural networks in classification of nir spectral data: Design of the training set.
Chemometrics and Intelligent Laboratory Systems, 33(1):35 — 46, 1996.

[58] Andy Zaidman, Toon Calders, Serge Demeyer, and Jan Paredaens. Applying webmining
techniques to execution traces to support the program comprehension process. In CSMR ’05:
Proceedings of the Ninth European Conference on Software Maintenance and Reengineering,
pages 134—-142, Washington, DC, USA, 2005. IEEE Computer Society.

81

APPENDIX A

Post Feature Selection Confusion Matrices

82

Table A.1 to table A.10 display confusion matrices for the feature selection validation experiments
discussed in section 4.1.

Table A.1: Post Feature Selection Precision and Recall for Panda KNN

actual true

actual false

class precision

predicted true 313 69 81.94%
predicted false 77 801 91.23%
class recall 80.26% 92.07%

Table A.2: Post Feature Selection Precision and Recall for Panda SVM

actual true

actual false

class precision

predicted true 279 24 92.08%
predicted false 111 846 88.40%
class recall 71.54% 97.24%

Table A.3: Post Feature Selection Precision and Recall for Panda ID3

actual true

actual false

class precision

predicted true 286 95 75.07%
predicted false 104 775 88.17%
class recall 73.33% 89.08%

Table A.4: Post Feature Selection Precision and Recall for Panda ID3 with Aba Boost

actual true

actual false

class precision

predicted true 288 114 71.64%
predicted false 102 756 88.11%
class recall 73.85% 86.90%

83

Table A.5: Post Feature Selection Precision and Recall for Panda Vote

actual true

actual false

class precision

predicted true 305 45 87.14%
predicted false 85 825 90.66%
class recall 78.21% 94.83%

Table A.6: Post Feature Selection Precision and Recall for Scarab KNN

actual true

actual false

class precision

predicted true 2131 503 80.90%
predicted false 509 5557 91.61%
class recall 80.72% 91.70%

Table A.7: Post Feature Selection Precision and Recall for Scarab SVM

actual true

actual false

class precision

predicted true 1876 429 81.39%
predicted false 764 5631 88.05%
class recall 71.06% 92.92%

Table A.8: Post Feature Selection Precision and Recall for Scarab ID3

actual true

actual false

class precision

predicted true 1907 614 75.64%
predicted false 733 5446 88.14%
class recall 72.23% 89.87%

Table A.9: Post Feature Selection Precision and Recall for Scarab ID3 with Ada Boost

actual true

actual false

class precision

predicted true 2000 717 73.61%
predicted false 640 5343 89.30%
class recall 75.76% 88.17%

Table A.10: Post Feature Selection Precision and Recall for Scarab Vote

actual true

actual false

class precision

predicted true 2020 446 81.91%
predicted false 620 5614 90.05%
class recall 76.52% 92.64%

84

APPENDIX B

Post Validation Confusion Matrices

85

Table B.1 to table B.5 display confusion matrices for the external validation experiments discussed
in section 4.3.

Table B.1: Post Validation Precision and Recall for Panda KNN

actual true

actual false

class precision

predicted true 303 45 87.07%
predicted false 27 885 97.04%
class recall 91.82% 95.16%

Table B.2: Post Validation Precision and Recall for Panda SVM

actual true

actual false

class precision

predicted true 262 14 94.93%
predicted false 68 916 93.09%
class recall 79.39% 98.49%

Table B.3: Post Validation Precision and Recall for Panda ID3

actual true

actual false

class precision

predicted true 252 66 79.25%
predicted false 78 864 91.72%
class recall 76.36% 92.90%

Table B.4: Post Validation Precision and Recall for Panda ID3 with Aba Boost

actual true

actual false

class precision

predicted true 273 88 75.62%
predicted false 57 842 93.66%
class recall 82.73% 90.54%

86

Table B.5: Post Validation Precision and Recall for Panda Vote

actual true actual false | class precision

predicted true 292 22 92.99%

predicted false 38 908 95.98%
class recall 88.48% 97.63%

87

APPENDIX C

Data Sets

88

C.1 Panda
The metrics data set used in this research for the Panda system is shown in Table C.1.

89

23nd 1xau uo panunuoy)

IoSeUBRApUBTITIO))
00'IT 00v 001 000 00°0 000 000 0S°0 000 00 00¢€ SL'T 00'I€ SLTO0Sy ¥r0 001 °nn -'epued
008 00T 000 000 00°0 009 00°C L9°0 000 000 000 001 008 €€l 00T 090 00°T °sred Snga(qepued

uorsn[ouo)Ivn UL
00 000I 00T 000 00°0 000 00T 00T 000 00C 00'S 00C 00SE 00T 008y €€0 00°S °s[eJ -‘epued

wrgambgioNpuewItIo)
0001 00CI 00T 0S'T 000 000 000 €80 00°¢ 009 00T €€ 000F L91T 00LS 090 00°¢ °nn -'epued

WI[FIQPUBO))
00'IT 000l 00T 0S'T 00°0 000 00C €80 00°¢ 009 00S €€1 00LS €81 0008 €80 00°¢ °nn -'epued

ONU[PUYPUBTIWIO))
00Cl 00°'IT 00T 0S'1 000 000 00C €80 00°¢ 009 00% OS'T 008y 00T 000L L8O 00°¢ °nn -'epued

uvondwnssyppypuewo))

00'c 00°¢ 00T 000 00°0 000 000 L9°0 000 00'¢c 00T 00T 00°L 00T 008 00 00°¢ °nn -"epued
SoreigsAay]

00'T 008 001 000 00°0 000 000 00T 000 00'T 000 00T 00CE 00T 00LE 000 009 °s[eJ -"epued
00'CE 008C 001 000 00°0 00'I 006 LI'0 000 00'IT 00°€ C6'1 00°S8I L9T 00°SCC 060 00°9 °nn epuedepued
aurpindupenoued

006 0091 00°S 000 00°0 000 00'C 00T 000 00C 00L 0SC 00C9 0S¥ 008L ¥¥'0 00°S °S[eJ -'epued
PUBWIWO)I0d[oS[ouUR]

00C 006 009 000 00°0 000 000 00T 000 00C 009 00T 00ST 001 008C L9I 00°S s[e} -'epued
onuydupueunuo))

006 006 00T 0S'T 00°0 000 00C €80 00°¢ 009 00% LI'T 00Cy OST 00v9 L8O 00°¢ °nn -"epued
onugAmbgioNpuBLILIO)

00CI 008 007C 0C'T 0000 000 00°C 080 00C 00°¢ 009 OF'1 006F OFCO00IL 160 00¢ °nn -‘epued
000 000 007C 000 00'T 000 000 000 000 00'0 000 000 000 000 OO 000 000 °sreJ opay epued
qurpropdwoigroued

00C 006 0011 000 00°0 000 000 0S'T 000 00C 00°¢ 00T 000C 00T 000€ 001 00°G os[e} -'epued
opupuewIio))

00'c 00T 00T 000 00°0 000 00°0 000 000 00'c 000 00T 00°¢ 00T 00CI 000 00°C °s[e} -'epued

OIU[JONPUBUILIO))

006 006 00T 0S'T 00°0 000 00°C €80 00°¢ 009 00 LI'T 00CS 0OST 00SL 980 00°¢ °nn -"epued
wigAmbgpuewwo))
00°0I 00°€T 00T 0S'T 000 00°0 000 €80 00°¢ 009 001 €€1 006c L9T 009S 080 00'¢ °nn -"epued
suondwnssyjonoueq
00 000I 00T 000 00°0 000 00°C 00'T 000 00C 009 0S'T 00Ty 00T 00°LS 8€0 00°S °s[eJ -‘epued
JUQWID[HIST TR[NULIO]
-"epued

0091 000l 00°CC 000 00°0_00°0 000 00°0 0071 008 LO0'T O0IS +I'T 00006 680 001 °nn
ONM SHSN AdddSA XIS ISN JASN ASN IWION WON AON adN DOTIN DA DOT WODT 1Id 1d3ducd Sse)

epue(I0J €IR(] SOIQIN (1D 9[9BL

90

23nd 1xau uo panunuo))

00'IT 0001 00°S 000 000 000 00°¢€ S¥0 000 00°TT 00T 00T 00°IT 00T 00CL 860 00T ose} Josred epued
QpN[OUO)PUBWIWIO))

006 009 00T 0C'T 000 000 000 080 00T 00 00T O¥'I 00€e 081 008y SL'O 00°¢ °nn -‘epueq
onuyAmbgpuewro))

00CI 008 00T 0C'T 000 000 00T 080 00T 00 00% O¥'1 00Sy OFCT 0069 880 00°¢ °nn -‘epueq
PUBTIWIO)TIA0I]

00CI 008 00'1C 00°0 0091 0000 000 ¥I'T 000 00L 00€ 6271 00Cy IL1T 00€9 +60 00T onn -epued
UOISN[OUO)PPY PUBLLILO))

00¢ 00§ 00T 000 000 000 000 L90 000 00°¢ 001 00T 00L 001 008 0SS0 00¢ onn -"epued
ISITR[NULIO

00C6 00°'1C 00'vC 000 000 00'%¥ 00°C ¢T6'0 000 00Ce 00C 181 00Cee 9SC 00 11¥ 680 00°S onn -epued
WIHpUYpuewor

0001 00°CI 00T 0S'T 0000 000 000 €80 00°¢ 009 001 €€T 001y L91T 0085 090 00°¢ onn -epued
JUTOJUOTIIASU]

00T 00F 00T 00°0 000 000 000 00T 000 00°T 000 00°T 000I 00T 00SI 000 001 osre} -"epued
uonenbgyoyp [oueq

008 00°ST 00°S 00'0 000 000 00C 0S€ 000 00C 008 OST 009 00+% 0098 0S0 00°S °s[eJ -"epued
puRWILIO))OeNSqY

00C 001 00¢ 00°0 0081 000 00T 000 000 00C 000 00T 00C 00T 009 00C 001 °nn -epueq
UOJINGER[NULIO]

00T 00T 000 000 000 000 000 000 000 00T 0000 00T 000 00T 00S 000 009 osie} -epued
[ouequUONNG$IOA0IJ

00°0C 00°S¥ 00T 000 000 000 0091 00°T 000 00C 00¢€ 00C 0098 0000 00CIT 110 00°S °sie} -epued
008 00°Sy 00°¢C 00°0 00°0 000 00°CI €9°0 000 0061 00°€l ¢¥'1 009LT 00C 00FSE 160 001 °nn 1aA0Id EpUEq
000 000 00T 000 00'T 000 000 000 000 000 000 000 000 000 00€C 000 000 osre} opuf)epued
00°¢y 00°L 009C 000 000 00°S 000 T80 000 00°LT 00°€ €1 00°0IT S6'1T 00°LYI €L°0 001 °nn B[NULIO] BpUEq
opaypuLwIlio)

00C 001 000 000 000 000 000 000 000 00Cc 000 00T 00C 00T 006 000 001 °nn -epueq
00T 000 001 000 000 000 000 00T 000 00°T 00T 00T 0071 00'T 00L 000 001 ose} Iajunoyepued
WI[FIONPUBWIWIO))

006 008 00T 0C'T 0000 000 000 080 00T 00°¢ 001 0CT 009¢ 081 001§ SL0 00¢ onn -"epued
ONU[IQPUBWIIO))

00'TT 00°€T 00T 0S'T 000 000 00°¢ €80 00°¢ 009 00% €€1 00FvS €81 00LL €80 00°¢ °nn -epueq
QIS pUBIILIO))

009 008 00T 0¢'T 000 000 000 080 00¢C 00'S 00T 0TI 008 0TI 00CE SLO 00°¢ °s[eJ -"epued
[ouBJeINUIIO]

00T 00T 000 000 000 000 000 00T 000 00°T 00T 00T 0071 00'T 008 000 00°S osie} -epued
000 000 000 00°0 00°0 000 00°€T 000 000 000 000 000 000 000 0091 000 001 °sre} wks epueq
0061 00S 00¢ 00°0 000000 000 STO 000 00F 00F 00T 006E SL Y 00SS SL'O 001 9sIe} Jouuess epueq
JINM SASN AdaASN XIS IOSN NSN ASN dVd IWION AON AON ddN DOTA DA D0T WOIT LId 1daouod Sse)

91

28pd 1x2u U0 panunuo)

Jeuruia) " uou

00°ST 00°0I 0001 0C°0 000 00'8 00°S 6£0 001 0001 00'¥ 00°T 0018 6¢£1 006CI 960 00°C °s[¥} - dno~eel
yred-[oquiAs

00Cl 009 006 L0 000 00°0 000 790 00°¢ 008 00T 00T 000C OST 00CF 980 00T °s[¥) - dno~eef
Jos~[oquIAS

000 00°L 00T 61°0 000 000 000 690 00°¢ 0091 00T CI'T 0065 881 0000l L9°0 00°T °sre} - dno~eael
91qe)-uonoe-asred

0001 009 00¢ §C°0 000 000 000 000 00T 00% 00T 00C 00°SS 0ST 000L 0SS0 001 osre} - dno~eael
UonoE d0SSEUoU

00'L 00¢€ 001 €€'1 0000 000 000 €€0 00 009 000 00T 008 LT'T 009C 000 00T °sre} -"dno~eael
19~ WA ITe|

00'ce 00CI 00T 91'0 00'0 000 000 €90 00°¢ 0061 00C ICT O0OIT 89T 00091 SLO 001 °srej -"dno~eael
Jred-uonoe

0001 00%v 00¥ GL'0 000 000 000 0S0 00°¢ 008 001 00T OOFvI STT 00¢€e IL0 00T °s[e) - dnoeael
uonoe-osred

00'L 00¢ 008 0S°0 00'c 000 00% ¢€£0 00¢ 009 000 00T 008 LT'T 00°LT OI'l 001 °srej - dno-eel
000 000 000 000 00'0 00°0 00°0€ 000 000 000 000 000 000 000 00°€c 000 001 °srey wks dno~eael
UOIOB-90NPAI

006 009 00°S ¥1'1 0000 000 000 €¥'0 00¥ 00'L 00T 00T 00€l 6C1T 00Cc €80 00T °s[e} -"dno~eael
00'8¢ 009 000 00°0 000 00°€l 00°CI 90 000 00'T 000 L0'C 009IC vI'v 00%9C S80 00'1 °s[e} Toxor dno-eael
J[qey-eonpar-asied

006 00€ 00¢ €€°0 0000 00°0 000 000 00T 00'c 00T €€C 00CE 00€ 00¢r 0SS0 001 °sre} -dno~eael
mor-uonoe-asied

000l 00T 00¢ 000 00°0 00°T 00 000 000 00C 00C L9T 00¥C ¢€€€ 00LE SLO 00T °S[e} - dno~eael
jred-uononpoxd

00Cl 00€ 0001 €7°'0 00C 0000 000 €+'0 00°¢ 00'L 00T 00T O0LI ILT 009¢ €80 001 °sre} -"dno~eael
qeIsTIe]

00C6 00°ST 00°L L1°0 000 009 00°¢ 801 00°¢ 0081 00°€ LI'C 00vLE €8¢ 00CEy S6'0 00°1 °sre) -"dno~eael
00°IT 00T 00Tl I1°0 00C 000 000 €£0 001 006 00+% 00T 00CI T¢I 008C 160 001 °sre} [oquiks-dno-eae(
195 [eUIId)

00Cc 009 009 €1°0 000 00°0 00°T 080 00¢C 00°ST 00'1 €1'T 009 L¥'T O00¥IT SLO 00T °S[e} -"dno~eael
JO1I9 [RUIOUL

00C 00T 00¥I 000 000 000 000 0S0 000 00C 000 00T 00§ 00'T 00°ST 000 00°€¢ °sred -"dno~eael
00'¥I 008 006 §C°0 000 00y 00°S T6'0 001 008 00T 00T 00vC LI'T 0019 T6'0 00T °s[e) Teurusoy dno~eael
00Cl 00°S 0081 0C°0 000 000 00t 091 001 00's 00% OC'lT 009% OvCT 00L9 +80 001 =onn uosey epued
wrgdwypueuruo))

00°¢l 008 00T 0C'I 000 000 00T 080 007C 00’ 00€ OVl 00Ly 09T 0099 680 00°¢ °nn -'epued
suonoegrastedgdnd

00°CC 0001 00°C 00°0 00'0_00'0 00°'0_0SC 000 00C 00T OS'T 000LT OO0 IT 00'¥81 00'I 001 ~'epued
DINM SHSN XdaASN XIS JOSN INSN ASN dvd INWHMON WON AON ddN DOTIN DA D01 WOIT LId 1daouod Sse)

92

23pd 1xau U0 panunyuo))

10sred

-*oreo-ordwrs

00°TT 0001 00°¢ 000 00°0 000 00°¢ S¥0O 000 00°IT 00T 00°T 00°IL 00T 00CL 860 00C =S¥} -dno-eael
Iouueos

-*oreo-ordus

00°Lc 00t 00°1 000 00°0 000 000 0T0 000 00°¢ 00C 0CT1 006C OFS 00y SLO 001 °s[e} - dno~eael
ureAoreo-orduirs

00°¢ 00°S 000 000 00°0 00T 00T 00T 000 000 000 00°C 00°0I 00°€ 0091 000 001 °s[e} -dno-eael
wAsores-ordurs

000 000 000 000 00°0 000 00°CI 00°0 00°0 000 000 000 000 000 00°ST 000 00T °s[e} -dno-eael
IoUUEROS UWITIUNT

00°T 00T 006 000 00C 000 000 000 000 00°T 000 00°T 001 00'T 00'v 000 000 °sre} -dno-eael
yoeys-osred Tenja

--owmuni

00°TT 00 001 000 00°0 000 000 €£0 000 009 00€ 00T 00vc €81 008y €50 001 °s[e} -dno-eael
[0OqWIAS QwjumnI

009 00¢€ 009C L1°0 000 000 000 00T 001 009 009 00T 006 001 008 001 00°T °s[e} -dno-eael
Josred- I owmunt

00°SIT 0001 00°L 000 00°€ 00T 00T €90 000 00°6€ 00°0I C9°'T 00°16€ 88C 00687 CT6'0 001 =S¥} -dno-eael
suonoegresredgdnd

00°6ST 00°LT 00°C 00°0 00'0 00°0 000 8£I 000 008 00°IT SL'T 000L6 8861 00°LO0OI 160 00°I - dnoeael
00°ST 00°LT 00°¢ €6°0 000 000 00°¢ 090 00% 00°ST 00T 00°T 008 00T 008ce 860 00°C °s[e} Tosred-dno-eael
uononpoid

00°LL 00°ST 00°¢l 0I'0 00T 00°S 00C €01 00°€ 00°T€ 00°IT I€T 00°€Le ¥I'C 00°LSE 960 00°[°s[e} -dno-eael
Q100" W]

009¢ 006 00T 61°0 00'T 000 000 8£0 00°€ 0091 00 CI'T 00°€8 <91 006Cl 8L0O 001 °s[e} -dno-eael
0029 0061 000 000 000 00°€I 00°CC 00°C 00°0 00°T 000 €¥C 0006E €y 00197 10°1 00°T °s[e} o dno-eael
uonoe YIS

006 009 00¢ YI'T 00°0 000 000 €70 00% 00°L 00T 00T 00€r 6C71 006C €80 00T °s[e} - dno~eael
MmoI-donpar-osred

00°¢ 001 00T 000 00°0 001 00T 000 000 00°T 00T 001 00¢ 0S'l 00°IT 050 001 o8I} -dno-eael
Wy IR

00°T€ 00°€l 00°¢ €7’'0 0000 000 00°0 6L°0 00°¢ 00vl 00°€ 9¢1 00°L6 [ICC 001vl L8O 00°C =S¥} -dno-eael
uononpoid-uonoe

00 00% 001 000 00°0 000 000 0S7T 000 00 00T 00T 00¢ 00T 009 000 00T °S[¥} -dno-eael
00°81T 00°LT 00°0 000 000 0091 00°CE 1I¥'0 000 00°T 000 ILT 0088¢ ¥6'9 00°¢€Ly T6'0 001 °s[e} urejy-dno-eael
uonisueI e[

008 00S 00T L1°0 000 000 000 €80 001 009 00€ 00T 0091 €€1T 00CE €L0 001 °s[e} -dno-eael
000 00T 000 000 00°0 000 00°L 000 000 000 000 000 000 000 000 000 00T =sre} uorsroa-dno-eael
000000 000 000 00°0_00°'0__00'¥ 000 000 000000 000 000 000 00L 000 00T =sre} oosse-dno-eae(
DINM SASN A9ddSn XIS ISN INSN ASN dVd WAON WON AON ddN DOTA DA DOT WODT LId 1daducd SSe)

93

suonoegrasiedgdnd

--oreo~ordurs

0091 00°0I 00T 000 00°0_00'0 000 05T 000 00C 00T 0S'T 00°L9T 00°8 00081 00°I 001 -"dno~eael
DM SHSN A4aASN XIS ISN SN ASN dVd WION NON AON ddN DOTA DA DOT WOIDT LId 1dduod sser)

94

C.2 Scarab
The metrics data set used in this research for the Scarab system is shown in Table C.2.

