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ABSTRACT

The complexity of the systems that software engineers build has continuously grown since

the inception of the field. What has not changed is the engineers’ mental capacity to operate on about

seven distinct pieces of information at a time. The widespread use of UML has led to more abstract

software design activities, however the same cannot be said for reverse engineering activities. The

introduction of abstraction to reverse engineering will allow the engineer to move farther away

from the details of the system, increasing his ability to see the role that domain level concepts play

in the system. In this thesis, we present a technique that facilitates filtering of classes from existing

systems at the source level based on their relationship to concepts in the domain via a classification

method using machine learning.

We showed that concepts can be identified using a machine learning classifier based on

source level metrics. We developed an Eclipse plugin to assist with the process of manually clas-

sifying Java source code, and collecting metrics and classifications into a standard file format. We

developed an Eclipse plugin to act as a concept identifier that visually indicates a class as a domain

concept or not.

We minimized the size of training sets to ensure a useful approach in practice. This allowed

us to determine that a training set of 7.5 to 10% is nearly as effective as a training set representing

50% of the system. We showed that random selection is the most consistent and effective means of

selecting a training set. We found that KNN is the most consistent performer among the learning

algorithms tested. We determined the optimal feature set for this classification problem.

We discussed two possible structures besides a one to one mapping of domain knowledge to

implementation. We showed that classes representing more than one concept are simply concepts

at differing levels of abstraction. We also discussed composite concepts representing a domain

concept implemented by more than one class. We showed that these composite concepts are difficult

to detect because the problem is NP-complete.
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Chapter 1

Introduction

1.1 Motivation

The complexity of the systems that software engineers build has continuously grown. What has not

changed is the engineers’ ability to deal with a limited number of data at any given time;

psychologists tell us that the average person has working memory capacity to operate on about

seven distinct pieces of information at a time [40]. While improvements in the field, like the

widespread use of UML, has led to more abstract software design activities, the same cannot be

said for reverse engineering activities. The well known concept assignment problem is still being

solved at the line-by-line level of analyzing source code. The introduction of abstraction to the

problem allows the engineer to move farther away from the details allowing his own limited

resources to capture a broader picture of the system, increasing his ability to see the role that

domain level concepts play in the system.

Computers have been used for everything from recalculating massive spreadsheets to compiling

Java into byte code to typesetting this thesis. However, even classification problems that computers

have not traditionally been associated with have become familiar territory for machine learning

algorithms. These solutions show up even in the sorting of family photos, a task that has until

recently been achieved without automation.

Imagine you would like to see all the photos in your digital library of your daughter taken between

the ages of two and three that also include her mother in the photo. The time frame is easily

solvable by traditional search; however the question of a photo containing two specific people

requires a different approach. Thankfully the technology exists today so that using facial

recognition a machine learning algorithm can provide a classification of all of your photos given

just a few seconds of compute time and your assistance with training. Of course the resulting set of

photos may not be perfect, for example some might be your daughter and her aunt, but the

reduction in the size of the set to be considered, the ability to manually indicate errors by tagging

1



the false positives, and the increases in accuracy that come with further training or tagging of the

photos make this a compelling solution to the problem.

Classification can be applied to problems in reverse engineering and can achieve many of the

advantages seen in photo classification. Core concepts are classes in the system that are

implementations of the domain concepts in an ontology of the system. The alternative, a

non-concept class, is a class that only exists to support the implementation of the concept classes.

By associating the classes in a system with the domain concepts we can build a filter that allows

the engineer to view only those parts of the system that relate to the domain knowledge that is

captured in the implementation of those classes. This view can be used to assist in accelerating the

engineers understanding and comprehension of the system by hiding those aspects that do not

directly relate to the domain.

In this work, we present a technique that facilitates filtering of classes from existing systems at the

source level based on their relationship to the core concepts in the domain. Filtering the system in

this way allows software engineers to comprehend it faster, since the system is reduced to core

concepts. Filtering out non-domain classes also simplifies the visualization of the system.

Eliminating non-domain classes from the class diagram of a system reduces the complexity of the

diagram. Reduced complexity supports higher comprehension and faster learning of the system.

The technique presented involves collecting object-oriented metrics from an existing system that

are then used in machine learning methods to create a classifier of the system. The classifier is

used to identify classes that are likely related to domain level concepts. This approach can simplify

the process of reverse engineering and design recovery, as well as other activities that require a

mapping to domain level concepts.

Traditionally, concept identification has been approached in the concept assignment problem [7] as

a way of mapping source code to programming concepts. In our work we define concept

identification as the process of extracting domain knowledge from an existing software system. A

perfect concept identification system would take as input the source to an existing system, and

produce as output an ontology of the domain knowledge captured in that system.
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From the perspective of forward engineering we can imagine the development process as a series

of refinements to the domain ontology that ultimately result in a program that can be executed on a

machine. Clearly this is a simplification of the real world process of developing software. In

practice, the domain is rarely understood well enough at the beginning of development to create a

complete and accurate ontology of the domain; however, over time the ontology could be

developed with feedback from the iterative development process. From the perspective of reverse

engineering we ask what is the relationship between source code artifacts and the domain

ontology. The importance of this question is that in practice we do not follow a perfect

deterministic development process, instead we act as humans always do. We make mistakes. We

learn from those mistakes. We work overtime to meet deadlines and only capture the newly

learned knowledge that is necessary to get the product out the door to our customers. This

knowledge is captured in the source of the system. We may have the best intention to capture that

knowledge in a more suitable place at a later time, but by the time the heat of the moment has

passed even if we stay motivated to record the knowledge we forget a minor detail or maybe a few.

Even the knowledge that is recorded is of limited value. The non-formal language in which the

knowledge is captured allows ambiguity. What is clear to the writer may not be to the reader.

Then, even if perfected, recorded knowledge quickly becomes outdated as the understanding of the

problem develops in new directions and as customers request new features. Andy Hunt and Dave

Thomas discuss many of these issues in the context of performing maintenance on an existing

project [28], particularly that even the most formal of languages, the source code, can be deceptive

due to the human element. The programmer decides for example to call a method readData,

formal language only enforces that he must create a unique identifier within a scope not that the

actual functionality of the method is consistent with reading data. Given the human element

involved in the development process we need a way of reverse engineering the domain ontology of

a system from the only representation of the system that is completely updated with the current

knowledge of the system. That representation is the source code of the system itself.

Concept classification allows us to filter the classes in a system to only those that we believe would

be a direct translation of a domain concept taken from our hypothetical domain ontology. A little

more formally, concept classification is the process of answering the question “Is this class a
3



member of the set of classes produced from an ontology of the domain knowledge of this system?”

for each class in the given system. The research investigation described in this work presents one

solution to the problem of producing a concept classification oracle.

From a pragmatic perspective a software developer could use a concept classification tool in order

to filter a large system to show only those classes that are of the greatest interest at the domain

level. This allows the engineer to learn the domain more effectively. As an example of filtering

class diagrams, Figure 1.1 shows the complete class diagram of one package from the Panda

system, while Figure 1.2 shows the results of filtering all non-concepts from the diagram.

Figure 1.1: Panda class diagram

Other applications of this approach include data mining, and indexing. The open source

community has generated a great deal of software over the years. Much of open source software is

poorly documented. This issue is further complicated by the transient nature of contributors to

open source projects. Not only can our approach help a new contributor to a project learn the

domain of that software more effectively, but it can also be used as a way of indexing available
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Figure 1.2: Panda class diagram after filtering

open source contributions. Perhaps by providing an index of concepts we can achieve greater reuse

of existing software.

1.2 Goals

The following sections present the goals of this research. These goals include attaining a

significant level of accuracy in identifying concepts, attaining that accuracy with a small enough

training set to be practically useful, optimizing the features that must be collected from the

program source, and determining the practicality of generalizing the approach to composite

concepts.

Goal 1: Accurate Concept Classification

In Section 3.5, we show statistically significant evidence that the average accuracy achieved on the

concept classification problem is better than random guessing or a default learner. A default

learner is a simple learning algorithm that “learns” the median value of the training set. For

example, if the training set is made up of ten instances and six of those are false then the default

learner learns to answer false. In doing so, we address the following questions:

1. Is the average accuracy of a candidate learning algorithm significantly higher than the

average accuracy of a default learner on the core concept classification problem?
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2. What learning algorithm has the highest accuracy?

Goal 2: Training Efficiency

In Section 4.2, we model the learning curve of the candidate learning algorithms to demonstrate the

expected accuracy given a training set of a given size. We define at least one training set selection

algorithm, designed such that we are able to build a classifier with higher accuracy than would be

possible given a randomly selected training set. In doing so, we address the following questions:

1. How does the accuracy vary with different sized training sets?

2. How large a training set is necessary for a given learning algorithm to achieve significant

concept classification accuracy?

3. Is it possible to develop a method of selecting a near ideal training set, where an ideal

training set is the training set of a given size which maximizes concept classification

accuracy for training sets of that size?

4. Is it possible to develop a method of selecting training sets that consistently produce

classifiers with average accuracy above that achieved via random selection?

Goal 3: Feature Selection

In Section 4.1, we optimize the metrics needed to make accurate predictions. In doing so, we

address the following questions:

1. What set of metrics is the best indicator for core concept classification?

2. Based on the metrics that are good indicators of core concept classification, are there

additional metrics that are useful to collect?

Goal 4: Composition

In Section 5.3, we will explore the use of the approach in classifying core concepts that cross class

boundaries. In doing so, we address the following question:

1. Is it possible to use this approach to classify composite concepts made up of more than one

class, which individually are not concepts?
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1.3 Organization

The rest of the thesis is organized as follows. Chapter 2 contains relevant background information

and covers related work in the field. Chapter 3 details the approach and shows that it is possible to

attain accurate results. Chapter 4 addresses improvements that can be made in accuracy,

practicality of the approach in the real world, and validation of the approach via comparison of

another engineers’ classification results. Chapter 5 discusses the limitations of our approach as

well as classification approaches in general. Finally, chapter 6 discusses the contributions in this

work and concludes this thesis.
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Chapter 2

Background and Related Work

This thesis makes use of ideas related to several areas of research. In this chapter, we provide the

technical background needed later.

2.1 Systems Studied

To evaluate our approach we studied two systems Panda and Scarab. Both systems were

completely manually classified in order to generate data sets. These data sets were gathered in

order to support our experimental evaluation of the approach. For listings of the data sets collected

see Table C.1 on page 90 for Panda and see Table C.2 on page 96 for Scarab in Appendix C.

Panda

Panda [26] is a natural deduction proof assistant written in Java and developed at Arizona State

University. The tool is used primarily to support education of natural deduction as a proof

technique. We had access to the original class and statechart diagrams that were used for

development of Panda and thus used that information as a sanity check during identification of

concepts. Panda’s size is 90 classes and about 9 thousand lines of code (KLOC).

The architecture of Panda is best described as a GUI based model view controller application. The

model consists of classes implementing logical constructs. The view consists of classes

implementing Java GUI elements. The controller consists of classes implementing the use cases

that can be applied in a proof.

Scarab

Scarab [53] is a web-based defect tracking system based on the Turbine [4] and Torque [3]

frameworks. Scarab was designed to be a replacement for defect tracking systems like

Bugzilla [12]. The size of Scarab is 580 classes and 128 KLOC.
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Turbine is a model view controller framework for web-based applications. Torque is an

object-relational mapper for Java classes that allows objects to be persisted to the database. Scarab

therefore has the architecture of a MVC web application whose model is persisted to a database.

2.2 The Concept Assignment Problem

Biggerstaff et al. [7] describe the concept assignment problem as recognizing concepts in software

systems and building a model or human-level understanding of the concepts. We see the concept

assignment problem as a two part process. The first step is to identify concepts in the software

system. The second step is to build a model of the concepts. This thesis describes a new method of

identifying concepts that are represented by classes, and using the identification to produce an

abstraction of a recovered class diagram. Specifically, we describe an instance of the concept

assignment problem dealing only with object-oriented classes. Object-oriented design suggests

that we ignore the details of the implementation of a class, so we believe that analyzing

object-oriented software at the class level is a valid approach to solving the concept assignment

problem.

2.3 Object-Oriented Metrics

A metric is defined as a standard of measurement [25]. In this work, we use metrics as quantifiable

attributes of classes. We are initially more interested in what a set of metrics might say about the

class than what each individual metric implies. Since our focus is on attributes of classes, we are

most interested in class level metrics. However, we can also make use of lower level metrics that

can be averaged over a class.

Metrics Definitions

Several object-oriented metrics are used in our approach. These metrics are primarily designed to

capture information about the size and complexity of software at the class level. Section 2.3

provides a brief summary of the metrics used in our work. These metrics were chosen because

they were available to be analyzed. We have not optimized the metrics used, nor do we believe that

is an appropriate step to take at this time because we do not want to over optimize the metrics used

to the data set collected. The best way to view the role of the metrics collected here is as
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incomplete indicators of the concepts, each metric potentially adding more information to the

decision making process.

Number of Attributes (NOF) The total number of instance and static attributes in the class.

Number of Static Attributes (NSF) The number of class or static attributes in the class.

Number of Methods (NOM) The total number of instance and static methods in a class.

Number of Overridden Methods (NORM) The total number of methods in the class that override

methods from an ancestor class.

Number of Static Methods (NSM) The number of static or class methods in the class.

Henderson-Sellers [25] refers to this as Number of Class Methods (NCM).

Number of Parameters (PAR) The number of parameters to a method. We do not use this metric directly

but instead use the average over the class.

Average Number of Parameters per Class (PARC) The number of parameters to each method in the

class averaged over the number of methods in the class calculated as in (2.1).

PARC =
1

NOM

NOM

∑
j=1

PAR( j) (2.1)

Number of Subclasses (NSC) The total number of direct subclasses of this class, also called Number of

Children.

Method Lines of Code (MLOC) The number of lines of code contained in the body of all methods in the

class.

Lack of Cohesion of Methods (LCOM) LCOM [24] can be calculated as in (2.2) where µ(A j) is the

number of methods that access the attribute A j, a is the number of attributes, and m is the number of

methods. LCOM is a measure of the cohesiveness of a class where smaller values indicate more

cohesive classes.

LCOM =

(
1
a ∑

a
j=1 µ(A j)

)
−m

1−m
(2.2)

Nested Block Depth (NBD) The depth of nested blocks of code.

McCabe Cyclomatic Complexity (VG) The maximum number of independent circuits through the

directed acyclic graph of a method [23]. We use the average over the class.

Weighted Methods per Class (WMC) The sum of McCabe Cyclomatic Complexity for the n methods in

the class i, calculated by the formula given in (2.3).

WMC = si =
n

∑
j=1

Vi j(G) (2.3)
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Depth of Inheritance Tree (DIT) The depth of the class in the inheritance hierarchy.

Specialization Index (SIX) Defined as NORM·DIT
NOM . Designed so that higher values indicate classes that are

more specialized.

Uses (USES) The number of classes this class uses, or depends on. This is defined precisely in (2.4).

Used-By (USEDBY) The number of classes that make use of, or depend on, this class. This is defined

precisely in (2.5).

G is a directed graph.

V (G) = {v|v is a class in the system}

E(G) = {(v1,v2)|v1 is dependent on v2}

USES(G,v) = ||{e = (v,w)|e ∈ E(G)∧w ∈V (G)}|| (2.4)

USEDBY(G,v) = ||{e = (w,v)|e ∈ E(G)∧w ∈V (G)}|| (2.5)

2.4 Machine Learning

The work described makes use of three different machine learning algorithms. Support Vector

Machines (SVM) with a radial basis kernel is the first algorithm that we used to classify results.

The second, k-nearest neighbors (KNN), is included to compare to other algorithms and is a simple

algorithm to implement when contrasted with SVM. The third, ID3 is used as a representative of

decision tree algorithms, which have a completely different operational mechanism than either

SVM or KNN. We use all the algorithms as a black-box that takes inputs that are vectors of real

numbers of length n, and outputs classification decisions. The tool that implements these

algorithms and data mining used is known as RapidMiner and formerly YALE [39].

Support Vector Machines

Support Vector Machines (SVM) were first introduced by Boser et al. [8]. SVM are an example of

a learning methodology known as supervised learning [16]. A learning methodology is an

approach to creating programs that calculate answers by analyzing given examples while

supervised learning uses examples consisting of input-output pairs. The goal in a learning problem

is to find a function that maps the given inputs to the desired outputs.
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SVM have been applied to a diverse body of problems, while many times proving to be the most

accurate learning algorithm available [18, 30, 55, 42, 50]. Some examples of problems where

SVM have been applied include:

Text Categorization: the classification of text into existing categories. SVM outperformed other

machine learning approaches in this area [18, 30, 50].

Hand-written character recognition: the classification of hand-written characters to the

categories defined by the set of alphanumerics. This is an interesting problem domain

because SVM outperforms algorithms specifically designed for this domain [55].

Image recognition: the classification of objects appearing in computer images. SVM

outperformed other algorithms and had the property of being trained on fewer examples than

the dimensionality of the data [42].

SVM generate linear functions as their hypotheses. The hypotheses are then applied to attributes

that have been transformed to a high dimensional feature space. The transformation of attributes to

a feature space is carried out by the application of kernels to the example datum. An example of a

kernel is the radial basis function kernel shown in Equation (2.6) [49], which intuitively describes

a radius of influence, where i = 1, . . . , `, j = 1, . . . , `, and σ is a parameter to the kernel that scales

the radius of the support vectors influence.

K(~xi,~x j) = exp
(
−||~xi−~x j||2

2σ2

)
. (2.6)

SVM used as binary classifiers must solve the optimization problem in Equation (2.7) [16].

min
~w,b

〈~w ·~w〉

subject to yi (〈~w ·~xi〉+b)≥ 1, (2.7)

where i = 1, . . . , `

Geometrically this translates into finding a linear separating hyperplane in the higher dimensional

space. The hyperplane is optimized for maximal margin and defined by the weight vector ~w and

bias b. In practice the dual representation is maximized, allowing optimization to take place in the

kernel space with slack terms introduced along with a penalty parameter C. In this context,~xi ∈ Rn
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are the n-dimensional training vectors, yi ∈ {1,−1} are the classification labels for the training

vectors, and ` is the number of vectors. The set of classification labels {1,−1} correspond to

classes that are concepts (1), and those that are implementation details (−1).

In our data set, n = 14 so the vector~xi has 14 dimensions, each related to a metric. Examples of

some sample vectors from the Panda data set are shown in Table 2.1. The metrics and their

ordering are as in Section 2.3.

