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ABSTRACT 

 

Objective of this thesis project is to build a prototype using Linear Temporal Logic 

specifications for generating a 2D motion plan commanding an iRobot to fulfill the 

specifications. This thesis project was created for Cyber Physical Systems Lab in Arizona 

State University. The end product of this thesis is creation of a software solution which 

can be used in the academia and industry for research in cyber physical systems related 

applications. 

The major features of the project are: creating a modular system for motion planning, use 

of Robot Operating System (ROS), use of triangulation for environment decomposition 

and using stargazer sensor for localization. The project is built on an open source 

software called ROS which provides an environment where it is very easy to integrate 

different modules be it software or hardware on a Linux based platform. Use of ROS 

implies the project or its modules can be adapted quickly for different applications as the 

need arises.  

The final software package created and tested takes a data file as its input which contains 

the LTL specifications, a symbols list used in the LTL and finally the environment 

polygon data containing real world coordinates for all polygons and also information on 

neighbors and parents of each polygon. The software package successfully ran the 

experiment of coverage, reachability with avoidance and sequencing. 
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CHAPTER1  

INTRODUCTION 

1.1 Motivation of the Thesis

There is an increase in the pervasiveness of technology in our daily lives. Technology is 

slowly taking over menial tasks and freeing us for tasks which require higher cognitive 

abilities. The mechanization of manufacturing industry or our web searches becoming 

more intelligent are examples of technology easing our lives. One of the major driving 

reason behind all this technology is software capabilities being brought into the picture. 

Yet there exists a gap between specifying the work we need to get done and actually 

extracting the work from the machine.  

This problem is attacked in two different ways, first is to have a statistical analysis on the 

data being provided by the user and provide a reaction accordingly, the second one is 

being able to get a more clear request from the user to begin with and get the work done. 

The first problem can be applied to many situations, but a major shortcoming of this 

method is for each user to provide with some initial data before being able to actually get 

useful results from the system. The second method has the challenge of designing a good 

interface to be used for human to machine interactions and prepare software which is 

robust to ambiguities. This means building the safety critical aspects into the software 

itself and not have contradictory or unpredictable states in the output. 

One of our basic human interaction mechanisms are natural languages. The problem with 

using natural languages is the inherent ambiguity that lies in them. Linear Temporal 

Logic is a language that can be used to create a bridge for this gap and trying to produce a 
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more exact mapping between the intention of a statement and reducing the associated 

ambiguities with its meaning (Clarke, Grumberg, & Peled, 1999). Linear Temporal logic 

enables us to reason for time over state machines and provides a powerful tool to get 

closer to deriving concrete specifications from natural language constructs. LTL is used 

for model checking which is aimed at finding an acceptance state and its reachability for 

all time. Whether there is a possibility of the system breaking down after "x" number of 

iterations can be found out because LTL has the ability to describe infinitely often 

behavior which is otherwise not easily verifiable.   

 

Figure 1: Shows the environment with 4 rooms and 2 corridors. 
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Figure 2: The robot in Room 1 is directed to pick object in Room 4 while avoiding Room 

2 & 3. 

 

Figure 3: The robot is directed to avoid Corridor 2, Room 2 & 3 while picking the object 

from Room 4. 
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The model based specifications in LTL can provide guarantees on whether reaching the 

final goal is feasible. Consider the following example where we see 4 rooms adjacent to 

each other connected by 2 corridors in a large environment as shown in Figure 1, a robot 

is directed to pick an object from Room 4. Now consider a situation where a robot has 

been asked to perform the previously mentioned task while avoiding Room 2 and 3 as 

shown in Figure 2. Consider a further situation where some kind of blockage exists in 

Corridor 2 as shown in Figure 3. We can easily keep incorporating all these new behavior 

in the specification and ask the robot to complete its tasks using LTL specifications, 

because to produce these varied behaviors we only have to modify the LTL specifications 

to guarantee expected results. An availability of natural language to LTL converters 

(Dzifcak, Scheutz, Baral, & Schermerhorn, 2009) makes it's even easier for a user to 

provide behavior specific commands to a machine which hold over a period of events. As 

we can see here it is very easy to incorporate more complex behavior in the system 

without really having to make extensive software changes on the underlying layers. This 

leads to flexibility of how the robot is supposed to perform an operation and opens up 

new venues to interact with machines without having complex understanding of 

underlying software architecture. Hence producing a motion plan which can guarantee 

complex event based behavior becomes easier using LTL specifications.  

1.2 Contribution of the Thesis 

The main contribution of this thesis is the creation of a modular software providing an 

implementation to generate motion plans for an iRobot from LTL specifications in a 

defined environment with a ROS framework. A ROS based LTL planning system has yet 
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not been devised and this implementation will address this need of creating a package 

which will be made open source at a later point of time. The software is implemented in 

C++ using the facilities provided by the ROS framework to communicate to iRobot and 

stargazer hardware components. The software provides a test bed for researchers and 

engineers to verify LTL planning algorithms on a physical robot rather than a simulation 

environment. The modular nature of the software also enables certain parts to be utilized 

with few changes to it. It is feasible to just get cross-product as an output from the system 

into a file. The software does many tasks which can be tweaked and enable a variety of 

different functions. The package will be publically released on the conclusions of a stable 

version to the ever growing ROS community.  

The use of ROS gives it access to a variety of hardware because of availability of open 

source packages make it easy to adapt code. This implies that a number of sensors could 

be used for localization along with a different set of robot for motion. The software also 

contains a use of triangulation in environment decomposition instead of square grids and, 

use of stargazer sensors for localization to derive accurate location. These features help in 

generating a faster and more non-intrusive path for the robot to use for its navigation 

(Kuan, Zamiska, & Brooks, 1985) (Vik, 2013).  

1.3 Thesis Structure 

This thesis is intended to be a guide for the software developed. It talks in depth on the 

details that were used to generate robot motion and its controllers from LTL.  

 Chapter 1 gives an introduction and a general outline for the motivation behind 

this thesis project. 
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 Chapter 2 discusses related literature and the background of the entire thesis 

project. The direction of doing the thesis project and the reasoning behind taking 

this particular design route. 

  Chapter 3 describes the design of the ROS package that was created and gives 

details related to the software and hardware architecture that were used. It 

describes the general outline of the code and its construction along with different 

modules that were integrated together to implement the code. 

  Chapter 4 is related to the interface files that are required as inputs, fields and the 

reasoning behind them. 

 Chapter 5 discusses the results that were produced and the end deliverables 

created for the thesis project.  

 Chapter 6 covers possible future work that can be done based on the package that 

was created for this purpose.  

 Appendix contains the instructions for initializing this software and the related 

setup required. It also talks about the stargazer map used to localize the iRobot for 

its navigational feedback from the system. 
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CHAPTER 2 

RELATED LITERATURE 

This thesis is going to present the idea of combining LTL with movement of iRobot. The 

main goal of this project is to generate a controller for a robot by taking Linear Temporal 

Logic specifications and using them to create a navigation path plan for a robot. In the 

future we will see an increase in the way technology integrates with our lives. We are 

seeing a definite increase in robots being around us. As we gain more proximity and use 

of robots we need to work on being able to communicate with the machines in an 

effective way. There exists a gap between being able to give clear instructions to a robot 

from a human perspective. This is because natural languages can implicitly have 

ambiguity built into them. This is where we need to use LTL to define the specifications 

which provide a closer alternative to the natural languages. 