95

23pd 1xau U0 panuUo))

00°ST 0081

00'IS 00'8¢

009¢ 00'1¢

00'L 0001

00°€c 00°LI
00C 00°¢

00 009

00L 0011
009 00°SI
00°6¥1 00°0v
009¢ 00°0C

006 00°LI

00°ST 00'6

000

000

00°L

000

000

000

000

000

00T

000

000

000

00°0

000

00'C

8L0

00°S

SL'1

00t

0s'¢

000

00°0

000

000

00'v

00°0

000

000

000

000

000

000

000

000

000

000

000

000

00°0

000

000

000

000

000

000

000

000

00T

00°L

000

000

00°€C

000

000

00°0

000

000

000

00°0

000

000

00°0

000

000

001

§ee

§Te

8L'1

001

00C

00C

00C

00C

€€°¢

¢8'C

80'C

00C

0L'1

000

00C

00°L

001

001

00°L

00°L

000

000

000

000

00T

000

00'¥

00’8

006

001

00y

00C

00C

001

00C

0061

00°¢l

00C

000

000 SL'C 00°¢6

000 SL'€ 00°10¢

000 8LC 00'6l¢

000 00°¢ 00'6¢

000 SL'C 00°¢cl

000 00°I 00°S

000 00C 00°LI

000 00¥ 0079

000 L9'T 00°SS

000 S8C 00°¢e8

000 29°C 00C9¢

000 00°¢ 00°S9

000 _60'T 009¢

SL'E

8¢9

9

00'L

SL'S

001

00C

00'L

00C

SY'L

1€y

oSy

60°1

00°CII

00°6€€

00°LS€E

00'9%

00°evl

00°LI

00°6C

00°0L

00°0L

00°1€6

00'61¢

00°LL

00°CIT

00°0

000

000

000

000

000

00°0

000

00°0

000

00°0

000

S6°0

008

00’8

00°L

00°S

00'L

00’8

00°L

00'L

00°L

00'6

00’8

008

001

sysanbayo[oye[puey
-*SUOT}OB"qeIeds

onn -'sugn 3o
Jsroyerdwiag,

-'SUONoR qeIeds

onn -'s113n 310
1015139y 'suonoe

ann -'qereds sugn S1o
JIOJePI[EA UOISSOSqRIEOS
-'SuONoR qeIeds

onn -'sudn 310
urSosuonoe

onn -"qereds sugn 310
1001IpaYy suonoe

ann -"qereds sugn S1o
jnoSoT'suonoe

onn -'qereds sugn Sio
promssegosuey)

-'SUONoR qeIeds

onn -'sudn 310
pIomsseq1o3I0g

-*SUOI}OB qeIeds

onn -'sugn 310
ANSSIAJIPOIA

-*SUOT}OB qeIeds

onn -'sugn 3o
ISUIR[MPONX AUy
-'SuONoR qeIeds

onn -'s13n 310
Jsryenss[aInSyuo))
-'SUONoB qeIeds

onn -'sugn 310
uonezIedo|

-"UOTIRZITeO0]

- "oy

--oyoede310
asyey

JINM SASN

Adddasn XIS

ISN

INSN

ASN dvd

JNYON IAON AON ddN DOTIN DA DOT

qeIeds 10J vle(J SOMISIA (7D 9[qBL

NOIT L1d

3dadu0d ssep)

96

28pd jxau uo panunuo))

008

00°¢e

0001

00°'1¢

00°L

00°8ST

00101

00°cr

00°0¢

00°0S

00°¢1

00'C

00°L91

00°TT

00°9¢

0011

00°¢l

00y

009¢

00°cr

00'vC

00°S1

00°LC

00°LT

00°S

00°¢ce

000

000

000

000

000

000

000

000

000

000

000

000

000

00'8

000

L9°C

8L'1

000

000

Ly'0

000

000

00°¢

00C

00'8

¥9°0

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

001

00T

000

000

000

000

000

00°1

000

00'8

000

000

000

00°¢

00T

000

001

00C

000

000

009

00C

L9'1

00'C

11c

00T

061

9¢°C

00'C

00'C

€e'C

00C

00'C

80°C

00T

000

00C

00C

000

000

00T

000

000

00C

00T

001

00'C

001

00°¢

009

00'6

001

00'8¢

00°LI

00°¢

00'C

009

00'v

001

00°S¢

000 00¥ 009¢

000 €£°S 00Cee

000 €€1 00¢y

000 L9'T 00C8

000 00°L

009 ¥I't¢ 00018

000 ¥6'C 00°L8S

000 00°85¢C

000 0SS 00'6vI

000 €€¥ 009I¢

000 0S¢ 00v8

000 00'C 0001

00'S LTE 00°1¢8

00'8

0011

L9'1

€€°¢

00°1

Sy'S

19°¢

eevl

0001

€€'8

SL'e

00C

w9

00°Sv

00°sS¢T

00°0L

00°I¢I

00°I1T

009¢6

00°8¢9

00°¢€LT

0091

00°sve

0001

00°LT

00°6¢6

000

00°1

000

000

000

€90

¥6°0

000

001

060

000

000

80

00'8

00'8

00’8

00'8

00'8

00’8

00'8

006

00'8

006

00'8

00'8

00’8

sSumeguonemsyuo)Hddy

onn

onn

onn

onn

onn

onn

onn

onn

ann

onn

onn

ann

onn

-"uruIpe’suonoe
-"qeIeds’sLgn 310
reaoxddy
-"urupe’suonoe
-"qeIeds’sLgn S1o
SUOTSSTULIOJOSeURI
-"urwpe’suonoe
-"qeIeds sLgn 310
so[oyeSeuey
-"urupe suonoe
-"qeIeds sLgn 310
ONSSTMITA
-"SUOTOB qeIedSs
-'sugn S0
110dayansyuo)
-'SUONOB qeIedS
-'su3n 810
onsspodoy
-'SUOIOB qeIedS
-'sugn 510
ANSS[OAOIN
-"SUOTIOB qeIedSs
-'sugn S0
S[NPOINAFIPOI
-'SUONOB qeIedS
-'s1131°310
onssTusIssy
-'SUONOB qeIedS
-'sugn 510

iN g7 NEliTe)
-"SUOTOB qeIedSs
-'sugn S0

93 JoWOH)S
-'SUONOB qeIedS
-'sugn S0
[OIeaG SUonoe
-"qeaeds’sLgn 310

JNAM

SasN

Adadsn XIS

ISN

INSN

HSN

qvd

INYON JAON AON ddN DOTI DA DOT

NODT LId

1doouod

sser)

97

23vd jxau 1o panunuo)

00°¢

00°L

00°6¢

00°¢

00°1¢

00°68

000t

00°¢

00°L8

00°LS

00'8

00°s¢

00°¢l

00¥1

00'v1

00°¢l

00°'S

00°LT

00'9¢

0081

00°S

00°6C

00°CC

00°¢l

00°0¢

00'v1

00C

000

000

000

000

000

000

000

000

000

000

000

000

000

00y

00C

00’8

00C

080

00’8

001

680

L9°C

00'v

0Te

000

000

000

000

000

000

000

000

000

000

000

000

000

000 000

000 00°¢

000 000

000 000

000 000

000 000

000 000

000 00T

000 000

000 000

000 000

000 000

000000

000

001

00T

00C

00C

00'C

00'C

00C

00C

00'C

00C

00T

00'C

000

00T

00°L

001

00T

00C

00°L

00T

00T

00°L

001

00C

00'C

00C

00C

00y

001

00'¥

006

0001

00T

00'8

006

00°¢

00'¥

00°s

000 0S'I

000 0S¢

000 ST¥

000 00C

000 0S¢

000 00¥

000 0O¥'c

000 00C

000 88°¢

000 v¥'e

000 €€7¢

000 00¥%

00y 0T'1

0011

0008

00°SST

00°CI

00°sel

00°18%

00729¢

00°ST

00°S¥v

00°19¢

00°LY

00791

00°69

0s'1

0s'c

§C9

00°¢

Y

v¥'6

00y

00°¢

00°0C

00'¥8

00°SLI

00°0C

00°9S1

00°Ics

00°S0€

00°8¢

88°01 00°C8¥

£€'9

L9C

SL'8

09°C

00°¢€ov

00°€9

00981

0026

000

000

000

000

000

000

000

000

000

000

000

000

!

pearyarepdngxopuryoreagaepdn

001

00'8

00'8

00’8

00'8

00'8

00’8

00'8

00'8

00'8

00’8

00'8

00’8

-"urupe suonoe
-"qeIeds sugn 310
xopupyareagaepdn
-"uruIpe suonoe

onn -"qeIeds sLgn 310
sadA 1081y eqo[D
-"uruIpe suonoe

ann -"qeIedsstgn 310
a8essoINoJuUpRS

-"urupe suonoe

onn -"qeIeds sugn 310
sadA110enryoseur iy
-"uruIpe’suonoe

onn -"qeIeds sgn 310
NpIANQLMY[eqO[D
-"UruIpe suonoe

onn -"qeIeds sugn 310
J9snadeury

-"urupe suonoe

ann -"qeIeds sgn 310
SSUMIOS[IEWH[EO[D)
-"urupe’suonoe

onn -"qeIeds sgn 310
npgdnorpanquny
-"uruIpe suonoe

onn -"qeIedssugn 310
npgedApioenry

-"uruIpe suonoe

ann -"qeaeds sugn 310
SANQLIVIBGO[D
-"urupe’suonoe

onn -"qeIeds sgn 310
NpIANGLMYI[NPOA
-"uruIpe’suonoe

onn -"qeIeds sgn 310
Jipquonipuo
-"uruIpe’suonoe

ann -"qeaeds stgn 310

JNAM

Sdsn

Adadasn XIS

ISN

JNSN dSN

qdvd

INYON NON AON ddN DOTIN DA

D071

NODT LId

1daduod sse)

98

28pd 1x2u U0 panunuo))

000

00°CI

00'¥

00°¢

006

006

00°¢

00°LT

00°CC

00°6¢

00°'s

00°6C

00°61

001

009

00C

00°¢

00°¢

00'8

00°S

0061

006

0091

0011

0061

0061

000

00°¢

00°1

0001

00C

00°s

009

00T

00°s

00ce

00°¢

000

000

000

40!

000

000

000

000

00

000

000

000 00'tE

000

08¥

091

000

000

00°¢

00'C

00°0

000

00'C

00°0

00°¢

00°¢

000

00°0

000 000

000 000

000 000

000 000

000 000

00'¢ 00°1

000 000

00'T 00°¢

000 00°S

000 00°L

000 000

000 000

000000

000

£v'o

£€'0

L9°0

8¢0

00C

001

01

0s'1

091

00'C

00C

00'C

000

00C

000

000

000

000

001

000

000

000

000

00°¢

00'C

000

00°L

00°¢

00°¢

00'8

000

001

00y

00Cc

00°sC

001

00°s

0001

000

00°0

00°0

000

00°0

00°0

00°0

00C

000

00°0

000

00°0

000 _0I't 007CIE

000

LT

2!

001

[40!

€e°C

00°¢

09C

00T

00y

0ce

000

00°sv

0071

00°¢

00°TT

00'v€

00°¢l

00°sCI1

00°61

00°0cI

00°Ly

00911

000 00'%

ILT 00°1L

€€l 0081

00'T 00LT

Cl'T 00'6€

00°¢ 00°8%

00°¢ 00'1¢C

0¥'€ 00'6¥1

00°T 00'9¢I

9¢'1 00°81¢

00°S 00°SS

08'S 00°¢LI

06’7 00°6S¢

000 009

000 00¥%

000 00%

000 00'%

000 00%

0s'0 009

000 00°S

60 001

701 009

Y01 00°L

000 008

000 008

000 008

AnquyI93au]

-"9)nquIe qeIeds

asey -'sugn 310
ANQUNVYIAS)

-*9)nqLIIe qeIeds

BN -'sudn 310
ANQLN Y WIOJOL]
--9)nqIIIe'qeIeds

as[ey -'sugns1o
AnquyyuondQ

--9)nquIe qeIeds

asey -'s13n 310
NQLIIYSIIOA[EIOL,
--9)nquIIe qeIeds

as[ey -'sugn 310
Anqupyeq
--9)nqIIIe'qeIeds

asey -'sugng10
AnquNy3uImsg

--9)nquIIe qeIeds

asey -'sugnys1o
Iouunyjuy

-"dnjas‘suonoe

asey -"qereds sugn 310
uonoyeduoy qereog
-"9seq"SUOIoL

onn -'qereds sugn s1o
uonoIyISILjuIdoTaInbayy
-"9SBq"SuoIor

ann -'qereds s Sio
AnSS[AJIPOINOsEg
-*9sBq"SUOIIoR

ann -"qereds sugn 310
JpgaInquyadAyonssy
-"uruIpe’suonoe

onn -'qereds sugn 310
Jear)adA110enIyeqoO[D
-"uruIpe’suonoe

onn -'qereds sugn sio

DM SESN AdddSA XIS

ISN

JNSN ISN

qvd

INYON JAON AON ddN DOTIN DA DOT

NODT L1d

3daouo0d sse[)

99

23vd 1xau uo panunuo))

000

000

00°ISS

00y

0081

00°L

00°L

00°s¢

00T

00y

00y

00°L

00y

000

001

001

00C

00°SC

0081

00°0€

00°L

00°¢

00°ST

006

006

00'¥

00°¢

00'L

00T

001

001

00°'L

00T

00C

00C

00°s

00°1

00y

00C

000

000

00°1

001

000

00°1

000

000

L0°0

000

000

000

000

000

000

000

e

000

000

000

000

000

000

00T

000

000

00C

000

000

000

000

000

000

000

000

00'1

000

000

000

000

000

000

000

000

000

00C

000

000

001

000

000

000

000

00T

000

001

000

000

009

000

00T

000

000

000

000

000

000

00°0

88°0

€e'l

gee

00°0

00'C

81'C

00C

0S°0

0s0

001

00

00°0

00°0

000

000

00°¢

000

000

000

000

000

000

000

00°¢

000

000

000

000

000

000

00°CLT

00°¢

00t

001

001

00°T1

001

00°0

00'v

001

00°¢

000

001

00'0 000 000

00'0 000 000

00'9¢ S9C 00+CST

00'¢ €€1 000%

00 0S¢ 00°001

000 00T 00T

000 00T 001

00’1 LTCT 00v¥C

000 00T 001

00'0 00C 00°0C

00'0 00T 009

000 00T 00C

000 00T 009

00'0 000 000

00’000 000

000

000

0C'e

(2!

0sy

001

00°1

81'¢

00T

00C

00T

00°1

001

000

00°1

00°'S

009

00'vrie

00°CS

00°LTT

00°S

00'6

00°L0€

00°L

00°8¢

00°S¢

00'6

00T

00C

00°L

000

000

86°0

0s0

090

000

000

€60

000

00T

000

000

000

000

000

00°¢

00°¢

00y

001

001

000

009

001

00y

00T

00°¢

00°¢

00's

009

00°s

199quondpadAenssy
-"Wo'qeIeds

EN S -'su3n 310
Kouanbaiy wo

onn -"qereds'susn 3o
[duipes nqeresgeseq
-"Wo'qeIeds

as[e; -'sugn s8I0
PI9,JoNSS]'SPady

ann -"qeIeds sLgn 310
Pa9JAIoNn() spasj

ann -"qeIeds sugn 310
P9 "Spad)

as[ey -"qeaeds’stgn g1o
uondooxgv(ep

as[ey -"qeIeds’stgn 310
$S900yINqUNY

-"ep qeress

EN S -'su3n 310
JongdnyoogAI0)0e vV
-"ep-qeress

-'sugn s8I0

K10100]vqep

as[e; -"qeIeds sLgn 310
jusuodwo)enbioy,
-'syjuouodwod

as[ey -"qeIeds’stgn 310
Jo[aego[dureg

-"SNJOB QRIS

as[ey -'sugn 1o
Jo[AT0gQ[dweSIsaT,

-SNJOB QRIS

EN -'su3n 310
AnquUyxogoquioD)
--9)nqLIje qeIeds

asyey -'sugn S0
ANQUNYIUQIIS
-"InquIe qeIeds

as[ey -'sugn S0

ONM SESN AdddASA XIS

ISN

INSN

HSN

qvd

INYON NON

HON ddN DOTIN

DA

D071

NODT LId

1d3ouo0d sse[)

100

23vd jxau 1o panunuo)

I0S()qeIedSI1oensqy
-"Wo'qeIeds

00'8¢C 00'CE 001 000 00'T 000 00% €60 000 0088 0061 861 00198 65T 008911 860 00'C °nn -'sugnSio
I99JUONEIYIPOIN

-"wo'qeIeds

000 00T 001 000 00°0 000 000 000 000 00'0 000 000 000 000 00°S 000 00°¢ °sred -'susn Sio
199dWRINISITLIN

-0 qeIeds

000 00T 001 000 00'0 000 000 000 000 00'0 000 000 000 000 00°S 000 00°¢ °sreJ -'susn'sio
I09gSse[DoInquyeseq

-"Wo'qeIeds

00'6S 009C 001 000 00'T 00'8¢ 006 tET 000 000 000 S¥'I 00LTC SS'T 00°LOY 960 00°C °srej -'sugngio
o[npoJNqeIRdS

-"wo'qeIeds

0068 00°0€ 00'6C €0°'T 00'T 000 00C €01 006 00°¢€ 00°S LL'T 00°CO¥ ¥S°C 008¥S L6°0 00’y enn -sudn-sio
I05RURIAIOINGINI YIS)O[NPOIATY

-"wo'qeIeds

00T 00T 001 000 00'0 000 000 000 000 00’ 000 00T 001 00°T o0'0I 000 00°¢ °sred -'susn g0
IoSeue N UONISURIT ISR

-"Wo'qeIeds

00CCc 00°¢l 001 000 00T 00°€l 00T S6'0 000 006 000 00T 00°se 001 008CI 001 00°C °sreJ -'SUB 810
I09gpuado(geseyqg

-"wo'qeIeds

00°CIT 000 00T 000 00T 00°%¥ 0001 OEI 000 000 000 681 00CSS SSCT 008SL T6'0 00°C °sred -sudn-sio
Kouonbarjoseg

-"wo'qeIeds

00°SIT 00°LT 001 0€'0 00'T 00T 00T IL0O 009 000 00°'L 0T'C 00C8y 08T 000€9 160 00°C °sred -'susn S0
Ja3euejyodA T onss|

-"Wo'qeIeds

00'L 00L 001 00°I 00'0 000 000 0S0 00T 009 000 LI'T 00°LL LI'T 00¢r 000 00°¢ °sreJ -'SuB 810
1394°dA 108 A1Anoyoseq

-"wo'qeIeds

00'6S 009C 001 000 00'T 00°8¢ 00'L ¥ET 000 000 000 S¥'I 006IC SS'T 00°S6E 960 00°C °sreJ -'susn S0
103euejydiysuoneoyuondQ

-"wo'qeIeds

00T 00T 001 000 00'0 000 000 000 000 00'T 000 00T 001 00°T o0'0I 000 00°¢ °sred -'susn-Sio
193eueyuondouondoy

-"Wo'qeIeds

00T 00T 001 00°0 00°0_00'0 000 00°0 00T 000 00T 001 00°T 000 000 00°¢ °sreJ -'susn 510
DM SHSN AdAdSA XIS ISN JASN ASN IWION WON AON ddN DOTA DA DOT WODT LIA 1douod Sse)

101

23pd jxau uo panunuo))

Adadasn XIS IOSN INYON AON

I994onss[eseq

"W qeIeds

00°C 9S[%) -'sugn g0
IoSeueSSR[DAINqLIYOseq
-"Wo°qeIeds

00°C 9s1%) -'sugn-S1o
1004 AIANOoseg

-"Wo'qeIeds

00°C 9s[e} -'sugn 810
103euejyodoogaseg

-"WO"qeIeds

00°C 9S[% -'sugn 3o
uondQornpoyeseq
-"WoqeIeds

00°C 3s1%) -'sugn S0
193eueyuondouondpyeseg
-"Wo'qeIeds

00'C 2s1e} -'sugn 810
1394odA 1 puadageseg
-"WO"qeIeds

00°C 9S[%) -'sugn 310
133eueNodAINquUYIseg

"W qeIeds

00°C 9s[%) -'sugn g0
ISUTLIINeseq WO

00°C 9S[%) -"qeIeds’sLgn g10
10949INqIN}Y WO

00°€ 9S[e) -"qeIeds’sLgn 310
adA1 puadoeseg

-"Wo"qeIeds

00°C 9s1%) -'sugn S0
J0SeUBIA[OJOA ONSST

-"WoqeIeds

00°€ 9s[e} -'su3n 310
1a3eueyodA puadoaseg
-"WO'qeIeds

00°C 9S1%) -'sugn 310
diysuonejoyuondpaseg

"0 qeIeds

00°C 9s1%) -'sugn g0
NODT LIA 1daduod SSB[D

102

28pd 1xau uo panunuo)

Adadsn XIS JNYON INON AON ddN JDOTIA DA

1a3eueypuado(geseq
-"wo'qeIeds

00°C 9s[eJ -'sugn 1o
9)OAONSS] WO

00°€ onn -"qeIeds sLgn 310
1394910y 1esNdnoin3urpusgaseqg
-0 qeIeds

00°C 9s[ey -'sugn S0
IoSeUBAINQLI YV O[NPOIATY
-"Wo'qeIeds

00°€ 9sey -'su3n 310
JUAWIORY ISy

-"wo'qeIeds

00°C 9s[eJ -'s1gn 510
I99J19)ouwereJeqo[noseq
-"wo'qeIeds

00°C 9s[ey -'sugn 310
1a3eueyodA T Juswyoe yyoseqg
-"Wo'qeIeds

00°C 9s[e) -'sugn 1o
IoSeueAUOTIISURI],

-"wo'qeIeds

00°€ 9s[ey -'s1gn-S10
I10ZeURIAIOSANANOY
-"wo'qeIeds

00°€ 9s[ey -'sugn S0
1994dysuoneayuondp
-"Wo'qeIeds

00°€ 9s[ey -'sugn 1o
QOURIRJRIJIoS)

-"wo'qeIeds

00°¢ onn -'s13n-s10
1994od A1 onss[onpojARyoseqg
-"wo'qeIeds

00°C 9s[eJ -'sugn S0
133eueIARdATanSSTINPOINYoseq
-"Wo'qeIeds

00°C 9s[eJ -'sugn S0
WODT LIA 1daduod SSe)

103

23nd 1xau uo panunuo)

133euejNdnoinonquyyaseq

-"wo'qeIeds
00'CC 00°€T 001 000 00T 00°€l 00C S6'0 000 006 000 00T 00'SsE 001 008CI 00T 00°C °sreJ -'sugn-Sio
I109Jojurore[dwa] anss[oseqg

-"Wo'qeIeds

00°'6L 000 001 000 00T 00°0%¥ 00°0I ¢€'T 000 000 000 891 00°Isc 861 00'1+vS €60 00°C °s[e} -sudn S0
19949)0A Josjaseqg

"W qeIeds

0069 00°1¢ 001 000 00°'T 0007 006 8E'L 000 000 000 S9'1 00'8cc CTL'I 00°0€S ¥6°0 00°C °s[e} -'susn g0
I094dnoineingumy

-"wo'qeIeds

00C 00 001 000 00°0 00'T 00T 001 000 000 000 00T 00CI 00T 00SC 000 00°¢ °s[e} -'sugnSio
K1ond wo

00'6€ 00°0C 00°CC 60 00°0 00'I 00’1 %60 00°S 0091 00°1 881 00COC 6CC 00°LLT L6°0 00°¢ =nn -'qexeds LS 510
I_JISITLIIN WO

000 00T 001 000 00°0 000 00¢€ 000 000 00'0 000 000 000 000 00°'IT 000 00°¢ °s[e} ~qereds sLsn 510
133eueNuondQAnqLmy

-"wo'qeIeds

00¢ 00 001 00C 000 000 000 €£0 00T 00'¢ 000 00T 006 00'T 00°SC 000 00°¢ °sreJ -'susnSio
1094dno1nongqumyeseg

-"Wo'qeIeds

00°¢6 00°0€ 001 000 00T 00°0¥ 00°€I ¢ 1T 000 000 000 89T 00°€I¥ TET 00609 €60 00°C °s[e} -sudn-Sio
Io3euRIAONSS]

"0 qeIeds

00°'6¢ 00°0C 001 00T 00°0 00'¥ 00T 080 00T 009 000 00T O0'LLL 06'¢c 00°6IC 00T 00°¢ °s[e} -'susn S0
9Joponssjeseq

-"Wo'qeIeds

00'vS 0061 001 er’0 00'T 00’1 00C 6S0 009 00'8C 00'8 8’1 00°6L1 981 00'+¥8C 96°0 00°C °s[e} -'susnSio
109godAequyyaseq

-"Wo'qeIeds

00'%9 00°Lc 001 00°0 00°'T 00°6€ 0001 €€'T 000 000 000 IST 0089C ¥9'1 00'¥Sy S6°0 00°C °sre4 -sugn S0
uonrpuo)aseq

-"WO'qeIeds

00C6 007CC 001 6C'0 00’1 00'T 00C 950 009 00'cy 00°ClL Lv'I 00°8CE ¥I'C 00'8LY 96°0 00°C °s[e} -'susn S0
I199gpuadeq o

000 00T 001 000 00°0 000 00C 000 000 00'0 000 000 000 000 006 000 00°¢ °s[e} -qeeds sLsn 10
133eueyAouanbarg

-"WO'qeIeds

00T 00T 001 000 00'0_00'0 000000 000 00T 000 00T 001 00°T 00°0I 000 00°¢ °s[ey -'susn S1o
JINM SASN XdadsSn XIS IOSN SN ASN dVd IWION JWON AON ddN DOTA DA D01 WODT LId 1daduod Sse)

104

28pd jxau uo panunuo)

199godAonssT

-"wo°qeIeds

00'1C 006 001 000 000 00°L 00% €¥'I 000 000 000 00C 00C8 00€ 00Tl 960 00°¢ °s[eJ -'susn 8o
SSe[DANQLINY

-"WOqeIeds

000 00C 00L 000 00°0 000 000 000 000 000 000 000 000 000 009 000 00¢ °nn -sugn-S1o
IoSeueAI)oWRIRJ[RqO[DsEq

-"WO°qeIeds

00CC 00°€l 00°1 000 00T 00°¢l 00C S6'0 000 006 000 00T 00°Sc 001 008CI 001 00°C °s[e} -susn-g1o
I1oSeueyoJurere[dwo anss[eseq