Table 2.1: Panda data set examples.

i ~xi yi
1 < 0,0,3,31,11,0,0,1.75,4,0.444,2.75,0.5,0,1 > -1
2 < 4,0,2,331,92,0,2,1.806,32,0.5,2.556,0.917,0,5 > 1
3 < 0,0,8,51,16,0,0,1.071,14,0.862,1.143,0.929,0,1 > 1
4 < 1,0,2,24,10,0,2,1.667,2,0.5,3.333,0,0,1 > -1

k-Nearest Neighbors

k-Nearest Neighbors (KNN) [41, 2, 1] is the simplest instance-based machine learning method.

The algorithm is based on all the training instances being points in an n-dimensional space Rn.

Instances are classified by calculating the Euclidean distance to all points in the training set. The

Euclidean distance, shown in Equation 2.8, is calculated from ar(~x) (e.g., the rth attribute of the

learning instance vector~x).

d(~xi,~x j) =

√
n

∑
r=1

(ar(~xi)−ar(~x j))
2 (2.8)

The class of the k nearest points is then used as a simple majority rules vote, the class of the

majority is assigned as the class of the point in question. An alternative is to weight the class of the

k nearest points based on the multiplicative inverse of their distance from the point in question.

Decision Tree Learning with ID3

Quinlan [47] describes the ID3 algorithm for inductive learning of decision trees. A decision tree

is a tree where each non-leaf node represents a test of one attribute of the feature, each branch

represents a possible value for the attribute, and each leaf node represents the final classification of

an instance. Evaluation of an instance is complete when the leaf node is reached by comparing the
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values of the instance to the values of the branches of the decision tree beginning at the root, for

each attribute and following the branch for the matching value.

Several decision tree based algorithms [47, 48] have been successful classifiers in many

applications, and have been found to yield superior results in text classification [50]. ID3 has a few

properties that should be noted. First, it is designed for attributes that take on a discrete and

numerable set of values. Second, an interesting susceptibility to noise, non-systematic errors, is

encountered when noise is introduced to all attributes of a feature resulting in classification errors

that peak around a 40% noise level [47].

Imbalanced Data

Data sets that have a significantly higher number of representatives of one class versus the other

class are said to have a between-class imbalance [22]. He and Garcia define between-class

imbalance as significant imbalances where the class representation ratio is 100 : 1 or greater. Data

sets with imbalanced distributions lead to classifiers with imbalanced accuracy. He and Garcia

state accuracy imbalances tend to exhibit a majority class with close to 100% accuracy and

minority class with 0 to 10% accuracy [22]. The data sets studied in our work tend to exhibit a

ratio of 2 : 1 between-class imbalance so are unlikely to be affected by these issues.

Kennard-Stone algorithm

The Kennard-Stone algorithm [32] as applied to our work is a method of sorting a data set into a

deterministic order. The ordering is defined by the greatest difference between samples; the

difference is typically euclidean distance. We also refer to Reverse Kennard-Stone which is simply

the output of the Kennard-Stone algorithm in reverse order.

Definition 1 (Kennard-Stone algorithm). consists of the following steps:

1. Find the pair of samples with the greatest difference; this pair is now our list of ordered

samples L.

2. Find the difference between all samples not in L and all samples in L.

3. Select the sample with the greatest difference and append to L.

4. Repeat 2 until all samples are in L.
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Precision and Recall

Precision and recall allow us to determine the suitability of our results when answering particular

questions. For example, when filtering class diagrams we might prefer that we display results that

are not truly concepts versus filtering those that are concepts. This means we prefer not to have

false negatives. Minimizing false negatives corresponds with a high recall rate for the concept

class. In another example, we might use the classifier in an information retrieval role where we ask

to see a concept or non-concept class. In this role we might decide that precision is more important

as we may not care that all concepts are returned but instead prefer that any concept that is

returned is truly a concept.

2.5 Automated Reverse Engineering

The topics covered in this section are works related by their goal of automated reverse engineering.

Software Architecture Reconstruction

Software architecture reconstruction is a recent development that represents a reverse engineering

process designed to recover architecture specific information. As Favre [21] points out, software

architecture is not well defined. Software architecture can only be defined in terms of the audience

to which it is presented. An experienced software engineer should recognize the overloaded use of

the term to have slightly differing meanings based on who is the target audience. Obviously, the

project manager, technical lead, upper management, customers, fellow engineers with similar

experience, the newest addition to the team who finished his degree only a few months ago, as well

as other stakeholders all have a different perspective on the software architecture. van Deursen et

al. [54] seem to ignore this ambiguity but the approach of view-driven software architecture

reconstruction called Symphony is introduced. This thesis essentially codifies best practices that

have been observed by the authors in the actual practice of software architecture reconstruction.

Comparison

Placed in the context of software architecture reconstruction and in the vocabulary of Symphony

our work would be a type of mapping from a source view to a target view, the target view being a

static graph of the core concept classes described by a UML class diagram. That said, the scope of
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software architecture reconstruction processes far exceeds the scope of our research. It is not our

goal to provide an automated method for complete recovery of a software architecture but instead

to automatically build up a view of the domain knowledge embodied in the core-concept filtered

class diagrams. Further, our target audience is primarily those with a technical understanding of

the software.

Latent Semantic Indexing

Marcus et al. [36, 44, 35, 34, 43] describe a method of using latent semantic indexing to map

natural language concepts to the locations of those concepts in source code. This approach allows

an engineer familiar with the domain of the software to find usages of concepts in the source code.

Marcus et al. use an information retrieval based approach to locate concepts in the systems’

source. Specifically, the approach uses Latent Semantic Indexing (LSI) to uncover semantic

similarities between queries and the system source, which is broken up into blocks or modules

prior to analysis. Queries can either be user generated, or partially automatically generated queries

based on top terms that are related to a user specified term. Queries are compared for similarity to

blocks or modules of the system source, which is modularized based on language dependent

boundaries. For example, a language like C would be broken into procedures whereas Java might

be broken into classes.

Comparison

This approach shares some common goals with ours. One specific instance is concept location for

the purpose of easing maintenance of the system and improving developer comprehension.

However, the approach assumes developer knowledge of the domain. Our approach attempts to

locate all domain concepts in an effort to recover a source based description of the domain. The

approaches could be used in a complementary fashion, with our approach locating the classes that

represent core concepts in the domain and the latent semantic indexing approach to locate further

details within the core classes.
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Concept Assignment Problem

Biggerstaff et al. [7, 5, 6] describe the assignment of human oriented concepts to implementation

oriented concepts. This process is a matching between preexisting notions about the system or

existing domain knowledge to textual representations of the system implementation. This is

basically the reverse of our approach. They make use of a concept assignment assistant called

DESIRE, which includes tools for analyzing code and constructing alternative views of the code.

DESIRE also features a Prolog-based inference engine as well as a knowledge-based pattern

recognizer. Together the features of DESIRE allow a developer to analyze the system, and create

and collect rules in the inference engine. The rules and patterns collected provide more automated

support to the developer over time as the analysis of the system is completed.

Comparison

The concept assignment problem addresses the recovery of programming concepts, whereas we

recover domain concepts. In addition to the different goals there are differences in approach as

well. The approach used by Biggerstaff et al. uses source code where we use metrics based on the

source code. We use a machine learning approach that does not involve declaratively creating an

expert system. There is a strong case for the methods used to recognize programming concepts,

using at times a filtering of the source code based on the developers domain knowledge. Our

approach could be added to the toolset used by Biggerstaff et al. as an additional filtering

technique facilitating greater automation than their methods alone. The important point to

remember with this work is it assumes significant domain knowledge exists with developers using

tools to apply that knowledge. Our work assumes that a developer may not know all domain

concepts a priori, but could recognize one if presented with it in the source code.

Forward Engineering and Concept Identification

Svetinovic et al. [52] discuss concept identification from a forward engineering perspective

illustrated in several case studies. The claims of misuse or misunderstanding of object-oriented

domain analysis are worth noting since the automated identification of concepts requires that those

concepts be represented within the implementation, implying they where designed into the
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software. They identify many of the concerns we have raised in our discussion of external validity.

Primarily, there is not one single agreed upon way of designating what is and is not a concept in a

software system, according to their paper this is a fundamental difficulty with object-oriented

domain analysis.

Comparison

There is no direct comparison to our work as the authors are attempting to illustrate a weakness of

the object-oriented domain analysis process. However, if the concepts that are found to be missing

in a domain analysis are also found to be missing in object-oriented design and later

implementation then it would not be possible for us to recover or identify a concept that is not

present in the system. The authors do state that the findings on OODA do not necessarily extend to

OOD or later implementations of the systems. It is possible that concepts that are ignored or

misunderstood at the time of analysis are later found or corrected during design or implementation.

Machine Learning Approach to the Concept Assignment Problem

Merlo et al. [38] describe a design recovery process which uses a machine learning approach to

link text from source code to concepts identified by a domain analysis. This is essentially a partial

automation of a portion of the work performed by Biggerstaff et al. [7]. The machine learning

algorithm used is based on neural networks.

Comparison

The approach differs from ours in that a change in domain requires a new neural net to be trained.

That is not necessarily the case with our SVMs as they can be applied to programs from very

different domains but currently without significant accuracy.

Ontology Recovery by User Interface Mapping

Hsi et al. [27] approach recovery of ontology by manual construction of an interface map. The

interface map is a depth first traversal of all elements of the softwares interface. The approach then

uses the interface map to generate a semantic network. The semantic network is then used as the

basis for calculating graph theoretic measures that are used as indicators of core concepts of the
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ontology. The measures or metrics are made use of on an individual basis and no attempt to

combine metrics is made.

Comparison

The approach differs from our work in that it is completely based on construction and analysis of a

graph. Our work does make use of graph metrics and could easily be extended to include

additional metrics. Their evaluation does not include any comparison to a control group in order to

express the accuracy of the approach. Each of the various methods introduced to recover the

ontology produce differing ontologies, and no method of reconciling differing results is presented.

Advantages of our approach include the use of a control group in the form of the manual

classification results to show the accuracy of the approach, and we only produce one ontology

based on the metrics that we use. That said, the metrics used in the paper do appear to show strong

evidence of core concepts.

Webmining Techniques in Source Code

Zaidman et al. [58] show that webmining techniques can be applied to source code to uncover

important classes, similar in nature to our core concept classes. This paper demonstrates the use of

webmining techniques originally designed to identify important hubs on the web. Web hubs are

those sites that provide links to authorities on a topic. The technique uses an execution trace to

uncover important or core classes in the system. A log of execution is converted into a compact

call graph where each vertex is a class and a directed edge is weighted with the number of calls to

methods on the class. The HITS algorithm is used to find the hubs and authorities in the graph.

Hubs in this case are considered important classes in the system to enable program comprehension.

Comparison

The goal of this approach, to find the most important classes in a system, is similar to ours. This

approach requires defining execution scenarios, ours does not. It is not clear how many scenarios

would be required to uncover all important classes in the system. Based on the published findings

it appears we achieve similar accuracy, using a static approach. Rather than viewing this as a

competing approach it would be far more interesting to use the results as a metric in one of our
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features. So this could very well be a complementary approach, if the user is willing to create

execution scenarios.

2.6 Using Machine Learning in Software Testing

The works described in this section are related by their use of machine learning techniques but

primarily describe approaches to improving software testing.

Program Verification

Bowring et al. [9] present an approach that classifies program behaviors based on similarities of

Markov models built from the event transitions collected from program execution traces. An event

transition is defined as “a transition from one program entity to another”. Here an example of a

program entity is a source and sink node in a control flow graph when the transition is a branch.

The paper presents a method of collecting behaviors with unknown classification that can be

compared to known behaviors in order to decide if these behaviors are “pass” or “fail” behaviors.

In other words, the software is analyzed to collect a set of execution traces that lead to both passing

and failing tests, for known errors. These are then used as a baseline of comparison to other

execution scenarios in order to classify those scenarios as either passing or failing to detect latent

errors.

Comparison

The goal of this work, to classify the program behavior, differs from our goal of locating concepts.

What is significant is the use of machine learning in order to classify behaviors of the system.

There is a similarity in the approach of applying machine learning to software engineering

activities, which we believe helps prove the usefulness of applying these techniques to software

engineering problems. Specifically, machine learning is used as a tool to augment the knowledge

of the engineer by creating classifiers that can potentially detect similar behavior in code that was

not directly analyzed by the engineer. This is exactly the way we use machine learning to augment

the engineer’s ability to detect core concepts of the domain knowledge.

Error Detection

Brun and Ernst [11] present an approach designed to uncover latent errors using machine learning.

Errors are learned by presenting a machine learner with runtime properties that are converted into
20



feature vectors for two separate programs, one with errors and one with the errors corrected. It is

not necessary to correct all errors in the program. This data allows the machine learning algorithm

to learn a characterization of code that leads to error conditions.

Comparison

Though the goal of our work is very different from this paper, the spirit of the approach is similar

in the application of machine learning. The premise that it is possible to characterize code based

on source which is transformed into a mathematical vector representation of the code is similar to

our collection of metrics based on source size and complexity but obviously with a different

transformation. In fact, the similarities would seem to warrant further investigation. It appears that

many types of classifiers could be generated from source given an appropriate transformation of

the source to a feature vector.
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Chapter 3

Accurate Concept Classification

In this chapter we discuss the possibility of accurate concept classification using machine learning.

We show conclusive statistical evidence that it is possible to detect concept classifications using

machine learning. In the following chapters we determine if this is practical and what limitations

exist with an approach of this type.

3.1 Vision and Hypothesis

The ability to automatically classify the classes that make up a system as either core domain or

non-core concepts is a key advantage to the software engineer. This information can be used to

quickly filter the class diagram of the system and see a view of the most important classes in the

system. The filtered class diagram can be further refined by application of techniques developed by

Egyed [20] and supported by tools, like the one developed by Kaynak [31]. This allows the

relationships between the filtered classes to be built despite the missing classes that have been

filtered out of the system.

This new view of the system provides the software engineer with a simplified perspective of a

complex system. The simplification makes it easier for the engineer to:

• capture a snapshot of the state of the architecture,

• learn the primary system interactions, and

• discover the important components of an unfamiliar system.

These technology innovations allow the engineer to work at a faster pace with larger, more

complex systems.

To support this vision we have a simple informal hypothesis. We believe that there exists a set of

metrics that capture properties of a system that can be used by a machine to classify concepts of

that system. In this chapter we show this is true by demonstrating that a classifier can perform

significantly better than random chance. We purposefully do not limit the metrics used in this set
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of experiments so as to eliminate any bias on our part from interfering with potential unexpected

discovery. Instead we train using all the metrics we had implementations available for at the time,

as given in Section 2.3.

3.2 Methodology

Our approach consists of several steps to generate a classifier that can automatically identify

classes as either core or non-core concepts in a system. Figure 3.1 shows an outline of the steps in

creating a classifier, and Figure 3.2 shows an outline of the process of using the classifier.

1. The analyst must supply a training set in order for a learning algorithm to generate a

classifier. This training set is partially provided by the Manual Classifications as seen in

Figure 3.1.

2. A set of metrics is collected from the subject system. This is shown in Figure 3.1 as System

Metrics Data, which along with Manual Classifications makes up the training set for the

learning algorithm.

3. A learning algorithm is used to produce a classifier from the collected metrics and the

training set provided by the analyst. This classifier is shown in both Figure 3.1 as the output

of the learning algorithm and Figure 3.2 as one of the inputs to the learning algorithm.

4. The classifier is then used to provide classifications for the classes in the system that have not

been manually classified. This is shown in Figure 3.2 as the output of the learning algorithm.

Manual
Classifications

Learning 
Algorithm

System Metrics
Data

Classifier

Figure 3.1: Creating a classifier.
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Classifier Learning
Algorithm

System Metrics
Data

Classification 
Result

Figure 3.2: Using a classifier.

The result of this process is the complete classification of a system that can be used to filter or

otherwise operate upon class diagrams, source, etc. The following subsections describe the details

of each of these steps.

Manual Classification

Manual classification is the process of capturing expert analyst knowledge in a machine readable

format. This machine readable format can be any representation that shows the mapping between a

class and the given classification. Our toolset uses Java annotations to markup the actual program

source, but an external database could be used in its place. An analyst completing this task must

answer two questions.

1. What is the best class to classify next?

2. What is the classification of this class?

There is potential to provide some automated support for the first question by application of a

heuristic to calculate potential information gain from each of the unclassified classes in the system.

This is discussed in Section 3.2. The second question is a bit harder to answer and mostly depends

on the experience and expertise of the analyst. We discuss potential approaches in Section 3.2.

Selecting the Training Set

There are several possible approaches to the selection of what should be in the training set. The

training set could be selected randomly, it could be selected by greatest difference among

members, or it could be selected based on the least difference among members. We are not limited
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to these techniques alone, however we focus on these in this work as a starting point for the

exploration of training set selection for this problem.

Techniques for Classification

While it is not possible to give a complete description of the precise decision making process that

occurs when classifying the system, we discuss the general techniques used on the systems we

have classified. If we could describe the process of arriving at these decisions then the problem of

classifying systems would be solved.

First, we can make use of the observation of Ivar Jacobson, in Object-Oriented Software

Engineering [29], that the objects making up a system can be divided into three stereotypes

including entity, control, and boundary. Entity objects are those that are most closely related to the

core object concepts of the domain. Control objects are most closely related to use cases or actions

within that domain. Boundary objects mostly consist of the implementation details we would

classify as non-core concepts in the domain, however there can be exceptions to this heuristic.

Second, we need to recognize that not all software is designed equally. In the ideal case we are

presented with a system where each domain concept is perfectly encapsulated in a single class

representation which has crisp separation of concerns with both other concepts and

implementation details in the system. On the other end of the spectrum we have a single class that

implements everything, meaning this is either a very simple domain or the worst design possibility.

Most systems lie somewhere between the two extremes and we hope closer to the former. In

practice what this means is sometimes classes represent both a core domain concept, and some

implementation level detail we don’t care much about. However, this does not defeat our technique

as the classification system can still identify these concepts mixed with implementation as long as

we provide examples. The important thing we must recognize is that we are not pursuing a

theoretical framework to identify precisely a concept. We are trying to identify the concepts as they

are presented in the imperfect software even if they include some extra implementation details.
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Metrics Collection

Metrics collection is the process of analyzing program source to calculate the desired metrics. For

the most part metrics are calculated from the AST of the source code. This process can be

completely automated and takes advantage of the rich set of tools that exist in the domain of

compilers. Each metric collected can be written as a set of operations on the AST of a class, or a set

of ASTs for several classes. For more information on the metrics used see Chapter 2 Section 2.3.