2.1 Related research 

The previous related work is based on a variety of related topics. This project combines 

different software tools and constructs an integrated package. This section describes the 

theory behind all the different software packages that were used. The topics are 

subdivided into the following major points: 

 Motion Planning  

 Temporal logic for motion planning 

 Environment decomposition 
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2.1.1 Motion planning 

Motion planning has many interpretations based on the context from which it is drawn 

(LaValle, 2006). Motion planning could mean trying to find path to solve a complex 

puzzle in the perspective of AI or trying to find the shortest path between two cities while 

using a GPS, or how a robot arm should be manipulated to successfully run its task in an 

assembly line. This thesis concentrates on the concept of motion planning that is related 

to motion of a robot from one location to another given an environment with set of events 

or constraints. These constraints can be based either on the robot control or the ordering 

of events and their temporal relationship with each other. 

There are two approaches to robot motion planning that are considered. The first one is to 

generate a path for very complex environments with the assumption that a robot does not 

have control constraints. The other approach is to use complex models for the robot but 

have very simplistic environments for them to navigate in. Both these approaches have 

their drawbacks in implementing them as concepts to the real world (Belta, Isler, & 

Pappas, 2005). The work described in (Belta, Isler, & Pappas, 2005) talks about 

integrating high level and low level path planning by taking a two pronged approach. 

First is generating a path plan into discretized set of events which produce a plan for the 

robot to move in a triangulated environment, second point takes into consideration the 

low level kinematics of a robot such that they are able to ensure its ability to stay in 

triangulated spaces as requested by the high level plans. The low level dynamics will 

ensure that irrespective of the initial condition in a decomposed environment cell, it will 

be able to maintain the sanctity of staying within the environment cell. This provides an 
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abstraction in trying to generate the controllers needed for a robot to navigate a planar 

environment consisting of convex polygons.  

2.1.2 Temporal logic for motion planning 

"Temporal logic is a branch of modal logic." (Kroger & Merz) Temporal logic can be 

defined as consisting of propositions with standard Boolean operators and some temporal 

operators (Kress-Gazit, Fainekos, & Pappas, 2009). (Pnueli, 1977) proposed that a 

program is supposed to be composed of two components which could be used to describe 

its correctness. These components are called  

1. Invariance: a condition has to stay true during the entire run of the program, 

which means regardless of the current state of program, the program has to 

generate conditions and ensure that invariant specifications remain true at all 

times. 

2. Eventuality : means a condition will become true eventually which means at some 

point of time in the execution trace in the future the condition holds. 

There are also various types of temporal logic that have been explored (Lamport, 1980). 

They are based on how time is treated i.e. either time can be treated as all future 

possibilities happening simultaneously or time being a linear set of events with only one 

real future. The major difference that comes about from these interpretations is explained 

as follows, in case of branching time into all possibilities implies every possible future is 

real and has to be taken into consideration. This interpretation does not apply to linear 

time logic problems where just one actual future that takes place. This difference is 
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highlighted when we see a statement with "not never " and "eventually" where because of 

branches we find that "not never not" implies within the system there are some futures 

where "not never not" statement will be realized but not necessarily for every future 

which is not the same as "eventually" which implies it being true in all the possible future 

at some point in time. It was proposed that linear time theory is better suited for 

applications or programs with requirements of multiple processes running together.   

There are many types of temporal logic which can be used such as computation tree 

logic, LTL and real time logics, etc. the thesis project uses Linear temporal logic. The 

operators used by LTL are described in Table 1 below. 

Table 1: Describes Linear Temporal Logic Operators used. 

Operator Symbol Operator Type 

Conjunction ^ Boolean 

Disjunction ˅ Boolean 

Negation ¬ Boolean 

Eventually ◊ Temporal operator 

Always □ Temporal operator 

Until U Temporal operator 

Next ο Temporal operator 
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Let us define a region as πi where i = 1,2,3...,n labeling each individual region present 

inside the defined environment. A complex set of behavior can be expressed using these 

operators for the robot navigation such as  

 Reachability : the formula □(¬π1)^(◊π2 ^ ◊π3), means visiting locations π2 and π3 

while avoiding unsafe area π1 at all times.   

 Sequencing : ◊( π1^ ◊ (π2 ^ ◊π3)) means a sequence of visits to π1 first followed by 

π2 and then π3. 

 Coverage : (◊π1 ^ ◊π2 ^ ◊π3^.....^ ◊πn) means that eventually reach π1 and 

eventually reach π2 and eventually π3 and so on. 

In (Clarke, Grumberg, & Peled, 1999) the argument behind trying to use temporal 

specifications for verifying a software system is discussed. It is contended that as 

software systems become complicated they need to be verified before being released to 

the outer world. This kind of verification can be done by the use of model checking 

techniques where Linear Temporal Logic(LTL) can verify the specifications correctness. 

 

In (Fainekos, Kress-Gazit, & Pappas, 2005) it is explained how a closed loop or an open 

loop controller can be derived from a set of specifications and the environment 

decomposition models. It is described on how to build an entire path planning system for 

a robot. As explained in (Fainekos, Kress-Gazit, & Pappas, 2005) we can implement and 

create a controller for a robot using Linear Temporal Logic (LTL) specifications which 

define the constraints on the robot in its actuation or its environment. Furthermore, the 

use of closed loop systems to determine the initial condition such as current location 



12 
 

coordinates guarantee the successful run of operations and is a necessary component 

(Fainekos, Kress-Gazit, & Pappas, 2005, pp. 4885-4890).  

2.1.3 Environment decomposition 

Motion planning has to inherently deal with representations of the state space. In the 

physical world we see the state space in a continuous manner but a discrete set of states 

are used to actually perform the motion plan. This is because continuous space means 

there is an infinite state space. Hence to counter this problem we convert the continuous 

space into a discrete set which preserves the original problem (LaValle, 2006). Typically 

the environment can be represented by polygons. There are a wide variety of polygons 

such as convex, spiral, star-shaped as shown in the Figure 4: Figure showing different 

types of polygons.. There are many applications for polygon decomposition such as 

creating VLSI designs for layouts for lithography (Nahar & Sahni, 1988), pattern 

recognition of complex patterns broken down into recognizable simpler patterns. It is also 

used for computational geometry, database systems, image processing and computer 

graphics to draw the images on screen.  
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 We are interested in polygons which are called simple polygons with holes that can 

easily be used to define a large set of environments and then be decomposed to generate 

simpler primitives. A simple polygon is defined as a polygon which has a measureable 

area, exactly two edges meet at each vertex of the polygon and edges meet only at their 

vertices. The polygons are decomposed into cells which are treated as individual states. 

At a more abstract level the decomposition created are called partitions when the sub-

polygons do not overlap except for the boundaries, otherwise they are called covers. We 

are interested in partitions only because of the need to create discrete unique states from 

the environment where going from one state to another will cause a transition towards the 

goal of the motion plan. The decomposition is done by generating smaller primitives 

within polygon boundaries. The cell decomposition is a problem that has received a lot of 

attention due to it being computationally intensive. 