-"woqeIeds

00CC 00°€l 00°1 000 00T 00°¢€l 00C S6'0 000 006 000 00T 00°'S€ 001 008CI 001 00°C °s[e} -'susnSio
ANQLINYIMPOIAYaseqg

-"Wo'qeIeds

00°Crl 00°'IC 00°1 ¢C0 00°T 00T 00T €90 009 00'%S 00°LT 08'T 00185 8SC 008LL 960 00°C °s[e} -sugn-S1o
I193RURIATUOIIBOLIPOIA

-"WO"qeIeds

00'T 00T 001 000 00°0 000 000 000 000 00'T 000 00T 001 00°'T 00°0I 000 00°€ °s[e} -susng1o
I09Jojureye[dwaanssy

-"woqeIeds

00°LT 00°€l 001 000 00°0 00'S 00°L 00t 000 00'0 000 O¥'C 008cl Ov'€ 00°LLL €60 00°¢ °SIe) -susn 8o
Io3eueNA1ondaseq

-"wo'qeIeds

00CC 00°€l 001 00°0 00°'T 00°€T 00C S6'0 000 006 000 001 00°SE 00T 00°8CI 00T 00°C os[e} -sugn 310
anquyyadAensspy

-"WO'qeIeds

008 006 0091 000 00°0 000 000 ST0 000 00y 000 SLT 0068 00T O0TIT 0000 00°¢ °nn -sugnS1o
IoUTEIU0)I[NPOJAqRIROS

-"Wo°qeIeds

00¢ 00T 000 €€'¢ 000 00°0 000 000 00T 00¢ 000 00T 00°¢ 00T 0091 000 00°C °nn -sugn-g1o
193euejydiysuoneoyuondpaseg

-"woqeIeds

00CC 00°€l 001 000 00T 00°¢l 00C S6'0 000 006 0000 00T 00°'S€ 00T 008CI 00°L 00'C °s[e} -sugn 310
I03RURIA[IOS | qRIROSIsRY

-"WOqeIeds

00CC 00vL 00°1 000 00T 00°¢I 00C S6'0 000 006 000 00T 00Sc 001 008CI 00T 00°C s[e} -sugn-S1o
199quondouondoyeseg

-"WO'qeIeds

00C6 00T 00°1 00°0 00T 00°'¥¥ 00°0I ¥€'T 00°0 00’0 000 98T 00'60S 60°C 00°6IL €60 00°C °SI®J -'susn 510

DM SHSN A4aASN XIS OSN SN ASN dVd WION INON AON ddN DOTIA DA D0T WODT LId 1d3ducd sser)

105

28pd 1xou uo panunuo)

000 0S¢ 00'1v

199JN[eAINQL YISty

Adadasn XIS INYON JNON AON ddN DOTIA DA

-"wo'qeIeds
00°C 9s1eJ -'s1131y'310
193euejyuondo[npoNy
-"wI0"qeIeds

00°€ 9s[ey -'sugny 1o
193euejyuondQ[npoIAYeseqd
-"wo"qeIeds

00°C 9s1eJ -'sugn 310
IoSeuejAUONIpUO)ISEH
-"wo'qeIeds

00°C 9s[eJ -'s1gn 310
133eueyuondpadAansspy
-"wo'qeIeds

00°€ 9s[eJ -'sugn 10
uondpamqumy

-"w0"qeIeds

00°¢ onn -'sugn 310
1094dnoI1neInquNyanquIyy
-"wo'qeIeds

00°€ 9s[eJ -'sugn310
1oeueAISNA1ONOY
-"wo'qeIeds

00°€ 9s[eJ -'sugny 310
IoSeue A UOTIEOYIPOINOSE
-"wI0"qeIeds

00°C °S[e} -'s13n 310
I0SRURIAISITLIIN

-"wo'qeIeds

00°€ 9s[eJ -'sugn'310
103eueIAdATanSS[INPOINY
-"wo'qeIeds

00°€ 9s[eJ -'s1g1y'310
uondpadA1onssy

-"wo"qeIeds

00°€ onn -'sugny S1o
ANQUY WO

00°€ onn -'qeaeds sugn 1o
IWODT LId 1d3duod sse[)

106

23nd 1xau uo panunuo)

00°C¢ 0€C 00°C881

IoSeueAUSOWIYOR) Yose g

-"Wo'qeIeds
00'C 2s[e} -'sudn 810
103eueyR[OYIsNdnoinIupusd
-"WO'qeIeds

00°€ 9s[ey -'s18n 310
J[oyresndnoin3urpusgaseq
"0 qeIeds

00°C 9S[%) -'sugn g0
Ia8eueNAIonQ)

-"wo'qeIeds

00°€ 9s[e} -'su3n 810
193eueyuondQadAansspyoseq
-"Wo'qeIeds

00'C 9s[e} -'sugn 310
ANQLIN YIS [NPOJAYIsed
"0 qeIeds

00°C 9S[e) -'sugn g0
199quondouondoy

-"WoqeIeds

00°€ 9s[e) -'sugn S0
UONEOYIPOIA WO

00°€ onn -"qeIeds’sLgn g10
1o3eueodoy

-"wo'qeIeds

00°€ 9s[e} -'su3n 810
100J[dwIas N qeIeds
-"WO'qeIeds

00°S 9s[e} -'sugn g0
QAINQUIYISS)I[NPOIATY

"0 qeIeds

00°€ onn -'sugn-g1o
puadogaseg wo

00°C 9S[%) -"qeIeds’sLgn 310
1a3euejyAouanbarjoseg
-"WoqeIeds

00°C 9s[%) -'sugn S0

QNqUyIseq wo
00°C S[ey -"qeIeos'susn 1o

WODT 1Iq 1daouod ssep)

SASN AdAdSN XIS IOSN SN

107

28pd 1x2u U0 panunuo)

Iasqered§wio

Adadasn XIS INYON JNON AON ddN DOTIA DA

00°0 9s[eJ -'qeaeds sugn 1o
19942InquyyodATanssTy
-"w0"qeIeds

00°€ 9s1e) -'sugn S1o
IoTeueNoNSS[IsRY

-"wo'qeIeds

00°C 9s1eJ -'sugn 310
10949InqLIyoseq

-"wo'qeIeds

00°C 9s1eJ -'s1g1y'10
ojurayedwaganssyaseq
-"wo"qeIeds

00°C 9S8 -'sugny S10
Iooguodoyeseqg

-"wo'qeIess

00°C 9S1eJ -'sugn 310
I01RINSWATSISTTLIN
-"wo'qeIeds

00°1 onn -'s1gn'310
ISUTLIN WO

00°€ onn -'qereds sugn 310
J133BURIA[IOA TS

-"wo"qeIeds

00°€ 9s[eJ -'s1gny 310
ojuraedwoy onssy

-"w0"qeIeds

00°€ °s[e} -'s13n 310
193euejNodA110SANNANOVIsRg
-"wo'qeIeds

00°C 9Se) -'sugn310
1a3eueNdnoinonquny
-"wo'qeIeds

00°€ 9s[eJ -'s11g1y'310
uondgonquny prrydiuared
-"wo"qeIeds

00'1 onn -'sugn 1o
13942doog wo

00°€ 9s[ey -'qeaeds sugn 1o
IWODT LId 1d3duod sse[)

108

23pd 1xau U0 panunuo))

00811

00'¥

00'vS

00°LT

00°¢

00°1

0091

00’16

00°€9

00°¢

00°'8¢1

00°S6

00°s

000

00'v¢

006

00°81

00cc

00°s

00°8¢

00°6¢

00°L

00°s¢

0061

00°s

00C

001

00°T1

001

00T

001

001

00°¢ce

001

00T

001

001

001

001

001

000

00°¢

£v'0

980

00C

000

000

000

000

000

000

8C°0

000

000

00T 00y

000 001

00T 001

000 00¢C

000 000

000 001

000 000

00T 00'8¢

00T 00°8¢

000 00¢

00T 00ty

0001 00T

000 001

00’0000

00°CI

00°¢

00C

000

000

000

00T

00°¢l

00°TT

000

0001

00C

000

00C

650

001

€0

000

L9'1

el

6¢°1

00

el

LSO

00

000

00°0

001

009

00'C

00C

00°0

00°0

00°0

000

000

00°0

009

00°0

00°0

000

00T

00°8¢

00'L

00°¢

000

00'6

000

000

000

000

00t

00T

000

000 S6'1

000 00T

008 8¥'I

000 8L'T

000 001

000 001

000 cc'l

000 SS'I1

000 €SI

000 0S'I

000 <So6'1

00°¢l 81

000 0S'I

000000

00°8¥9

00°6¢

00°6L1

00cel

006

00°1

00°¢9

00°ILE

009LT

0061

00°¢IL

00°¢ce

00°0C

000

89'C

00C

98’1

00°¢

00T

00°1

8L'1

6¢'C

991

0s'T

yl'e

91I'c

0s¢C

000

00798

00°¢S

00'¥8C

00°€91

00°S¢

00'6

00801

00°65S

00'¥91

00'9¢

00°€C6

00°LLY

00°ce

00’8

16’0 00C

00T 00°¢

199quondQa[npojAneseqg
-"wo'qeIeds

asey -'sugn 310
adA1nqumy-wo

onn -'qeIeds sugn 1o

dnoinenquyyanquyyyeseg

960 00C

000 00°¢

000 00°¢

000 00°¢

880 00°¢

60 00C

60 00T

000 00¢

68°0 00C

96°0 00C

000 00¢

000 00°¢

-"wI0"qeIeds

asrey -'sugn S1o
I93euRIA[NPOIN
-"wo"qeIeds

asey -'sugn 310
IoSRURAINGINY
-"wo'qeIeds

as[ey -'sugn 310
199JKouanbarg

-"Wo"qeIeds

asrey -'sugn 1o
10§ A)1AOY WO

onn -'qeIeds sugn s1o
I199godA1onssTeseg
-"wo"qeIeds

asey -'sugny'S1o
109 JUOTIBOYIPOINSE
-"wo'qeIess

asey -'sugn 310
109J9[NPOJNqBIEIS
-"wo'qeIeds

as[ey -'s1gn310
I199d19snA1andyyeseq
-"w0"qeIeds

asrey -'sugnyS1o
ANeAINQLIIYIseg
-"wo"qeIeds

asey -'sugn 310
10T BURIA[OUQIOJOIJIOS)
-"wo'qeIeds

asey -'s1gn 310
199gad AL amqumy
-"wo"qeIeds

asrey -'sugn 1o

IAM

SdsSN

Adadasn XIS

OSN JASN

ASN

avd

INYON JAON AON

ddN DOTIN DA

D071

NODT L1d

1dadu0d ssep)

109

28nd jxau uo panunuo))

[dwresnqeress

-"aro'qereds

060 00°S °s[es -'sugnsio
9)OA IS WO

000 00°¢ onn -qeress'suasn S1o
JIaaquonisueryaseq

-"wo qereds

60 00T os[ey -'sugnsio
199Jod AT onsS[O[NPOINY

-"Wo"qeIedS

000 00°¢ os[ey -sugn 310
IoSRUBIA[OIURIRJAIJIoS) dsed
-"WO"qeIedS

00T 00T os[ey -SHSI'SI0
SAIMYMOPIOM

-"wo qereds

000 001 onn -'sugn 3o
QOURIRJAIJIas)aseyqg

-"WO"qeIedS

S60 00T °sIe¥ -'sugn 8o
1snA1ndyyeseq

-"WO"qeIedS

960 00'C °s[eJ -sugn 310
1a3eueyodAonssoseq

-"aro'qereds

00T 00T os[es -'sugnsio
I9SRURIA[OINGLI)) Y ISS) A[NPOIATYISe
-"Wo"qeIeds

00T 00T ds[ey -'sugn81o
193eueNR[OYI9sNdnoinSuipudgeseyq
-"WOo"qeIedS

00T 00T os[ey -sugn 310
Ioeueypuado

-"WO"qRILdS

00Cc 000 00°¢ °s[e} -sugnS10

103eueyojurareidwar anssy
-"wo qereds
000 00°¢ ds[ey -'sugp 810

adaN DOTIN DA D0T WODT Lid 1daouod sse)

Adadasn XIS IOSN INYON NON

110

28pd jxau uo panunuo))

1394odA 1 puadoq

-"wo'qeIeds

00°€ 9s[ey -'sugn S0
adA 1108 ANnAnoy

-"Wo'qeIeds

00°€ onn -'sugn 1o
193eueyodA puadog
-"wo'qeIeds

00°€ 9s[ey -'s1gn s10
IoRUBIA[ON[EA ANQLINY
-"wo'qeIeds

00°€ 9s[ey -'sugn 310
109910\ Inss[aseq

-"Wo'qeIeds

00°C 9S[e) -'sugn 1o
10940INqIIIVI0S o[NPOIAY st
-"wo'qeIeds

00°C 9s[eJ -'s1gn 310
adA1onss[enpoAyeseq
-"wo'qeIeds

00°C 9s[eJ -'sugn 10
133eue A RINqLyadAanssyoseqg
-"Wo'qeIeds

00°C 9s[e) -'sugn S0
I09JUONIPUO))

-"wWo'qeIeds

00°€ 9sey -'su3n 310
193euRIARSANANOYIseg
-"wo'qeIeds

00°C 9s[eJ -'sugn 10
uondpadAonsspyeseq
-"wo'qeIeds

00°C 9s[eJ -'sugn S0
199JA10n) WO

00°€ 9sey -"qeIeds’stgn 310
WANISITLIN WO

00°€ onn -"qeIeds sugn 310
an[eAINqLIIY

-"Wo'qeIeds

00°€ onn -'sugn S0

WODT 1LId 1dsouod ssep)

Adadsn XIS WION INON ddN DOTIN DA

111

28pd 1x2u U0 panunuo)

0029

00°Cc

0001

00°6L

00C

00'¥

00°LTS

000

00°0C

00'vL

00°s

00y

00611

00°9¢

00°LT

00°¢l

0001

0091

00y

00°L

00°6C

00T

00°CI

00°6C

00°TT

00'¥C

00°81

0091

001

001

00'C

001

00'6

001

001

001

001

001

001

00'8¢

001

001

000

000

000

6¢0

000

000

[AN0

000

000

000

000

69°0

9C'0

0s'1

001

001

00°0

001

000

000

00'C

00°0

001

001

000

000

001

00°0

00°6¢

00°¢l

00y

001

00°0

00°¢

001

000

0011

00°6¢

00°¢

00y

001

0091

0001 €€'1

00T

000

00'C

000

00t

00'C

000

00C

00'6

00°¢

009

00T

00°0

$6°0

STl

90

001

00°1

8L°0

000

060

2!

€e'l

§9°0

90

909

000 000

000 006

000 000

009 00'1€

000 001

000 000

00'L 00851
000 000
000 006
000 000
000 000
00°¢ 00°¢l

009 00°Lv

001 00'C

000 0099C 651

000 00T 00°sc 00T

000 SL'T 00C6 0SC

009 L6'T 0080€ L¥'C

000 00C 00L 00'C

000 €¢I 006C €1

00'1¥ 0€C 00°SSCT 1€°¢

000 000 000 000

000 00T 00cc 001

000 2¢9'1 00¥0€ 06'1

000 L9T 00°se L9'1

00'T 9L'T 00'8CC L¥'C

00°CI 181 009y 8¥'C

000 TT'1 009¢l vl

00°Csy

00°8¢1

00601

00°¢cy

0091

00¥¥

00'818¢C

00°s

00811

00°88¥%

00°Ly

00c6T

00929

00°18¢C

§6°0 00C

00T 00C

000

60 00C

000 00°¢

00°L 00°¢

860 00°¢
000 00¢
00°L 00C
¥6°0 00C
00T 00°¢
0’1 00°¢
$6'0 00¢C

000 00°¢

109J00udIoJoIdIos naseq
-"wo"qeIeds

asey -'sugn 310
I0TRURIA WIS TLIINOSeT
-"wo'qeIeds

-'susn 310
199JUON)ISUBI],
-"wo'qeIeds

-'sugn 10
adAuswyoenyaseg
-"wo"qeIeds

-'s13n 310
19snAend Y wo
-'qereds sugn Sio
I09JoNSs] WO
-'qereds sugn 1o
Q[NPOJAqeIeoSaseyq
-"wo"qeIeds

-'sugn 310

199J9)10A NSST
-"wo'qeIeds

as[ey -'sugn 310
I05BURIA[9)OA Josaseq
-"wo'qeIeds

asrey -'sugn 310
10quondpanquyyeseqg
-"wo"qeIeds

-'s131n 310
I09Jon[eAINqLIY
-"wo'qeIeds

-'sugn 310
JUSWIYOBYY "WO
-'qereds sugn 310
uonisuel]aseq
-"wo'qeIeds

-'sugn 310
I133RURAKNIAIIOY
-"Wo"qeIeds

-'sugn 1o

asyey

as[ey

asrey

onn

as[ey

as[ey

as[ey

as[ey

onn

as[ey

as[ey

IJNM

SdsN

Adadasn XIS

ISN

INSN

ASN

qvd

INJON INON

JON ddN DOTIN DA

2071

NODT L1d

1dadu0d ssep)

112

28pd jxau uo panunuo))

1994od A yuswyoepyoseqg

"0 qeIeds

00°L9 00°8C 001 000 00T 00°8¢ 008 vE€'T 000 000 000 SST 00°6SC 9L'1 00°€ey S6'0 00°C °s[e) -'susn S0
192[qOasegqereos

-"woqeIeds

008 00C 000 000 00'0 000 000 0S'0 000 008 00°¢ 001 008 00°T 00°6€ 9.0 00T °nnp -'suB 810
IojowrereJeqorn

-"Wo'qeIeds

000 00°¢ 009 000 00°0 000 00+ 00°0 000 000 000 000 000 000 00°¢T 000 00°¢ °nn -sugn-Sio
199Jod A yuswyoeny

-"WO qeIeds

000 00¢ 001 000 00°0 000 00°L 000 000 000 000 000 000 000 00CI 000 00°€ °s[e} -'susn S0
I994I9)ouwereq[eqorn

-"WoqeIeds

000 00T 001 000 00°0 000 000 00°0 000 000 000 000 000 000 00°S 000 00°¢ °sreJ -'suB 810
K1ondaseq wo

00°€81 00'vC 001 L1°0 00' 00°'T 00°C 650 009 00CL 00%C ¥9'1 009L9 16T 00°'I€6 L60 00°C °s[e) ~qeIeds sLsn 1o
uondpeinguyyoseq

-"Wo'qeIeds

00°6S 00°€C 001 60°0 00’ 00'T 00C ¢80 009 00°€€T 00°8C L¥'C 00%€0C €v'€ 00'VIST L60 00°C °S[e) -'sugnSio
1o3eueiNINqUIYAdAT oNnssTy

-"Wo'qeIeds

00T 00T 001 000 00°0 000 000 00°0 000 00'T 000 00T 00T 00'T 00'0I 000 00°€ °S[e} -sudnSio
1394uondO3npoIAy

"0 qeIeds

00'T 00Fv 001 000 00°0 00°T 00T 00°'T 000 000 000 001 00¢ 00'T 00'¥I 000 00°€ °s[e} -'susn g0
KIAOYosRg WO

00°€LT 00°€C 001 91'0 00T 00°T 00T 950 009 00'vL 009C S¥'I 00°€09 1€7T 00€98 860 00°C °S[eJ -qeeds sLsn 10
109J9INqLIII9S) A[NPOIATY

-"WoqeIeds

000 00T 001 000 00°0 000 000 00°0 000 000 000 000 000 000 00°S 000 00°¢ °sreJ -'sugn g0
IoSeueAoN[EA ANQLIIOseq

-"Wo'qeIeds

00CC 00°€l 001 000 00'T 00°€l 00T S6'0 000 006 000 00T 00°S¢ 001 008CI 001 00°C °s[e} -'susnSio
wAPSITLINGsed

-"wo'qeIeds

009 0081 001 8¢°0 00'T 00'T 00C SS'0 009 00Cc 008 8¥'I 00°€IC L6'1T 006CE S6'0 00°C °S[B) -susn-Sio
I9JIuauIyoe)y

-"WO'qeIeds

00C 00°S 001 00°0 00'0_00'T 00T 00T 000 00’0 000 00C 00CI 00T 00SC 000 00°¢ °s[ey =S8N S1o

DM SHSN A4aASN XIS OSN SN ASN ¥Vd IWION WON JAON ddN DOTN DA DOT IWODT Lid 1deouod sser)

113

28nd jxau uo panunuo))

IoSeURIANUSWIYIR)Y

-"WO"qeIeds

009 00°0L 001 0S'T 0000 00'% 000 €€ 001 00C 000 00T 006 001 00€S 000 00°¢ °s[e} -sugn S0
139J19SANANOY

-"Wo°qeIeds

00C 00°¢ 001 000 00°0 00°T 00T 00T 000 00’0 000 00C 00CI 00T 00SC 000 00°¢ °s[e} -sugn g0
odA1enssywo

00°0¢I 00°LC 00°88 €1°0 000 00T 00°SI 160 00T 00'Sy 00C 0CT'C 00vE9 19°C 00698 660 00°¢ =nn ~qeIeds sLsn 1o
IoSeueydnoInonquyoINgLIy Yoseq

-"wo°qeIeds

00°'0C 00CI 001 000 00T 00°IT 00C 060 000 006 0000 00T 00€c 001 00°8IT 00T 00°C °s[e} -'susnSio
AnqupyadArensspyoseq

-"Wo'qeIeds

00'¥8 0081 001 ¢€’0 00°T 00T 00T 950 009 00'8¢€ 00°€l 6’1 00%6C SI'C 00¥Er 960 00°C os[e} -sugn S0
1094odA 1105 K11An0Y

-"WO"qeIeds

000 00C 001 000 00°0 000 00+ 000 000 00’0 000 000 000 000 00°6 000 00°¢ °s[e} -susn g1o
I90dAouanbarjoseg

-"WoqeIeds

00°LS 009C 001 000 00T 00°8¢ 00°L vET 000 000 000 S¥'I 00°LIT 0S'1 00€6E 960 00°C °s[e) -sugn-gio
9[NPOJAIqEILdSIoenSqy

-"Wo'qeIeds

00'¥€C 00°6% 001 200 00°€ 00°0 00°LT 2O 00°T 00°S8 00°€ <C0°C 00°10ET SL'C 00°L¥9T 00°L 00'C =nn -sugn 310
JIoSeURATUOIIPUOD)

-"WOo"qeIeds

00'T 00T 001 000 00°0 000 000 000 000 00'T 000 00T 001 00'T 00°0I 000 00°¢ °s[e} -sugn S0
I93euRIAISITLIINOSed

-"Wo"qeIeds

00CC 00°€l 00°1 000 00T 00°¢l 00T S6'0 000 006 000 00'T 00°Sc 001 008CI 001 00°C °s[e) -sugn g0
IooquonIpuo)eseq

-"WoqeIeds

00'¥ST 00°'TE 001 000 00T 00°'8% 00°1T LT'T 000 000 000 86’1 009¢6 1ITE 000911 €60 00°C °s[e} -'susnSio
dnoinanqumy

-"WO'qeIeds

00'v¥ 00°6C 00°SC §e€'0 0000 00°'T 00C 0S0 00T 00°LT 000 <L'T 0090v ¥¥'C 0088y ¥6°0 00°¢ =nn -sugn-S1o
I109JWRINSITLIINOSeq

"0 qeIeds

0086 00°6C 001 000 00T 00'¥¥ 006 0E'T 000 00’0 000 08T 00CIS €TC 009IL ¥6'0 00°C °srey -'susn 810

DM SHSN A4AASN XIS OSN SN ASN dVd WION INON AON ddN DOTIN DA D01 WOIDT LId 1douod sser)

114

23nd 1xau U0 panunuo)