Generating a Classifier

A classifier is generated using a machine learning algorithm. Machine learning algorithms vary a

great deal, however for the supervised learning methods we consider, the inputs can be roughly

divided into two sets. First, we have the training set that consists of a set of feature vectors made

up of the metrics we have collected as well as the classification of the given class. Second, we have

some set of parameters to the learning algorithm that varies depending on what algorithm is

selected. Regardless of what learning algorithm is used the inputs plus the algorithm give us a

classifier that may be expressed in various ways by different algorithms but can be used to classify

further examples taken from the system.

Using the Classifier

Once the classifier is generated it can be used to provide a classification for any class for which the

same set of metrics can be calculated. Though this would include classes from other

object-oriented systems, we limit our use of the classifier to classes in the same system as those

used to build the classifier. The primary reasoning behind this limitation is we have not yet found

evidence that the classifier is generalizable across domain boundaries [13].

3.3 Tool Support

We have created a tool set that allows easy markup of the system source with annotations, assisting

in the manual classification step of the process. The tool, which is implemented as an Eclipse [19]

plugin, collects metrics from the source and generates an SVM classifier, and then shows

classification results to the user. Figure 3.3 shows an overview of the tool chain process for
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generating classifications. The following sections provide a description of the tool features that

support each of the activities in our approach.

User Input

Eclipse Machine 
Classification 

View

Source Code

Eclipse Metrics 
Generator

Manual 
Classifications Metrics

Eclipse/
RapidMiner ML 

Algorithm

Classification 
Decisions

Eclipse 
Machine 

Classification 
View

XRFF 
Document Custom XML

Figure 3.3: Overview of tool chain.

Tool Support for Manual Classification

In order to support the process of manual classification, we have added a simple plugin to Eclipse

that allows annotations to be inserted into Java source files in a single step. The interface consists
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of two Eclipse actions in a new Eclipse view called the “Machine Classification View”, which can

be seen in Figure 3.4. The first action classifies the currently selected class as a core concept, this

inserts the complete annotation necessary to support the remainder of the classification process.

The second action classifies the currently selected class as a non-core concept. Together these two

actions ease the process of classifying classes by replacing a significant amount of typing with a

simple click. The possibility of introducing mistakes is also lessened a great deal.

Figure 3.4: Buttons for quick annotations of source

Tool Support for Metrics Collection

To support generation of the metrics data required for classification we have implemented a

method to automatically calculate measurements using the Abstract Syntax Tree (AST) included

with the Java Development Tool (JDT) plugin in Eclipse. The metrics can be viewed in the new

Eclipse view “Classification and Metrics View” that is shown in Figure 3.5. In addition to viewing

the metrics associated with a class this view also displays the current classification as defined by

the annotation of the class.

Functionality has also been added to allow the export of the classification and metrics to a file.

Currently, there is support for a custom XML format file and a eXtensible attribute-Relation File

Format (XRFF) [45] file. XRFF is an XML version of the Attribute-Relation File Format
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Figure 3.5: Interface for showing metrics output

(ARFF) [46], which is designed to capture the data-sets necessary for performing machine learning

experimentation. The export features are not necessary for the methodology defined in our

approach but are designed to support evaluation of the approach through experimentation using

external toolsets.

Tool Support for Generating a Classifier

A classifier can be generated using the Machine Classification View’s “Create SVM Learner”

feature, which runs the SVM machine learning algorithm in order to generate a kernel used for

further classifications. The training set is selected as all classes currently selected in the Eclipse UI

that have annotations applied. This feature is primarily useful in the current experimental phase of

the tool, where we typically have classified the entire system and want to perform comparisons of

the machine generated classification and the manual classification. Currently, SVM is the only

classifier implemented but the framework supports the addition of other classifiers. At the time of

implementation of this tool we had seen the highest accuracy using SVM hence the decision on

classifier implementation. However, now we know other algorithms can exceed the performance of

SVM. This choice does not effect our ability to evaluate the performance of other machine learning

algorithms using external toolsets, and was primarily implemented to demonstrate feasibility of the

approach.
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Figure 3.6: Interface for generating a classifier

Tool Support for Using the Classifier

The “Machine Classification View” shown in Figure 3.7 displays results of classification output

from the generated classifier. The display consists of both the manual classification (where

available) and the automated classification once a classifier has been generated.

Figure 3.7: Interface for showing classification output
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3.4 Evaluation Plan
Statistical Analysis of Accurate Concept Classification

In order to evaluate the accuracy of the classifier, we perform a statistical analysis of the

classification results. We calculate the sample error from the test set using Equation (3.1) [41]

where n is the number of samples in the test set S, f is the function specified by our manual

classification mapping the data point x to one of the two classes, h is the hypothesis generated by

the learning algorithm, and the quantity δ ( f (x),h(x)) is defined in Equation (3.2). When the

hypothesis disagrees with the manual classification, the sample error increases and δ ( f (x),h(x)) is

1 for any instance x where the predicted classification h(x) does not match the expected

classification f (x). This allows us to calculate the accuracy of predictions made over a single test

set by computing the sample accuracy as in Equation (3.3).

errorS(h)≡
1
n ∑

x∈S
δ ( f (x),h(x)) (3.1)

δ ( f (x),h(x)) =





1, if f (x) 6= h(x)

0, otherwise
(3.2)

accuracyS(h) = 1− errorS(h) (3.3)

We can estimate the true error, the error of the whole population, from the sample error using

Equation (3.4) if we can meet the criteria in Figure 3.8. Here zN is chosen based on the confidence

level of the estimate.

errorD(h) = errorS(h) (3.4)

± zN

√
errorS(h)(1− errorS(h))

n

Criteria 1 through 4 of Figure 3.8 are met by the methods of selecting the data set and the size of

the data set. Criterion 5 is more interesting because the dependency on the probability distribution

requires that we test for a significant difference in the distributions of the test samples and the

distribution of the population.
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1. n≥ 30,
2. the hypothesis commits r errors over the n samples,
3. the sample, or test set, S contains n data points which are drawn independently of each other,
4. the sample is chosen independently of the hypothesis, and
5. the sample is chosen according to the probability distribution D of the population.

Figure 3.8: Criteria for calculation of true error

In order to confirm Criterion 5 we can perform the Kolmogorov-Smirnov hypothesis test on the

population and sample distributions to test for significant difference. We formulate our hypothesis

for this test in Hypothesis 1.

Hypothesis 1. There is no significant difference in the distribution of the population and the

sample data.

The p-value of the Kolmogorov-Smirnov hypothesis test is the statistical significance, and α is the

probability of rejecting the null hypothesis when it is in fact true. We reject the null hypothesis if

the p-value is less than α . Rejection of the hypothesis implies that there is a significant difference

in the distribution of the sample and the distribution of the population, which then implies that

Criterion 5 is not met.

Having shown how we can calculate and verify the true error, we really do not need to concern

ourselves with the estimate of true error. We can easily calculate an average accuracy of

hypothesis generated by the learner by running multiple iterations of the same experiment each

with randomly sampled training sets. By doing this we eliminate the need to verify Hypothesis 1

for each experiment. Further, we are far more interested in the average accuracy of a hypothesis

generated from a randomly selected training set than in the estimated accuracy of some specific

hypothesis over some randomly selected test set. This is because of the nature of our approach. We

classify some subset of a system, train on that subset, and generate a classifier or a hypothesis as it

is referred to in the equations above. So, really we are interested in a learning algorithm that on

average generates a hypothesis that is accurate. If we were trying to generate a single hypothesis

that was accurate over more than one system, we would be more interested in the true error. This
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is the method we use in the experiments that we run to establish accuracy of the approach as shown

later in Section 3.5.

Using a t-test we have a toolset in place to detect situations where, for example, the accuracy is

good, but there is no significant difference between the expected value (or mean) of the sample

distribution and the measured accuracy. This could happen, as an example, in the case where the

distribution of the expected results is 80% negative. The accuracy of the observed results could be

80% just by always guessing negative. The t-test can help to discover these situations by testing

Hypothesis 2.

Hypothesis 2. There is no significant difference in the mean of the sample data and the accuracy

measured on that sample data.

Rejecting Hypothesis 2 is a strong indicator that the accuracy is significantly different from the

distribution of the data. Intuitively, a significant difference in the accuracy and the mean indicates

that the classifier has learned something other than the expected value of the data set.

Threats to Validity

The threats to validity include internal and external factors. The internal factors include errors in

the statistical analysis, and overfitting of the data set. The external factors include manual

classification errors, and inaccurate or poor definition of the concepts in the domain. We describe

each in further detail below.

The primary internal threat to validity that should be addressed is the difficulty in deciding what

constitutes a good result. The difficulty stems from the distribution of classifications where there

are more negatives than positives. In other words there are fewer classes representing concepts

than implementation. It has been shown in Section 3.4 that the accuracy of the prediction can not

be used in isolation, but must be considered along with the t-test analysis of the distributions’

expected value versus the accuracy. This gives a more complete picture of the result showing some

indication as to how significant the accuracy is. The assumption here was that results that had

better than average accuracy along with a significant difference in mean were good results that

support our hypothesis.
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Overfitting is a threat to validity that effects any machine learning approach, but is only a

secondary threat to the validity of our approach. Overfitting means that results need not generalize

well to other data sets, because the machine has learned a pattern for a specific data set. In other

words if the SVM is overfitted to the data then we could not expect good results from a different

data set classified with the same machine. At this point we are not that concerned about

generalization to other data sets as we have a practical application of the approach in the

classification of a single large system. In future work the potential of overfitting may play a larger

role in the threat to internal validity of our approach if our approach is expected to produce general

results.

The primary external threat to validity is misclassification during the manual classification process.

There are two possible scenarios that result in the introduction of inaccurate analysis into the

system and they are either a logical error or a typographic error on the part of the engineer. We

have worked with enough software engineers to know that each has a different opinion on any

given subject, and these differing opinions would appear in the system as logical errors. However,

this assumes that one of the engineers is “more correct” than the other within some externally

specified system of objective truth that likely does not exist, and this ignores the possibility of

having more than one correct representation of the system. We must concede that any accurate

automated classification is only as accurate as the engineer who trained it, but this really is not

problematic as long as the engineer is consistent and in fact is representative of the results of a

manual classification. The typographic errors that could have been introduced into our data set

were minimized by careful data entry, along with rechecking each result against the class. Though

we believe we have minimized the errors as much as possible we have no way to measure this

using the current process, and as is the case with many machine learning applications we can not

predict the effect of a classification error on the resulting classifier.

A secondary external threat to validity is the design of the software itself. If poorly designed

software systems are introduced it is difficult to predict the results. As an example, imagine a

single concept being represented by two classes. There may be instances where the lack of

cohesion makes sense but it may not be possible to decide where.
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A third external threat to validity is the selection of the software itself. It might be argued that the

systems we classify here are not representative of software in general, or it may be that these

systems are special in some way that our technique works well enough here but not on other

systems. It is true that the systems we have selected may not represent the use of software in

general, and they are special in the sense that we developed criteria for there selection but this did

not include any sorting based on performance. This is unavoidable as we are looking only at

systems written in Java, that have open source, and that are currently maintained. Our goal is to

select a few systems that have different functionality within that space of currently maintained

open source Java software projects. There are at least two ways to approach this issue. We could

show that the systems we have selected are a reasonably representative sample of the population of

all software. This is logistically impossible given the lack of access to commercial software, or the

metrics from that software. Even given the data and time to process it the scope of the work to

determine in what dimension the measurement should take place is well beyond our current

knowledge of these systems. For example, we might say that we measure all classes in the given

population using the metrics we have defined here then go on to show that the classes in the

systems we have experimented with are representative of those from the population, but then the

question still remains: Is there something special about the relationships of those metrics in the

systems we have chosen? We believe that regardless of how we measure we would arrive at the

same issue of these measures being unsuitable for determining applicability of our approach to any

given system because statistical analysis simply is not the correct tool to mitigate this threat.

Ultimately it is only with a deeper understanding of the underlying reason for the success of our

approach that a formulation of a solution to this threat can be found.

3.5 Preliminary Results

In our initial investigations we have shown that statistically significant accuracy can be achieved.

We form Hypothesis 2 based on the first question in our first goal. We can reject this hypothesis if

a t-test shows a significant difference in the average accuracy of an experiment verses the median

of the data set. Rejection of this hypothesis implies that statistically significant accuracy can be a

achieved and we have an affirmative answer to our question.
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Experiments

This section shows the results of the ten experiments we have conducted using the approach

outlined in Section 3.4. We do not count experiments 1 and 7 as they are designed to collect the

baseline accuracy given a simple learner that finds the median value of the classification outcome.

The results are summarized in Table 3.1, which shows the average accuracy, the size of the training

set, and the total size of, or number of classes in, the system.

Table 3.1: Summary of Average Accuracy for Preliminary Results

Experiment Average Accuracy Training Set Size Classes in System
1 Panda Default 69.39% 35 90
2 Panda KNN 73.54% 35 90
3 Panda SVM 75.65% 35 90
4 Panda ID3 81.09% 35 90
5 Panda ID3 + Ada Boost 78.91% 35 90
6 Panda Vote 73.54% 35 90
7 Scarab Default 69.74% 200 580
8 Scarab KNN 75.18% 200 580
9 Scarab SVM 76.25% 200 580
10 Scarab ID3 81.81% 200 580
11 Scarab ID3 + Ada Boost 83.25% 200 580
12 Scarab Vote 81.18% 200 580

Table 3.2: Results of Hypothesis 2 t-test.

Experiment p-value Reject Hypothesis 2
Panda KNN < 0.001 Yes
Panda SVM < 0.001 Yes
Panda ID3 < 0.001 Yes

Panda ID3 + Ada Boost < 0.001 Yes
Panda Vote < 0.001 Yes

Scarab KNN < 0.001 Yes
Scarab SVM < 0.001 Yes
Scarab ID3 < 0.001 Yes

Scarab ID3 + Ada Boost < 0.001 Yes
Scarab Vote < 0.001 Yes

36



Experiment 1: Panda Default Learner

For this experiment we used the data set collected from Panda using the methods outlined in

Section 3.2 of Chapter 3. The process of classifying Panda took approximately four hours but

given our previous experience with the software this may not be an indicator of the time required

for an engineer looking at the system for the first time. We followed the process outlined in

Section 3.4 of Chapter 3 to split the data into training and test sets, and used the training set to

generate the default classifier used in this experiment. The experiment was repeated 30 times and

the average accuracy was calculated as the mean of the accuracies for each run. The purpose of this

experiment is to establish a baseline value for accuracy by learning the median value of the system.

Results are shown in Table 3.1. Accuracy was 69.39% for this sample, which represents the the

expected value of the data set used in the t-test analysis shown in Table 3.2.

Experiment 2: Panda KNN

For this experiment we used the data set collected from Panda using the methods outlined in

Section 3.2 of Chapter 3. We followed the process outlined in Section 3.4 of Chapter 3 to split the

data into training and test sets, and used the training set to generate the KNN classifier used in this

experiment.

We used a KNN classifier with a K value of 3 and distance calculation based on simple Euclidean

distance, meaning the classification is based on a majority rules vote of the three closest training

set data points in n dimensional space. Results are shown in Table 3.1. Average accuracy was

73.54% for this sample with 30 runs of the experiment. The t-test analysis (as indicated in

Table 3.2) showed that the accuracy of the test versus the expected value of the results collected

from the software were significantly different at the 99.9% confidence level, in other words the

probability that the accuracy is different than the mean of the distribution is over 99.9%. Precision

and recall for this experiment are shown in Table 3.3.

Experiment 3: Panda SVM

For this experiment we used the data set collected from Panda using the methods outlined in

Section 3.2 of Chapter 3. We followed the process outlined in Section 3.4 of Chapter 3 to split the
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Table 3.3: Precision and Recall for Panda KNN

actual true actual false class precision
predicted true 244 169 59.08%
predicted false 146 701 82.76%

class recall 62.56% 80.57%

Table 3.4: Precision and Recall for Panda SVM

actual true actual false class precision
predicted true 131 8 94.24%
predicted false 259 862 76.90%

class recall 33.59% 99.08%

data into training and test sets, and used the training set to generate the SVM classifier used in this

experiment. The purpose of this experiment was to attempt to identify evidence for the hypothesis

using a fairly small system. We wanted to see if it was worth while to commit to the process for a

larger system. The data set for Panda is under 100 elements and while a larger data set would

better capture any generalizable properties of the hypothesis, this data set was simple to obtain and

encouraged further analysis.

We used a SVM classifier based on a radial basis function kernel as in Equation (2.6) of

Section 2.4 with the slack term of C = 0. Results are shown in Table 3.1. Accuracy was 77.55%

for this sample. The t-test analysis (as indicated in Table 3.2) showed that the accuracy of the test

versus the expected value of the results collected from the software were significantly different at

the 99.9% confidence level. These results were encouraging for a data set of this size, prompting

us to proceed with the data collection effort for Scarab. Precision and recall for this experiment are

shown in Table 3.4.

Experiment 4: Panda ID3

For this experiment we used the data set collected from Panda using the methods outlined in

Section 3.2 of Chapter 3. We followed the process outlined in Section 3.4 of Chapter 3 to split the

data into training and test sets, and used the training set to generate the ID3 classifier used in this

experiment.
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Table 3.5: Precision and Recall for Panda ID3

actual true actual false class precision
predicted true 287 119 70.69%
predicted false 103 751 87.94%

class recall 73.59% 86.32%

Table 3.6: Precision and Recall for Panda ID3 with Aba Boost

actual true actual false class precision
predicted true 319 289 52.47%
predicted false 71 581 89.11%

class recall 81.79% 66.78%

We used an ID3 classifier with a minimal leaf size of 2 and minimal gain of 0.02. Results are

shown in Table 3.1. Average accuracy was 81.09% for this sample with 30 runs of the experiment.

The t-test analysis (as indicated in Table 3.2) showed that the accuracy of the test versus the

expected value of the results collected from the software were significantly different at the 99.9%

confidence level. Precision and recall for this experiment are shown in Table 3.5.

Experiment 5: Panda ID3 + Ada Boost

For this experiment we used the data set collected from Panda using the methods outlined in

Section 3.2 of Chapter 3. We followed the process outlined in Section 3.4 of Chapter 3 to split the

data into training and test sets, and used the training set to generate the ID3 decision tree with ada

boosting classifier used in this experiment.