Convex Closed Polygon 

Concave Closed Polygon 

Self intersecting  Polygon 

Figure 4: Figure showing different types of polygons. 
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Figure 5: Shows polygons that have been decomposed to grids and trapezoids. 

There are different kinds of decompositions based on types of primitive shapes created 

such as triangles or grids. It is very easy to create grids computationally inside a given 

environment but there are certain disadvantages associated with this scheme. The creation 

of grids for conducting decomposition of environment is a problem because it can contain 

grid elements which are partially filled when decomposing non grid-aligned polygons. 

Grid decomposition leaves out some portion in the single element of square which can 
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lead to wasteful movement in the robot as shown with red grid elements in Figure 6 : 

Shows in the red region all the grid elements a robot cannot travel because of grid 

elements being partially filled. A strategy to mitigate this effect is to have smaller sized 

grid elements near the edges of non grid aligned polygons. The problems with this 

strategy are first, no matter how fine grained the grid becomes there will always be 

partially filled grid elements for non grid aligned edges of a polygon and second, a 

decrease in size of grid elements causes an increase in the finite transition system 

generated for the environment. Any increase in the finite transition system size will 

polynomially increase the cross-product automaton described in section 3.3 size created 

from the Büchi automaton and the discrete decomposed environment. This kind of 

increase in the state space would directly affect the computation and memory required in 

producing a motion plan.  

 

Figure 6 : Shows in the red region all the grid elements a robot cannot travel because of 

grid elements being partially filled. 
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Polygon decomposition has been pursued in many different directions besides grids, 

though creating decomposition with a minimum edge length criterion remains a hard 

problem to resolve. Specially in complex environment with convex polygons having 

holes in them, to get the minimum edge length means a NP-hard problem (Rourke & 

Supowith, 1983). We focus on decomposing polygons with holes in them because a 

normal environment will generally consist of a large structure enclosing smaller spaces 

which might be areas of interest themselves.  

The other method is used for decomposing an environment is by decomposing  from 

polygons into trapezoids as shown in Figure 5: Shows polygons that have been 

decomposed to grids and trapezoids. Trapezoids are further decomposed into triangles to 

have a better granularity. Triangulation as such strikes a balance between being able to 

create a decomposition which is computationally not very expensive, the total number of 

states produced by this method and granularity within the environment which would be 

fine to transit. 

2.2 Similar research work 

This section presents research that is similar to the one being created in this thesis project. 

Linear Temporal Logic Mission Planner (LTLMoP) is the one described first which 

provides a GUI to implement motion planning while using structured English as an input 

to control robots. The second one described here is LTL Robust Multi-Robot Planner 

(LROMP) is a software developed to plan optimal paths for a team of robots given high 

level specifications. 



17 
 

2.2.1 LTLMoP (Linear Temporal Logic Mission Planning) 

This is a GUI based software developed at Cornell university which creates hybrid 

controllers synthesized from structured English to a motion plan for a robot. They have 

created an editor to modularize different components of motion planning and provide a 

way to work with them in isolation. The GUI also provides an interface for different 

types of robots whose properties can be modified.  

There are three stages in which the entire processing takes place, described below 

(Finucane, Jing, & Kess-Gazit, 2010): 

 Parse structured English into formal logic. 

 Generate finite transition system from the formal logic created. 

 Execute the automaton as a hybrid controller. 

The LTLMoP consists of multiple editors namely, specification editor and region editor. 

The specification editor is where the structured English is provided as an input, with 

robot behavior defined by importing a robot description file. A region needs to be defined 

at this point either by the use of a region editor or by use of an imported region file. The 

parsing can finally be done once all these inputs are gathered. A successful parsing of the 

LTL specification will be indicated by the string "Automation Successfully Synthesized" 

in the output window while on failed parsing or LTL specifications being unrealizable 

nothing will be printed. If concrete counterparts to the region are available for the 

experimental environment, then the controller can be executed in the simulation or on a 

physical robot. 



18 
 

One of the biggest differences between the LTLMoP implementation and implementation 

described in this thesis is the interface with ROS. The ROS system enables access to a 

wider system of robots using packages developed by the open source community with 

few code changes. This greatly reduces the task of sending commands to a new robot 

being used in the physical world and perform the tasks. Another difference that we find 

between LTLMoP from this thesis implementation is the use of python as the 

programming language, which by the virtue of being an interpreted language will run 

slower than a compiled C++ executable and also have a larger memory footprint. The use 

of C++ also means it could potentially be used with real time operating systems which is 

not possible with a python implementation because of various factors such as garbage 

collection happening out of a users control. 

2.2.2 LROMP(LTL Robust Optimal Multi-Robot Planner) 

"This tool was developed for planning robust optimal paths for a team of robots subject to 

high level mission specifications." (Ulusoy, Smith, Ding, & Belta, 2012) Robot motion 

planning typically consists of reaching to a goal from an initial state while avoiding 

obstacles. LTL is defined for describing complex missions for robots. If we combine two 

concepts then it is possible to find an optimal path and feasibility for complex missions 

(Ulusoy, Smith, Ding, & Belta, 2012). Multi-robot path planning requires 

synchronization between different robots, which is taken care of by the use of timed 

automata (Ulusoy, Smith, Ding, & Belta, 2012).  

The implementation done in LROMP is robust which means that it takes care of time 

drifts that can occur in real world because of change in physical characteristics of robots 
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as compared to assumptions while creating simulations. The software consists of three 

major components: 

 LROMP region automaton constructor(LROMP RAC) for generating behavior of 

the multi-robot system. 

 Optimal-Run algorithm which finds an optimal run. 

 Trace-closedness checker which ensures the given formula is trace closed. 

The normal run while using this software would be for the user to define transitions for 

all each model robot and generate a product timed automaton from it using the LROMP 

RAC. The LTL formula is provided and checked using the trace-closedness checker 

about feasibility. This formula is finally fed to the Optimal-Run algorithm which finally 

provides the run for each individual robot. These runs can then be fed to actual robots and 

a real simulation can be run from them. 

The difference between LROMP and current thesis implementation is, LROMP is 

targeted towards multiple robots and currently no environmental decomposition is 

available in LROMP. The environment is treated as a fixed graph which the robot visits 

instead of taking an arbitrary environment coordinate system and converting it into a 

graph. The system does not work on ROS which can provide it with a capability to 

interface with a new set of robot without much modification.   
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CHAPTER 3 

ARCHITECTURE AND DESIGN OF SOFTWARE 

This thesis tries to integrate different aspects of motion planning for an autonomous robot 

and create a single software package which takes specifications and environment as the 

input and produces a motion plan for the robot. To better understand the concept we 

explain the modules behind motion plans, the use of LTL in creating a motion plan and 

support libraries required for ensuring that all of this seamlessly comes together as a 

single software. The next page contains the architecture diagram. 
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Figure 7: Architecture of software package 

 The Figure 7: Architecture of software package provides an overview of the first part of 

software system that has been implemented for this thesis project. 
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Figure 8: Design Diagram of Software package 
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Figure 8: Design Diagram of Software package above shows the software design of the 

coordinate generator. It shows the major components involved in generating the final 

output of coordinates. The components are described below: 

 LTL parser & LTL to BA generator: This block reads the data input and converts 

it into a string which is passed onto LTL and BA generator. The LTL to BA 
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generator is a modified version of software developed by (Gastin & Oddoux, 

2001). Described more in Section 3.1. 

