
3D Rooftop Detection And Modeling Using Orthographic Aerial Images

by

Kunal Khanna

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2013 by the
Graduate Supervisory Committee:

Peter Wonka, Co-Chair
John Femiani, Co-Chair

Ross Maciejewski
Anshuman Razdan

ARIZONA STATE UNIVERSITY

May 2013

ABSTRACT

Detection of extruded features such as rooftops and trees, in aerial images automatically

is a very active area of research. Elevated features identified from aerial imagery have potential

applications in urban planning, identifying cover in military training or flight training. Detection

of such features using commonly available geospatial data for example orthographic aerial imagery

is very challenging because rooftop and tree textures are often camouflaged by similar looking

features such as roads, ground and grass. So, additonal data such as LIDAR, multispectral imagery

and multiple viewpoints are exploited for more accurate detection. However, such data is often not

available, or may be improperly registered or inacurate. In this thesis, we discuss a novel framework

that only uses orthographic images for detection and modeling of rooftops. A segmentation scheme

that initializes by assigning either foreground (rooftop) or background labels to certain pixels in the

image based on shadows is proposed. Then it employs grabcut to assign one of those two labels

to the rest of the pixels based on initial labeling. Parametric model fitting is performed on the

segmented results in order to create a 3D scene and to facilitate roof-shape and height estimation.

The framework can also benefit from additional geospatial data such as streetmaps and LIDAR, if

available.

i

ACKNOWLEDGEMENTS

I wish to thank, first and foremost, Professor John Femiani who has been a great mentor

and a friend to me. Without his guidance and persisitence this thesis would have not been possible.

He always motivated me to come up with fresh ideas, gave me freedom to explore them and pointed

them in the right direction. He invested a lot of time and often got his hands dirty doing the work

with me as a colleague. I’m truly grateful to him.

I would like to thank Professor Peter Wonka for having faith in my abilities. He introduced

me to the field of Computer Vision, Graphics and Gaming. He constantly reviewed my progress

and has been a great teacher. I specially thank him for his infinite patience.

I’m grateful to my committee members Professor Anshuman Razdan and Professor Ross

Maciejewski for their support. In addition, a thank you to Chia-Yuan Chuang with whom I had

several discussions on this project. I’m grateful to all my friends, most importantly Ankur and

Shruti who have been like a family away from home these past 2 years.

Last but not the least, I want to thank my mom, dad and brother whose love and support is

always with me.

ii

TABLE OF CONTENTS

Page

TABLE OF CONTENTS . iii

LIST OF FIGURES . iv

CHAPTER

1 A FRAMEWORK FOR EXTRACTING 3D FEATURES FROM ORTHOPHOTOS FOR

REAL-TIME VISUAL SIMULATIONS . 1

2 SHADOW INITIALIZED GRAB-CUT FOR ROOFTOP SEGMENTATION IN AERIAL

IMAGES . 4

2.1 Introduction . 4

2.2 Prior Art . 4

2.3 Segmentation Algorithm . 7

2.4 Evaluation . 16

2.5 Conclusion and Future Work . 24

3 PARAMETRIC MODELING OF ROOFTOP SEGMENTED DATA IN AERIAL IMAGES 28

3.1 Introduction . 28

3.2 Prior Art . 28

3.3 Parametric Model Description . 29

3.4 Model Fitting Algorithm . 32

3.5 Drawbacks Of Algorithm . 38

3.6 Evaluation . 41

3.7 Semi-Automatic Building Detection . 42

3.8 Conclusion and Future Work . 47

REFERENCES . 48

iii

LIST OF FIGURES

Figure Page

1.1 Urban city modeling; (a) aerial image; (b) elevation map; (c) 3D rendering of scene . . 1

1.2 Examples of geospatial data; (a) LIDAR (grey level encodes height above ground); (b)

multispectral imagery . 2

2.1 Example showing the result of running our algorithm on an image with very thin shad-

ows; (a) aerial image; (b) rooftop segmentation done using our algorithm 5

2.2 Examples of roof shapes that the proposed method can handle; (a) objects with circular

or curved roofs; (b) rooftops with internal edges and occlusion; (c) very large rooftops

with obtuse angles; (d), (e), (f) show the segmentation results of (a), (b), (c) respectively

using the proposed algorithm . 6

2.3 Foreground and background assignment reproduced from Ok et al. [14]; (a) shadow

(blue) and fuzzy area extended from shadow (cyan) overlaid on aerial image; (b) fore-

ground (cyan) after double-thresholding fuzzy region 7

2.4 Interactive image segmentation with the grabcut algorithm, reproduced from Rother et

al. [18]. In the top row the method is initialized only by constraining pixels within the

red rectangle to background, in the bottom row the user adds constraints to correct for

over and under segmented parts . 8

2.5 Key steps of rooftop segmentation; (a) aerial image; (b) initial labeling of foreground

(white) and background (black) based on shadows; (c) result of running grabcut on

(b); (d) additional background constraints added for roof pixels that don’t cast shadows

(inside the red window); (e) corrected result after running grabcut on (d) 9

2.6 Example of successful roof detection when shadow has gaps (notice tree obstructing

shadow of building); (a) roof image; (b) initial foreground / background assignment;

(c) result of grabcut on (b) . 10

2.7 Building casting wedge shaped shadow . 11

2.8 Green highlight showing a thin fence casting shadow 12

iv

Figure Page

2.9 Ambiguous shadow cases; (a) a partial wall that casts a shadow; (b) identical to a build-

ing; (c) a structure with an overhanging (non vertical) piece that that casts a shadow;

(d) nearly identical to a building . 13

2.10 Self correction algorithm; red - building contour; black - shadow found; direction of

crossproduct of light and tangent points towards the reader, so point must cast shadow.

But it doesn’t, so it is constrained to background . 14

2.11 Image showing overhang of shadow (notice the red line marked between the corner of

roof and point from where shadow starts) . 14

2.12 Pruning small contours; (a) reference aerial image; (b) rooftop segmentation; (c) rooftop

segmentation after pruning small contours . 15

2.13 Effect of different graphcut iterations; (a) reference aerial image; (b), (c), (d), (e) show

the result of 1,2,5 and 10 iterations of graphcut respectively 18

2.14 Effect of accuracy of shadow detection; (a) reference aerial image; (b), (d) show ini-

tial foreground and background labeling using luminance threshold of 0.25 and 0.15

respectively; (c) and (e) show the result of grabcut on (b) and (d) respectively 19

2.15 Effects of shadow threshold on the accuracy of results 20

2.16 Effect of accuracy of light direction; (a) reference aerial image; (b) using correct light

direction for initial foreground and background labeling; (c) result of grabcut on (b); (d)

initial labeling using light rotated by 45 degrees clockwise; (e) result of grabcut on (d);

(f) initial labeling using light rotated by 45 degrees anti-clockwise; (g) result of grabcut

on (f) . 21

2.17 Effects of light error on the accuracy of results (x-axis shows light rotate from correct

light direction) . 21

2.18 Effect of accuracy of vegetation suppression; (a) reference aerial image; (b), (d) and

(f) show initial foreground and background labeling with CV set to 5%, 10% and 30%

respectively; (c), (e) and (g) show grabcut result on (b), (d) and (f) respectively 23

v

Figure Page

2.19 Effect of accuracy of vegetation suppression; (a) reference aerial image; (b) and (d)

show initial foreground and background labeling with CV set to 5% and 25% respec-

tively; (c) and (e) show grabcut result on (b) and (d) respectively 23

2.20 Effects of Vegetation Coefficient (CV) on the accuracy of results 24

2.21 Effect of choosing different DF ; (a) reference aerial image; (b) and (d) show initial

labeling with DF = 4 and DF = 2 respectively; (c) and (e) show the result of grabcut on

(b) and (d) respectively . 24

2.22 Effects of shadow shifting distance (DF) on the accuracy of results 25

2.23 (First Column) Test images #1-8; (Second Column) segmentation results for test images

#1-8; (Third Column) ground truth for test images #1-8 26

2.24 Figure 2.23 continued; (First Column) Test images #1-8; (Second Column) segmenta-

tion results for test images #1-8; (Third Column) ground truth for test images #1-8 . . 27

3.1 Rectilinear polygon (in red) approximated over a segmented blob (in blue) from Matei

et al. [13] . 29

3.2 Examples of polygonal mesh modeling to represent arbitrary shaped roofs; (a) and (b)

are taken from Zhou et al. [26], (c) from Zhou et al. [25] 30

3.3 Example of triangulated polygonal mesh modeling from Zhou et al. [26] 30

3.4 Parametric models; (a) gable roof model taken from Maas et al. [12]; (b) corner based

models taken from Verma et al. [22] . 30

3.5 Complex rectilinear roofs; (a) ’L’ shaped; (b) ’T’ shaped; (c) ’U’ shaped 31

3.6 Our parametric model for Building Block . 31

3.7 Parametric form of a line . 33

3.8 Pruning misclassified rooftops based on size constraints; (a) reference aerial image; (b)

rooftop segmentation using Grabcut; (c) parametric model fitting (notice that the road

on left and cars are removed because of small size and high aspect (width to length)

ratio respectively) . 34

vi

Figure Page

3.9 Different challenging gable interactions; (a) shows a roof with two pieces meeting at

the ridge of gable; (b), (c) show roofs where individual pieces dont meet exactly at the

gable ridge of each other . 35

3.10 Stages of parametric model fitting; (a) aerial image of a hip roof; (b) segmented image

from grabCut; (c) sobel edge of aerial image; (d) hough line transform image of (c);

