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ABSTRACT  
   

Statistical process control (SPC) and predictive analytics have been used in 

industrial manufacturing and design, but up until now have not been applied to threshold 

data of vital sign monitoring in remote care settings. In this study of 20 elders with COPD 

and/or CHF, extended months of peak flow monitoring (FEV1) using telemedicine are 

examined to determine when an earlier or later clinical intervention may have been 

advised. This study demonstrated that SPC may bring less than a 2.0% increase in 

clinician workload while providing more robust statistically-derived thresholds than 

clinician-derived thresholds.  Using a random K-fold model, FEV1 output was predictably   

validated to .80 Generalized R-square, demonstrating the adequate learning of a 

threshold classifier.  Disease severity also impacted the model.  Forecasting future FEV1 

data points is possible with a complex ARIMA (45, 0, 49), but variation and sources of 

error require tight control.  Validation was above average and encouraging for clinician 

acceptance.  These statistical algorithms provide for the patient's own data to drive 

reduction in variability and, potentially increase clinician efficiency, improve patient 

outcome, and cost burden to the health care ecosystem. 
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Chapter 1:  Introduction 

The transformation of healthcare delivery with information technology is critical to the 

care of an aging population.  The extension of life coupled with the aging populous is a 

challenging economic, social, governmental, educational, and medical problem 

(Mechanic 1999) (Dishongh 2010) (Dishman 2010).  The  global population of those 60+ 

years old is expected to increase from the 10.0% it was in 2000 to 21.8% in 2050 and to 

32.2% in 2100 (Lutz 2008) (Merritt 2007)  with chronic care expenditures accounting for 

78% of healthcare costs (Anderson 2004).  With shortages of hospital beds (Evans 

2004), assisted living housing (Zimmerman 2001), doctors, and other health care 

professionals (PricewaterhouseCoopers Health Research Institute 2007) it is clearly time 

to improve the efficiency of the delivery of healthcare.  One such solution involves 

telemedicine tools such as remote healthcare monitoring. 

 

In its infancy telemedicine was not embraced by clinicians due to lack of reimbursement 

from government or private insurance, lack of strong evidence-based data tied to 

medical outcome, technology challenges, and lack of usability.  Forty years later, 

telemedicine is being identified as a key to solving the impending onslaught of elders 

(Lee 2000) (United States Government 2012) (Latifi 2000).  Ease of technology 

connectivity, infrastructure and device interoperability has hastened managed care and 

government agencies to invest in remote healthcare monitoring studies in a variety of 

clinical settings with promising results.  By connecting vital sign monitor “clients” (e.g., 

blood pressure monitors, glucose monitors, pulse oximeters, weight scales, peak flow 

meters) to aggregate form factor “managers” (e.g., computers, tablets, USB devices, 

phones, purpose-built devices) patients can be remotely monitored to reduce office visits 

and unnecessary hospitalization, increase clinician efficiency, and provide healthier 
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functioning of the chronically ill (Oeff, Monitoring Multiple Cardiovascular Parameters 

Using Telemedicine in Patients with Chronic Heard Failure 2005) (Benatar 2003) 

(Montgomery 1994).  

 

The Intel Health Guide System® is one such personal health system combining an in-

home patient device with an online interface, allowing clinicians to monitor and remotely 

manage care (Intel Corporation 2010).  Targeted disease states are chronic obstructive 

pulmonary disease (COPD), congestive heart failure (CHF), and diabetes. Clinicians 

develop protocols to select which vital sign to monitor and how often, and are asked to 

enter a low and high threshold for each vital sign based on clinical knowledge and 

experience. The physiological output is based on two levels: threshold violations in red 

and normal in green (see Figure 1). Yellow indicates that the patient has not taken their 

vital sign measurement per clinician determined schedule. When the patient’s captured 

and transferred data is interpreted by the clinician, he makes evidence-based decisions 

such as adjusting the patient’s monitoring frequency, type and frequency of prescription-

based drugs, in-office visits, and/or hospitalization. 

 

While evidence-based decisions are commonplace, information technology can now 

provide the means to analyze remote patient data for trends and patterns, even 

predicting future measurements, leading to more robust decisions by the clinician and 

supplementing the inherent benefits of telemedicine.  The common green, yellow, and 

red classification is overly simplistic, barely qualitative, and not individually quantified. 

Clinicians can become “alert-weary” and ignore the threshold violation, leading to 

potentially deadly results.  Instead, applying statistical process control theory combined 

with predictive analytics to individualized patient data may provide the clinician with 
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additional resources to hasten earlier intervention, predict an episodic event, and 

eventually improve patient outcomes.  This, in turn, may lower overall healthcare cost 

long-term. 

