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ABSTRACT  

   

The study of bacterial resistance to antimicrobial peptides (AMPs) is a significant 

area of interest as these peptides have the potential to be developed into alternative drug 

therapies to combat microbial pathogens. AMPs represent a class of host-mediated 

factors that function to prevent microbial infection of their host and serve as a first line of 

defense. To date, over 1,000 AMPs of various natures have been predicted or 

experimentally characterized. Their potent bactericidal activities and broad-based target 

repertoire make them a promising next-generation pharmaceutical therapy to combat 

bacterial pathogens.   

It is important to understand the molecular mechanisms, both genetic and physiological, 

that bacteria employ to circumvent the bactericidal activities of AMPs. These 

understandings will allow researchers to overcome challenges posed with the 

development of new drug therapies; as well as identify, at a fundamental level, how 

bacteria are able to adapt and survive within varied host environments.  

Here, results are presented from the first reported large scale, systematic screen in which 

the Keio collection of ~4,000 Escherichia coli  deletion mutants were challenged against 

physiologically significant AMPs to identify genes required for resistance. Less than 3% 

of the total number of genes on the E. coli chromosome was determined to contribute to 

bacterial resistance to at least one AMP analyzed in the screen. Further, the screen 

implicated a single cellular component (enterobacterial common antigen, ECA) and a 

single transporter system (twin-arginine transporter, Tat) as being required for resistance 

to each AMP class.  
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Using antimicrobial resistance as a tool to identify novel genetic mechanisms, subsequent 

analyses were able to identify a two-component system, CpxR/CpxA, as a global 

regulator in bacterial resistance to AMPs. Multiple previously characterized CpxR/A 

members, as well as members found in this study, were identified in the screen. Notably, 

CpxR/A was found to transcriptionally regulate the gene cluster responsible for the 

biosynthesis of the ECA. Thus, a novel genetic mechanism was uncovered that directly 

correlates with a physiologically significant cellular component that appears to globally 

contribute to bacterial resistance to AMPs. 



iii 

DEDICATION  

   

This body of work is dedicated to my family who continues to believe in me and inspires 

me to do great things. I truly can do all things through Him that strengthens me. 

 



iv 

ACKNOWLEDGMENTS  

   

I would first and foremost like to acknowledge Him who has put me on this unexpected 

path and has given me the courage and strength needed to endure. Additionally, the work 

presented here could not be accomplished without the continued support of the following:  

 

The Shi laboratory, led by Dr. Yixin Shi, whose initial belief and continuous support 

have been instrumental to my success. Dr. Guozheng Qin and Dr. Guang Zhao for their 

technical assistance. Tamika Howard for her assistance in carrying out the screen. Alexis 

Whetzel for her assistance in confirming candidates identified in the screen. Cori Leonetti 

for her constant encouragement throughout the final year. 

 

My individual committee members who provided me with constant encouragement and 

support and who have always believed in me. 

 

My family –Mom (Vivian Williams), who has always led by example and loved 

unconditionally. Toni Delporte who was always ready to listen and help despite the miles 

between us. My angel James, who has been the greatest distraction! My husband James 

Griffin, who has stuck with me throughout this process. Shelia and Thomas Jewell, who 

have always been willing to help in any way needed. 

 

My friends – Anca Delgado, who has helped me push through (in more ways than one!). 

Caitlin Otto, who always had a door open and an ear ready to listen. Jon W. Weeks, who 

always told me I could do it.  

 

Furthermore, I would like to thank the following programs for funding support: 

 

More Graduate Education at Mountain States Alliance (MGE@MSA), ASU 

NIH Initiative for Maximizing Student Development (IMSD), ASU (grant number 

R25GM099650) 



v 

TABLE OF CONTENTS  

                Page  

LIST OF TABLES ................................................................................................................... ix 

LIST OF FIGURES .................................................................................................................. x 

SECTION 

 1 INTRODUCTION ................................................................................................. 1  

  Importance of two-component systems ........................................................... 1  

The PhoP/PhoQ two-component system ......................................................... 2  

The CpxR/CpxA two-component system ....................................................... 3  

The dual response of CpxR/CpxA to antimicrobials ...................................... 4  

The Mar system ................................................................................................ 6  

The twin-arginine transporter (Tat) system ..................................................... 8  

The enterobacterial common antigen .............................................................. 9  

Peptidoglycan amidases, AmiA and AmiC ................................................... 10  

Characterization of antimicrobial peptides ................................................... 11  

Therapeutic application of antimicrobial peptides ........................................ 14  

Physiological mechanisms of action of antimicrobial peptides .................... 16  

Physiological characteristics that affect the bactericidal activity  

   of antimicrobial peptides ........................................................................... 18  

Genetic mechanisms of action to evade bactericidal effects of 

   antimicrobial peptides ............................................................................... 20  

Rationale of the dissertation studies .............................................................. 22  

 2 MATERIALS AND METHODS ........................................................................ 25  



vi 

CHAPTER                                                                                                                      Page 

 1      IDENTIFICATION OF GENETIC LOCI REQUIRED FOR BACTERIAL 

 RESISTANCE TO ANTIMICROBIAL PEPTIDES  ....................................  33  

Introduction .................................................................................................... 33  

Systematic screen to identify genes required for bacterial 

 resistance to AMPs .................................................................................... 36  

Characterization of select loci required for bacterial resistance  

 to protamine ............................................................................................... 44  

Characterization of loci required for bacterial resistance to  

 multiple antimicrobial peptides ................................................................. 54  

Characterization of the role of the rfe-rff gene cluster in  

 resistance to antimicrobial peptides .......................................................... 58  

Conclusion ...................................................................................................... 63  

 2      IDENTIFICATION OF TAT-DEPENDENT SUBSTRATES REQUIRED      

            FOR BACTERIAL RESISTANCE TO ANTIMICROBIAL  

  PEPTIDES .......................................................................................................... 64  

Introduction .................................................................................................... 64  

Identification of Tat-dependent substrates required for bacterial 

    resistance to AMPs .................................................................................... 64  

Analysis of Tat double and triple mutant susceptibility to  

 protamine ................................................................................................... 68       

On-going proteomic analyses and preliminary data ..................................... 70  

Conclusion ...................................................................................................... 72  



vii 

CHAPTER                                                                                                                          Page 

 3      GENETIC AND BIOCHEMICAL ANALYSIS OF NOVEL CPXR/A-  

           DEPENDENT LOCI REQUIRED FOR BACTERIAL  

       RESISTANCE TO ANTIMICROBIAL PEPTIDES ........................................  73  

Introduction .................................................................................................... 73  

CpxR-dependent regulation of amiA and amiC promoters .......................... 73 

CpxR-dependent regulation of the rfe-rff gene cluster ................................. 84  

CpxR-dependent regulation of the marRAB operon  .................................... 89  

Identification of a CpxR/A signal  ............................................................... 101 

Conclusion .................................................................................................... 108  

 4      CHARACTERIZATION OF CPXR/A-DEPENDENT LOCI  

                  REQUIRED FOR BACTERIAL RESISTANCE TO  

        ANTIMICROBIAL PEPTIDES .....................................................................  109  

Introduction .................................................................................................. 109  

Characterization of CpxR/A-dependent loci required for  

   bacterial resistance to antimicrobial peptides ......................................... 109  

CpxR/A activation increases bacterial resistance to  

 antimicrobial peptides ............................................................................. 116  

Conclusion .................................................................................................... 118  

 5 DISCUSSION AND FUTURE WORK  ..........................................................  119 

REFERENCES………...………………………………………………………...………127

APPENDIX 

 A      LIST OF STRAINS ...........................................................................................  140  



viii 

APPENDIX                                                                                                                        Page 

 B      LIST OF PLASMIDS  ........................................................................................ 143  

 C      LIST OF PRIMERS  ..........................................................................................  145 

 D      GENE MUTANTS IDENTIFIED IN THE SYSTEMATIC 

           SCREEN  ......................................................................................................  148 

 E      DEMONSTRATED OR PREDICTED CPXR/A-DEPENDENT 

                LOCI AND THEIR RESISTANCE/SUSCEPTIBILITY TO 

            PROTAMINE .............................................................................................  152  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

LIST OF TABLES 

Table Page 

1.       Four classes of AMPs based on their structure……………...……..……………...13 

2.       Genes previously determined to be required for AMP resistance……………..……21 

3.       Description of AMPs analyzed in this study…...………………………………..….35 

4.       Gene mutants susceptible to θ-defensin, RTD-2……..….…….……………………37 

5.       Gene mutants susceptible to both cathelicidins.….……………….…..……………40 

6.       Gene mutants susceptible to protamine.……..….………….……....…….……….. 43 

7.       Analysis of Tat-dependent substrates in resistance to protamine………….……… 65 

8.       CpxR/A-dependent loci required for resistance to protamine………...………….. 108 

 

 

 



x 

LIST OF FIGURES 

Figure Page 

1.       Dose-dependent killing by cathelicidins.………………..………………………….42 

2.       Effect of ATP synthesis on resistance to protamine…………….…………………..45 

3.       Illustration of the glycolysis and pentose phosphate pathways………………..……47 

4.       Gene mutant strains with increased drug sensitivity..........…………….…………...49 

5.       Protamine sensitivity assay of TolC-dependent mutants………...…………….……51 

6.       Protamine sensitivity assay of TolC-dep double mutants……….…………….……53 

7.       Gene mutants found to be susceptible to 2 or more AMPs..….………………….…55 

8.       Enterobacterial common antigen biosynthesis pathway……..…………….……….57 

9.       Susceptibility profile of mutants of the rfe-rff gene cluster……...………………… 59 

10.     SDS survival assay of rfe-rff gene cluster mutants……….…….……….….………61 

11.     Complementation of protamine sensitivity…..….……………………….…………67 

12.     Protamine sensitivity assay of Tat-dependent mutants……...….…………….…….69 

13.     Schematic of screen to identify amiA and amiC activators.……………………..….73 

14.     Chromosomal region that activates amiA and amiC……………………..…………75 

15.     CpxR/A-dependent induction of amiA and amiC…….…………….………………76 

16.     Primer extension analyses of amiA and amiC promoters………..…………….……78 

17.     Analysis of the amiA promoter...........…………….…………….……….…….……80 

18.     Analysis of the amiC promoter…….…………….…………….…………….……..81 

19.     Cpx-dependent activation of the rfe-rff gene cluster…..…………….……...………84 

20.     Analysis of CpxR binding to the rfe  promoter……..…………….……………….. 86 

21.     Analysis of the marRAB promoter…..……..………….…………….…………..….89 



xi 

Figure Page 

22.     β-gal activity of chromosomal mar promoter constructs………………………….  91 

23.     β-gal of plasmid mar promoter constructs…………….………………..…………..93 

24.     -gal activity comparing marR and marRA…………….……………….………95 

25.     β-gal activity of mar promoter with deleted regulators…………….………………97 

26.     Illustration of CpxR regulation of the marRAB promoter………………………….98 

27.     Biochemical analysis of CpxR binding to the mar promoter………………..…….100 

28.     Tryptophan biosynthesis pathway…………….…………….………………..……102 

29.     Induction of β-gal activity by aromatic metabolites………….….……………..….104 

30.     Independent and coordinate CpxR/A-dependent pathways…………….….…..….110 

31.     Importance of amidase synthesis, transport and activity…………….…………….112 

32.     CpxR/A-activation rescues resistance to protamine…………….…………………115 

33.     Illustration of novel genetic mechanisms required for bacterial 

 resistance to the model antimicrobial peptide, protamine……………………..124 

 

 

 

 

 



1 

INTRODUCTION 

S. enterica serovar Typhimurium and Escherichia coli are classic representatives of the 

Enterobacteriaceae family of Gram-negative, rod-shaped bacteria. While most enterics 

remain harmless to their host, i.e., maintain a synergistic rather than an antagonistic 

relationship and likely persist as part of the normal flora (e.g., E. coli), others (e.g., S. 

typhimurium) can invade host cells and cause disease. Regardless of the relationship, 

these microbes encounter an array of toxic host-mediated factors, such as antimicrobial 

peptides, and a variety of intracellular environments that threaten their livelihoods. 

Nevertheless, bacteria have developed mechanisms in which various chromosomally 

encoded systems are employed to evade these host factors and conditions, allowing for 

survival and adaptation in host environments.  

Importance of two-component systems 

Microbial mechanisms of intracellular survival and adaptation are often mediated by 

chromosomally encoded two-component systems (TCS). These phosphotransfer systems 

consist of a histidine kinase sensor which, upon activation by a specific signal 

molecule(s), will phosphorylate its cognate response regulator. The active regulator can 

then bind to target promoters, with a higher affinity than the non-active form, to activate 

or repress gene transcription (1). Sensors are often bifunctional and contain phosphatase 

activity so that when the signal level is brought to non-activating concentrations, the 

phosphatase can inactivate its regulator by dephosphorylation. In this case, the abundance 

of the signaling molecule modulates the sensor kinase and phosphatase activities which 

will determine the phosphorylation level of the regulator (2). Additionally, an intrinsic 

positive feedback mechanism is found with most of these systems to modulate the 
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amount of phosphorylated regulator in the absence of the signal, as seen with the classic 

TCS PhoP/PhoQ (3). In the presence of the signal, low Mg
2+

, PhoQ will phosphorylate 

PhoP which in turn binds to target promoters, including its own to generate more PhoQ 

and PhoP, thus establishing autoregulation via positive feedback. The autoregulatory 

capabilities have been shown to allow for temporal increase in gene expression, as in 

Bacillus subtilis sporulation (4), but also to cause an instant abundance in 

phosphorylation of the response regulator, as in Salmonella PhoP/PhoQ (5). Of course 

TCS can be more extensive and complex than just described, including: (i) the use of 

multiple phosphotransfers in a single system (referred to as phosphorelays) which is 

predicted to provide control points to avoid activation of regulators during inopportune 

times; (ii) the presence of branched phosphorylation pathways that can have multiple 

phosphoryl sources or targets which allows for a more integrated approach to signal 

transduction; and (iii) an additional ability to integrate signals in multiple TCS pathways 

via cross-phosphorylation (referred to as cross-talk) (reviewed in (6)). Thus, it is apparent 

that sophisticated systems are in place to mediate bacterial survival in host environments. 

The PhoP/PhoQ two-component system 

The Salmonella and E. coli PhoP/PhoQ TCS has been well studied and characterized as a 

model system (reviewed in (7)). PhoP/Q mediates virulence and host adaptation by 

responding to components of the host environment, such as low extracellular Mg
2+

, Mn
2+

, 

and Ca
2+

, as well as low pH, and host-secreted antimicrobial peptides. 

PhoP/Q can also activate another TCS, PmrA/PmrB (8), by stimulating expression of 

pmrD whose gene product post-transcriptionally activates PmrA/B. Thus, several PhoP-

dependent genes are also regulated by PmrA/B in response to extracytoplasmic Fe
3+

 (9).  
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Both PhoP/Q and PmrA/B have been shown to mediate Salmonella and E. coli resistance 

to antimicrobial peptides (discussed below) further demonstrating their contributions to 

survival and adaptation in host environments. 

The CpxR/CpxA two-component system 

The E. coli CpxR/CpxA TCS represents one of three characterized stress response 

systems, including BaeRS and σ
E
, that work coordinately and individually to maintain 

cell envelope integrity under various harsh extracytoplasmic conditions (reviewed in 

(10)). The cpxRA operon encodes a sensor histidine kinase/phosphatase, CpxA, and its 

cognate response regulator, CpxR, that globally regulate a vast number of promoters in 

response to periplasmic stress caused by misfolded proteins, inner membrane disruptions, 

alkaline pH, starvation, and high osmolarity (reviewed in (10)). CpxR/A has been 

experimentally demonstrated or proposed to regulate transcription of over 150 loci 

(APPENDIX E), including cpxP which encodes a negative regulator of the CpxR/A 

system (11). Upon the generation of misfolded proteins, CpxP is predicted to become 

unbound to the CpxA sensor to bind misfolded proteins and mediate DegP-facilitated 

degradation of the CpxP-misfolded protein complex (12). Thus, CpxR/A becomes 

activated due to the lack of CpxP binding to CpxA.  As the CpxR/A regulon continues to 

expand, the vastness of its circuitries become evident as it continues to be implicated in 

virulence (reviewed in (10)), biofilm formation (13), and chemotaxis (14) therefore 

having a global effect in signal transduction pathways pertaining to bacterial survival 

under stress conditions. Recently, CpxR/A has been demonstrated to facilitate bacterial 

resistance to various classes of antimicrobial substances, including antimicrobial peptides 

(15) and antibiotics (16-20) by upregulating target promoters; meanwhile facilitating the 
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bactericidal effects of peptidoglycan recognition proteins (PGRPs) (21) and certain 

classes of antibiotics, such as aminoglycosides (22). This suggests a dual role of the 

CpxR/A system regarding bactericidal substances: a protector and a facilitator, depending 

on the signal (antimicrobial substance) and magnitude of activation. 

The dual response of CpxR/A to antimicrobials  

Antibiotics represent a major group of antimicrobials, in which there are several classes 

with diverse activities and cellular targets. Aminoglycosides are a class of antibiotics that 

target the 30S ribosomal subunit resulting in mistranslation of proteins due to 

mismatching of tRNAs during translation (23). It is believed that the incorporation of 

mistranslated proteins into the inner membrane ultimately leads to bacterial cell death 

(24).  

CpxR/A-mediated protection against antibiotics. The accumulation of mistranslated 

proteins, and subsequent misfolded proteins caused by aminoglycosides, should generate 

a signal for the sensor kinase, CpxA, which will in turn phosphorylate the response 

regulator, CpxR, to upregulate expression of key target genes. Such genes include degP 

which encodes a periplasmic protease that functions to alleviate the stress of misfolded 

proteins by degrading the protein (25). Transcription of degP is also regulated by an 

additional stress response system, σ
E
, that is generally activated upon perturbations in the 

outer membrane (26), suggesting multiple lines of extracytoplasmic defense mediated by 

DegP. This theory is supported because expression of degP was significantly increased in 

the presence of an aminoglycoside, gentamicin (22), suggesting that this antibiotic 

activates the CpxR/A system and thus its downstream target, degP, which functions to 

(presumably) reduce the load of mistranslated proteins.  However, when the load 
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becomes too great, the CpxR/A system is unable to alleviate the stress resulting in cell 

death. Along these lines, constitutive activation of CpxR/A was recently shown to 

provide E. coli protection against aminoglycosides, likely due to the constitutive 

expression of DegP, but not other classes of antibiotics (20) including fluoroquinolones 

(which inhibit DNA replication) or β-lactams (which inhibit cell wall biosynthesis) 

because they do not perpetuate the production of misfolded outer membrane proteins.  

CpxR/A-facilitated killing by antimicrobials. An alternative explanation regarding the 

bactericidal nature of aminoglycosides suggests that the antibiotics alter the overall 

cellular physiology, disrupting essential processes such as respiration, which ultimately 

leads to the formation of reactive oxygen species (27). While the generation of reactive 

oxygen species has recently been shown to not contribute to antibiotic-dependent killing 

(28, 29), the theory is supported by evidence which demonstrates that aminoglycosides 

stimulate the formation of hydroxyl radicals, however (surprisingly) in a CpxR/A-

dependent manner. Deletion of cpxR or cpxA abolished the formation of hydroxyl 

radicals and reduced antibiotic-induced killing; meanwhile, deletion of degP significantly 

reduced radical formation (22). This was surprising since DegP had been previously 

shown to combat disruptions caused by reactive oxygen species (30). These findings, 

however, are in agreement with the observation that deletion of cpxA could increase 

bacterial resistance to antibiotics (22); although it was presumed to be due to the lack of 

CpxA phosphatase activity, resulting in increased phosphorylated CpxR. In this case, 

constant phosphorylation of CpxR by alternative phosphor donors should activate 

downstream targets to counteract the bactericidal activities of the antibiotic.  Similarly, 

peptidoglycan recognition proteins (PGRPs) have been shown to activate the CpxR/A 
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system to promote their bactericidal effect (21). PGRPs bind the outer membrane of E. 

coli to activate CpxR/A which kills the bacterium by inducing depolarization of the 

membrane (21). Furthermore, ΔcpxA and ΔcpxR mutants were more resistant to PGRPs 

than their isogenic wild-type counterparts (21) providing additional evidence of a role for 

CpxR/A to facilitate antimicrobial killing.  

On the other hand, a deletion mutant of cpxR and cpxA (ΔcpxAR) was more susceptible 

than the wild-type hyper-virulent K1 serotype Klebsiella pneumoniae NTUH-K2044 to 

bile salts, chloramphenicol, and β-lactams (19), further suggesting a protective role of 

CpxR/A in resistance to antimicrobials. Cumulatively, these data suggest a dual role of 

the CpxR/A system regarding bactericidal substances depending on the signal 

(antimicrobial substance) and magnitude of activation. 

The Mar system 

The multidrug-resistant operon, marRAB, encodes a repressor, MarR, an activator, MarA, 

and a protein of unknown function, MarB, which coordinately regulate the mar promoter, 

in concert with global regulators Rob and SoxS, to maintain intrinsic resistance to 

antimicrobial substances.  

The Mar response. The marRAB promoter has been extensively studied and well-

characterized (31-34).  In the presence of specific antibiotics, bile salts, and reactive 

oxygen species, MarA (35) (36), 50), Rob (37, 38), and SoxS (39, 40), respectively, will 

bind to a 20 nucleotide sequence designated as the marbox (33) to activate transcription 

of the operon. In contrast, MarR is a strong repressor that binds at the operator region 

whose effect is only alleviated when a compound, such as salicylate, binds the protein to 

result in a disassociation to the promoter allowing for transcription (31, 32, 41). Recently 
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several salicylate-like aromatic metabolites including 2,3-dihydroxybenzoate (DHB) and 

anthranilate (ANT) in an E. coli wild-type background, and 4-hydroxybenzoate (HBA) in 

a ΔtolC background were shown to activate the mar promoter (42). In addition, DHB was 

found to activate the promoter by directly binding to MarR with a similar affinity as 

salicylate, while ANT and HBA could not, indicating that their efforts are independent of 

MarR.  

Role of Mar in resistance to AMPs. The marRAB operon was shown to be activated by 

sub-lethal concentrations of AMPs via Rob (which is required for polymyxin B-induced 

upregulation of micF (43)) and could facilitate resistance, at least in part, by 

overexpressing the AcrAB/TolC efflux pump (44). While deletion of marA had no 

apparent phenotype regarding susceptibility to AMPs, constitutive expression of marA 

(here, termed marA*) by either a point mutation in marR or a plasmid harboring a wild-

type copy of marA, decreased bacterial susceptibility to multiple AMPs representing 

various classes, including: cathelicidin LL-37, α-defensin human neutrophil peptide-2 

(HNP-2), human β-defensin-1 (HBD-1), and the cyclic lipopeptide polymyxin B (44). 

This effect was dependent on the AcrAB/TolC efflux system since deletion of acrAB or 

tolC abolished the decreased susceptibility to LL-37, HBD-1, and polymyxin B (44). 

Noteworthy, deletion of tolC in the marA* background resulted in higher susceptibility to 

AMPs than deletion of acrAB (44) indicating that an additional TolC-dependent system 

contributes to resistance. Importantly, deletion of tolC resulted in increased susceptibility 

to each AMP analyzed, however, susceptibility to polymyxin B could be reduced in a 

marA* background (44) suggesting that additional MarA-dependent genes contribute to 

bacteria resistance to polymyxin B. Conversely, marA* in a ΔtolC background increased 
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bacterial susceptibility to defensins HNP-2 and HBD-2 when compared to the original 

ΔtolC mutant (44). Thus, MarA can play a protective role as well as a facilitator role, 

depending on the signal, similar to CpxR/A (discussed above).  

The twin-arginine transporter (Tat) system 

The twin-arginine transporter (Tat) system is a Sec-independent system responsible for 

the transport of globular proteins across the inner membrane (45). The Tat system is 

encoded by the chromosomal loci tatA, tatB, and tatC. Although tatD is located within 

the operon, its function with the Tat system remains to be determined (46). Additionally, 

translocation via Tat is facilitated by an accessory protein, TatE, which is not part of the 

tatABCD operon, but appears to be a functional ortholog of TatA. The Tat system has 

many characterized substrates with diverse cellular functions, including ion transport, 

energy metabolism, cell wall biosynthesis, and virulence (reviewed in (47)). As a 

requirement, folded proteins transported by this system must have an N-terminal signal 

peptide that is recognized by the Tat apparatus and cleaved prior to translocation. The 

signal sequence has a polar N-terminal region, an uncharged and hydrophobic region, and 

a C-terminal signal peptidase region that is cleaved before the protein is transported. The 

hallmark of Tat-dependent substrates is the presence of a twin-arginine motif that carries 

two conserved arginine residues within the signal sequence recognized by Tat, 

(S/T)RRxFLK (48), although a couple of Tat-dependent substrates have been 

characterized without the twin-arginine motif (49, 50).  

Deletions of tat genes have pleiotropic effects. In E. coli, such effects include 

mislocalization of peptidoglycan amidases AmiA and AmiC that cause a cell chaining 

phenotype due to the inability to cleave the septum, filamentation, inability to grow 
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anaerobically with certain electron acceptors, and increased membrane permeability (51-

53). Thus, the Tat system has an important role in cell metabolism and survival. 