 Triangulation of environment: this block performs triangulation on all the 

polygons that have been defined in the environment. This is a modified software 

used from (Narkhede & Manocha, 1994). Further details are provided in Section 

3.2. 

 Cross-product of BA and FA of environment : the generation of cross-product and 

the resulting deterministic finite automaton is handled by this block of code. This 

block required the use of Binary Decision Diagrams(BDD) whose implementation 

can be found on (BDD library). The cross-product generation is described in 

further detail in Section 3.3. 

 Visibility graph generation and Dijkstra algorithm: this block traverses through 

the finite automaton generated and uses Dijkstra's algorithm to find the shortest 

route possible for the robot to navigate. Further details are provided in Section 

3.4. 

 Steps for coordinate generation: Final steps on how the coordinates are generated 

for the lower planners to follow. Details present in Section 3.5.  

 ROS Package: This is the package that works with a ROS system which then 

controls the robot to perform its tasks. Further details are provided in Section 3.6. 

The following sections describe various components that were used to create the final 

software package that integrates LTL to BA, cross-product creation using BDD 

implementation, environment decomposition and triangulation, use of Dijkstera's 
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algorithm for optimal motion plan and ROS package for robot movement. The algorithm 

implemented in this thesis is described in Figure 9: Algorithm used to describe the overall 

steps for implementation. 

 

Figure 9: Algorithm used to describe the overall steps for implementation. 

 

3.1 LTL to BA 

In this thesis we use LTL to describe specifications which are used to generate models for 

the robot motion plan. An LTL specification could be equated to a safety property 

restricting the behavior of a system to stay within certain limits of execution. Such a 

restriction needs the LTL formula to be syntactically co-safe LTL formula which should 

only contain ο, ◊ and U operators. A syntactically co-safe LTL can be converted into an 

automaton model called the Büchi automaton. A Büchi automaton is described as an 
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automaton which can accept infinite inputs for a finite automaton (Kupferman & Vardi, 

2001). Formally described as, 

BA = (Q, ∑, δ, q, F ) 

where, 

 Q : Set of states in the finite automaton 

 ∑ : set of symbols that form the language or in our case the labels associated with 

the BA 

 δ : Q x ∑ → Q, is the transition function 

 q : defines the initial state for the respective FA's. 

 F : set of final states in the automaton. 

In this thesis, we restrict ourselves to finite length motion planning problems which could 

be described using a special class of LTL formulas called co-safe LTL formulas. Any 

violation of a safety property for a system has to occur over a finite trace of execution. A 

LTL described in a Büchi automaton contains two parts, one is the prefix finite length 

part and the other is the lasso part having a loop in its execution trace for any non 

terminating system. Now from (Kupferman & Vardi, 2001) we infer that any safety LTL 

formula satisfying execution trace will have a finite good prefix. Classically to check if 

the model meets its specification ϕ we construct a Büchi Automaton BA¬ϕ, for all traces 

violating ϕ followed by checking for feasible run between  BA¬ϕ and the system model 

M. It is concluded by (Bhatia, Kavraki, & Vardi, 2010) that computationally it is better to 

find BAϕ and find a feasible trace with the system model M.  
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For the construction of a BAᵩ the package created by Denis Oddoux and later modified by 

Paul Gastin serves the purpose of generating a Büchi Automaton from given LTL 

specifications. The software written is based on the method described in (Gastin & 

Oddoux, 2001). (Gastin & Oddoux, 2001) describes in detail about the efficient method 

proposed and implemented by the authors and its efficiency as compared to alternative 

implementation of Spin not being as quick in time or space complexity (Gastin & 

Oddoux, 2001). The improved versions of Spin did not produce substantially better 

results because the algorithms to generate the automatons remained the same as previous 

versions (Gastin & Oddoux, 2001). The core improvement that was proposed in this 

implementation which is also the reason for its efficiency is the conversion of LTL 

formulas to very weak alternating automatons which helps in reducing the number of 

states that need to be created in memory to "n", where n is less than the size of the 

formula. Typically a Büchi automaton would require the generation of 2
n
 * 2

n 
states, 

(Gastin & Oddoux, 2001) the authors create a very weak alternating automaton that is 

converted to a generalized Büchi automaton requiring at most 2
n
 states to be generated 

simultaneously. This generalized Büchi automaton is finally converted to a classical 

Büchi automaton which can be directly used. Another improvement that was brought on 

in this implementation was the simplification of the automaton at each step of Büchi 

automaton generation. This reduces the computational requirement of the next steps. In 

the end, these improvements contribute significantly to memory and time usage of the 

software code making it a suitable candidate for the purpose of this thesis. As motion 
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planning is typically required to be quick, this software package provides a reliable and 

speedy method to extract Büchi automatons out of them.  

The following Table 2 shows the comparison numbers for this particular implementation 

of LTL to BA using fast Büchi automaton generation method. The formula used to 

compare the efficiency was Φn = ¬(p1 U(p2 U (....U pn))) 

Table 2: Comparison of runtimes for different packages used for LTL to BA conversion 

(Gastin & Oddoux, 2001) 

No of 

propositions 

Spin Wring EQLTL LTL2BA 

Time  Space  Time  Space  time Time Space 

2 0.01 8 0.07 4100 8 0.01 3.2 

3 0.03 110 0.29 4100 8 0.01 5.5 

4 0.75 1700 1.34 4200 9 0.01 11 

5 43 51000 10 4200 11 0.01 13 

6 1200 920000 92 4500 15 0.15 25 

7   720 6000 27 9.2 48 

8     92 1200 93 

 

For the purpose of this thesis a few modifications had to be made to this software to 

manipulate the Büchi automaton that was generated by the software described below. The 

output of the above referenced software is actually a Büchi automaton described in 

promela code. The final output was stored to a dynamically allocated array so that the 

usage could be better handled for further computations and an ease to manipulate the 

results. A set of links with labels were generated and added to this dynamic array to 

preserve the transition relation and the meaning of the code.  

3.2 Environment decomposition and triangulation library 

A continuous environment needs to be decomposed into discrete states so that it could be 

treated as a set of finite states (Kuan, Zamiska, & Brooks, 1985). The reason for such a 
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decomposition is for the robot being able to travel inside the environment without 

colliding with an obstacle. The method chosen for decomposition is splitting the  

environment into polygons further decomposed into smaller primitives. These algorithms 

have classically been computationally expensive processes where polygons are 

decomposed into smaller primitives, up until algorithms were proposed by (Seidel) which 

was much easier to implement as compared to the algorithms previously proposed 

(Seidel). Seidel proposed an algorithm producing results in O(n log* n) time complexity, 

where (log* n) means when n>0, log* n denotes the largest integer l so that log
(l)

 n ≥ 1 

and log
(i)

n = log(log
(i-1)

n), i>0, log
(0)

 n = n. This algorithm was implemented by the team 

of two researchers (Narkhede & Manocha, 1994). Their implementation has been put in 

the public domain which is used by this project where the environment consists of a set of 

simple polygons. The output from the previously mentioned  software is a set of triangles 

whose centroids can be used as a point to travel within the environment without colliding 

into obstacles. The implementation is able to quickly generate results for a simple 

polygon environment which then produces the finite state machine to create the 

requirement. 