 

 

Figure 1.  Threshold Output. Threshold output for the Intel Health Care Management  

Suite ® used in conjunction with the Intel Health Guide System®. 

 
 
In this study, two thresholds (statistically-derived and clinician-derived) are applied to 

each FEV1 data point for each individual patient (FEV1 is Forced Expiratory Volume in 1 

second, derived from a peak flow meter). This will lead to a four-schema classification: 

both thresholds were violated (failed), both were not violated (passed), or only one was 

violated (pass-fail or fail-pass).  This four-schema classification corresponds respectively 

to True Positive, True Negative, False Positive, and False Negative.  

 

The pre-predictive algorithm “statistical process control chart” of each patient’s FEV1 

output provides a foundation to compare post-predictive algorithm results, to wit:  can an 
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individual’s FEV1 measurement be predicted prior to its occurrence, and is that 

predicted data point in violation of a statistically- or clinician-derived threshold as 

determined prior to the application of the predictive algorithm?   A summary of the 

hypotheses are presented In Table 1. 

 

Table 1.  Hypotheses.  

Hypothesis  H0 H1 

A There will not be a statistically 
valid increase of clinical 
interventions when statistical 
thresholds are applied (False 
Negatives) prior to application of 
predictive algorithms. FN=FP 

There will be a statistically valid 
(p<.005) increase of clinical 
interventions when statistical 
thresholds are applied (False 
Negatives) prior to application of 
predictive algorithms. FN≠FP 

B 
 

An FEV1 classification cannot 
be predicted, demonstrating 
less than an .80 Generalized R-
square. 

An FEV1 classification can be 
predicted demonstrating ≥ .80 
Generalized R-square. 

C The pre- and post-predicted 
data point will not demonstrate 
a statistical difference in zone 
designation. 

The pre- and post-predicted data 
point will be statistically different 
(p<.005) in zone designation. 

D FEV1 cannot be forecasted, 
demonstrating less than .60 R-
square  

FEV1 can be forecasted, 
demonstrating ≥.60 R-square 

 

 
It is anticipated that this study will support the postulate that, with more robust and 

personalized thresholds, clinicians may intercede in a timelier manner and subsequently 

make improved decisions about the care of elderly patients with COPD and/or CHF.  

The clinician can respond to statistically-derived thresholds (i.e., violations) rather than 

respond to random spikes that may not be a reflection of a true change in the 

physiological condition of the individual but merely a result of normal individual variation.  

Prevention is intended, as opposed to crisis management post-measurement, and 

personalized medicine is enabled by statistical process control for each patient. 
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The Shewart-Western Electric analyses will be applied in this study to determine the 

statistically-derived threshold.  Statistical process control (e.g., “SPC”) is rooted in a 

statistical test, developed by Shewart (Pyzdek 2003), which makes use of 3 sigma 

control limits as a criterion for applying error of the first kind (looking for assignable 

causes when no such causes exist, or Type I errors), and error of the second kind (not 

looking for assignable causes when such causes do exist or Type II errors). Combined 

with Western Electric Rules (Western Electric Company 1956), which tests eight Rules1 

whether a statistically improbable measurement has occurred or not, they will determine 

if an individual measurement has violated the statistically-derived threshold (also known 

as “out of control”). These decision Rules will also indicate why the threshold has been 

violated, based on the probability of that individual measurement occurring. 

  

The first specific aim of this study is to perform a Shewart-Western Electric analyses to 

examine statistically-derived threshold violations on a single vital sign and compare to a 

clinician-derived threshold violations for individual COPD and/or CHF  elder patients. 

This will be accomplished by analyzing FEV1 from a peak flow device captured remotely 

from an Intel Health Guide System®.  Analyses will include determination of each 

patient’s individual FEV1 data point as to whether it passed and/or failed a statistically- 

or clinician-derived threshold (i.e., test the four schema classification), artifact 

contamination, and a confusion matrix.  Patient data will be de-identified, and sources of 

error will be reported.  This will test the first hypothesis (hypothesis A) of Table 1 that 

there will be a statistically significant (p<.005) increase of clinical interventions when 

statistical thresholds are applied (False Negatives), prior to applying predictive 

algorithms. 