We used an ID3 classifier with a minimal leaf size of 2 and minimal gain of 0.02. The Ada Boost

was configured for 10 iterations. Results are shown in Table 3.1. Average accuracy was 78.91%

for this sample with 30 runs of the experiment. The t-test analysis (as indicated in Table 3.2)

showed that the accuracy of the test versus the expected value of the results collected from the

software were significantly different at the 99.9% confidence level. Precision and recall for this

experiment are shown in Table 3.6.
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Table 3.7: Precision and Recall for Panda Vote

actual true actual false class precision
predicted true 227 34 86.97%
predicted false 163 836 83.68%

class recall 58.21% 96.09%

Experiment 6: Panda Vote

For this experiment we used the data set collected from Panda using the methods outlined in

Section 3.2 of Chapter 3. We followed the process outlined in Section 3.4 of Chapter 3 to split the

data into training and test sets, and used the training set to generate the SVM, ID3, and KNN

classifiers used in this experiment.

We used all classifiers as configured in previous experiments but with a simple majority rules vote

in order to arrive at the classification value. Results are shown in Table 3.1. Average accuracy was

73.54% for this sample with 30 runs of the experiment. The t-test analysis (as indicated in

Table 3.2) showed that the accuracy of the test versus the expected value of the results collected

from the software were significantly different at the 99.9% confidence level. Precision and recall

for this experiment are shown in Table 3.7.

Experiment 7: Scarab Default Learner

For this experiment we used the data set collected from Scarab using the methods outlined in

Section 3.2 of Chapter 3. Classification of Scarab required significantly more time than classifying

Panda with over 40 hours of effort expended. We followed the process outlined in Section 3.4 of

Chapter 3 to split the data into training and test sets, and used the training set to generate the

default classifier used in this experiment. The experiment was repeated 30 times and the average

accuracy was calculated as the mean of the accuracies for each run. The purpose of this experiment

is to establish a baseline value for accuracy by learning the median value of the system.

Results are shown in Table 3.1. Accuracy was 69.74% for this sample, which represents the the

expected value of the data set used in the t-test analysis shown in Table 3.2.
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Table 3.8: Precision and Recall for Scarab KNN

actual true actual false class precision
predicted true 1299 659 66.34%
predicted false 1341 5401 80.11%

class recall 49.20% 89.13%

Experiment 8: Scarab KNN

For this experiment we used the data set collected from Scarab using the methods outlined in

Section 3.2 of Chapter 3. We followed the process outlined in Section 3.4 of Chapter 3 to split the

data into training and test sets, and used the training set to generate the KNN classifier used in this

experiment.

In this experiment we used a value of k = 3. Results are shown in Table 3.1. The only parameter to

the k-nearest neighbor algorithm is k. Average accuracy was 75.18% for this sample with 30 runs

of the experiment. The t-test analysis (as indicated in Table 3.2) showed that the accuracy of the

test versus the expected value of the results collected from the software were significantly different

at the 99.9% confidence level. Precision and recall for this experiment are shown in Table 3.8.

Experiment 9: Scarab SVM

For this experiment we used the data set collected from Scarab. Classification of Scarab required

significantly more time than classifying Panda with over 40 hours of effort expended. This may

have been a function of less familiarity with the system as well as the larger size. The process

outlined in Section 3.4 was used to split the data into training and test sets, generate an SVM

classifier for this experiment, and collect results. The purpose of this experiment was to validate

the approach for a much larger data set than that used in the Panda experiment. Scarab is also a

program that is more representative of systems in actual use.

The SVM classifier used was based on a radial basis function kernel with parameter of C = 0.

Results are shown in Table 3.1. Average accuracy was 72.49% for this sample with 30 runs of the

experiment. The t-test analysis (as indicated in Table 3.2) showed that the accuracy of the test
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Table 3.9: Precision and Recall for Scarab SVM

actual true actual false class precision
predicted true 618 257 70.63%
predicted false 2022 5803 74.16%

class recall 23.41% 95.76%

Table 3.10: Precision and Recall for Scarab ID3

actual true actual false class precision
predicted true 1926 634 75.23%
predicted false 714 5426 88.37%

class recall 72.95% 89.54%

versus the expected value of the results collected from the software were significantly different at

the 99.9% confidence level. Precision and recall for this experiment are shown in Table 3.9.

Experiment 10: Scarab ID3

For this experiment we used the data set collected from Scarab using the methods outlined in

Section 3.2 of Chapter 3. We followed the process outlined in Section 3.4 of Chapter 3 to split the

data into training and test sets, and used the training set to generate the ID3 classifier used in this

experiment.

We used an ID3 classifier with a minimal leaf size of 2 and minimal gain of 0.02. Results are

shown in Table 3.1. Average accuracy was 81.81% for this sample with 30 runs of the experiment.

The t-test analysis (as indicated in Table 3.2) showed that the accuracy of the test versus the

expected value of the results collected from the software were significantly different at the 99.9%

confidence level. Precision and recall for this experiment are shown in Table 3.10.

Experiment 11: Scarab ID3 + Ada Boost

For this experiment we used the data set collected from Scarab using the methods outlined in

Section 3.2 of Chapter 3. We followed the process outlined in Section 3.4 of Chapter 3 to split the

data into training and test sets, and used the training set to generate the ID3 decision tree with ada

boosting classifier used in this experiment.
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Table 3.11: Precision and Recall for Scarab ID3 with Ada Boost

actual true actual false class precision
predicted true 2400 1413 62.94%
predicted false 240 4647 95.09%

class recall 90.91% 76.68%

We used an ID3 classifier with a minimal leaf size of 2 and minimal gain of 0.02. The Ada Boost

was configured for 10 iterations. Results are shown in Table 3.1. Average accuracy was 83.25%

for this sample with 30 runs of the experiment. The t-test analysis (as indicated in Table 3.2)

showed that the accuracy of the test versus the expected value of the results collected from the

software were significantly different at the 99.9% confidence level. This experiment has the

highest average accuracy of any experiment we have performed. This seems to indicate that ID3

with boosting may be a good candidate for further evaluation. Precision and recall for this

experiment are shown in Table 3.11.

Experiment 12: Scarab Vote

For this experiment we used the data set collected from Scarab using the methods outlined in

Section 3.2 of Chapter 3. We followed the process outlined in Section 3.4 of Chapter 3 to split the

data into training and test sets, and used the training set to generate the SVM, ID3, and KNN

classifiers used in this experiment.

We used all classifiers as configured in previous experiments but with a simple majority rules vote

in order to arrive at the classification value. Results are shown in Table 3.1. Average accuracy was

81.18% for this sample with 30 runs of the experiment. The t-test analysis (as indicated in

Table 3.2) showed that the accuracy of the test versus the expected value of the results collected

from the software were significantly different at the 99.9% confidence level. Precision and recall

for this experiment are shown in Table 3.12.

Discussion of Results.

Looking at the precision and recall we see some patterns emerging. It appears that ID3 is able to

achieve respectable precision and recall results considering we have yet to filter the feature set. It

also seems that applying Ada Boost to ID3 helps to reduce the number of false negatives.
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Table 3.12: Precision and Recall for Scarab Vote

actual true actual false class precision
predicted true 1180 383 75.50%
predicted false 1460 5677 79.54%

class recall 44.70% 93.68%

Table 3.2 gives us an indicator of how well the accuracy is measured. A small p-value is an

indicator that there is a significant difference between the accuracy and the mean. Imagine a coin

that is unfairly biased towards heads such that the expected value of heads is 80%. If we were to

play a game where the coin is flipped repeatedly and the player must try to guess the result, the

player would eventually discover the bias and begin guessing heads every round of the game. This

learned strategy would lead to a measured accuracy of the player at about 80%, in other words

there would be no significant difference between the expected value of the experiment and the

accuracy of the guess. In our results we believe that the machine is really making good predictions,

because there is a statistically measurable difference between the expected value of the data set and

the classification guess of the machine for all of the classifiers’ predictions. So the results show

support for rejecting Hypothesis 2. By rejecting Hypothesis 2 we find support for our informal

hypothesis that there exist a set of metrics that capture properties of a system which can be used by

a machine to classify concepts of that system. In the following chapter we determine if it is

practical to use this approach.
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Chapter 4

Improvements, Practicality, and Validation of the Approach

In this chapter we address improvements that can be made to the approach, the practicality of using

such an approach in the real world, and validation of the approach. We address improvements and

practicality via feature set minimization and training set efficiency. We validate via a study of a

third party applying the approach independently to one of the software systems we have studied.

4.1 Minimizing the Feature Set

The primary motivations for minimizing the feature set is to increase understanding of what the

machine learning algorithms are learning, to simplify the computations involved in the process,

and to potentially increase the accuracy of the classification process.

Feature set selection is used to discover the optimal set of metrics which provide the highest level

of classification accuracy for a problem. While feature set selection is a computationally complex

problem, a solution can be approximated via one of several algorithms including Sequential

Forward Selection [56] also known as forward selection, Sequential Backward Selection [37] also

known as backward elimination, and Evolutionary Selection [51].

The sequential forward selection algorithm works by first selecting the single feature that has the

greatest predictive accuracy of the classification. Next, other features are added one at a time; the

one with the greatest increase is made part of the selection. This process continues until no further

improvements are made. However, additional iterations can be made to ensure that local optima do

not fool the algorithm. In our use of forward selection, we use a minimum 5% increase in relative

performance as a stopping criterion and allow 6 speculative iterations.

The backward elimination algorithm works by starting with the full feature set and eliminating one

feature in each iteration. Each iteration consists of a cross validation on the input data for each

remaining feature resulting in a performance metric. The feature with the lowest decrease in

performance is then eliminated. This process continues until no further features can be eliminated

45



without a specified decrease in performance. Similar to forward selection there is also a specified

number of additional iterations that can help to reduce local optima. In our use of backward

elimination, we selected a 10% decrease in relative performance as a stopping criterion and allow

6 speculative iterations.

The evolutionary selection algorithm generates a population of individuals each with a feature

switched on with a given probability. Once initialized, the algorithm mutates each individual in the

population by setting used features to unused and vice versa with a given mutation probability

resulting in an increase to the population. After the mutation step, the algorithm randomly selects

two individuals from the population and performs crossover with the given crossover probability.

Finally, each individual in the population is conceptually mapped to a section of a roulette wheel

proportional to the individual’s fitness and the given population size. Then individuals are drawn at

random. As long as fitness improves from one generation to the next we loop back to the mutation

step, unless we exceed a maximum number of generations. In our experiments, we use a

population size of 5, a feature initialization probability of 0.5, a mutation probability of 1/n where

n is the number of attributes, a crossover probability of 0.5, and a maximum number of generations

of 60.

Results of Feature Set Selection

To determine the set of features with the highest contribution to performance in this learning

problem we perform several rounds of feature selection. We use multiple rounds, because the

feature selection algorithms are heuristics. By eliminating the features that contribute the least to

performance after each round we are able to find a better heuristic solution in the next round.

Repeating the accuracy experiments described in Section 3.5 may help to verify that this

assumption is true; however it is possible given the heuristic nature of these algorithms that an

important feature is eliminated. Given the aggressive nature of our evolutionary algorithm along

with validation in Section 4.1 this appears to be an exceedingly rare possibility.

We begin our analysis of the first round of selection by looking at the metrics VG, and WMC in

Table 4.1 on page 47, Table 4.2 on page 48, and Table 4.3 on page 49. VG was not found to

contribute to increased accuracy by any of the selection algorithms used with any of the machine
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learning methods. Therefore we eliminate VG from consideration. VG is related to WMC as it is

calculated as WMC averaged over the number of methods in the class. WMC is selected only by

the more aggressive evolutionary selection algorithm for use with ID3, so is also eliminated in the

first round of selection.

Table 4.1: First Round of Forward Selection

Metric KNN SVM ID3
DIT 1 1 1
LCOM 0 1 0
LOC 0 0 0
VG 0 0 0
MLOC 0 0 0
NBD 0 0 0
NOF 0 0 0
NOM 1 0 0
NORM 0 0 1
PARC 0 0 0
NSF 0 0 1
NSM 0 0 0
NSC 0 0 0
SIX 0 1 0
USEDBY 1 1 1
USES 0 0 0
WMC 0 0 0

Next we look at several other metrics besides WMC that were only selected in one instance of the

feature selection runs. These include NBD, NOF, NORM, NSF, and NSC. There is little evidence

to suggest any of the metrics selected in individual experimental instances have significant

contribution to performance. Therefore we eliminate these metrics from consideration as well.

We begin the second round of selection with the ten remaining metrics listed in Table 4.4 on

page 49, Table 4.5 on page 50, and Table 4.6 on page 50. We repeat the experiments in the first

round but the metrics previously eliminated have been filtered from the input. For this round we

eliminate any metric that is not selected by at least one experimental instance. Metrics not found to

contribute to accuracy in this round are LOC, NOM, and NSM.
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Table 4.2: First Round of Backward Elimination

Metric KNN SVM ID3
DIT 0 1 1
LCOM 0 0 0
LOC 1 0 0
VG 0 0 0
MLOC 0 0 0
NBD 0 0 0
NOF 0 0 0
NOM 0 0 0
NORM 0 0 0
PARC 0 0 0
NSF 0 0 0
NSM 0 0 0
NSC 0 0 0
SIX 0 0 0
USEDBY 1 1 1
USES 0 0 0
WMC 0 0 0

We begin the third round of selection with the seven metrics listed in Table 4.7 on page 51. For this

round we only perform the evolutionary selection based experiments as the previous forward

selection and backward elimination showed little difference from round one to round two. From

the results we see DIT, LCOM, PARC, and USEDBY are selected for all three learning algorithms.

Validation of Feature Set Selection

In order to validate our feature selection results we repeat the experiments performed in

Section 3.5 with the input metrics filtered to remove those metrics eliminated by our feature

selection criteria. The expectation is that our accuracy results should either stay the same or

improve over previous results.

We can see in Table 4.8 that the accuracy has improved significantly over the results prior to

feature selection. The repeated experiments are marked with FS to signify the input metrics have

been filtered to include only those metrics identified by our feature selection process. No other

aspect of the experiment was changed. Default experiments are not repeated for the filtered
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Table 4.3: First Round of Evolutionary Selection

Metric KNN SVM ID3
DIT 1 1 1
LCOM 1 0 0
LOC 0 1 1
VG 0 0 0
MLOC 0 1 1
NBD 1 0 0
NOF 0 1 0
NOM 0 1 0
NORM 0 0 0
PARC 1 1 1
NSF 0 0 0
NSM 1 1 1
NSC 1 0 0
SIX 0 0 1
USEDBY 1 1 1
USES 1 1 0
WMC 0 0 1

Table 4.4: Second Round of Forward Selection

Metric KNN SVM ID3
DIT 1 1 1
LCOM 0 0 0
LOC 0 0 0
MLOC 0 0 0
NOM 0 0 0
PARC 0 0 0
NSM 0 0 0
SIX 0 0 0
USEDBY 1 1 1
USES 0 0 0

features as these experiments do not depend on the input metrics and produce the same results.

They are included here only for comparison.

In Table 4.9 the difference in precision and recall are shown between the initial experiments as

discussed in Section 3.5 and the experiments performed here after filtering based on feature

selection. Complete confusion matrices for each post feature selection experiment performed are
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Table 4.5: Second Round of Backward Elimination

Metric KNN SVM ID3
DIT 1 0 0
LCOM 0 0 0
LOC 0 0 0
MLOC 0 0 0
NOM 0 0 0
PARC 0 0 0
NSM 0 0 0
SIX 0 0 0
USEDBY 1 1 1
USES 0 0 0

Table 4.6: Second Round of Evolutionary Selection

Metric KNN SVM ID3
DIT 1 1 1
LCOM 1 1 0
LOC 0 0 0
MLOC 0 1 1
NOM 0 0 0
PARC 1 1 0
NSM 0 0 0
SIX 0 0 1
USEDBY 1 1 1
USES 0 1 0

found in Appendix A. There are a few interesting trends. First, SVM increased in recall of

concepts significantly for both Panda and Scarab. Second, ID3 with Ada Boost has better recall of

concepts prior to feature selection. Third, KNN also increase in recall of concepts for both Panda

and Scarab. Finally, ID3 is nearly identical in concept recall performance after feature selection,

most of the performance increase seen in Table 4.8 was based on increased non-concept recall.

4.2 Training Set Efficiency and Size

We examine training set efficiency and size in order to determine if adequate accuracy can be

achieved with a reasonably sized training set. The terms adequate and reasonable are obviously

vague. An issue exists in defining adequate accuracy and a reasonably sized training set since these
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Table 4.7: Third Round of Evolutionary Selection

Metric KNN SVM ID3
DIT 1 1 1
LCOM 1 1 1
MLOC 0 0 1
PARC 1 1 1
SIX 1 0 0
USEDBY 1 1 1
USES 0 1 0

are both very dependent on the needs and opinions of the user of the approach. For many,

manually classifying 10% of a large system with the expectation of producing a classifier that can

predict concepts with 80 to 90% accuracy is reasonable. For others it may not be. This largely

depends on why concepts are being discovered.

In this section rather than trying to determine the needs of an individual user of this technique we

instead describe the accuracy that can be expected using this approach for varying sizes of training

sets. This in turn enables the user of this approach to determine if it is adequate for their needs. We

also examine different techniques for picking training sets. We compare the accuracy obtained for

each of three different selection techniques on varying sized training sets. We treat different

learning algorithms in hopes of identifying any failures or advantages of particular algorithms.

Learning Curve Results

A learning curve shows the relationship between predictive performance and learning effort as

measured by the size of the training set [15]. By examining the learning curves we can determine

what training set size is needed to obtain a given performance level, what algorithms are best

suited to the problem, and which method of training set selection is most effective. We present the

learning curves here grouped in each of the figures by dataset and learning algorithm. We use

diamonds to represent points on the learning curve for the random training set selection method,

we use circles for the Kennard-Stone method, and triangles for the reverse Kennard-Stone method.