(e) edge-aligned bounding box of rooftop segmented area; (f) division of edge-aligned

bounding box into horizontal and vertical lines based on projection histogram; (g) cells

that remain after filtering those out that don’t have enough rooftop pixels; (h) merging

small cells into big based on largest rectangle first; (i) extending building blocks into

each other preserving the total area; (j) finding roof shape and height using shadow

(green outline) in individual building pieces; (k) side views of the bigger building block

of the building . 38

3.11 A case where algorithm fails to detect the correct building blocks; (a) reference build-

ing; (b) incorrect configuration chosen by our algorithm to represent building based on

largest rectangle first; (c) manually chosen correct configuration 39

3.12 Complex rectilinear roof, a difficult case to locate individual rectangular building blocks;

(a) roof image; (b) parametric model detected overlayed on top of roof 40

3.13 Building blocks with different heights; (a) reference building; (b) result of computing

height using our algorithm . 40

3.14 Example showing incorrect roof shape detection because of another object mounted on

the roof; (a) reference image of roof; (b) parametric model found for roof (dotted line

denotes flat roof was found); (c) edge image near the center of model (notice the gable

line is weak and thus undetected by hough transform because of the presence of strong

edges of artifact) . 41

3.15 Example showing distortion of a rectilinear building due to obliqueness of view direc-

tion; (a) Distorted building; (b) Rectilinear model overlaid on top of building (notice

only one set of edges can be aligned since our model enforces perpendicular edges) . . 41

vii

Figure Page

3.16 (First Column) Test images #1-8; (Second Column) segmentation results for test images

#1-8; (Third Column) parametric modeling of second column; (Fourth Column) ground

truth for test images #1-8 . 43

3.17 Figure 3.16 continued; (First Column) Test images #1-8; (Second Column) segmenta-

tion results for test images #1-8; (Third Column) parametric modeling of second col-

umn; (Fourth Column) ground truth for test images #1-8 44

3.18 Evaluation of gable roof shape detection by our algorithm; (a) aerial image with 40

gable roofs; (b) parametric models identified, placed over the original image 45

3.19 Semi-Automatic building detection; (a) compute average color within the patch to find

the roof color; (b) pixels found belonging to the building (highlighted in blue) 46

viii

Chapter 1

A FRAMEWORK FOR EXTRACTING 3D FEATURES FROM ORTHOPHOTOS FOR

REAL-TIME VISUAL SIMULATIONS

(a) (b) (c)

Figure 1.1: Urban city modeling; (a) aerial image; (b) elevation map; (c) 3D rendering of scene

Three dimensional models of urban environments (Figure 1.1c) find numerous applications.

They are used in flight simulators, they are required for urban town planning and architecture, and

they are also used in tourism and navigation systems. Urban city modeling is a two step process.

The first step is the extraction of height features (such as buildings and trees) in which various

geospatial sources such as aerial images (Figure 1.1a), vector layers of road networks, vegetation

mask, LIDAR data (Figure 1.2a) and multispectral imagery (Figure 1.2b) related to the region of

interest (ROI) are used to detect areas that extrude from the ground. Figure 1.1b shows height

features identified in Figure 1.1a. It is a displacement map, which is a grayscale image that encodes

height information at each pixel. In a displacement map, black color corresponds to ground (zero

height), and white corresponds to the tallest height identified above ground. All the grey values in

between represent the corresponding height as a fraction of the tallest height. The second step is

rendering in which the height features detected in step one (Figure 1.1b) are used to render a scene

in a virtual environment using 3D rendering techniques such as GPU accelerated displacement

mapping (Figure 1.1c). In this particular case, first the height information encoded in Figure 1.1b

is used to displace the corresponding points in Figure 1.1c by that distance and then Figure 1.1a

is used as a texture map to assign colors to the same points. Some of the sources for example

LIDAR provide approximate height information at pixel level, but they often have errors such as

detection of inconsistent height of pixels within the same roof area. So they cannot be used directly

as displacement maps. Others such as vegetation mask provide information about areas covered by
1

grass and trees. Street networks provide clues about where buildings could be located and which

direction they might be facing. For example, most buildings face towards a road next to it. All

these data sources provide some clues to locating extruded objects in the image and in the past few

decades many authors have proposed various methods to use them to identify height features.

(a) (b)

Figure 1.2: Examples of geospatial data; (a) LIDAR (grey level encodes height above ground); (b)
multispectral imagery

Many of the efficient methods proposed in the past require specific data for example LIDAR

and multi-view imagery for detection of height features [8], [13], [17], [22], [23], [26]. However,

such data is not always available for the target site. On the other hand, methods that do not use

additional data and rely on just orthographic aerial images face a lot of challenges in order to detect

extruded objects. This is because roofs are often camouflaged by roads, sidewalks and trees are

camouflaged by grass. Even if additional data is available, these methods are not able to benefit

from them. There is a need for a framework that can adapt to different inputs and take their full

advantage.

In this thesis, we propose such a framework and following are its key features:

1. We propose a novel framework that can use commonly available geospatial data for rooftop

detection. Only orthorectified aerial imagery of the region of interest is required, but the framework

can benefit from additional data, if available. Satellite images are often orthorectified because the

earth’s surface is curved, due to which the areas captured away from the view direction of camera

seem smaller and distorted. Satellite images are flattened so that they can represent the true sizes

of these areas. Orthorectification does not affect our algorithm but it is recommended because it

represents the areas covered by the images more accurately.

2

2. We present a novel fully-automated rooftop segmentation algorithm that operates on orthographic

aerial images, which is discussed in Chapter 2.

3. We present a novel fully-automated algorithm to model rooftops from a rooftop segmented image

along with its original aerial image. This is discussed in Chapter 3.

3

Chapter 2

SHADOW INITIALIZED GRAB-CUT FOR ROOFTOP SEGMENTATION IN AERIAL

IMAGES

2.1 Introduction

In the last chapter, we proposed a framework that uses commonly available geospatial data for

rooftop detection. In this chapter, we discuss the first stage of that framework in detail, i.e. rooftop

segmentation. This work proposes a novel solution to exploit high resolution color imagery in order

to identify rooftops in aerial photos or satellite images. We approach building detection as an image

segmentation problem that can be solved with only high resolution color orthorectified imagery.

The proposed method is novel and has the following benefits:

1. The method requires only reasonably high resolution aerial image (e.g. 1 meter per pixel). We

do not require multiple views, multispectral imagery, LIDAR, or any elevation data.

2. The method can also optionally exploit additional layers of GIS information such as street maps,

parcel boundaries, or thematic data if it is present.

3. The method is not sensitive to noise in the image that would negatively affect many edge-based

methods, and it does not make assumptions about the shape (rectangular, circular, polygonal, etc) ,

or colors of buildings.

4. The method does not require training, and has only a few parameters that are simple to determine.

It is important to note that the method does depend on visible shadows and often imagery

is collected to minimize the sizes of shadows because they obscure data. In addition, areas of

particular interest in applications like flight simulators may have the shadows artificially removed

in order to estimate the albedo of the underlying imagery. However, these issues do not pose a

significant challenge to the approach because our approach works even when only a small thickness

of the shadow is visible (Figure 2.1), and it is very difficult to acquire imagery at a time of day that

completely eliminates shadows.

2.2 Prior Art

Many techniques detect buildings by exploiting high resolution height information obtained by

LIDAR or stereophotogrammetry ([8], [13], [17], [22], [23], [26]). However, the additional infor-

4

(a) (b)

Figure 2.1: Example showing the result of running our algorithm on an image with very thin shad-
ows; (a) aerial image; (b) rooftop segmentation done using our algorithm

mation changes the problem significantly. The ability of the proposed technique to identify rooftops

without height map data is important because archival data often does not include this information,

and even new datasets discard this information as imagery is processed to produce orthophotos.

For example, one significant application of the proposed work is to generate high-resolution dis-

placement maps for use in flight simulators. Many existing databases have terrain and texture map

data without the elevation needed for displacement map, and the proposed approach can identify

rooftops using only the texture map.

Several authors have used shadows for rooftop segmentation from aerial images, however

shadows are most-often used after an initial building detection step, for its verification and height

estimation ([5], [6], [7], [9], [10]). The proposed approach differs from these in that it actually uses

shadows to generate building hypothesis rather than as a verification step.

Shadows are used to detect buildings by Sirmace et al. [20], however this work is limited

to rectangular buildings. In addition this paper primarily uses colors to identify rooftops, and it

uses shadows only to detect cases where it failed to identify buildings based on rooftop colors.

For those cases a rectangle fitting method is used to align a rectangle with the canny edges of the

image. However, aerial images can often exhibit poor edge quality. Also, rooftops can have strong

internal lines like ridges that may be confused with edges (Figure 2.2b). But the grabcut based

approach proposed in this thesis does not depend on edge detection. It can handle buildings that

are non-rectangular (Figure 2.2a) or, in many cases, rooftops that have internal edges such as gable

ridges.

5

(a) (b) (c)

(d) (e) (f)

Figure 2.2: Examples of roof shapes that the proposed method can handle; (a) objects with circular
or curved roofs; (b) rooftops with internal edges and occlusion; (c) very large rooftops with obtuse
angles; (d), (e), (f) show the segmentation results of (a), (b), (c) respectively using the proposed
algorithm

Shadows are also used for building hypothesis by Liow et al. [11]. Line segments are first

extracted and those segments that lie next to shadows are considered for building hypothesis. A

region growing algorithm is used to find other edges of the building. However, gable and hip roofs

can have strong ridges (Figure 2.2b) which can be confused with edges of the building, so a region

growth algorithm for fitting edges is vulnerable.