The enterobacterial common antigen 

Members of the rfe-rff gene cluster encode enzymes required for the biosynthesis of the 

enterobacterial common antigen (ECA), a glycolipid composed of a trisaccharide repeat 

located on the outer leaflet of the outer membrane in all species of the 

Enterobacteriaceae family (reviewed in (54)). The first step in the synthesis of the 

trisaccharide repeat is catalyzed by Rfe in which GlcNAc-1-phosphate is transferred from 

UDP-GlcNAc to undecaprenyl monophosphate to generate lipid I. Next, ManNAcA is 

incorporated to generate lipid II followed by incorporation of Fuc4NAc, via RffC and 

RffT, to generate lipid III. Finally, sequential elongation, via WzzE and WzyE, followed 

by presentation to the outer leaflet of the outer membrane, via WzxE, completes the ECA 

biosynthesis process. ECA has been reported to exist in three forms (54): ECACYC, a 

water-soluble cyclic form that consists of four repeating units; ECALPS, in which the 

trisaccharide repeat is linked to the core region of LPS; and, ECAPG, in which the 

trisaccharide repeat is linked to the outer membrane phosphoglyceride. 

Phenotypic observation of ECA mutants. While the physiological function of ECA 

remains to be determined, it has been implicated in bacterial resistance to bile salts and 

organic acids (55-57), swarming motility (58), and virulence (57). Sensitivity to bile 

salts: Deletion of E. coli rffA (wecE), rffT (wecF), or rffH (rmlA), each of which encodes 

an enzyme involved in the conversion of lipid II to lipid III, resulted in increased 

sensitivity to bile salts as the mutants were unable to grow on MacConkey agar, 

presumably due to the accumulation of the lipid II intermediate (55). Further studies 
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determined that deletion of Salmonella rfe (wecA) and rffC (wecD) caused sensitivity to 

the bile salt deoxycholate (57). This proved that accumulation of lipid II could not be the 

sole cause of increased susceptibility to bile salts and proposed that biosynthesis of ECA 

is required for bacterial resistance to bile salts. Sensitivity to organic acids: Deletion of 

rfe (wecA) and rffE (wecB) in Shiga Toxin-producing E. coli (STEC) O157:H7 NGY9 

rendered cells sensitive to  acetic acid (56), suggesting that ECA is required for bacterial 

resistance to acetic acid. Defect in swarming motility: Deletion of E. coli rfe (wecA), rffE 

(wecB), rffD (wecC), rffG, rffH, rffC (wecD), rffA (wecE), wzx (wzxE), rffT (wecF), or 

rffM (wecG) caused a defect in cell swarming, but not swimming motility (58), indicating 

that ECA plays a significant role in swarming motility. Decrease in virulence: Salmonella 

rfe and rffC mutants were highly attenuated in a mouse model when orally inoculated 

(57) suggesting a protective role of ECA in virulence.  

Peptidoglycan amidases, AmiA and AmiC 

The peptidoglycan matrix, or cell wall, of the bacterial cell envelope is a complex 

structure that ultimately provides support for the accompanying phospholipid membrane. 

Thus, it gives the cell its overall shape and rigidity, as well as provides protection against 

changes in osmotic pressure. The matrix is composed of (i) a backbone that consists of 

polysaccharide strands, N-acetylglucosamine and N-acetylmuramic acid, that are cross 

linked by a β-1,4 glycosidic bond and (ii) a meshwork of peptides that are covalently 

connected to the N-acetylmuramic acid residues by cross-linked peptides to form a matrix 

around the cytoplasmic membrane (59). During bacterial growth and cell division, the 

peptidoglycan is constantly remodeled by synthases and hydrolases that cooperatively 

work to generate and cleave peptide bonds. AmiA and AmiC are N-acetylmuramoyl-L-
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alanine amidases that cleave the bond between the L-alanine amino acid on the peptide 

chain and the N-acetylmuramic acid residue of the peptidoglycan matrix (51, 60). They 

are transported by the Tat system (discussed above, (61)) to the periplasm in which they 

carry out their enzymatic activities. Cells lacking these enzymes form chains as the 

septum is unable to be completely cleaved during daughter cell separation (51). 

Additionally, cells that inhibit the activity of these enzymes such as (i) absence of LytM 

factors EnvC and NlpD that activate the amidases (62) or (ii) absence of the FtsEX cell-

wall hydrolysis regulator (63) exhibit a chaining phenotype, further demonstrating the 

significance of these amidases in cell wall biogenesis. 

Cumulatively, bacteria have developed strategies to evade host-mediated defenses in 

efforts to promote survival and adaptation. The use of multiple, integrated systems is a 

key approach in such defenses. In the upcoming chapters of this dissertation study, the 

importance of the aforementioned systems and cellular components will be further 

discussed in regards to bacterial resistance to antimicrobial peptides. 

Characterization of antimicrobial peptides 

Characteristics of AMPs. Antimicrobial peptides (AMPs) represent a class of host-

mediated factors that function to prevent microbial infection of their host (64). They are 

short peptides (12-100 amino acids) with a net charge between +2 and +7 (65, 66) 

produced by the innate immune system in a variety of organisms, including animal, plant 

and bacterial species, and serve as a first line of defense (67). As such, AMPs exert their 

activities at epithelial surfaces and within specialized phagocytic cells, such as 

macrophages. Due to their amphipathic nature, in which they contain an abundance of 

hydrophobic residues, they are thought to interact with bacterial membranes to 
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subsequently kill cells (reviewed in (68)). To date, over one thousand AMPs have been 

experimentally validated or predicted and can be found in several on-line databases (The 

Antimicrobial Peptide Database, http://aps.unmc.edu/AP/main.php (64); CAMP: 

Collection of Anti-Microbial Peptides, http://www.bicnirrh.res.in/antimicrobial/ (69); 

DAMPD: Dragon Antimicrobial Peptide Database, http://apps.sanbi.ac.za/dampd/). 

Classification of AMPs. Based on their secondary structure, AMPs can be grouped into 

four classes (70), summarized in Table 1: (i) amphipathic peptides that form -helix 

structures upon initial contact with the bacterial membrane, (ii) -sheet peptides that are 

joined by 2-4 disulfide bridges, (iii) extended peptides that generally consist of an 

abundance one or more amino acids, and (iv) loop peptides that are formed by a single 

disulfide bond. -sheet peptides, which include -, - and -defensins (characterized 

from mammals), and amphipathic -helix peptides, which include cathelicidins 

(primarily characterized from mammals), cecropins (characterized from insects), 

magainins (characterized from amphibians) and melittin (characterized from insects), 

make up the majority of the AMPs. In many cases, different classes of peptides and 

different variants within the classes can be found within a single host. In fact, it is rare for 

the same AMP sequence to be characterized from two different hosts even though the 

amino acid sequences may be well conserved in the precursor molecule from which the 

mature AMP is derived.  

α-helix structured AMPs. α-helix structured AMPs are one of the largest and most 

extensively studied groups of AMPs. Upon interaction with phospholipid membranes, 

these disordered peptides fold into an α-helical conformation to either absorb or insert 

into the membrane to exert their activities. 

http://aps.unmc.edu/AP/main.php
http://apps.sanbi.ac.za/dampd/
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Table 1.  Four classes of AMPs based on their structure. 

AMP type Characteristics Examples Sequence Ref 

α-helix 

structured 

peptides 

  

Cecropin A  
(Hyalophora cecropia, moth) 

KWKLFKKIEKVGQNIRDG

IKAGPAVAVVGQATQIAK 
(71) 

Magainin 2  
(Xenopus laevis, toad skin) 

GIGKFLHSAKKFGKAFVG

EIMNS 
(72) 

SMAP29  

(sheep myeloid) 
RGLRRLGRKIAHGVKKYG
PTVLRIIRIAG 

(73) 

LL-37 
(humans, leukocytes, epithelia) 

LLGDFFRKSKEKIGKEFKR

IVQRIKDFLRNLVPRTES 
(74) 

*OH-CATH30  

(King cobra) 
KFFKKLKNSVKKRAKKFF
KKPRVIGVSIPF 

(75) 

*OH-CM6  
(King cobra) 

KFFKKLKKAVKKGFKKF
AKV 

(75) 

β-sheet 

structured 

peptides 

Peptides with 2 

disulphide bonds 

Protegrin-1 

(porcine leukocytes) 
RGGRLC1YC2RRRFC1VC2
VGR 

(76) 

Tachyplesin-1  
(Tachypleus gigas, crab) 

KWC1FRVC2YRGIC2YRR

C1R 
(77) 

Peptides with 3 

disulphide bonds 

human θ defensins-1 

(human tissue) 

DHYNC1VSSGGQC2LYSA

C3PIFTKIQGTC2YRGKAK
C1C3K 

(78) 

Rhesus θ defensin-1 

(Rhesus monkey) 
GFCRCLCRRGVCRCICTR (79) 

*Rhesus θ defensin-2 

(Rhesus monkey) 
GVCRCLCRRGVCRCLCRR (80) 

Extended 

peptides 

Rich in His 
Histatin-5  

(human saliva) 
DSHAKRHHGYKRKFHEK

HHSHRGY 
(81, 82) 

Rich in Trp 
Indolicidin 

 (bovine neutrophils) 
ILPWKWPWWPWRR (83, 84) 

Rich in Arg and Pro 
Bactenecin-5 

(bovine neutrophils) 
RERPPIRRPPIRPPFYPPFRP

PIRPPIFPPIRPPFRPPLRFP 
(85, 86) 

Rich in Arg and Pro 
PR-39  

(porcine neutrophils) 
RRRPRPPYLPRPRPPPFFPP

RLPPRIPPGFPPRFPPRFP 
(87) 

Rich in Phe and Pro 
Prophenin-1 

(porcine neutrophils) 
RGGRLCYCRRRFCVCVGR (88, 89) 

Rich in Arg 
*Protamine  

(Salmon sperm) 
MPRRRRSSSRPVRRRRRP

RVSRRRRRRGGRRRR 
(90) 

Loop 

structured 

peptides 

  

Lactoferricin  
(cow and human milk) 

FKC1RRWQWRMKKLGAP

SITC1VRRAF 
(91) 

Bactenecin  

(bovine neutrophils) 
RLCRIVVIRVCR (92) 

Nisin A  

(Lactococcus lactis) 
ITSISLCTPGCKTGALMGC

NMKTATCHCSIVHSK 
(93) 

        
 

     * Analyzed in this study 
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β-sheet structured AMPs. Another extensively studied group of AMPs are β-sheet 

structured AMPs. These cyclic peptides are connected by disulfide bonds which 

contribute to their antimicrobial activity (94). While they exist as β-sheets, their 

conformations are stabilized upon interaction with phospholipids. It has been proposed 

that these AMPs exert their activities by disrupting the phospholipid membranes or by 

forming channels (95, 96). 

Extended AMPs. The class of extended AMPs is characterized by their unusual amino 

acid composition in which there is an abundance of one or more amino acids in the 

peptide sequence. The nature of the abundant amino acid(s) will ultimately determine the 

mechanism in which the AMP will behave. For example, indolicidin, which is abundant 

in tryptophan residues, is proposed to have a turn conformation to increase activity 

toward the membrane (83) as well as permeabilize the outer membrane to form channels 

(84, 97). Meanwhile, the role of the multiple tryptophan residues remains undetermined. 

Loop structured AMPs. The proline-arginine-rich loop structured AMPs require adoption 

to a polyproline helical type-II structure (98, 99) due to the inability to form amphipathic 

conformations because of the excessive proline residues.These looped peptides gather 

and form tubular structures that increase the permeability of the membrane. This class of 

AMPs is thought to be the most promising to be developed into antimicrobial 

therapeutics due to the short peptide length and ease of synthesis.  

Therapeutic application of antimicrobial peptides 

Salmonella and serotypes of E. coli are Gram-negative enteric bacterial pathogens, 

responsible for a variety of infectious diseases. In the United States, Salmonella was 

estimated to have an incidence of about 14 cases per 100,000 people, which roughly 
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equates to 30,000 cases in 2006 (100). Moreover, in 2011, Salmonella was implicated in 

over 1 million cases of infection – 20,000 of which resulted in hospitalization, while 378 

were fatal (100).  These data made Salmonella the cause of ~30% of all foodborne 

illness-related deaths in the U.S. last year (100). Similarly, in 2003, E. coli infections 

were estimated to have caused more than 2,000 hospitalizations in the U.S. resulting in 

about 60 fatalities (101). In that year, pathogenic E. coli infections were estimated to cost 

$405 million leaving a large impact and burden on the health care system (102).  

Although there has been a decline in the number of reported cases over the decades due 

to various treatment regimens, including multiple generations of antibiotics, lack of or 

improper treatment continues to lead to millions of deaths worldwide each year (103). To 

make matters worse, the past few decades have seen the emergence of multidrug-resistant 

(MDR) bacteria, which has led to increased disease and fatality incidence (104-106). As 

the dangers of MDR bacteria begin to surface due to the rising prevalence of these 

strains, the fight to prevent and treat these infections becomes increasingly difficult. With 

millions of cases leading to thousands of hospitalizations and excessive costs in the U.S. 

each year, it is vital to develop alternative treatments to combat these quickly evolving 

pathogens. 

Antimicrobial peptides (AMPs) can be considered a promising next-generation 

pharmaceutical therapy to combat bacterial pathogens because they exert their effects in 

broad and different ways than conventional antibiotics. Due to their amphipathic nature, 

in which they contain an abundance of hydrophobic residues (~50%), they are thought to 

interact with bacterial membranes without specific receptors which would reduce the 

possibility of spontaneous resistance (reviewed in (68)). This is unlike antibiotics which 
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act on proteins generally involved in specific cellular processes and are commonly 

modified in drug resistant strains (reviewed in (68)). Additionally, AMPs can broadly 

exert their bactericidal activity against Gram-positive and/or Gram-negative bacteria, as 

well as fungi, parasites, protozoa, viruses, and cancer cells (65, 107). They are currently 

used in the food industry; for example, nisin and pediocin PA-1, bacteriocins produced 

from lactic acid bacteria, are commonly used due to their potent activity against 

foodborne pathogens and fungal microbes that can spoil food (108). While AMPs present 

a promising alternative to conventional antibiotics, the sensitivity of their nature presents 

challenges, including limit in drug delivery due to the inability to be taken orally. While 

this issue is somewhat minor (topical and injection delivery methods have provided 

solutions), the major challenge of relative high production costs remains unresolved 

(reviewed in (68)). Therefore, it will be necessary to design novel AMPs that can exert 

their effects broadly and potently, while being simple in structure to allow for high 

production at minimum costs (68). The design of such peptides is limited, however, due 

to the incomplete understanding of the mechanisms in which AMPs exert their activities 

and how bacteria evade these host-secreted peptides. 

Physiological mechanisms of action of antimicrobial peptides 

It is no surprise that the diversity of the characterized AMPs would yield diversity in their 

mechanisms of action. As such, several physiological models regarding the bactericidal 

activity of AMPs have been proposed (summarized in (109)).  

Outer membrane disruption. One commonality amongst several AMPs characterized is 

their ability to disrupt the outer membrane. Several models of the disruption have been 

discussed, such as neutralization of membrane charge in a small area or binding to the 
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negatively charged lipopolysaccharide (LPS). Such disruptions allow the AMP to form 

voltage-dependent ion channels or transmembrane pores to permeabilize or penetrate the 

membrane to exert their activities (66). In fact, in E. coli β-sheet defensins and the 

amphipathic melittin have been shown to permeabilize the phospholipid membrane and 

generate blebs (110), while α-helix structured AMPs such as cecropin penetrate the 

membrane to form voltage-dependent ion channels (111, 112). Others, such as magainin 

2, have been shown to penetrate the membrane which results in the loss of intracellular 

metabolites ultimately disrupting energy-transducing processes which lead to cell lysis 

(113, 114). 

Intracellular targets of AMPs. It was determined that the permeabilization of the outer 

membrane is not the primary cause of bacterial death when challenged with AMPs (66, 

115). For pore-forming AMPs, it can be stipulated disruption of the proton motive force 

is the ultimate cause of cell death. However, not all AMPs form pores in the membrane 

suggesting they may target other components of the cell. Along these lines, proline-rich 

Buforin II does not damage the bacterial membrane; instead, it accumulates in the 

cytoplasm to carry out its bactericidal activity against nucleic acids (116). Other AMPs 

have also been shown to traverse the outer and inner membranes to inhibit synthesis of 

biologically important molecules and cellular pathways (117). For example, the arginine-

rich peptide indolicin completely inhibits nucleic acid synthesis. Meanwhile, the α-helix 

structured peptides, pleurocidin and dermaseptin; proline-rich peptide, PR-39; and α-

defensin human neutrophil peptides, HNP-1 and HNP-2, interfere with nucleic acid and 

protein synthesis. It is difficult to identify a specific target or mechanism due to the 

breadth of the cellular pathways inhibited by AMPs. It can be posited that an 
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accumulation of hydroxyl radicals or other reactive oxygen species can be the cause of 

the mass inhibition of cellular pathways (118). 

Commonality amongst mechanisms. Regardless of the mechanism of action, one common 

feature amongst the models is the initial interaction between the positively charged AMP 

and the negatively charged membrane. A hallmark of AMPs is the specificity to 

microbial cells while being relatively ineffective against eukaryotic membranes. This is 

due to the difference in membrane composition (77) (119); bacteria have an abundance of 

negatively charged phospholipids that comprise the outer and inner membranes of Gram-

negative bacteria and the cytoplasmic membrane of Gram-positive bacteria. For example, 

the E. coli membrane contains approximately 5% cardiolipin and 20-25% 

phosphatidylglycerol (120).  Additionally, the presence of the negatively charged LPS on 

the outer membranes of Gram-negative bacteria or the teichoic acids that are present in 

the cell walls of Gram-positive bacteria makes the cell envelope an attractive target for 

positively charged AMPs. On the other hand, the membrane composition of normal 

mammalian cells is remarkably different as it is mostly composed of zwitterionic 

phospholipids phosphatidylcholine and sphingomyelin (121, 122), making the 

membranes inappropriate targets for AMPs. Thus, the cell envelope, specifically the cell 

membranes and respective cell wall components, play a vital role in the activity of AMPs. 

Physiological characteristics that affect the bactericidal activity of antimicrobial 

peptides 

Role of LPS in resistance to AMPs. Studies with Salmonella and magainin 2 have been 

carried out to ascertain the role of LPS in AMP-mediated killing. Increased loss of 

resistance was found in LPS mutants in which the length of the LPS moiety was 
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sequentially reduced (123) suggesting that LPS can have a protective role and prevent 

AMPs from reaching the membrane. Further, overall charge and abundance of LPS 

molecules on the cell envelope were found to be contributing factors in determining the 

effect of LPS on AMP activity. This suggests that LPS can serve as a protector by 

inhibiting the AMP from reaching the outer membrane. 

Role of phospholipid membranes in resistance to AMPs. The composition of the 

phospholipid bilayer (discussed above) can influence the efficacy with which AMPs exert 

their activities. Specifically, the net charge, fluidity, and curvature strain of the 

membranes are major contributing factors. Charge: Cationic AMPs have been shown to 

have greater electrostatic interactions with phospholipid membranes containing the 

negatively charged phosphatidylglycerol (114). Fluidity: In general, bilayers with 

increased fluidity have been shown to have less resistance to AMPs (124) because 

cholesterol, which reduces bilayer fluidity, was able to reduce AMP activity (125) 

Curvature strain: Phospholipids possessing small hydrophilic head groups such as 

phosphatidylethanolamine cause a concave bending of the membrane monolayer 

resulting in negative curvature and inhibition of magainin-induced pore formation (114). 

Addition of palmitoyllysophosphatidylcholine, which reduces the negative curvature, 

facilitated the magainin-induced permeabilization (114). Further, it can be postulated that 

AMPs target cellular locations with the largest cell wall curvature, i.e., the poles and 

septum, which is primarily composed of the acidic phospholipid, cardiolipin (126, 127). 

This is supported by the observation that the human derived cationic AMP, LL-37, 

preferentially targets the septa of dividing cells (128). 
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Genetic mechanisms of action to evade bactericidal effects of antimicrobial peptides 

Bacterial development of a complete resistance to AMPs is thought to be impossible (66); 

however, enteric bacteria have developed mechanisms to offset the bactericidal activities 

of AMPs. Many loci representing several independent pathways have been implicated in 

resistance to various AMPs (summarized in Table 2); however, the Salmonella 

typhimurium PhoP/PhoQ two-component system has been demonstrated as a global 

regulator of AMP resistance.  

PhoP/PhoQ-mediated resistance to AMPs. Deletion of Salmonella phoP is pleiotropic as 

it has many phenotypes associated with it, including increased susceptibility to AMPs 

due to the lack of various PhoP-dependent genes that mediate resistance (Table 2). There 

are multiple PhoP-mediated strategies reported to confer resistance to AMPs (discussed 

in (7)) that make the PhoP/Q system a global contributor in resistance to AMPs, 

including (i) modification of lipopolysaccharide (LPS) and (ii) synthesis of 

extracytoplasmic proteases that degrade the AMPs. Modification of the outer membrane: 

PhoP-dependent modification of the outer membrane is a mechanism Salmonella employ 

to evade AMP killing. Resistance is facilitated by modification of the lipid A moiety of 

LPS to reduce electrostatic interactions between the positively charged AMPs and the 

negatively charged outer membrane (129-131) as well as alter the membrane fluidity to 

reduce the effectiveness of the AMP to peremabilize the membrane (discussed above; 

(132)). Specifically, the outer membrane protein, PagP, modifies LPS via addition of 

palmitate to lipid A (133) to increase Salmonella resistance to -helical AMPs (115). 

Also regulated by the PmrA/PmrB TCS, ugd and pmrF encode enzymes required for the 

synthesis and incorporation of 4-aminoarabinose into LPS. As such, resistance to  
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Table 2. Genes previously determined to be required for AMP resistance. 

Peptide(s) Bacteria Gene(s) 
Reg. 

System(s) 
Ref 

Protamine, Magainin 2, Melittin 
E. coli 

Salmonella 

amiA 

amiC 
CpxR/A (15) 

Lactoferricin B E. coli degP CpxR/A (134) 

Polymyxin B, Protamine, Protegrin-1 Salmonella mig-14 
PhoP/Q 

SlyA 
(135) 

Protamine E. coli ompT  (136) 

Polymyxin, Azurocidin, BPI, 

Protamine, Polylysine 
Salmonella pagB 

PhoP/Q 

PmrA/B 
(137) 

C18G Salmonella pagP PhoP/Q (115) 

Protamine, C18G Salmonella pgtE 
PhoP/Q 

SlyA 
(138) 

Cecropin P1, Magainin 2, Mastoparan,  

Melittin, Defensin NP-1,  

 Polymyxin B, Protamine 

E. coli 

Salmonella 

phoP 

phoQ 
PhoP/Q (139-142) 

Polymyxin, Polylysine, Protamine, 

CAP37, CAP57 
Salmonella 

pmrA 

pmrB 

PhoP/Q 

PmrA/B 
(137, 143-146) 

Polymyxin B Salmonella 
pmrE 

pmrF 
PmrA/B (129) 

Polymyxin B Salmonella rcsC RcsB/C (147) 

Crp4, P2 (BPI) Salmonella rpoE 
E (148) 

Protamine Salmonella sapABCDF  (149) 

Protamine Salmonella 
sapG 

sapJ 
 (150) 

Magainin 2, Polymyxin B Salmonella slyA 
PhoP/Q 

SlyA 
(140, 151) 

Polymyxin B Salmonella somA PhoP/Q (147) 

Protamine, Magainin 2, Melittin 
E. coli 

Salmonella 

tatA 

tatB 

tatC 

 (15) 

Magainin 2, Polymyxin B Salmonella ugtL 
PhoP/Q 

SlyA 
(140) 

Polymyxin B Salmonella virK 
PhoP/Q 

SlyA 
(147) 

Protamine, Melittin, Polymyxin B, 

Human Defensins 
Salmonella yejABEF  (152) 

Protamine, Magainin 2, Melittin Salmonella yqjA 
CpxR/A 

PhoP/Q 
(140) 
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polymyxin B is also facilitated by LPS modification to lipid A (130, 153).   

Protease-mediated degradation of AMPs: Protease-specific degradation of AMPs is 

another strategy employed to evade AMP activity. PhoP-dependent pgtE encodes an 

outer membrane protease that, when expressed at high levels, will contribute to resistance 

to the C18G AMP by cleaving C18G (138). Similar protease-facilitated cleavage of 

AMPs is observed by the OmpT protease in E. coli (136). 

PhoP-independent resistance to AMPs. While PhoP/Q has been demonstrated as a global 

regulator in bacterial resistance to AMPs, it should be noted that several PhoP-

independent loci have been demonstrated to contribute to bacterial resistance to AMPs. 

The Sap transporter: Deletion of members of the sapABCDF operon, which encodes a 

periplasmic oligopeptide-binding protein and its inner membrane transporter, rendered 

Salmonella cells susceptible to the model AMP, protamine (150). It is thought that this 

system mediates resistance by transporting protamine from the periplasm to the 

cytoplasm where it is degraded by cytoplasmic proteases. The Yej Transporter: Deletion 

of yefF, which encodes the ATPase component of the  ATP-binding cassette transporter 

encoded by the yejABEF operon, rendered Salmonella cells susceptible to multiple 

classes of AMPs, represented by protamine, melittin, polymyxin B, and human β-

defensins HBD-1 and HBD-2 (152). Additionally, ΔyejF had reduced virulence when 

inoculated intragastrically (152) suggesting that the YefABEF transporter contributes to 

Salmonella virulence by facilitating resistance to AMPs. 