193euejNodAT Juowyoeny

-"Wo'qeIeds

00T 00T 001 00°0 00'0 000 00°0 00°0 00°0 00'T 000 00T 00T 00°'T 00°0T 000 00°¢ °s[ey -'SuSn810
199 4loday wo

009 008 00T 000 000 00°€ 00T 00'T 000 000 000 L9T 008C 00T 006¥ 001 00°¢ os[ef ~'qeIeds susn 510
uonedyIpojNaseq

-"Wo'qeIeds

00°09 00°LT 00°T €70 00'T 00'T 00°C SSO0 009 008C 006 TS'T 000IT LOT 00°SIE S6°0 00°C °s[e} -'SLSN8I10
103eueAIeS N A1and)eseg

-"wo'qeIeds

00°0C 00°CI 001 00°0 00'T 00'IT 00'C 060 000 006 000 00T 00°¢c 00T 00°8IT 00T 00°C °s[e} -'sugn 8o
I193BUBIA[[NPOIAOSEY

-"wo'qeIeds

00CC 00+vI 00°1 000 00'T 00°€T 00'C S6'0 000 006 000 00T 00°Sc 001 008CI 00°L 00°C °s[e} -'susn'§1o
19949InqVo[npoNy

-"Wo qeIeds

00 00L 00T 00°0 000 00°€ 00°¢€ 00°T 000 000 000 €€1T 00TC ¢€€7T1 00¢y 001 00°¢ °s[ey -'SLSn'§10
adoogaseg wo

00°6¥T 00°8T 00°T $2°0 00'T 00°'T 00T ¥L'0 009 006 006 8TT 00°S¢9 86'C 00°SI8 €60 00°C °os1e} -'qeIeds"SLISN 510
sse[DeInquUyIyaseq

-"Wo'qeIeds

00°€L 0091 00°1 0r°'0 00'T 00'T 00T 850 009 00°0€ 00°L ¥#81 00°69C S€T 00°SLE ¥6°0 00°C °s[e} -'SLSn810
ad£puadsqwo

000 00T 00L 00°0 00'0 000 00°0 00°0 00°0 000 000 000 000 00°0 009 000 00°¢ °onn -qeress'sLsn 510
puadoq wo

00°LT 0001 0091 00°0 000 00'T 00°0 ¥9°0 00°0 00°0T 00°€ LTT 000S SST 0086 060 00°¢ =°nn ~'qeIeds suSn 510
199quondpaingumy

-"wo'qeIeds

00C 00t 001 00°0 000 00'T 00°0 00°0 000 000 000 00T 00%I 00T 00'IC 000 00°¢ °s[e} -'SLSN8I10
19SA)IAOVIseq

-"wo'qeIeds

00°€91 00°CC 00°1 [0 00°T 00°'T 00C 690 009 0085 00°€l €0°C 00%L9 9LC 00°S88 S6°0 00°C °s[e} -'sugn8o
Io)oweIeJeqorneseq

-"wo'qeIeds

00°€S 00°ST 001 9%'0 00'T 00'T 00°C TS0 009 009C 009 TS'T 00°SLT 96T 00°'ILT ¥6°0 00°C °s1e} -'SLSn 810
I93eURIAISSR[DAINQLINY

-"Wo'qeIeds

00°¢ 00°S 001 00°C 000 000 00°0 €£0 00T 00°¢ 000 00T 000 00T 009C 000 00°¢ °s[e} -'SLSN'8I10
ad A1 anss[onpoIA

-"Wo"qeIeds

009¢ 00°ST 00'9¢ 0’1 00'0_00°0 000 00°L 00°ST 000 L8'T 00°161 0O¥'C 00°9¥C 00°0 00°¢ °nn -'susn'510

OINM SASN AdddsnN XIS DOSN INSN ASN IWION WON AON ddN DOTN DA D01 NODT LI 1daduod SSe)

115

28pd 1xau U0 panunuo)

133eueyuondOnquyyaseqg
-"Wwo'qeIeds

00°C 9s1eJ -'sugn 310

IOQJRI0A IOS) WO

00°E °s[ey -*qereds'sudn 310

mopgyropuondo
-"WO"qeIeds

00'1 onn -'sugn 310

1a3euejyodoyeseg
-"WO"qRIedS

00°C 9S8 -'sugn'310

J10doy wo

00°¢ onn -'qereds sugn 510

uondouondoyeseg
-"WO"qeIedS

00°C 9s[ey -sudn-g10

IoSeueAlIO)oWEIRJ[2qO[D)
-"w0"qeIeds

00°€ 9sTeJ -'sugn 310

dnoipeinqumnyeseg
-"WO"qeIeds

00°C 9s1e) -'s1gn'310

uondoampoy
-"moqereds

00°€ onn -'sugny 10

uondouondoy
-"wo"qeIeds

00°¢ onn -'s13n 310

uonisuer] wo

00°¢ °onn -'qereds sugn 310

9JopTosnaseq
-"wo"qeIess

00°C 9s1e) -'sugn 310

adAuowryoeny
-"WO"qeIedS

00°€ onn -'s1gn'310

133eueNRdA119SANANOY
-"WO'qeIedS

00°¢ 9s[ey -su3n 810

WODT LIq 1d%ouod sse)

SHSN AdddSN XIS IWJON INON ddN DOTIN DA

116

28nd jxau uo panunuo))

00T

001

00'8

00T

00°1

00°s€

00T

00T

00T

00T

001

00°9¢

001

0011

000

000

000

000

000

001

000

9C0

000

000

(4]

oSl

000

00°0

1994910y 1esNdnoinJurpuag

-"WO"qeIeds
00°€ 9s[%) -'sugn 310
I19ZRURIA[QIOA 2NSS[ISEY
-"WOoqeIeds

00°C 9s1%) -'sugn S0
JroyresndnoinIurpuag
-"Wo°qeIeds

00°¢ onn -'su3n 810
199quondpadAanssyyeseq
-"Wo'qeIeds

00°C 9s[%) -'sugn 310
1094dno1noInguIyaInqupyyoseq
-"WO"qeIeds

00°C 9S1%) -'sugn g0
ANQLIYI[MPOIAI

-"Wo°qeIeds

00°¢ onn -'su3n 810
I09JIusuIyde)yaseqg
-"Wo'qeIeds

00°C 9s[%) -'sugn 310
J0doyeseq wo

00°C 2s1e) -"qeIeds sLgn 310
1094dysuonejayuondpaseq
-"WO'qeIeds

00°C 9S1% -'sugn 3o
1994ANANOY WO

00°€ 9s[e) -"qeIeds’sLgn 310
adApangumyaseg

"0 qeIeds

00°C 9s1%) -'sugn g0
K)NADOY WO

00°€ onn -"qeIeds’sLgn 310
I199dA1ond)eseqg

-"Wo°qeIeds

00°C 3s1%) -'sugn-S1o
adoog wo

00°€ onn -"qereds’sLgn S10

000 001

000 00°Cl
00T 00¢

00°€6 00°€E
0069 00'I¢
00'1¥ 00°¢C
00' 11 00°I€
00°L0T 0061
0065 009¢
000 001

00'¢6 00°LI
0081 00¥I
00°L8C 00'vE
000 00°¢

JINM SESN

Adddasn XIS ISN

INYON NON

WODT 1Iq 1doouod sse)

117

28pd 1xou uo panunuo)

IoSeuRIAINGIIY ISR

-"wo'qeIeds

00CCc 00°€l 001 000 00T 00°€l 00C S6'0 000 006 000 00T 00°SE 001 008Cl 001 00°C °sred -'sudn'sio
139d10SAanoyeseq

-"wo"qeIeds

0086 00°6C 001 00°0 00T 00¥¥ 00°0I O£ 000 000 000 081 009IS €TCT 00CL ¥6'0 00°C °SIe} -'susn‘sio
PIPAIBIaPOJ$onsST

-"wo"qeIess

00'IC 00°¢€S 00'L 81°0 000 000 000 ¢80 007C 00'IT 00¢ SST 00LS 161 0086 LSO 001 °nn -'sugn 810
oNSS['wo

00°€8¢€ 00°€S 00°8L 91'0 00'T 00°S 00¥E I¥'T 00°L 00'8CI 00T S6'1 00°0SET 88'C 009¢0€ 00°L 00°¢ °nn -'qeress'sLsn 5o
I0oJ[dwIasqeredgaseq

-"wo'qeIeds

0091 00vI 001 000 00'T 006 00¢ CCT 000 000 000 8LT 00SL 8LT 008IT 801 00 °s[e} -'sudn 5o
10SRUBAINQLINYI[NPOIATYoseq

-"wo'qeIeds

000 00CI 001 000 00T 00T 00C 060 000 006 000 00T 00¢€c 001 00°8LIT 00°L 00°C °sred -'susnsio
dnoinanqupyanqunyy

-"wI0"qeIeds

00'l 00¢ o007cI 00°0 00'0 000 000 000 000 00'l 000 001 00 00°T 00°€T 0000 00°¢ °nnp -'sLSn310
I09J9[NPOJAqeIBdSaseq

-"wo'qeIeds

00°0¢T 00'6T 001 000 00T 00%¥ 00°1T CE'1T 000 000 000 T8T 0068 €LC 00LI8 ¥6'0 00°C °s[e} -'sudn 5o
diysuoneroyuondp

-"wo'qeIeds

000 00¢€ 00°¢ 000 00'0 000 00T 000 000 000 000 000 000 000 00°L 000 00°¢ °nn -'sudn‘sio
adA1ensspeseqg

-"wo"qeIeds

00°6S 00°9C 00°1 60°0 00'T 00'T 00T 6L0 009 00°S€l 00CE 6€C 00¥661 8C'€ 00'8LYC L60 00°C °SI®) -'susn'310
199dISTTLIN®Sed

-"wo"qeIess

00'¥8 006C 001 000 00'T 00°6¢ 0001 €€ 000 000 000 791 008 SI'CT 00VES €60 00°C °S[e) -'sugn-810
I09gIesnArondy

-"wo'qeIeds

000 00T 001 00°0 00'0 00°0 000 000 000 000 000 000 000 000 00°S 000 00°¢ °sred -'sudnsio
199g9nqrumyadAansspyoseqg

-"Wo"qeIeds

00°6C1 00°ce 001 00°0 00'T 00°0¥ 00°¢l 8¢’ 000 000 000 SLT 00¥6S TCTE 00v6L 880 00°C °SI®) -'susn‘5io
OINM SASN A9adsSnN XIS DOSN SN ASN dVd IWION WON 40N ddN DOTA DA D0T INODT LId douocd Sse)

118

28pd 1x2u U0 panunuo)

133euejyodoog

-"wo"qeIeds

00T 00T 001 00°0 000 00°0 000 000 000 00’ 000 00T 001 00'T 00°0I 000 00°¢ °sre} -'sugn 810
103euRINANIATIOYVOsSRY

-"wo'qeIeds

00CC 00°€l 001 000 00T 00°€T 00C S6'0 000 006 000 00T 00°SE 00T 008Cl 001 00°C osre} -'sudn 5o
I133BURIAIIOS | qRIBOS

-"wo'qeIeds

0001 008 001 00°T 00'0 00'C 000 OC'I 001 00c 000 091 00CE 00T 0095 000 00°¢€ °SIe} -'susnsio
1o3eueNodATINqLNY

-"wI0"qeIeds

00c 00S 001 00'C 000 000 000 €£0 007C 00'¢ 000 00T 000I 001 009C 000 00°¢€ °sIe} -'sugn S0
IoSeue A dnoInoINqLIIVoINGLIIY Y

-"wo'qeIeds

00c 00S 001 00°C 00'0 000 000 €£0 00C 00'c 000 00T 006 00'T 00°SC 000 00°¢ =%} -'sudn 5o
109J90UdIJaIJIes)

-"wo'qeIeds

000 00T 001 00°0 00'0 00°0 000 000 000 000 000 000 000 000 00°S 000 00°¢ °srey -'susn‘sio
IoSeURATWIISTTLIIN

-"wI0"qeIeds

00l 00T 001 00°0 00'0 000 000 000 000 00’ 000 00T 001 00'T 00°0I 000 00°€ °sre} -'sLSn310
uonIpuo) Wo

0081 00°S 008l 0’1 000 000 000 00T 00°L 00C 000 00¢ 008 006 000y 000 00°¢ °nn ~qeIeds'SLSN 510
onss[oseq wo

00°¢ve 00°SC 00°C I1°0 00C 00'T 00T 9L0 009 00°L0T 00°9C ST'C 00v9¥I 8I'c 00'8¥81 L60 00°C °SIB} -qeIeds'SLSN 510
190gedoogaseg

-"wo"qeIeds

00°LS 009C 001 00°0 00T 00°8¢ 00'L tET 000 000 000 S¥'I 00°LIT 0S'1 00¢€6E 960 00°C °srey -'susn §Io
10949INqLIIYI[NPOJARYoseq

-"wo'qeIeds

00°8LT 00'vE 001 000 00T 00'%¥ 00%1 6€1T 000 000 000 S6'T 00968 SO+ 009ITT L8O 00°C °s[e} -'sudn 5o
Q[NPOJA WO

0086 00°0C 00+0T1 000 009 000 000 €60 000 0086 00t 00T 00191 00T 00°0LT 10°L 00°0 °srey -'qeress'sLsn 510
1994 SSe[DINqINY

-"wo'qeIeds

000 00T 001 00°0 00'0 00°0 000 000 000 000 000 000 000 000 00°S 000 00°¢ °sred -'sudnsio
adA11esK11Anoyaseg

-"Wo"qeIeds

0069 0091 001 €7'0 00'T 00T 00C 290 009 00'8C 00°S L6'T 00°€9C 8€T 00°L9¢ T6'0 00°C °SI®} -'susn‘5io

JINM SASN AAASN XIS OSN WSN ASN dVd IWHON IWNON AON ddN DOTIA DA DOT WODT LI 1daduod SSe)

119

28vd 1xou uo panunuo)

1apingdeojurereidwaanssy
-"dewr wo qeIess

00'c 009 000 000 00'0 000 00T 000 000 00'c 00T 00T 00°SI 00T 00°I¢ SL'O 001 °s[e} -sugn-g1o
IoprmgdeNeInqInIyIas N9[NPOIAY

--dewrwo-qereoss

00'¢ 009 000 00°0 00'0 000 00T 000 000 00'c 00T 00T 00vC 001 000F SL'O 001 °srej -sLsn'g1o
JoprmgdeuonIpuo))

--dewrworqeress

00'c 009 000 000 000 00°0 00T 000 000 00¢ 00T 00T 00°€C 00T 00°6€ SL'O 001 °sre} -susn 8o
Jop[ingdeyiuowyoeny

-"dew wo qeIess

00c 00L 000 000 00'0 000 00T 000 000 00'c 00T 00T 00LZ 00T 00°€y SL'O 001 °sre} -sugn-g1o
JopmgdeAIRSANAnOY

--dewrwoqereds

00'c 00L 000 000 00'0 000 00T 000 000 00'c 00T 00T 008 00T 00¥¢ SL'O 001 °srej -SLgn'g10
1opringdeyuondpadA anssyy

--dewrworqeress

00'¢ 00 000 000 000 000 00T 000 000 00¢ 00T 00T 009 00T 00CE SL'O 001 °sre} -susnSio
Iop[ngdejA91oA 1os)

-"dewrworqereds

00'c 00 000 000 00'0 00°0 00T 000 00°0 00°¢ 00T 00T 00FI 001 000€ SL'O 00T °s[e} -sugn-81o
1opringdednoinonqumy

-"dewrwo qeIeds

00'c 00¢ 000 000 00'0 000 00T 000 000 00'c 00T 00T 006I 00T 00°SE SL'O 001 °sre} -sLsn'810
ToprmgdepyuondQa[npoNy

--dewrworqereds

00'¢ 00°¢ 000 000 00'0 00°0 00T 000 000 00'¢ 00T 001 006l 00T 00°SE SL'O 001 °sre} -'sugn§Io
ToprmgdeNwaInsILLIA

-"dewrworqereds

00'c 009 000 000 00'0 00°0 00T 000 000 00°¢ 00T 00T OO'LL 001 00°€E SL'O 00T °s[e} -sugn-81o
1oprmgdepuondouondoy

-"dewrwo qeIeds

00'c 00¢ 000 000 00'0 000 00T 000 000 00'c 00T 00T O0LI 00T 00°€e SL'O 001 °sre} -sLgng10
JopringdeNedALanqumy

--dewrwoqereds

00'¢ 00°¢ 000 000 00'0 000 00T 000 000 00¢ 00T 00T 00%I 00T 000€ SL'O 001 °srej -sLsn-g1o
pauonIpuo) Wo

00¥ 00T 00% 00°0 00t 000 000 0S0 000 00'¥ 000 00T 009 00T 000l 000 00°0 °srej ~qeIeds SLISN 510
ONM SESN AdddSA XIS ISN SN SN IWION WON AON ddN DOTIN DA D0T WOIDT LId 1dadouod Sse)

120

28pd 1x2u U0 panunyuo)

Ioprmgdenonssy

--dewrworqeress

00'¢ 009 000 000 000 000 00T 000 00°0 00¢ 00T 00T 00°IC 00T 00°LE SL'O 00T °sre} -'susnSio
Top[ingdeNRINGLYINPOINY

-"dew wo qeIess

00'c 00¢ 000 000 00'0 00°0 00T 000 00°0 00'c 00T 00T 00°IC 00T 00°LE SL'O 00T °sre} -sugn-81o
Iopringdejn910A anss|

-"dewrwo qeIeds

00'c 009 000 000 00'0 000 00T 000 00°0 00'c 00T 00T 00°€El 00T 00°6C SL'O 001 °srey -sLsn'810
1opringdepuadeq

--dewrworqeress

00'¢ 009 000 000 00°'0 000 00T 000 000 00'¢ 00T 00T 008 00T 00¥€ SL'O 001 °sre} -'susnSio
1opringdediysuonejoyuondo

--dewrworqereds

00'c 00 000 000 00'0 00°0 00T 000 000 00'c 00T 00T 006 00T 00°ST SL'O 00T °sre} -sugn 810
1opringdeaedAonssy

-"dewrwo qeIeds

00'c 00¢ 000 00°0 00'0 000 00T 000 000 00'c 00T 00T O0LI 00T 00°€e SL'O 001 °sre} -sLsn-g1o
IopIngdeAoUdIJIIJIos)

--dewrworqereds

00'¢ 009 000 000 00'0 000 00T 000 000 00'¢ 00T 00T 00°€l 001 00°6C SL'O 001 °srej -SL8N'310
1opingdeA1ond)

-"dewrworqeress

00'c 00L 000 000 00°0 00°0 00T 000 000 00€ 00T 00T 00vE 00T 00°0S SL'O 00T osre} -sLgn-810
1apingdeAouanbaiy

-"dewr wo qeIess

00'c 00 000 000 00'0 000 00T 000 00°0 00'c 00T 00T 008 00T 00'vC SL'O 00T °sref -sugn-81o
1op[ngdeNo[npojNqeIeds

--dewrwo-qeress

00'c 00¢ 000 000 00'0 000 00T 000 000 00¢ 00T 00T 009C 00T 00Cy SL'O 001 °srej -sL8n'g10
1opingdeNedATjuswyoeny

--dewrworqeress

00'c 00 000 000 000 00°0 00T 000 000 00'¢ 00T 00T 000I 00T 009C SL'O 00T °sre} -'susn 8o
Iopymgdesse[panquny

-"dew wo qeIess

00'c 00 000 000 00'0 000 00T 000 00°0 00'c 00T 00T O0'IT 00T 00°LT SL'O 00°1 °sre} -sugn-g1o
1opringden@ingryyadATanssy

-"dewrworqereds

00'¢ 00°S 000 00°0 00°'0_00'0 00T 000 000 00'¢ 00T 00T 008 001 00¥¢€ SL'O 00°I °srej -SL81'310
ONM SESN AdddSA XIS ISN SN SN IWION WON AON ddN DOTIN DA D0T WOIDT LId 1dadouod sse)

121

28pd 1x2u U0 panunyuo)

Ioprmgdeyuonisuel],

--dewrworqeress

00'¢ 00 000 000 000 000 00T 000 00°0 00¢ 00T 00T 006l 00T 00°SE SL'O 00T °sre} -'susn§io
1opringdeedA T puadoq

-"dew wo qeIess

00'c 00¢ 000 000 00'0 00°0 00T 000 00°0 00'c 00T 00T 006 00T 00°ST SL'O 00T °sre} -sugn-81o
JopimgdeApsITLIN

-"dewrwo qeIeds

00'c 009 000 000 00'0 000 00T 000 00°0 00'c 00T 00T 00%I 00T 000¢ SL'O 001 °srey -sLsn'g10
Ioprmgdednoinenquyenquyy

--dewrworqeress

00'¢ 00 000 000 00°'0 000 00T 000 000 00¢ 00T 00T 00°€l 001 00°6C SL'O 001 °sre} -'susn8io
Iop[ingdeajeureredreqorn

--dewrworqereds

00'c 00 000 000 00'0 00°0 00T 000 000 00°¢ 00T 00T 00°€l 001 00°6C SL'O 00°T °s[e} -sugn-81o
1oprigdeaedA 1 anss[onpoAy

-"dewrwo qeIeds

00'c 00¢ 000 00°0 00'0 000 00T 000 000 00'c 00'T 00T 000C 00T 009¢ SL'O 001 °sre} -sLgn-g1o
1opingdeNodA 1108 Aanoy

--dewrworqereds

00'c 00°¢ 000 000 00'0 000 00T 000 000 00'¢ 00T 00’1 006 001 00°ST SL'O 001 °sre} -SLsn'g10
1opringdejyiodoy

-"dewrworqeress

00'c 009 000 000 00°0 00°0 00T 000 000 00¢ 00T 00T 00°SC 00T 00'I¥ SL'O 001 osre} -stgn-g1o
Top[mngdeNuonedyIPOIN

-"dewr wo qeIess

00'c 009 000 000 00'0 000 00T 000 00°0 00'c 00T 00T 00°€l 00T 00°6C SL'O 001 °s[e} -sugn-81o
1opiingdeuondpanqumy

--dewrwo-qeress

00'c 00¢ 000 000 00'0 000 00T 000 000 00'¢ 00T 00T 00°€l 00T 00°6C SL'O 001 °sre} -sLsn'g1o
1opingdeNAanoy

--dewrworqeress

00'c 00L 000 000 000 00°0 00T 000 000 00¢ 00T 00T 00'I¥ 00T 00°LS SL'O 00T °srej -susn 8o
1opringdearesnArendy

-"dew wo qeIess

00c 009 000 000 00'0 000 00T 000 00°0 00'c 00T 00T O0LL 00T 00°€e SL'O 001 °sre} -sugn-g1o
1oprigdeyioyresndnoinurpusg

-"dewrworqereds

00'¢ 00°S 000 00°0 00°'0_00'0 00T 000 000 00'¢ 00T 00T 00€l 00T 00°6C SL'O 00T °srej -SL81'310
ONM SESN AdddSA XIS ISN SN SN IWION WON AON ddN DOTIN DA D0T WOIDT LId 1dadouod Sse)

122

28pd jxau uo panunuo)

o3ueyeoreqrodoy

-'sypodarqeress

00'L 00¢ 001 000 00°0 000 000 0S0 000 009 00€ 00T 009 LI'T 00°€E 080 00'T °s[e} -'susn 8o
EINITNCL plde IEREN |

--ourfedid-qereos

00'T 00¢€ 000 000 00°0 000 00°0 00C 000 00'T 000 00T 00¢C 00°T 00°'IT 000 00°C °S[e} -sugn S0
SATeA OJUTSUTWIL],

--ourodid-qeress

009 006 001 00T 00°0 000 00°¢ 00T 001 00C 000 0SC 00°LE 00€ 00CS L9O 00T °sred -susn-g1o
QATBA JOSUSYSAL]