Recently, Ok et al. [14] used a method that employed grabcut and shadows to segment

rooftops from high resolution imagery. Similar to the proposed approach, shadows were first de-

tected and foreground (rooftop) and background pixels were labeled adjacent to them based on light

direction. This was followed by grabcut on a region of interest for each shadow. Unlike the approach

we propose, Ok et al. employed a region of interest (ROI) determined by dilation of the shadow

component with flat kernels opposite to the direction of light. A certain bounding box around the

ROI is determined. Pixels within the bounding box that are identified as shadow or vegetation are

constrained to background. Foreground pixels are determined by double thresholding a fuzzy re-
6

gion extended from shadows opposite to light direction. Figure 2.3a shows the shadow region (in

blue) and fuzzy region extended from it (in Cyan). Figure 2.3b shows the foreground pixels found

after double thresholding the fuzzy region. Our method differs from Ok et al.’s method in several

important ways. We run grabcut globally on the whole image and not on a region of interest for

each shadow. Thus we are also able to find buildings that don’t cast shadows or are larger than the

region of interest, such as industrial buildings or warehouses in commercial areas (see Figure 2.2c).

This is important for applications involving flight simulators because those types of buildings are

common near airports where pilots can see the depth in those building during low altitude flight.

We further implement a self-correcting scheme that identifies falsely labeled pixels by analysing the

contours of buildings identified by the first pass of grabcut. We re-run grabcut until the segmented

results are consistent with shadows.

(a) (b)

Figure 2.3: Foreground and background assignment reproduced from Ok et al. [14]; (a) shadow
(blue) and fuzzy area extended from shadow (cyan) overlaid on aerial image; (b) foreground (cyan)
after double-thresholding fuzzy region

2.3 Segmentation Algorithm

The proposed approach for segmenting rooftops is automatic, but it is based on an interactive ap-

proach called Grabcut [18]. The grabcut algorithm is initialized by a set of constraints called a

trimap created interactively by a user. Users are provided with a sketch based interface that allows

them to mark certain pixel labels to foreground or background but leaves most of the pixels labeled

as unknown. The grabcut algorithm then iterates between an expectation maximization step in or-

der to fit a Gaussian mixture model to foreground and background pixels and a markov random

field optimization step in order to assign labels to the unconstrained pixels using a globally optimal

graph cut method [1]. Grabcut is an effective approach for segmenting images, but it can mislabel

7

large portions of the image when the colors are underconstrained by the initial trimap. In an inter-

active setting a user would look at the result of grabcut and place marks on only a few pixels where

the image is over segmented, or under segmented. The user would then repeat grabcut with new

constraints, leading to highly accurate results with very little user interaction (Figure 2.4).

Figure 2.4: Interactive image segmentation with the grabcut algorithm, reproduced from Rother et
al. [18]. In the top row the method is initialized only by constraining pixels within the red rectangle
to background, in the bottom row the user adds constraints to correct for over and under segmented
parts

The main idea of our approach is to provide an automatic process to replace the user inter-

action in grabcut. We initialize the algorithm based on shadows, and we also add corrections to the

results wherever they are inconsistent with shadows in the image until grabcut converges to a seg-

mentation that is consistent with the shadows detected in the image. The key steps of the proposed

process are:

1. We generate an initial trimap (Figure 2.5b) using shadow information, along with constraints

from other GIS data sources such as street-maps if they are available.

2. We use grabcut to determine the initial segmentation of the image (Figure 2.5c).

3. We analyze the contours of the segmented image and generate new constraints where the contour

edges do not cast shadows as expected (Figure 2.5d).

4. Steps 2 and 3 are repeated until convergence. Figure 2.5e shows the result after repeating step 2

and 3 once.

8

(a) (b) (c)

(d) (e)

Figure 2.5: Key steps of rooftop segmentation; (a) aerial image; (b) initial labeling of foreground
(white) and background (black) based on shadows; (c) result of running grabcut on (b); (d) addi-
tional background constraints added for roof pixels that don’t cast shadows (inside the red window);
(e) corrected result after running grabcut on (d)

Now we explain each of the steps in detail

1. Foreground and Background Labeling using shadows

A key to the success of our algorithm is to avoid adding constraints to the image except where our

confidence in the image labels is very high, and to let grabcut assign labels to the remaining pixels.

In our approach shadows are the key. We first detect shadow regions, and use them to place both

foreground (rooftop) and background constraints in the image. Shadows are an important feature to

indicate depth in aerial images, and a key assumption in our approach is that shadows are simpler

to identify that rooftops themselves. There are a variety of applications for finding shadows in

aerial photos, for example when the angle of the sun is low enough they can be used to determine

the heights of buildings [5], [6], [9], [10], [19]. Shadows are also important because they occlude

the underlying imagery. Some authors have developed methods to detect shadows so that they can

recover or synthesize the albedo of the occluded part of the scene [21].

9

We observe that in many images, pixels in shadow are nearly separable from lit pixels based

in their intensity or luminance. Shadows show very low luminance compared to their surroundings.

We speculate that this may be because outdoor surfaces have a tendency to lighten with exposure to

sunlight and weathering. Tsai et al. [21] noted that shadows have a blue-shift in color images. Tsai

also noted that shadows have lower luminance because the Electromagnetic Radiation from the sun

is obstructed and have increased hue values because the change in their intensity when in shadow

and not shadow is positive proportional to the wavelength. Since shadows exhibit low luminance

and high hue, Tsai computed Hue+1
Luminance+1 ratio image in which the shadow regions showed higher

values than others and the automatic threshold selection of Otsu [15] was used to segment the image

into shaded and lit regions.

Shadows are not always cast onto flat ground. In fact, quite often there are bushes, trees,

cars, or other elements within the shaded region. If any of those extend upwards then they may be

lit, and introduce gaps or other artifacts within the shaded region (Figure 2.6a).

Figure 2.6: Example of successful roof detection when shadow has gaps (notice tree obstructing
shadow of building); (a) roof image; (b) initial foreground / background assignment; (c) result of
grabcut on (b)

Our method does not require that the shadow contours be complete because any gaps in

the shadow may be filled in by the graph cut minimization steps used in the grabcut algorithm. In

Figure 2.6, even with broken shadow the rooftop segmentation result is accurate. However, the

algorithm doesn’t identify the rooftop area occluded by the tree as foreground. We have found that

simply thresholding the luminance channel of the aerial image provides sufficient shadows.

Once shadows have been identified we create a trimap for grabcut. We assume that the

direction of light is provided for the image. The shadow pixels found are shifted opposite to the

10

direction of light and the resulting locations are labeled as foreground (rooftop). We denote this

shift distance by DF . The optimal DF depends on the resolution of the image and the angle of

light relative to the building contour. It needs to be far enough that some pixels in the image will

be constrained as foreground. In [14], a similar approach is employed and significant attention is

paid to making sure that the foreground pixels do not extend past the edge of the building. We

choose DF as a small constant (e.g. 4) number of pixels in all cases because it is small enough

such that the shifted pixels will not cross the roof on the other side. At the same time it is large

enough to assign enough foreground to work for grabcut. The shadow pixels themselves are marked

as background. The initial labeling depends a lot on the accuracy of shadow extraction and DF .

Their effects are discussed in the section “Evaluation” later in this chapter. Figure 2.5b shows the

trimap generated from shadows on an example image using the method discussed here. Regions

constrained to foreground (rooftop) are indicated by white pixels, and regions constrained to the

background are indicated by black pixels. The gray pixels are unconstrained and will be determined

by grab cut.

Our approach to labeling pixels by shadows makes the simplifying assumption that a scene

has two levels of depth - elevated part (rooftops) and non elevated parts (ground). This is not

accurate to real scenes. Rooftops vary in height and one rooftop may cast shadows onto another.

Many buildings have multiple levels and one portions of the roof may cast a shadow onto another

portion of the roof. Rooftops with multiple gables will contain wedge-shaped shadows as indicated

in Figure 2.7. In these cases the shadow constraints discussed in this section will introduce errors,

but usually these errors are rare and confined to small regions within a rooftop.

Figure 2.7: Building casting wedge shaped shadow

11

Another, more significant limitation of our method is the assumption that an edge of a

shadow closer to the light source is an elevated structure. This is nearly always the case, but there

are two important situations where it is not true. The first occurs for walls or fences, which cast

shadows in a scene but are often so thin that the wall itself does not cover a single pixel, as shown in

Figure 2.8. As an extreme example, consider the case of an L-shaped wall that casts a shadow. This

is completely indistinguishable from a building, even by a human observer. However, walls usually

occur as complete loops that enclose an area, and cast an inner shadow that forces grabcut to label

the enclosed area as ground. The second problem occurs when an object has overhanging parts that

extend outward and are not vertically connected to the ground. Figure 2.9c is a contrived example

of this case, which casts a shadow nearly indistinguishable from a building. For most datasets this

type of feature is rare, buildings often have rooftops that extend outward in a slight overhang but it

is not significant enough to affect our algorithm.

Figure 2.8: Green highlight showing a thin fence casting shadow

2. Detecting foliage to add constraints

Optionally, portions of the image that are unlikely to be buildings are detected, and constrained to

the background. This step allows us to exploit geospatial data such as street networks, parcel data

and thematic maps to prevent these regions from being labeled as foreground. A vegetation mask

covers the region occupied by trees, grass, shrubs. If a vegetation mask is not present, we suppress

pixels that have a certain dominance of green in their color. This is because most green colored

regions belong to trees, grass, shrubs and green colored roofs are very less likely to be present. We

constrain pixels whose green component is more than the larger of red and blue by some percentage

which we call Vegetation Coefficient (CV). The vegetation mask (V) is given by given by 2.1. CV

typically varies from 5% to 30% depending on the image. Here G, R and B stand for green, red and
12

(a) (b)

(c) (d)

Figure 2.9: Ambiguous shadow cases; (a) a partial wall that casts a shadow; (b) identical to a
building; (c) a structure with an overhanging (non vertical) piece that that casts a shadow; (d) nearly
identical to a building

blue components of the pixel color.