Figure 4.1 shows the learning curves for the KNN algorithm executed on the Panda dataset for

each of the training set selection methods. We can see the challenges of a very small dataset in this
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Table 4.8: Summary of Average Accuracy for Preliminary versus Feature Selection Results

Experiment Average Accuracy Training Set Size Classes in System
1 Panda Default 69.39% 35 90
2 Panda KNN 73.54% 35 90
2-FS Panda KNN 88.41% 35 90
3 Panda SVM 75.65% 35 90
3-FS Panda SVM 89.29% 35 90
4 Panda ID3 81.09% 35 90
4-FS Panda ID3 84.21% 35 90
5 Panda ID3 + Ada Boost 78.91% 35 90
5-FS Panda ID3 + Ada Boost 82.86% 35 90
6 Panda Vote 73.54% 35 90
6-FS Panda Vote 87.75% 35 90
7 Scarab Default 69.74% 200 580
8 Scarab KNN 75.18% 200 580
8-FS Scarab KNN 88.37% 200 580
9 Scarab SVM 76.25% 200 580
9-FS Scarab SVM 86.29% 200 580
10 Scarab ID3 81.81% 200 580
10-FS Scarab ID3 84.52% 200 580
11 Scarab ID3 + Ada Boost 83.25% 200 580
11-FS Scarab ID3 + Ada Boost 84.40% 200 580
12 Scarab Vote 81.18% 200 580
12-FS Scarab Vote 87.75% 200 580

figure. With 90 data points in the complete system the first four data points in the figure represent

training sets of size 4, 6, 9, and 11 respectively. When we move to the fifth data point for random

selection representing a training set of size 13 we see a drop in performance. This is due to the

relatively small number of data points in the training set. The probability of a single data point

being added to the training set having an adverse effect on performance is higher since the single

data point represents a greater portion of the addition to the set. This effect is lessened as the

training set grows to a larger portion of the complete system. Looking at Kennard-Stone we see

that we never achieve accuracy greater than that expected of a default learner. Reverse

Kennard-Stone does eventually achieve accuracy better than that expected of a default learner but

it begins with abysmal results, and seems to be even more affected by the small data set size than
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Table 4.9: Post Feature Selection Precision and Recall

Recall Precision
true true predicted predicted

Experiment Concept Non-Concept Concept Non-Concept
2 Panda KNN 62.56% 80.57% 59.08% 82.76%

2-FS Panda KNN 80.26% 92.07% 81.94% 91.23%
3 Panda SVM 33.59% 99.08% 94.24% 76.90%

3-FS Panda SVM 71.54% 97.24% 92.08% 88.40%
4 Panda ID3 73.59% 86.32% 70.69% 87.94%

4-FS Panda ID3 73.33% 89.08% 75.07% 88.17%
5 Panda ID3 + Ada Boost 81.79% 66.78% 52.47% 89.11%

5-FS Panda ID3 + Ada Boost 73.85% 86.90% 71.64% 88.11%
6 Panda Vote 58.21% 96.09% 86.97% 83.68%

6-FS Panda Vote 78.21% 94.83% 87.14% 90.66%
8 Scarab KNN 49.20% 89.13% 66.34% 80.11%

8-FS Scarab KNN 80.72% 91.70% 80.90% 91.61%
9 Scarab SVM 23.41% 95.76% 70.63% 74.16%

9-FS Scarab SVM 71.06% 92.92% 81.39% 88.05%
10 Scarab ID3 72.95% 89.54% 75.23% 88.37%

10-FS Scarab ID3 72.23% 89.87% 75.64% 88.14%
11 Scarab ID3 + Ada Boost 90.91% 76.68% 62.94% 95.09%

11-FS Scarab ID3 + Ada Boost 75.76% 88.17% 73.61% 89.30%
12 Scarab Vote 44.70% 93.68% 75.50% 79.54%

12-FS Scarab Vote 76.52% 92.64% 81.91% 90.05%

random selection since there are three points where additional learning results in reduced

performance.

Figure 4.2 shows the learning curves for the SVM algorithm executed on the Panda dataset for

each of the training set selection methods. The challenges of a small data set are still present in this

case. Comparing to Figure 4.1, there are some similarities with the performances of each of the

different training set selection types though they appear to reach the higher levels of accuracy only

after larger training sets. For example the random selection method eventually reaches the same

steady state accuracy level but only after seeing about 17% more of the system.

Figure 4.3 shows the learning curves for the ID3 numerical algorithm executed on the Panda

dataset for each of the training set selection methods. The learning curves illustrate an issue with

the ID3 numerical algorithm applied to this problem. Notice that the performance tends to vary a

great deal from one training set size to another. This effect is created by two properties of the ID3
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Figure 4.1: Learning Curve for KNN on Panda
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Figure 4.2: Learning Curve for SVM on Panda
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Figure 4.3: Learning Curve for ID3 on Panda

numerical algorithm. First, ID3 is susceptible to over-fitting of training data as it creates a perfect

classifier for the training set [47, 41]. Second, the original ID3 algorithm was designed for discrete

data and has been adapted to continuous numerical data via use of a binning technique. This

binning technique when used on the incomplete data present in the training set produces bins that

could be said to have a certain noise level. To illustrate, consider a simple example of one attribute

with values 1.1, 1.2, and 1.3 where 1.1 and 1.2 are classified in the A class and 1.3 is in the B class.

Our ID3 numerical algorithm chooses some value c that divides the examples into appropriate

classes. Let us assume this value is simply a linear interpolation between values on a class

boundary, so 1.25 is selected. We now have two leaf nodes in our decision tree, one node says

anything with value less than 1.25 is class A, and one says anything greater than 1.25 is class B.

Now if we have an example in our test set which is class B but has an attribute value of 1.22 we

have a classification error. This error is based on noise in the system introduced by the binning

algorithm. It is also interesting that by introducing additional values into the training set the cut

point of the classification boundary can move about the test point such that the classifier becomes
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more or less accurate for that sample based on the training set. Quinlan [47] examined the

consequences of noise on attributes and found that if noise is present on all attributes, as it would

be in our problem based on binning of continuous values, the degradation in classification

performance can be up to 30%. Given the small size of the Panda data set, we cannot say for

certain that this is the cause of the variances in the learning curve, however if we encounter similar

variances in the larger Scarab data set we would be inclined to believe that ID3 is not an

appropriate algorithm for this problem.
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Figure 4.4: Learning Curve for Vote on Panda

Figure 4.4 shows the learning curves for the Vote algorithm executed on the Panda dataset for each

of the training set selection methods. This is interesting because basically we are averaging the

results of KNN, SVM, and ID3 via a majority rules vote. This is reflected in the learning curves

which display an averaging of the properties from the learning curves of each of the individual

algorithms. What is clear in this figure is that random selection is the most consistently performing

selection method for the Panda data set for the learning algorithms tested.
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Figure 4.5: Learning Curve for KNN on Scarab

Figure 4.5 shows the learning curves for the KNN algorithm executed on the Scarab dataset for

each of the training set selection methods. Our analysis of Panda is obviously limited due to the

small data set; however here we see clear patterns emerging. The initial data point with 5% of the

system classified, which is a training set with 29 data points, shows very poor results for

Kennard-Stone. After the first data point Kennard-Stone nearly matches the random selection

method until the training set grows to 174 data points at 30% of the system classified then it

surpasses the random selection method.

Figure 4.6 shows the learning curves for the SVM algorithm executed on the Scarab dataset for

each of the training set selection methods. As with the Panda training set, there is a similarity to

the results for KNN in Figure 4.5. It is interesting that the highest performance levels are below

those reached in the KNN experiments. This seems to indicate that the additional power of the

SVM algorithm is not being put to good use with this particular problem.

Figure 4.7 shows the learning curves for the ID3 numerical algorithm executed on the Scarab

dataset for each of the training set selection methods. We again encounter the swinging variances
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Figure 4.6: Learning Curve for SVM on Scarab
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Figure 4.7: Learning Curve for ID3 on Scarab
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in the learning curves generated for the ID3 numerical algorithm on the Scarab data set. This

confirms our suspicion that the numerical properties of the ID3 numerical algorithm make it

inappropriate for this particular problem due to the continuous numerical data.
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Figure 4.8: Learning Curve for Vote on Scarab

Figure 4.8 shows the learning curves for the Vote algorithm executed on the Scarab dataset for

each of the training set selection methods. As with the Panda data set we are averaging the results

of KNN, SVM, and ID3 via a majority rules vote. However, it is interesting here that now the

Kennard-Stone selection method achieves the highest performance levels on all but four data

points.

Recommendations Based on Learning Curves

For training set selection Reverse Kennard-Stone may be interesting for experimental comparison

but overall results show that it is an ineffective method of optimizing training set selection. Indeed,

random selection produces learning curves with less variance across training set sizes. In practice

this translates to greater consistency than the other selection methods. Based on the work of Wu et.

al. [57] we know that it is possible to find optimal training set selectors for some data sets.
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Kennard-Stone exceeds the performance of random selection on the Scarab data set. However,

there is not enough evidence to determine if this would be the case in general for any given data set.

Based on the learning curves both KNN and SVM seem to be appropriate learning methods for this

problem. KNN does have a clear advantage in the latter part of the Kennard-Stone learning curve

for Scarab, and maintains a slight performance advantage with random selection as well. Given the

variances encountered in the Kennard-Stone learning curves it is difficult to make a

recommendation based on that data. Since KNN is simpler to implement it may have an advantage

there but SVM should not be ignored as there may be potential for further improvements. ID3 with

numerical binning is not a good choice given the variance of the learning curve as there is no way

to determine if we have trained with enough data to ensure adequate performance for our needs.

The performance of an appropriate learning algorithm given a randomly selected training set size

of between 7.5% and 10% on a sufficiently large system is not dramatically improved by further

classifying the system. We can see this is true for Scarab when using either KNN or SVM.

4.3 External Validation

In order to validate the approach we want to determine how another engineer would classify a

system, and compare his classification to our own. To accomplish this we asked a student in our

computer science program to examine the Panda system and provide a classification. We explained

that core concepts are those concepts that describe the domain of the system, and we simply want

to identify the classes which are representative of core concepts. We did not answer questions

about the software but did give a brief demo using the software. We also gave a brief introduction

to the domain of the software. Panda is a proof assistant, and the student was not familiar with

logical proofs of this form. The student was aware that we were attempting to evaluate our

approach but did not have access to our existing classification.

Comparing the results of our student’s classification versus our classification of Panda, there were

12 classifications on which we do not agree out of the 90 classes in the system. We examine each

of the differences to determine why the discrepancies exist.
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The first set of discrepancies exist in four classes called AbstractCommand, CommandManager,

CommandRedo, and CommandUndo. We originally classified these as concepts, however our

student classified them as non-concepts. The Panda system implements a large set of classes that

represent use cases a user would want to execute in the logical proof domain. Most of these classes

represent domain specific use cases and so are clearly concepts. However, CommandManager

manages a command history. This is a convenience for the user to allow undo and redo of

commands previously executed, but are not concepts in the logical proof domain. The

CommandRedo and CommandUndo classes represent the redo and undo use cases that are not

concepts in the logical proof domain. The AbstractCommand class is the base class for all

commands, however it does not include any domain specific knowledge and therefore is not a

concept in the logical proof domain. So, in this case we made a mistake in our initial classification

that our student did not.

The second set of discrepancies exist in seven classes called FormulaPanel, InsertionPoint,

PanelGetAssumptions, PanelGetConclusion, PanelPromptForLine, PanelSelectCommand, and

PanelWhichEquation. Each of these classes model GUI based user interactions with the logical

proof domain, but do not contain domain specific knowledge. We did not classify these as concepts

though our student did. Our student made a mistake in this classification that we think is related to

the use of domain terms in the class names. A similar class in this set PanelGetInputLine does not

include domain terminology in the name and was correctly classified by the student as a

non-concept.

The final discrepancy is the scanner class. This class is an implementation of a tokenizer for the

Panda specific logical proof language. Our student mistakenly classified this as a domain concept.

Overall there was strong agreement between our classification and our student’s classification. In

fact 86.6% of our responses where the same. Interestingly enough this is on the order of the same

performance as the classifiers we have built. In other words our classifiers are accurate to the same

level as two engineers’ opinions of the correct classification.

Table 4.10 on page 62 shows the results of correcting the data set classifications on

AbstractCommand, CommandManager, CommandRedo, and CommandUndo. We see our original
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Table 4.10: Summary of Average Accuracy for Preliminary versus Corrected Panda Results

Experiment Average Accuracy Training Set Size Classes in System
1 Panda Default 69.39% 35 90
1-FSC Panda Default 73.53% 35 90
2 Panda KNN 73.54% 35 90
2-FS Panda KNN 88.41% 35 90
2-FSC Panda KNN 94.29% 35 90
3 Panda SVM 75.65% 35 90
3-FS Panda SVM 89.29% 35 90
3-FSC Panda SVM 93.49% 35 90
4 Panda ID3 81.09% 35 90
4-FS Panda ID3 84.21% 35 90
4-FSC Panda ID3 88.57% 35 90
5 Panda ID3 + Ada Boost 78.91% 35 90
5-FS Panda ID3 + Ada Boost 82.86% 35 90
5-FSC Panda ID3 + Ada Boost 88.49% 35 90
6 Panda Vote 73.54% 35 90
6-FS Panda Vote 87.75% 35 90
6-FSC Panda Vote 95.24% 35 90

preliminary results versus the results with feature selection and correction of the classification

errors found in external validation marked with FSC. We have also included the results after

feature selection, marked with FS, for comparison. For KNN and SVM the feature selection had

more affect on the accuracy than the correction of classification errors. The ID3 numerical based

experiments were more affected by the error corrections than by the feature selection though the

increases in accuracy were on the same order as those noticed for KNN and SVM so we are seeing

that they were less improved by feature selection not more improved by error correction.

In Table 4.11 the difference in precision and recall are shown between the initial experiments as

discussed in Section 3.5, the feature selection experiments, and the validation experiments

performed after correction of the Panda data set. The complete confusion matrices for each post

validation experiment performed are found in Appendix B. If any doubts remain regarding the

ability of a machine to solve the concept classification problem the results here should eliminate

them. KNN has over 90% recall on both the concept and non-concept classes. While the results for

62



Table 4.11: Post Validation Precision and Recall

Recall Precision
true true predicted predicted

Experiment Concept Non-Concept Concept Non-Concept
2 Panda KNN 62.56% 80.57% 59.08% 82.76%

2-FS Panda KNN 80.26% 92.07% 81.94% 91.23%
2-FSC Panda KNN 91.82% 95.16% 87.07% 97.04%

3 Panda SVM 33.59% 99.08% 94.24% 76.90%
3-FS Panda SVM 71.54% 97.24% 92.08% 88.40%

3-FSC Panda SVM 79.39% 98.49% 94.93% 93.09%
4 Panda ID3 73.59% 86.32% 70.69% 87.94%

4-FS Panda ID3 73.33% 89.08% 75.07% 88.17%
4-FSC Panda ID3 76.36% 92.90% 79.25% 91.72%

5 Panda ID3 + Ada Boost 81.79% 66.78% 52.47% 89.11%
5-FS Panda ID3 + Ada Boost 73.85% 86.90% 71.64% 88.11%

5-FSC Panda ID3 + Ada Boost 82.73% 90.54% 75.62% 93.66%
6 Panda Vote 58.21% 96.09% 86.97% 83.68%

6-FS Panda Vote 78.21% 94.83% 87.14% 90.66%
6-FSC Panda Vote 88.48% 97.63% 92.99% 95.98%

KNN are the most accurate, each of the other machine learning algorithms has also performed well

enough to support the hypothesis.

This set of experiments provides further evidence to support our hypothesis that we have identified

a set of metrics that serve to detect core domain concepts in source code. Looking just at KNN we

see an improvement that averaged 5.29 more correct classifications based on only 4 corrections

implying that the algorithm has learned from those corrections.
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Chapter 5

Limits of Approach

In this chapter we discuss the limits of the approach with respect to composite concepts. We

identify the types of composite concepts and discuss the limits of our approach with each type.

5.1 Composite Concepts

We define a composite concept as a domain concept from an idealized representation of the

domain for which there is no one-to-one mapping to a class in the software system. We consider

two possible scenarios based on one-to-many relationships. First, we have the situation where

multiple concepts map to one class. Second, we have the situation where one concept maps to

multiple classes.

Separation of concerns is a software design principle that states each module of a software system

should address a separate concern [17]. We might think of multiple concepts mapping to one class

as not having correct separation of concerns. For example, when modeling the concept of a car that

has a relationship with the concept of an engine, our software system might have been

implemented as a single car class perhaps we are modeling traffic patterns or the movement of

people. Perhaps our car class has a method that increases revs via acceleration for example,

however this is a method that could be implemented quite differently if further details of the car

were modeled. Given the level of detail needed to implement the software requirements there is no

need to implement an engine class. Consider also the example of fees calculated for a shopping

cart application. Possible fees include taxes and shipping charges. This shopping cart application

has no knowledge of either taxes or shipping charges but instead only the abstract concept of a fee.

A separate external software system is responsible for the calculation of fees and provides an

interface to the shopping cart application to retrieve fees for a given cart. Each fee consists of an

amount in a given currency and a label to present to the shopping cart user. So in this example we

have a domain that includes concepts of taxes and shipping charges but these concepts do not exist

in the shopping cart application. Instead there is only the abstract concept of a fee. We call this a
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type 1 composite concept and we expect to encounter these whenever software is modeling an

abstraction.

The situation where one concept maps to multiple classes would primarily appear to be a

theoretical construct as we have not actually witnessed such entities in the real world. The closest

situation observed is two classes that are very tightly coupled. However, even in this case it does

not appear that a single concept is being represented by the combination but rather each class

represents two distinct yet tightly bound concepts. However, for thoroughness we show that it is

computationally difficult to identify such entities in the general case. If more specific information

were known about what these entities look like if they do exist in real world implementations then

it may be possible to optimize identification based on the constraints found. We call this a type 2

composite concept.

The idea of a composite concept is based on the assumptions that there exists some idealized

domain for which there should exist some one-to-one mapping to the implementation of those

concepts, and that it is possible to incorrectly map the domain to the implementation. This seems

to be inaccurate in at least one respect. First, we are working to identify a domain representation

from a given implementation; this is like drawing a map from a given territory. The idea that the

domain representation we recover from software is incorrect compared to some idealized domain

is like saying that the map we have created by measuring the territory is incorrect because it does

not appear as we expected prior to measuring. In this case we are simply discovering that the

territory is not what we expected. Second, as Albert Korzybski said “the map is not the

territory” [33] meaning that the model is not the thing, or in our case the domain is not the

implementation. We should not forget that the domain, regardless of how formally it is defined, is

simply a model of reality and that the reality being modeled is the software implementation. The

difficulty of refining a model to accurately depict the thing being modeled is humorously

addressed by a character of Lewis Carroll’s in saying “we now use the country itself, as its own

map, and I assure you it does nearly as well.” [14] Since our approach bases the model on the

reality encountered in implemented software we expect it to do “nearly as well” as any model

derived prior to understanding the reality of the system. So from the perspective of formal
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modeling we have identified limits to this approach that we might like to overcome. However,

from a pragmatic perspective interested in modeling the reality of the software as implemented we

have identified an important property of the approach in that it can only detect the structures

present in the software and not fantasies that exist only in the minds of the observer.