--ouredid-qeress

00'8C 0081 001 050 00°0 000 00°T 0S'T 00°1 00% 000 00°¢ 00091 00°L 0008T L9°0 00°C °srej -'susnSio
QATBA 9FSSINOJUTIOS

--urpadid-qeress

00C 00 000 000 00°0 00T 00°T 0S'T 000 00'T 000 00T 00 001 O0°LT 000 00°C °sreJ -sugn 810
TTRATBAIRSIRYDOUTULINA(

--ouradid-qeress

00 00v 000 00T 00°0 000 00°T 00T 00T 00C 000 OS'T 00€l 00T 00SC 000 00T °sred -susn S0
QATBAJOSIEYDOUIIANO]

--urodid-qeress

00 00Fv 000 00T 00°0 000 00T 00T 001 00C 000 OS'T 00O%I 00T 009C 000 00°C °sreJ -sugn 8o
JATeA UISOTSNOWAUOUY

--urpedid-qeress

008 00°L 000 00°'T 00°0 000 00°T 00T 00T 00C 00C 0S'T 0061 00% 00CE €€0 00T °s[e} -sugn 310
QATBAJRSIRT QUIULI(]

--ouradid-qeress

00 00°¢ 000 000 00°0 000 00°0 00C 000 00'T 000 00°¢ 00°SC 00¢C 00vE 000 00T °sres -sugnS1o
QATBAQ[BO0TIOS

--ouradid-qeress

009 00°IT 001 000 00°0 000 00°T 00T 000 00C 000 0SC 00CE 00¢€ 00Sy 001 00°C °s[e) -sugn-g1o
JToppngdepanqumy

--dewrwo-qeress

00¢ 009 000 000 00°0 000 00°T 000 000 00'¢ 00T 00T 00€C 00T 006E SLO 001 °sreJ -'susnSio
Iop[ingdejyonesanquny

-"dewrwo-qeIess

00c 009 000 000 00°0 000 00°T 000 00°0 00'c 00’1 00T 00€Cc 001 006E SLO 00T °S[eJ -sugn 810
1opingdeadoog

--dewrwo-qereos

00¢ 00°S 000 000 00°0_00'0 001 00°0 00'¢ 00T 00T 008 00'T 00'¥C SLO 00T °s[ej -'susn S10
DM SASN Adddsn XIS DSN ASN ASN IWION WON 40N ddN DOTIN DA D0T WODT LId 1d3ducd sser)

123

23vd 1xau 1o panunuo))

00T

00°¢

00°¢

00'vL

0086

0096

009

0061

00°S

00°¢1

00’76

0001

00'v1

00°1T

00y 00°¢

009 000

008 000

00'¥C 00°C

00'1C 00°¢

00°Se 0001

00 009

006 00°L

00'S 007C

009 008

00°ST 009

009 008

009 00%

00'L 00%

009

009

00°0

00°0

000

00°0

00°0

S1'0

00°0

£€0

00°0

€€°0

§To

00°0

00°¢

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

00°0

000

00°0

00T

00'C

00'v

0001 LI'T

001

000

000

00°0

000

00°0

00°0

000

00°0

00°0

990

09°0

01’0

y$0

081

24l

87°0

00

0S°0

L9°0

00°T

001

000

000

000

000

000

00C

000

00°¢

000

00T

00C

000

00T

001

00T

00°¢C

00°6C

00°sv

00°s

00°¢l

00°s

006

00°sc

009

00'8

009

000

000

00°0

0001

009

00°S

00C

00t

00°0

009

00'C

00°¢

00'C

00T

00C

00°¢

¥0'C

8C'C

¥9°1

00T

€'l

00T

'l

80'C

LT'T

STl

0s'1

00°¢

00’8

00°¢c

00'16C

00'8¢€

00729¢

00°S

00'8¢

00°S

00°Ce

00°€6C

00°CI

00°0¢

00°6¢

001

00°¢

00°¢

we

8¢'¢

€re

0C'l

o'l

001

L9'1

oL'e

L9'1

SL'T

€81

00°TT

00°¢l

00°ce

00¥1v

00°6C1

00°8¢¢

00'8¢

00°LL

00°sC

00°8S

00°08¢

00'8¢

00°¢S

00°sS

000 009

000 009

000 009

$6°0 00C

$6°0 001

18°0 00T

90 00T

6L0 001

J[nejoqqeIeds
-SUQQIOS qRIRdS

EN -'sugn-s10
10)SI39Y ' SUIQIOS

EN S -"qeIeds sLgn 310
Jejdwaoaes

-*SUQQIOS qBILdS

os[ey -'s18n 310
[oPOINRIqe1Moday
-'sppodorqereds

as[ey -'sugn S0
uonruge(qiodoy
-'sypodorqereds

as[e; -'su3n 310
a8pugrodoy
-'syrodarqereds

EN L -'sugn-s10
requodoy
-'sppodorqeress

asey -'sugn 310
dnoiniodoy
-'sypodorqereds

as[ey -'sugn 1o

uondooxgIsrLIARIquedwoouy

000 009

90 00T

680 00°1

09°0 001

L9°0 00T

0L0 00°1

-'syrodarqereds

EN L -'sugn g0
AnquNyIsodoy
-'sprodorqereds

as[ey -'sugn S0
Surpesquodoy
-'syodorqereds

as[ey -'sugn 1o
nqunyuondouodoy
-'sypodorqereds

EN -'sugn-s10
adA1onss[onpon
-'sprodarqeress

asyey -'sugn g0
sixyuodoy
-'spodorqeress

as[ey -'sugn S0

JNAM

SHSN AdddsN XIS

ISN

INSN

JSN

qdvd

INYON JAON AON

ddN DOTIN DA

D071

NODT LId

1daduod sse)

124

23pd jxau uo panunjuo))

00°SI 006

00'1T 00'6

000 001

00°SC 00°01

00¢ 00°L

00°€e 00°CC

000 001

000 001

00'S 00°CI

00'L 006

00c 00v

00T 00Y

00°€T 00'%C

00'T 00¢C

00°LT 0091

00C

00'C

00°0

00'9¢

000

00°0

000

000

000

001

000

00°0

000

000

00°0

000

0c'1

000

00C

000

0S¢

0070

000

009

00°¢

009

009

001

00°L

SL'1

000

00'C

000

00°Ce

000

000

000

000

000

001

000

000

000

000

00°0

000

001

000

00°¢

000

000

000

000

00°0

000

000

00°0

000

000

00°0

000

001

000

000

000

00T

00°0

000

000

00°¢

000

000

006

00T

000

080

L1

000

0c'l

00y

00°¢

000

000

00C

00C

00C

00C

STl

000

0S¢

000

001

000

00'C

000

001

00°0

000

001

00C

001

001

001

001

001

00°S

00°S

00°0

00°S

001

00C

000

000

00T

00y

001

001

00y

001

00y

00C

000

000

000

000

000

000

000

000

00C

000

000

000

000

00'C

00C 00'6¢

0S'T 009¢

000 000

09'l 00°6l1

00'C 0091

0s'c 00°0LT

000 000

000 000

007 00ty

0S'l 00°I¢

00C 0001

00’ 00C

SL'T 0089

00'T 00T

0S'C 00'vL

00°¢

€81

000

0S'C

00°¢

0591

000

000

00°S

001

gee

001

STy

00°6S

00°0c1

00y

00°sS1

009¢

00'¥81

00y

00y

00°'IS

0009

00°81

0001

006

006

00°86

90

0C'l

000

000

000

001

000

000

00°0

060

000

000

001

000

L9°0

001

009

00°L

00°S

009

00°L

00°L

00°L

009

009

009

009

00y

00°L

00°L

g A SI$Hodxgereq

asyey

asyey

asyey

asTey

asTey

asTey

asTey

astey

asyey

asyey

asyey

asTey

asyey

asyey

-"SUQQIOS qeIedS
-'sugn 3o
podxgereq
-*SUQQIOS qRIeDS
-'s113n 310

IS0 SUAIDS
-'qereds’sLgn S0
J[NeJO(] SUSAIIS
-"qereds’sLgn s1o
nssJusIssy
-*SUQQIOS qRIedS
-'sugn 810
1odxgirodoy
-*SUQ9IOS qeIedS
-'sugn 310
INOS0T SUARIIS
-"qereds sugn 310
WIYUO)) SUIIOS
-"qereds sugn 310
JUSWIYORII Y MIIA
-*SUQQIOS qeIedS
-'sugn 310
ANSS[OAOIN
-"SUQQIOS qeIedS
-'sugn 310
JSITONSS] SUARIIS
-"qeIeds’sLgn 310
Q[NPOJAIIOIS
-"SUQQIOS qRIRDS
-'sugn g0
podxgeredsSy
-*SUQQIOS qeIedS
-'sudn 310
TONSS[OAOIN
-*SUQ0IOS qeIedS
-'sugn 3o
JodXgISIanss|
-"SUQQIOS qeIedS
-'sugn g0

DM SESN AdddSA XIS

ISN

INSN

ASN

qvd

INYON JAON AON ddN DOTIN DA

2071

NODT L1d

1daduod

sser)

125

23vd jxau 1o panunuo)

00T 009 000 000

00'T 009 000 000

00C 00°L 000 000

0001 00°S 000 009

00°¢T 00°€T 000 00°¢

00C 00°L 000 000

00'¥1 00vI 000 00y

00C 00°L 000 000

00C 00°L 000 000

00’ 009 000 000

00'61 00+I 000 009

00¥ 008 000 000

007 00°0I 00°¢ L9'C

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

00°0

009

000

000

000

000

000

00°0

00y

00'v

00t

00C

0S'1

00'v

ee'l

00y

00'v

00t

00C

00'v

L9'1

000 00'T 000 00T 007C 001

000 00T 000 00T 00T 00T

000 00'T 000 00C 00CI 00T

001 00'T 000 00°¢ 008c 000I

00T 00C 000 0S¢ 00°I0T 059

000 00T 000 00C 00CI 00T

00C 00'¢ 000 00°€ 006L L9V

000 00'T 000 00C 00CI 00T

000 00'T 000 00C 00CI 00T

000 00T 000 00T 007C 001

001 00'T 000 00F% 00801 006l

000 00'T 000 00°¢ 00°LC 00V

00'C 00'¢ 001 €€1 00¢€C €€l

00Cl 000 009

00CI 000 009

00Cc 000 009

009 000 009

00°¢IT 000 009

00Cc 000 009

00°001 001 009

00CC 000 009

00Cc 000 009

00Cl 000 009

00911 000 009

00 000 009

00°'6¢ 000 00y

sadA1oeInryaseur
-"UIWIPe SUIAIOS

EN -"qeIeds sgn 310
JpHUOnIpuo)

-"UIWIpe SUIAIOS

asey -"qeIeds sLgn 310
NpFINQLMIVIeS)
-"UTIpe’SUIAIOS

asyey -qeIeossLsn 510
SSUNOSHOdXT TN X MIIA
-"UIWIPe SUdAIOS

EN -"qeIeds sudn 310
ISITANADOY

-"UIWpPe SUIAIOS

as[ey -"qeIeds sgn 310
ypgdnoinanqumy
-"UTIpe’SUIAIOS

asyey -"qeIeossLsn 510
synsoysansspIodw TN
-"UIWIPe SUIAIOS

as[ey -'qeIeds'susn 8o
NpHANqLUNVEqO[D
-"UIWIpPe SUIAIOS

asTey -"qeIeos sdn 310
npgedAIoeinIyeqorn
-"UTWIPE’SUIAIOS

as[ey -qeIeds LS 510
npgedApioenry

-"UTWpPE SUIAIIS

as[ey -"qeaeds sugn 310
SonSSIIOdXT TIATX MOIA
-"UIWIPe SUIAIOS

asey -"qeIeds sgn 310
ANSSTMITA

-*SUQQIOS qeILdS

as[ey -'s18n'310
JUITSUIYONMSI[NPOIA
-*SUQQIOS qeIeds

asyey -'sugn 1o

DM SHSN AdddSN XIS

ISN

INSN

HSN

qdvd

INYON NON AON ddN DOTIN DA

20T NWODT L1d

1daduod sse)

126

28pd jxau uo panunuo)

00'1€ 00°ST 00°¢ 000

00CI 00v 00¢ 000

00°SI 00°S 000 000

00ce 009 00T cro

0091 008 000 000

00'8C 0061 000 000

00'CCc 0091 000 000

00€ 00¢€ 000 L9°0

00's 000 009

00C 006 001 000

000 00T 000 000

00'S 00°0I 000 000

00'T 009 000 000

000

00C

000

000

000

000

000

000

000

00°L

000

000

00°0

000

00°0

00°0

000

00'v1

000

000

000

000

000

000

000

00°0

00t

00°0

000

001

001

000

00'6

00°0

000

000

000

000

00°0

¥9°C

6T

Ly'e

y6'1

LST

or'c

090

000

00C

00y

000

00'¥

00y

000

000

000

00'C

000

000

000

00T

00T

000

000

000

00°0

00¥1

00°CI

00°SI

0091

000

00°S1

00°s

00°¢

00T

001

000

00T

001

00'T IL1
000 00°1
000 00°1
00’8 V6'I
000 vI'l
007 L8]
000 0ce
000 00°T
000 00C
000 00C
000 000
000 00'v

000 001

00°LCT

00°'1¢

00°L

00°601

00

00°6S1

00'¥1C

00°9¢

00°L

0091

000

00°s¢

00'C

1T¢

00T

00°L

00C

L8'1

o'y

00T

00°¢

00C

000

00°S

001

00¥0€

00T

00°IS

00081

0065

00°cce

009s¢T

00CL

00°s1T

009¢

00y

00°s¥

00°clI

§6'0

00°0

000

6L0

60

980

001

00°0

000

000

000

000

00°0

QOTAIOS[TRWHAIIOO[OA
-*[TRUIY SAOTAIOS
-"qeIeds sugn 310
ERITNEINCTifo) 79 e A LRIN
-*QU0BO"SAJIAIIS

00°0 9S[%J -"qeIeds sLgn 310
do1A19SoydRDqRIRdSdOON
-"QU0BO"SAJIAIIS
-"qeIeds’sLgn g1o
Aay[oyoeDqeIedS
-"9UOBD"SAJIAIIS
-"qereds sugn 310
Jyor)QqRIRdS
-*QU0BO"SAJIAIIS
00°1 9s[e} -"qeIeds sLgn 310
Q0IAIOSAYOR)qRIBISI NI
-*QU0BO"SAJTAIIS
-"qeIeds’sugn g10
IozZIenIuoseqere
-"SQOIAIOS qRIRDS
-'sugn S0
Jo1a1eganbiog,
-"S90IAJOS qRIROS
-'sugn 310
ISUT[NPOINX

- QUWIOY ' SUIOS
-"qeIess’sLgn 310
IPIBZIM
-"A1U9"SUIAIIS
-"qereds’sLgn S0
EPIBZIM
-"A1U9"SUIQIOS
-"qeIeds sLgn 310
NpHAINQLYI[NPON
-"UTIpe SUIOS
-"qeIeds sLgn 310
10919SuOndoanquny
-"UTIpe SUQIOS
-"qereds sugn S1o

00°¢ °s[e}

00T °sre}

00T °sre}

00°C °s[e}

00°C °s[e)

00°C os[e}

00'9 °s[e}

00'9 °sre}

00°L °s[e}

00'9 os[e}

00°9 °srej

DM SESN AdAdSA XIS

ISN

INSN

ASN dvd

INYON JNON AON ddN DOTIA DA

2071

JNODT LIA 1d3ouod

sser)

127

28vd 1xau uo panunuo)

00°T1T

00y

00¥1

00°¢9

00°C8

00°6C

006

00°L0¢

0071

0091

009

00°L

009

00y

0011

0061

00°¢C

0061

00'vL

00'vL

00°¢l

00°'L

00°s

00°s

00°S¢

000

00'L

00'9L

00y

00t

00C

00°8¢

00°0

00T

001

00°0

000

000

000

€0

000

000

00°0

000

00'v

000

00°0

00°0

000

000

000

00T

000

000

000

000

000

001

00T

00°0

000

00y

000

000

00C

000

000

000

000

00y

000

009

000

00°1

000

00y

00°¢

00C

00°¢

001

000

00'¥C

000

000

0s'1

00T

ort

60°1

IL°0

080

¥9°0

0s'c

00°¢

000

000

000

00°S

000

000

000

000

009

000

000

00°0

LS'T

00°L

L9V

LT'C

[4!

L0'C

08l

[4%¢

€€C

Syl

00T

001

93eSSOINNO T
-"UONRZI[BIO]
-'S[00)"qeIedS

-'sugnyS1o
JeUIIO0]'S[00)
-'qereds sugn Sio
1o3eURA[00] qeIedS

-'S[00)"qBIedS

0S0 00T onn -'sugn 810
[00LUOTIEZI[EO0 qRIedS

-'S[00)"qBIedS
-'s1gn'310
[00L[eqO[DqeIeds
-'S[00)"qeIedS
-'sugns1o
[00LUTWPYA)LINdAg
-'S[00)"qeIedS

00T 001 °nn -'sugn 810

IOJRIISTTONSSI$[001sanboyqeress

-'S[00)"qBIeIS

-'s1g1 310
[oo13seonbayqereog
-'S[00)'qRILIS

160 00°1 onn -'sugn 310
QOIAIGAILINGAS F(TqLIedS

-"AJIINos
-'SQOIAISS qRIBIS
-'s11g1'310
Knodagqereds
-"K)Inoas
-"SQIIAIQS qRIRIS
-'sugn'310
QOTATOG[TRWIE
-*[TBWS SIDIAIIS
-'qereds sugn s1o
[rewH A0
-"[TBWS SIOTAIIS
000 00°1 9s[e) -'qereds sugn Sio

€80 00°1 °nn

ee’l 00°[°nn

¥6'0 00°C °nn

66'0 00°[°nn

890 00T

000 00'% °sre}

001 00°C °s[e}

0C'l 00°0 °sre}

INM

SHSN AdddsN XIS

ISN

INSN

ASN

qdvd

IWJON INON

DA

WODT LId 1d%u0d sse)

128

238vd jxau 1o panunuo)

009 00°¢

00’ 009

00¥ 0001

00'¢ 007¢

00'¥1 009

00°IC 0001

00'c 008

00°IT 00°1

00 00v

00'T 007¢

00C 007¢

000 00¢C

00T

000

001

00'¥

000

00'8

001

000

00T

00°LT

00°0C

000

00C

000

000

000

000

LT0

000

000

§co

000

000

00°0

000

000

000

000

000

000

000

000

000

00T

00°¢l

000

000

00°¢

000

000

00°S

000

00°L

000

000

000

000

000

000

001

00C

000

000

000

00°0

00°0

00°0

000

00°0

00°91¢

09°0

L9°0

oSl

L9'1

0’0

0CccC

00

00

000

00

00°0

00C

000

000

000

000

00T

000

000

00T

000

000

000

00°'S

00°0

00'C

00°¢

000

00°¢1

001

00°TT1

00'v

001

00'C

00°0

00T

000

00°L

001

000

00C

000

00°¢

00T

000

000

0C'1

L9'1

0s'1

001

0CcC

2!

001

00T

00T

001

00€c 0CT'1

00°ST L9'1

00°LT 00T

00°'S 001

00vS 08T

00'8L 0¥l

00’61 051

00Cl 001

009 001

001 001

00'C 001

00’0 000 000 000

00'v€

00°S¢

00°0¢

00°0C

00°€L

00911

00°6C

00°CS

00°¢C

00°S

009

00°05¢

uondeoxgenbio] pazifescoTqeress

290 00°'s

00 00T

L9°0 001

0s0 00C

000 00T

680 00'¥

000 001

080 001

L9°0 00T

000 000

000 000

000 00°1

-[mn'qereds
asey -'su3n 310
Jojecoiuauoduio)
-"[mn°'qeress

os[ey -'s18n 310
108$9001 X3y
-"[mn'qereos

as[ey -'sugn 1o
ZISYIIAJOJRIIOSqNS
-[mn'qereds

EN -'s1131)°310
[mNIssnsnowkuouy
-"[mn°'qeress

onn -'s1gn 310
uondaoxgewnunyqereds
-"[mn°'qereos

ann -'sugn 310
warR[pueHaldwg
-"[mn'qereds

ann -'sugn 1o
[opojuondo-[un

ann -"qeIeds sugn 310
AS3INOTT

-"UONeZI[BI0]

-*S[00)'qeIeds

onn -'sugn 310
Koy[uonezieso
-"UONRZI[BIO[

-'S[00)'qeIeds

onn -'sugn 310
9[qeZI[ed0]

-"UONeZI[ed0]

-'S[00Y'qeIeds

ann -'su3n-g10
19SAISINOT T

-"uoneZI[ed0]

-*S[00)'qeIeds

ann -'sugn 1o

DM SASN Adddsn XIS DSN

INSN

HSN

qvd

INYON JAON AON ddN DOTIN DA DO1

NODT LId

1daduod ssep)

129

23pd 1xau U0 panunuo))

000 00CI 000 00°¢

006 009C 00°¢ 00T

00C 00¢ 00% 00

00°ZT 009 000 000

009 009 000 000

00'sT 00T 00¥% 000

008 00°¢ 001 000

006 008 008 000

009 00 001 or'e

00'c 00¢€ 000 000

009 00¢ 00¥ 000

00'c 00¢ 000 00C

00'c 00 00¥ 00C

0001 00°S 001 000

00°S8 00°LT 0001 L8°0

00°0

000

000

00°0

000

00°0

000

000

00°0

000

00T

000

000

001

00'C

00°0

00°¢l

000

001

00°¢

00°0

000

00°0

00°0

00°¢

000

000

000

00°¢

00°0

00C

00C

000

000

001

000

000

000

000

001

000

000

000

000

000

(U

6C'¢

00

L9'1

(2!

860

e

8L°0

090

€€°0

€0

000

000

0L0

00C

001

001

000

000

000

000

000

00C

000

00°0

001

001

000

00'6

00C

001

00C

00C

000

00°CI

00’8

00'6

00°S

000

009

00°L

001

00°L

00°I¢

000

000

00T

000

000

00'¥

000

00°L

00C

000

00C

000

000

00C

0011

00'c 0008 00°¢

L0'C 00°¢ST 0S¢

00T 00C 00T

00°LS L9°S

00'€c 00T

ST 00ce ST1

00T 008 001

IT'T 00°6 001

0C'lT 00vC 0C'1

00'T 006 001

00T 009 00T

00C 00°L 00°¢

00C 00°L 00°¢

00l 00°IT 001

LL'T 0020€ vL'T

00°L6

00°60€

00'v1

00'1L

00'6¢

00°LL

00'9¢

00'cy

00°S¢

00't¢

00°6C

00v1

00v1

00°S6

000

60

000

000

00

080

000

88°0

JO[AIOSIUY (1IN
-"qeIeds sugn 310
[rewrg nn

-"qereds sugn 310
Surygdoyserdurg
-[In°qeress

00'1 onn -'sugn 310
19)[1,{UOT}IOSUTOOUAIRJOY

- [In°qeress

-'sugn 310
uonezIenueuIqIng,
-nn'qereds

-'sugn 810
IsrIpareuISeJqereds
-[n°qeress

-'sugn 310
uondadxguonepIfes
- [In°qeress

-'sugn 310

JXUOD TRy
-nn'qereds

-'sugn S0

00°¢ °s[e}

00'C °nn

00°[°nn

001 °sre}

00°T °nn

009 onn

00'C °nn

uondodxgA)InoogourqIny pazieoo[qereds

[

001

080

000

000

680

00°¢ly 260

- [In°qeress
-'sugn 310

3o N

-"qereds sugn 310
SuIpeOH$[9POINRIYEL
- [In°qeress

-'sugn 310

SuIPEOH MOY$IPPOINRIQEL.