Rationale of the dissertation studies 

Over 1,000 AMPs of various natures have been characterized (64) and shown to exert 

their effects in ways different from modern day antibiotics, making them a promising 
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next-generation pharmaceutical therapy to combat bacterial pathogens.  Therefore, it is 

important to understand the molecular mechanisms, both genetic and physiological, 

behind bacterial resistance to AMPs to overcome the challenges faced with the 

development of new drug therapies and vaccines. Research regarding the genetic 

circuitries required for bacterial resistance to AMPs has been challenging due to the 

sensitivity of AMPs to various laboratory conditions (salts, buffers, media, etc.) and a 

lack of adequate and efficient genetic tools. Although there have been a few mechanisms 

proposed to mediate bacterial resistance to AMPs (discussed above), including (i) lipidA 

modification of the LPS (115, 129), (ii) cleavage of AMPs by outer membrane proteases 

(136, 138) and (iii) membrane bilayer rearrangements to inhibit lipid-peptide pore 

formation (113, 114), the lack of genetic determinants limits the identification of 

additional physiological mechanisms. While the PhoP/Q system has been demonstrated 

as a major contributor in resistance to AMPs, I believe that additional PhoP/Q-

independent mechanisms must exist to further contribute to resistance. 

 In this study, data and analysis are presented from a large scale, systematic screen in 

which I used the entire Keio collection (154) of ~4,000 E. coli in-frame, single gene 

deletion mutants to identify loci required for resistance to AMPs. The identification of 

these loci served as a tool for me to identify novel genetic circuitries required for 

resistance and likely other physiologically significant processes; and thus, has provided a 

basis for the work described in this dissertation study. 

In Chapter 1, I discuss the results of the systematic analysis in which E. coli mutants were 

challenged against physiologically significant peptides representing -helix and -sheet 

classes of AMPs, as well as a model AMP. Notably, this chapter identifies the 
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significance of the Tat system in bacterial resistance to AMPs which is further 

characterized in Chapter 2. I also provide evidence of the importance of enterobacterial 

common antigen biosynthesis in resistance to antimicrobial substances. Cumulatively, the 

analysis of this chapter served as a foundation for the work described in Chapters 2-4. 

In Chapter 2, I build on a hypothesis generated from data in Chapter 1 in which I identify 

Tat-dependent substrates required for bacterial resistance to protamine. Two of these 

substrates, AmiA and AmiC, are further characterized in Chapter 3. 

Chapter 3 discusses the biochemical and genetic aspects of this study in which the 

CpxR/CpxA two-component system is found to be a major regulator for several loci 

required for resistance to AMPs. Specifically, I determined that the amiA, amiC, and 

marRAB loci, as well as the rfe-rff gene cluster are regulated by CpxR. 

Chapter 4 wraps up the study by collectively describing a new regulatory system, 

CpxR/A, as a major contributor to bacterial resistance to AMPs. Multiple CpxR/A-

dependent loci, either characterized previously or in this study, were found to contribute 

to resistance. The identification of this system proves the original hypothesis of this study 

in which additional PhoP-independent systems are required for bacterial resistance to 

AMPs. 

Disclaimer. This project was initially carried out using a collection of Salmonella 

mutants to identify genes required for resistance to AMPs. However, the collection was 

never completed by collaborating laboratories and as such, never received in its entirety. 

Thus, to continue the project, the Keio collection of Escherichia coli mutants was used 

and represents a significant proportion of the strains discussed in this work.  
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MATERIALS AND METHODS 

Bacterial strains and growth conditions 

All bacterial strains used in this study are provided in Appendix A. Escherichia coli 

strains were obtained or derived from mutant strains in the Keio Collection (154) or 

derived from the wild-type strain BW25113 using the one-step gene deletion method 

(155) with primers listed in Appendix C. All Salmonella enterica serovar Typhimurium 

strains were derived from the wild-type strain using the one-step gene deletion method 

(155). Bacteria were grown at 37°C in Luria-Bertani broth (LB). When necessary, 

antibiotics were added at final concentrations of 50 g ml
-1

 for ampicillin, 20 g ml
-1

 for 

chloramphenicol, or 50 g ml
-1

 for kanamycin. E. coli DH5 was used as host for the 

preparation of plasmid DNA. E. coli BL21-Gold (Stratagene, Inc.) was used for protein 

expression.  

Construction of strains with chromosomal mutations harboring lac fusions 

Strains harboring deletions constructed using the one-step gene deletion method (155) 

were used to construct chromosomal lac fusions.The kanamycin- or chloramphenicol-

resistant cassette was removed using plasmid pCP20 (155) and the appropriate lac 

transcriptional fusion plasmid pCE36 or pCE37 (156) was integrated into the FLP 

recombination target sequence in the deleted locus. 

Plasmid construction 

All plasmids used in this study are described in Appendix B. Primers used to generate 

DNA fragments cloned into each plasmid are listed in Appendix C. 

Plasmid pUHE-nlpE was constructed by cloning the nlpE gene fragment (synthesized 

using 14028s or BW25113 chromosomal DNA and primers 1421 and 1422) into the  
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HindIII site of pUHE21-2lacI
q
 (157).  

Plasmid pUHE-yaeJ was constructed by cloning the yaeJ gene fragment (synthesized 

using 14028s chromosomal DNA and primers 1413 and 1414) into the HindIII site of 

pUHE21-2lacI
q
 (157). 

Plasmid pUHE-amiA was constructed by cloning the amiA gene fragment (synthesized 

using 14028s chromosomal DNA and primers 1327 and 1328) into the HindIII site of 

pUHE21-2lacI
q
 (157). 

Plasmid pUHE-amiC was constructed by cloning the amiC gene fragment (synthesized 

using 14028s chromosomal DNA and primers 1402 and 1403) into the HindIII site of 

pUHE21-2lacI
q
 (157). 

Plasmid pBAD-tatC was constructed by cloning the tatC gene (synthesized using 14028s 

chromosomal DNA and primers tatC-forward and tatC-reverse) into pBAD TOPO 

(Invitrogen). 

Plasmid pYS2135 was constructed by cloning the cpxR coding region (synthesized using 

14028s chromosomal DNA and primers 1512 and 1513) into into the NdeI and SalI site 

of pET28a (Novagen). 

Plasmid pYS1734 was constructed by cloning 570 bp of the marR promoter region 

(synthesized using BW25113 chromosomal DNA and primers 1731 and 1734) into the 

SalI and XhoI site of pYS1000 (158). 

Plasmid pYS1736 was constructed by cloning 120 bp of the marR promoter region 

(synthesized using BW25113 chromosomal DNA and primers 1731 and 1736) into the 

SalI and XhoI site of pYS1000 (158). 
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Selection for genes required for resistance to -defensin peptide 

The Keio collection of E. coli mutants, containing nearly 4,000 single mutant strains 

(154) was used to screen for genes required for resistance to the -defensin peptide, 

RTD-2 (79). Strains were cultured overnight, re-inoculated (1:100) in LB broth, and 

grown for 4 h at 37°C.  Cultures were diluted in a challenge medium (10 mM PIPES, 

0.5% LB) and approximately 10
5 

cells were challenged in a 96 well microtiter plate with 

1.5 g mL
-1

 peptide in the challenge medium for 2 hours in 37°C. Samples were then 

diluted (1:10) in LB broth and spotted onto LB agar plates for overnight growth at 37°C. 

Selection for genes required for resistance to -helix structured peptides  

The Keio collection (154) was used to screen for genes required for resistance to the -

helix structured peptides, OH-CATH30 and OH-CM6 (75). Strains were cultured 

overnight, re-inoculated (1:100) in LB broth, and grown for 4 h at 37°C.  Cultures were 

diluted in a challenge medium (10 mM PIPES, 0.5% LB) and approximately 10
5 

cells 

were challenged in a 96 well microtiter plate with 2 - 4 g mL
-1

 peptide in the challenge 

medium for 2 hours in 37°C. Samples were then diluted (1:10) in LB broth and spotted 

onto LB agar plates for overnight growth at 37°C. 

Selection for genes required for resistance to protamine  

The Keio collection (154) was used to screen for genes required for resistance to 

protamine (90). Strains were cultured overnight, re-inoculated (1:100) in LB broth, and 

grown for 4 h at 37°C.  Strains were diluted and approximately 10
2 

- 10
3
 cells were 

dropped onto LB agar plates containing varying concentrations (0.6 - 1.2 mg mL
-1

) of 

protamine sulfate (MP Biomedicals) and incubated overnight at 37°C to screen for 

sensitivity.  
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Vancomycin killing Assay 

Salmonella and E. coli survival after a vancomycin challenge was determined as follows. 

Overnight cultures were inoculated 1:5 in fresh LB broth. An appropriate inducer (0.25 

mM IPTG or 10 mM L-arabinose) was added when necessary. Strains were shaken for 4 

h at 37°C to allow for induction. Cells were diluted to ∼10
5
 bacteria mL

-1
 and added to 

microtiter wells containing 0 and 0.5 mg mL
-1

 (final concentration) vancomycin (Sigma). 

Strains were challenged overnight with aeration at 37°C, and survival was determined by 

measuring the optical density. Survival percentage was calculated as described previously 

(i.e. A600 nm of culture with vancomycin/A600 nm of culture without vancomycin)×100 (53). 

SDS killing Assay 

Salmonella and E. coli survival after a sodium dodecyl sulfate (SDS) challenge was 

determined as follows. Overnight cultures were inoculated 1:5 in fresh LB broth and 

shaken for 4 h at 37°C. Cells were diluted to ∼10
5 

bacteria mL
-1

 and added to microtiter 

wells containing 0, 0.01, 0.02 and 0.04 % (final concentration) SDS. Strains were 

challenged overnight with aeration at 37°C, and survival was determined by measuring 

the optical density. Survival percentage was calculated as described previously (i.e. A600 

nm of culture with SDS/A600 nm of cultures without SDS) × 100 (53). 

Deoxycholate killing assay 

Strains were cultured overnight, re-inoculated (1:100) in LB broth, and grown for 4 h at 

37°C.  Strains were diluted and approximately 10
2 

- 10
3
 cells were dropped onto LB agar 

plates containing 0 and 1% deoxycholate and incubated overnight growth at 37°C to 

screen for sensitivity.  
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Screening for a regulator that upregulates amiA and amiC transcription 

Chromosomal DNA prepared from wild-type strain 14028s was digested with Sau3AI (1 

unit; New England Biolabs) for 15, 30, or 45 min. The digested DNA was separated on 

0.8% agarose gel, and 2–5-kb fragments were recovered and ligated to BamHI-digested 

pUC19 plasmid DNA. The ligation mixture was transformed into E. coli DH5α selecting 

for ampicillin-resistant transformants. Plasmid DNA was isolated from a pool of about 

20,000 transformants (∼95% of which carried an inserted chromosomal fragment) and 

introduced into strains, YS13637 and YS13640, which harbored a chromosomal lac 

transcriptional fusion at the amiA and amiC loci, respectively. Ampicillin-resistant 

transformants were selected on LB ampicillin agar plates containing X-Gal (40 μg mL
-1

). 

Plasmid DNA was purified from those colonies that were darker blue than others and 

reintroduced into YS13637 and YS13640 by electroporation. The resulting strains were 

used to measure β-galactosidase activity and to compare with those that received a 

control plasmid pUC19. To determine the inserted fragments, the plasmids were 

sequenced using primers 232 and 233. 

-galactosidase assay 

-galactosidase assays were carried out in triplicate (159) and the activity (Miller Unit) 

was determined using a VERSAmax plate reader (Molecular Device). Data correspond to 

three independent assays conducted in duplicate, and all values are mean ± standard 

deviation.  

Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 

Bacterial cells were grown for 8 h in LB medium. Total RNA was isolated from bacterial 

culture using TRIzol LS reagent (Invitrogen) according to the manufacturer's instructions. 
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RNA concentration was determined by spectrophotometry at 260 nm and quality 

determined by agarose gel electrophoresis. cDNA was synthesized using murine 

leukemia virus reverse transcriptase and random primers (BioLabs). DNA was amplified 

with primers indicated in the text and resolved on an agarose gel.  

Purification of His6-CpxR protein 

The His6-CpxR protein was purified from pYS2135 expressed in E. coli BL21-Gold with 

His-Select Nickel Affinity Gel (Sigma) according to the manufacturer’s instructions. 

After purification, the fractions containing His6-CpxR protein were desalted and 

concentrated using Amicon Ultra centrifugal filter (Millipore). 

Primer Extension 

The primer extension assay was performed using primers 1472 for amiA and 1482 

for amiC as described previously (160). Total RNA was isolated from bacterial cells 

grown in 5 ml of LB medium containing IPTG (0.25 mM) to A600 nm 0.6 with RNAzol 

(Molecular Research Center) by following the manufacturer's instructions. Samples were 

analyzed by 6% denaturing polyacrylamide electrophoresis by comparison with DNA 

sequences amplified from Salmonella chromosome with primers 
32

P-1472 and 1567 

for amiA, or 
32

P-1482 and 1484 for amiC and generated using Maxam and Gilbert A + G 

reactions. 

Electrophoretic Mobility Shift Assay (EMSA) 

Primers were labeled using T4 polynucleotide kinase (New England Biolabs) and [γ-
32

P] 

ATP (PerkinElmer Life Sciences). Approximately 10 nmol of 
32

P-labeled DNA 

fragments described in the text were incubated at room temperature for 30 min with 

increasing amounts of His6-CpxR protein in 20 μl of an EMSA buffer consisting of 10 
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mM Tris-HCl (pH 7.5), 1 mM EDTA, 5 mM DTT, 10 mMNaCl, 1 mM MgCl2, and 5% 

glycerol. After the addition of the DNA dye solution (40% glycerol, 0.05% bromphenol 

blue, 0.05% xylene cyanol), the mixture was directly subjected to 4% polyacrylamide 

electrophoresis. Signals were detected by autoradiography. 

DNase I footprinting assay 

DNase I footprinting assays were carried out using DNA fragments amplified by PCR 

using BW25113 or 14028s chromosomal DNA as template. Before PCR, one primer for 

each set was labeled with T4 polynucleotide kinase (New England Biolabs) and [-
32

P] 

ATP (Perkin Elmer) to yield a labeled coding strand and a labeled non-coding strand. 

Approximately 25 pmol of labeled DNA and increasing amounts of His6-CpxR protein 

were mixed in a 100 l reaction containing 2 mM HEPES pH8.0, 10 mM KCl, 20 µM 

EDTA, 0.5 mg ml
-1

 BSA, 20 µg ml
-1

 poly(dI-dC), 2% glycerol (161). The reaction 

mixture was incubated at room temperature for 20 min. Then, a DNaseI solution (10 mM 

CaCl2, 10 mM MgCl2, and 0.01 units of DNase I (Fermentas)) was added and the mixture 

was incubated at room temperature for 3 min. The DNase I digestion was stopped by 

phenol treatment and the DNA was precipitated. Samples were analyzed by 6% 

polyacrylamide electrophoresis by comparison with a DNA sequence ladder generated 

with the same primers using a Maxam and Gilbert A+G reaction. The site-directed 

mutagenesis of the amiA and amiC DNA fragments was performed by following a two-

step PCR method described previously (162). The first step used the mutagenic primers 

and the reverse universal primer 1472 or 1482 flanking the 3′ end of the amiA or amiC 

promoter region. The mutagenic primers for CpxR box 1 mutation of amiA was 1595; 

while the CpxR box mutation of amiC was 1598. The second step used the product of the 
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first PCR as a primer and the forward universal primer 1567 or 1484 to yield the whole 

promoter region with the desired mutation. DNase I footprinting assay was then carried 

out as described above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 

CHAPTER 1 

IDENTIFICATION OF GENETIC LOCI REQUIRED FOR BACTERIAL 

RESISTANCE TO ANTIMICROBIAL PEPTIDES   

Introduction 

Antimicrobial peptides (AMPs) are products of the host innate immune system serving as 

a first line of defense for protection against microbial invaders (67). They exert their 

potent bactericidal activities against multiple pathogens, making them a promising 

alternative to conventional antimicrobial treatments. While there have been some reports 

describing the genetic basis for AMP resistance, research in the area has been a challenge 

due to the inability and unfeasibility to conduct large scale screens with sensitive, 

physiologically significant AMPs, as well as a lack of adequate genetic tools. In fact, 

previous screening efforts to identify genetic determinants required for resistance 

employed transposon-mediated mutant libraries in which transposons were randomly 

inserted into the chromosome (141). Otherwise, plasmid-mediated screens were used in 

which a plasmid library, constructed by randomly cleaving the chromosome and inserting 

fragments into an appropriate vector, was introduced into a phoP background to identify 

DNA fragments that could rescue the AMP-susceptible phenotype (140). While feasible, 

both strategies were, however, limited by the likelihood of an incomplete library due to 

the possibility of uneven distribution of transposon insertion across the chromosome or 

insufficient DNA fragments inserted into the vector.  As such, research in this area has 

remained limited. In fact, only a single two-component regulatory system, PhoP/PhoQ, 

had been implicated as a global regulator for bacterial resistance to AMPs, as well as the 
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PmrA/PmrB two-component system which can be activated by PhoP/PhoQ (139, 163, 

164). 

The availability of the Keio collection (154) containing ~4,000 defined Escherichia coli 

single gene deletion mutants provided an opportunity for a large scale, systematic screen. 

As such, this collection has successfully been used as a tool to identify loci required for 

resistance to various antibiotics (165-167). Therefore, the Keio collection was used in this 

study to individually challenge mutant strains against four AMPs representing three 

classes (summarized in Table 3). The first, protamine, is a 32-amino acid AMP isolated 

from salmon sperm (90).  Although it is not physiologically significant (i.e., its natural 

function is not to protect its host from invading pathogens), it is commonly used as a 

model AMP because it has been shown to kill Salmonella cells harboring mutations of 

virulence determinants, such as phoP (164). In lieu of peptides isolated from biologically 

significant organisms, such as defensins and magainins, protamine is commonly used 

amongst the scientific community because it allows for large-scale use due in part to its 

availability and relatively low cost, as well as its integrity under harsh laboratory 

conditions. It has been argued that analyses to understand bacterial resistance to AMPs 

using an AMP that is not naturally occurring are insignificant; therefore, it was necessary 

to analyze naturally occurring, and thus physiologically significant peptides. The second 

peptide used in the screen, RTD-2, is a -defensin isolated from Rhesus monkey, 

representing the -sheet class of AMPs (79, 80). The high potency and insensitivity to 

physiological NaCl (79) compared to other characterized AMPs make RTD-2 a 

physiologically significant peptide and thus relevant for this study. The last class of  
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Table 3. Description of AMPs analyzed in this study.  

AMP Name AMP Type AMP Class AMP Sequence Ref 

Protamine Arg-rich extended 
MPRRRRSSSRPVRRRRRPRVS

RRRRRRGGRRRR 

(90) 

RTD-2 θ-defensin β-sheet GVCRCLCRRGVCRCLCRR 

(79) 

OH-CM6 cathelicidin α-helix KFFKKLKKAVKKGFKKFAKV 

(75) 

OH-CATH30 cathelicidin α-helix 
KFFKKLKNSVKKRAKKFFKK

PRVIGVSIPF 

(75) 
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AMPs used in the screen, -helix structured peptides, are represented by two peptides: 

OH-CATH30, a cathelicidin characterized from king cobra, and its short-form analog, 

OH-CM6 (75). The potent efficacy and low host toxicity of these peptides (75) make 

them ideal candidates for therapeutic use and physiologically significant for this study. 

Systematic screen to identify genes required for bacterial resistance to AMPs 

Method for identifying genes required for bacterial resistance to AMPs. Systematic 

screens were carried out in parallel to identify gene loci required for resistance to 3 

classes of AMPs, which allowed for identification of trends or common mechanisms 

amongst the AMPs. The premise was based on the notion that if a gene product is 

required for resistance to an AMP, then deletion of the gene should result in increased 

susceptibility to the AMP when compared to the isogenic wild-type. Nearly 4,000 E. coli 

single gene deletion mutant strains from the Keio collection (154) were challenged 

against each AMP to determine if deletion of individual loci could result in increased 

susceptibility. Challenges were carried out using standard laboratory conditions, i.e., cells 

cultured in LB broth with aeration at 37°C, spotted onto LB agar plates and incubated at 

37°C overnight. These enriched conditions were used as opposed to defined media to 

avoid inadvertent bias towards a specific group of loci (e.g., PhoP-activating conditions 

in low Mg
2+

 conditions). Overall, the screen identified 112 mutants that were susceptible 

to at least one screened peptide (APPENDIX D): 11 mutants susceptible to RTD-2; 19 

mutants susceptible to OH-CM6; 79 mutants susceptible to OH-CATH30; and, 32 

mutants susceptible to protamine. 
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Table 4. Gene mutants susceptible to θ-defensin, RTD-2. 

Functional Group Gene Function Gene Name 

Enterobacterial 

Common Antigen 

(ECA) Synthesis 

TDP-fucosamine acetyltransferase rffC 

TDP-Fuc4NAc:lipidIIFuc4NAc transferase rffT 

DNA Repair DNA strand exchange and recombination protein recA 

Membrane Protein 
outer membrane protein A ompA 

predicted peptidase, outer membrane lipoprotein spr 

Regulator 

DNA-binding transcriptional dual regulator argR 

DNA-binding regulator in TCS with CpxA cpxR 

DNA-binding transcriptional dual regulator crp 

predicted folate-dependent regulatory protein ygfZ 

Transporter TatABCE protein translocation system subunit tatC 

Unknown Function conserved protein yajD 
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Systematic screen to identify genetic loci required for bacterial resistance to β-sheet 

structured -defensin, RTD-2. It has been argued that genetic screens using an AMP that 

is not naturally occurring are insignificant; therefore, a screen was carried out using a 

synthetic form of the naturally occurring –defensin, RTD-2, isolated from circulating 

leukocytes of the Rhesus monkey (79, 80). The synthetic form was found to be 

biochemically and functionally indistinguishable from the natural isolate; thus, it exhibits 

potent bactericidal and fungicidal activities as well as insensitivity to physiological NaCl 

compared to other physiologically significant AMPs (79). To identify genetic loci 

required for resistance to RTD-2, mutant strains of the Keio collection (154) were 

individually cultured overnight in LB broth medium in a 96-well format, re-inoculated 

(1:100) into fresh LB broth and grown with shaking at 37°C to log phase (approximately 

four hours). Approximately 10
3
 cells were challenged with RTD-2 for 2 h with shaking at 

37°C. Samples were diluted 1:10 and spotted onto LB agar plates and incubated 

overnight at 37°C. Mutant strains in which growth was inhibited, compared to wild-type, 

were selected for further analysis. The screen identified 11 sensitive mutant strains which 

represented an array of cellular functions, including enterobacterial common antigen 

biosynthesis, DNA repair, gene regulation, and protein transport (Table 4). Notably, 4 

out of the 11 loci encode a regulator (i.e., ArgR, CpxR, Crp, and YgfZ), suggesting an 

integrated regulatory approach to mediate bacterial resistance to the θ–defensin. 

Additionally, 9 of the 11 mutant strains were susceptible to at least one cathelicidin 

screened (Figure 7), suggesting a global contribution of their gene products to AMP 

resistance. 
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Systematic screen to identify genetic loci required for bacterial resistance to -helix 

cathelicidins, OH-CATH30 and OH-CM6. An additional systematic screen was 

conducted to identify genetic loci required for resistance to a naturally occurring -helix 

cathelicidin peptide, OH-CATH30, characterized from king cobra, and its short-form 

analog, OH-CM6 (75). The potent efficacy and low toxicity of these peptides make them 

suitable candidates for therapeutic use and therefore, physiologically significant for this 

study.The screen was carried out as described above using various concentrations of OH-

CATH30 and OH-CM6. The short-form AMP, OH-CM6, was expected to have less 

susceptible candidates due to the higher minimum inhibitory concentration (MIC) values 

reported compared to OH-CATH30 when used against clinical bacterial isolates (75), 

perhaps due to the loss of residues that contribute to the bactericidal effect of the AMP. 

As predicted, the screen identified 19 OH-CM6-sensitive mutant strains and 79 OH-

CATH30-sensitive mutant strains (APPENDIX D). 

Since OH-CM6 is a short-form isomer derived from OH-CATH30 (75), a significant 

overlap in the mutants susceptible to these cathelicidins was predicted. Indeed, 13 

candidates (68% of OH-CM6 candidates and 16% of OH-CATH30 candidates) were 

sensitive to both cathelicidins (Figure 7, double line) and represent diverse cellular 

functions, including cell wall/envelope biogenesis, gene regulation, ion transport, and 

DNA/RNA synthesis/repair (Table 5). Cumulatively, this provides evidence that OH-

CM6 contains a region of OH-CATH30 that allows it to exert its bactericidal activity 

because a significant overlap of OH-CM6-sensitive mutants (~68%) that was also 

sensitive to OH-CATH30 (Figure 7, double line). Conversely, these data also suggest 

that OH-CM6 lacks specific residues required for bactericidal activity because very few  
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Table 5. Gene mutants susceptible to both cathelicidins. 