The mechanism for the triangulation algorithm is explained further here. It is a type of 

vertical decomposition. The software supports the presence of holes inside polygons 

which are recursively triangulated. The triangulation works in 3 phases as explained by 

(Narkhede & Manocha, 1994) on their site. The steps are as follows: 

1. Decompose the polygon into trapezoids by adding line segments which are non-

horizontal and non-intersecting line segments in the polygons defined.  
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2. Decompose the trapezoids into monotone polygons which are computed from the 

trapezoidal decomposition of the polygons. 

3. "Triangulate the monotone polygons by cutting off convex corners of convex 

polygons." (Narkhede & Manocha, 1994) This can be performed in linear time. 

The memory requirements of this algorithm are based on the number of vertices of a 

polygon and number of holes present in the polygon. The allocation of memory has to 

happen before running the algorithm based on the environment data that has been passed 

by the user, hence a dynamic allocation is performed for all the required memory. This 

allocated memory is then passed onto the software component to perform the 

triangulation and return the results.  

Table 3: Runtimes of polygon decomposition over 100 iterations (Narkhede & 

Manocha,1994) 

Number of 

Vertices 

Running Time 

10 0.9 ms 

50 3.5 ms 

100 6.7 ms 

500 42.7 ms 

1000 97.6 ms 

5000 590.0 ms 

10000 1.24 s 

50000 7.3 s 

100000 15.45 s 

 

The Table 3: Runtimes of polygon decomposition over 100 iterations (Narkhede & 

Manocha,1994) above shows measurements taken over a HP series 735 with run time 

averages. These numbers show that even with complicated environment and a large 

number of vertices the software can efficiently manage a workload and produce results 
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quickly. For motion planning of mobile robots it becomes a priority to generate the 

results in time. 

 

Figure 10: Shows visualization of triangulated polygons 

 

The Figure 10: Shows visualization of triangulated polygons  above shows a visualization 

of triangulation of an environment. Even the polygons which act as holes for the master 

polygons have been triangulated. Modifications had to be made to the input and output 

mechanism for data. The final set of triangles that are created by the use of this algorithm 

are stored in an array to be used later for traversal. An adjacency list is also created to 

calculate which triangle share an edge with another where triangle T1 and triangle T2 are 

adjacent to each other only when T1, T2 share a common line segment with a relation →D 

for system defined here. 
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3.3 Binary Decision Diagrams library and cross product generation 

Binary decision diagram (BDD) is a data structure that is extensively used for model 

checking and synthesis of hardware circuits. BDD's are actually compact encoding of 

splitting trees used to evaluate Boolean expressions. A BDD has a few properties (1) 

being an acyclic graph, (2) it has shared sub-trees and (3) presents a compact way to  

represent Boolean functions. These trees are ordered such that if a branch goes from node 

i to node j then i < j, the BDD also has to be in a reduced form, these two properties if 

adhered to define a BDD. The following Figure 11: Depicting the splitting tree of (q → 

p) ^ r → (p ↔ r) ^ q and Figure 12: Depicting the binary decision diagram of (q → p) ^ r 

→ (p ↔ r) ^ q show the Boolean expression (q → p) ^ r → (p ↔ r) ^ q. It clearly depicts 

how easily a decision tree can be compressed using a BDD and how compact the final 

representation becomes. This property of BDD is helpful in finding the satisfiability of 

Boolean expressions because it has lesser memory and computation requirements to parse 

from root to sink of the tree. 

 

Figure 11: Depicting the splitting tree of (q → p) ^ r → (p ↔ r) ^ q 
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Figure 12: Depicting the binary decision diagram of (q → p) ^ r → (p ↔ r) ^ q 

A library has been created by Carnegie Melon University (BDD library) which can 

evaluate Boolean expressions by the use of BDD and check their satisfiability. This 

library enables the creation of cross-product between the finite state machine generated 

from the environment and the Büchi automaton that was generated from the LTL 

specifications.  

Cross-products are created by evaluating Boolean expressions quickly and being able to 

produce results regarding their truth values. The Boolean expressions are created by the 

use of labels associated with environment and BA finite state machines transitions. Each 

transition in both the state machines consist of two components, the state they are 

pointing to and a transition with a Boolean expression. Creating a cross-product of the 

two mentioned finite state machines or finite automaton (FA) means there needs to be a 

finite state machine which can accept intersection of two finite automatons FA1∩ FA2. 

Generating an intersection of two finite automaton requires being able to evaluate the 

conjunction of the transition functions. This conjunction requires Boolean functions to be 

evaluated. We evaluate and keep the transitions based on satisfiability of the Boolean 
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function as an output by the BDD. Checking satisfiability can become exponentially large 

which makes it very important for the program to perform efficiently. A BDD 

representation in this case provides an opportunity to help in completing this step quickly. 

Here we include the formal definition of the two FA's followed by the definition of cross-

product FA. The definitions are as follows: 

FA1 = (Q1, ∑, δ1, q0,1, F1 ) 

FA2 = (Q2, ∑, δ2, q0,2, F2 ) 

where, 

 Q1 , Q2 = Set of states in the finite automatons 

 ∑ = set of symbols that form the language or in our case the labels associated with 

the FA 

 δ1 , δ2 = these are the transition functions that define the Boolean expression that 

needs to be satisfied to take a transition 

 q0,1 , q0,2 = defines the initial state for the respective FA's. 

 F1 , F2 = defines the set of accepting state present in the FA's. 

As we are using environment as one of the FA we make a few assumptions on the system 

of FA created from the environment FA. The final state can be any state in the 

environment which can be accessed by the robot and the robot's initial state can be any of 

the states in the environment as long as the robot can reach that state. There is also an 

assumption of bidirectional accessibility in case of environment while creating the FA. 

Making these assumptions make the accepting states of the BA in combination with any 
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state in the environment as a final state in the cross-product. It means that final state will 

be dictated essentially by the BA that is being used. Also the set of initial states will be 

restricted by the current position of the robot and the initial state defined in the BA. The 

cross-product output will be constructed in the following form 

FAfinal = (Q1 x Q2 , ∑, δ, (q0,1 , q0,2), F1 x F2)   

where, 

 Q1 x Q2 = combination of all the states in the two FA's 

 ∑ = set of symbols that form the language or in our case the labels associated with 

the FA 

 δ ((qi
1
 , qj

2
), x) = (δ1(qi

1
, x), δ2(qj

2
, x) ) 

 (q0
1

 , q0
2
) = this is the combination of the initial state from BA and all the states in 

the environment. 

 F1 x F2 = it represents the final state which is essentially the combination of all the 

states in the environment FA and the accepting states in BA. 