- [In°qeress

00°C -'sugn 310
SurpeoHUWN[O)$[OPOINRIqEL,
-nn'qereds
-'sudn 810
[9POIAPIqEL TN
-'qereds sugn Sio
Jurqeresgrnn
-'qereds sugn Sio

00°9 os[e}

00T °sre}

00T

00'C

00°[°nn

00°¢ °nn

ONM SESN AdddSA XIS

ISN

INSN

ASN

INYON NON 40N

ddN DOTIN DA D01 WOJT LId 3daduod

sse[)

130

23pd 1x2u U0 paNuUUO))

00°¢

001

00Ce

0001

009

0061

00°LT

00y

00°TT

00°¢

00°1

009¢

00'¥C

000

0091

00°L

001

00°LT

00'L

006

006

00’8

00°L

00°L

000

001

00°CI

006

00°¢

00°ClI

000

000

001

001

00C

00'v

00°SY

00T

00'v

00°¢

00°L

00°¢

000

00°0

00°0

000

000

000

oro

L9'1

000

£€°0

(S

000

000

000

€00

000

000

000

00°0

000

00°0

000

00°0

001

00°'S

00°0

00'C

00°0

00°L

001

00°0

00°0

00°0

001

001

00C

000

00°0

000

000

000

000

000

000

00°0

00°S

00°0

00°S

00C

001

00C

000

000

00C

000

000

001

000

000

00C

009

00'8

00'1

00°L

000

sTe

0c0

€€0

IL°0

0c'c

000

€80

L9°0

000

6°0

08l

000

000 000

000 000

00°0 009

001 0001

00°S 009

000 00°L

001 00°S1

00°¢ 00y

000 009

00°0 00°¢

00°0 00°L
001 00°¢ce

000 000

000 000

00°0 00°0

00'0 00¢€ 000c 00¢

000 00T 00°¢ 001

000 8€C 00681 00V

00¢ 00T 00¥1 001

000 00T 00°L 00T

00°L 981 0066 ILCT

00T €I'T 00°sS €I'l

000 00T 00°S 00T

009 L91T 00'I¢ €8]

00l 00T 00°¢ 001

000 001 001 001

0001 ¢S'T 0091 OL'I

000 Ov'e 00101 08¥

00'8S 00°0 000 000

000 Ov'C 009L 0T¢

0018

00°T1

00°S€T

00°CS

00°8¢

00'96

00°68

00°0¢

00°19

00°LIT

00°¢

00°18¢

00°8ST

00'9L

00°CII

00°0

000

00T

L0

00°0

Lo

980

00°0

080

00

00°0

960

960

00°0

001

001

001

00T

001

00C

00°L

00°S

00C

001

001

000

00°L

001

000

001

K1ooe.puryrewryg
- [In°qeress
-'sugn 310
J0JRIQUID)PIOMSSE]
-nn'qereds
-'sugn S0
Io[pueyordug

- [In°qeress
-'sugn 310
qurnesnn
-"qereds sugn 310
JojeId MOpUIp Aidwyg
- [In°qeress
-'sugn 310
JIOJRIOI[MOPUIA

- [In°qeress
-'sugn 310
uondaoxgqereos
-nn'qereds
-'sudn 810
IojeropesqnsAduyg
- [In°qeress
-'sugn 310
J107RI0)[)esqNS

- [In°qeress
-'sugn 3o
uea[00g[qRINA

- nn'qereds
-'s13n 310
Sute)doys n
-'qereds sugn Sio
Jurrewyhn
-'qereds sugn S0
[mAqeresshn
-'qereds sugn s1o
SJuRISUO)qEIEdS

- nn'qereds
-'sugn S0
IosIegpronssynn
-'qereds’sugn sio

ann

ann

onn

onn

ann

onn

asyey

ann

ann

ann

ann

ann

as[ey

DM SESN AdddSA XIS

ISN

INSN

ASN

INYON NON

JON ddN DOTIN DA

2071

NODT L1d

3daou0d sse[)

131

28pd 1xau uo panunuo)

00°¢€l 00v 00°¢ LT°0

006 00¢ 00¥I 000

00'8¢

0091 00°1 000

00'T 00T 00¢ 000

009 00°LT 00T 000

00°¢l

00°LT 000 ££°0

0061

00°¢l 000 €70

00°¢l 008 000 090

00'c 009 00¢ 00

00¥ 009 00T 000

00'T 009

00°sT 000

00’ 00°L 00T L9°0

00°0

00°CI

000

00T

000

000

00°0

000

00°0

000

00'v

00°0

000 000

000 00¥

000 000

000 000

000 000

000 000

000 000

000 000

000 007C

000 000

000 00T

000000

860

cro

001

00T

L9°0

8L0

980

001

001

000

00°0

£€0

00C 00°CI 009 801 000C 801

000 008 000 <I'l

00'¢cc CI'l

000 006 00€ 8LC 00981 ¢CCTV

000 00'T 000 00T 001 00T

000 00'c 00T €1

00°LT 00T

001 006 00L c¢C'l

00°CLT ¥¥'1

00T 00'L 00¢ 981

00¥8 ILT

001 00's 00T 00C 00°SS 09C

001 00C 00T 0S'I

0091 0S'I

000 00 000 00T 00°S 001

000 00'T 000 00T 001 00T

00°1 00'¢ 000 €€1T 00vI L9'1

0099

00°¢r

00°00C

00°S

00°6C

00'¥€C

00°CIIT

0099

00'1¢

00°0C

009

00°LC

88°0

0L

6L0

000

00°L

980

£8°0

§co

00

000

000

00°0

Ko3uo11

ERE) pRliplifg) i
-'PIMQ[hn'qeIess
-'sugny'S1o

onsS[uQ T

e peliplif)if
-'PIMQ[hN'qeIess
-'sugnys10
Joje1ouRn?IjAradolg
-'PIMQhn'qeIess
-'s1gn 310
1nenAradoig
-'PIMQhn'qeress
00°0 9s[eJ -'sugn 310
93eSSON SIS SISA[RUY (] IUY
-'PIMQ[ON'qeIess

001 -'sugny 310
JSeLSISATeuy Q[PUy
-'PIMQ[hn'qeress
-'sugny'S1o
XLJeWYOSIuY
-'PIMQ N 'qeress
00°€ 9s[e} -'sugn310
J0jRIURDIIJA1edorgiuy
-'PIINQhn'qeress
-'sugn310
Jorepuaypeddrug
-nn'qeress
-'sugnys1o
AzisynpIojernAidwyg

- [In°qeress

001 -'sugn 310
QZISYIAJOJRIAI]
- [In°qeress
-'s1gn'310

00 °nn

00°[°nn

00 onn

00°¢ °srej

00°¢c °s[e}

00°[°nn

000 onn

UL IIRWHIOLF$AI0N0R UL T RWE

- nn'qereds
00°C -'sugnys1o

DM SESN AdddSA XIS

ISN

JNSN ISN

qvd

INYON JAON AON ddN DOTIN DA

D071

NODT LId 3daouod

sser)

132

28pd jxau uo panunuo)

00°¢

00°¢

00°¢

00'8

009

00’9

00°¢

00t

00'v

00°¢

00°¢

00'v

00t

00°Cce

00°L

001

000

00T

001

00°¢

000

00°¢

000

00°0

00°0

000

000

000

000

00°0

000

000

000

000

000

000

000

00°0

000

000

000

000

000

000

00°¢

001

000

000

00°0

000

000

00°0

001

008

££°0

L9°0

L9°0

€0

00

001

000

000

000

00°0

00°0

00°0

000

00°0

00°¢

00°¢

00°¢

00°¢

00°¢

00'8

000

0001

001

00C

00'C

00T

001

00'¥

000

001

001

00°T

001

001

001

L9'1

00°¢ 00°L

00y 00°L

00y 00T

00°¢ 00T

00°¢ 00°L

0001 00T

00'LT 00T

00'S 00°¢ 00'9S¢ 78S

00°LI

0061

0061

00°LT

00°LT

00y

00°sT

00°90%

0s'0 00'C

00 00'C

0s°0 00T

0S50 00T

00 00T

80 001

000 001

L80 001

ONSS[SUISSI]ATUOTR[SUBL],
-'SonssI

- IOAYOU([|
-'pPIMQ[hn'qe.ress

ann -'sugn g0
QNSS[AOIM [PAuTa(

-"sonsst

ERe pRliplif) it
-'pIIMQ[hn'qeress

oann -'su3n 310
ANSS[PIJAIM T PAUYS
-*SonssT

- IOYOAUOU(T |
-"pIIng’[IN°qeIeds

onn -'su3n g0
ONSS[AOUIRJIYUION
-SonssT

- IOYOAUOU([|
-'pPIINQ [N’ qeress

onn -'sugn 310
INSS[PAR[SUBILJON

-*SonssT

- IOYOAYOU([|
-'pPIINQ [N’ qeress

onn -'sugn 310
93eSSOINUQ T

- IOYOAUOU([|

-'pPIINQ [N’ qeress

onn -'sugn 310
sojerdwaonssyuQ 1
EReplliplif) it
-'pPIMQ[hn'qeress

ann -'su3n g0
10302dsuguQ 1

- IOOAUOU([
-'pPIMQ [qe.ress

ann -'sugn-g1o

ONM SHSN AdddSA XIS

ISN

INSN

ASN

INMON JAON JAON ddN DOTIN DA

2071

NODT LId

1daduod ssep)

133

28vd 1xou uo panunuo)

00C 00¢ 001 000

00c 00v 001 000

00'c 00t 001 000

00'¢ 00€ 001 000

00'c 00¢€ 001 000

007 001 000

00c 00¢€ 001 000

00'¢ 00¢ 001 000

00°0

000

000

000

000

000

000

00°0

00°0

000

00°0

000

000

000

00°0

00°0

000

000

000

000

000

000

000

000

00T

L9°0

L9°0

€€0

€€0

00T

€€0

000

000

00°0

000

00°0

00°0

000

00°0

00C

00°¢

00°¢

00°¢

00°¢

00°¢

00°¢

00T

00C

00'C

001

00T

00°¢

00°L

001

00T

001

001

001

00T

00T

001

00'1

00C

00'v

00t

00°¢

00°¢

00°S

00°¢

00°¢

001

001

001

001

00T

001

00°L

001

00°¢l

0061

0061

00°LT

00°LT

00°'I¢

00°LT

00°LT

000

00

00

00

00

00

00

00

QJRIIPAJUIIA SHEIS
-s10jeredwoo mn

00'1 onn -'qereds sugn s1o
ONSSJIOOIM PAIB[SURI],
-"SoNSSI

e pRlilif) i

-'PIInq Thn‘qeIedss
-'sugn 310

ONSS[OOIM PaJe[SURI],
-"SaNssI

ERE> pRliplif) i
-'PIMQ[hn'qeress
00°Z °nn -'sugn S0
onss[paxmbayuonesuel],
-"SoNSsI

ERe pRlipliif) i
-'PIMQ[hn'qeress
-'sudn 310
ANSSIPAMO[[VSUBILON
-"SONSSI

e pRliplif) i
-'PIMQhin'qeress
00'C onn -'sugn 310
ANSSTIUNODAINGLIN IUIILI(
-"SoNSST

- IOYAUIU([|
-'PIINQhn'qeress
-'sugn 310
anssyuIaNed eS|
-"SoNSST

e pRlilif) i
-'PIInqIhnqeIess
-'sugn 3o
onss[ourasIegiue))
-"sanssI

EREpRliplif) i
-'PIMQhN'qeress
-'sugn 310

00'C °nn

00'C °nn

00°C =nn

007 onn

00°C °nn

ONM SESN AdddSA XIS

ISN

INSN

dSN

INYON JAON AON ddN DOTIN DA

D071

JNODT LIA 1daouod

sse[)

134

23nd 1xau uo panunuo)

00's 00¢ 008

00°S9

009¢ 000

00'T 0019 00v

000 0019 00t

00°Le

00'19 00'v

00°cce 00°19 00°8I1

00'vC 006

0001

00c 00°¢ 000

008 00°¢ 00L

0081 006 00¢

00C 00L 001

008 00°¢

00°TT

00’0 00T 000

000

000

000

000

000

¥0°0

000

000

000

000

00T

000

00°0

000

000

000

000

000

000

000

000

000

00C

000

00T

000

000

000

000

000

000

000

000

00°¢

000

000

000

000

000

000 081

00T 8I'I

000 00¢C

000 000

000 0¢'1

0091 86°0

000 10

00T .90

000 ¢Sc¢'C

001 880

00T 00¢C

000 880

00'¢ 000

000 00°'S

000 00°LI

000 001

000 000

000 00°01

00T 00°06

000 00°LIT

000 00°0

000 00'8

000 00'8

001 001

000 00'8

000 00°0

000 00T 00°S 00T 00'tC

009 Lv'C 00Cer T8¢ 00°SOS

00C 00T 00T 00T 0001

00 000 000 000 00°L

00°L Ov'c 00°€Ic 0LT 00°¢ST

00'8¢ ¥0'C 00'89¢€l 8S°¢€ 00°8LOT

008 S€1 008S I¥'1 00°€Cl

00'0 00°T 00CC 001 00°sE

00'0 00T 008 00'T 00'9¢

00'¢ CI'c 00°SL ST'C 00CIL

000 00°S 00€E 00T 009¢

006 00°T 00°ST 00T 00°6C

00’0000 000 000 00°L

000

L80

000

000

£€8°0

660

160

000

000

980

000

Il

000

uondooxgAronxardwo)
-"pIom [N ‘qeIeds
-'su3n 810
XOPUTYIIRIGIUIN]
-"pIOM 1IN’ qRIROS
00°1 os[ey -'s18n 310
JZISPUYIRSINSIY$YOIBISINSS]
-"pIOM TN’ qRIEdS

00'1 -'sugn-g1o
S[pUNGUWN[OD)$YIILISINSS]
-"pIom [N 'qeIeds

001 -'su3n 810
I01RIOIINSIYAIONQ)$YOIBISINSS]
-"pIoM [N 'qeIedS

001 -'su8n 310
[oreagonssy
-"pIoM’IIN
-"qeIeds s g10
JNSaYAIang)
-"pIom N
-"qeIeds’sLgn S1o
K1010B,JUy2189S
-"pIom’[In

00’1 enn -"qeIeos sLgn 310
uondooXqyoIBISIUALINOUOD) XBIA
-"pIOM TN’ qBIEOS
-'sugn 310
K10)08,JY0I89SINSS]
-"pIom [N 'qeIeds
-'sugn S0
IOZATeUYW)SIANI0
-"pIom [N ‘qeIeds
-'su3n 310
XOPUYIILIS
-"pIOM’[IIN
-"qeIeds’sLgn 310
JeunioJuodxg
-j0dx9'mn
-"qereds’sLgn g1o

00'9 onn

00"y onn

00’1 onn

00’9 onn

00T onn

00z onn

000 onn

00’1 onn

DM SHSN Adddsn XIS DSN

JINSN dSN

qvd

INYON INON

JON ddN DOTIN DA DO1

INODT LIA 3d3ouod

sser)

135

28pd jxau uo panunuo)

00'vST 00°0%

00°¢l 009

000 001

00°ST 00°¢

009 00

006 008

00'T 00ce

0016 00°¢cE

000 001

000 001

006 00°S

00'Sc 00

00°LT 00°¢

00¥

000

00°L

00°¢

00'¥

00C

00C

00'¥

00C

00C

00°¢

00°¢

00°¢

000

€€°0

00°0

¥1°0

LT°0

000

00'C

000

00°0

000

000

000

00°0

000

000

000

000

00°¢

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

00°'S

00°0

000

000

00T

001

00°0

00'v

000

00°0

000

000

00°0

(40!

wo

000

£v'0

€€°0

00°¢

00T

000

000

0ro

87°0

Ly'0

000

00T

000

00C

00T

000

00°L

000

000

000

000

000

000

00'¥C 00°€l L9C 00'1€6 CTv'9

00°Cl 00T 80T 0061 8O'L

00'0 000 000 000 000

0071 00'S 00T 0091 LO'L

009 00T 00T 009¢ 001

00'L 00¢ 6C1 00SI 6T1

00'l 000 00T 00" 001

007 006 8ET 001¢C 6S'1

00'0 000 000 000 000

00'0 000 000 000 000

00'S 00T OCTT 00€T 081

00°ST 00°CI 00'T 00+C 001

00°LT 008 00T 0091 001

Sonss[qeress
-SoNSSIWX [N

00 110T 060 00'T °nn -"qereds sugn 310

00°19

00'¥

00°L9

00°¢S

00'v1

0001

00'vEe

00'¥

00y

00'v€

00°CT1

00°6L

yseLsonsspoduy
-"SONSSIWX [ON
-"qeIeds'su3n 310
Sregpuyg
-"SoNSSIWIX [ON
-"qereds sLgn g10
Kouapuadoq
-"SoNSSIWX [N
-"qereds sugn 310
egaseqg
-*SonSSIWX [N
19°0 00T onn -"qereos'susn 810
anss[rury

-"SONSSI[WX [ON

88°0 00 onn -"qeIeds'susn 310
ornydmogsanssiqeresggsonsspioduy
-"SoNSSIWX NN
-"qereds’sugn S0
sonssprodwy
-*sanssIuX [N
-"qereds sLgn 310
QlRAPYIPON
-"SoNSSIWX [HN
-"qeIeds’sLgn 310
AeporeaI)
-"SoNSSIWX [N
000 00'C °nn -"qereds’sLgn S0
s1oxrgyrodwy
-*SonSSIWX [ONn
-"qeIeds sLgn 310
JUSWIYORN Y [WX
-"SONSSIWX [ON
-"qeIeds’sLgn 310
S[MPONTWX
-"SoNSSI[WX [ON
63°0 001 onn -'qereds’sLgn S10

000 00'% °nn

000 00°C °nn

8L'0 001 °nn

00°0 00'C

96'0 00T =nn

000 00°C °nn

90 00'C °nn

96'0 00 °nn

JINM SESN

Adadasn XIS

ISN

INSN

ASN dvd

INYON INON AON ddN DOTIN DA

D071

WODT LId 1d%u0d sse)

136

28nd jxau uo panunuo))

00T

00C

00C

001

00'C

00°1¢

00°6¢

00°¢

00°¢1

00°1¢

00°ST

00°S¢

00°0¢

00C

00°S

00'v

009

00°L

00°¢l

0091

00°01

00°CI

0081

00'TT1

00°S

00°L

00T

00T

000

001

000

000

00°L

000

00C

000

00°¢

00C

00'C

0s'1

00°0

000

000

0s0

000

00°0

000

001

000

€00

00°0

000

000

000

000

000

000

00°L

000

00T

000

00C

000

000

000

000

000

000

000

000

00°L

00°¢

000

000

000

000

00°0

000

000

00°0

000

001

009

001

00T

000

000

000

000

00°0

000

000

00

000

00

crl

0s0

€€°0

e€L'e

00°¢

€L'e

00

€v'0

001 00C

000 00T

00°0 00C

000 001

001 00C

001 00'8

000 00°€C

000 000

000 00°¢1

00°L 00C

000 00°ST

00T 00°s¢

00°0 00'¥1

00T 00T 00C 00T 00¢I

00’0 00C 0001 00C 0091

000 00T 00% 00T O00TI

000 00T 00'ST 001 007¢C

00T 00T 001+ 001 009%1

00'c STCT 00°€IT T9C 00°0LC

0001 LI'T 00°61T 9¥'I 00181

000 00T 00'Ly 00T 000S

000 00T 00°L 00T 00101

00'0 00°L 00%0I 0SSOI 00OVII

000 00T 00'6S 001 00¢€9

00°ST 00T 00°Sy 00T 00691

009 6C° 1 00'1¢ ¢Vl 00¢8

000

000

000

000

00

801

60

050

000

000

000

960

16'0

1S 1918130y
-'SUOTOB qeIeds
-'sugn 310
3s9PuIqIny Suniels
-"qeIeds'sS3N 310
)9 onbioy Sunte)g
-"qeIeds sLgn 310
1S9 AIINOAS
-"qeIeds sLgn 310
sontadoigeresSi
-'6149819
-"uoneIsu

00°€ 9s[e) -"qeIeds’sLgn S1o
OJUT)BAI)ONSSTOAOIN [~
-9149s19
-"uoneIs
-"qeIeds’sugn 310
AseLOddr
-"uoneIsu
-"qeIeds’sugn S1o
K10108,] MOIIOA
-"MO[[IoM

00’1 onn -"qeIeos sLgn 310
MOpPHopINEI

-"MO[IoM

00’1 onn -"qeIeds’s1gn 310
mopropdeayd

-Mop{IoM

00'C onn -"qereds s S1o
MOTIIOM

-"MO[[IoM

000 °nn -"qeIeds sLgn 310
Aanoyurx

-*SonSSIWX NN

00’1 onn -"qeIeds’sLgn 310
RSAIANOY WYX

-*SonsSIWX NN

001 onn -"qeIeds s S10

00°¢ °s[e}

001 °s[e}

001 °s[e}

00°S os[e}

001 °s[e}

00°¢ °s[e}

DM SASN

Adadasn XIS

ISN

INSN

ASN dvd

IWJON INON

JON ddN DOTIN DA D01

WODT 1Iq 1daouod sse)

137

28pd jxau uo panunuo)

00 00L 001 00T

00 00t 001 001

00°'L 00°'IT 000 IL0

00¢ 00 001 000

009C 0091 001 STl

00T 008 000 Sv'0

00 00T 001 STl

00C 00L 001 000

009 00L 001 £€8°0

00'¥C 0091 000 90

00°¢l 00°S 001 9¢°0

00'T 000 000 000

00°'T 00°0I 000 000

00°'0C_009 001 0S°'0

000

000

000

000

000

000

000

000

000

000

000

000

000

00°0

000

000

000

000

000

000

000

000

000

000

000

000

000

00°0

000

000

00°0

000

00'C

00°0

000

00°0

00°0

000

000

000

000

00°0

000

000

000

000

cro

000

000

000

000

00

000

000

000

00C 00’ 000 00T 009t 001

001 00's 00T 00T OOvI 001

00T 00°'L 00¢€ 00T 00°LS 001

000 00C 000 OS'T 00°LI 0S'T

00y 0091 00C 00°T 009¥I T9'1

001 00'IT 00¥ 00°T 00ty 001

001 00% 00T 00T 000I 001

000 00C 001 00T 00'Ic 001

001 009 00% 00T 00°SC 001

001 008 001 8¢'T 0018 00¢

00°L 006 001 ¥¥'1 00vvl vv'l

000 00'T 000 00T 006 001

00°0 00'T 000 00T 000 001

001 00°0I 00’0 00T 00CL 007¢

00°61

00°s€

00'¥8

00°6C

00°s0T

008

00°LT

00°0€

00°'IS

00°ITT

00°¢cl

00¥1

00°ST

00901

000 00°¢

0’0 00°¢

9¢'0 00°S

000 00'S

86’0 00°¢

Lo 00°s

000 00°¢

000 00'S

SLO 00°¢

e'o 00°¢

000 00°¢

000 00'S

000 00°¢

000 00°S

1S9 AJTAT)OY WO

asey -"qeIeds’sLgn g10
1S3LAINQLINY9[NPOIAY
-"wo°qeIeds

as[ey -'sugn S0
1S9 JUAWIORNY
-"wWo'qeIeds

as[ey -'su3n 810
1S9LAINQUINY WO

as[ej -"qeIeds sLgn 310
1S91,9NSS[WO

as[ej -"qeIeds sLgn 310
JS9LAN[eAINQLINY
-"Wo'qeIeds

as[e; -'sugn 310
1591 2dA1ansSTAMNPOINY
-"WO"qeIeds

as[ey -'sugn 3o
189119SANAnOY
-"woqeIeds

as[ey -'sugn S0
1s91uondompoIAy
-"wo'qeIeds

as[e; -'su3n 810
1S9 9[NPOJAqeIedS
-"WO"qeIeds

as[ey -'sugn 310
)saruondQanquny
-"Wo°qeIeds

as[ey -'sugn g0
1S9 paojAIond)
-'Spa9J-qeIeds

as[ej -'su3n 810
1S9,pa9Jonss|
-"Spa9JqeIeds

as[ey -'sugn 310
1S91,5S900yANQLNY

-"ep qereds

as[ey -'sugn-g1o

ONM SHSN AdddSA XIS

ISN

INSN

ASN

INMON JAON JAON ddN DOTIN DA

2071

NODT LId

1daduod ssep)

138

28pd 1x2u U0 panunuo))

00°€C

00T

00'8

00C

00'¥

001

00'¥

00C

00°CI

00°L

00°ST

00C

00°s

0001 00°LC

00°sC

00°L

00C

00°¢

0001

0001

0001

0001

00'8

00°¢

00'¥

006

000

009

00T

000

00C

00T

000

00T

00°1

001

00T

000

€50

000

001

00C

00C

000

2!