Functional Group Gene Function Gene Name 

Cell Wall/ 

LPS/Fatty Acid 

Biosynthesis 

PLP-dependent alanine racemase 2 dadX 

fatty acid oxidation complex subunit alpha fadB 

TDP-fucosamine acetyltransferase  rffC 

TDP-Fuc4NAc:lipidIIFuc4NAc transferase  rffT 

DNA/RNA/ 

Protein 

Biosynthesis/ 

Degradation 

endonuclease IV  nfo 

DNA strand exchange/recombination protein recA 

ssDNA exonuclease  recJ 

50S ribosomal subunit protein L32 rpmF 

endonuclease/exonuclease/phosphatase family xthA 

Regulator 

DNA-binding transcriptional dual regulator feaR 

manno(fructo)kinase  mak 

predicted DNA-binding transcriptional regulator yijO 

Respiration  predicted iron-sulfur protein in electron transport  rsxB 

Transporter  

citrate:succinate antiporter  citT 

gluconate transporter ddpX 

hexuronate transporter exuT 

potassium translocating ATPase, subunit A kdpA 

manganese/divalent cation transporter mntH 

Unknown Function  predicted protein yehM 
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(13 of the 79 mutants, 16%) OH-CATH30-sensitive mutants were also sensitive to OH-

CM6 (Figure 7, double line). To further characterize the bactericidal actions of these 

AMPs, a concentration-dependent challenge against wild-type, BW25113, was carried 

out to determine the MIC of each AMP. In agreement with previous reports (75), OH-

CATH30 had a lower MIC of 1 µg mL
-1

 than OH-CM6 at 2 µg mL
-1

 (Figure 1). 

Systematic screen to identify genetic loci required for bacterial resistance to model AMP, 

protamine. Although protamine is not considered physiologically significant, it is 

commonly used as a model AMP because it has been shown to kill Salmonella cells 

harboring a phoP muatant (164) and allows for large-scale use due in part to its 

availability and relative low cost, as well as its integrity under harsh laboratory 

conditions. Once again, mutants of the Keio collection (154) were individually cultured 

overnight in LB broth in a 96-well format, re-inoculated (1:100) into fresh LB broth and 

grown with shaking at 37°C to log phase (approximately four hours). Samples were 

diluted 10
5
 times and spotted onto LB agar plates supplemented with no or various 

amounts of protamine and incubated overnight at 37°C. Mutant strains in which growth 

was inhibited, compared to wild-type, were selected for further analysis. A total of 32 

protamine sensitive mutant strains were identified which represented a multitude of 

cellular functions, including respiration, biosynthesis and metabolism, cell wall/envelope 

biogenesis, DNA/RNA synthesis/repair, and stress response (Table 6). Notably, 7 out of 

the 32 (~28%) protamine sensitive candidates had overlapping sensitivities to other AMP 

classes (Figure 7), suggesting that protamine can be used as a tool to ascertain the 

bactericidal effects of AMPs. Therefore, a series of assays was conducted using  
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Figure 1. Dose-dependent killing by cathelicidins.  

Dose-dependent killing of E. coli  wild-type (BW25113) cells by cathelicidins OH-CM6 

and OH-CATH30 demonstrate that OH-CATH30 has higher bactericidal activity due to 

the lower MIC, 1 µg ml
-1

, compared to the short-form isoform OH-CM6 with a MIC of 2 

µg ml
-1

. 
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Table 6. Gene mutants susceptible to protamine. 

Functional Group Gene Function Gene Name 

ATP Synthase 

Subunits 

F0 sector of membrane-bound ATP synthase, 

subunit a 
atpB 

F1 sector of membrane-bound ATP synthase, 

epsilon subunit 
atpC 

F1 sector of membrane-bound ATP synthase, 

gamma subunit 
atpG 

Biosynthesis/ 

Metabolism 

shikimate kinase I; catalyzes step in chorismate 

biosynthesis 
aroK 

phosphomannomutase/phosphoglucomutase cpsG 

alkaline phosphatase homolog gpmI 

Cell Wall/ LPS 

Biosynthesis 

N-acetylmuramoyl-L-alanine amidase amiC 

protease with a role in cell division envC 

heat shock protein acyltransferase lpxL 

myristoyl-acyl carrier protein-dependent 

acyltransferase; htrB suppressor  
lpxM 

ADP-L-glycero-D-manno-heptose-6-epimerase  rfaD 

Inner membrane protein of unknown function yqjA 

Enterobacterial 

Common Antigen 

(ECA) Synthesis 

 UDP-N-acetylglucosamine:undecaprenyl-

phosphate GlcNAc-1-phosphate transferase 
rfe 

TDP-fucosamine acetyltransferase rffC 

glucose-1-phosphate thymidylyltransferase rffH 

TDP-Fuc4NAc:lipidIIFuc4NAc transferase rffT 

PLP-dependent 

pyridoxine 5'-phosphate (PLP) oxidase  pdxH 

predicted enzyme that binds PLP yggS 

predicted diguanylate cyclase yhjK 

Protein Folding 
monomeric thiol disulfide oxidoreductase  dsbA 

oxidoreductase for reoxidation of DsbA  dsbB 

RNA/DNA 

Synthesis/ 

Degradation 

AMP nucleosidase  activated by PhoB amn 

ATP-dependent RNA helicase deaD 

chaperone Hsp70; DNA biosynthesis dnaK 

Stress Response 

Polynucleotide phosphorylase that protects 

against damage  
pnp 

Heat shock response chaperone; protease  degP 

SoxRS-regulated glucose-6-phosphate 

dehydrogenase 
zwf 

Transporters/ 

Pores 

cytoplasmic component of protein translocase secB 

Sec-independent protein translocase protein tatC 

outer membrane channel protein tolC 

betaine-choline-carnitine-transporter  yeaV 

putative outer membrane protein  yedS 
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protamine as the model AMP to characterize mutant strains identified in the screen and 

explore the mechanisms in which specific loci contribute to resistance. 

Characterization of select loci required for bacterial resistance to protamine 

The role of ATP production in resistance to protamine. Among the mutant strains 

susceptible to protamine were atpB, atpC, and atpG, that encode the a, ε, and γ subunits 

of the F1F0-ATP synthase, respectively. Subsequent analysis demonstrated that deletion 

of any ATP synthase-encoding loci, except atpE and atpA (not tested), resulted in 

increased susceptibility to protamine when compared to the wild-type (Figure 2, left). 

This observation generated the hypothesis that the F1F0-ATP synthase is required for E. 

coli resistance to protamine which is contrary to reports that microcin H47 requires ATP 

synthase for its activity (168) or that various cationic AMPs can bind to the ATP synthase 

and inhibit its activity (169).  

The F1 sector of the ATP synthase catalyzes the reversible processes of ATP hydrolysis 

and synthesis while the F0 sector facilitates proton transport through the inner membrane. 

Therefore, it was necessary to determine whether the synthesis/hydrolysis of ATP or the 

transport of protons through the membrane was required for resistance to protamine. 

Wild-type E. coli cells were challenged with sodium azide (a well-established inhibitor of 

the electron transport chain (ETC) which inhibits cytochrome oxidase activity), 

protamine, and both sodium azide and protamine to determine if inhibition of the ETC 

would increase susceptibility to protamine. On the contrary, bacteria were able to survive 

when challenged with protamine in the presence of sodium azide, similarly as the non-

treated cells (Figure 2, right), indicating that inhibition of ETC does not influence 

susceptibility to protamine and perhaps the generation of ATP was required. It was  
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Figure 2. Effect of ATP synthesis on resistance to protamine.  

(left) Dose-dependent killing of atp mutants show that each mutant assayed, except for 

atpE, was susceptible to protamine. (right) Succinic acid (Suc) is able to increase E. coli 

wild-type resistance to protamine (indicated with *) while sodium azide (SAz) has no 

effect, compared to the untreated cells (-).  
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therefore postulated that protamine could impede, however not abolish, cellular 

respiration at the glycolysis level. This notion is supported by the following observations: 

(i) Deletion of zwf, which encodes the glucose-6-phosphate dehydrogenase (G6PD), 

results in increased susceptibility to protamine (APPENDIX D). G6PD initiates the first 

step in the pentose phosphate pathway (PPP), an alternative pathway used instead of 

glycolysis to generate NADPH and ATP from a glucose substrate. This suggests that 

protamine can target any step in glycolysis between the first step, conversion of glucose 

to glucose-6-phosphate, and an intermediate step, conversion of fructose-6-phosphate to 

fructose 1,6-bisphosphate because the PPP shunt provides an alternative route to produce 

fructose-6-phosphate, after which, the PPP reconvenes with the glycolysis pathway 

(illustrated Figure 3). Thus, protamine should impede the traditional glycolysis pathway 

and inhibit the production of NADH and pyruvate which feed into the next step of 

respiration, the tricarboxylic acid (TCA) cycle. However, cells are able to bypass this 

putative impedance of protamine by using the PPP which serves as a shunt to utilize 

glucose and produce NADPH and ATP. Thus, in the absence of zwf, the shunt is not 

available resulting in the inability to generate ATP, as well as NADH and pyruvate. 

These byproducts are required to continue the process of cellular respiration, thus 

deletion of zwf in the presence of protamine would ultimately inhibit production of ATP 

by oxidative and substrate-level phosphorylation methods. (ii) Deletion of the F1F0-

ATPase (which abolishes the major contributor to ATP production via oxidative 

phosphorylation) increases E. coli susceptibility to protamine, presumably due to the 

inefficient production of ATP from substrate-level phosphorylation. In other words, 

deletion of the major ATP-generating system would be detrimental in the presence of  
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Figure 3. Illustration of the glycolysis and pentose phosphate pathways.  

Protamine is hypothesized to impede the glycolysis pathway between the glucose-6-

phosphate and fructose-6-phosphate intermediate steps. Cells are able to bypass this 

impedance by the pentose phosphate pathway (PPP) which provides an alternative route 

to produce fructose-6-phosphate. Thus, cellular respiration is allowed to continue through 

the tricarboxylic acid cycle (TCA) and electron transfer chain (ETC) to generate ATP. In 

the absence of the glucose-6-phosphate dehydrogenase (G6PD), encoded by zwf, cells 

become susceptible to protamine likely due to the inability to generate sufficient amounts 

of ATP. Likewise, in the absence of the F1F0-ATP synthase, encoded by atp loci, cells 

become susceptible to protamine likely due to the inability to generate sufficient amounts 

of ATP. Additionally, cells can bypass the impedance of protamine by increasing 

substrate amounts, i.e., supplementing glucose or succinic acid, to presumably increase 

the production of ATP. 
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protamine which is impeding the relatively low production of ATP via glycolysis/PPP. 

This analysis is supported by the ability of glucose supplementation to rescue the 

susceptibility of atp mutant cells to protamine (data not shown), which would presumably 

increase the production of ATP via substrate-level phosphorylation by glycolysis/PPP. 

(iii) Supplementation of formate or succinate, organic acids oxidized in the TCA cycle 

(which would increase the production of ATP via substrate-level phosphorylation), is 

able to protect bacterial cells from the oxygen consumption inhibitory effects of  human 

bactericidal/permeability-increasing protein (BPI) and increase bacterial survival in the 

presence of BPI (170) and protamine (Figure 2, right). Cumulatively, these data support 

the hypothesis in which protamine, and likely other AMPs, can impede cellular 

respiration which can ultimately lead to cell death due to the inhibition of ATP 

production (illustrated in Figure 3). 

Protamine susceptible mutants with defective outer membranes. To continue analysis of 

the loci identified in the primary screen, the susceptibilities of the mutants to various 

antibiotics and compounds were determined in order to ascertain the physiological 

condition of the mutant cells. Sodium dodecyl sulfate (SDS) and vancomycin (VAN) 

were used as tools to detect any deficiencies in the outer membrane. Deletion of envC, 

pnp, amiC, lpxL, and tatC were more susceptible to VAN than the isogenic wild-type 

(Figure 4). Similarly, deletion of envC, pnp, amiC, rfaD, and tolC were more susceptible 

to SDS than the isogenic wild-type (Figure 4). While a tolC deletion mutant is known to 

be sensitive to SDS due to the inability to pump the drug out of the cell (171), it is likely 

that the other mutant strains have defects in their outer membranes which likely increases 

permeability allowing certain compounds to enter the cell that would normally be  
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Figure 4. Gene mutant strains with increased drug sensitivity.  

Several protamine sensitive mutants are sensitive to vancomycin (VAN) and sodium 

dodecyl sulfate (SDS) inferring an increase in membrane permeability. 
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prevented by an intact outer membrane. Notably, deletion of tatC has previously been 

shown to have a defective outer membrane and thus increased susceptibility to VAN (15, 

52, 53).  

Analysis of TolC-dependent resistance to protamine. Deletion of tolC, which encodes an 

outer membrane protein involved in drug efflux, was found to result in increased 

susceptibility to protamine (APPENDIX D), suggesting a role of drug efflux systems in 

bacterial resistance to AMPs. TolC represents the outer membrane component of the 

classic AcrAB-TolC tripartite resistance-nodulation-division (RND) efflux pump in E. 

coli which facilitates the efflux of various classes of compounds out of the bacterial cell 

(discussed in (172)). It is therefore not surprising that deletion of tolC renders cells 

sensitive to AMPs since previous efforts have demonstrated the role of RND-type efflux 

pumps in bacterial resistance to AMPs in E. coli (44), Neisseria gonorrhoeae (173), 

Neisseria meningitidis (174), Campylobacter (175), Pseudomonas (176, 177), 

Yersinia (178), and Helicobacter (179). While deletion of tolC resulted in increased 

susceptibility to protamine, deletion of acrA or acrB also increased susceptibility (Figure 

5), compared to the isogenic wild-type, suggesting that an additional TolC-dependent 

efflux system could mediate bacterial resistance to protamine.  

TolC is often considered a promiscuous protein as it has many binding partners with 

other pumps, including partners belonging to other classes of efflux pumps (reviewed in 

(180)). Therefore, I sought to identify the partner(s) wtih which TolC coordinates to 

confer resistance to protamine on E. coli. Mutants of each family of drug transporter 

systems including acrA, acrB, acrD, acrE, acrF, mdtE, and mdtF (which belong to the  
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Figure 5. Protamine sensitivity assay of TolC-dependent mutants.  

Protamine sensitivity assay of mutant strains of genes encoding TolC-dependent efflux 

pumps. Deletion of acrA, acrB, emrA, and emrB render cells more susceptible (**) to 

protamine when compared to the isogenic wild-type, but not as susceptible as tolC or 

tatC controls (***). 
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RND family of drug transporter systems), emrA, emrB, emrK, and emrY (which belong to 

the major facilitator superfamily (MFS) of drug transporter systems), macA and macB 

(which belong to the ATP-binding cassette (ABC) family of drug transporter systems), 

and msbA, mdlA, mdlB, cydC, glnQ, and metN (which encode HlyB homologs of 34%, 

31%, 28%, 32%, 36%, and 34% sequence similarity, respectively, and belong to the ABC 

family of drug transporter systems) were individually challenged against protamine to 

determine if deletion of any gene could result in increased susceptibility to protamine 

when compared to wild-type. Indeed, deletion of acrA, acrB, emrA, and emrB resulted in 

increased susceptibility to protamine when compared to the isogenic wild-type; however, 

these mutants lower susceptibility when compared to the tolC deletion mutant (Figure 5). 

Thus, double mutants were constructed to determine if an additive effect was observed 

due to the contribution of multiple efflux systems in resistance to protamine. Double 

mutants containing either acrB or emrB along with a representative of an additional 

efflux system were constructed and challenged against protamine. As expected, deletion 

of acrB and emrB resulted in increased susceptibility compared to either individual 

mutant, however, lower susceptibility when compared to the tolC deletion mutant 

(Figure 6). Additionally, deletion of acrB along with any other efflux representative (i.e., 

acrE, emrY, glnQ, macB, mdtF, or metN), but not mdlB, resulted in increased 

susceptibility to protamine compared to any single mutant; however, none of these was as 

susceptible as the tolC mutant (Figure 6).  

A final set of mutants were constructed in which three genes (two of which were acrB 

and emrB) representing independent efflux systems were deleted in a single strain to 

determine if a cumulative effect could be observed when challenged against protamine.  
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Figure 6. Protamine sensitivity assay of TolC-dependent double mutants.  

Protamine sensitivity assay of double and triple mutant strains of genes encoding TolC-

dependent efflux pumps. An acrB emrB double deletion renders cells more susceptible to 

protamine when compared to either single deletion, however, not as susceptible as a tolC 

deletion. Deletion of a third TolC-dependent system (i.e., acrE, emrY, glnQ, macB, mdtF, 

or metN) renders triple mutant cells as sensitive to protamine as a tolC deletion, except 

for simultaneous deletion of mdlB in an acrB emrB background. 
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Not surprisingly, deletion of any other efflux system representative, except for mdlB, 

along with simultaneous deletion of acrB and emrB resulted in increased susceptibility to 

protamine similar to the tolC deletion (Figure 6), suggesting a global role of TolC-

dependent efflux systems in resistance to protamine. Cumulatively, these data suggest 

that the AcrA/AcrB and EmrA/EmrB systems are major efflux contributors to bacterial 

resistance to protamine, while the other systems, except for MdlB, play a modest role 

only in the absence of AcrA/B or EmrA/B. Although protamine has a relatively large 

molecular weight (~4,000 Da) compared to characterized substrates of TolC-dependent 

efflux systems, it is possible that TolC mediates the transport of protamine out of the cell 

as it is able to do for other large compounds such as haemolysin and colicins (181) and 

since AMPs have been demonstrated to be substrates of RND pumps in various bacterial 

species (44, 175-179). 

Characterization of loci required for bacterial resistance to multiple antimicrobial 

peptides 

Analysis of candidates susceptible to two or more AMPs. Surprisingly, a majority of the 

mutant strains identified in each screen were sensitive to only a single AMP. This 

suggests that (i) the gene indirectly contributes to resistance or (ii) each AMP exerts its 

bactericidal activity via different mechanisms. Overall, the screen identified 112 mutants 

that were susceptible to at least one screened peptide (APPENDIX D); 24 (~21%) of 

those mutants were found to be susceptible to two or more screened AMPs (Figure 7), 

while 13 (~12%) were susceptible to two or more classes of AMPs (Figure 7, solid line) 

suggesting a global contribution of their gene products to bacteria resistance to AMPs.  
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  Gene Name P R 6 30   Survival % Color Code 

  citT           <15%   

  dadX           15-30%   

  ddpX           30-45%   

  fadB           45-60%   

  feaR           60-75%   

  kdpA           75-90%   

  mak           >90%   

  nfo               

  recJ               

  xthA               

  yijO               

  recA               

  rffC               

  rffT               

  tatC               

  argR               

  cpxR               

  crp               

  ygfZ               

  ompA               

  rfaD               

  rfe               

  rffH               

  yggS               

Figure 7. Gene mutants found to be susceptible to 2 or more AMPs.  

Heat map illustrating gene mutants found to be susceptible to 2 or more AMPs in the 

screen.Thick line, mutants susceptible to 2 or more classes of AMPs; double line, mutants 

susceptible to both cathelicidins; dashed line, mutants susceptible to all classes of AMPs 

analyzed;  P, protamine; R, RTD-2; 6, OH-CM6; 30, OH-CATH30. 
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Moreover, only three mutants (rffC, rffT, and tatC) were susceptible to all three 

classes screened (Figure 7, dashed line); thus, these genes were further analyzed.  

Analysis of candidates susceptible to each AMP class. Deletion of tatC rendered E. coli 

cells susceptible to each class of AMPs analyzed in this study. Specifically, cells were 

susceptible to protamine, -defensin RTD-2, and cathelicidin OH-CATH30 (Figure 7). 

The tatC gene encodes a member of the twin arginine transport (Tat) system that 

transports globular proteins across the cytoplasmic membrane (45). Since tatC encodes 

an integral component of a transport system, it was hypothesized that a Tat-dependent 

substrate, and not the Tat system itself, is directly responsible for bacterial resistance to 

AMPs. Indeed, the transport of peptidoglycan amidases AmiA and AmiC to the 

periplasm was determined to be required for bacterial resistance to protamine 

(demonstrated in Chapter 2, (15)).  

Deletion of rffC and rffT rendered E. coli cells susceptible to each class of AMPs 

analyzed in this study. Specifically, the rffC mutant was susceptible to each AMP while 

the rffT mutant was susceptible to protamine, -defensin RTD-2, and cathelicidin OH-

CAM6 (Figure 7).  The rffC and rffT genes encode enzymes involved in the conversion 

of lipid II to lipid III in biosynthesis of the enterobacterial common antigen (ECA) (182). 

It was previously reported that deletion of rffA (wecE), rffT (wecF), and rffH (rmlA), 

which encode enzymes involved in the conversion of lipid II to lipid III, increased E. coli  

sensitivity to bile salts as they were unable to grow on MacConkey agar plates (55). The 

authors postulated that the accumulation of the lipid II intermediate was directly 

responsible for the increased susceptibility since deletion of rfe could rescue  
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Figure 8. Enterobacterial common antigen biosynthesis pathway. 

Illustration of the biosynthesis of the enterobacterial common antigen (adapted from 

(55)). 
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susceptibility (55). Therefore, it was hypothesized that accumulation of lipid II in the rffC 

and rffT mutants is responsible for the susceptibility to AMPs.  

Characterization of the role of the rfe-rff gene cluster in resistance to antimicrobial 

peptides 

Analysis of the rfe-rff gene cluster in resistance to AMPs. Members of the rfe-rff operon 

encode enzymes required for the biosynthesis of ECA (illustrated in Figure 8). If 

accumulation of lipid II was the cause of the increased susceptibility to AMPs, then 

deletion of other loci in the rfe-rff gene cluster should not be sensitive to AMPs as their 

gene products function elsewhere in the biosynthesis pathway. A more stringent AMP 

killing assay was conducted in which deletion of individual members of the rfe-rff gene 

cluster were challenged with the model AMP, protamine. Deletion at any locus, except 

rffG and wzzE, resulted in increased susceptibility to protamine when compared to wild-

type (Figure 9, left). This suggested the following: (i) lack of ECA, and not the 

accumulation of lipid II or any other intermediate, is responsible for the increased 

susceptibility to AMPs; and, (ii) RffG and WzzE likely have functional homologs that 

can rescue the ECA biosynthesis when these enzymes are absent. Indeed, RffG and RfbB 

(also a dTDP-glucose 4,6-dehydratase) have a 74% amino acid similarity, while WzzE 

has a 24% and 23% amino acid similarity with Cld and FepE (both also polysaccharide 

chain length modulation proteins), respectively, suggesting possible redundant or 

overlapping functions. Indeed, a rffG rfbB double mutant resulted in increased 

susceptibility to protamine, while wzzE cld and wzzE fepE exhibited no increase in 

susceptibility (Figure 9, right).  
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Figure 9. Susceptibility profile of mutants of the rfe-rff gene cluster.  

(left) Susceptibility profile of the rfe-rff gene cluster demonstrates that ECA is required 

for resistance to protamine and deoxycholate (DOC). (right) Double deletion of rffG and 

rfbB (rffG rfbB) makes cells susceptible to protamine. 
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Analysis of the rfe-rff gene cluster in resistance to bile salts. The observation that 

deletion of genes encoding enzymes required at any step of the ECA biosynthesis 

pathway resulted in increased susceptibility to protamine prompted a re-investigation into 

the role of ECA in resistance to bile salts. Again, it was previously determined that 

deletion of rffA (wecE), rffT (wecF), and rffH (rmlA) resulted in increased sensitivity to 

bile salt presumably due to the accumulation of the lipid II intermediate (55). However, 

another group demonstrated that deletion of Salmonella rfe (wecA) and rffC (wecD) 

caused sensitivity to the bile salt deoxycholate (57), thus dismissing the notion that lipid 

II accumulation caused sensitivity to bile salt since deletion of rfe abolishes the initiation 

of ECA biosynthesis. To support these findings, deletion of individual members of the 

rfe-rff gene cluster were challenged with deoxycholate. Deletion at any locus, except 

rffG, wzzE, and wzxE resulted in increased susceptibility to deoxycholate when compared 

to wild-type (Figure 9, left), further demonstrating that the lack of ECA, and not the 

accumulation of intermediates, is responsible for the susceptibility to bile salts.  

Deletion of ECA does not alter membrane permeability. The possibility that deletion of 

ECA could indirectly influence the susceptibility of bacteria to antimicrobials such as 

AMPs and bile salt was acknowledged. It is documented that alterations to cell wall and 

cell envelope components can increase membrane permeability (183) making cells more 

susceptible to various compounds, including sodium dodecyl sulfate (SDS) and 

vancomycin (VAN). With this in mind, survival assays were conducted with individual 

mutants of the rfe-rff gene cluster to determine if mutation would affect the sensitivity to 

SDS or vancomycin which would suggest a defect in the outer membrane. Notably, there 

was no increase in susceptibility to either compound compared to wild-type (Figure 10  
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Figure 10. SDS survival assay of rfe-rff gene cluster mutants. 

SDS survival assay of gene mutants of the rfe-rff gene cluster. 
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and data not shown), suggesting that deletion of ECA does not affect membrane 

permeability, thus inferring that it is the lack of ECA that is directly responsible for the 

increased susceptibility to AMPs and bile salts. 