                                                
1
 The term “Rules” used throughout this document shall refer to the Western Electric Rules. 
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The second specific aim of this study is to apply predictive algorithms to individual FEV1 

measurements and compare the statistically- and clinician-derived threshold violations 

for the same population as described above.  Again, analyses will determine whether 

each patient’s individual FEV1 data points passed or failed a statistically- and/or 

clinician-derived threshold (i.e., the four schema classification), and subsequently 

compared to pre-predictive algorithm data point classification.   Algorithms will be 

explored that can best detect (≥.80 Generalized R-square) subtle changes in signal level 

to demonstrate learning of the threshold classifications. Vital sign captured remotely 

from an Intel Health Guide System® is as above. Data acquisition, data preprocessing, 

feature selection, feature extraction, classifier design, and data training will be employed 

and optimized for the vital sign.  Patient data will be de-identified and sources of error 

will be reported. Table 2 summarizes the four-schema classification. This second aim 

will test the second hypothesis (hypothesis B) in Table 1 that the FEV1 classification can 

be predicted demonstrating ≥ .80 Generalized R-square. It will also test the third 

hypothesis (hypothesis C) in Table 1 that the pre- and post-predicted data point will be 

statistically different (p<.005).  
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Table 2.  Threshold Violations and Interventions. “TP”=True Positive; “FN”=False  

Negative; “FP”= False Positive; “TN”=True Negative. 

Intervention Test State 
Statistically 

Derived 
State 

Clinician 
Derived 

Combined 
State 

Intervened TP 1 
Threshold 
violation 1 

Threshold 
violation 1,1 

Did not 
intervene but 
should have 
(statistically) FN 1 

Threshold 
violation 0 

No 
threshold 
violation 1,0 

Intervened 
but shouldn't 
have 
(statistically)  FP 0 

No threshold 
violation 1 

Threshold 
violation 0,1 

No 
intervention 
necessary TN 0 

No threshold 
violation 0 

No 
threshold 
violation 0,0 

 
 
 

The third specific aim of this study is to explore the ability to forecast an FEV1 value in 

the future that has not yet been actually performed by the patient.  This will test the 

fourth hypothesis (hypothesis D) that FEV1 can be forecasted with ≥ .60 R-square. 

 

The term “analytics” has been increasing with frequency in many domains, due in part to 

the increase of hand-held devices, compute power, and the ability to be connected 24/7 

(Addicam 2012).  With this burgeoning field, the intermingling of domain-specific terms 

can be a source of confusion.  For this study, the term “prediction” will be applied to 

predicting (or “estimating”) by a classifier using learning algorithms, while the term 

“forecast” will be applied to identifying a future value(s) in time. 

 
 
Lastly, the general approach of this study is 1) Alpha:  Proof of Concept; 2) Beta: 

Developing and Testing with One Patient; and 3) Final Construct.  The purpose of the 
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Alpha stage is to determine if statistical process control can be applied in a field setting 

and the student to become comfortable with applying SPC to a vital sign.  The purpose 

of the Beta stage is to empirically explore various analytics and the analytics process 

with one patient.  Neither the Alpha nor the Beta stage will be specifically considered in 

addressing the specific aims and their respective hypotheses, and will be used solely for 

exploring potential data algorithms and nuances of the data itself.  The purpose of the 

Final Construct stage is to utilize all patients to address the specific aims and their 

respective hypotheses. Methods and Results sections will include Alpha, Beta, and Final 

Construct.  

 
 

Chapter 2:  Background Literature 

This study is unique in that it strives to bring together telemedicine, a remote monitoring 

device, statistical process control, and predictive analytics. The area of study is 

innovative and significant as the use of remote monitoring grows and learning from other 

fields can be introduced to quickly evolve this industry.  Increasing amounts of data that 

are readily available speaks to the urgent need for clinicians to derive useful information 

from that data to improve their patients’ well-being.  A review of the various fields that 

are brought together for this study are presented below, in Section 1) Telemedicine, 2) 

The Intel Health Guide System®, 3) Statistical Process Control, and 4) Predictive 

Analytics. For completeness, a brief review of COPD and CHF is also provided in 

Section 5.  
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Section 1.  Telemedicine 

Telemedicine is generally defined as the use of medical information from one site to 

another via electronic communication to improve one’s health status, and the addition of 

medical devices to monitor typical vital signs is defined as remote care or remote patient 

monitoring (American Telemedicine Association 2012) (Kyriacou 2003).  It is estimated 

that the use of telemedicine and remote care monitoring will double in the next decade 

as those born between 1946-1964 turn 65 and require increased health care to deal with 

problems associated with aging, such as COPD and CHF (Zarocostas 2010) (Myers 

2006).  Health Data Management reported in 2009 that within 5 years the U.S. 

telemedicine market will have reached $3.6B in revenue as health care costs increase, 

wireless technology advances, and data transmission speeds improve (Health Data 

Management 2009).   WinterGreen Research reported that the telemedicine dedicated 

device and software markets will grow from the $736M in 2011 to $2.5B in 2014 

(WinterGreen Research 2012), with the ubiquitous use of computer tablets,  Additional 

data indicates that telemedicine will have a global 19% compounded annual growth rate 

(CAGR) between 2010 and 2014, due in part to the growing demands in Europe, 

increasing online healthcare services and telesurgery (Healthcare IT News 2011).  