5.2 Type 1 Composite Concepts

Consider a thought experiment based on a graph where each vertex is a class in the system, and

each edge is a relationship between classes. Then very little information is lost in the translation of

the ideal representation to the system when mapping two concepts to one class. The classification

approach we use is primarily dependent on dependency relationships between classes as

represented by the USES and USED-BY metrics. In an ideal representation of the domain

concepts we would see two vertices representing the two concepts in question but in our

implementation we find only one vertex representing both concepts. Consider the transformation

necessary to merge two vertices from our ideal representation to a single vertex. The effect on the

edges in the system is limited to removing edges between the two vertices, and replacing the the

two ideal representations in all other relationships with the new composite concept. Any edges

representing dependencies outside the two affected vertices remain such that we have merged the

dependencies of the two vertices into a single new vertex. This represents little loss of information

in the metrics we are observing. This, along with a few examples, could form an argument for

explaining why our system is able to detect type 1 composite concepts. However, we should first

examine the idea of the ideal representation.

We consider that there is no ideal representation that works for every situation in every system we

are modeling. Looking at our car example above we might say that a single class representation is

equally valid if all we are concerned about in our system is transportation of a few people. In this

case we could easily argue that the correct representation of the car at the domain level abstracts

away the concept of engine, tires, etc. Let us not forget that the domain we are trying to recover is

the model which the developers of our software were working to implement. We can conclude that

every concept in our domain is some level of abstraction of some other composition of concepts
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that we have chosen to ignore in our particular domain, and therefor every domain concept we are

detecting in our experiments is at some level of abstraction a type 1 composite concept.

So we have the question “Is our approach limited such that these type 1 composite concepts are not

recognized or are more difficult to recognize?” The answer is if these limits to our approach

existed we would not find accurate results for any class since we have shown that any particular

concept can be broken down as a composite concept at a different level of abstraction.

5.3 Type 2 Composite Concepts

We formally define a composition of classes as a type 2 composite concept if there exists a

relationship between two or more classes in the system S such that together they form a domain

concept but individually they have no corresponding domain concept. Given this mapping we

could define a functional notation fc(Pi) which maps the partition Pi ⊂ S to boolean values, such

that if all the classes in Pi form a composite concept then fc is 1, and fc is 0 otherwise. Let us

assume that we can use this mapping to develop a classifier classi f ier(Pi) to return a pair

(label,con f idence). Given this classifier we would like to classify the complete system such that

for every class and partition of classes forming a composite concept we have minimized the error

in the system, or maximized the confidence.

Naively, we can construct a brute force implementation of this algorithm which looks at all of the

combinations of classes, computes the confidence on those classifications, and eventually gives us

the highest confidence solution. However, ideally we would be able to construct a solution that

runs in polynomial time so that we might solve reasonably large problems of this nature.

Unfortunately we are unable to construct such an algorithm as this problem is NP-complete.

Definition 2 (BIN-PACK algorithm). BIN-PACK(A,V) calculates the number of bins B of size V

needed to hold the A = a1, ...,an items, also finds the B-partitioning of S = 1, ...,n that results.

Definition 3 (Algorithm for optimal partitioning of concept composition).

COMPOSITE-CONCEPT(S,ω ,k) calculates the partitioning of S such that ω of those partitions is

less than or equal to the constant k. Each element of S must appear in one and only one partition.
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Theorem 1. COMPOSITE-CONCEPT is in NP.

Proof. The following is a verifier V for COMPOSITE-CONCEPT.

V = “On input 〈〈S,ω,k〉,P0, . . . ,Pn〉:

1. Test whether ω(Pi)≤ k for each Pi ⊂ S.

2. Test whether Px
⋂

Py = /0 for x,y ∈ {0, . . . ,n}∧ x 6= y.

3. Test whether
n⋃

i=0

Pi = S.

4. If all three pass, accept; otherwise, reject.”

Theorem 2. COMPOSITE-CONCEPT is NP-complete.

Proof. We already know that COMPOSITE-CONCEPT ∈ NP, so we now show that

BIN-PACK ≤P COMPOSITE-CONCEPT. In other words BIN-PACK is polynomial time reducible to

COMPOSITE-CONCEPT.

Given BIN-PACK〈A,v〉 we find a mapping to COMPOSITE-CONCEPT〈S,ω,k〉.

Let us define S, the set of classes, given A, the set of items in our BIN-PACK problem, as follows:

S = { f (x)|x ∈ A} (5.1)

or equivalently:

S = f (A) (5.2)

where f (x) is a function mapping the items in A to classes in S, and f−1(x) is the inverse. The set S

is easily computed given A in polynomial time on the order of O(n) where n is the cardinality of A.

Let us define ω as follows:

ω(Pi) = ∑
x∈Pi

f−1(x) (5.3)

which states that ω has the value of the sum of the size values for each item in the partition. The

function ω is independent of the input to BIN-PACK and so this step of the transformation is
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computed in constant time, because no part of the transformation regarding ω will change based

on input.

Let us define k = v. This assignment is a constant time step in the transformation of BIN-PACK to

COMPOSITE-CONCEPT.

Now executing an algorithm that solves COMPOSITE-CONCEPT results in a partitioning of S such

that ω for each partition is less than or equal to k, or tells us that no such solution exists. Given the

mapping above, either Pi contains a set of classes whose integer properties f−1 sums to less than v

resulting in a partitioning of S that satisfies the constraint k = v, or there is no subset of S that can

be placed in that partition to meet those restraints. If the constraints are met then we find the

answer to BIN-PACK is the sets f−1(Pi) where i ∈ {1, ...,B}, because ω(Pi)≤ k therefore

∑
x∈Pi

f−1(x)≤ k and k = v which implies that ∑
a∈Ai

a≤ v precisely the condition for a solution to

BIN-PACK.

Since, we can reduce BIN-PACK to COMPOSITE-CONCEPT in a series of steps that are polynomial

time and COMPOSITE-CONCEPT is in NP, COMPOSITE-CONCEPT is NP-complete because

BIN-PACK is NP-complete.

Theorem 2 shows that using our technique it is not practically possible to detect type 2 composite

concepts. Our technique looks for an optimal match of a composite concept among many potential

composite concepts, since we assume the definition of our detection function can produce a

spectrum of values for “compositeness”. However, some other technique might define a simple

decision algorithm to the detection of composite concepts. We would assume the this algorithm

would take a subset of classes in the system and return either true if that subset is a composition of

classes which represents a concept in the domain, or false otherwise. We now show that this

technique is also limited in detecting type 2 composite concepts by the impracticality of solving

NP-complete problems.

Definition 4 (Algorithm for detection of concept composition).

COMPOSITE-CONCEPT-DECISION(S,α) determines if there exists a subset of S such that the

subset includes classes which make up a composite concept.
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Theorem 3. COMPOSITE-CONCEPT-DECISION is in NP.

Proof. The following is a verifier V for COMPOSITE-CONCEPT-DECISION.

V = “On input 〈〈S,α〉,P〉:

1. Test whether α(P) is true.

2. Test whether P⊂ S.

3. If both pass, accept; otherwise, reject.”

Theorem 4. COMPOSITE-CONCEPT-DECISION is NP-complete.

Proof. We already know that COMPOSITE-CONCEPT-DECISION ∈ NP, so we now show that

SUBSET-SUM ≤P COMPOSITE-CONCEPT-DECISION. In other words SUBSET-SUM is

polynomial time reducible to COMPOSITE-CONCEPT-DECISION.

Given SUBSET-SUM〈T, t〉 we find a mapping to COMPOSITE-CONCEPT-DECISION〈S,α〉.

Define S, the set of classes, given T , the set of integers in our SUBSET-SUM problem, as follows:

S = { f (x)|x ∈ T} (5.4)

or equivalently:

S = f (T ) (5.5)

where f (x) is a function mapping the integers in T to classes in S, and f−1(x) is the inverse. The

set S is easily computed given T in O(n) time where n is the cardinality of T .

Define α as follows:

α(P) = true iff ∑
x∈P

f−1(x) = t (5.6)

so that α(P) is true if and only if the sum of f−1(x) where x ∈ P is equal to t. The function α is

independent of the input to SUBSET-SUM and so this step of the transformation is computed in

constant time, because no part of the transformation regarding α will change based on input.
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Now executing an algorithm that solves COMPOSITE-CONCEPT-DECISION results in the detection

of P such that α is true for P, or tells us that no such subset exists. Given the mapping above,

either P contains a set of classes whose integer properties f sums to t resulting in a subset of S that

satisfies the constraint such that α is true, or there is no subset of S for which α is true. If the

constraints are met then we find the answer to SUBSET-SUM is the set f−1(P), because in that

situation α(P) = true therefore ∑
x∈P

f−1(x) = t precisely the condition for a solution to

SUBSET-SUM.

Since, we can reduce SUBSET-SUM to COMPOSITE-CONCEPT-DECISION in a series of steps that

are polynomial time and COMPOSITE-CONCEPT-DECISION is in NP,

COMPOSITE-CONCEPT-DECISION is NP-complete because SUBSET-SUM is NP-complete.

So, finding composite concepts is a fundamentally difficult problem regardless of the technique

that is used to detect those composite concepts. In Section 1.2 we ask “Is it possible to use this

approach to classify composite concepts made up of more than one class, which individually are

not concepts?” Given this result we find that it is not possible to use this or any other approach to

optimally classify type 2 composite concepts in a reasonable amount of time.

71



Chapter 6

Conclusion

The primary contribution of this thesis is showing that concept identification using a machine

learning based classification approach is possible. Prior work in the field does not attempt concept

identification via machine learning classification. In the following sections we discuss our

contributions and findings, suggest areas for future work, and finally wrap up with a discussion of

the significance of the work in this field.

6.1 Contributions and Findings

Our contributions include the following:

1. We have shown that accurate concept identification is possible using machine generated

classifiers.

2. We discovered the optimal set of metrics to include in the feature set, and defined the USES

and USEDBY metrics.

3. We have shown that a training set size of 7.5 to 10% of the system can yield results nearly as

accurate as training sets using half the system.

4. We proved that problems involving detection of concepts crossing class boundaries are

NP-Complete.

In this paper we have covered a lot of ground. So it is interesting to look back and see where we

started and where the results have taken us along with what we developed to get from the initial

idea to the completed work.

We began with a simple informal question “Is it possible to identify concepts based on metrics

using SVM?” Our initial results were a proof of concept. We found an open source solution that

would generate metrics from Java code. We manually classified Panda, and then generated a data

set from the combination of the metrics and the classifications. After some manual formatting of

the data we were able to import it into MATLAB and run a SVM classifier. We did some testing

similar to that found in Section 3.5 and found that there was a statistically significant result.
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At this point the real work began. There were so many questions to answer, which are formalized

in Section 1.2. We found ourselves skeptical of the initial results but intrigued by the implication

that we could identify concepts using a machine learning approach. There were a lot of challenges

to overcome.

Our initial results were statistically significant, but there can be a large gap between statistically

significant and practically useful. We had achieved average accuracy as high as 70%, but we would

need to increase performance to have a shot at a pragmatic tool. There were multiple paths to

explore.

We would need to examine the feature set and determine what we needed to add and what should

be removed to maximize performance, but at the same time we did not want to have an adverse

effect on our analysis of learning algorithms. We developed a new metrics collector. The open

source tool we had used initially was not suited to the task of generating machine readable files,

and we knew we would want to add additional metrics. Initial results showed a strong reliance on

metrics related to the structure of the software, for example DIT. Our initial set of metrics did not

include USES or USEDBY so we added these to our metrics collector in the hope of improving

accuracy. This turned out to be a good decision. As discussed in Section 4.1, USEDBY and DIT

were the two common metrics selected by each of the three feature selection algorithms. Together

USEDBY and DIT are more than capable of producing statistically significant results.

We wanted to examine different learning algorithms to determine if superior performance is

possible with an algorithm other than SVM. The number of experiments we wanted to perform

would grow with each additional learning algorithm we decided to examine. We needed a better

method of collecting data sets. MATLAB had a disadvantage because each of the learning

algorithms implemented in MATLAB would take different inputs. We were concerned that

producing an automated transformation of the common data set format to the input format for each

algorithm could introduce errors in the transformation phase. If we found differences in algorithms

it would be challenging to ensure that those originated in the algorithm and not in the automated

transformation of the data set. Our search for a tool with common inputs yielded RapidMiner.

RapidMiner accepts input from XRFF and implements many of the machine learning algorithms of
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interest. XRFF is an XML based file for storing machine learning data sets. To speed the process

of creating XRFF we developed an Eclipse plugin that would use our metrics collector and

annotations on Java source files to generate the required XRFF file. We developed the annotations

to allow adding classification information directly to Java source code so that the source would be

the authority for all date necessary to produce and test classifiers.

We needed to minimize the size of training sets to ensure a useful approach in practice, but we did

not want to artificially introduce a limit on size that some use cases might comfortably exceed. In

order to map out the effects of different sized training sets, changes in training set selection

methods, and determine effectiveness of learning algorithms we produced learning curves for each

of the different selection methods and learning algorithms. A learning curve shows the relationship

between performance and the size of a training set. This allowed us to determine that a training set

of 7.5 to 10% is nearly as effective as a training set representing 50% of the system. We showed

random selection is the most consistent and effective means of selecting a training set. We also

found that KNN was the most consistent performer among the learning algorithms we tested.

Finally, we needed to know the limits of this approach. How would the structure of concepts

encoded in software systems affect our ability to detect them using classifiers? We discussed two

possible structures besides a one to one mapping of domain knowledge to implementation. Classes

that represent more than one concept are simple to detect using our approach. We discussed what

we call Type 1 composite concepts in Section 5.2 and showed that these are concepts at differing

levels of abstraction. Almost any concept can be further refined into a set of related concepts, but

the correct level of abstraction is determined by the domain that is actually being implemented. We

discussed Type 2 composite concepts in Section 5.3. Type 2 composite concepts represent a

domain concept implemented by more than one class. These Type 2 composite concepts probably

do not exist, and as we have shown are difficult to detect due to NP-Completeness of the problem

for any classification algorithm including our approach.

6.2 Future Research

While exploring this topic we have discovered additional questions that could be good topics for

future exploration.
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Understanding why USEDBY and DIT are good indicators of domain concepts may indicate other

metrics that we have yet to consider. Currently the structural metrics, like USEDBY, and USES,

only count generic dependencies. Perhaps separating dependencies into more specific relationships

could provide further improvements in accuracy. For example, composition and delegation could

be tracked separately.

There is potential to improve on the training set sizes in future work. Reduction of the size of

training sets needed to attain appropriate accuracy make the approach more efficient for an

engineer to utilize in practice. We investigated training sets that are selected randomly, by the

Kennard-Stone method, and with the reverse Kennard-Stone method, but perhaps there is a better

way to go about this training process. It might be interesting to examine a combination of

Kennard-Stone with random selection.

We have explored several different learning algorithms representative of several categories of

learning algorithms but still more exist that we have not tested. Since we already see variance in

the abilities of different algorithms it is reasonable to test additional algorithms to determine if

superior performance can be achieved on the classification problem.

6.3 Significance

With out the introduction of new tools and techniques software engineers will continue to struggle

with identifying the important domain knowledge contained in existing software systems resulting

in higher development costs. Fred Brooks famously asserted that maintenance accounts for 90% of

software costs [10]. While an exact accounting cannot be generalized so succinctly most practicing

engineers would agree to the qualitative point that maintenance is the most expensive aspect of

software development. The expense of maintaining existing software can be roughly divided into

two categories; discovery of the existing system, and executing the required changes. It is the

discovery process that we hope to accelerate via use of our approach. Tools that assist in directing

study of the system toward domain concepts speed the engineer’s comprehension tasks allowing

him to make needed changes at a quicker pace.

Internal documentation artifacts, those meant to capture the tribal knowledge of the developers, are

notoriously outdated but are meant to assist in the discovery process. In practice documentation
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rarely exists, and when it does it may be a snapshot of an earlier system that has evolved out of

existence. The benefits of using these outdated documents can be overwhelmed by the

misinformation that only applied to an earlier version of the system. Alone this does not account

for the necessity of our approach; other approaches might work equally well in an environment

with outdated or partially complete documentation particularly those that do matching of

components of the software to knowledge contained in documents.

In an industry where the difference between market leadership and runner up can be measured not

just in profits but the survival of a business it could be argued that time spent on internal

documentation results in a competitive disadvantage. The creative work of the engineer is in the

software that is developed. Time spent documenting is time not spent creating the next software

release. Allocation of scarce creative resources to document software could be considered

misallocation of funds given the opportunity loss represented by not delivering new software

features. This would be an especially egregious mistake if it were possible to automate the

recovery of that documentation at a later date. It is in this hyper-competitive environment that our

approach excels.

When we frame internal documentation as an artifact with greatest value to future development,

then we see that we are paying up front in effort invested for documentation that has an unknown

value later. Our approach to identifying domain knowledge from the source is more suited to this

environment where we can chose to pay the cost of learning about the domain at the time we have

found a need to modify the software. In this respect our approach is unique in application when

compared to competitive approaches.
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APPENDIX A

Post Feature Selection Confusion Matrices
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Table A.1 to table A.10 display confusion matrices for the feature selection validation experiments
discussed in section 4.1.

Table A.1: Post Feature Selection Precision and Recall for Panda KNN

actual true actual false class precision
predicted true 313 69 81.94%
predicted false 77 801 91.23%

class recall 80.26% 92.07%

Table A.2: Post Feature Selection Precision and Recall for Panda SVM

actual true actual false class precision
predicted true 279 24 92.08%
predicted false 111 846 88.40%

class recall 71.54% 97.24%

Table A.3: Post Feature Selection Precision and Recall for Panda ID3

actual true actual false class precision
predicted true 286 95 75.07%
predicted false 104 775 88.17%

class recall 73.33% 89.08%

Table A.4: Post Feature Selection Precision and Recall for Panda ID3 with Aba Boost

actual true actual false class precision
predicted true 288 114 71.64%
predicted false 102 756 88.11%

class recall 73.85% 86.90%
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Table A.5: Post Feature Selection Precision and Recall for Panda Vote

actual true actual false class precision
predicted true 305 45 87.14%
predicted false 85 825 90.66%

class recall 78.21% 94.83%

Table A.6: Post Feature Selection Precision and Recall for Scarab KNN

actual true actual false class precision
predicted true 2131 503 80.90%
predicted false 509 5557 91.61%

class recall 80.72% 91.70%

Table A.7: Post Feature Selection Precision and Recall for Scarab SVM

actual true actual false class precision
predicted true 1876 429 81.39%
predicted false 764 5631 88.05%

class recall 71.06% 92.92%

Table A.8: Post Feature Selection Precision and Recall for Scarab ID3

actual true actual false class precision
predicted true 1907 614 75.64%
predicted false 733 5446 88.14%

class recall 72.23% 89.87%

Table A.9: Post Feature Selection Precision and Recall for Scarab ID3 with Ada Boost

actual true actual false class precision
predicted true 2000 717 73.61%
predicted false 640 5343 89.30%

class recall 75.76% 88.17%

Table A.10: Post Feature Selection Precision and Recall for Scarab Vote

actual true actual false class precision
predicted true 2020 446 81.91%
predicted false 620 5614 90.05%

class recall 76.52% 92.64%
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APPENDIX B

Post Validation Confusion Matrices
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Table B.1 to table B.5 display confusion matrices for the external validation experiments discussed
in section 4.3.