The physiological role of ECA remains to be elucidated. Interestingly, rfe and rffC 

mutants were highly attenuated in a mouse model when orally inoculated, suggesting a 

protective role of ECA in virulence; and also intraceullular survival by protecting bacteria 

from bile salts (57) and AMPs (Figure 9). Therefore, understanding the means by which 

inhibition of ECA biosynthesis, or accumulation of its intermediates, confers sensitivity 

to bile salts and AMPs remain elusive. It has been postulated that the incomplete 

trisaccharide may impede the biosynthesis of the cell envelope near the site of ECA 

biosynthesis which may make the outer membrane more permeable (55). However, the 

data presented suggest otherwise due to the lack of sensitivity to SDS and vancomycin 

(Figure 10 and data not shown). Another theory suggests that protamine can act on E. 

coli similar to the way the AMP nisin acts on Gram-positive bacteria by binding to lipid 

II. It is possible that the accumulation of the ECA intermediates can increase the negative 

charge of the outer membrane resulting in increased electrostatic attraction between the 

AMP and cell membrane. While this theory may be correct, it does not explain why 

inhibition of ECA biosynthesis altogether by deletion of rfe results in increased 

susceptibility to protamine or deoxycholate (Figure 9, (57)). 

It is plausible that the susceptibility to AMPs caused by deletion of rfe is due in part to 

the absence of ECA, but also due to the absence of the LPS O-antigen since Rfe is also 

required for biosynthesis of the O-antigen (182, 184). 
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Conclusion 

Overall, the systematic screens were successful in identifying genetic loci required for 

bacterial resistance to multiple AMPs. The identification of these loci can now serve as a 

tool to identify novel genetic circuitries required for resistance and likely other 

physiologically significant processes. Interestingly, data from the screen support 

postulations that AMPs work by different mechanisms while also describing some 

overlapping features. Specifically, the identification of the enterobacterial common 

antigen as a protector for antimicrobial substances is an important finding as it further 

posits a physiological role for ECA in survival and adaptation in host environments. 

Furthermore, the identification of these loci has served as a basis for the work described 

in the upcoming chapters. 
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CHAPTER 2 

IDENTIFICATION OF TAT-DEPENDENT SUBSTRATES REQUIRED FOR 

BACTERIAL RESISTANCE TO ANTIMICROBIAL PEPTIDES 

Introduction 

The phenotypic screens carried out in Chapter 1 indicated that the tatC locus is required 

for bacterial resistance to antimicrobial peptides (AMPs) since deletion of tatC resulted in 

susceptibility to each AMP class analyzed (Figure 7). Wild-type resistance could be 

restored by expression of a plasmid (pBAD-tatC) harboring a wild-type copy of tatC and 

not a vector only (pBAD) control (Figure 11). This suggests that tatC, which encodes an 

integral component of the twin-arginine transporter (Tat) system, a Sec-independent 

system responsible for the transport of globular proteins across the inner membrane (45), 

has a global role in bacterial resistance to AMPs. The Tat system, encoded by the 

chromosomal loci tatA, tatB, and tatC, has many characterized substrates with diverse 

cellular functions, including ion acquisition, energy metabolism, cell wall biosynthesis, 

and virulence (reviewed in (47)). Since tat encodes a transporter, it was hypothesized that 

a Tat-dependent substrate(s) is directly required for bacterial resistance to AMPs. 

Identification of Tat-dependent substrates required for bacterial resistance to AMPs 

To identify the possible Tat-dependent substrate(s) required for resistance to AMPs, a 

more stringent screen was conducted using Escherichia coli mutants whose gene 

products encode one of the approximately 40 proteins that have been experimentally 

proven or hypothesized to be transported by the Tat system (Table 7). Deletion of either 

amiA or amiC resulted in an increase in protamine susceptibility when compared to wild-

type, but was not as susceptible as ∆tatC. amiA and amiC mutants were constructed in 
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Table 7. Analysis of Tat-dependent substrates in resistance to protamine. 

Ref. 
Gene 

Product 
Function 

Protamine 

(R/S) 
(45, 185)  AmiA N-acetylmuramoyl-L- alanine amidase I  susceptible  
(45, 185) AmiC N-acetylmuramoyl-L- alanine amidase  susceptible  
(185) CitE citrate lyase beta chain  resistant 
(45)(185) CueO multicopper oxidase resistant 
(45, 185) DmsA dimethyl sulfoxide reductase, A  resistant 
(45, 185) FdnG formate dehydrogenase resistant 
(45, 185) FdoG formate dehydrogenase resistant 
(45, 185) FhuD hydroxamate dependent iron uptake resistant 
(185) HolD DNA polymerase III, psi subunit resistant 
(45, 185) HyaA hydrogenase 1, small subunit  resistant 
(45, 185) HybA putative hydrogenase resistant 
(45, 185) HybO putative hydrogenase resistant 
(45, 185) MdoD glucans biosynthesis resistant 
(45, 185) NapA periplasmic nitrate reductase resistant 
(45, 185) NapG ferredoxin, electron transfer  resistant 
(45, 185) NrfC formate dependent nitrate reductase  resistant 
(185) PepE alpha-aspartyl dipeptidase resistant 
(185) PepP proline aminopeptidase II  resistant 
(185) PgpB phosphatidylglycerophosphate phosphatase  resistant 
(45, 185) SufI suppressor of ftsI  resistant 
(185) ThiP thiamine transporter, ABC family  resistant 
(45, 185) TorA TMAO reductase resistant 
(45, 185) TorZ biotin sulfoxide reductase 2  resistant 
(45, 185) WcaM putative colanic acid biosynthesis  resistant 
(45) YaeI putative phosphodiesterase resistant 
(45, 185) YagT unknown resistant 
(45, 185) YahJ putative deaminase  resistant 
(185) YbfL pseudogene resistant 
(185) YbiP putative integral membrane protein resistant 
(45, 185) YcbK putative outer membrane protein  resistant 
(45, 185) YcdB putative iron dependent peroxidase resistant 
(45) YcdO unknown resistant 
(185) YcgF putative phosphodiesterase resistant 
(185) YdcG/MdoG glucan biosynthesis resistant 
(45, 185) YdhX putative oxidoreductase resistant 
(45, 185) YedY putative nitrate reductase  resistant 
(185) YidJ putative sulfatase resistant 
(185) YkfF putative prophage protein resistant 
(45, 185) YnfE oxidoreductase resistant 
(45, 185) YnfF putative dimethyl sulfoxide reductase resistant 
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in S. typhimurium and also found to be susceptible to protamine when compared to wild-

type, but not as susceptible as the ∆tatC and phoP controls (Figure 11, (15)).  

To confirm that deletion of the amiA and amiC loci was solely responsible for the 

increased susceptibility to protamine, plasmids for each gene were constructed in which 

the coding region for amiA and amiC was inserted into the IPTG-inducible pUHE21-

2lacI
q
 vector (157) to construct pUHE-amiA (pamiA) and pUHE-amiC (pamiC), 

respectively. Introduction of the plasmids into their respective mutants restored resistance 

of each mutant to wild-type levels (Figure 11, (15)).  

Both amiA and amiC encode N-acetylmuramoyl-L-alanine amidases that cleave the bond 

between the L-alanine and N-acetylmuramoyl residues of the peptidoglycan matrix (51, 

60) and are transported to the periplasm by the Tat system (51, 61). The redundant 

function of these amidases suggested that there could be an additive effect when both loci 

were deleted in a single strain. Data supported this hypothesis because deletion of both 

amiA and amiC genes (amiA amiC) in a single strain was more susceptible to protamine 

than either single mutant, which could be rescued to single deletion-mutant levels when a 

plasmid harboring either gene was introduced (Figure 11, (15)). Interestingly, the amiA 

amiC double mutant was not as susceptible to protamine as the tatC mutant suggesting 

that there may be an additional Tat- dependent substrate(s) required for resistance to 

protamine. This prompted an investigation to identify the potential substrates. 

Analysis of Tat double and triple mutant susceptibility to protamine 

It is plausible that AmiA and AmiC are not the only Tat-dependent substrates responsible 

for bacterial resistance to protamine. It is possible that other substrates contribute to 

resistance to a lesser extent than AmiA and AmiC; therefore, the individual deletion may  
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Figure 11. Complementation of protamine sensitivity.  

Susceptibility of Salmonella ΔphoP, Δ tatC, Δ amuA, Δ amiC, andΔ amiA ΔamiC 

mutants to protamine can be rescued by a plasmid harboring a wild-type copy of the 

respective gene. 
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not have an obvious phenotype. To explore this possibility, individual deletion of E. coli 

genes encoding Tat-dependent substrates were introduced into an amiA amiC double 

mutant. Triple mutants were then challenged against protamine to determine if the triple 

mutant would render cells more susceptible to the AMP than the amiA amiC double 

mutant. Indeed, deletion of citE, fdnG, hyaA, sufI, wcaM, yaeI, yagT, yahJ, ybiP, ycbK, 

yedY, or ynfE in the amiA amiC strain increased susceptibility to protamine compared 

to amiA amiC double mutant (Figure 12, top). Notably, several of these loci encode 

products that function in cellular respiration. Therefore, it was postulated that deletion of 

tatC has a negative effect on cellular respiration, which makes cells susceptible to AMPs.  

A systematic analysis was conducted in which double mutants of genes encoding Tat-

dependent substrates involved in cellular respiration were constructed. The double 

mutants were then challenged against protamine to determine if cells were susceptible 

compared to the isogenic wild-type. Deletion of both napA and ynfF (ΔnapA ΔynfF) in a 

single strain rendered cells more susceptible to protamine, however, not as susceptible as 

the ΔtatC mutant strain (Figure 12, bottom). It remains to be determined how napA, 

which encodes a periplasmic nitrate reductase, and ynfF, which encodes a paralog of the 

DmsA dimethyl sulfoxide reductase (186), together contribute to resistance to protamine. 

These enzymes are similar in that they require molybdenum cofactors for reduction of 

nitrate (187, 188). However, nitrate is generally reduced in anaerobic conditions 

suggesting that these enzymes can function in aerobic processes or the presence of 

protamine mimics an anaerobic environment, i.e., protamine targets cellular respiration 

(discussed in Chapter 1) and, as a result, may impede the use of oxygen as an acceptor in 

the electron transfer chain. This hypothesis is supported by the following observations: 
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Figure 12. Protamine sensitivity assay of Tat-dependent mutants.  

(top) Protamine susceptibility assay of amiA amiC triple mutants. Deletion of citE, 

fdnG, hyaA, sufI, wcaM, yaeI, yagT, yahJ, ybiP, ycbK, yedY, or ynfE in a amiA amiC 

background increases susceptibility to protamine, similarly as tatC mutant. Solid red 

circle, WT; dashed red circle, tatC mutant; long dashed red circle, amiA amiC 

mutant; dashed green circle, amiA amiC triple mutant. (bottom) Protamine 

susceptibility assay using double mutants of genes encoding Tat-dependent substrates 

involved in cellular respiration demonstrates that deletion of both napA and ynfF results 

in increased susceptibility to protamine. (bottom, left) Double mutants were spotted onto 

LB agar plates with various concentrations of protamine. Solid red circle, WT; dashed 

red circle, tatC mutant; dashed green circle,napA ynfF mutant. (bottom, right) 

Determination of cfu survival of tatC, napA, ynfF and napA ynfF. 
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(i) protamine (at a concentration within the range tested in this study) has been previously 

demonstrated to inhibit oxygen consumption (189); (ii) deletion of the F1F0-ATPase 

(which abolishes the production of ATP via oxidative phosphorylation) increases E. coli 

susceptibility to protamine (Figure 2) presumably due to the inefficient production of 

ATP from substrate-level phosphorylation; and, (iii) supplementation of formate or 

succinate, organic acids oxidized in the tricarboxylic acid cycle, (which should increase 

the production of ATP via substrate-level phosphorylation) is able to protect bacterial 

cells from the oxygen consumption inhibitory effects of  human bactericidal/ 

permeability-increasing protein (BPI) and increase bacterial survival in the presence of 

BPI (170) and protamine (Figure 2). Nevertheless, it remains to be determined how these 

nitrate-reducing enzymes facilitate protamine resistance since exogenous nitrate was not 

added to the bacteria-AMP challenge systems. 

Conclusion 

Cumulatively, the data presented here demonstrate the importance of the Tat system in 

bacterial resistance to AMPs. The Tat system transports proteins involved in various 

cellular functions (reviewed in (47)); therefore, it stands to reason that the absence of the 

Tat system as a whole, and not just individual substrates, is detrimental to bacterial cells 

in the presence of AMPs. Nevertheless, it is clear that peptidoglycan amidase, AmiA and 

AmiC, as well as two nitrate-reducing enzymes, NapA and YnfF, contribute to the Tat-

dependent resistance since deletion of genes encoding these enzymes increases bacterial 

susceptibility to protamine.  
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CHAPTER 3 

GENETIC AND BIOCHEMICAL ANALYSIS OF NOVEL CPXR/A-DEPENDENT 

LOCI REQUIRED FOR BACTERIAL RESISTANCE TO ANTIMICROBIAL 

PEPTIDES 

Introduction 

The Escherichia coli cpxRA operon encodes a two-component system comprised of a 

sensor kinase, CpxA, and its cognate response regulator, CpxR, that controls a specific 

set of genes in response to cell envelope stress caused by several factors, including 

alkaline pH, high osmolarity, inner membrane disruptions, misfolded proteins, and 

starvation (reviewed in (10)). CpxR/A represents one of three characterized stress 

response systems, including BaeRS and σ
E
, that work coordinately and individually to 

maintain cell envelope integrity under various harsh extracytoplasmic conditions. 

Specifically, CpxR/A has been suggested and experimentally demonstrated to contribute 

to bacterial virulence discussed in (190)), biofilm formation (13), and chemotaxis (14), 

by upregulating a multitude of genes in response to their respective signals. Recently, 

CpxR/A has been demonstrated to facilitate bacterial resistance to various classes of 

antimicrobial substances, including antimicrobial peptides ((15) and this chapter) and 

antibiotics (17-20) by upregulating target promoters; meanwhile facilitating the 

bactericidal effects of peptidoglycan recognition proteins (PGRPs) (21) and certain 

classes of antibiotics (22). 

CpxR-dependent regulation of amiA and amiC promoters 

Genetic screen to identify transcriptional regulators of amiA and amiC. As described in 

Chapter 2, two N-acetylmuramoyl-L-alanine amidases, encoded by amiA and amiC, are 
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required for bacterial resistance to AMPs because deletion of amiA and amiC resulted in 

increased susceptibility to protamine (Figure 11). To gain insight regarding the 

regulatory mechanism in which these amidases work to confer bacterial resistance to 

AMPs, regulatory factors were sought to determine how these genes were regulated. To 

identify putative transcriptional regulators of amiA and amiC, a blue/white genetic screen 

was carried out using chromosomal lac fusions (156) constructed at both Salmonella 

typhimurium loci (to generate ∆amiA-lac and ∆amiC-lac) and a plasmid library 

(constructed with the multi-copy number plasmid, pUC19) introduced into each strain. 

The premise of the screen (illustrated in Figure 13) was that if an activator was 

overexpressed, it would increase transcription of its target genes. Thus, the lac fusion 

would produce more β-galactosidase which could be visualized by cells with an intense 

blue color when plated on media containing X-gal, an analog of the natural substrate of β-

galactosidase, lactose. On the other hand, if a repressor was overexpressed, the lac fusion 

would produce less β-galactosidase which could be visualized by a white color when 

plated on media containing X-gal. It was unlikely that a repressor would be identified due 

to the relatively low level of transcription from the lac fusions (<15 Miller Units); 

therefore, efforts were focused on identifying putative activators.  

Characterization of chromosomal regions that increase transcription of amiA and amiC. 

To identify the activator(s) of amiA and amiC, plasmids of dark blue colonies were 

isolated and sequenced to identify the DNA sequence that was overexpressed. Multiple 

plasmids selected from dark blue colonies contained a Salmonella typhimurium LT2 

chromosomal region from 281130 to 283006 in the ∆amiA-lac strain (Figure 14). This 

region contains two open reading frames, yaeJ and nlpE, which forms an operon with  
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Figure 13. Schematic of screen to identify amiA and amiC activators. 

Illustration of the blue/white screen conducted to identify potential transcriptional 

activators of amiA and amiC. 
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yaeQ on the chromosome (191). To determine which gene was responsible for the 

activation, yaeJ and nlpE were each cloned into the IPTG-inducible pUHE21-2lacI
q
 

vector (157) to obtain pUHE-yaeJ (pyaeJ) and pUHE-nlpE (pnlpE). The resulting 

plasmids were introduced into the ∆amiA-lac strain and β-galactosidase activity was 

determined. 

Overexpression of nlpE, but not yaeJ, was able to activate ∆amiA-lac transcription 

because β-galactosidase activity was detected only when nlpE was overexpressed (Figure 

14, (15)). Interestingly, chromosomal fragments representing the same chromosomal 

region were isolated and characterized from dark blue colonies in the ∆amiC-lac library. 

As expected, overexpression of nlpE, but not yaeJ, was able to increase ∆amiC-lac 

transcription because β-galactosidase activity increased 5- to 6-fold when compared to 

the vector only control (Figure 14, (15)). NlpE is a lipoprotein involved in copper 

homeostasis and adhesion (192, 193) and has been reported to stimulate the regulatory 

activity of the CpxR/A system (194).  Therefore, it was hypothesized that induction of 

amiA and amiC transcription by nlpE overexpression was dependent on CpxR. To 

determine this, the cpxR locus was deleted in both ∆amiA-lac and ∆amiC-lac strains 

containing pnlpE. As expected, deletion of cpxR prevented induction of both loci by nlpE 

(Figure 15, (15)), further suggesting that the Cpx system transcriptionally regulates these 

genes. 

Analysis of CpxR-dependent regulation of amiA and amiC. To further determine the role 

of CpxR in the regulation of amiA and amiC, in vitro assays were performed to ascertain 

the specificity of CpxR-dependent activation of amiA and amiC. First, transcription start 

sites for each gene were identified via primer extension. To further establish CpxR-  
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Figure 14. Chromosomal region that activates amiA and amiC.  

(top) Chromosomal region contained in a plasmid identified in the screen that activates 

ΔamiA-lac contains two genes, yaeJ and nlpE. (bottom) β-galactosidase activity of 

ΔamiA-lac and ΔamiC-lac harboring a vector or plasmids containing yaeJ (pyaeJ) or 

nlpE (pnlpE) determines that nlpE is responsible for the activation of ΔamiA-lac and 

ΔamiC-lac (15). 
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Figure 15.  CpxR/A-dependent induction of amiA and amiC.  

β-galactosidase activity of ΔamiA-lac (top) and ΔamiC-lac (bottom) harboring a control 

plasmid (vector) or plasmids containing yaeJ (pyaeJ) or nlpE (pnlpE) in a wild-type and 

ΔcpxR background. Overexpression of nlpE, but not others, can activate transcription in a 

wild-type but not ΔcpxR background (15). 
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dependent expression, RNA was isolated from wild-type vector, wild-type pnlpE, and 

ΔcpxR pnlpE strains and reverse transcribed using 
32

P-labeled primer 1472 to generate 

32
P-cDNA of the putative amiA promoter. Samples were analyzed on a 6% acrylamide-

urea gel in which cDNA fragments ran according to their size in length (representing the 

transcription start site) and compared to a ladder generated from a Maxam and Gilbert 

A+G reaction. The amiA promoter generated two transcript products located 71 and 62 bp 

upstream of the start codon (Figure 16, (15)) suggesting that transcription could be 

initiated from two locations. Additionally, the cDNA level of both transcripts increased 

when nlpE was overexpressed in wild-type, but not in ΔcpxR, further demonstrating 

CpxR-dependent activation of amiA transcription. Meanwhile, a single transcript located 

220 bp upstream of the amiC start codon was characterized using 
32

P-labeled primer 1482 

(Figure 16, (15)). Likewise, the cDNA level was significantly increased in a CpxR-

dependent manner when nlpE was overexpressed.  

Further analysis of the putative amiA and amiC promoter regions established by the 

primer extension analysis were carried out. In silico analysis revealed the presence of two 

imperfect direct repeat sequences (Figure 17, top), 5’-GAAAT-N5-GTAAA-3’ (solid 

box) and   5’-GTATT-N5-GAAAA-3’ (dashed box) located 96 bp and 101 bp, 

respectively, upstream of the amiA start codon. These sequences are similar to the well-

established CpxR consensus sequence, 5’-GTAAA-N5-GTAAA-3’ (195), suggesting that 

CpxR could directly bind to these sequences. To determine the specific nucleotide 

sequence in which CpxR binds, DNase I footprinting assays were carried out using 

purified His6-CpxR protein and DNA generated with primers 
32

P-1567 and 1472 for the 

coding strand and 
32

P-1472 and 1567 for the noncoding strand that represent the putative 
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Figure 16. Primer extension analyses of amiA and amiC promoters.  

Primer extension analysis of amiA (left) and amiC (right)  transcripts. mRNA was 

isolated from wild-type vector, wild-type pnlpE, and cpxR pnlpE backgrounds and 

reverse transcribed using 
32

P-labeled primers. cDNA samples were ran against a ladder 

(AG) prepared from DNA synthesized from the same 
32

P-labeled primers. (left) Analysis 

of the amiA promoter provides evidence of two transcription start sites located 71 and 62 

bp upstream of the start codon. (right) Analysis of the amiC promoter provides evidence 

of a transcription start site located 220 bp upstream of the start codon (15). 
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amiA promoter region.  As predicted, the His6-CpxR protein was able to protect the amiA 

promoter region from -118 to -74 (numbering from the amiA start codon) in the coding 

strand, and the -106 to -80 region in the noncoding strand (RI, Figure 17), which 

includes the predicted CpxR binding sites.  The predicted CpxR box located from -96 to -

82 in the amiA promoter is located upstream of the putative -10 and partly overlaps with 

the putative -35 regions for 
70

 to start transcription from -62 (nucleotide G, Figure 17). 

The other predicted CpxR box located from -101 to -87 is located between the alternative 

putative -10 and -35 regions and remains to be determined if it is involved in 

transcription initiated from -71 (nucleotide T, Figure 17). It is clear, however, that the 

sequence representing RI is required for CpxR binding because substitution of RI 

abolishes His6-CpxR protection from DNase I (Figure 17). An additional region (RII, 

Figure 17), was weakly protected by CpxR. However, due to its location downstream of 

the transcription start site and lack of a homologous CpxR box, it is unlikely to have a 

CpxR-dependent regulatory function. 

Likewise, an in silica analysis revealed a putative CpxR box, 5’-ATAAA-N5-GTAAA-3’, 

located 250 bp upstream of the amiC start codon and on the opposite strand (Figure 18, 

top). DNase I footprinting analysis was conducted using DNA generated with primers 

32
P-1484 and 1482 for the coding strand and 

32
P-1482 and 1484 for the noncoding strand. 

The analysis demonstrated that His6-CpxR protein could protect the amiC promoter 

region from -257 to -232 of the coding strand and from -257 to -232 of the noncoding 

strand (R, Figure 18) which includes the putative CpxR box. Thus, the CpxR box is 

located on the opposite strand and between the -35 and -10 regions relative to the 

identified transcription start site at -220 (nucleotide T, Figure 18). Additionally, CpxR 
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Figure 17. Analysis of the amiA promoter.  

(top) In silico analysis of the amiA promoter reveals the presence of two putative CpxR 

binding sites (boxed) relative to the two identified transcription start sites (uppercase and 

bold nucleotides) and the start codon (uppercase, ATG). The underlined region represents 

the sequence protected by CpxR after DNase I digestion (single underline, protected 

region I (RI); double underline, protected region II (RII)). (bottom) DNase I footprinting 

assay reveals two regions protected by CpxR protein, RI and RII on the noncoding (left 

panel) and coding (middle panel) strands. Binding by CpxR is specific to the sequence 

since substitution of RI abolishes protection (right panel) (15). 
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Figure 18. Analysis of the amiC promoter.  

(top) In silico analysis of the amiC promoter reveals the presence of a putative CpxR 

binding site (boxed) relative to the identified transcription start site (uppercase and bold 

nucleotide) and the start codon (uppercase, ATG). The underlined region represents the 

sequence protected by CpxR after DNase I digestion. (bottom) DNase I footprinting 

assay reveals a region (R) protected by CpxR protein on the noncoding (left panel) and 

coding (middle panel) strands. Binding by CpxR is specific to the sequence since 

substitution of R abolishes protection (right panel) (15). 
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binding to the sequence represented by R is specific because substitution of R abolished 

His6-CpxR protection from DNase I. 

Cumulatively, these data provide evidence of CpxR-dependent regulation of the amiA 

and amiC promoters in which CpxR directly binds to a homologous CpxR box residing in 

the promoter regions to exert its regulatory activity. 

CpxR-dependent regulation of the rfe-rff gene cluster 

Rationale to study regulation of the rfe-rff gene cluster. The rfe-rff gene cluster encodes 

enzymes involved in the biosynthesis of the enterobacterial common antigen (ECA), a 

glycolipid composed of a trisaccharide repeat located on the outer leaflet of the outer 

membrane in all bacteria species of the Enterobacteriaceae family (reviewed in (54)). 

Although the physiological function of ECA remains to be determined, it has been 

implicated in bacterial resistance to bile salts (57), organic acids (56), and AMPs 

(Chapter 1) as well as virulence (57). Deletion of loci residing in the rfe-rff gene cluster 

was found to increase susceptibility to all peptide classes analyzed in this study (Figure 

7), suggesting a global contribution of their gene products to AMP resistance. Further 

analysis (discussed in Chapter 1) determined that the increased susceptibility is the result 

of the absence of ECA and not accumulation of intermediates of the ECA biosynthesis 

pathway.  