000

9¢°0

€€°0

000

001

00'9¢

000

00'1¢

000

000

000

00°0

000

000

000

000

000

00°0

000

00T

000

000

000

000

000

000

000

000

000

000

000

00°S

000

00C

000

000

000

000

000

000

000

000

000

00°0

L00

00°0

LT°0

000

000

001

€€°0

0s0

000

000

L00

000

00°0

00T

000

00C

00T

00C

000

00T

000

00T

00C

001

000

00°1

00°S1T

000

009

00C

00y

001

00°¢

00C

006

009

00°ST

00C

00°s

00°L €S°1

000 00T

000 €¢I

00T 001

00T 001

000 001

00°L €€1

00T 001

00T €¢'1

00y LI'L

00C 001

000 00T

00°¢ 001

00'6S €SI

000 001

00'6C €€l

00°¢ 00T

00l 00°1

001 001

00Cr €€l

00°IT 001

00°SIT €€

00'1y LI'I

00cs 001

00°¢cl 001

009¢ 00'1

00°0CI1

00°S¢

00'9v

00°CI

00'9¢

00°'S

0079

00°1¢

00°1¢I

00°SS

00201

00°S¢

00°LS

aseDIsaqereogeseq
-"189)°qeIeds

-'sugn 310
SIS9LqeIedsSIIV
-"189)°qeIeds

-'sugn 310
aseDIsarouIqIngaseq
-"189)°qeIeds

060 00°¢ os[ey -'susn'310
1891 901A10GIUSUOdWO) JERL
-Juouodwooyeek
-*SOOIAIAS qeIeOS
-'s1gn'310
1S9L01AIS TOSH
-[bsyseo1AaIos
000 00’ 9s1e) -'qeaeds sugn sio
NUIPOON$ISLOTAIOS [TEWHAIO0TIA
-"[TeUIY’ SAOTAIDS

-"qereds sudn 310
1S91,901AIOS [TRUIF AJIO0[OA
-*[TeWId’ SIOTAIOS
-'qereds sugn 510
3s9uonearourjadig
--uredid-qeress
-'sugnyg10
1sa1.A19n) WO
-'qereds sugn s1o
1591 dnoinonquny
-"wI0"qeIeds
-'sugnysio
1sa1,0dATonssT
-"Wo"qeIeds

-'sugn 310

1891 J1osqeIedS
-"wo'qeIeds
-'sugn'310
7IS9LIUSWYORNY
-"wo"qeIeds

850 00°S 9s[e} -'sugn'310

001 00'% °srej

000 00°S °sre}

000 00'% °sre}

000 001

¥9°'0 00'% 9s[e)

00°L 00°¢ °srey

9¢'0 00°S °sred

0L°'0 00°S °sre)

¥S°0 00°S °s[e}

000 00°S °sred

JINM SASN

Adadsn XIS

ISN

JNSN ISN

qvd

INYON JAON AON ddN DOTIN DA

D071

WODT LIq 1d%u0d sse)

139

28pd jxau uo panunuo)

umm.rﬁxo_uEHﬂoHNvaCvoﬁJ

-"pIOM [IIN'qRIEDS

00T 00€ 000 000 000 000 000 0SO 000 00T 00T 00T 00% 001 00CI 001 00 9s[ef -suSy8io
sapyurrewy

-[In°qereds

001 00F% 001 000 000 000 000 000 000 00T 0000 00T 009 00T 00'E 000 00°S 3S[e -'su3nS10
1S9 J0JRIAIASqNS

-'[Bnrqereds

0081 008 00°€ 09'0 00T 000 00°S 0I'0 00T 0001 00T OST 0018 08T 00TTI OL'0 00°€ 3S[e -'s18nS10
QZISYIAT0JRIAO0IN $ISAL SZISYIIA I0JRIIASqNS

-[n°qereds

00S 00TI 00T 000 000 000 000 020 000 00S 00T 00T 009 001 009 0S0O 001 -suSy 810
1891 AZISYIT A\ JOJRIR)IasqNS

- [In°qereds

00T1 00T 001 0S'T 0000 000 00°'L TI'0 00°S 008 0000 TI'T 00°LZI OS'T 00'88T €L°0 00t 3S[e -'su8n810
1S9LINNqeIedS

-'[Bnqereds

001 00T 0071 000 000 000 000 000 000 00T 0000 00T 009 00T 00EI 000 00°€ dS[eF -'s13nS10
191 Jo3eURA[00] qBIedS

-"S[00)'qeIeds

00T 008 000 000 000 000 000 000 000 00T 000 00T 006 00T 009T 000 00°S 3S[es -'sp8n 810
QOIATISAILINOISYOOIA

-"Sydo0ourIsAN

0069 00°LI 001 000 000 000 000 160 000 0069 00T 00T 009% 00T 00161 660 00T 35[ej -'quieossusnSio
JOTRUBTA[OITAISSWNID[N YOOI

-'$yo0uI’)s9)

0081 006 000 000 000 000 000 69°0 000 0091 000 90°T 00°SI TI'T 000S 000 00T 95[ey -'quiesssusyFio
IOIGAIIAIIS OO

-"SydoourIsa

00TI 009 000 000 0000 000 000 SL'O 000 00T 000 00T 008 00T 00'SE 000 00T 9s[ey -quiesssusnSio
JUITqeIROSYOO N

-"Sydo0ourIsN

00T 00€ 00T 007 000 000 000 0S0 00C 00T 000 00T 00T 00T 006 000 00 9s[e} -'quieos'susnSio
AIINO0SqRIBOSYO0IN

-*S00W"1S)

00T 00T 001 0S'T 0000 000 000 0S0 00T 00T 000 00T 00T 00T 0001 000 00°€ dS[ey -'quiesssusySio
[00LUOTIRZI[EO0 [qRIBISOOIA

-'$)o0W"1S)

001 00Z_ 00T 00°€ 000 000000 001 001000 001 00T 001 009 000 00°€ 3s[ey -qereds’susngio
DM SASN AFAASA XIS JOSN SN ASN WION INON AON adN DOTI DA D01 WODT Lid 3dedued sse[)

140

00C 00 001 000 00°0 000 00°C 000

00'L 0091 00T 000 00°0 000 000 0S'T
008 0091 000 000 00°0 000 00T €€0

00'IT 006 000 000 00°0_00°0 000 00°0

000 00C 000 001

000 00 008 0S'I

00°0 00'c 00T 00C

00°0 006 00¢ TI'1

009

00'8¢

00°16

00°001

00'T 00°0C 0S'I

s sonssproduy
-'sonssIuIX [nn

00°S as[ey -qeIeds'susn 310

159 A10108,JST$ISALA10108,JY0TBISONSS]

SL'T 00°€9 L90

L9°C 00°CLT 0S°'1

¢C’l 00°evl L9°0

-"pIoM 1IN 'qeIedS

001 -'su3n 810
1S9 A10108JYOIBOSINSS]

-"pIOM [IIN'qRIROS

00°S s[ey -'sugn 310
1SQLYOTRISANSS]

-'pIom’ N

00°S 9s[ey -qeIeos'susn 310

DM SASN Adddsn XIS DOSN INSN ASN dvd

INYON JNON AON ddN

DOTIN DA D01 WODT LId 1d3duod sse[)

141

APPENDIX D

Published Papers

142

D.1 ICPC 2007

Recovering Concepts from Source Code with Automated Concept Identification
As appeared in ICPC 07: Proceedings of the 15th IEEE International Conference on Program
Comprehension

143

Recovering Concepts from Source Code with Automated Concept Identification

Maurice M. Carey
Dept. of Computer Science & Engineering
Arizona State University - Tempe
Box 878809, Tempe, AZ 85287-8809
mmcarey @asu.edu

Abstract

The complexity of the systems that software engineers
build has continuously grown since the inception of the
field. What has not changed is the engineers’ mental capac-
ity to operate on about seven distinct pieces of information
at a time. Improvements like the widespread use of UML
have led to more abstract software design activities, how-
ever the same cannot be said for reverse engineering activ-
ities. The well known concept assignment problem is still
being solved at the line-by-line level of analyzing source
code. The introduction of abstraction to the problem will
allow the engineer to move farther away from the details of
the system, increasing his ability to see the role that domain
level concepts play in the system. In this paper we present
a technique that facilitates filtering of classes from existing
systems at the source level based on their relationship to the
core concepts in the domain. This approach can simplify the
process of reverse engineering and design recovery, as well
as other activities that require a mapping to domain level
concepts.

1. Introduction

The complexity of the systems that software engineers
build has continuously grown since the inception of the
field. What has not changed is the engineers’ ability to deal
with a limited number of datum at any given time, psychol-
ogists tell us that the average person has working memory
capacity to operate on about seven distinct pieces of infor-
mation at a time [1]. While improvements in the field like
the widespread use of UML has led to more abstract soft-
ware design activities, the same cannot be said for reverse
engineering activities. The well known concept assignment
problem is still being solved at the line-by-line level of an-
alyzing source code. The introduction of abstraction to the

*This author supported by National Science Foundation CAREER
grant No. CCR-0133956.
fContact Author.

Gerald C. Gannod*

Dept. of Computer Science and Systems Analysis

Miami University
Oxford, OH 45056
gannodg @muohio.edu

problem would allow the engineer to move farther away
from the details allowing his own limited resources to cap-
ture a broader picture of the system, increasing his ability to
see the role that domain level concepts play in the system.

In this paper we present a technique that facilitates fil-
tering of classes from existing systems at the source level
based on their relationship to the core concepts in the do-
main. This allows a software engineer to work with a
smaller subset of the system. The technique presented in-
volves collecting object-oriented metric data from existing
systems, which are then used in machine learning methods
to create classifiers of the systems. The classifiers are then
used to identify classes that are likely related to domain
level concepts. As will be seen, we have gathered some
interesting results that indicate this technique may ease the
effort required to identify concepts in existing systems. This
approach can simplify the process of reverse engineering
and design recovery, as well as other activities that require
a mapping to domain level concepts.

The remainder of this paper is organized as follows.
Section 2 describes the context for our approach includ-
ing information on the concept assignment problem, object-
oriented metrics, and machine learning. Section 3 presents
the process used to collect data from an existing system, as
well as training a support vector machine. Section 4 shows
an example of the filtering application of the approach to the
Panda software. Section 5 evaluates the effectiveness of our
approach by presenting the results obtained from analyzing
example software systems. Section 6 discusses some areas
of related work. Finally, Section 7 concludes and suggests
future investigations.

2. Background

This paper makes use of ideas related to several areas of
research. The concept assignment problem is similar to our
goal of filtering the class diagram. Metrics are used as a
way of assigning quantifiable attributes to a class. Finally,
machine learning is used to automate the process of classi-
fication.

2.1 Concept Assignment Problem

Biggerstaft et al. [2] describes the concept assignment
problem as recognizing concepts in software systems and
building a model or human level understanding of the con-
cepts. We see the concept assignment problem as a two part
process. The first step is to identify concepts in the soft-
ware system. The second step is to build a model of the
concepts. This paper describes a new method of identify-
ing concepts that are represented by classes, and using the
identification to produce an abstraction of a recovered class
diagram. Specifically, we describe an instance of the con-
cept assignment problem dealing only with object-oriented
classes. Object-oriented design suggests that we ignore the
details of the implementation of a class, so we believe that
analyzing object-oriented software at the class level is a
valid approach to solving the concept assignment problem.

2.2 Object-Oriented Metrics

A metric is defined as a standard of measurement [3].
In this paper, we use metrics as quantifiable attributes of
classes. We will be more interested in what a set of metrics
might say about the class than what each individual metric
implies. Since our focus is on attributes of classes we will
be most interested in class level metrics.

Several object-oriented metrics are used in our approach.
These metrics are primarily designed to capture information
about the size and complexity of software at the class level.
Figure 1 provides a brief summary of the metrics used in
our work. These metrics were chosen because they were
available to be analyzed. We have not optimized the met-
rics used, nor do we believe that is an appropriate step to
take at this time because we do not want to over optimize
the metrics used to the data set collected. The best way to
view the role of the metrics collected here is as incomplete
indicators of the concepts, each metric adds more informa-
tion to the decision making process.

2.3 Machine Learning

This work makes use of two different machine learning
algorithms developed by the machine learning community.
The first, Support Vector Machines (SVM) are the primary
algorithm we use to classify results. The second, k-nearest
neighbors (KNN) is used to validate results obtained with
our primary algorithm. We use both as a black-box that
takes inputs that are n length vectors of real numbers and
outputs classification decisions.

2.3.1 Support Vector Machines

Support Vector Machines (SVM) were first introduced
by Boser et al. [4]. SVM are an example of a learning
methodology known as supervised learning [5]. A learn-
ing methodology is an approach to creating programs that
calculate answers by analyzing given examples while su-
pervised learning uses examples consisting of input-output

Number of Attributes (NOF) The total number of instance and
static attributes in the class.

Number of Static Attributes (NSF) The number of class or stat-
ic attributes in the class.

Number of Methods (NOM) The total number of instance and
static methods in a class.

Number of Overridden Methods (NORM) The total number of
methods in the class that override methods from an ancestor
class.

Number of Static Methods (NSM) The number of static or class
methods in the class. Henderson-Sellers refers to this as
Number of Class Methods (NCM).

Number of Parameters (PAR) The number of parameters in a
method. In this paper we use the average over the class.
Number of Subclasses (NSC) The total number of direct sub-

classes of this class, a.k.a Number of Children.

Method Lines of Code (MLOC) The number of lines of code
contained in the body of all methods in the class.

Lack of Cohesion of Methods (LCOM) LCOM can be calcu-
lated as in (1) where p(A;) is the number of methods that
access the attribute A;, a is the number of attributes, and
m is the number of methods. LCOM is a measure of the
cohesiveness of a class where smaller values indicate more
cohesive classes.

Nested Block Depth (NBD) The depth of nested blocks of code.

McCabe Cyclomatic Complexity (VG) The maximum number
of independent circuits through the directed acyclic graph of
a method. In this paper we use the average over the class.

Weighted Methods per Class (WMC) The sum of McCabe Cy-
clomatic Complexity for the n methods in the class i, calcu-
lated by the formula given in (2).

Depth of Inheritance Tree (DIT) The depth of the class in the
inheritance hierarchy.

Specialization Index (SIX) Defined as YOEMDIT ~ Degigned
so that higher values indicate classes that are more special-

ized.
1 a
(455 w(4)) —m
LCOM =~~~ 1
1-m
WMC =5, =) " Vi5(G) @
j=1

Figure 1. Definition of Metrics Used

pairs. The goal in a learning problem is to find a function
that maps the given inputs to the desired outputs.

SVM generate linear functions as their hypothesis. The
hypothesis are then applied to attributes that have been
transformed to a high dimensional feature space. The trans-
formation of attributes to a feature space is carried out by
the application of kernels to the example datum. An ex-
ample of a kernel is the radial basis function kernel shown
in Equation (3) [6], which intuitively describes a radius of

influence, where i = 1,...,¢, 5 = 1,...,¢, and o is a pa-
rameter to the kernel that scales the radius of the support
vectors influence.

K(%;,%;) = exp (—7”"’ Sl) 3)

SVM used as binary classifiers must solve the opti-
mization problem in Equation (4) [5]. Geometrically this
translates into finding a linear separating hyperplane in the
higher dimensional space. The hyperplane is optimized for
maximal margin and defined by the weight vector W and
bias b. In actual practice the dual representation is max-
imized allowing optimization to take place in the kernel
space with slack terms introduced along with a penalty pa-
rameter C. In this context, X; € R™ are the n-dimensional
training vectors, y; € {1,—1} are the classification labels
for the training vectors, and ¢ is the number of vectors. The
set of classification labels {1,—1} correspond to classes
that are concepts (1), and those that are implementation de-
tails (—1).

min (W - W)
W,b
subject to yi ((W-X;) +b) > 1, %)
where i=1,...,0

In our data set, n = 14 so the vector X; has 14 dimen-
sions, each related to a metric. Examples of some sample
vectors from the Panda data set are shown in Table 1. The
metrics and their ordering are as in Table 1.

Table 1. Panda data set examples.

i Xi Yi
1 <0,0,3,31,11,0,0,1.75, 4,0.444, 2.75,0.5, 0, 1 > -1
2 | <4,0,2,331,92,0,2,1.806,32,0.5,2.556,0.917,0,5 > 1
3| <0,0,8,51,16,0,0,1.071, 14,0.862,1.143,0.929,0,1 > | 1
4

5 2
<1,0,2,24,10,0,2,1.667,2,0.5,3.333,0,0, -1

2.3.2 k-Nearest Neighbors.

k-Nearest Neighbors (KNN) [7] is the simplest instance-
based machine learning method. The algorithm is based on
all the training instances being points in an n-dimensional
space R™. Instances are classified by calculating the Eu-
clidian distance to all points in the training set. The Euclid-
ian distance, shown in Equation 5, is calculated from a, (X)
(e.g., the rth attribute of the learning instance vector X).

n

> (@, (%) ~

r=1

d(X;,%;) =

ar(%;))? ©)

The class of the & nearest points is then used as a simple
majority rules vote, the class of the majority is assigned as
the class of the point in question. An alternative is to weigh
the class of the k nearest points based on the multiplicative
inverse of their distance from the point in question.

3. Approach

This section describes our overall approach and presents
our analysis of the implementation. Then we discuss the
processes used to classify the systems, collect metrics, and
generate the results.

3.1 Overview

The primary objective of our research is to study Hy-
pothesis 1.

Hypothesis 1 The vectors consisting of metrics measuring
size and complexity of software components are strong in-
dicators of classes that represent concepts within a domain.

In other words, in a given domain the interesting concepts
will be realized in software by classes or components whose
size and complexity, measured by the metrics presented in
Section 2.2, will be recognizably different from uninterest-
ing classes that do not represent core concepts of the do-
main.

Figure 2 shows an overview of the process used in our
approach. The Data Collection and Classification step is
used to gather information about training data as well as
data on the subject system. The result (Metric and Clas-
sification Data in Figure 2) is then analyzed in the Data
Analysis step. The result of the Data Analysis step is a set
of identified concepts that can be fed into any of a number
of applications that use the concept identification to perform
recovery of high level abstractions.

One of the intentions of our work is to support reverse
engineering and design recovery by facilitating recovery of
abstract models from as-built models. This approach builds
a classifier that operates on a individual software systems,
though future work may expand the scope to operate on

multiple systems.
Design Recovery
Process

Ontology
Recovery
Process

Metric & Concept
Data Collection Classification Data Analysis Identification
Process Process
Data Data

Other Process

Figure 2. Approach Overview
3.2 Data Collection

The data collection process consists of collecting met-
rics data, transforming the data into a usable form by way
of XML transformation, integrating manual classification
data, and exporting the combined data to a format compati-
ble with our analysis software.

The collection of metrics data begins with the import
of the existing Java-based software system into the Eclipse
platform and using the Eclipse plug-in Metrics [8] to gen-
erate the required metrics data. The metrics data is then

exported into an XML file for further processing.

An Excel XML spreadsheet file is then created from the
XML-based metrics file using an XSL transform. This al-
lows the data to be viewed or further manipulated in an easy
to use environment. The spreadsheet file is integrated with
the data collected from the manual classification step, re-
sulting in a spreadsheet that contains all metric and classi-
fication data. Though we prefer the use of Matlab in our
project for the classification and analysis of data it would
also be possible to perform some analysis using a spread-
sheet program. The final spreadsheet is then saved to a
simple comma separated value (CSV) file. The CSV file
is suitable for import into Matlab for analysis.

3.3 Manual Classification Step

The manual classification step is used to classify each
component (class) from the system into one of two cate-
gories: concept or other. The purpose of this step is to
provide a means to train and validate the classifier. The
concept category is made up of components or classes that
are representative of concepts from the knowledge domain
of the system. The other category consists of everything
that does not fit into the concept category. For example,
consider a parser component. For a compiler this would be
part of the concept category, since a parser is a core concept
in this domain. In a word processor, this would likely not
be classified to the concept category, since a parser would
only support the primary or core concepts in the knowledge
domain.

The approach to classification used in this paper involves
examining the naming, relationships with other classes or
concepts, and role within the architecture for the candidate
class. This information must be evaluated with regard to the
domain knowledge in order to classify the candidate class.
It should be noted that there are no rules about how to clas-
sify a component. The decisions are based on the experi-
ence of the analyst, and their expertise in the domain. It is
assumed that different analysts will produce slightly vary-
ing results. For our examples, we assumed any resulting
classification that can be validated by a group of experts
would be roughly equivalent to any classification we could
arrive at or that the resulting error would not have a signifi-
cant impact on the approach.

3.4 Machine Classification

The machine classification process consists of creating
a SVM classifier from the data set then running the SVM
classifier on the data set.

The data set is randomly broken up into two sets known
as the training set and the test set. Both sets are of approx-
imately equal size and consist of the metric data as well as
the classification for all classes in the set.

The SVM classifier is created using the training set by an
SVM algorithm implemented in Matlab. The metric data, in

essence, is the domain of the classification function and the
classification data is the range. The result is a set of sup-
port vectors that will be used to perform classification runs.
The SVM algorithm takes a parameter, which in the case
of the radial basis function is conceptually related to a ra-
dius of influence for a given support vector, that is selected
by a process known as cross-validation. Cross-validation
allows us to make an intelligent parameter selection by par-
titioning the training set into n partitions, this technique is
designed to reduce the risk of overfitting. We then sample
over a range of parameter options giving a set P of poten-
tial parameters. For each parameter in P we train n differ-
ent classifiers by removing 1 of the n partitions from the
training set for each classifier. We then evaluate the accu-
racy of the classifier on the remaining partition for each of
the n different classifiers and compute an average accuracy
for the classifiers with the given parameter value. The re-
sult is an optimal selection of the parameter from P based
on how well the classifiers created with that value general-
ize to the n test partitions in addition to the accuracy they
achieve over the partitioned training set. Once the parame-
ter selection is finished we train a classifier with the given
value over the complete training set.

The SVM classifier is used to analyze the metric com-
ponent of the test data set, this step generates a predicted
classification result. The predicted or observed classifica-
tion is compared with the manual or expected classification
derived manually from the class.

4. Example

In this section, we illustrate one of the potential uses of
our approach. Specifically, we show how the concept iden-
tification technique can be used as part of a reverse engi-
neering activity.

Panda [9] is a natural deduction proof assistant written
in Java and developed at Arizona State University. The tool
is used primarily to support education of natural deduction
as a proof technique. We had access to the original class
and statechart diagrams that were used for development of
Panda and thus used that information as a sanity check dur-
ing identification of concepts. Panda’s size is 84 classes and
about 9 thousand lines of code (KLOC).

The architecture of Panda is best described as a GUI
based model view controller application. The model con-
sists of classes implementing logical constructs. The view
consists of classes implementing Java GUI elements. The
controller consists of classes implementing the use cases
that can be applied in a proof.

The basic process that we are using in this example is
the following. First, we generate a class diagram for the
system. Figure 3 shows a diagram for the Panda package
in the Panda system. In addition, we generate the relevant
metrics using the original source code for Panda. Second,

we use the SVM to identify those classes that are concepts
in the system. Third and finally, we create an abstraction
of the original class diagram that utilizes only those classes
that were identified as concepts.