V = G > (1+CV)∗Max(R,B) (2.1)

3. Grab cut segmentation

Grabcut is used to label the remaining pixels in the image. Figure 2.5c shows the result of running

grab cut on Figure 2.5b. The unconstrained gray pixels are replaced with either light gray (probably

foreground) or dark gray (probably background) pixels.

4. Self-Correction

The grabcut approach to image segmentation may under segment or over segment building contours.

When rooftop pixels are mislabeled as background we introduce some errors, but a single rooftop

generally does not cover a significant portion of the image and the errors are difficult to notice.

Furthermore even if an entire building is not captured, a portion of it will be and that is sufficient

for many applications. We are much more concerned about cases where background pixels are

mislabeled as rooftop because the background regions are large compared to the buildings and

errors tend to bleed out and mislabel large parts of the image. Figure 2.5c shows such a case in

13

which foreground bled into the road next to the rooftop. This happened because the texture of the

road is too similar to the roof next to it for grabcut to distinguish. In order to address this issue, Ok

et. al [14] introduced a maximum building size and limited grabcut to run within that region. Their

approach may fail to identify large rooftops, and in addition, they do not detect cases when pixels

have been mislabeled as rooftop and yet remain within their maximum building size.

lighttangent

Figure 2.10: Self correction algorithm; red - building contour; black - shadow found; direction
of crossproduct of light and tangent points towards the reader, so point must cast shadow. But it
doesn’t, so it is constrained to background

Figure 2.11: Image showing overhang of shadow (notice the red line marked between the corner of
roof and point from where shadow starts)

We however address this differently. We don’t limit grabcut within a region by assuming

a maximum size. Instead, we detect pixels that have been mislabeled as foreground. We analyse

the contours of the foreground and find pixels on the contour that are marked as rooftop but do

not cast shadows as expected. These pixels are then constrained to the background, and grabcut is

repeated until a plausible set of labels is identified. Assuming that the list of points of a foreground

contour are arranged in an anti-clockwise pattern, the cross-product of light vector and tangent at

a point on contour should be positive if the point casts shadow (Figure 2.10). For all such points,

if the pixel next to them in the direction of light is not shadow, then we infer that the point is

over-segmented. We label such pixels as background and re-run grabcut with new constraints.

Figure 2.5d (compare with Figure 2.5b) shows additional background pixels (inside the red box)

14

added to the image on the foreground contour in Figure 2.5c because shadow next to them was not

found. In many cases, shadows usually don’t start at the corners of roofs. There is an overhang

of some amount and if we neglect that, then certain roof pixels lying close to the corners can be

inaccurately labeled as background as apparently they don’t cast shadows (Figure 2.11). So we

assume an overhang of 4 pixels and mark a pixel as background only if these number of pixels on

either side on the contour don’t cast shadows either. Figure 2.5e shows the result of grabcut on

Figure 2.5d. Comparison between Figure 2.5e and Figure 2.5c shows the correction of result after

one self-correcting iteration. The road area labeled as rooftop is removed. This result is consistent

with shadows, so no more self correction steps are performed.

5. Pruning misclassified contours by size constraints

The final segmentation may contain very small regions like cars and fences misclassified as rooftops.

In order to prune them, we find the contour of each segmented blob, and if the size of its boundary

is less than 20 pixels, we remove them. Figure 2.12c shows the segmentation after pruning small

contours from Figure 2.12b. A more thorough pruning based on size is done during parametric

modeling discussed in Chapter 3.

(a) (b) (c)

Figure 2.12: Pruning small contours; (a) reference aerial image; (b) rooftop segmentation; (c)
rooftop segmentation after pruning small contours

The proposed process requires the following parameters to be specified by a user:

1. The direction of the light within the image plane.

2. The amount of overhang allowed in a rooftop. The eaves of a rooftop affect the shape of the cast

shadow, so that the shadow does not always start at the corner of a rooftop but occasionally some

15

number of pixels away from the corner. The proposed method needs to know the maximum size of

the eaves so that it does not mislabel those pixels due to their lack of shadow.

3. A threshold on the image luminance channel, used to identify shadows. Fortunately, shadows

in most aerial images seem to be separable based on intensity and this threshold is not difficult to

identify if the user can preview the thresholded image.

4. Graphcut iterations to be performed by Grabcut - Grabcut internally performs a number of

iterations of graph cut internally. The effect of this is discussed in the section “Evaluation”, later in

this Chapter.

2.4 Evaluation

Experimental Results

In order to test the accuracy of the proposed approach, we implemented it in python and used

opencv’s implementation of grabcut. Our implementation was not optimized and took 40 seconds

on average for each 512x512 pixels square tile using a Dell Precision M6500 laptop. The actual run

times varied from 25 seconds to 90 seconds based on the complexity of the tiles. The tiles that have

more number of buildings, shadows and trees are considered to be more complex than others. A few

images from the dataset are shown in Figure 2.23 continued in Figure 2.24. The images #1-7 have

1 meter / px resolution and consist of a variety of complex rectilinear buildings like “L-shaped” and

“T-shaped” buildings. Image #3 also has a building with curved roof. Image #8 has a resolution

of 10 meters per pixel. In these figures, first column is the set of input RGB aerial images, second

column is the set of results of rooftop segmentation and third column is the ground truth which is

manually generated.

We have employed very commonly used evaluation schemes, precision and recall given by

2.2 and 2.3 respectively. The ground truth against which the results are compared are generated

manually. T P stands for true positives and refers to the number of pixels assigned as rooftop in both

ground truth and segmentation result images in Figure 2.23. FP stands for false positives and refers

to the numbers of pixels assigned as rooftop in result but not in ground truth. FN stands for false

negatives and refers to the number of pixels assigned as rooftop in ground truth but not in result.

Precision gives a sense of what percentage of buildings detected were actually buildings and recall

16

Test image Precision (%) Recall (%) F-score (%)
#1 76 75 75
#2 85 95 90
#3 85 87 86
#4 84 86 85
#5 90 90 90
#6 87 94 90
#7 97 93 95
#8 83 74 78
Avg. 86 87 86

Table 2.1: Evaluation of Rooftop Segmentation

gives a sense of what percentage of actual buildings were detected. Precision and recall individually

hold no relevance because if out of 100 rooftops only 1 is recognized then we will record a precision

of 100%, but the recall will be 1%. Similarly, if there are 10 buildings and our algorithm locates

100 buildings such that all the 10 buildings are covered, we will record a recall of 100%. However,

precision will be 10%. So, together precision and recall reflect the accuracy of algorithm and better

accuracy is observed when both of them are high. Fscore (2.4) captures both precision and recall

into a single metric and can therefore reflect the accuracy of the algorithm independently. Table 2.1

shows precision, recall and fscore for all the test images shown. Compared to Ok et al. [14] who

show an average of 80.3% precision and 83% recall, our precision and recall has an average of 86%

and 87% respectively.

Precision =
T P

T P+FP
(2.2)

Recall =
T P

T P+FN
(2.3)

Fscore =
2∗Precision∗Recall

Precision+Recall
(2.4)

17

Various parameters drive the segmentation result of grabcut. These are discussed below along with

their impact.

1. Graphcut iterations

One of the key parameters is the number of graphcut iterations performed by grabcut each time

before returning the results. Figure 2.13 shows the results after using 1, 2, 5 and 10 iterations.

With larger number of iterations, larger foreground areas are returned. But after a certain number

the results don’t show any noticeable increase in the sizes of foreground like after 5 (Figure 2.13d).

The number beyond which there is no perceivable change in segmentation should be chosen because

that is the number at which grabcut converges. If a lower number is chosen, then its possible that

a portion of foreground will not be recovered, as shown in Figure 2.13b and 2.13c. If a higher

number is chosen for example 10 in Figure 2.13e, then it slows down the algorithm by running

useless iterations of graphcut that don’t cause any perceivable change. For our test images 5 turns

out to be the optimum number of iterations.

(a) (b) (c)

(d) (e)

Figure 2.13: Effect of different graphcut iterations; (a) reference aerial image; (b), (c), (d), (e) show
the result of 1,2,5 and 10 iterations of graphcut respectively

2. Accuracy of shadow detection

The accuracy of shadow detection plays a very important role because foreground and background

18

are initially assigned on their basis. Figure 2.14 shows the impact of using different thresholding

values on luminance channel of image in order to determine shadows. Figure 2.14a shows initial

foreground and background segmentation based on detected shadows and Figure 2.14b shows the

result of running grabcut on it. The threshold on the luminance channel is chosen as 0.25 on a scale

of 1 which means all the pixels with intensity less than 0.25 are labeled as shadows. Figure 2.14c

and Figure 2.14d show the same for a threshold of 0.15. As you can see, less shadows are detected

in Figure 2.14c because of lower threshold. So less foreground area was assigned on the basis

of shadows and thus the final segmentation result has less foreground too. Figure 2.15 shows the

variation of precision, recall and fscore with different shadow threshold chosen for the extraction

of shadows. As expected, precision drops and recall improves as we increase the shadow threshold

because other dark objects are identified as shadows leading to larger areas identified as rooftops.