Table B.1: Post Validation Precision and Recall for Panda KNN

actual true actual false class precision
predicted true 303 45 87.07%
predicted false 27 885 97.04%

class recall 91.82% 95.16%

Table B.2: Post Validation Precision and Recall for Panda SVM

actual true actual false class precision
predicted true 262 14 94.93%
predicted false 68 916 93.09%

class recall 79.39% 98.49%

Table B.3: Post Validation Precision and Recall for Panda ID3

actual true actual false class precision
predicted true 252 66 79.25%
predicted false 78 864 91.72%

class recall 76.36% 92.90%

Table B.4: Post Validation Precision and Recall for Panda ID3 with Aba Boost

actual true actual false class precision
predicted true 273 88 75.62%
predicted false 57 842 93.66%

class recall 82.73% 90.54%
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Table B.5: Post Validation Precision and Recall for Panda Vote

actual true actual false class precision
predicted true 292 22 92.99%
predicted false 38 908 95.98%

class recall 88.48% 97.63%
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APPENDIX C

Data Sets

88



C.1 Panda
The metrics data set used in this research for the Panda system is shown in Table C.1.
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C.2 Scarab
The metrics data set used in this research for the Scarab system is shown in Table C.2.
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Abstract

The complexity of the systems that software engineers
build has continuously grown since the inception of the
field. What has not changed is the engineers’ mental capac-
ity to operate on about seven distinct pieces of information
at a time. Improvements like the widespread use of UML
have led to more abstract software design activities, how-
ever the same cannot be said for reverse engineering activ-
ities. The well known concept assignment problem is still
being solved at the line-by-line level of analyzing source
code. The introduction of abstraction to the problem will
allow the engineer to move farther away from the details of
the system, increasing his ability to see the role that domain
level concepts play in the system. In this paper we present
a technique that facilitates filtering of classes from existing
systems at the source level based on their relationship to the
core concepts in the domain. This approach can simplify the
process of reverse engineering and design recovery, as well
as other activities that require a mapping to domain level
concepts.

1. Introduction
The complexity of the systems that software engineers

build has continuously grown since the inception of the
field. What has not changed is the engineers’ ability to deal
with a limited number of datum at any given time, psychol-
ogists tell us that the average person has working memory
capacity to operate on about seven distinct pieces of infor-
mation at a time [1]. While improvements in the field like
the widespread use of UML has led to more abstract soft-
ware design activities, the same cannot be said for reverse
engineering activities. The well known concept assignment
problem is still being solved at the line-by-line level of an-
alyzing source code. The introduction of abstraction to the

∗This author supported by National Science Foundation CAREER
grant No. CCR-0133956.

†Contact Author.

problem would allow the engineer to move farther away
from the details allowing his own limited resources to cap-
ture a broader picture of the system, increasing his ability to
see the role that domain level concepts play in the system.

In this paper we present a technique that facilitates fil-
tering of classes from existing systems at the source level
based on their relationship to the core concepts in the do-
main. This allows a software engineer to work with a
smaller subset of the system. The technique presented in-
volves collecting object-oriented metric data from existing
systems, which are then used in machine learning methods
to create classifiers of the systems. The classifiers are then
used to identify classes that are likely related to domain
level concepts. As will be seen, we have gathered some
interesting results that indicate this technique may ease the
effort required to identify concepts in existing systems. This
approach can simplify the process of reverse engineering
and design recovery, as well as other activities that require
a mapping to domain level concepts.

The remainder of this paper is organized as follows.
Section 2 describes the context for our approach includ-
ing information on the concept assignment problem, object-
oriented metrics, and machine learning. Section 3 presents
the process used to collect data from an existing system, as
well as training a support vector machine. Section 4 shows
an example of the filtering application of the approach to the
Panda software. Section 5 evaluates the effectiveness of our
approach by presenting the results obtained from analyzing
example software systems. Section 6 discusses some areas
of related work. Finally, Section 7 concludes and suggests
future investigations.

2. Background
This paper makes use of ideas related to several areas of

research. The concept assignment problem is similar to our
goal of filtering the class diagram. Metrics are used as a
way of assigning quantifiable attributes to a class. Finally,
machine learning is used to automate the process of classi-
fication.

1



2.1 Concept Assignment Problem

Biggerstaff et al. [2] describes the concept assignment
problem as recognizing concepts in software systems and
building a model or human level understanding of the con-
cepts. We see the concept assignment problem as a two part
process. The first step is to identify concepts in the soft-
ware system. The second step is to build a model of the
concepts. This paper describes a new method of identify-
ing concepts that are represented by classes, and using the
identification to produce an abstraction of a recovered class
diagram. Specifically, we describe an instance of the con-
cept assignment problem dealing only with object-oriented
classes. Object-oriented design suggests that we ignore the
details of the implementation of a class, so we believe that
analyzing object-oriented software at the class level is a
valid approach to solving the concept assignment problem.

2.2 Object-Oriented Metrics

A metric is defined as a standard of measurement [3].
In this paper, we use metrics as quantifiable attributes of
classes. We will be more interested in what a set of metrics
might say about the class than what each individual metric
implies. Since our focus is on attributes of classes we will
be most interested in class level metrics.

Several object-oriented metrics are used in our approach.
These metrics are primarily designed to capture information
about the size and complexity of software at the class level.
Figure 1 provides a brief summary of the metrics used in
our work. These metrics were chosen because they were
available to be analyzed. We have not optimized the met-
rics used, nor do we believe that is an appropriate step to
take at this time because we do not want to over optimize
the metrics used to the data set collected. The best way to
view the role of the metrics collected here is as incomplete
indicators of the concepts, each metric adds more informa-
tion to the decision making process.

2.3 Machine Learning

This work makes use of two different machine learning
algorithms developed by the machine learning community.
The first, Support Vector Machines (SVM) are the primary
algorithm we use to classify results. The second, k-nearest
neighbors (KNN) is used to validate results obtained with
our primary algorithm. We use both as a black-box that
takes inputs that are n length vectors of real numbers and
outputs classification decisions.

2.3.1 Support Vector Machines

Support Vector Machines (SVM) were first introduced
by Boser et al. [4]. SVM are an example of a learning
methodology known as supervised learning [5]. A learn-
ing methodology is an approach to creating programs that
calculate answers by analyzing given examples while su-
pervised learning uses examples consisting of input-output

Number of Attributes (NOF) The total number of instance and
static attributes in the class.

Number of Static Attributes (NSF) The number of class or stat-
ic attributes in the class.

Number of Methods (NOM) The total number of instance and
static methods in a class.

Number of Overridden Methods (NORM) The total number of
methods in the class that override methods from an ancestor
class.

Number of Static Methods (NSM) The number of static or class
methods in the class. Henderson-Sellers refers to this as
Number of Class Methods (NCM).

Number of Parameters (PAR) The number of parameters in a
method. In this paper we use the average over the class.

Number of Subclasses (NSC) The total number of direct sub-
classes of this class, a.k.a Number of Children.

Method Lines of Code (MLOC) The number of lines of code
contained in the body of all methods in the class.

Lack of Cohesion of Methods (LCOM) LCOM can be calcu-
lated as in (1) where µ(Aj) is the number of methods that
access the attribute Aj , a is the number of attributes, and
m is the number of methods. LCOM is a measure of the
cohesiveness of a class where smaller values indicate more
cohesive classes.

Nested Block Depth (NBD) The depth of nested blocks of code.
McCabe Cyclomatic Complexity (VG) The maximum number

of independent circuits through the directed acyclic graph of
a method. In this paper we use the average over the class.

Weighted Methods per Class (WMC) The sum of McCabe Cy-
clomatic Complexity for the n methods in the class i, calcu-
lated by the formula given in (2).

Depth of Inheritance Tree (DIT) The depth of the class in the
inheritance hierarchy.

Specialization Index (SIX) Defined as NORM·DIT
NOM

. Designed
so that higher values indicate classes that are more special-
ized.

LCOM =

“
1
a

Pa
j=1 µ(Aj)

”
−m

1−m
(1)

WMC = si =
nX

j=1

Vij(G) (2)

Figure 1. Definition of Metrics Used

pairs. The goal in a learning problem is to find a function
that maps the given inputs to the desired outputs.

SVM generate linear functions as their hypothesis. The
hypothesis are then applied to attributes that have been
transformed to a high dimensional feature space. The trans-
formation of attributes to a feature space is carried out by
the application of kernels to the example datum. An ex-
ample of a kernel is the radial basis function kernel shown
in Equation (3) [6], which intuitively describes a radius of
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influence, where i = 1, . . . , `, j = 1, . . . , `, and σ is a pa-
rameter to the kernel that scales the radius of the support
vectors influence.

K(~xi, ~xj) = exp

(
−||~xi − ~xj ||2

2σ2

)
. (3)

SVM used as binary classifiers must solve the opti-
mization problem in Equation (4) [5]. Geometrically this
translates into finding a linear separating hyperplane in the
higher dimensional space. The hyperplane is optimized for
maximal margin and defined by the weight vector ~w and
bias b. In actual practice the dual representation is max-
imized allowing optimization to take place in the kernel
space with slack terms introduced along with a penalty pa-
rameter C. In this context, ~xi ∈ Rn are the n-dimensional
training vectors, yi ∈ {1,−1} are the classification labels
for the training vectors, and ` is the number of vectors. The
set of classification labels {1,−1} correspond to classes
that are concepts (1), and those that are implementation de-
tails (−1).

min
~w,b

〈~w · ~w〉

subject to yi (〈~w · ~xi〉+ b) ≥ 1, (4)
where i = 1, . . . , `

In our data set, n = 14 so the vector ~xi has 14 dimen-
sions, each related to a metric. Examples of some sample
vectors from the Panda data set are shown in Table 1. The
metrics and their ordering are as in Table 1.

Table 1. Panda data set examples.
i ~xi yi

1 < 0, 0, 3, 31, 11, 0, 0, 1.75, 4, 0.444, 2.75, 0.5, 0, 1 > -1
2 < 4, 0, 2, 331, 92, 0, 2, 1.806, 32, 0.5, 2.556, 0.917, 0, 5 > 1
3 < 0, 0, 8, 51, 16, 0, 0, 1.071, 14, 0.862, 1.143, 0.929, 0, 1 > 1
4 < 1, 0, 2, 24, 10, 0, 2, 1.667, 2, 0.5, 3.333, 0, 0, 1 > -1

2.3.2 k-Nearest Neighbors.

k-Nearest Neighbors (KNN) [7] is the simplest instance-
based machine learning method. The algorithm is based on
all the training instances being points in an n-dimensional
space Rn. Instances are classified by calculating the Eu-
clidian distance to all points in the training set. The Euclid-
ian distance, shown in Equation 5, is calculated from ar(~x)
(e.g., the rth attribute of the learning instance vector ~x).

d(~xi, ~xj) =

√√√√
n∑

r=1

(ar(~xi)− ar(~xj))
2 (5)

The class of the k nearest points is then used as a simple
majority rules vote, the class of the majority is assigned as
the class of the point in question. An alternative is to weigh
the class of the k nearest points based on the multiplicative
inverse of their distance from the point in question.

3. Approach
This section describes our overall approach and presents

our analysis of the implementation. Then we discuss the
processes used to classify the systems, collect metrics, and
generate the results.

3.1 Overview

The primary objective of our research is to study Hy-
pothesis 1.

Hypothesis 1 The vectors consisting of metrics measuring
size and complexity of software components are strong in-
dicators of classes that represent concepts within a domain.

In other words, in a given domain the interesting concepts
will be realized in software by classes or components whose
size and complexity, measured by the metrics presented in
Section 2.2, will be recognizably different from uninterest-
ing classes that do not represent core concepts of the do-
main.

Figure 2 shows an overview of the process used in our
approach. The Data Collection and Classification step is
used to gather information about training data as well as
data on the subject system. The result (Metric and Clas-
sification Data in Figure 2) is then analyzed in the Data
Analysis step. The result of the Data Analysis step is a set
of identified concepts that can be fed into any of a number
of applications that use the concept identification to perform
recovery of high level abstractions.

One of the intentions of our work is to support reverse
engineering and design recovery by facilitating recovery of
abstract models from as-built models. This approach builds
a classifier that operates on a individual software systems,
though future work may expand the scope to operate on
multiple systems.

Data Collection 
Process

Metric & 
Classification 

Data
Data Analysis 

Process
Concept 

Identification 
Data

Conceptual 
Design Recovery 

Process

Ontology 
Recovery 
Process

Other Process

Figure 2. Approach Overview

3.2 Data Collection

The data collection process consists of collecting met-
rics data, transforming the data into a usable form by way
of XML transformation, integrating manual classification
data, and exporting the combined data to a format compati-
ble with our analysis software.

The collection of metrics data begins with the import
of the existing Java-based software system into the Eclipse
platform and using the Eclipse plug-in Metrics [8] to gen-
erate the required metrics data. The metrics data is then
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exported into an XML file for further processing.
An Excel XML spreadsheet file is then created from the

XML-based metrics file using an XSL transform. This al-
lows the data to be viewed or further manipulated in an easy
to use environment. The spreadsheet file is integrated with
the data collected from the manual classification step, re-
sulting in a spreadsheet that contains all metric and classi-
fication data. Though we prefer the use of Matlab in our
project for the classification and analysis of data it would
also be possible to perform some analysis using a spread-
sheet program. The final spreadsheet is then saved to a
simple comma separated value (CSV) file. The CSV file
is suitable for import into Matlab for analysis.

3.3 Manual Classification Step

The manual classification step is used to classify each
component (class) from the system into one of two cate-
gories: concept or other. The purpose of this step is to
provide a means to train and validate the classifier. The
concept category is made up of components or classes that
are representative of concepts from the knowledge domain
of the system. The other category consists of everything
that does not fit into the concept category. For example,
consider a parser component. For a compiler this would be
part of the concept category, since a parser is a core concept
in this domain. In a word processor, this would likely not
be classified to the concept category, since a parser would
only support the primary or core concepts in the knowledge
domain.

The approach to classification used in this paper involves
examining the naming, relationships with other classes or
concepts, and role within the architecture for the candidate
class. This information must be evaluated with regard to the
domain knowledge in order to classify the candidate class.
It should be noted that there are no rules about how to clas-
sify a component. The decisions are based on the experi-
ence of the analyst, and their expertise in the domain. It is
assumed that different analysts will produce slightly vary-
ing results. For our examples, we assumed any resulting
classification that can be validated by a group of experts
would be roughly equivalent to any classification we could
arrive at or that the resulting error would not have a signifi-
cant impact on the approach.

3.4 Machine Classification

The machine classification process consists of creating
a SVM classifier from the data set then running the SVM
classifier on the data set.

The data set is randomly broken up into two sets known
as the training set and the test set. Both sets are of approx-
imately equal size and consist of the metric data as well as
the classification for all classes in the set.

The SVM classifier is created using the training set by an
SVM algorithm implemented in Matlab. The metric data, in

essence, is the domain of the classification function and the
classification data is the range. The result is a set of sup-
port vectors that will be used to perform classification runs.
The SVM algorithm takes a parameter, which in the case
of the radial basis function is conceptually related to a ra-
dius of influence for a given support vector, that is selected
by a process known as cross-validation. Cross-validation
allows us to make an intelligent parameter selection by par-
titioning the training set into n partitions, this technique is
designed to reduce the risk of overfitting. We then sample
over a range of parameter options giving a set P of poten-
tial parameters. For each parameter in P we train n differ-
ent classifiers by removing 1 of the n partitions from the
training set for each classifier. We then evaluate the accu-
racy of the classifier on the remaining partition for each of
the n different classifiers and compute an average accuracy
for the classifiers with the given parameter value. The re-
sult is an optimal selection of the parameter from P based
on how well the classifiers created with that value general-
ize to the n test partitions in addition to the accuracy they
achieve over the partitioned training set. Once the parame-
ter selection is finished we train a classifier with the given
value over the complete training set.

The SVM classifier is used to analyze the metric com-
ponent of the test data set, this step generates a predicted
classification result. The predicted or observed classifica-
tion is compared with the manual or expected classification
derived manually from the class.

4. Example
In this section, we illustrate one of the potential uses of

our approach. Specifically, we show how the concept iden-
tification technique can be used as part of a reverse engi-
neering activity.

Panda [9] is a natural deduction proof assistant written
in Java and developed at Arizona State University. The tool
is used primarily to support education of natural deduction
as a proof technique. We had access to the original class
and statechart diagrams that were used for development of
Panda and thus used that information as a sanity check dur-
ing identification of concepts. Panda’s size is 84 classes and
about 9 thousand lines of code (KLOC).

The architecture of Panda is best described as a GUI
based model view controller application. The model con-
sists of classes implementing logical constructs. The view
consists of classes implementing Java GUI elements. The
controller consists of classes implementing the use cases
that can be applied in a proof.

The basic process that we are using in this example is
the following. First, we generate a class diagram for the
system. Figure 3 shows a diagram for the Panda package
in the Panda system. In addition, we generate the relevant
metrics using the original source code for Panda. Second,
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we use the SVM to identify those classes that are concepts
in the system. Third and finally, we create an abstraction
of the original class diagram that utilizes only those classes
that were identified as concepts.

As shown in Figure 3, the Panda package has 45 classes.
When we apply the SVM to the Panda data, 24 classes are
filtered. When compared to a manual classification we per-
formed, the automated classification produced 1 false posi-
tive and 4 false negatives. A more detailed evaluation of the
approach is described in the next section.

Figure 4 shows the resulting class diagram using the in-
formation gathered using the SVM. As shown in the dia-
gram, the resulting class structure is a more abstract rep-
resentation of the original system. Specifically, it focuses
more on domain concepts rather than details of the imple-
mentation. In this case, the remaining classes are related to
logical formulas and the commands that operate upon them
(e.g., the applicable inference rules). Filtered classes con-
sisted of user interface classes and other implementation de-
tails.