Hence BDD library is used to form the transition function while creating the cross-

product and serves an important role in generating the cross-product. As the number of 

states are combinatorial in nature the process of evaluating Boolean functions needs to be 

quick. This cross-product is then used to generate the motion plan for the robot based on 

the initial value it gets as the starting point. 
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3.4 Visibility graph generation and Dijkstra algorithm 

Visibility graph is constructed for set of points and obstacles in Euclidean plane (Berg, 

Cheong, Kreveld, & Overmars, 2008). Generation of the visibility graph between 

centroids of the triangle is done by taking pairs of centroids in the same polygon and 

verifying their line of sight with respect to each centroid against any obstacles. Obstacles 

in this case are defined as any object or line segment that could block a clear line of sight 

between two centroids, it could either be an opaque polygon that lies within the parent 

polygon containing triangles of interest or it could be an edge of the parent polygon itself 

which is intersecting the line of sight for the current pair of centroids. In either case an 

obstacle if found implies a direct line segment cannot connect the pair of centroids. The 

steps for calculating the visibility are shown in Figure 13 : Algorithm for constructing 

visibility graph..   
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Figure 13 : Algorithm for constructing visibility graph. 

The calculation for deriving the visibility is provided in more details, by determining the 

coordinates of interest first, in the current context they are centroids of two triangles 

within the same polygon. Let's call them c1 and c2 with coordinates being x1,y1 and 

x2,y2 respectively. Using Euclidean geometry we derive a linear equation between these 

coordinates in the following form: 

   
     

     
         

     

     
       , 

 we further normalize this equation to the form 
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The next part is to check for visibility between centroids where we verify against all the 

edges of the parent polygon containing both the triangles and all the edges for child 

polygons contained inside of the parent polygon. The edges are evaluated in a clockwise 

fashion to generate individual lines between each vertex of the polygon. Let us say that 

we take two vertices of one of the polygon that we are going to check against for 

visibility v1 and v2 with the following coordinates x3,y3 and x4,y4 respectively. We 

derive another linear equation using these coordinates in the form above.  

             

Now we try to find a point of contact between these two linear equations by solving 

them. On solving the two equations for x and y coordinates we find the point of 

intersection between the two lines.  

  
               

               
 

  
               

               
 

Where,                             

The next challenge is to ensure these lines intersect within the areas of interest. The area 

of interest is defined by the lines intersecting each other within the line segments created 

by centroids c1, c2 and v1, v2 coordinates. As long as the point of intersection lies 

outside these line segments the two centroids fall in each other's line of sight as shown in 

the Figure 14: Shows area of interest in the visibility graph generation.Using this formula 
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we derive the visibility graph and find all pairs of centroids connected to each other 

directly adding the weights on each of the transitions based on their distances from each 

other.  

 

Figure 14: Shows area of interest in the visibility graph generation. 

Using these guides we continue with our calculation of the entire array of triangles for 

each individual polygon and pair of centroids. Once we have created the visibility graph 

we run a Dijkstra algorithm in order to find the shortest path possible. The Dijkstra 

algorithm takes into consideration the weight on each transition which is calculated on 

the basis of the distance between centroids in meters. On each step the nodes are 

evaluated and the shortest path is calculated from these nodes. While populating the 

transition nodes of the system we also calculate the weight on each transition. The weight 

of each transition is the distance between the pair of centroids of the triangles. 

We run the Dijkstra algorithm and find the path which has the shortest weight/distance 

between the triangles being posed as source and destination. The visibility graph is build 

only on a polygon to polygon basis, which means only those centroids will be connected 
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to each other which are in line of sight and belong to the same polygon. This condition 

has been chosen because the LTL specifications can be arbitrary and can choose different 

polygons to reach the accepting state. Hence, we build the visibility graph such that it 

stays within the confines of the same state in effect guaranteeing the satisfiability. It 

means that we are guaranteed by the use of this visibility graph to not move into a 

different polygon which might violate some other specification. 

The next problem is being able to generate a path plan between polygons which will help 

the robot transit from one polygon to another, as a visibility graph can only ensure 

reaching from one point in the polygon to another point within the same polygon, not 

transiting between polygons. This is resolved by finding the closest centroids between the 

two polygons i.e. find the centroid closest to the destination in one polygon to the 

centroid in the other polygon. By finding the closest centroids we can create a direct 

transition between the polygons. There are two potential problems, first if the 

triangulation results in very thin triangles it could eventually lead to conditions where the 

robot could transition over the robots and cross obstacles that should not have been 

visited by the robot due to geometry. The completion system previously mentioned also 

leads to the problem of possibly not having the shortest path, because the closest 

centroids of two different polygons could be located anywhere with respect to current 

robot location. Hence although the robot might be at one corner of the destination 

polygon it might have to navigate around the same destination polygon to reach the final 

centroid. This problem cannot easily be solved as it requires the visibility graph to be 

redrawn with respect to the robot and from there calculations have to be done for the 
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shortest path. This can be a computationally expensive task if the number of polygons to 

be visited is large. So in order to maintain a good performance on the amount of 

computations required to generate the motion we do not recalculate the visibility graph 

again. 

3.5 Steps for coordinate generation 

The generation of a final motion plan is composed of a few high level steps which can be 

further broken down into smaller tasks. The following steps produce the coordinate to 

coordinate motion plan for the robot:  

1. After the creation of a cross-product as described in previous sections we can find 

different polygons that need to be visited in the system. It means using cross-

product states we determine polygons to be visited by the motion planning 

system. 

2. This parsing of cross-product is done by using breadth first search that tries to use 

as few state transitions as possible. This algorithm has been chosen so that the 

number of polygons to be traversed are minimized. Although before traversing 

through the cross-product we need to find the current location of the robot. This is 

because there needs to be a starting point within the cross-product which is then 

taken as the starting state for parsing through the current initial state. 

3. Once the polygon transitions are obtained from the traversal of cross-product we 

find the closest points to travel within the polygons. This is determined by the use 

of a function called nearest_poly_triangle() which based on the polygon being 

considered and the current location tries to locate a triangle which will be the 
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closest to it.  It returns the index of the closest triangle of the specific polygon 

only closest to the current position. The triangle whose index has been returned is 

then used as the destination. We continue this process till we have transitioned 

through all the possible states in the cross-product path.  

4. The next step is to be able to travel through all these polygons based on the 

triangles that have been generated from the polygon areas. While generating the 

polygons we create a visibility graph as described earlier. 

5. We run Dijkstra algorithm on the visibility graph and create paths which should 

be close to optimal paths within the polygon while ensuring the satisfiability of 

the specifications. This is done by travelling in shortest paths within the polygons 

and then directly transitioning to the next polygon. 

6. The coordinates of the centroids visited are provided as the motion path plan to 

the robot to follow inside the environment. These form the final step in coordinate 

generation which is transferred to the ROS package for the actual locomotion. 