(a) (b) (c)

(d) (e)

Figure 2.14: Effect of accuracy of shadow detection; (a) reference aerial image; (b), (d) show initial
foreground and background labeling using luminance threshold of 0.25 and 0.15 respectively; (c)
and (e) show the result of grabcut on (b) and (d) respectively

3. Accuracy of direction of light

The accuracy of the direction of light decides in what direction the shadow pixels will be moved

by DF in order to assign initial foreground and background pixels. Foreground pixels are located

by moving shadow pixels against the direction of light, whereas shadows themselves are labeled

19

Figure 2.15: Effects of shadow threshold on the accuracy of results

as background pixels. If the light direction is not accurate, then its possible that foreground and

background are incorrectly assigned thus causing error in segmentation. Figure 2.16b show initial

foreground and background labeling before grabcut for the correct light vector. Figure 2.16c shows

the result of grabcut on Figure 2.16b. Figure 2.16d and Figure 2.16e show the same for light rotate

by 45 degrees clockwise. So now, the light vector used is significantly different from the actual

light. Figure 2.16f and Figure 2.16g show the same for light rotate by 45 degrees anti-clockwise.

According to the observation, there is not a very high impact of changing lighting by a small angle.

The difference can only be seen in a few buildings after rotating light direction by a high variation

of 45 degrees in both directions. We speculate that this happened because one of the two shadow

facing edges are enough to reproduce the complete building from grabcut. The resistance to error

in light direction may vary for individual images but we conclude that grabcut is quite resistant to

small light direction errors. Figure 2.17 shows the variation of accuracy with light rotated from the

correct light direction. As we rotate the light direction more, the accuracy decreases. Recall is much

more affected than precision because lesser foreground is found as we rotate the light direction more

causing grabcut to miss on more bulding areas.

20

(a) (b) (c) (d)

(e) (f) (g)

Figure 2.16: Effect of accuracy of light direction; (a) reference aerial image; (b) using correct light
direction for initial foreground and background labeling; (c) result of grabcut on (b); (d) initial
labeling using light rotated by 45 degrees clockwise; (e) result of grabcut on (d); (f) initial labeling
using light rotated by 45 degrees anti-clockwise; (g) result of grabcut on (f)

Figure 2.17: Effects of light error on the accuracy of results (x-axis shows light rotate from correct
light direction)

21

4. Accuracy of vegetation suppression

If a vegetation mask is not available, then we create our own vegetation mask by constraining green

colored pixels to background. Any pixel that has its green component more than the larger of red

and blue by CV is labeled as background before running grabcut (2.1). This has a huge impact on

the segmentation results because, if a tree casting shadow is not suppressed then it will be labeled

as foreground and because of it a portion of trees and other vegetation can be labeled as building by

grabcut. The optimal percentage of green may vary from image to image between 5% to 50%. It

is advised to keep it lower so that no trees are left out. Usually buildings have more dominance of

red and blue, so even with a low value it does not impact the building detection in a negative way

too much. Figure 2.18 (b)-(g) show three cases in which CV is chosen as 5%, 10% and 25%. For

5%, Figure 2.18b and Figure 2.18c show initial foreground / background labeling and the grab cut

result. The black pixels in Figure 2.18b show background that includes both suppressed vegetation

and shadows themselves. Figure 2.18d and Figure 2.18e show the same for 10%. Figure 2.18f and

Figure 2.18g show the same for 30%. Notice that the background pixels reduce from Figure 2.18b

to Figure 2.18d to Figure 2.18f as we increase CV . The impact of this is that, more and more trees

are labeled as buildings by grabcut from Figure 2.18c to Figure 2.18e to Figure 2.18g. In fact, the

actual buildings and trees merge with each other and its hard to differentiate between closely located

buildings and trees. Figure 2.20 shows the variation in accuracy with CV . As we increase CV , we

are forcing the algorithm to detect pixels that are more green. As a result, less trees are suppressed

and thus identified as rooftops causing precision to decrease and recall to increase.

5. Effect of shadow shifting distance (DF) for initial foreground labeling

Grabcut results improve if there are more number of accurate foreground pixels. Figure 2.21b

shows initial labeling for DF = 4 pixels and Figure 2.21c shows the result of grabcut on Figure

2.21b. Figure 2.21d and 2.21e show the same for DF = 2. As you can see, some roofs were not

detected in Figure 2.21e because enough foreground was not assigned initially to detect them. Based

on our tests, we conclude that 4 pixels is a good value to generate enough foreground for grabcut to

detect all buildings. Figure 2.22 shows the variation in accuracy with varying DF (shadow shifting

distance for marking foreground). As expected, for low values like 1-2 pixels there isn’t enough

foreground for grabcut to recover all the complete rooftops leading to a lower recall. As we go
22

(a) (b) (c) (d)

(e) (f) (g)

Figure 2.18: Effect of accuracy of vegetation suppression; (a) reference aerial image; (b), (d) and
(f) show initial foreground and background labeling with CV set to 5%, 10% and 30% respectively;
(c), (e) and (g) show grabcut result on (b), (d) and (f) respectively

(a) (b) (c)

(d) (e)

Figure 2.19: Effect of accuracy of vegetation suppression; (a) reference aerial image; (b) and (d)
show initial foreground and background labeling with CV set to 5% and 25% respectively; (c) and
(e) show grabcut result on (b) and (d) respectively

beyond 4 pixels precision drops by a little amount as larger foreground is recovered than needed.

23

Figure 2.20: Effects of Vegetation Coefficient (CV) on the accuracy of results

(a) (b) (c)

(d) (e)

Figure 2.21: Effect of choosing different DF ; (a) reference aerial image; (b) and (d) show initial
labeling with DF = 4 and DF = 2 respectively; (c) and (e) show the result of grabcut on (b) and (d)
respectively

2.5 Conclusion and Future Work

We’ve presented a novel approach for segmenting rooftops only using aerial images. The approach

doesn’t require any elevation or other additional data. It is fully automatic considering that only

24

Figure 2.22: Effects of shadow shifting distance (DF) on the accuracy of results

a few configuration parameters are required to initialize the algorithm. It has shown an average

precision of 87% and average recall of 85%. The algorithm is sensitive to certain parameters such

as shadow intensity threshold and vegetation coefficient (CV) which need to be set accurately for

best detection. But these can be easily tuned. However, there are certain areas where we see a scope

for further improvement.

1. For a very large dataset, it is possible that light directions are not consistent throughout the region.

We process such datasets in the form of tiles and it would be a good idea to automatically estimate

the light direction in each tile using shadows or some other means.

2. As of now, we are manually thresholding luminance channel of aerial images to extract shadows.

In future, we would like to implement the algorithm mentioned by Tsai et al. [21] to automatically

detect shadows in aerial images.

25

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.23: (First Column) Test images #1-8; (Second Column) segmentation results for test im-
ages #1-8; (Third Column) ground truth for test images #1-8

26

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.24: Figure 2.23 continued; (First Column) Test images #1-8; (Second Column) segmenta-
tion results for test images #1-8; (Third Column) ground truth for test images #1-8

27

Chapter 3

PARAMETRIC MODELING OF ROOFTOP SEGMENTED DATA IN AERIAL IMAGES

3.1 Introduction

A novel approach to segmenting rooftops in aerial images was proposed in Chapter 2. Our contri-

bution in this chapter is to find 3D models consistent with the aerial imagery. 3D models of urban

areas are important for many applications including flight simulators and urban planning. This is

because they can model various objects such as trees, buildings, and can be rendered at any resolu-

tion. Our contribution is to define a parametric model for buildings in urban areas. We can use it to

generate geotypical solutions. Such solutions generate synthetic urban scenes similar to an urban

city. But we aim at generating geo-specific solutions that match an existing urban aerial imagery

and our building models match the appearance of buildings in the imagery when viewed from nadir.

The segmentation results achieved from grabcut in Chapter 2 only provide approximate footprints

of buildings. This is because segmentation algorithms are inherently noisy. They don’t always make

straight or smooth curved edges usually found in buildings. Also, blobs extracted from segmented

data may also contain tiny holes which need to be filled. Using them as elevation maps for 3D

rendering produces poor quality scenes which are easily noticeable. So, in such cases parametric

model fitting is performed that gets rid of noise and can be rendered at any resolution. Also, para-

metric models of rooftops let us describe roof shapes and heights consistently, which is not possible

with segmented blobs. Parametric models are vector data so they also need much less storage space

compared to segmented data which is raster. In the next section we discuss prior research done in

this area followed by our parametric model description and method of fitting.

3.2 Prior Art

Most of the research on fitting parametric models is done on segmentation achieved by additional

sources such as LIDAR. Some of these sources also provides the height information at each pixel,

so various types of parametric models have been proposed that can also exploit this information to

detect roof-shape. Given a segmented blob, the first step is to perform polygonal approximation

depending upon the model. For example, if a rectilinear model is employed, then segmented blobs

are approximated to rectilinear polygons (Figure 3.1). After polygonal approximation, the roof of

the polygon is modeled.

28

Figure 3.1: Rectilinear polygon (in red) approximated over a segmented blob (in blue) from Matei
et al. [13]

Various techniques have been proposed for polygonal approximation. Vestri et al. [23] em-

ployed split and merge algorithm [16]. Poullis and You [17] used Douglas-Peucker approximation

[2] and then Iterative End-Point Fit [3]. Matei et al. [13] fitted rectilinear polygons at sampled ori-

entations between 0 to 90 degrees on the the boundary of model and computed dominant orientation

by using the orientation for which rectilinear polygon fitted has least number of vertices.