As shown in Figure 3, the Panda package has 45 classes.
When we apply the SVM to the Panda data, 24 classes are
filtered. When compared to a manual classification we per-
formed, the automated classification produced 1 false posi-
tive and 4 false negatives. A more detailed evaluation of the
approach is described in the next section.

Figure 4 shows the resulting class diagram using the in-
formation gathered using the SVM. As shown in the dia-
gram, the resulting class structure is a more abstract rep-
resentation of the original system. Specifically, it focuses
more on domain concepts rather than details of the imple-
mentation. In this case, the remaining classes are related to
logical formulas and the commands that operate upon them
(e.g., the applicable inference rules). Filtered classes con-
sisted of user interface classes and other implementation de-
tails.

5. Evaluation

Two software systems were used to evaluate our ap-
proach. In this section we first describe the systems ana-
lyzed and the statistical methods used to evaluate our re-
sults. Then we present the results of several experiments on
data sets collected from two case study systems.

5.1 Description of Example Systems

Panda, as described earlier, is a natural deduction proof
assistant. In the context of the concept identification work,
Panda is used as a small system for illustration purposes.

Scarab [10] is a web-based defect tracking system based
on the Turbine [11] and Torque [12] frameworks. Scarab
was designed to be a replacement for defect tracking sys-
tems like Bugzilla [13]. The size of Scarab is 585 classes
and 128 KLOC.

Turbine is a model view controller framework for web-
based applications. Torque is an object-relational mapper
for Java classes that allows objects to be persisted to the
database. Scarab therefore has the architecture of a MVC
web application whose model is persisted to a database.

5.2 Statistical Analysis Method

In order to evaluate the accuracy of the classifier, we per-
formed a statistical analysis of the classification results. We
calculated the sample error from the test set using Equa-
tion (6) [7] where n is the number of samples in the test
set S, f is the function specified by our manual classifica-
tion mapping the data point x to one of the two classes, h is
the hypothesis generated by the learning algorithm, and the
quantity 6(f(z),h(z)) is defined in Equation (7). When
the hypothesis disagrees with the manual classification, the
sample error increases and 6(f(x), h(x)) will be 1 for any

instance where the predicted classification h(z) does not
match the expected classification f(x).

errorsg(h) = % Z 3(f(z),h(x)) ©
z€S
L if f(z) # h(z)

0, otherwise

6(f(x), h(x)) = { ™

We can estimate the frue error, the error of the whole pop-
ulation, from the sample error using Equation (8) if we can
meet the criteria in Figure 5. Here zy is chosen based on
the confidence level of the estimate.

errorp(h) = errorg(h) ®)

" ZN\/errorg(h)(lT: errors(h))

1. n > 30,
2. the hypothesis commits r errors over the n samples,

3. the sample, or test set, S contains n data points which
are drawn independently of each other,

4. the sample is chosen independently of the hypothesis,
and

5. the sample is chosen according to the probability dis-
tribution D of the population.

Figure 5. Criteria for calculation of true error

Criteria 1 thru 4 of Figure 5 are met by the methods out-
lined in Section 3.4 and the size of the data set. Criteria 5
is more interesting since the dependency on the probability
distribution requires that we test for a significant difference
in the distributions of the test samples and the distribution
of the population.

In order to confirm Criteria 5 we can perform the
Kolmogorov-Smirnov hypothesis test on the population and
sample distributions to test for significant difference. We
formulate our hypothesis for this test in Hypothesis 2.

Hypothesis 2 There is no significant difference in the dis-
tribution of the population and the sample data.

The p-value of the Kolmogorov-Smirnov hypothesis test is
the statistical significance, and « is the probability of reject-
ing the null hypothesis when it is in fact true. We will reject
the null hypothesis if the p-value is less than «. Table 2
shows the results for each of the necessary test sets with an
« value of 0.05 representing a confidence level of 95% for
the test.

Using a t-test we have a toolset in place to detect situ-
ations where, for example, the accuracy is good, but there
is no significant difference between the expected value (or

<interace >
Undo

CommandRedo | - -

Redo. [cupsparsersactions|

—parser

’ﬂ“

interface >> ‘

#acton_obi

=

+ manager 1

KeysDialog

‘ ‘

ﬁ u
o
pm.mm.,L
-] CT)
Commandcanciuds
oo
fomuiad
st CommanauoiEauneim
FormunButon
CommandTrustile
; | Y ! ‘ “ r |
; N T NIk |
CommanaNotinro 1 |
ranionboint
’amm-mwm nsaionPoit

Figure 3. Panda class diagram

AbstractCommand|

CommandAndElim|

#prover

CommandUndo
Prover

k—

| M|

—~prover

L J

CommandNotEquivElim|

ANIVAATANA

#formul
~ formulas| formulas

~ selectedList #seledtedList Reason
—rootList

FormulaList -reason

ownerList
arent
+sublList
—right
eft +formula
Formula

CommandimplElim

CommandEquivintro

CommandAddAssumption

CommandNotEquivintr]

CommandAddConclusion

CommandNotElim| (CommandAndintro

Figure 4. Panda class diagram after filtering

Table 2. Kolmogorov-Smirnov test « = 0.05.

Dataset | p-value | Reject Hypothesis 2
1 (Panda) | 0.9922 No
2 (Scarab) | 1.0000 No

mean) of the sample distribution and the measured accu-
racy. This could happen, as an example, in the case where
the distribution of the expected results is 80% negative. The
accuracy of the observed results could be 80% just by al-
ways guessing negative. The r-test will help to discover
these situations by testing Hypothesis 3.

Hypothesis 3 There is no significant difference in the mean
of the sample data and the accuracy measured on that sam-

ple data.

Rejecting Hypothesis 3 is a strong indicator that the ac-
curacy is significantly different than the distribution of the
data. Intuitively, a significant difference in the accuracy and
the mean indicates that the classifier has learned something
other than the expected value of the data set. As such, in
Table 3 which shows the 95% confidence interval on the
difference between population mean and sample accuracy,
rejection of Hypothesis 3 is desirable.

5.3 Test Sets
Table 2 shows test sets 1 and 2 are randomly sampled
from the Panda and Scarab data sets and are shown to be

representative of the population they are sampled from by
the acceptance of Hypothesis 2. Table 4 shows a mapping

Table 3. Results of Hypothesis 3 -test.

Experiment p-value Reject Hypothesis 3
1 (Panda) 0.0198 Yes
2 (Scarab) 7.6288 x 1071 Yes
3 (Scarab KNN) 0.0753 No

of the test sets to the experiments they are used in.

Table 4. Test data mapping to experiments.

Experiment Test set
1 (Panda) 1
2 (Scarab) 2
3 (Scarab KNN) 2

5.4 Experiments

This section shows the results of the seven experiments
we have conducted thus far using the approach outlined in
Section 3. The results are summarized in Table 5, which
shows the sample accuracy along with predicted bounds of
the true accuracy for N samples.

54.1 Experiment 1: Panda.

For this experiment we used the data set collected from
Panda using the methods outlined in Sections 3.2 and Sec-
tions 3.3 . The process of classifying Panda took approx-
imately four hours but given our previous experience with
the software this may not be an indicator of the time re-
quired for an engineer looking at the system for the first
time. We followed the process outlined in Section 3.4 to
split the data into training and test sets, and used the training
set to generate the SVM classifier used in this experiment.
The purpose of this experiment was to attempt to identify
evidence for the hypothesis using a fairly small system. We
wanted to see if it was worth while to commit to the process
for a larger system. The data set for Panda is under 100 el-
ements and while a larger data set would better capture any
generalizable properties of the hypothesis, this data set was
simple to obtain and encouraged further analysis.

We used a SVM classifier based on a radial basis func-
tion kernel as in Equation (3) of Section 2.3.1 with the slack
term of C' = 10. Results are shown in Table 5. Accuracy
was 80.43% for this sample. The rtest analysis (as indi-
cated in Table 3) showed that the accuracy of the test versus
the expected value of the results collected from the software
were significantly different at the 95% confidence level, in
other words the probability that the accuracy is different
than the mean of the distribution is over 95%. These re-
sults were encouraging for a data set of this size, prompting
us to proceed with the data collection effort for Scarab.

5.4.2 Experiment 2: Scarab.

For this experiment we used the data set collected from
Scarab. Classification of Scarab required significantly more

time than classifying Panda with over 40 hours of effort ex-
pended. This may have been a function of less familiarity
with the system as well as the larger size. The process out-
lined in Section 3.4 was used to split the data into training
and test sets, generate an SVM classifier for this experiment,
and collect results. The purpose of this experiment was to
validate the approach for a much larger data set than that
used in the Panda experiment. Scarab is also a program that
is more representative of systems in actual use.

The SVM classifier used was based on a radial basis
function kernel with parameter of C' = 10. Results are
shown in Table 5. Accuracy for this sample set was 81.39%,
and the #-test analysis showed that the accuracy of the test
versus the expected value of the results were significantly
different at the 95% confidence level. These are solid re-
sults that show quite a bit of promise for future research
as it indicates that a fairly high degree of accuracy can be
obtained using a moderate sized training set.

5.4.3 Experiment 3: Scarab Revisited.

For this experiment we wanted to repeat the Scarab ex-
periment with a different machine learning algorithm for
the classification. We chose the KNN classifier in order to
form a simple baseline for comparison to the SVM results
collected previously. The purpose of this experiment was to
eliminate the chance that there is something special about
the classification algorithm based on SVM.

In this experiment we used a value of £ = 3. Results
are shown in Table 5. The only parameter to the k-nearest
neighbor algorithm is k. The sample accuracy is 76.92%
which comes close to the accuracy obtained using SVM
on the same data set in Section 5.4.2. The #-test analysis
does not show a significant difference in the accuracy of the
test verses the expected value as shown in Table 3. How-
ever, this result provides support for our hypothesis given
that with 92% confidence we can show significant differ-
ence, this represents a 1 in 12.5 chance that the hypothesis
is incorrectly rejected for this test. Given that we are over
99.999% confident in the results for experiment 2 and this
test is only designed to confirm those results with a different
machine learning algorithm it seems acceptable to view this
test as a successful validation of those results even at only
90% confidence.

5.4.4 Discussion.

Table 3 gives us an indicator of how well the accuracy
is measured. A small p-value is an indicator that there is a
significant difference between the accuracy and the mean.
Imagine a coin that is unfairly biased towards heads such
that the expected value of heads is 80%. If we were to play
a game where the coin is flipped repeatedly and the player
must try to guess the result, the player would eventually dis-
cover the bias and begin guessing heads every round of the
game. This learned strategy would lead to a measured accu-

Table 5. 99% confidence interval on accuracy of classification. (LB = lowerbound, UB = upperbound)

Experiment Sample Accuracy | N | True Acc. LB | True Acc. UB
1 (Panda) 80.43% 46 68.97% 91.90%
2 (Scarab) 81.39% 403 77.59% 85.19%
3 (Scarab KNN) 76.92% 403 71.51% 82.34%

racy of the player at about 80%, in other words there would
be no significant difference between the expected value of
the experiment and the accuracy of the guess. In our results
we believe that the machine is really making good predic-
tions, because there is a statistically measurable difference
between the expected value of the data set and the classifi-
cation guess of the machine for all of the SVM predictions.
So the results show support for Hypothesis 1.

These results lead to the idea that a SVM classifier
trained within an application will work well on that applica-
tion. This result has practical applications since a software
engineer trying to identify concepts within a system with
a large number of classes could start by classifying parts
of the system. The approach described could be used to
predict results for the remainder of the system. As the soft-
ware engineer accepts or corrects the predictions they be-
come more accurate. So the approach can be used as an in-
teractive concept identification assistant that becomes more
accurate as the system is classified. Those familiar with
SPAM filters such as SpamAssassin [14] will recognize this
concept, the more you train it the less time you spend deal-
ing with SPAM. In presentation of this work to peers many
practicing engineers appreciate the potential time savings.
Their work with systems that have a large number of classes
shows the immediate practical benefits to an approach that
trains a computer to do a repetitive classification task.

5.5 Threats to Validity

The threats to validity include internal and external fac-
tors. The internal factors include errors in the statistical
analysis, and overfitting of the data set. The external factors
include manual classification errors, and inaccurate or poor
definition of the concepts in the domain. We will describe
each in further detail below.

The primary internal threat to validity that should be ad-
dressed is the difficulty in deciding what constitutes a good
result. The difficulty stems from the distribution of classi-
fications where there are more negatives than positives. In
other words there are fewer classes representing concepts
than implementation. It has been shown in Section 5.2 that
the accuracy of the prediction can not be used in isolation,
but must be considered along with the #-test analysis of the
distributions’ expected value verses the accuracy. This gives
a more complete picture of the result showing some indica-
tion as to how significant the accuracy is. The assumption
here was that results that had better than average accuracy

along with a significant difference in mean were good re-
sults that support our hypothesis.

Overfitting is a threat to validity that effects any machine
learning approach, but is only a secondary threat to the va-
lidity of our approach. Overfitting means that results will
not generalize well to other data sets, since the machine has
learned a pattern for a specific data set. In other words if the
SVM is overfitted to the data then we could not expect good
results from a different data set classified with the same ma-
chine. At this point we are not that concerned about gener-
alization to other data sets as we have a practical application
of the approach in the classification of a single large system.
In future work the potential of overfitting will play a larger
role in the threat to internal validity of our approach if it is
expected that our approach will produce general results.

The primary external threat to validity is misclassifica-
tion during the manual classification process. There are two
possible scenarios that result in the introduction of inaccu-
rate analysis into the system and they are either a logical
error or a typographic error on the part of the engineer. We
have worked with enough software engineers to know that
each has a different opinion on any given subject, these dif-
fering opinions would appear in the system as logical errors.
However, this assumes that one of the engineers is more cor-
rect than the other within some externally specified system
of objective truth that likely does not exist, and this ignores
the possibility of having more than one correct represen-
tation of the system. We must concede that any accurate
automated classification is only as accurate as the engineer
who trained it, but this really is not problematic as long as
the engineer is consistent and in fact is representative of the
results of a manual classification. The typographic errors
that could have been introduced into our data set were min-
imized by careful data entry, along with rechecking each
result against the class. Though we believe we have min-
imized the errors as much as possible we have no way to
measure this using the current process, and as is the case
with many machine learning applications we can not predict
the effect of a classification error on the resulting classifier.

A secondary external threat to validity is the design of
the software itself. If poorly designed software systems are
introduced it is difficult to predict the results. As an example
imagine a single concept being represented by two classes.
There may be instances where the lack of cohesion makes
sense but it may not be possible to decide where.

6. Related Work

Biggerstaff et al. [2] describe the assignment of hu-
man oriented concepts to implementation oriented con-
cepts. This process is a matching between preexisting no-
tions about the system or existing domain knowledge to tex-
tual representations of the system implementation. While
the definition of the concept assignment problem given fits
well with the filtering application we present here there are a
few key differences. The approach used by Biggerstaff et al.
uses source code where we use metrics based on the source
code. We use a machine learning approach that does not
involve declaratively creating an expert system. They make
a strong case for the methods used to recognize concepts,
using at times a filtering of the source code. Our approach
could be added to the toolset mentioned here as an addi-
tional filtering technique, though in time we will automate
more of the process to the point where interaction with the
user is very limited.

Svetinovic et al. [15] discuss concept identification from
a forward engineering perspective illustrated in several case
studies. The claims of misuse or misunderstanding of
object-oriented domain analysis are worth noting since the
automated identification of concepts requires that those
concepts are represented within the implementation, imply-
ing they where designed into the software. They identify
many of the concerns we have raised in our discussion of ex-
ternal validity. Primarily, that there is not one single agreed
upon way of designating what is and is not a concept in a
software system, according to the paper this is a fundamen-
tal difficulty with object-oriented domain analysis.

Merlo et al. [16] describe a design recovery process
which uses a machine learning approach to link text from
source code to concepts identified by a domain analysis.
This is essentially a partial automation of a portion of the
work performed by Biggerstaff et. al. The machine learning
algorithm used is based on neural networks. The approach
differs from ours in that a change in domain requires a new
neural net to be trained. That is not necessarily the case with
our SVMs as they can be applied to programs from very dif-
ferent domains but currently without significant accuracy.

Hsi et al. [17] approach recovery of ontology by manual
construction of an interface map. The interface map is a
depth first traversal of all elements of the softwares inter-
face. The approach then uses the interface map to generate
a semantic network. The semantic network is then used as
the basis for calculating graph theoretic measures that are
used as indicators of core concepts of the ontology. The
approach differs from our work in that it is based on con-
struction and analysis of a graph. The evaluation does not
include any comparison to a control group in order to ex-
press the accuracy of the approach. Each of the varying
methods introduced to recover the ontology produce dif-
fering ontologies, and no method of reconciling differing

results is presented. Advantages of our approach include
the use of a control group in the form of the manual clas-
sification results to show the accuracy of the approach, and
we only produce one ontology based on the metrics that we
use. This paper presents an interesting set of metrics that
may add to our approach in future work.

Software architecture reconstruction is a recent develop-
ment that represents a reverse engineering process designed
to recover architecture specific information. As Favre [18]
points out, software architecture is not well defined. Soft-
ware architecture can only be defined in terms of the au-
dience to which it is presented. An experienced software
engineer will recognize the overloaded use of the term to
have slightly differing meanings based on who is the target
audience. Obviously, the project manager, technical lead,
upper management, customers, fellow engineers with simi-
lar experience, the newest addition to the team who finished
his degree only a few months ago, as well as other stake-
holders all have a different perspective on the software ar-
chitecture. van Deursen et al. [19] seem to ignore this ambi-
guity but the approach of view-driven software architecture
reconstruction called Symphony is introduced. This paper
essentially codifies best practices that have been observed
by the authors in the actual practice of software architecture
reconstruction. Placed in the context of software architec-
ture reconstruction and in the vocabulary of Symphony our
work would be a type of mapping from a source view to a
target view, the target view being a static graph of the core
concept classes described by a UML class diagram.

Marcus et al. [20] describe a method of using latent se-
mantic indexing to map natural language concepts to the
locations of those concepts in source code. Zaidman et
al. [21] show that webmining techniques can be applied to
source code to uncover important classes, similar in nature
to our core concept classes.

7. Conclusion and Future Work

The results strongly indicate that there is a relationship
between the given metrics and the identification of con-
cepts. The relationship that is captured by the SVM clas-
sifier produces above average results over a single software
system. However, a larger data set is needed to comprehen-
sively verify these results. Additionally, we have made no
attempt to optimize the metrics that were selected for this
set of experiments. In fact we initially simply selected all
metrics available from the output of the metrics software
used thinking that we would have to optimize the feature
vector in order to obtain acceptable results. Obviously this
is an area of future research since optimal results may al-
low a stronger formulation of our hypothesis, particularly
in regards to what type of metrics are the best indicators.

The example filtering shown in Section 4 effectively
demonstrates one of the practical applications of the clas-

sification technique presented here. The class diagrams de-
picted in Figure 3 and Figure 4 show a visual demonstra-
tion of the effectiveness of the filtering process. Figure 4
is simply easier to understand due to the smaller number
of classes. The effect is even more obvious and useful on
systems with many more classes.

‘Work on this project is ongoing. We currently have plans
to extend our data sets significantly. This involves clas-
sifying several different systems from ideally orthogonal
domains. We are also investigating other possible appli-
cations of this technique. Plans are underway to develop
an Eclipse plugin to allow this technique to integrate with
the Eclipse [22] environment, providing online classifica-
tion suggestions to the developer. This represents an excit-
ing practical application of the results even lacking gener-
alization to more than one system, which is another area of
future interest. We are also interested in increasing the ac-
curacy of the classifier. This involves developing a deeper
understanding of the relationship that the classifier is detect-
ing. We will be investigating the use of different kernels as
well as performing more analysis of the features to deter-
mine what metrics are the best indicators. We will explore
the learning curve of the classifier, how quickly can it be
trained to acceptable accuracy. Additionally we are inter-
ested in training optimizations, some training sets are better
than others. Is it possible to select them prior to manual
classification.

References
[1]

George A. Miller. The magical number seven, plus or minus
two. The Psychological Review, 63:81-97, 1956.

[2] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E. Web-
ster. Program understanding and the concept assignment

problem. Communications of the ACM, 37(5):72-82, 1994.
[3]

Brian Henderson-Sellers. Object-Oriented Metrics: Mea-
sures of Complexity. Object-oriented series. Prentice Hall

PTR, 1996.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vap-
nik. A training algorithm for optimal margin classifiers. In
COLT ’92: Proceedings of the fifth annual workshop on
Computational learning theory, pages 144—152, New York,
NY, USA, 1992. ACM Press.

[4]

[5

Nello Cristianini and John Shawe-Taylor. An Introduction
to Support Vector Machines and other kernel-based learning
methods. Cambridge University Press, 2000.

[6

Bernhard Scholkopf and Alexander J. Smola. Learning with
Kernels: Support Vector Machines, Regularization, Opti-
mization, and Beyond. The MIT Press, 2002.

[7] Tom M. Mitchell. Machine Learning. WCB/McGraw-Hill,
1997.
[8] Frank Sauer. Metrics 1.3.6. [Online] Available

http://metrics.sourceforge.net/.

10

(91

[10]
(1]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

(21]

[22]

Greg Hodgdon. PANDA : Proof Assistant for Natural De-
duction Analysis. Technical Report of MCS Project, Arizona
State University, November 2001.

Tigris. Scarab. [Online] Available http://scarab.tigris.org/.

Apache Organization. Turbine. [Online] Available

http://jakarta.apache.org/turbine/.

Apache Organization. Torque. [Online] Available
http://db.apache.org/torque/.
Bugzilla Organization. bugzilla.org. [Online] Available

http://www.bugzilla.org/.

Apache Organization. The apache spamassassin project.
[Online] Available http://spamassassin.apache.org/.

Davor Svetinovic, Daniel M. Berry, and Michael Godfrey.
Concept identification in object-oriented domain analysis:
Why some students just don”t get it. In RE ’05: Proceed-
ings of the 13th IEEE International Conference on Require-
ments Engineering (RE’05), pages 189-198, Washington,
DC, USA, 2005. IEEE Computer Society.

Ettore Merlo, Ian McAdam, and Renato De Mori. Feed-
forward and recurrent neural networks for source code infor-
mal information analysis. Journal of Software Maintenance,
15(4):205-244, 2003.

I. Hsi, C. Potts, and M. Moore. Ontological excavation: un-
earthing the core concepts of the application. In WCRE 2003:
Proceedings of 10th Working Conference on Reverse Engi-
neering, pages 345-353, 2003.

J. M. Favre. Cacophony: metamodel-driven software ar-
chitecture reconstruction. In WCRE 2004: Proceedings of
the 11th Working Conference on Reverse Engineering, pages
204-213, 2004.

A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and
C. Riva. Symphony: view-driven software architecture re-
construction. In WICSA 2004: Proceedings of Fourth Work-
ing IEEE/IFIP Conference on Software Architecture, pages
122-132, 2004.

Andrian Marcus, Andrey Sergeyev, Vaclav Rajlich, and
Jonathan I. Maletic. An information retrieval approach to
concept location in source code. In WCRE ’04: Proceed-
ings of the 11th Working Conference on Reverse Engineering
(WCRE’04), pages 214-223, Washington, DC, USA, 2004.
IEEE Computer Society.

Andy Zaidman, Toon Calders, Serge Demeyer, and Jan
Paredaens. Applying webmining techniques to execution
traces to support the program comprehension process. In
CSMR ’05: Proceedings of the Ninth European Conference
on Software Maintenance and Reengineering, pages 134—
142, Washington, DC, USA, 2005. IEEE Computer Society.

Eclipse Organization. [Online] Available

http://www.eclipse.org.

Eclipse.