3.6 ROSCPP and ROS framework 

" ROS is an open source, meta-operating system for robot. It provides services such as 

hardware abstraction and message passing." (ROS wikipedia, 2013). ROS framework 

tries to keep itself to a minimum and provides the infrastructure required for achieving 

compatibility between different types of systems whether it is different languages or 

hardware. The goal is to keep the interfaces simple and be able to integrate different types 

of packages which can then easily be modified and used for a variety of applications. 
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Figure 15: Shows the Publisher and Subscriber relation in ROS (ROS Wikipedia, 2013) 

The core of ROS is to provide a distributed computing environment which has 

independent processes running. These processes communicate via ROS messaging 

services and make it easier to be run on multiple platforms. There are three conceptual 

levels at which ROS works namely (ROS wikipedia, 2013): 

1. File system level: At this level we see a general ordering of the software that is 

created under ROS. ROS helps in creating an organized hierarchical software 

environment where group of packages called stacks help in creating the 

collaborative environment. These packages serve as the basic unit for software 

which generally accomplishes a single functional task for e.g. getting data from a 

sensor and providing it in a more general format like temperature in Fahrenheit , 

controlling robot movement based on higher level commands such as left and 

right instead of exact differential inputs. 

2. Computation graph level: ROS at this level concerns with the running of a 

client-server architecture at an abstract level where a ROS master process acts as 

a central server directing all the messaging traffic and nodes. Nodes are 

independent processes running as clients in a distributed environment. These 

nodes interact using messaging services which could to one-to-one or many-to-

one. These messages could also be stored by using a concept called bags for 
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archiving data. A topic acts as the point of access for information exchange, nodes 

can subscribe to a topic and publish to a topic without knowing who is reading or 

sending information to them. This decouples a node from another and keeps the 

software architecture as decoupled as possible. 

3. Community level: As ROS tries to embody as much distributed architecture it 

can, it also promotes different communities to be able to exchange their software 

packages more easily. It makes it easier for different groups or teams to exchange 

packages which are built independently but serve a purpose which can solve a 

specific problem for e.g. an iRobot package was easily integrated into the current 

system without having any need to modify its contents. As with any open source 

software there is a need to establish community support which can answer 

questions posed by users and generate a healthy discussion to achieve their goals. 

This kind of support is provided by ROS wiki, Bug ticket system and ROS 

answers. 
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Figure 16: irobot_stargazer package design diagram. 

Client libraries are created to ease the job of being able to make ROS concepts accessible 

through code (ROS wikipedia, 2013). ROSCPP is a client library that enables the creation 

of ROS topics, services and parameters (ROS wikipedia, 2013). This library is 

extensively used by C++ programmers to create packages which can be used to generate 
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backend code freeing the developer to concentrate on their specific tasks instead of 

writing the interfaces with ROS nodes. It also comes with some standard set of messages 

that can be used to access data from a variety of sensors, localization and sending control 

messages to robots. 

The steps described in Figure 17: Algorithm steps for lower planner to run the robot 

based on coordinates generated from the higher planner. Describe the implementation. 

 

Figure 17: Algorithm steps for lower planner to run the robot based on coordinates 

generated from the higher planner. 

  

The package created for ROS is currently named irobot_stargazer because of its use of 

iRobot Create and Stargazer hardware. The irobot_stargazer package is used to convert 
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all the coordinate information into actual robot motion. This package reads the output file 

from the coordinate generator executable and is based on the information it receives from 

the sensors directs the robot towards its destination. The irobot_stargazer package works 

in the following manner: 

 It initializes a ROS node with the name as irobot_stargazer. 

 It subscribes to the stargazer_cu node to gather localization information from the 

stargazer sensor. 

 It initializes the stargazer map which gives locations of the landmark coordinates 

in the real world. 

 The ROS package loads all the coordinates into a coordinates queue which are 

used as navigation points for the robot. 

  An infinite loop is created in another thread which will monitor coordinates 

queue, acquire data from the stargazer sensor and give commands to the iRobot 

create. This creates the closed loop interface between reading of data and being 

able to execute functions on the robot.  
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CHAPTER 4 

INPUT AND OUTPUT DATA FILES 

The input file has the following fields that are required for the processing to take place. 

The fields are described below: 

 Number of atomic propositions in the LTL 

 List of atomic propositions 

 LTL formula 

 Description of each polygon consists of following points
1
: 

o Atomic symbol denoting the polygon 

o Concatenated atomic proposition of polygons in which above named 

polygon resides 

o Concatenated atomic propositions of all the neighbors to the polygon. 

o Number of vertices in the polygon. 

o List of coordinates specified in meters in float format "x" coordinate 

followed by "y" coordinate. 

The Figure 18 below shows an example of a data file which contains all the required 

entities.  

                                                             
1
 Enables nesting of multiple polygons by giving information on parent and neighbor 

polygons. 
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Figure 18: Input data file. 

Following points need to be noted: 

 Each atomic proposition corresponds to a polygon in the environment hence, the 

number of polygons and atomic propositions have to be equal. 

 The definition of neighbor is any polygon that is adjacent to another polygon such 

that the robot can travel between the two polygons without having to move into 

any other third polygon. 
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 The units of coordinates are meters and correspond to the real world coordinate so 

it can generate accurate coordinates for navigation by the system. 

 The LTL string has to terminate with "#" as to indicate the end of formula. 

 Parents of a polygon are also considered as their neighbors because transition 

from the parent polygon to the child polygon can be done without having to 

transit through another polygon in between. 

 Each child polygon is considered to be entirely contained inside of the parent 

polygon because of restrictions posed in the triangulation algorithm. 

 For the polygon which contains all the other polygons and does not have a parent, 

a label value which does not contain any know atomic proposition like "NULL" 

can be chosen. 

 No spaces are allowed in the concatenated sections of the label data while 

defining the polygons parents or neighbors. 

 The polygons are supposed to have 4 or more vertices because of restrictions 

posed by triangulation algorithms. 

 The polygons should be simple closed polygons that may contain holes in them 

otherwise triangulation fails in case of self intersecting polygons. 

 Vertices should not be repeated when defining polygons for the environment. 

A file called coordinates is generated as the output by this software which specifies the 

centroids of the triangles the robot should navigate to. The coordinates file acts as an 

input to the ROS package which in turn drives the robot to the goal. This file is very 

simple in its interpretation and contains x and y coordinates sequentially that the robot is 
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going to travel to based on the initial starting point as provided to the software. The 

Figure 19: Coordinate output. below shows the screenshot of the output file generated by 

the software tool. This output was generated from the example file shown in the Figure 

18 above. 

 

Figure 19: Coordinate output. 
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CHAPTER 5 

EXPERIMENTS AND RESULTS 

5.1 Experimental setup 

Experiments were done using an iRobot in the Cyber Physical Systems lab with the same 

example data as shown in figures in Chapter 4. Below Figure 20: Displaying the robot 

environment on conceptual and physical level shows the simulated environment and the 

physical environment created in the Cyber Physical Systems Lab.   

 

Figure 20: Displaying the robot environment on conceptual and physical level 

The environment is defined as labels qi, where i = 1,..5 naming each polygon. The 

outermost polygon was named as q1. Three experiments were conducted using the iRobot 

and stargazer sensor in which they covered the following requirements of LTL. 