In order to model the roof shape, many authors used triangulated polygonal meshes [13],

[17], [22], [26]. These models are extremely powerful because they can represent all sorts of com-

plex roof shapes (Figure 3.2). This kind of roof modeling is performed on elevation data like

LIDAR because it has detailed height information. However, due to imperfect elevation data, roof

shape modeling may show errors (Figure 3.3). To handle such errors Verma et al. [22] used prim-

itives (Figure 3.4b) to approximate the mesh. But, we rely on aerial photography for roof shape

detection from which little elevation information can be inferred. Hence we employed a rectangu-

lar parametric model that can represent rectilinear flat, gable and hip roofs. Figure 3.4a shows the

parametric model for a gable roof. Similar parametric models are employed by other authors [12],

[22], [24]. However, they work on elevation data too. A combination of more than one such models

can be used to represent buildings with complex footprints such as L, T and U (Figure 3.5) with

complex roof shapes exhibiting multiple gables or hips.

3.3 Parametric Model Description

Most of the urban buildings are either rectangle or made up of a bunch of rectangles to form other

complex shapes such as L, T and U (Figure 3.5). So we limit our scope only to such buildings. Our

parametric model of a building block is rectangular and supports 3 different kinds of roof shapes -

29

(a) (b) (c)

Figure 3.2: Examples of polygonal mesh modeling to represent arbitrary shaped roofs; (a) and (b)
are taken from Zhou et al. [26], (c) from Zhou et al. [25]

Figure 3.3: Example of triangulated polygonal mesh modeling from Zhou et al. [26]

(a) (b)

Figure 3.4: Parametric models; (a) gable roof model taken from Maas et al. [12]; (b) corner based
models taken from Verma et al. [22]

flat, gable and hip. Figure 3.6 shows the image of our model and following are its parameters.

X - x co-ordinate of the center of rectangle in the image

Y - y co-ordinate of the center of rectangle in the image (this increases as we move down in the

image)

W - first side of rectangle (width)

30

(a) (b) (c)

Figure 3.5: Complex rectilinear roofs; (a) ’L’ shaped; (b) ’T’ shaped; (c) ’U’ shaped

H

W

X ,Y

L

H

F1 F2W

L

X-axis

Y
-a

xi
s

θ

α

Figure 3.6: Our parametric model for Building Block

L - second side of rectangle (length)

θ - angle (in degrees) between side W and x-axis

H - height of the building above ground

α - angle of gable with ground plane (in degrees). Gable is always parallel to side W.

F1,F2 - Offsets of gable from either sides of the building

If α is 0, then it is a flat roof. If α is not 0 and at least one among F1 or F1 is not 0, it is a hip roof.

Otherwise, it is a gable roof. So using this model, we can describe all the three different types of

roofs.

31

3.4 Model Fitting Algorithm

The key steps for parametric model fitting are:

1. Extract contours of each building footprint from segmented image - Figure 3.10b shows the

rooftop segmented image computed for aerial image (Figure 3.10a) after running the algorithm

mentioned in Chapter 2. Contour is the set of points running along the boundary of the segmented

area. We use OpenCv’s implementation of extracting contours from an image.

2. Compute the orientation (θ) of the building with respect to image plane - We do this by applying

hough line transformation [4] over the bounding box of contour in the sobel edge image. Hough

transformation is a very popular technique that can be used to find lines, ellipses and other figures in

an image. We use it to find lines in the image. Hough transformation works by first creating unique

bins for all the possible lines that can exist in an image. Lines are represented in their parameteric

form (r,θ) where r is the perpendicular distance between the center of the image and the line, and

θ is the angle of line segment joining the center of the image and the point on the line closest to

it. The parametric form of a line is show in Figure 3.7. θ is sampled across 0-180 at 1 degree and

r ranges from −DH to DH where DH stands for half of diagonal of image size. This range of θ

and r covers every possible line that can exist in the image. Now, for each edge pixel in the image

every possible line passing through it is found and its bin is incremented. In order to find each line,

r is computed for every θ from 0 to 180 such that (r,θ) passes through that point. After scanning

through all the edge points in the image, an (r,θ) map is generated which has high values for strong

lines and less values for weaker lines. This map can be saved as a gray scale image scaled within

0 to 1 with white corresponding to 1 and black corresponding to 0. The bounds of the gray scale

image are 2 * DH x 180 where rows correspond to θ and columns correspond to r. Figure 3.10d

shows this hough line transformation image generated for the sobel edge image (Figure 3.10c). The

brighter pixels in Figure 3.10d show stronger lines. The angle exhibiting maximum variance in the

hough line image is considered as the angle of the building because it shows that most lines in the

image are oriented along that angle. The angle with maximum variance is shown by the red line in

Figure 3.10d.

3. Compute edge-aligned bounding box - Since we now know the orientation of the building (θ), we

32

θ

r

line

center of image

Figure 3.7: Parametric form of a line

compute the edge-aligned bounding box of the contour oriented at θ . This is shown in Figure 3.10e

and it is found by first rotating the contour by θ , then computing its bounding box. Then we rotate

the bounding box back by −θ .

4. Remove incorrectly identified buildings based on size constraints - If the edge-aligned bounding

box is smaller that the minimum size of building, then it is assumed to be a false building and

removed. This step gets rid of cars, small bushes and trees that were misclassified as buildings

(Figure 3.8). Notice that the cars misclassified as rooftops in segmentation (Figure 3.8b) are pruned

after parametric modeling (Figure 3.8c). The building blocks that have very high width-to-height

ratios (typically 10:1) are also removed. This is because buildings usually dont have such high

aspect ratio. Roads that are mislabeled as roofs usually show this property as they are long strips

and hence they are also removed at this stage. Notice that the road misclassified during segmentation

(Figure 3.8b) is also removed after parametric modeling (Figure 3.8c).

5. We assume that the buildings are rectangular, but they can be made up of more than one rectangle.

They may form complex shapes like “L”, “T” and “U” (Figure 3.5). In order to find these rectangles,

we try to find horizontal and vertical lines in the edge-aligned bounding box that align with the edges

of segmented building. Two projection histograms are calculated for the horizontal and the vertical

direction by finding out the number of edge pixels lying on every horizontal and vertical line within

the bounding box. The edge pixels here refer to the outline of the contour. We do not use the

edges from the aerial image because edges in it could come from gables or other objects that also

33

(a) (b) (c)

Figure 3.8: Pruning misclassified rooftops based on size constraints; (a) reference aerial image; (b)
rooftop segmentation using Grabcut; (c) parametric model fitting (notice that the road on left and
cars are removed because of small size and high aspect (width to length) ratio respectively)

lie within the bounding box. The lines for which number of edge pixels lying on it are greater than

a threshold (minimum length of building is a good value) are noted. It is possible that two or more

closely located lines belong to a strong edge. So we may end up locating more lines than there

already are. To fix this, we regroup closely located lines into one line by picking the middle one. In

a sense, we want closest lines to be separated by at least a certain distance (like, minimum length

of a building employed). Figure 3.10f shows the line segments found using projection histogram.

6. The edge-aligned bounding box is divided into cells based on horizontal and vertical lines found.

For each cell, if the number of pixels classified as building lying within it are less than a certain

fraction of total pixels (area of cell), it is removed. The fraction that we have used is 50% because

we consider that a cell has equal probability of being a part of building or not. If less than half of

the pixels in a cell are labeled as building then it is removed. Figure 3.10g shows the remaining

cells. In this step we get rid of rectangular areas that lie outside the building within the edge-aligned

bounding box.

7. Remaining cells are combined to form larger cells such that the largest rectangular cell is pre-

ferred first (Figure 3.10h). This is done because we assume the buildings are made up of different

rectangular pieces. So naturally the biggest sized rectangles should be preferred first otherwise

we may end up with smaller pieces with same sizes next to each other which should be combined

together as one. This helps in representing the building area with the least number of rectangles.

34

8. The cells are extended into each other till they reach the center of the other cell such that the total

area occupied by cells doesn’t change. This is done because in most cases, building pieces are not

placed next to each other but connected together through gables. Figure 3.9a shows a building with

two wings that run into each other till their gables meet. Sometimes they don’t extend all the way

to the center (Figure 3.9b and Figure 3.9c) and detecting that is something we have left for future

work. Thus, we assume that all building blocks meet at the gable of each other. For flat roofs, this

doesn’t make any difference. Figure 3.10i shows the extended cells. These cells become our final

building block.

(a) (b) (c)

Figure 3.9: Different challenging gable interactions; (a) shows a roof with two pieces meeting at
the ridge of gable; (b), (c) show roofs where individual pieces dont meet exactly at the gable ridge
of each other

9. Finding roof shape - The next step is to find the roof shape of each building block. The roof can

be flat, gable or hip. In order to determine if a roof is gable or flat, a hough line in the edge image

(Figure 3.10c) at its center perpendicular to one of the two sides (central ridge) is detected. The

presence of the line is enough to conclude if its a gable or flat. But it is tricky to estimate the gable

angle. Ideally, the difference between the brightness on both sides of gable should be used to figure

out the gable angle. The higher the difference, the larger the gable angle unless the light is directly

overhead in which case there will be no difference. But we don’t know the precise color of roof and

ambient and diffuse coefficients. This makes it hard to determine the gable angle precisely. So we

choose the intensity of hough line corresponding to the gable to determine the gable angle which

is scaled between two permissible extremes. The more intense the gable line, the higher the gable

angle. This is not very accurate either, but we do not concern ourselves with gable angle’s accuracy

35

because we aim at rendering plausible roof models. An error in gable angle is not perceivable.