Since the biosynthesis of ECA was proposed to be required for resistance to AMPs, 

experiments were carried out to determine how the rfe-rff gene cluster is regulated since 

it had not been previously reported. An in silico analysis of the rfe promoter, the first 

gene of the cluster, revealed a putative CpxR binding site (5’-GAAAA-N5-GGAAT-3’) 

located 154 bp upstream of the start codon (Figure 19, top) suggesting that the rfe 
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promoter (and by extension, the entire rfe-rff gene cluster), may be regulated by CpxR/A,  

further demonstrating a global role for CpxR/A in resistance to antimicrobials. 

Activation of CpxR increases transcriptional expression of the rfe promoter. To 

determine if CpxR could regulate transcription of the rfe promoter, and possible  

downstream genes, chromosomal lac fusions were constructed at the rfe, rffT, and rffM 

loci to construct rfe-lac, rffT-lac, rffM-lac, respectively. Plasmid pnlpE was 

introduced into each lac fusion strain to stimulate the regulatory activity of the CpxR/A 

system (194). Overexpression of nlpE increased -galactosidase activity of rfe-lac 4-

fold, rffT-lac 2-fold, and rffM-lac 3-fold (Figure 19, bottom left). This observation is 

consistent with previous reports in which overexpression of CpxR could increase 

expression of rffA (another member of the rfe-rff gene cluster) 1.9-fold after analysis by 

qRT-PCR (196).  The increase in -galactosidase activity was dependent on CpxR as 

deletion of cpxR in each strain abolished the transcriptional increase (Figure 19, bottom 

left). Cumulatively, this demonstrates that CpxR can regulate transcription activity of 

members of the rfe-rff gene cluster (and likely the entire cluster) and postulates that the 

rfe-rff gene cluster comprises a single transcriptional operon. 

The rfe-rff gene cluster likely comprises a single transcriptional unit. To address the 

possibility that the rfe-rff gene cluster is localized in a single operon, a series of reverse 

transcription-polymerase chain reactions (RT-PCR) were conducted. Total RNA, 

extracted from wild-type, was reverse transcribed and the cDNA product was used in a 

series of PCR reactions in combination with sets of defined primers to demonstrate the 

singularity of the operon (illustrated in Figure 19, top). Specifically, primer pairs 

1912/1915, 1914/1917, 1916/1804, and 1803/1919 were used to generate products to 



84 

Figure 19. Cpx-dependent activation of the rfe-rff gene cluster.  

(top) In silico analysis of the rfe promoter (the first gene in the cluster) reveals a putative 

CpxR-binding site. Right-facing arrow, 5’ primer; left-facing arrow, 3’ primer. Numbers 

correspond to the primer number. (bottom, left) Overexpression of nlpE increases -

galactosidase activity of chromosomal lac constructs at the rfe, rffT, and rffM loci. 

(bottom, right) RT-PCR reveals that the rfe-rff gene cluster may comprise a single 

transcriptional unit. 
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represent the initial operon transcript, the rfe/wzzE/rffE chromosomal region (~2.2 kb, set 

A), the wzzE/rffE/rffD/rffG/rffH chromosomal region (~3.5 kb, set B), the rffG/rffH/rffC/ 

rffA/wzxE/rffT chromosomal region (~4 kb, set C), and the wzxE/rffT/wzyE/rffM 

chromosomal region (~2.5 kb, set D), respectively. Single positive bands were identified 

for sets A, B, and D (Figure 19, bottom right), suggesting that the transcripts 

represented in the primer set region comprise a single RNA transcript. Lane C generated 

multiple bands (Figure 19, bottom right); however, the longest DNA amplified migrated 

to the estimated size of a single transcript, suggesting that there may be multiple levels of 

regulation in this region of the gene cluster. Cumulatively, these data suggest that the rfe-

rff gene cluster could comprise a single transcriptional unit; however, there may be an 

additional promoter region between the rffG and rffT loci that can initiate transcription of 

a single gene or multiple genes between the loci. 

CpxR directly binds to the rfe promoter. Previous transcriptional data demonstrated that 

CpxR could activate transcription of loci within the rfe-rff gene cluster when induced by 

nlpE overexpression (Figure 19, bottom left). To determine if CpxR directly regulated 

these loci by interacting with the promoter region, an electromobility shift assay was 

performed using purified His6-CpxR protein and a 420-bp DNA fragment corresponding 

to the upstream and overlapping region of the rfe start codon (representing the putative 

promoter region). The CpxR protein was able to shift the DNA fragment (Figure 20, 

bottom left), indicating the presence of CpxR-binding sites in the rfe promoter region. 

As the amount of CpxR increased to 150 pmol, two distinct shifts were observed 

confirming direct interaction of the CpxR protein with the promoter DNA. Next, DNase I 

footprinting analysis was conducted to determine the specific nucleotide sequence 
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Figure 20. Analysis of CpxR binding to the rfe  promoter.  

(top) DNA sequence of putative rfe promoter highlighting (in purple) the putative CpxR 

binding site. (bottom, left) EMSA shows that CpxR can bind to at least two locations 

within the rfe promoter. (bottom, right) Illustration of CpxR binding to the rfe promoter 

154 bp upstream of the rfe start codon, GTG.  
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recognized by CpxR. Using purified His6-CpxR protein and DNA representing the rfe 

promoter generated with primers 
32

P-1921 and 1913 for the coding strand, protection was 

observed upstream of the rfe start codon (illustrated in Figure 20, bottom right). The 

region protected by CpxR contains an imperfect direct repeat sequence, 5’-GAAAA-N5-

GGAAT-3’, 154 bp upstream of the start codon (Figure 20, top) which is similar to the 

homologous CpxR box described previously (195). This surmounting evidence confirms 

that CpxR binds to the rfe promoter to activate transcription of the rfe locus, and likely 

the rfe-rff gene cluster. 

CpxR-dependent regulation of the marRAB operon  

Rationale to study the regulation of mar. The multiple-antibiotic resistant operon, 

marRAB, encodes a repressor, MarR, and activator, MarA, which coordinately regulate 

the mar promoter, in concert with the global regulators Rob and SoxS. It was recently 

reported that the marRAB operon could be activated by sub-lethal concentrations of 

AMPs via Rob (which is required for polymyxin B-induced upregulation of micF (43)) 

and could facilitate resistance, at least in part, by overexpressing the AcrAB/TolC efflux 

pump (44). While deletion of marA had no apparent phenotype regarding susceptibility to 

AMPs, constitutive expression of marA decreased bacterial susceptibility to AMPs in an 

AcrAB/TolC-dependent manner (discussed in Introduction). Importantly, deletion of tolC 

resulted in increased susceptibility to each AMP analyzed, however, susceptibility to 

polymyxin B could be reduced or increased in a constitutive marA background depending 

on the AMP (44). This evidence suggested that MarA-dependent genes contribute to 

bacterial resistance and susceptibility to AMPs. Cumulatively, these data launched an 

investigation to further analyze the marRAB operon for additional regulatory activities in 
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regards to bacterial resistance to antimicrobial peptides as well as the role of a 

downstream target. 

Analysis of CpxR-dependent regulation of the mar operon. The marRAB promoter has 

been extensively studied and is well characterized (31-33) (illustrated in Figure 21, top).  

In the presence of specific antibiotics, bile salts, and reactive oxygen species, MarA  (35, 

36), Rob (37, 38) and SoxS (39, 40), respectively, will bind to a 20 nucleotide sequence 

designated as the marbox (33) to activate transcription of the operon. In contrast, MarR is 

a strong repressor that binds at the operator region (dashed rectangle, Figure 21, top) 

whose effect is only alleviated when a compound, such as salicylate, binds the protein to 

result in its disassociation from the promoter to allow for transcription (31) (32, 41). 

Further examination of the promoter sequence revealed a putative CpxR-binding site 

approximately 50 nucleotides upstream of the marbox (Figure 21, top). The putative 

CpxR-box contains the sequence 5’-GTAAA-N5-ATAAA-3’ which is similar to the well 

established CpxR consensus sequence (195), making it a good candidate sequence for 

CpxR to bind.  

To determine whether CpxR can regulate the marRAB operon, a series of 

chromosomally- and plasmid-encoded lac fusions were constructed to ascertain the 

activity of the mar promoter (illustrated in Figure 21, bottom).  Chromosomal lac 

fusions (156) were constructed at each of the three loci of the mar operon to yield 

∆marR-lac (in which the MarR repressor is absent), ∆marA-lac (in which the MarA 

activator is absent), ∆marB-lac (in which MarB is absent), and ∆marRA-lac, (in which 

both the activator and repressor are absent). It was first necessary to determine whether 

these constructs could serve as suitable reporters for the mar promoter. Therefore, β- 
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Figure 21. Analysis of the marRAB promoter.  

(top) In silico analysis of the marRAB promoter region reveals a putative CpxR box 

upstream of the previously characterized marbox (purple), -35 (green), -10 (yellow), 

transcription start site (blue), operator region (underlined/dashed box), and start codon 

(GTG). (bottom) Illustration of the chromosomally- and plasmid-encoded lac fusions 

constructed to analyze the transcriptional activity of the mar promoter.  
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galactosidase activity was determined in the presence of salicylate, a gratuitous inducer 

of the mar promoter (32), to confirm that expression could be increased. Expression 

increased 28-fold in the ∆marA-lac strain when saliciylate was present; however, no 

significant increase in expression of the ∆marR-lac, ∆marB-lac or ∆marRA-lac 

constructs was observed (Figure 22, top). While it was concluded that ∆marB-lac could 

not serve as a suitable reporter for the mar promoter, it was deduced that the lack of 

induction by salicylate in ∆marR-lac and ∆marRA-lac was due to constitutive expression 

of the promoter because of the lack of the MarR repressor. Therefore, ∆marA-lac, and 

perhaps ∆marR-lac and ∆marRA-lac, were determined to be adequate reporters to 

measure mar promoter expression levels.  

Next, pnlpE was introduced into each chromosomal lac fusion strain to determine if 

CpxR could activate transcription of these reporters. Overexpression of nlpE increased β-

galactosidase activity of ∆marR-lac 3- fold and ∆marRA-lac 3.8- fold when compared to 

the vector only control (Figure 22, bottom), suggesting that CpxR could activate 

transcription of this operon. This increase in expression was abolished when cpxR was 

deleted, confirming CpxR-dependent activation of this operon via nlpE overexpression. 

Interestingly, pnlpE had no effect on ∆marA-lac transcription (nor ∆marB-lac which was 

previously demonstrated to be an inadequate reporter for the mar promoter) (Figure 22, 

top). These data posit two regulatory mechanisms: (i) CpxR-dependent activation of the 

mar promoter facilitated by MarA since deletion of marA abolishes the transcriptional 

induction by nlpE overexpression; (ii) CpxR-MarA and MarR participation in an 

antagonistic relationship because in the absence of marA, CpxR cannot exert its 

regulatory activity unless MarR is also absent (illustrated in Figure 22, bottom). 
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Figure 22. β-galactosidase activity of chromosomal mar promoter constructs. 

(top) Expression of ∆marA-lac increased when saliciylate, a well-known inducer of the 

mar promoter, was supplemented. However, no significant increase in expression of 

∆marR-lac, ∆marB-lac or ∆marRA-lac was observed. (bottom) Overexpression of nlpE 

(pnlpE) is able to increase transcription of the mar promoter in ∆marR-lac and ∆marRA-

lac in a CpxR-dependent manner, however, is unable to increase transcription of ∆marA-

lac or ∆marB-lac. 
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To further analyze the effect of CpxR on transcriptional activity of the mar promoter, 

plasmid-encoded lac fusions (pYS1734 and pYS1736) were constructed which contain 

different lengths of the mar promoter followed by the lac coding region (illustrated in 

Figure 21, bottom). The longest promoter region represented in pYS1734 contains an 

extension of the previously characterized mar promoter (32) as it contains 540 bp 

upstream of the transcription start site and thus carries the marbox and the putative CpxR-

binding site. Meanwhile, plasmid pYS1736 contains only 120 bp upstream of the 

transcription start site and therefore contains the marbox, but not the putative CpxR-

binding site. To ascertain whether these constructs could serve as suitable reporters for 

the mar promoter, β-galactosidase activity was determined in the presence of salicylate to 

confirm that expression could be increased. Indeed, the presence of salicylate increased 

expression of pYS1734 2.6-fold and expression of pYS1736 2.2-fold (Figure 23, top), 

which is less than previous reports of 5-10-fold induction by salicylate (32, 42); however, 

these data were determined to be significant via Student’s t-Test (p = 0.0035 and 0.0023, 

respectively). Next, pnlpE was introduced into strains harboring either plasmid and β-

galactosidase activity determined. Overexpression of nlpE increased expression of 

pYS1734 2.8-fold and pYS1736 2.6-fold, when compared to the vector only control 

(Figure 23, bottom), suggesting that CpxR could activate transcription of this operon. 

This increase in expression was abolished when cpxR was deleted, confirming CpxR- 

dependent activation of the mar promoter via nlpE overexpression. It was unexpected 

that nlpE overexpression could increase transcriptional activity of pYS1736 since this 

plasmid doesn’t contain the putative CpxR box. Therefore, it was hypothesized that CpxR 

could bind the mar promoter region downstream of the predicted CpxR box, within the 
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Figure 23. β-galactosidase activity of plasmid mar promoter constructs.  

(top) Plasmids pYS734 and pYS1736 are able to respond to salicylate, a well-known 

inducer of the mar promoter. (bottom) Overexpression of nlpE (pnlpE) is able to increase 

transcription of the mar promoter encoded in pYS1734 and pYS1736 in a CpxR-

dependent manner. 
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chromosomal region represented in pYS1736.  

It is noteworthy to mention that while MarA has been shown to activate the marRAB 

promoter in the presence of specific signaling molecules, it is unclear whether MarA is 

required for activation of the promoter in the absence of the MarR repressor. In other 

words, it is unclear whether the absence of MarR is sufficient to activate transcription of 

the operon, or if activators, such as MarA are still required. The data presented suggest 

that MarA plays a role, but is not absolutely required, in MarR-depleted conditions to 

activate transcription of the promoter. This is demonstrated in both the chromosomal- and 

plasmid-encoded lac fusions. When comparing marR-lac with marRA-lac in non-

inducing conditions, -galactosidase activity is reduced ~2-fold in non-inducing 

conditions when marA is absent (Figure 24). Additionally, when measuring -

galactosidase activity of pYS1734 in marR and marRA backgrounds, expression is 

reduced ~ 2.5-fold in non-inducing conditions when marA is deleted (Figure 24). Thus, 

MarA likely plays a role, but is not required for transcription of marRAB in the absence 

of the MarR repressor because transcription still occurred in the absence of MarA. 

It was previously mentioned that MarA may facilitate CpxR binding to the mar promoter 

to exert its regulatory effect in the presence of the MarR repressor. CpxR has been 

previously shown to facilitate BaeR-dependent regulation of acrD and mdtABC 

promoters which encode drug efflux systems (17, 18). Therefore, to ascertain the CpxR- 

dependent activation in relation to the known regulators of the mar operon, expression of 

each plasmid-encoded fusion was determined in wild-type, ∆marA, ∆marR, ∆marRA, 

∆rob and ∆soxS backgrounds, each overexpressing nlpE, to determine if CpxR could 

directly influence the mar promoter activity or if the activation is facilitated by other mar 
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Figure 24. -galactosidase activity comparing marR and marRA. 

-galactosidase activity comparing marR and marRA backgrounds demonstrate that 

MarA plays a role in transcription of the marRAB promoter in non-inducing conditions in 

the absence of MarR, but is not solely required. 
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regulators. Deletion of marA and rob reduced the transcription induction by pnlpE to 

1.38-fold and 1.27-fold, respectively in pYS1734 and 1.3-fold and 2.0-fold, respectively 

in pYS1736 (Figure 25), suggesting that CpxR regulation of the mar promoter is 

dependent on either MarA and/or Rob activators. Meanwhile, deletion of marR or soxS 

maintained CpxR-dependent induction by nlpE overexpression (Figure 25). Interestingly, 

deletion of marRA (in which both MarR and MarA is absent) did not abolish induction by 

nlpE (Figure 25) demonstrating that in the presence of MarR, MarA is required for 

CpxR-dependent induction, however, MarA is not required in the absence of MarR 

(illustrated in Figure 26).  

Biochemical evidence of CpxR-dependent regulation of mar. As previously mentioned, an 

in silico analysis of the mar promoter revealed a putative CpxR binding site, 5’-GTAAA-

N5-ATAAA-3’, located 50 bp upstream of the marbox.  An electromobility shift assay 

(EMSA) was carried out to determine if purified CpxR protein could directly bind to a 

DNA fragment, generated with primers 1723 and 1725, representing the mar promoter. 

Indeed, two DNA shifts were observed (Figure 27, bottom left) when increasing 

amounts of CpxR protein were added to the system, indicating the likelihood of two (or 

more) CpxR binding sites within this sequence. To determine the nucleotide sequence to 

which CpxR binds within the mar promoter, a DNase I footprinting assay was carried out 

using purified His6-CpxR protein and DNA generated from primers 
32

P-1723 and 1725 

for the coding strand and 
32

P-1725 and 1723 for the noncoding strand. CpxR was able to 

protect DNA from DNase I cleavage in three regions (numbering from the start codon): -

96 to -115 (RI), -140 to -164 (RII), and -215 to -239 (RIII) on the coding strand; and -56 

to -65 (RI), -110 to -117 (RII), and -145 to -165 (RIII) on the noncoding strand (Figure  



97 

Figure 25. β-galactosidase activity of mar promoter with deleted regulators.                   

β-galactosidase assays to determine the effect of mar promoter regulators on CpxR-

dependent induction when nlpE is overexpressed (pnlpE) using the plasmid-encoded lac 

constructs pYS1734 (top) and pYS1736 (bottom). 
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Figure 26. Illustration of CpxR regulation of the marRAB promoter.  

In the presence of both MarA and MarR, CpxR can induce basal-level expression (top, 

left). In the presence of MarR but absence of MarA, CpxR is not sufficient to induce 

expression, therefore, transcription remains at basal levels (top, right). In the absence of 

MarR, CpxR is able to induce constitutive expression regardless of the absence or 

presence of MarA (bottom). 
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28). Each region is located upstream of the marbox, and thus, upstream of the reported 

transcription start site indicating that these regions can serve as regulatory elements for 

CpxR. Moreover, regions RII and RIII contain sequences similar to the consensus CpxR 

box. RII contains 5’- CTTGA-N5-TTTAG-3’ located 107 bp upstream of the start codon, 

overlapping the marbox, and on the opposite strand; while RIII contains 5’-GTAAA-N5-

ATAAA-3’ located 162  bp upstream of the start codon. Thus, these two sequences likely 

contribute to CpxR-dependent regulation of mar. Notably, the RII protected sequence is 

present in pYS1736 and thus explains why overexpression of nlpE is able to increase 

transcription of the mar promoter construct. Cumulatively, these data demonstrate that 

CpxR can directly bind to the mar promoter to activate transcription of the marRAB 

operon. 

Identification of a CpxR/A signal  

Rationale to identify the physiological signal for CpxR/A. Microbial two-component 

systems consist of a sensor histidine kinase/phosphatase which, upon activation by a 

signal molecule, will activate its cognate response regulator by phosphorylation and 

inactivate its regulator by dephosphorylation when the signal is removed (reviewed in 

(1)). A common challenge amongst researchers, however, is to identify the signal 

molecules that have a global effect regarding cell survival and maintenance. The cpxRA 

operon encodes a sensor, CpxA, and its cognate response regulator, CpxR, which 

globally regulates a vast number of promoters in response to periplasmic stress, including 

misfolded proteins, inner membrane disruptions, alkaline pH, starvation, and high 

osmolarity (reviewed in (10)). While the physiological signal for CpxA has not been 

identified, Cpx-dependent regulation continues to be characterized as its regulon 
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Figure 27. Biochemical analysis of CpxR binding to the mar promoter.  

(top, left) EMSA shows that CpxR can bind to at least two locations within the mar 

promoter. Binding is specific because competition with unlabeled DNA (cold-DNA) 

abolishes the shift. (bottom, left) Analysis of CpxR binding to the marRAB promoter 

relative to the previously characterized marbox (purple), -35 (green), -10 (yellow), 

transcription start site (blue), operator region (underlined), and start codon (GTG). RI, 

RII, RIII, RIV represent the regions protected by CpxR in the DNase I footprinting 

analysis. Long dashed box, putative CpxR binding site originally hypothesized. Short 

dashed box, putative CpxR binding site identified after the analysis. (right) DNase I 

footprinting analysis reveals multiple sites of CpxR protection; RII and RIII protected 

regions are found on both the coding and noncoding strands. 
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continues to grow. Additionally, the natural signal for the marRAB operon has not been 

identified as it remains to be investigated whether plant-derived napthoquinones are 

natural inducers (197). Compounds such as salicylate (SAL), chloramphenicol and 

tetracycline, acetaminophen, sodium benzoate, 2,4-dinitrophenol, cinnamate, and 

carbonyl cyanide m-chlorophenylhydazone, menadione and plumbagin have been shown 

to activate the operon (198). Recently, several aromatic amino acid metabolites were 

characterized and shown to activate the mar promoter (42). Specifically, salicylate-like 

compounds including 2,3-dihydroxybenzoate (DHB) and anthranilate (ANT) could 

activate the mar promoter (42). In addition, DHB was found to activate the promoter by 

directly binding to MarR with a similar affinity as SAL, while ANT could not, indicating 

that the efforts by ANT are independent of MarR (42). ANT is an early intermediate 

product of the tryptophan biosynthesis pathway (Figure 28) and was reported to inhibit 

growth of an E. coli ΔcpxRA mutant (199).  

Cumulatively, several intermediates of the tryptophan biosynthesis pathway have been 

shown to induce multidrug resistance in E. coli. As previously mentioned, ANT activates 

the mar promoter to increase intrinsic multidrug resistance (42). Additionally, indole 

(IND), a late intermediate product of the tryptophan biosynthesis pathway (Figure 28), 

can activate the mdtE promoter, which encodes a xenobiotic exporter, independently of 

the EvgA regulator (17). Likewise, IND can activate the BaeR/BaeS two component 

system which specifically binds to and activates target promoters including other 

xenobiotic exporters, acrD and mdtABC, interestingly mediated by CpxR (17). 

Chorismate serves as a precursor for aromatic amino acids, phenylalanine, tyrosine, and 

tryptophan; as well as IND, ANT, DHB and SAL. Deletion of the CpxR-dependent aroK 
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Figure 28. Tryptophan biosynthesis pathway. 

The tryptophan biosynthesis pathway generates intermediates previously demonstrated to 

activate the mar operon and confer multidrug and antimicrobial resistance. 
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gene (195) (which encodes an secondary kinase that catalyzes an early step in chorismate 

biosynthesis: shikimate to shikimate 3-phosphate, Figure 28), resulted in increased 

susceptibility to protamine (APPENDIX D). Taken together, these reports suggested a 

novel, physiological signal for the CpxR/CpxA system to mediate resistance to 

antimicrobial substances because (i) aromatic metabolites could activate the mar locus, 

(ii) CpxR regulates an enzyme (AroK) involved in the biosynthesis of aromatic 

metabolites but suggested to have an additional physiological role, (iii) deletion of cpxRA 

results in increased susceptibility to an aromatic metabolite (ANT), and (iv) an aromatic 

metabolite (IND) was found to mediate multidrug resistance with CpxR.  

Investigation of aromatic metabolites as signals for CpxR/A. To ascertain if aromatic 

metabolites could serve as an activation signal for the CpxR/A, chromosomal lac fusions 

of the Cpx-dependent loci cpxP (cpxP-lac, (200, 201)) and degP (degP-lac, (55, 201)) 

were used to determine if transcription could be increased in the presence of aromatic 

metabolites, ANT, IND, and SAL. -galactosidase activity of cpxP-lac was increased 

3.9-fold, 2.9-fold, and 2.2-fold in the presence of ANT, IND and SAL, respectively 

(Figure 19, top). Induction by IND was shown to be significant with a Student’s t-Test in 

which the p= 0.001; however, not significant for ANT and SAL (p= 0.22 and 0.04, 

respectively) indicating that IND can serve as a signal for CpxR/A.  Likewise, IND 

significantly increased -galactosidase activity of degP-lac 3.4-fold (p= 0.0099), while 

ANT and SAL were unable to increase activity (Figure 29, top), providing additional 

evidence that IND can serve as a signaling cue for the Cpx system. As a positive control, 

marA-lac and pYS1734 were used since SAL and ANT have previously been 

determined to induce expression of the mar operon (32, 42). Indeed, the presence of SAL 
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Figure 29. Induction of β-galactosidase activity by aromatic metabolites.  

(top) IND is able to significantly induce expression of cpxP-lac and degP-lac reporters, 

but not ANT or SAL. IND, ANT, and SAL are all able to induce expression of the mar-

lac consructs, marA-lac and pYS1734 controls, but not mgrB-lac. (bottom) Induction 

by IND is independent of CpxR since deletion of cpxR is not sufficient to abolish IND-

dependent induction. DMSO, Dimethyl sulfoxide ; ANT, anthranillate; IND, indole; 

SAL, salicylate. 