5. Evaluation
Two software systems were used to evaluate our ap-

proach. In this section we first describe the systems ana-
lyzed and the statistical methods used to evaluate our re-
sults. Then we present the results of several experiments on
data sets collected from two case study systems.

5.1 Description of Example Systems

Panda, as described earlier, is a natural deduction proof
assistant. In the context of the concept identification work,
Panda is used as a small system for illustration purposes.

Scarab [10] is a web-based defect tracking system based
on the Turbine [11] and Torque [12] frameworks. Scarab
was designed to be a replacement for defect tracking sys-
tems like Bugzilla [13]. The size of Scarab is 585 classes
and 128 KLOC.

Turbine is a model view controller framework for web-
based applications. Torque is an object-relational mapper
for Java classes that allows objects to be persisted to the
database. Scarab therefore has the architecture of a MVC
web application whose model is persisted to a database.

5.2 Statistical Analysis Method

In order to evaluate the accuracy of the classifier, we per-
formed a statistical analysis of the classification results. We
calculated the sample error from the test set using Equa-
tion (6) [7] where n is the number of samples in the test
set S, f is the function specified by our manual classifica-
tion mapping the data point x to one of the two classes, h is
the hypothesis generated by the learning algorithm, and the
quantity δ(f(x), h(x)) is defined in Equation (7). When
the hypothesis disagrees with the manual classification, the
sample error increases and δ(f(x), h(x)) will be 1 for any

instance x where the predicted classification h(x) does not
match the expected classification f(x).

errorS(h) ≡
1

n

∑

x∈S

δ(f(x), h(x)) (6)

δ(f(x), h(x)) =

{
1, if f(x) 6= h(x)

0, otherwise
(7)

We can estimate the true error, the error of the whole pop-
ulation, from the sample error using Equation (8) if we can
meet the criteria in Figure 5. Here zN is chosen based on
the confidence level of the estimate.

errorD(h) = errorS(h) (8)

± zN

√
errorS(h)(1− errorS(h))

n

1. n ≥ 30,
2. the hypothesis commits r errors over the n samples,
3. the sample, or test set, S contains n data points which

are drawn independently of each other,
4. the sample is chosen independently of the hypothesis,

and
5. the sample is chosen according to the probability dis-

tribution D of the population.

Figure 5. Criteria for calculation of true error

Criteria 1 thru 4 of Figure 5 are met by the methods out-
lined in Section 3.4 and the size of the data set. Criteria 5
is more interesting since the dependency on the probability
distribution requires that we test for a significant difference
in the distributions of the test samples and the distribution
of the population.

In order to confirm Criteria 5 we can perform the
Kolmogorov-Smirnov hypothesis test on the population and
sample distributions to test for significant difference. We
formulate our hypothesis for this test in Hypothesis 2.

Hypothesis 2 There is no significant difference in the dis-
tribution of the population and the sample data.

The p-value of the Kolmogorov-Smirnov hypothesis test is
the statistical significance, and α is the probability of reject-
ing the null hypothesis when it is in fact true. We will reject
the null hypothesis if the p-value is less than α. Table 2
shows the results for each of the necessary test sets with an
α value of 0.05 representing a confidence level of 95% for
the test.

Using a t-test we have a toolset in place to detect situ-
ations where, for example, the accuracy is good, but there
is no significant difference between the expected value (or
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Figure 3. Panda class diagram

Figure 4. Panda class diagram after filtering

Table 2. Kolmogorov-Smirnov test α = 0.05.
Data set p-value Reject Hypothesis 2

1 (Panda) 0.9922 No
2 (Scarab) 1.0000 No

mean) of the sample distribution and the measured accu-
racy. This could happen, as an example, in the case where
the distribution of the expected results is 80% negative. The
accuracy of the observed results could be 80% just by al-
ways guessing negative. The t-test will help to discover
these situations by testing Hypothesis 3.

Hypothesis 3 There is no significant difference in the mean
of the sample data and the accuracy measured on that sam-

ple data.

Rejecting Hypothesis 3 is a strong indicator that the ac-
curacy is significantly different than the distribution of the
data. Intuitively, a significant difference in the accuracy and
the mean indicates that the classifier has learned something
other than the expected value of the data set. As such, in
Table 3 which shows the 95% confidence interval on the
difference between population mean and sample accuracy,
rejection of Hypothesis 3 is desirable.

5.3 Test Sets

Table 2 shows test sets 1 and 2 are randomly sampled
from the Panda and Scarab data sets and are shown to be
representative of the population they are sampled from by
the acceptance of Hypothesis 2. Table 4 shows a mapping
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Table 3. Results of Hypothesis 3 t-test.
Experiment p-value Reject Hypothesis 3
1 (Panda) 0.0198 Yes
2 (Scarab) 7.6288× 10−11 Yes

3 (Scarab KNN) 0.0753 No

of the test sets to the experiments they are used in.

Table 4. Test data mapping to experiments.
Experiment Test set
1 (Panda) 1
2 (Scarab) 2

3 (Scarab KNN) 2

5.4 Experiments

This section shows the results of the seven experiments
we have conducted thus far using the approach outlined in
Section 3. The results are summarized in Table 5, which
shows the sample accuracy along with predicted bounds of
the true accuracy for N samples.

5.4.1 Experiment 1: Panda.

For this experiment we used the data set collected from
Panda using the methods outlined in Sections 3.2 and Sec-
tions 3.3 . The process of classifying Panda took approx-
imately four hours but given our previous experience with
the software this may not be an indicator of the time re-
quired for an engineer looking at the system for the first
time. We followed the process outlined in Section 3.4 to
split the data into training and test sets, and used the training
set to generate the SVM classifier used in this experiment.
The purpose of this experiment was to attempt to identify
evidence for the hypothesis using a fairly small system. We
wanted to see if it was worth while to commit to the process
for a larger system. The data set for Panda is under 100 el-
ements and while a larger data set would better capture any
generalizable properties of the hypothesis, this data set was
simple to obtain and encouraged further analysis.

We used a SVM classifier based on a radial basis func-
tion kernel as in Equation (3) of Section 2.3.1 with the slack
term of C = 10. Results are shown in Table 5. Accuracy
was 80.43% for this sample. The t-test analysis (as indi-
cated in Table 3) showed that the accuracy of the test versus
the expected value of the results collected from the software
were significantly different at the 95% confidence level, in
other words the probability that the accuracy is different
than the mean of the distribution is over 95%. These re-
sults were encouraging for a data set of this size, prompting
us to proceed with the data collection effort for Scarab.

5.4.2 Experiment 2: Scarab.

For this experiment we used the data set collected from
Scarab. Classification of Scarab required significantly more

time than classifying Panda with over 40 hours of effort ex-
pended. This may have been a function of less familiarity
with the system as well as the larger size. The process out-
lined in Section 3.4 was used to split the data into training
and test sets, generate an SVM classifier for this experiment,
and collect results. The purpose of this experiment was to
validate the approach for a much larger data set than that
used in the Panda experiment. Scarab is also a program that
is more representative of systems in actual use.

The SVM classifier used was based on a radial basis
function kernel with parameter of C = 10. Results are
shown in Table 5. Accuracy for this sample set was 81.39%,
and the t-test analysis showed that the accuracy of the test
versus the expected value of the results were significantly
different at the 95% confidence level. These are solid re-
sults that show quite a bit of promise for future research
as it indicates that a fairly high degree of accuracy can be
obtained using a moderate sized training set.

5.4.3 Experiment 3: Scarab Revisited.

For this experiment we wanted to repeat the Scarab ex-
periment with a different machine learning algorithm for
the classification. We chose the KNN classifier in order to
form a simple baseline for comparison to the SVM results
collected previously. The purpose of this experiment was to
eliminate the chance that there is something special about
the classification algorithm based on SVM.

In this experiment we used a value of k = 3. Results
are shown in Table 5. The only parameter to the k-nearest
neighbor algorithm is k. The sample accuracy is 76.92%
which comes close to the accuracy obtained using SVM
on the same data set in Section 5.4.2. The t-test analysis
does not show a significant difference in the accuracy of the
test verses the expected value as shown in Table 3. How-
ever, this result provides support for our hypothesis given
that with 92% confidence we can show significant differ-
ence, this represents a 1 in 12.5 chance that the hypothesis
is incorrectly rejected for this test. Given that we are over
99.999% confident in the results for experiment 2 and this
test is only designed to confirm those results with a different
machine learning algorithm it seems acceptable to view this
test as a successful validation of those results even at only
90% confidence.

5.4.4 Discussion.

Table 3 gives us an indicator of how well the accuracy
is measured. A small p-value is an indicator that there is a
significant difference between the accuracy and the mean.
Imagine a coin that is unfairly biased towards heads such
that the expected value of heads is 80%. If we were to play
a game where the coin is flipped repeatedly and the player
must try to guess the result, the player would eventually dis-
cover the bias and begin guessing heads every round of the
game. This learned strategy would lead to a measured accu-
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Table 5. 99% confidence interval on accuracy of classification. (LB = lowerbound, UB = upperbound)

Experiment Sample Accuracy N True Acc. LB True Acc. UB
1 (Panda) 80.43% 46 68.97% 91.90%
2 (Scarab) 81.39% 403 77.59% 85.19%
3 (Scarab KNN) 76.92% 403 71.51% 82.34%

racy of the player at about 80%, in other words there would
be no significant difference between the expected value of
the experiment and the accuracy of the guess. In our results
we believe that the machine is really making good predic-
tions, because there is a statistically measurable difference
between the expected value of the data set and the classifi-
cation guess of the machine for all of the SVM predictions.
So the results show support for Hypothesis 1.

These results lead to the idea that a SVM classifier
trained within an application will work well on that applica-
tion. This result has practical applications since a software
engineer trying to identify concepts within a system with
a large number of classes could start by classifying parts
of the system. The approach described could be used to
predict results for the remainder of the system. As the soft-
ware engineer accepts or corrects the predictions they be-
come more accurate. So the approach can be used as an in-
teractive concept identification assistant that becomes more
accurate as the system is classified. Those familiar with
SPAM filters such as SpamAssassin [14] will recognize this
concept, the more you train it the less time you spend deal-
ing with SPAM. In presentation of this work to peers many
practicing engineers appreciate the potential time savings.
Their work with systems that have a large number of classes
shows the immediate practical benefits to an approach that
trains a computer to do a repetitive classification task.

5.5 Threats to Validity

The threats to validity include internal and external fac-
tors. The internal factors include errors in the statistical
analysis, and overfitting of the data set. The external factors
include manual classification errors, and inaccurate or poor
definition of the concepts in the domain. We will describe
each in further detail below.

The primary internal threat to validity that should be ad-
dressed is the difficulty in deciding what constitutes a good
result. The difficulty stems from the distribution of classi-
fications where there are more negatives than positives. In
other words there are fewer classes representing concepts
than implementation. It has been shown in Section 5.2 that
the accuracy of the prediction can not be used in isolation,
but must be considered along with the t-test analysis of the
distributions’ expected value verses the accuracy. This gives
a more complete picture of the result showing some indica-
tion as to how significant the accuracy is. The assumption
here was that results that had better than average accuracy

along with a significant difference in mean were good re-
sults that support our hypothesis.

Overfitting is a threat to validity that effects any machine
learning approach, but is only a secondary threat to the va-
lidity of our approach. Overfitting means that results will
not generalize well to other data sets, since the machine has
learned a pattern for a specific data set. In other words if the
SVM is overfitted to the data then we could not expect good
results from a different data set classified with the same ma-
chine. At this point we are not that concerned about gener-
alization to other data sets as we have a practical application
of the approach in the classification of a single large system.
In future work the potential of overfitting will play a larger
role in the threat to internal validity of our approach if it is
expected that our approach will produce general results.

The primary external threat to validity is misclassifica-
tion during the manual classification process. There are two
possible scenarios that result in the introduction of inaccu-
rate analysis into the system and they are either a logical
error or a typographic error on the part of the engineer. We
have worked with enough software engineers to know that
each has a different opinion on any given subject, these dif-
fering opinions would appear in the system as logical errors.
However, this assumes that one of the engineers is more cor-
rect than the other within some externally specified system
of objective truth that likely does not exist, and this ignores
the possibility of having more than one correct represen-
tation of the system. We must concede that any accurate
automated classification is only as accurate as the engineer
who trained it, but this really is not problematic as long as
the engineer is consistent and in fact is representative of the
results of a manual classification. The typographic errors
that could have been introduced into our data set were min-
imized by careful data entry, along with rechecking each
result against the class. Though we believe we have min-
imized the errors as much as possible we have no way to
measure this using the current process, and as is the case
with many machine learning applications we can not predict
the effect of a classification error on the resulting classifier.

A secondary external threat to validity is the design of
the software itself. If poorly designed software systems are
introduced it is difficult to predict the results. As an example
imagine a single concept being represented by two classes.
There may be instances where the lack of cohesion makes
sense but it may not be possible to decide where.
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6. Related Work
Biggerstaff et al. [2] describe the assignment of hu-

man oriented concepts to implementation oriented con-
cepts. This process is a matching between preexisting no-
tions about the system or existing domain knowledge to tex-
tual representations of the system implementation. While
the definition of the concept assignment problem given fits
well with the filtering application we present here there are a
few key differences. The approach used by Biggerstaff et al.
uses source code where we use metrics based on the source
code. We use a machine learning approach that does not
involve declaratively creating an expert system. They make
a strong case for the methods used to recognize concepts,
using at times a filtering of the source code. Our approach
could be added to the toolset mentioned here as an addi-
tional filtering technique, though in time we will automate
more of the process to the point where interaction with the
user is very limited.

Svetinovic et al. [15] discuss concept identification from
a forward engineering perspective illustrated in several case
studies. The claims of misuse or misunderstanding of
object-oriented domain analysis are worth noting since the
automated identification of concepts requires that those
concepts are represented within the implementation, imply-
ing they where designed into the software. They identify
many of the concerns we have raised in our discussion of ex-
ternal validity. Primarily, that there is not one single agreed
upon way of designating what is and is not a concept in a
software system, according to the paper this is a fundamen-
tal difficulty with object-oriented domain analysis.

Merlo et al. [16] describe a design recovery process
which uses a machine learning approach to link text from
source code to concepts identified by a domain analysis.
This is essentially a partial automation of a portion of the
work performed by Biggerstaff et. al. The machine learning
algorithm used is based on neural networks. The approach
differs from ours in that a change in domain requires a new
neural net to be trained. That is not necessarily the case with
our SVMs as they can be applied to programs from very dif-
ferent domains but currently without significant accuracy.

Hsi et al. [17] approach recovery of ontology by manual
construction of an interface map. The interface map is a
depth first traversal of all elements of the softwares inter-
face. The approach then uses the interface map to generate
a semantic network. The semantic network is then used as
the basis for calculating graph theoretic measures that are
used as indicators of core concepts of the ontology. The
approach differs from our work in that it is based on con-
struction and analysis of a graph. The evaluation does not
include any comparison to a control group in order to ex-
press the accuracy of the approach. Each of the varying
methods introduced to recover the ontology produce dif-
fering ontologies, and no method of reconciling differing

results is presented. Advantages of our approach include
the use of a control group in the form of the manual clas-
sification results to show the accuracy of the approach, and
we only produce one ontology based on the metrics that we
use. This paper presents an interesting set of metrics that
may add to our approach in future work.

Software architecture reconstruction is a recent develop-
ment that represents a reverse engineering process designed
to recover architecture specific information. As Favre [18]
points out, software architecture is not well defined. Soft-
ware architecture can only be defined in terms of the au-
dience to which it is presented. An experienced software
engineer will recognize the overloaded use of the term to
have slightly differing meanings based on who is the target
audience. Obviously, the project manager, technical lead,
upper management, customers, fellow engineers with simi-
lar experience, the newest addition to the team who finished
his degree only a few months ago, as well as other stake-
holders all have a different perspective on the software ar-
chitecture. van Deursen et al. [19] seem to ignore this ambi-
guity but the approach of view-driven software architecture
reconstruction called Symphony is introduced. This paper
essentially codifies best practices that have been observed
by the authors in the actual practice of software architecture
reconstruction. Placed in the context of software architec-
ture reconstruction and in the vocabulary of Symphony our
work would be a type of mapping from a source view to a
target view, the target view being a static graph of the core
concept classes described by a UML class diagram.

Marcus et al. [20] describe a method of using latent se-
mantic indexing to map natural language concepts to the
locations of those concepts in source code. Zaidman et
al. [21] show that webmining techniques can be applied to
source code to uncover important classes, similar in nature
to our core concept classes.

7. Conclusion and Future Work
The results strongly indicate that there is a relationship

between the given metrics and the identification of con-
cepts. The relationship that is captured by the SVM clas-
sifier produces above average results over a single software
system. However, a larger data set is needed to comprehen-
sively verify these results. Additionally, we have made no
attempt to optimize the metrics that were selected for this
set of experiments. In fact we initially simply selected all
metrics available from the output of the metrics software
used thinking that we would have to optimize the feature
vector in order to obtain acceptable results. Obviously this
is an area of future research since optimal results may al-
low a stronger formulation of our hypothesis, particularly
in regards to what type of metrics are the best indicators.

The example filtering shown in Section 4 effectively
demonstrates one of the practical applications of the clas-
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sification technique presented here. The class diagrams de-
picted in Figure 3 and Figure 4 show a visual demonstra-
tion of the effectiveness of the filtering process. Figure 4
is simply easier to understand due to the smaller number
of classes. The effect is even more obvious and useful on
systems with many more classes.

Work on this project is ongoing. We currently have plans
to extend our data sets significantly. This involves clas-
sifying several different systems from ideally orthogonal
domains. We are also investigating other possible appli-
cations of this technique. Plans are underway to develop
an Eclipse plugin to allow this technique to integrate with
the Eclipse [22] environment, providing online classifica-
tion suggestions to the developer. This represents an excit-
ing practical application of the results even lacking gener-
alization to more than one system, which is another area of
future interest. We are also interested in increasing the ac-
curacy of the classifier. This involves developing a deeper
understanding of the relationship that the classifier is detect-
ing. We will be investigating the use of different kernels as
well as performing more analysis of the features to deter-
mine what metrics are the best indicators. We will explore
the learning curve of the classifier, how quickly can it be
trained to acceptable accuracy. Additionally we are inter-
ested in training optimizations, some training sets are better
than others. Is it possible to select them prior to manual
classification.
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