10. If its a gable roof, then hough lines at the four corners of building block are detected that pass

from the corner. If a line is present, then it is extended to meet the central ridge. The point at which

it meets gives the parameters F1 and F2 for the model (Figure 3.6). If either F1 or F2 is not 0, the

roof is a hip. Figure 3.10j shows the roof shape determined by step 9 and step 10.

11. Determining roof height above ground - We only calculate the height of one building block

in a set of building blocks belonging to a building. We choose the one located farthest from light

direction. This is because in cases where multiple building blocks are located next to each other,

the shadows cast by ones lying closer to the light is obstructed by others. So it is not possible to

find their heights using shadows. So we find the height of the shadow facing building block and

assume that the height of all building blocks is same. The shadow facing edges of the shadow facing

building block are extended until they cover a low intensity region (shadowed region) completely.

The edges are extended by 1 pixel at each step, and the pixels on the edge are thresholded to a

pre-estimated low luminance to capture shadow pixels. Ideally all the pixels should lie in shadow

but many times there are trees or other objects next to buildings that obstruct shadow this causing

it to break (Figure 2.6). Also, shadows extend in the direction of light and not in the direction

perpendicular to edge. So as we move the edge, more and more pixels at one of the corners of

edge will lie outside shadow. We consider an edge to be in shadow if at least 60% of pixels on

it are in shadow. We extend the shadow facing edges until they have less than 60% pixels lying

on them determined in shadow. If the building footprint determined is correct and the edges of

model coincide with the actual building, then this works extremely well because after extending

the shadow facing sides, at some point the pixel luminances suddenly rise as the edge goes beyond

shadow. This distance by which the edges are displaced gives the thickness of shadow which is used

along with the known light direction to compute the height of the building block. The height of all

the building blocks is then set to this value. Figure 3.10j shows a green boundary at the top right

corresponding to the shadow casted by the model. It matches very well with the underlying low

intensity shadow region. Figure 3.10k shows the side view of the larger building block constructed

after determining height and roof shape.

36

12. Using elevation data to determine roof shape - If LIDAR or any other elevation data is available,

we can skip step 7-11 and instead use that to determine the roof shape and height.

The proposed process requires the following parameters to be specified by a user:

1. Setting threshold for projection histogram to capture horizontal and vertical lines within the

oriented bounding box of contour. The minimum size allowed for a building block in pixels is a

good value because it means that at least that many pixels should lie on a line for it to be considered

a valid edge. This will also make sure that the size of the smallest cell is not more than the minimum

size of building set by us.

2. Minimum fraction of pixels classified as building in a cell that allow the cell to be retained in

step 5. Typically 50%.

3. Permissible gable angle range in step 8. Typically between 15 and 60 degrees.

4. Permissible range of building height. Clamped to this range if computed beyond it because of

errors. We use 10 pixels to 100 pixels and most buildings in suburban environment are within this

range. These may be varied for different locations.

37

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 3.10: Stages of parametric model fitting; (a) aerial image of a hip roof; (b) segmented image
from grabCut; (c) sobel edge of aerial image; (d) hough line transform image of (c); (e) edge-aligned
bounding box of rooftop segmented area; (f) division of edge-aligned bounding box into horizontal
and vertical lines based on projection histogram; (g) cells that remain after filtering those out that
don’t have enough rooftop pixels; (h) merging small cells into big based on largest rectangle first; (i)
extending building blocks into each other preserving the total area; (j) finding roof shape and height
using shadow (green outline) in individual building pieces; (k) side views of the bigger building
block of the building

3.5 Drawbacks Of Algorithm

In this section we discuss certain drawbacks in our parametric model fitting algorithm.

1. Drawback of merging cells into bigger rectangles based on largest rectangle first - After we

38

prune out cells from the oriented bounding box of a segmented building region. We merge the

remaining cells into non-overlapping larger rectangles such that the rectangle with largest area is

preferred first. Then the non-overlapping rectangles are extended into each other such that the total

area occupied by the block remains same. This is because we assume that the largest rectangular

piece found will actually be a single building piece. However, this is not true in all cases. Figure

3.11a shows such a case. Figure 3.11b and Figure 3.11c show two different ways in which the two

building blocks can be arranged. Our algorithm will pick Figure 3.11b because the building block

located below together with the shared region has a bigger area compared to the other block together

with the shared region. This error can be resolved by first finding out the gable in the shared region

and determining which of the two building blocks it belongs to, and then merging the shared region

with that building block. Unfortunately, in our current algorithm, we merge the rectangles first and

then determine their roof-shape. So we’ve left this to be resolved in future. The case discussed here

is of a simple L-shaped roof. Given an arbitrarily complex rectilinear roof (Figure 3.12), it becomes

a big challenge to divide it into correct individual rectangles.

(a) (b) (c)

Figure 3.11: A case where algorithm fails to detect the correct building blocks; (a) reference build-
ing; (b) incorrect configuration chosen by our algorithm to represent building based on largest
rectangle first; (c) manually chosen correct configuration

2. Drawbacks of assuming that all the building blocks of a building have the same height - We only

calculate the height of the shadow-facing building block and assume that to be the height of all the

building blocks. However, this is not true in many cases. Figure 3.13 shows such a case in which the

bigger building block on the left is taller than its smaller counterpart on the right. However, since

the direction of light is such that the smaller building block faces the shadow, the smaller blocks
39

Figure 3.12: Complex rectilinear roof, a difficult case to locate individual rectangular building
blocks; (a) roof image; (b) parametric model detected overlayed on top of roof

(a) (b)

Figure 3.13: Building blocks with different heights; (a) reference building; (b) result of computing
height using our algorithm

height is determined and the bigger blocks height is also set to the same by our algorithm (Figure

3.13b).

3. Effect or artifacts on roof in roof shape detection - Artifacts like air-conditioners and chimneys

hinder with detection of roof shape. Figure 3.14a shows a roof with an air-conditioner mounted

near the center of gable. Figure 3.14b shows the model found, overlayed on the image. Figure

3.14c shows the edge image of the center area of the model. We use hough transform to determine

the strongest line in Figure 3.14c. The hough transform does not consider the continuity of lines. It

only finds the lines on which most edge pixels lie. As a result, the actual gable is not found because

it is too weak compared to the edge of air-conditioner and our algorithm is not able to detect gable

in this case. This is a serious problem and in the future we would like to come up with a smarter

algorithm that can handle such cases because roofs with such artifacts are very common.

4. Errors due to distortion in rectilinear buildings - In satellite images, rectilinear buildings located

further away from the direction in which the camera is facing, look distorted. The adjacent sides

40

(a) (b) (c)

Figure 3.14: Example showing incorrect roof shape detection because of another object mounted
on the roof; (a) reference image of roof; (b) parametric model found for roof (dotted line denotes
flat roof was found); (c) edge image near the center of model (notice the gable line is weak and thus
undetected by hough transform because of the presence of strong edges of artifact)

do not appear perpendicular to each other even when they actually are because of the obliqueness

of the view. Orthorectification of the image only recovers their true locations and sizes, but the

distortion still remains (Figure 3.15a). Figure 3.15b shows a model overlaid on the building but

only one set of parallel sides match with the building because the adjacent edges of the building are

not perpendicular which is enforced by our model.

(a) (b)

Figure 3.15: Example showing distortion of a rectilinear building due to obliqueness of view direc-
tion; (a) Distorted building; (b) Rectilinear model overlaid on top of building (notice only one set
of edges can be aligned since our model enforces perpendicular edges)

3.6 Evaluation

The image dataset used for evaluation here is same as that used for evaluating rooftop segmentation

in Chapter 2. The building blocks found after modeling the segmentation results from Chapter 2 are

converted into raster images (model image) of same resolution as that of the ground truth. Precision

(Equation 2.2) andrRecall (Equation 2.3) is computed between this image and ground truth. Figure

41

Test image Precision (%) Recall (%)
#1 79 75
#2 78 94
#3 79 89
#4 78 86
#5 86 77
#6 84 94
#7 95 96
#8 75 70
Avg. 81.75 85.125

Table 3.1: Evaluation of parametric modeling

3.16 continued to Figure 3.17 show test images (first column), segmentation results using grabcut

algorithm mentioned in Chapter 2 (second column), parametric modeling of segmented results (third

column) and ground truth (fourth column). Precision and recall is calculated for each fourth and

third column pair. Table 3.1 shows the precision and recall for all the test images. We record an

average precision of 82% and average recall of 85%. There has been some loss of accuracy over

segmented image where we recorded a precision of 87% and recall of 85% as parametric models

do not completely overlap segmented blobs, but it is a small price to pay for the advantage of being

able to render a high quality, noise-free 3D model of an urban area.

In order to evaluate our algorithm for finding roof shape we tested it on a site of 40 gable

roofs. Since we don’t have the ground truth about gable angle, we only tested if our algorithm could

detect the presence of gable correctly. Out of the 40 gable roofs, 32 were identified as gable whereas

the remaining 8 were detected as flat roofs. This shows an accuracy of 80% for finding gable roof

shape. Figure 3.18a shows the test site and Figure 3.18b shows the parametric models identified

and overlaid on the site.

3.7 Semi-Automatic Building Detection

Using rooftop segmentation and parametric model fitting helps us find most of the buildings ac-

curately. But its possible that some are undetected or not detected accurately. As a part of this

framework, we have provided certain tools that can help user improve the results. These are dis-

cussed below.