 Coverage: the robot covers all the polygons defined in the system with no 

particular order being imposed. The LTL to express this was (([]q1) && (<> q2 

&& <>q3 && <> q4 && <>q5)) 
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 Sequencing: the robot is asked to cover polygons in a defined order of sequence 

for e.g. visit q1 followed by q2 and so on. LTL used for this experiment was 

(([]q1) && (<> (q2 && <>(q4 && <> (q3 && <>q5))))) 

 Reachability with avoidance: the robot is able to avoid polygons which are 

marked as such. The LTL used for this experiment was (([]q1) && (<> q5 && 

<>q3 && <> q4) &&( !q3 U q2)).  

 

Figure 21: shows reachability, coverage, sequencing 

The experiments were successful and showed that the robot fulfilled the LTL goals of 

navigating through the environment as specified. The final goals were achieved using the 

ROS package.  

5.2 Results 

The thesis describes about the software that was developed for motion planning for a 

robot with navigation points and then a ROS package which has the ability to actually 

navigate the robot. It is a modular system which creates motion plans for robots based on 

specifications from LTL. The features of the software are as follows: 
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 Parse LTL specifications and generate a Büchi Automaton which is stored into a 

form that can be manipulated easily. 

 Parse the environment into a finite automaton and decompose the environment 

into triangles which can then be used to generate the motion plan for the robot. 

 Create the cross-product between the Büchi automaton and finite automaton of 

environment which is used to generate the transitions of states that can are used to 

satisfy the LTL under constraints from the environment. 

 The coordinates generated as output by the software are then plugged into the 

ROS package irobot_stargazer which produces the actual robot control. 

 

 

Figure 22 : Shows Reachability, Coverage and Sequencing 
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CHAPTER 6 

FUTURE WORK 

While completing this thesis some future work has been identified which can be put as 

improvements on the current package. The following features that can add further value 

to the tool: 

 Provide an option to the user to decompose the environment into either triangles 

or trapezoids instead of only triangles.  

 Move from a 2 dimensional model to a 3 dimensional model and have a more 

generic motion planner. 

 There could also be the addition of multiple robots to the system in which the 

motion plan is centrally generated and sent out individually to robot though that 

would require a substantial change to the current software. 

 Currently we assume that the LTL formula provided has a reachable accepting 

state which will finally produce the result. The aforementioned scenario can be 

averted by the use of automaton relaxation and get the user to change the formula 

based on feedback provided by the software. (Kim & Fainekos, 2012). 
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APPENDIX A 

SOFTWARE AND HARDWARE SETUP 
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A.1 Software and hardware setup 

The following requirements are needed to run this software package: 

 Ubuntu Linux 10.14 and higher. 

 Gcc compiler 4.2 and above. 

 ROS and its support software. For more details check (ROS wikipedia, 2013). 

 ROS irobot package from Brown university and its support software. 

 ROS stargazer_cu package and its support software from university of Colorado. 

 A computing system with 2 USB ports at least, to communicate with the 

hardware. 

 Install the irobot_stargazer package and the coordinate_generation software 

developed specifically for this thesis project. 

 Stargazer needs to be mounted centrally on the iRobot with their axis aligned to 

each other. 

 

Figure 23: Showing two configurations of iRobot with Hagisonic Stargazer mounted 
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A.2 Execution Setup 

The setup required to run the software is as follows: 

1. ROS core should be running in a terminal if it isn't configured to initialize 

automatically. 

2. Turn on the iRobot create and stargazer sensor and connect them to the system 

using separate USB ports. It should be noted that correct ports are passed onto 

each package while initializing the respective packages. 

3. The packages need to be running and configured at this point by giving the 

following commands in separate terminals, "rosrun irobot_create_2_1 driver.py" 

and "rosrun stargazer_cu stargazer_cu".  

4. To check that both packages are functioning correctly the following commands 

can be typed into a new terminal, "rostopic echo /cu/stargazer_marker_cu" will 

display the readouts from stargazer sensor with distance and the landmark id in it. 

To check the initialization of irobot_create_2_1 these commands "rosservice call 

tank 0 100 100" followed by "rosservice call tank 0 0 0" should be executed in a 

new terminal. 

5. Once it is confirmed that stargazer_cu and irobot_create_2_1 packages are 

running as expected we need to open another terminal to run data file containing 

the LTL through coordinate_generation. This creates a file called coordinates.txt. 

6. Bring up the ROS package irobot_stargazer to read the file and execute the 

motion plan. The robot starts moving after reading this file and executes 

navigation maneuvers. 
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7. The iRobot create will execute motion while getting localization data from the 

stargazer sensor. Finally it should reach its expected destination and come to a 

halt. 
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APPENDIX B 

HARDWARE USED FOR THE EXPERIMENTS 
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B.1 iRobot Create 

The robot which provides the locomotion is called an iRobot. This robot has been used 

because of ease of interface available to control it through ROS. This hardware also has a 

wide array of sensors and uses differential motors for its movement. The serial port is a 

RS-232 which can be connected to a keyspan USB converter and connected to a laptop or 

any other device supporting USB connections.  

 

Figure 24: Top view of iRobot with components. (iRobot Create owner's manual) 

 

Figure 25: Showing the button panel of iRobot create. (iRobot Create owners manual) 
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The Figure 24 & 25 above shows the button panel where power button is used to boot up 

the iRobot create and start communicating over the serial port. The iRobot also has 

internal demo modes which can be triggered by the use of play button. The Figure 26 

below shows underside of iRobot create.  

 

Figure 26: Shows the underside of iRobot (iRobot Create owner's manual) 

where we can locate the battery which is charged through the charging socket. The point 

of interests are specifically the two differential motors attached to the wheel. These two 

wheels provide the drive to iRobot and can be controlled by the use of irobot_create_2_1 

package in ROS. The commands passed on the serial queue to be executed are described 

in detail (iRobot Create owners manual). 

B.2 Hagisonic Stargazer 

This is a sensor created by the company Hagisonic called stargazer. It is a unique sensor 

system in which indoor localization of a robot can easily be achieved by analyzing 

reflected rays of Infra-red from passive landmarks attached to the ceiling. It also makes 
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these markers high resolution in determining their current location based on the sensors 

orientation with reference to passive markers. (Stargazer User manual)  

 

Figure 27 : Shows stargazer mounted on an iRobot create seeing a landmark 

The components  required for the stargazer setup are: 

 StarGazer sensor module with DSP module, IRED Module, Support, Lens Hood. 

 Connector cable, serial and 3-pin connector. 

 Power supply module, power circuit and adapter. 

 Passive landmarks. 

Remarks: The sensor although claimed to be unaffected by normal reflective surfaces 

showed behavior that indicated otherwise. A map needs to be created for the location of 

markers in the real world to localize the robot in the environment. The sensor itself 

provides capability to perform this task by using a map mode though as indicated in (Su, 
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2012), it was better to use alone mode and create a map with manual measurements for 

deriving current location. The stargazer sensors were configured in alone mode with the 

unit of measurement being Feet for distance and Degrees for angle.   

B.3 Stargazer Map 

The following Figure 28 shows the stargazer map that was used for the thesis project 

where it defines the work area. The map area is same one as defined in (Su, 2012). . The 

entire Cyber Physical Systems lab work area had been covered by these landmarks 

attached to the false ceilings.  
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Figure 28: Stargazer map for cyber physical systems lab 