 

 

 

 

 



105 

increased transcription of marA-lac and pYS1734 26.5-fold and 4.7-fold, respectively, 

while ANT increased transcription 57.1-fold and 3.2-fold, respectively (Figure 29, top). 

Interestingly, IND was also able to significantly increase transcription of both marA-lac 

and pYS1734 4-fold and 5-fold, respectively (Figure 29, top), thus providing evidence of 

IND as an additional inducer of the mar operon, as well as the CpxR/A system. Notably, 

mgrB-lac, a PhoP-dependent (202) construct served as a negative control. None of the 

aromatic metabolites were able to significantly increase -galactosidase activity 

suggesting that the IND induction is specific to the CpxR/A and Mar systems and not a 

general transcriptional phenomenon. 

Since IND was demonstrated to be a signal for the mar promoter and the CpxR/A system, 

an investigation was carried out to determine if the induction was dependent on the 

CpxR/A system directly. ∆cpxR was introduced into each strain to yield cpxP-lac ∆cpxR, 

degP-lac ∆cpxR, and ∆cpxR pYS1734; -galactosidase activity was once again 

determined in the presence of IND. Except in cpxP-lac ∆cpxR in which deletion of cpxR 

completely abolishes transcription of cpxP, each lac construct was able to be induced in 

the presence of IND (Figure 29, bottom) suggesting that the induction by IND is 

independent of CpxR/A. While CpxR/A was not the direct system mediating the response 

to IND, it is noteworthy to determine that IND can activate both the CpxR/A system and 

the mar operon. The mechanism by which IND induces expression of these systems 

remains to be investigated. An analysis was carried out in which simultaneous deletion of 

cpxR and a gene encoding a regulator of a known two-component system in the degP-lac 

strain was assayed to determine if transcription induction by IND could be eliminated. 

Independent deletion of known two-component system regulators in degP-lac ∆cpxR was 
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not sufficient to abolish IND-dependent induction (data not shown) suggesting that 

another regulatory system mediates induction. 

Conclusion 

The E. coli CpxR/CpxA two-component system regulates a set of genes in response to 

general periplasmic stress (reviewed in (10)). As the Cpx regulon continues to be 

expanded (to date, there are over 150 demonstrated or putative members (APPENDIX 

E)), the vastness of its circuitries becomes evident as it continues to be implicated in 

virulence (reviewed in (10)), biofilm formation (13), chemotaxis (14) and recently, 

resistance to antimicrobials (15, 16, 18, 20), therefore having a global effect in signal 

transduction pathways and bacterial resistance.  
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CHAPTER 4 

CHARACTERIZATION OF CPXR/A-DEPENDENT LOCI REQUIRED FOR 

BACTERIAL RESISTANCE TO ANTIMICROBIAL PEPTIDES 

Introduction 

Many studies have focused on the characterization of the CpxR/CpxA two-component 

system. CpxR/A globally regulates a vast number of promoters in response to periplasmic 

stresses caused by misfolded proteins, inner membrane disruptions, alkaline pH, 

starvation, and high osmolarity (reviewed in (10)). Moreover, CpxR/A appears to 

contribute globally to Escherichia coli resistance to antimicrobial peptides (AMPs) since 

deletion of cpxR or cpxA increased bacterial susceptibility to RTD-2 and OH-CATH30 

(APPENDIX D). Additionally, Chapter 3 characterized new members of the CpxR/A 

regulon, including amiA, amiC, marRAB, and the rfe-rff gene cluster. Furthermore, 

analysis of the systematic screen carried out in Chapter 1 identified six candidates (aroK, 

degP, dnaK, dsbA, tolC, and yqjA) that were previously characterized as part of the 

CpxR/A regulon, further suggesting that CpxR/A could play a global role in bacterial 

resistance to AMPs. 

Characterization of CpxR/A-dependent loci required for bacterial resistance to 

antimicrobial peptides 

The notion that the CpxR/A system could be a major contributor to E. coli resistance to 

AMPs led to further analysis of the gene candidates identified in the systematic screen in 

Chapter 1. Six of those members, as well as those identified in Chapter 3 (Table 8), were 

found to contribute to bacterial resistance to AMPs because deletion of the genes resulted 

in increased susceptibility. Although several CpxR/A-dependent loci were identified as  



108 

Table 8. CpxR/A-dependent loci required for resistance to protamine 

Gene Function 

amiA N-acetylmuramoyl-L-alanine  amidases 

amiC N-acetylmuramoyl-L-alanine amidase 

aroK shikimate kinase involved in tryptophan biosynthesis 

degP proteinase/chaperone 

dnaK Hsp70 molecular chaperone 

dsbA disulfide isomerase  

rfe-rff enterobacterial common antigen biosynthesis 

tolC outer membrane pore involved in efflux 

yqjA DedA-like predicted inner membrane protein 
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contributing to bacterial resistance to AMPs, it does not infer that they work together to 

contribute to resistance. 

Identification of multiple CpxR/A-dependent pathways that contribute to bacterial 

resistance to AMPs. To determine if the CpxR/A-dependent genes (or gene products) 

contribute to bacterial resistance to AMPs cooperatively or independently of each other, 

double mutants were systematically constructed in which each mutant, except members 

of the rfe-rff gene cluster, were crossed with one another to generate each combination of 

double mutants. It was hypothesized that if two genes work independently, then 

simultaneous deletion of both genes would cause a synthetic phenotype and render cells 

more sensitive to AMPs than either single deletion (illustrated in Figure 30). Conversely, 

if two genes work coordinately in the same pathway to contribute to resistance, then 

simultaneous deletion of both genes would not change the sensitivity to AMPs when 

compared to either single deletion (illustrated in Figure 30). Double deletion mutants 

were challenged against the model AMP, protamine, along side their single mutant 

counterparts to determine if deletion of both genes would render cells more sensitive to 

protamine than either single deletion. Notably, the analysis suggested that both TolC and 

YqjA contribute to bacterial resistance to AMPs independently of the other CpxR/A-

dependent loci identified (illustrated in Figure 30) because simultaneous deletion of tolC 

or yqjA with each of the other mutations rendered cells more susceptible to protamine 

than either single deletion mutant. On the other hand, data suggest that amiA, amiC, 

aroK, and dnaK work coordinately in their contribution to AMP resistance (illustrated in 

Figure 30), since double deletions within this group of genes did not increase 

susceptibility to protamine. Likewise, the data suggest that dsbA, degP, and aroK  
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Figure 30. Independent and coordinate CpxR/A-dependent pathways.  

Illustration of the independent and coordinate pathways of CpxR/A-dependent loci 

required for bacterial resistance to protamine. TolC and YqjA appear to contribute to 

bacterial resistance to protamine independently than any of the other Cpx-dependent loci 

identified in the systematic analysis. On the other hand, AmiA, AmiC, DnaK, and AroK 

appear to comprise a single pathway, while DegP, DsbA, and AroK comprise an 

additional pathway. Notably, AroK contributes to resistance in both pathways, suggesting 

a vital role in the aroK gene product in resistance. (NOTE: gene products are listed 

alphabetically and do not represent the true progression of the pathway to bacterial 

resistance to AMPs). 
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contribute to bacterial resistance to protamine on the same pathway (illustrated in Figure 

30) because simultaneous double deletions did not increase susceptibility to protamine. 

Interestingly, AroK seems to play a role in both independent pathways suggesting a 

significant role of the aroK gene product.  

AroK mediated resistance to AMPs. AroK is a kinase that catalyzes the conversion of 

shikimate to shikimate-3-phosphate in an early step in chorismate biosynthesis (Figure 

28). Therefore, it can be speculated that downstream products in the chorismate 

biosynthesis, or chorismate-dependent biosynthesis pathways (such as tyrosine, 

phenylalanine, tryptophan, or siderophore biosynthesis), contribute to resistance. To 

support this claim, shikimate analogs have been synthesized and determined to have 

antimicrobial activity because they inhibit the production of downstream products of the 

chorismate biosynthesis pathway (203, 204). 

Cooperativity of AmiA, AmiC, and DnaK in resistance to AMPs. The cooperative 

contribution between the peptidoglycan amidases, AmiA and AmiC, and the molecular 

chaperone, DnaK, was apparent. AmiA and AmiC are N-acetylmuramoyl-L-alanine 

amidases transported by the twin-arginine transporter (Tat) system (51, 61), a Sec-

independent system responsible for the transport of globular proteins across the inner 

membrane (45). The E. coli Tat system transports folded proteins containing a conserved 

twin arginine motif within the signal peptide sequence at the N-terminal (48). The signal 

peptide is recognized by the Tat apparatus and is cleaved prior to transport. The Tat 

signal peptide, however, is vulnerable to proteolytic degradation as it is not folded into 

the mature protein (205). Therefore, molecular chaperones bind the signal sequence to 

protect it from proteolysis prior to its recognition by Tat. Specifically, SlyD, GroEL, and 
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Figure 31. Importance of amidase synthesis, transport and activity.  

(top) Survival % of tatC, amiA amiC, envC, dnaK, and ftsEX mutant strains after 

challenged against protamine. (bottom) Schematic illustrating the importance of amidase 

synthesis, transport, and activity mediated by DnaK, Tat, EnvC, and FtsEX. 
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DnaK chaperones have all been demonstrated as Tat signal binding chaperones for an 

array of Tat-dependent substrates (206-208). Therefore, it feasible that DnaK and 

AmiA/AmiC coordinately contribute to bacterial resistance to protamine via DnaK-

mediated protection of AmiA and AmiC transport. Furthermore, it is likely that these 

amidases have a direct role in resistance since alteration of their stability either prior to 

transport via DnaK, during transport via Tat, or during their enzymatic activities via 

EnvC (a functional activator of AmiA (62) or FtsEX (regulators of cell-wall hydrolysis 

that directly recruit EnvC to the septum (63)) increases bacterial susceptibility to 

protamine since deletion of dnaK, tatC, envC, and ftsEX increased bacterial susceptibility 

to protamine (Figure 31).  

Cooperativity of DsbA and DegP in resistance to AMPs. The cooperative contribution of 

DsbA and DegP in the same pathway is obscure. Both DsbA and DegP are involved in 

bacterial pathogenesis by contributing to virulence and intracellular survival, respectively 

(reviewed in (10)). It was recently reported that simultaneous deletion of dsbA and degP 

results in synthetic phenotypes which render cells sensitive to salt and SDS, likely due to 

the increase in membrane permeability (209). Additionally, the double mutant is unable 

to remove unfolded outer membrane proteins from the periplasm resulting in an 

accumulation of OMPs and subsequent activation of σ
E
, a stress-response system that has 

been reported to activate transcription of degP (209). Notably, single deletions of either 

gene rendered cells sensitive to salt and SDS, although at a lower level than the double 

mutant. Thus, it is possible that DsbA and DegP do not contribute directly to bacterial 

resistance to AMPs. Instead, deletion of either gene alters the membrane permeability, 

which results in an increase in protamine susceptibility. Deletion of both genes simply  
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increases the sensitive phenotype. 

CpxR/A activation increases bacterial resistance to antimicrobial peptides 

The data presented in this study suggest a global contribution of the CpxR/A system in 

resistance to AMPs. Therefore, it was hypothesized that activation of the CpxR/A system 

would increase bacterial resistance. Survival of wild-type and ΔcpxR strains harboring a 

vector or pnlpE plasmid were compared to determine if activation of CpxR/A via nlpE 

overexpression could increase Salmonella typhimurium resistance to protamine. Indeed, 

overexpression of nlpE was able to increase bacterial resistance to protamine as 

determined by a 61% survival rate at a lethal protamine concentration for Salmonella 

wild-type cells, 1.8 mg mL
-1

 (Figure 32, top). The increase in resistance was dependent 

on CpxR as deletion of cpxR abolished the increased resistance (Figure 32, top). Further, 

overexpression of nlpE could increase resistance in a ΔtatC mutant in a CpxR-dependent 

manner because cells exhibited a 54% survival rate at a lethal protamine concentration 

for the ΔtatC mutant strain, 1.0 mg mL
-1

 (Figure 32, middle).  

Other work has demonstrated that overexpression of nlpE can increase resistance of 

several Salmonella protamine susceptible-mutants, including ΔphoP (unpublished data, 

Figure 32, bottom). Therefore, it was not surprising that overexpression of nlpE could 

increase protamine resistance in a ΔtatC mutant strain, suggesting that CpxR/A globally 

contributes to bacterial resistance to protamine. An investigation was initiated to identify 

the CpxR/A-dependent gene(s) that contributes to the increase in resistance.  ΔtolC was 

an obvious candidate as deletion of tolC abolished NlpE-mediated multidrug resistance 

[Nishino et al, 2010]. Both a vector control and pnlpE were introduced into a ΔtolC 

background to determine if overexpression of nlpE could increase resistance to 
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Figure 32. CpxR/A-activation rescues resistance to protamine.  

Overexpression of nlpE can increase protamine resistance of Salmonella (top) wild-type, 

(middle) ΔtatC and (bottom) ΔphoP in a CpxR-dependent manner. Resistance of ΔtolC 

cannot be increased by nlpE overexpression. 
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protamine. As predicted, overexpression of nlpE could not increase resistance in ΔtolC, 

but could in the ΔphoP control (Figure 32, bottom) suggesting that the increase in NlpE-

mediated bacterial resistance to protamine was dependent, at least in part, on TolC. 

Interestingly, overexpression of nlpE appeared to have a cytotoxic affect in the ΔtolC 

strain since protamine susceptibility was increased (Figure 32, bottom). The cytotoxicity 

is proposed to be due to the accumulation of an unknown toxic protamine-influenced 

byproduct that is generally expelled by TolC. 

Conclusion 

The data presented in this study cumulatively identified the CpxR/CpxA two-component 

system as a global regulator that has a significant contribution to bacterial resistance to 

AMPs. Through the upregulation of several loci, CpxR/A can mediate bacterial resistance 

by either actively counteracting the bactericidal effects of AMPs or by playing a 

protective role against AMPs.  
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CHAPTER 5 

DISCUSSION AND FUTURE WORK 

Systematic screen to identify genes required for bacterial resistance to antimicrobial 

peptides 

The data presented here represent the results and subsequent analysis from the first 

reported large-scale, systematic screen to identify Escherichia coli genes that contribute 

to bacterial resistance to antimicrobial peptides (AMPS). The Keio collection (154) of 

~4,000 E. coli single gene deletion mutants was challenged against physiologically 

significant peptides representing –helix and –sheet classes of AMPs, as well as a 

model AMP, to identify mutant strains that were susceptible to the AMPs thus suggesting 

that the gene (or gene product) contributes to resistance. In total, the screen identified 112 

loci (<3% of genes present on the E. coli chromosome) that contributed to resistance to at 

least one analyzed AMP (APPENDIX D) and function in a diverse array of cellular 

processes.  

Surprisingly, most of the mutant strains identified in the analyses were sensitive to only 

one AMP suggesting that the gene indirectly contributes to resistance to that particular 

AMP or that each AMP exerts its bactericidal activity differently. The latter is confirmed 

by previous observations in which different classes of AMPs were shown to exert their 

effects via different mechanisms (as discussed in Introduction). Nevertheless, a 

commonality regarding the bactericidal activity of the AMP or the mechanism of 

resistance was expected. Thus, it was not surprising that two gene products, a transporter 

and an outer membrane component, were found to contribute to bacterial resistance 

against each AMP analyzed. 
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Tat-dependent resistance 

Deletion of tatC, which encodes a major component of the twin-arginine translocation 

(Tat) system rendered cells susceptible to each AMP class, suggesting a global 

contribution to bacterial resistance to AMPs. Further analysis revealed that the Tat-

dependent amidases, AmiA and AmiC, contribute in part to the Tat-dependent resistance. 

The contributions of AmiA and AmiC to resistance are likely to be direct as interference 

in their transport or activity renders cells sensitive to protamine. It remains to be 

determined how AmiA and AmiC contribute to resistance. It can be postulated that the 

positively charged AMP binds to the negatively charged pentapeptide units of the 

peptidoglycan. Thus, AmiA and AmiC facilitate resistance by cleaving the pentapeptide-

AMP complex at its cleavage site (between the N-acetylmuramic acid residue and the 

pentapeptide) to prevent accumulation of the AMP in the periplasm, specifically within 

the peptidoglycan. Further, a periplasmic peptidase/protease could cleave the 

pentapeptide-AMP complex to prevent accumulation in the periplasm which could be 

supported by the observation that a ΔdegP strain is susceptible to protamine. It is unlikely 

that DegP functions cooperatively with AmiA and AmiC since a mutant with a deletion 

of degP in a ΔamiA ΔamiC background was more susceptible to protamine, suggesting 

that amiA/amiC and degP contribute to resistance in independent pathways. 

Alternatively, after being cleaved by the amidases, a transporter could mediate transport 

of the pentapeptide-AMP complex to the cytoplasm for degradation or processing. This 

explanation is supported by previous data which demonstrate that the Salmonella 

YejABEF ABC transporter is required for resistance to many classes of AMPs (152). 

Further studies should be carried out to confirm the functional relationship between the  
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amidases and YeJABEF transporter. 

Further analysis regarding Tat-dependent resistance to AMPs implicated two nitrate 

reductases, NapA and YnfF, in bacterial resistance to protamine. Simultaneous deletion 

of napA and ynfF rendered E. coli cells susceptible, indicating that the gene products 

contribute to resistance in concert. Since nitrate is generally reduced in anaerobic 

conditions, it was proposed that the presence of protamine can simulate an anaerobic 

environment by inhibiting the use of oxygen as a final electron acceptor in the electron 

transfer chain, thus disrupting cellular respiration. This is supported by the following 

observations: (i) protamine can inhibit oxygen consumption (189); (ii) deletion of the 

F1F0-ATPase (which abolishes the production of ATP via oxidative phosphorylation) 

increases E. coli susceptibility to protamine presumably due to the inefficient production 

of ATP from substrate-level phosphorylation because supplementation of glucose (which 

should increase the production of ATP via glycolysis) can restore resistance to wild-type 

levels (data not shown); and, (iii) supplementation of formate or succinate, organic acids 

oxidized in the tricarboxylic acid cycle (which should increase the production of ATP via 

substrate-level phosphorylation) is able to protect bacterial cells from the oxygen 

consumption inhibitory effects of  human bactericidal/permeability-increasing protein 

(BPI) and increase bacterial survival in the presence of BPI (170) and protamine (Figure 

2, right). Nevertheless, it remains to be determined how these nitrate-reducing enzymes 

facilitate protamine resistance since exogenous nitrate was not added to the bacteria-

AMP challenge systems. 

Enterobacterial common antigen-dependent resistance 

Deletion of multiple loci residing in the rfe-rff gene cluster was found to cause  
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susceptibility to all peptide classes analyzed, suggesting a global contribution of their 

gene products to AMP resistance. The rfe-rff gene cluster encodes enzymes involved in 

the biosynthesis of the enterobacterial common antigen (ECA), a glycolipid composed of 

a trisaccharide repeat located on the outer leaflet of the outer membrane in all bacteria 

species of the Enterobacteriaceae family (reviewed in (54)). Initial analyses suggested 

that the periplasmic accumulation of intermediates of the ECA biosynthesis pathway was 

responsible for the increased susceptibility to AMPs. This idea was not supported as 

deletion of rfe, which encodes the first enzyme in the pathway and thus inhibits the 

formation of ECA or its intermediates, also rendered cells susceptible to protamine. This 

evidence led to the re-evaluation of previous studies which postulate that accumulation of 

the lipid II intermediate caused susceptibility to bile salt (55). Analysis with each gene 

mutant determined that the absence of ECA and not the accumulation of a specific 

intermediate was the sole reason for increased susceptibility to bile salt. Thus, it appears 

that ECA plays a protective role against host-secreted factors, bile salt and AMPs. It 

remains to be determined how ECA can mediate resistance. Perhaps ECA facilitates 

resistance similarly to lipopolysaccharide (LPS), which are quite similar in regards to the 

biosynthesis and structural components. It may serve as a critical barrier to prevent AMPs 

from reaching the outer membrane to exert their activity. Additional studies should be 

carried out, however, to resolve this mechanism of resistance since ECA appears to be a 

global contributor to bacterial resistance to host-secreted antimicrobial substances. In 

fact, prevous biochemical analyses have shown that protamine can form a complex with 

purified ECA (210) suggesting that ECA can function in bacterial resistance to AMPs by 

binding to AMPs to prevent integration into the cell. 
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CpxR/A: a global regulator in E. coli resistance to antimicrobial peptides 

Genetic and biochemical analyses were conducted that identified the CpxR/CpxA two-

component system as a global regulator in bacterial resistance to antimicrobial peptides. 

First, several previously characterized CpxR/A-dependent loci were identified in the 

screen (Table 8), providing initial evidence of the contribution of this system. Next, 

analyses demonstrated that CpxR could activate transcription of amiA and amiC, the 

marRAB operon, as well as, the rfe-rff gene cluster; each of which contributes to E. coli 

resistance to AMPs. It remains to be determined how and why CpxR-dependent 

regulation of these loci contributes to resistance.  

CpxR/A-dependent regulation of amiA and amiC. The CpxR/A system has historically 

been shown to respond to extracytoplasmic stress. For example, in the presence of 

misfolded proteins, CpxR will upregulate the production of proteases that act to reduce 

the load of misfolded proteins. Meanwhile, CpxR will downregulate the production of 

outer membrane proteins which likely are the source of the misfolded proteins. In the 

parameter of AMP resistance, it is known that AMPs can traverse the multiple layers of 

the cell envelope to exert its effect. Certain AMPs, for example LL-37, have been shown 

to translocate the outer membrane and laterally diffuse throughout the periplasm prior to 

crossing the inner membrane (128). It is feasible that during the periplasmic diffusion, 

AMPs disrupt cellular processes carried out in the periplasm and thus cause a stress that 

triggers activation of the CpxR/A system. In this case, AmiA and AmiC may facilitate 

removal of the stress by remodeling the peptidoglycan matrix by reducing the 

accumulation of the AMP bound to the tetrapeptide (as discussed above). 

CpxR/A-dependent regulation of the rfe-rff gene cluster. Deletion of rfe (wecA) or rffA  
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(wecE) has been previously shown to activate transcription of the CpxR/A-dependent 

degP-lac due to accumulation of the ECA lipid II intermediate in the periplasm (55). 

Thus, it was surprising to find that CpxR/A could activate transcription of these genes 

and the others that comprise the rfe-rff gene cluster. The physiological role of the ECA 

has yet to be defined; therefore, it is difficult to ascertain the significance of CpxR/A-

dependent regulation. Since CpxR/A has been shown to mediate bacterial resistance to 

antimicrobial substances, perhaps that upregulation of the ECA facilitates resistance by 

increasing the amount of ECA on the outer membrane to prevent the antimicrobial 

substance from entering the cell. 

CpxR/A-dependent regulation of marRAB. It was not surprising that CpxR/A could 

activate transcription of the marRAB operon. CpxR has previously been shown to 

mediate multridrug resistance by facilitating BaeR-dependent activation of acrD and 

mdtABC promoters to activate the production of xenobiotic efflux pumps (17). 

Additionally, activation of CpxR/A via nlpE overexpression has been shown to increase 

bacterial resistance to antibiotics (18) further positing a significant role for CpxR/A in 

resistance to antimicrobials. The addition of the Mar system to the arsenal of CpxR/A-

mediated resistance mechanisms establishes it as the major regulator in antimicrobial 

resistance since it regulates the sysem previously thought to be the major contributor 

(Mar), as well as Mar-independent systems. 

Cumulatively, this study has identified a multitude of integrated genetic circuitries 

required for bacterial resistance to AMPs (illustrated in Figure 33). This evidence will 

allow for further elucidation of bacterial resistance to host-mediated factors, as well as 

shed insight into the strategies of bacterial survival and adaptation in host environments. 



123 

Further, it provided additional information regarding the physiological significance of 

several cellular components. 
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Figure 33. Illustration of novel genetic mechanisms required for bacterial resistance to 

the model antimicrobial peptide, protamine.  