42

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.16: (First Column) Test images #1-8; (Second Column) segmentation results for test im-
ages #1-8; (Third Column) parametric modeling of second column; (Fourth Column) ground truth
for test images #1-8

Locating Undetected Buildings - Buildings that remain undetected after automatic rooftop segmen-

tation and parametric model fitting can be manually generated and fitted. But we have employed an

algorithm that can work with very little user input. Our algorithm allows a user to specify a point in

43

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.17: Figure 3.16 continued; (First Column) Test images #1-8; (Second Column) segmenta-
tion results for test images #1-8; (Third Column) parametric modeling of second column; (Fourth
Column) ground truth for test images #1-8

the image that lie within a building and it detects the building. It can work with complex buildings

and can generate parametric models that fit them perfectly along with finding roof-shape and height.

Since this algorithm is very fast (1-2 seconds per building), it can give instantaneous results as the

44

(a) (b)

Figure 3.18: Evaluation of gable roof shape detection by our algorithm; (a) aerial image with 40
gable roofs; (b) parametric models identified, placed over the original image

user moves his mouse over the aerial image thus making it very convenient to use.

Following are the key steps of the algorithm

1. Identify the color of the building in L,U,V format - Let the point specified inside the building be

(x0,y0). Figure 3.19a shows a building with a red cross that is marked as a point inside a building.

We go through all the pixels within a square of side 10 pixels in the image centered at (x0,y0) and

compute their average color. The square is the blue colored patch in Figure 3.19a. Then we again go

through all these pixels and identify the color closest to the average color. The metric for closeness

is the euclidean distance between the two colors. The color closest to the average color is regarded

as the most dominant color of the building, or just color of the building. We do this because, the

pixel selected can lie on an air-conditioner or chimney at the top of the roof which might be of a

different color. Or its possible that the pixel doesnt represent the true color of building because of

poor quality of image. So we average over a small area around the pixel to capture the dominant

color of the roof. We then pick the color closest to the average color because if the colors vary

a lot, then its possible that the average color turns out to be totally different from the actual roof

color. This can happen if the point chosen lies very close to a corner or an edge of a roof. In that

case half of the pixels will represent roof color, and other half will represent ground. The average

color computed will be somewhere in the middle of roof and ground. So choosing an existing color

closest to the average seems like a better choice.

2. Find all the pixels belonging to the building - This step works as a graph search where each pixel

acts as a node connected to 8 neighboring node pixels. Given a pixel node that belongs to a building,

45

we check the 8 neighboring pixels to see if their color is similar to the color of building found in

step 1. The similarity is measured by computing similarity in luminance SL and chroma SC given

by 3.1 and 3.2 respectively. If these two values are less than a threshold typically 0.01 and 0.005

for luminance and chroma respectively, then we assume that the pixels are similar. L, U and V refer

to the color in L,U,V format. The pixels found similar are added to the queue and their neighbors

are checked for similarity later. Hence, starting with the pixel corresponding to the point specified

by the user, we grow this graph and mark all the pixels found similar until no more can be found.

The set of pixels found belong to the building. Figure 3.19b shows the pixels highlighted with blue

that were found similar when the point specified by user is the center of square in Figure 3.19a.

It is possible that this process may cover a very large area specially in a case where a roof’s color

is similar to a road passing by. So we keep a maximum size of building. We don’t process pixels

farther than this distance from the point selected thus forcing this step to halt at some point.

SL = (Lpixel −Lbuilding)
2 (3.1)

SC = (Upixel −Ubuilding)
2 +(Vpixel −Vbuilding)

2 (3.2)

Figure 3.19: Semi-Automatic building detection; (a) compute average color within the patch to find
the roof color; (b) pixels found belonging to the building (highlighted in blue)

3. Follow the steps of parametric model fitting - Once we get a set of pixels that belong to building,

we find its contour and perform the same steps for parametric model fitting as we perform on the

rooftop segmented results from Chapter 2. Thus, all the building blocks pertaining to the building

are found along with their roof-shape and height.

46

3.8 Conclusion and Future Work

We’ve presented a fully automatic method for modeling rooftops using a segmented image and

orthorectified aerial imagery. Our parametric model can successfully define rectiliear buildings

with complex roof shapes. Our algorithm can detect rooftops with an overall precison of 83% and

recall of 85%.

However there are certain areas where we see a scope for further improvement. These are listed

below.

1. Most buildings are rectangular but there can be occasional circular and triangular buildings. So,

we can use separate parametric models for triangular and circular buildings. One question is how

do we decide which parametric model to use. Simply by fitting a rectangular, circular and triangular

model and then picking the one that fits best on the blob is a simple and effective solution.

2. We assume that in complex buildings different building blocks intersect where their gables meet.

This is true for most cases but not for all. In many cases, a small building block only intersects

with one-fourth of the bigger block next to it. In future, we would like to detect precisely where

two building blocks meet. This can be done by performing line segment analysis within the rooftop

regions.

3. In many cases, different building pieces of a building don’t have equal height. As of now, we

detect the height of shadow facing block and assume that to be the height of all the blocks. In future,

we would like to detect height of those building blocks separately that cast some shadow.

47

REFERENCES

[1] Y. Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary & region segmen-
tation of objects in nd images. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth
IEEE International Conference on, volume 1, pages 105–112. IEEE, 2001.

[2] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of points re-
quired to represent a digitized line or its caricature. Cartographica: The International Journal
for Geographic Information and Geovisualization, 10(2):112–122, 1973.

[3] R. O. Duda, P. E. Hart, et al. Pattern classification and scene analysis, volume 3. Wiley New
York, 1973.

[4] P. V. Hough. Method and means for recognizing complex patterns, Dec. 18 1962. US Patent
3,069,654.

[5] R. B. Irvin and D. M. McKeown Jr. Methods for exploiting the relationship between buildings
and their shadows in aerial imagery. Systems, Man and Cybernetics, IEEE Transactions on,
19(6):1564–1575, 1989.

[6] T. Kim, T. Javzandulam, and T.-Y. Lee. Semiautomatic reconstruction of building height and
footprints from single satellite images. In Geoscience and Remote Sensing Symposium, 2007.
IGARSS 2007. IEEE International, pages 4737–4740. IEEE, 2007.

[7] T. Kim and J.-P. Muller. Development of a graph-based approach for building detection. Image
and Vision Computing, 17(1):3–14, 1999.

[8] F. Lafarge, X. Descombes, J. Zerubia, and M. Pierrot-Deseilligny. Automatic building ex-
traction from dems using an object approach and application to the 3d-city modeling. ISPRS
Journal of Photogrammetry and Remote Sensing, 63(3):365–381, 2008.

[9] C. Lin, A. Huertas, and R. Nevatia. Detection of buildings using perceptual grouping and
shadows. In Computer Vision and Pattern Recognition, 1994. Proceedings CVPR’94., 1994
IEEE Computer Society Conference on, pages 62–69. IEEE, 1994.

[10] C. Lin and R. Nevatia. Building detection and description from a single intensity image.
Computer vision and image understanding, 72(2):101–121, 1998.

[11] Y.-T. Liow and T. Pavlidis. Use of shadows for extracting buildings in aerial images. Computer
Vision, Graphics, and Image Processing, 49(2):242–277, 1990.

[12] H.-G. Maas. Closed solutions for the determination of parametric building models from in-
variant moments of airborne laserscanner data. transformation, 2:20, 1999.

[13] B. C. Matei, H. S. Sawhney, S. Samarasekera, J. Kim, and R. Kumar. Building segmenta-
tion for densely built urban regions using aerial lidar data. In Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

48

[14] A. O. Ok, C. Senaras, and B. Yuksel. Automated detection of arbitrarily shaped buildings in
complex environments from monocular vhr optical satellite imagery.

[15] N. Otsu. A threshold selection method from gray-level histograms. Automatica, 11(285-
296):23–27, 1975.

[16] T. Pavlidis and S. L. Horowitz. Segmentation of plane curves. Computers, IEEE Transactions
on, 100(8):860–870, 1974.

[17] C. Poullis and S. You. Automatic reconstruction of cities from remote sensor data. In Com-
puter Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 2775–
2782. IEEE, 2009.

[18] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground extraction using
iterated graph cuts. In ACM Transactions on Graphics (TOG), volume 23, pages 309–314.
ACM, 2004.

[19] J. A. Shufelt. Exploiting photogrammetric methods for building extraction in aerial images.
International Archives of Photogrammetry and Remote Sensing, 31:B6, 1996.

[20] B. Sirmacek and C. Unsalan. Building detection from aerial images using invariant color
features and shadow information. In Computer and Information Sciences, 2008. ISCIS’08.
23rd International Symposium on, pages 1–5. IEEE, 2008.

[21] V. J. Tsai. A comparative study on shadow compensation of color aerial images in invariant
color models. Geoscience and Remote Sensing, IEEE Transactions on, 44(6):1661–1671,
2006.

[22] V. Verma, R. Kumar, and S. Hsu. 3d building detection and modeling from aerial lidar data.
In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on,
volume 2, pages 2213–2220. IEEE, 2006.

[23] C. Vestri and F. Devernay. Using robust methods for automatic extraction of buildings. In
Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on, volume 1, pages I–133. IEEE, 2001.

[24] G. Vosselman, S. Dijkman, et al. 3d building model reconstruction from point clouds and
ground plans. International Archives of Photogrammetry Remote Sensing and Spatial Infor-
mation Sciences, 34(3/W4):37–44, 2001.

[25] Q.-Y. Zhou and U. Neumann. Fast and extensible building modeling from airborne lidar
data. In Proceedings of the 16th ACM SIGSPATIAL international conference on Advances in
geographic information systems, page 7. ACM, 2008.

49

[26] Q.-Y. Zhou and U. Neumann. 2.5 d dual contouring: A robust approach to creating build-
ing models from aerial lidar point clouds. In Computer Vision–ECCV 2010, pages 115–128.
Springer, 2010.

50