Before this dissertation study, PhoP/PhoQ was the only two-component system 

determined to be required for resistance to protamine. Now, an extensive CpxR/A-

dependent circuitry has been uncovered in which CpxR/A-mediates resistance by 

regulating several loci. Dashed line, regulation identified in this study. Solid line, 

regulation previously identified. 
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LIST OF STRAINS USED IN THIS STUDY 
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Strain  Description Reference/Source 

Escherichia coli   

BW25113 
Δ(araD-araB)567 Δlac4787(::rrnB-3) λ

−
 rph-1 

Δ(rhaD-rhaB)568 hsdR514 
(154) 

DH5 

F
−
 supE44 ΔlacU169 

(φ80 lac ΔM15) hsdR17recA1 endA1 

gyrA96 thi-1 relA1 

(211) 

BL21 (DE3)   Stratagene 

Keio collection Keio collection  (154) 

TU190 MG1655 ΔlacIZYA::frt ΔftsEX::Kan
R
 (63) 

YS Collection 7 BW25113 acrB::frt emrB::Kan
R This work 

YS Collection 7 BW25113 acrB::frt acrE::Kan
R
 This work 

YS Collection 7 BW25113 acrB::frt emrY::Kan
R
 This work 

YS Collection 7 BW25113 acrB::frt glnQ::Kan
R
 This work 

YS Collection 7 BW25113 acrB::frt macB::Kan
R
 This work 

YS Collection 7 BW25113 acrB::frt mdlB::Kan
R
 This work 

YS Collection 7 BW25113 acrB::frt mdtF::Kan
R
 This work 

YS Collection 7 BW25113 acrB::frt metN::Kan
R
 This work 

YS Collection 7 BW25113 emrB::frt acrB::Kan
R This work 

YS Collection 7 BW25113 emrB::frt acrE::Kan
R
 This work 

YS Collection 7 BW25113 emrB::frt emrY::Kan
R
 This work 

YS Collection 7 BW25113 emrB::frt glnQ::Kan
R
 This work 

YS Collection 7 BW25113 emrB::frt macB::Kan
R
 This work 

YS Collection 7 BW25113 emrB::frt mdlB::Kan
R
 This work 

YS Collection 7 BW25113 emrB::frt mdtF::Kan
R
 This work 

YS Collection 7 BW25113 emrB::frt metN::Kan
R
 This work 

YS Collection 7 BW25113 acrB::frt emrB::frt acrE::Kan
R
 This work 

YS Collection 7 BW25113 acrB::frt emrB::frt emrY::Kan
R
 This work 

YS Collection 7 BW25113 acrB::frt emrB::frt glnQ::Kan
R
 This work 

YS Collection 7 BW25113 acrB::frt emrB::frt macB::Kan
R
 This work 

YS Collection 7 BW25113 acrB::frt emrB::frt mdlB::Kan
R
 This work 

YS Collection 7 BW25113 acrB::frt emrB::frt mdtF::Kan
R
 This work 

YS Collection 7 BW25113 acrB::frt emrB::frt metN::Kan
R
 This work 

 BW25113 marA::Kan
R
 (154) 

 BW25113 marR::Kan
R
 (154) 

 BW25113 marB::Kan
R
 (154) 

YS14530 BW25113 marRA::Cm
R
 This work 

YS14490 BW25113 cpxR::Cm
R
 This work 

 BW25113 rob::Kan
R
 (154) 

 BW25113 soxS::Kan
R
 (154) 

YS15193 BW25113 rffG::frt rfbB::Kan
R
 This work 

YS15189 BW25113 wzzE::frt cld::Kan
R
 This work 

YS15191 BW25113 wzzE::frt fepE::Kan
R
 This work 

YS13683 BW25113 amiA::frt amiC::frt
 This work 
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Strain  Description Reference/Source 

YS Collection 9 BW25113 amiA::frt amiC::frt citE ::Kan
R This work 

YS Collection 9 BW25113 amiA::frt amiC::frt fdnG ::Kan
R This work 

YS Collection 9 BW25113 amiA::frt amiC::frt hyaA ::Kan
R This work 

YS Collection 9 BW25113 amiA::frt amiC::frt sufI ::Kan
R This work 

YS Collection 9 
BW25113 amiA::frt amiC::frt 

wcaM ::Kan
R This work 

YS Collection 9 BW25113 amiA::frt amiC::frt yaeI ::Kan
R This work 

YS Collection 9 BW25113 amiA::frt amiC::frt yagT ::Kan
R This work 

YS Collection 9 BW25113 amiA::frt amiC::frt yahJ ::Kan
R This work 

YS Collection 9 BW25113 amiA::frt amiC::frt ybiP ::Kan
R This work 

YS Collection 9 BW25113 amiA::frt amiC::frt ycbK ::Kan
R This work 

YS Collection 9 BW25113 amiA::frt amiC::frt yedY ::Kan
R This work 

YS Collection 9 BW25113 amiA::frt amiC::frt ynfE ::Kan
R This work 

YS Collection 8 BW25113 napA::frt ynfF ::Kan
R This work 

YS15226 BW25113 Δrfe-lac lacY
+ 

This work 

YS14891 BW25113 ΔrffT-lac lacY
+ 

This work 

YS15227 BW25113 ΔrffM-lac lacY
+ 

This work 

YS14331 BW25113 ΔmarR-lac lacY
+ 

This work 

YS14329 BW25113 ΔmarA-lac lacY
+ 

This work 

YS14330 BW25113 ΔmarB-lac lacY
+ 

This work 

YS14534 BW25113 ΔmarRA-lac lacY
+ 

This work 

YS11195 BW25113 ΔmgrB-lac lacY
+ 

This work 

TR49 MC4100 λRS88[degP-lac]
 

(200, 201) 

TR50 MC4100 λRS88[cpxP-lac]
 

(55, 201)  

S. enteric serovar 

Typhimurium 
  

14028s wild-type ATCC 

YS13007 14028s ΔtatC::Kan
R
 This work 

YS13629 14028s ΔamiA::Cm
R
 This work 

YS13630 14028s ΔamiC::Cm
R
 This work 

YS13766 14028s ΔamiA ΔamiC::Cm
R
 This work 

 YS11590        14028s ΔphoP (212) 

 YS13644      14028s ΔcpxR::Cm
R
 This work 

YS13637 14028s ΔamiA-lac lacY
+ 

This work 

YS13640 14028s ΔamiC-lac  lacY
+
 This work 

YS13995 14028s ΔtatC::frtC ΔcpxR::Cm
R
 This work 
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APPENDIX B  

LIST OF PLASMIDS USED IN THIS STUDY 
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Plasmid  Description Reference/Source 

    pKD3 repR6Kγ Ap
R
 FRT Cm

R
 FRT (155) 

    pKD46 reppSC101
ts
 Ap

R
 ParaBAD γ β exo (155) 

    pCP20 reppSC101
ts
 Ap

R
 Cm

R
 cI857 λPR (155) 

    pCE36 repR6Kγ Km
R
 FRT lacY this (156) 

    pCE37 repR6Kγ Km
R
 FRT lacY this (156) 

pUC19 reppMB1 Ap
R
 (213) 

    pBAD TOPO reppBR322 Ap
R
 araC PBAD Invitrogen 

  pBAD-tatC reppBR322 Ap
R
 araC PBAD tatC This work 

pUHE21–2lacI
q
 reppMB1 Ap

R
 lacI

q
 (157) 

   pUHE-amiA reppMB1 Ap
R
 lacI

q
 amiA This work 

   pUHE-amiC reppMB1 Ap
R
 lacI

q
 amiC This work 

   pUHE-yaeJ reppMB1 Ap
R
 lacI

q
 yaeJ This work 

   pUHE-nlpE reppMB1 Ap
R
 lacI

q
 nlpE This work 

    pET28a repColE1 Km
R
 lacI PT7 Novagen 

   pYS2135 repColE1 Km
R 

lacI PT7 His6-cpxR This work 

pYS1000 repp15A Cm
R
 plac1-6 lac this (158) 

pYS1734 repp15A Cm
R
 plac1-6 lac this marR 5’UTR1-570 This work 

pYS1736 repp15A Cm
R
 plac1-6 lac this marR 5’UTR1-120 This work 
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APPENDIX C 

LIST OF PRIMERS USED IN THIS STUDY 
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Number Sequence 

tatC-forward GGGACCGTAAACATGGCTGTA 

tatC-reverse CGGTTGTGTAAAGTCTTCAGT 

232 GAAACAGCTATGACCATG 

233 TTCCCAGTCACGACGTTG 

1327 CGGGATCCTTTTCACAACTCAGGC 

1328 CCCAAGCTTTTACCGTTTCTTCGTG 

1369 CTTGAACTTAATTTTCACAACTCAGGCCGTCATATGAATATCCTCCTTAG 

1370 CTTTCTGATTATCAAACCAGTGAAAATAACGTGTAGGCTGGAGCTGCTTC 

1396 ATCTCTATTTAGTTTTTGCTCGGGAGAAGCCATATGAATATCCTCCTTAG 

1397 CCCGCGCAATAAACTCGCCGTCATCTCAGGGTGTAGGCTGGAGCTGCTTC 

1402 CCCAAGCTTTTGCTCGGGAGAAGC 

1403 CCCAAGCTTAACTTCTTCTCGCCAGCG 

1407 CGTAATTTCTGCCTCGGAGGTACGTAAACACATATGAATATCCTCCTTAG 

1408 TCCTATCATGAAGCGGAAACCATCAGATAGGTGTAGGCTGGAGCTGCTTC 

1413 CGGGATCCTGGCAACAGCCCTCATG 

1414 CCCAAGCTTCAATCCAGTGGACGAC 

1421 CGGGATCCATTTCATAAGGATTTTATGG 

1422 CCCAAGCTTAGTGAGTGCAATCTTTAC 

1461 GTTTAGCCGATTAGCTATAAAGGTGGCGGGCATATGAATATCCTCCTTAG 

1462 CCAGCGGCGATTTGGTTCGCAAGCTGCGGGGTGTAGGCTGGAGCTGCTTC 

1472 TTAGGAGTTTAAAAGTGCTCAT 

1482 ATAAAATTTACGCTTGCACAGA 

1484 CTTCGCCGCCGAGCAT 

1512 GTTTCATATGAATAAAATCCTG 

1513 ACGCGTCGACTCATGAAGCGGAAACCAT 

1567 CAAGATTATGGCGCAAACATCTG 

1595 ATAATGGCGATGTGTCACGTATTCACATGAAAACACATACAATTCTCATCACCAAC 

1598 CTTCTACCAGTTCGGTATGTGGTTCCATGTGCATTGCGCGCCCCACTAG 

1723 TTGCCTGCCAGGCCA 

1725 CAGATCGCTGGTACTTTTCAC 

1731 CCGCTCGTTCATTGAACAGATCGCTGGTACTTTTCAC 

1734 GCGTCGACGCAATATTGGCACTGGGTTCATCTTCCAGC 

1736 GCGTCGACCTTTAGCTAGCCTTGCATCGCATTGAACAA 

1803 GACTGTACTGATTCACG 

1804 CACTTAAGCCGTCGTC 

1912 CTGACAGTGAGTACTGATCTC 

1913 GTGACGTTTGCGGAAGTTTG 

1914 CATTAACCCGCCGTTGCTCG 

1915 CGCGTACCAAATACAGTCAG 

1916 GGCAGCTATCAGGGCGAGCG 
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Number Sequence 

1917 CGCGTAATCGGATGCAATCG 

1919 GGCAACCAGCGTTCCCTGC 

1921 CTGGCAATGACCAAGACCAATGACG 
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APPENDIX D  

GENE MUTANTS IDENTIFIED IN THE SYSTEMATIC SCREEN 
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Functional Group Gene Name P R 6 30 

 
Survival % Color Code 

  
ATP Synthase 

Subunits 

atpB           <15%     

  atpC           15-30%     

  atpG           30-45%     

  
Biosynthesis/ 

Metabolism 

aroK           45-60%     

  cpsG           60-75%     

  gpmI           75-90%     

  

Cell Wall/ 

Envelope/ Fatty 

Acid Biosynthesis 

amiC           >90%     

  dacA                 

  dadX                 

  envC                 

  fadB                 

  fadR                 

 
lpp                 

 
lpxL                 

 
lpxM                 

 
prc                 

 
rfaD                 

 
yihS                 

 
yqjA                 

 

DNA/RNA 

Synthesis/ 

Degradation/ 

Repair 

amn               

 
deaD                 

 
dnaK                 

 
nfo                 

 
nrdD                 

 
recA                 

 
recJ                 

 
rep                 

 
rimK                 

  rpmF                 

  rpoZ                 

  xerC                 

  xseA                 

  xthA                 

Susceptibility profile of gene mutants whose gene products function in: ATP synthase 

complex; biosynthesis/metabolism; cell wall/envelope/fatty acid biosynthesis; and, 

DNA/RNA biosynthesis/repair. P, protamine; R, RTD-2; 6, OH-CM6; 30, OH-

CATH30. 
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Functional Group Gene Name P R 6 30   Survival % Color Code 

Enterobacterial 

Common Antigen 

(ECA) Synthesis 

rfe           <15%   

rffC           15-30%   

rffH           30-45%   

rffT           45-60%   

Metabolism/ 

Catabolism 

cobS           60-75%   

ilvG           75-90%   

melA           >90%   

menC               

pgm               

ptrB               

ptsG               

ycdM               

yieK               

Regulation 

acnB             

argR               

cpxA               

cpxR               

crp               

feaR               

gcvA               

gcvR               

glnK               

hflD               

lldR               

mak               

pmrD               

ygfZ               

ygiP               

yijO               

yrbA               

rsxB               

Stress Response 

degP               

hfq               

pnp               

yciM               

yeaV               

zwf             
 

Susceptibility profile of gene mutants whose gene products function in: 

enterobacterial common antigen synthesis; metabolism/catabolism; regulation; and, 

stress response. P, protamine; R, RTD-2; 6, OH-CM6; 30, OH-CATH30. 
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Functional Group Gene Name P R 6 30 
 

Survival % Color Code 
 

Transporters/Pores 

alsC 
     

<15% 
  

citT 
     

15-30% 
  

cycA 
     

30-45% 
  

ddpX 
     

45-60% 
  

exbB 
     

60-75% 
  

exuT 
     

75-90% 
  

frlA 
     

>90% 
  

glnQ 
        

gntP 
        

kdpA 
        

mntH 
        

putP 
        

secB 
        

tatA 
        

tatC 
        

tolC 
        

ycjP 
        

yedS 
        

yggR 
        

Other/Unknown 

dsbA 
        

dsbB 
        

flgN 
        

fliI 
        

iscU 
        

ompA 
        

pdxH 
        

spr 
        

yajD 
        

ybhL 
        

yddL 
        

yedN 
        

yehM 
        

yfdI 
        

yfhM 
        

yfjZ 
        

ygeY 
        

yggS 
        

yhjK 
        

yigG 
        

yiiQ 
        

ymgD 
        

ypfN 
        

Susceptibility profiles of gene mutants whose gene products function as: 

transporters/pores and other/unknown functions. P, protamine; R, RTD-2; 6, OH-

CM6; 30, OH-CATH30. 
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APPENDIX E  

DEMONSTRATED OR PREDICTED CPXR/A-DEPENDENT LOCI AND THEIR 

RESISTANCE/SUSCEPTIBILITY TO PROTAMINE 
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Gene 

Name 

CpxR-

Reg 
Function 

Protamine 

R/S 
Ref 

aceE Positive Pyruvate dehydrogenase dihydrolipotransacetylase Resistant (196) 

aceF Positive Pyruvate dehydrogenase dihydrolipotransacetylase Resistant (196) 

acpP ND Fatty acid synthesis, acyl carrier protein Resistant (195) 

acrD Positive Component of efflux pump Resistant (214) 

adhE Negative Ethanol oxioreductase Resistant (195, 196)  

aer Negative Aerotaxis Resistant (214) 

agp Negative Periplasmic glucose-1-phosphatase Resistant (196) 

amiA Positive N-acetylmuramoyl-L-alanine amidase Sensitive (15) 

amiC Positive N-acetylmuramoyl-L-alanine amidase Sensitive (15) 

argA ND N-acetylglutamate synthase Resistant (195) 

ariR (ymgB) Positive Regulator of acid resistance influenced by indole Resistant (196) 

aroG ND DAHP synthase Resistant (214) 

aroK Positive Shikimate kinase I Sensitive (195, 214)  

b2503 ND Putative cytochrome C-type protein Resistant (195) 

b2504 ND Unknown Resistant (195) 

bacA ND Lipid kinase, bacitracin resistance Resistant (195) 

bssR (yliH) Positive Regulator of biofilm formation Resistant (196) 

chaA ND Ca2+/H+ and Na+/H+ antiporter Resistant (195) 

chaB ND Ca2+/H+ and Na+/H+ antiporter Resistant (195) 

cobUST ND Cobalamin synthesis Resistant (195) 

cpxP Positive Inhibitor of CpxA activity Resistant (195, 196, 214) 

cpxRA Positive Signal transduction system Resistant (195, 214)  

csgBAC Negative Curlin fimbriae components Resistant (195, 214)  

csgDEFG ND Curlin fimbriae synthesis and regulation Resistant (195, 214)  

csiR (gabC) Positive Regulator of Gab gene expression  ND (196) 

cspD Negative DNA replication inhibitor Resistant (196) 

csrB Positive Regulatory RNA/carbon storage regulation ND (196) 

degP Positive Periplasmic serine endoprotease Sensitive (195, 214)  

deoC ND Deoxyribse phosphate aldolase Resistant (195) 

dnaK ND σ32-regulated heat shock chaperone Sensitive (195) 

dppC Positive Component of dipeptide ABC transporter Resistant (196) 

dppD Positive Component of dipeptide ABC transporter Resistant (196) 

eda ND 2-Keto-3-deoxy-6-P-gluconate aldolase Resistant (195) 

efeU Negative Elemental ferrous iron uptake permease Resistant (214) 

endA Negative DNA-specific endonuclease I Resistant (196) 

fliA Positive SIgmaF, regulation of flagellar regulon Resistant (196) 

fliY Positive Cystine-binding periplasmic protein Resistant (196) 

flu Positive Antigen 43, potential adhesion OMP Resistant (196) 

fryA (ypdD) Negative fused predicted PTS system Resistant (196) 

ftnB Positive Ferritin-like protein Resistant (196, 214) 

ftsJ-hflB ND Regulates σ32 and lambda cIII degradation Resistant (195) 

fucU Positive L-fucose mutarotase, fucose catabolisme Resistant (196) 
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galP ND Galactose/H+ symporter Resistant (195) 

gatDCBAZY Negative Glactitol specific enzyme component of PTS Resistant (196) 

gcvTHP Negative Glycine-cleavage enzyme system Resistant (195, 196)  

glpA Negative Glycerol-3-phosphate dehydrogenase subunit Resistant (196) 

glpB Negative Glycerol-3-phosphate dehydrogenase subunit Resistant (196) 

glpC Negative Glycerol-3-phosphate dehydrogenase subunit Resistant (196) 

gltK ND Glutamate-aspartate transport Resistant (195) 

gspE Positive General secretory pathway component, cryptic Resistant (196) 

hdhA Negative 7-alpha-hydroxysteroid dehydrogenase Resistant (196) 

hlpA/ompH ND σE controlled periplasmic chaperone Resistant (195) 

hns Positive Global DNA-binding transcriptional dual regulator Resistant (196) 

hslTS ND σ32 regulated heat shock proteins Resistant (195) 

htpX Positive Heat shock protease Resistant (214) 

intB ND Integrase B Resistant (195) 

lamB Negative 
Outer membrane porin; Phage lambda receptor 

protein 
Resistant (196) 

leuS ND Leucyl-tRNA synthetase Resistant (195) 

lgt (umpA) Positive Prolipoprotein diacylglyceryl transferase Resistant (196) 

ligB (yicF) Negative DNA ligase B Resistant (196) 

lpd Positive Lipoamide dehydrogenase Resistant (196) 

manXYZ ND Mannosephosphotransferase system Resistant (195) 

mdtABC Positive Multidrug transporter subunit Resistant (214) 

mobAB ND Guanidine dinucleotide synthesis Resistant (195) 

motAB/cheAW Negative Motility and chemotaxis Resistant (195, 214)  

mviM Positive Virulence factor Resistant (195, 214)  

nanC Positive NAN (N-acetylneuraminic acid) channel Resistant (214) 

ompC Positive Outer membrane porin 1 Resistant (195, 214)  

ompF Negative Outer membrane porin Resistant (195, 214)  

pap Negative Uropathogenic E. coli P pilus subunits Resistant (214) 

pdhR Positive Pyruvate dehydrogenase decarboxylase Resistant (196) 

pepT Negative Peptidase T Resistant (196) 

pheM Positive 
Phenylalanyl-tRNA synthetase (PheST) leader 

peptide 
Resistant (196) 

ppc ND Phosphoenolpyruvate carboxylase Resistant 
 

ppiA Positive Periplasmic peptidyl/prolyl isomerase A Resistant (195, 214)  

ppiD Positive Periplasmic isomerase D Resistant (195, 214)  

psd Positive Phosphatidyl serine decarboxylase Resistant (195, 214)  

pspF Negative Phage-shock protein Resistant (196) 

ptsI ND Enzyme I of PEP:PTS carbohydrate uptake Resistant (195) 

purR ND Regulator purine synthesis Resistant (195) 

puuC (aldH) Positive γ-glutamyl-γ-aminobutyraldehyde dehydrogenase  Resistant (196) 

pykA Negative Pyruvate kinase II/Anaeroic respiration Resistant (196) 

qseB Positive TCS activator of the flagellar regulon Resistant (196) 
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rcsA ND Regulator capsular polysaccharide synthesis Resistant (195) 

rdoA-dsbA Positive Disulfide oxidoreductase Resistant (214) 

rfaY Positive Lipopolysaccharide core biosynthesis protein Resistant (196) 

rffA Positive dTDP-4-oxo-6-deoxy-D-glucose transaminase Sensitive* (196) 

rpoE Positive σE transcription factor  ND (195, 214) 

rpoH ND Heat-shock transcription factor σ32 Resistant (195) 

rpsP ND 30 S ribosomal subunit protein S16 Resistant (195) 

rpsT Negative 30S ribosomal protein S20 Resistant (196) 

rseABC Positive Regulators of σE transcription factor Resistant (195, 214) 

secA Positive Secretion subunit A Resistant (214) 

slt ND Iron regulated Shiga-like toxin Resistant (195) 

smpA Positive Outer membrane lipoprotein Resistant (195, 196) 

spy Positive Periplasmic protein, induced by oxidative stress Resistant (195, 196, 214) 

sspA ND Stringent starvation, adherence and invasion Resistant (195) 

tap ND Taxis toward peptides, methyl-accepting Resistant (195) 

thyA Positive Thymidylate synthetase Resistant (196) 

tig ND Trigger factor with DnaK  Resistant (195) 

tnaA Negative Tryptophan transport and utilization Resistant (196) 

tnaB Negative Tryptophan transport and utilization Resistant (196) 

tnaL (tnaC) Negative Tryptophan transport and utilization Resistant (196) 

tolA Positive Component of the Tol-Pal cell envelope complex Resistant (196) 

tolB Positive Component of the Tol-Pal cell envelope complex Resistant (196) 

tolC Positive Outer membrane pore involved in efflux Sensitive (18) 

tolQ Positive Component of the Tol-Pal cell envelope complex Resistant (196) 

tsr Negative Serine chemoreceptor Resistant (195, 214) 

udk ND Uridine/cytidine kinase Resistant (195) 

ulaR Positive DNA-binding transcriptional dual regulator Resistant (196) 

ung 
Positive/ 

Negative 
Uracil-DNA glycosylase Resistant (195, 214) 

uspA Negative Universal stress global response regulator Resistant (196) 

uxuR ND Represses hexuronate degradation Resistant (195) 

vsr Positive DNA mismatch endocnuclease Resistant (196) 

yafK Positive Conserved protein (periplasmic) Resistant (196) 

ybaJ Positive Unknown Resistant (214) 

ybaQ Positive Predicted transcriptional regulator Resistant (196) 

ybaR ND Putative ATPase Resistant (195) 

ybaS ND Putative glutaminase Resistant (195) 

ybcU (borD) Negative Lipoprotein Bor homolog Resistant (196) 

ybeL Positive Conserved protein Resistant (196) 

ybgC Positive Predicted acyl-coA thioesterase Resistant (196) 

ybgF Positive Component of the Tol-Pal cell envelope complex Resistant (196) 

ybhT Positive Predicted protein Resistant (196) 
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ybjS Positive 
Predicted oxidoreductase with NAD(P) binding 

domain 
Resistant (196) 

ycbZ Negative Putative ATP-dependent protease Resistant (196) 

yccA ND Transmembrane, degraded by FtsH Resistant (195, 196, 214) 

yceI Positive 
Periplasmic protein induced at high pH/osmotic 

shock 
Resistant (196) 

yceJ Positive Predicted cytochrome Resistant (196) 

ycfS Positive Periplasmic protein with unknown function Resistant (214) 

ycgZ Positive Uncharacterized protein Resistant (196) 

yciF Negative Putative structural protein, osmotically inuced Resistant (196) 

ydeH Positive Unknown Resistant (214) 

ydeK Positive Predicted lipoprotein Resistant (196) 

ydeN Negative Uncharacterized sulfatase Resistant (196) 

ydjF Negative Transcriptional regulator Resistant (196) 

yebE Positive Putative inner membrane protein Resistant (214) 

yefJ ND Putative creatinase Resistant (195) 

yfiD ND Putative formate acetyl-transferase Resistant (195) 

ygaW Negative Predicted inner membrane protein Resistant (196) 

ygjT Positive Putative transport protein Resistant (195) 

yhaI Positive Predicted inner membrane protein Resistant (196) 

yhdG ND Probable oxidoreductase, similar NifR3 Resistant (195) 

yhdJ ND Putative methyltransferase Resistant (195) 

yhfC ND Putative transporter Resistant (195) 

yhjE ND Putative transport protein Resistant (195) 

yhjV Positive Inner membrane transport protein Resistant (196) 

yiaF Positive Putative inner membrane lipoprotein Resistant (196) 

yidZ Positive HTH-type transcriptional regulator Resistant (196) 

yihE-dsbA Positive Disulfide oxioreductase Sensitive (195) 

yjfN ND Unknown Resistant (195) 

yjfP ND Unknown Resistant (195) 

yjiY ND Putative carbon starvation protein Resistant (195) 

ymgA Positive Uncharacterized protein Resistant (196) 

yojN ND Putative sensor kinase Resistant (195) 

ypdF Negative aminopeptidase Resistant (196) 

yqjA Positive DedA-like predicted inner membrane protein Sensitive (214) 

yzgL Positive Uncharacterized protein Resistant (196) 

 

 

 