 

Telemedicine has often proved to be beneficial to health outcomes. The remuneration of 

improved outcome, reduced costs, improved efficiency, and patient care are emerging 

as telemedicine becomes more widely used and supported by payers, patients, and 

clinicians.  In a 2005 study of 24 patients with CHF, the use of remote care monitoring 

with vital sign instrumentation reduced hospital admissions by 62% (Oeff 2005). In 

another study, 216 randomized CHF patients were provided either home nurse or 

remote care monitoring of their weight, blood pressure, heart rate, and SpO2 levels.  



  10 

After 3 months, the remote care patients had fewer CHF readmissions, less hospital 

charges (even up to 12 months later), and improved perceived quality of life (Benatar 

2003). A recent four month telemonitoring study of 57 subjects with advanced (i.e., 

severe or very severe) COPD found no improvement in FEV1 or oxygen saturation, but 

significant lowering of blood pressure, the number of prescribed antibiotics and steroids, 

and clinical consultations (Jensen 2012). 

 

Many other individual studies of telemedicine have proven beneficial and cost-effective.  

Pare (Pare 2006) demonstrated a $355 savings per COPD patient over a six month 

period within a group of 29 patients, including a control group, and indicated the savings 

would be more if the technology wouldn’t have been so costly.  Dale (Dale 2003) 

reported a 50% decrease in rates of hospital admission for 55 patients with COPD.  

Haesum (Haesum 2012) reported a TELEKAT (Telehomecare, Chronic Patients, and the 

Integrated Healthcare System, Denmark) study of 111 severe and very severe COPD 

elder patients where a cost-utilization study was performed. While the study does show 

an incremental improvement in cost-effectiveness, the conclusion is even better at 

stating sources of error in deriving such information and the common sources of 

variability. 

 

This inherent variability in patients, disease, and process is reflective of a “review of 

reviews” of the effectiveness of telemedicine (Ekeland 2010).  In a comprehensive 

examination of telemedicine reviews since 2005 and following rigorous boundary 

conditions, Ekeland concluded that a third of the reviews determined that “telemedicine 

is promising”, about a third that “evidence is limited and inconsistent”, and about a final 

third that “telemedicine is effective”.  Ekeland further concluded that the telemedicine 
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field was dynamic, complex, and evolving, and that the knowledge and understanding 

about telemedicine costs were inconsistent or lacking.  Indeed, Ekeland highlights that 

the intricacies of the social and organizational costs of telemedicine are not well 

developed, and many studies still need to be done (e.g., gender studies, service delivery 

issues).   

 

Eventually, acceptance of telemedicine may occur after widespread acknowledgement 

(and payment) by insurance companies.  Telemedicine may reap the benefits of the  

October 2013 implementation of ICD-10-CM/PCS (International Classification of 

Diseases, 10th Edition, Clinical Modification/Procedure Coding System).  The new coding 

system is significantly more detailed and consistent with today’s medical practice than 

the 30-year old ICD-9. It includes the code, S9110, for telemonitoring of the patient in 

their home (AMA 2012), which may enable further adoption. 

 

Vital sign measurements currently afforded to remote care patients typically include 

regulated medical devices such as blood pressure monitors, weight scales, peak flows, 

glucose monitors, and pulse oximeters.   Wireless (e.g., 3G, 4G, WiFi, Bluetooth®) or 

tethered (e.g., USB) to a manager  (e.g., computer, netbook, smart phone), the results of 

the vital sign monitoring are typically stored and forwarded as data packets routed 

through a hosting service or website to a clinician’s computer via Broadband, mobile 

service, or telephone cable.   Some can provide continuously streaming data for ECGs 

or SpO2, but data transfer rates have been limiting, and clinicians fall into data overload 

(Kyriacou 2003) (Khoor 2003).  
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Section 2.  The Intel Health Guide System®  

The Intel Health Guide System® (HGS, Model PHS 6000) is a tabletop telemedicine unit 

that stores, collects, and transmits data from compatible wireless or tethered (e.g., USB) 

physiological monitoring devices selected by the healthcare professional (Intel 

Corporation 2010).  Information collected is stored, displayed on the screen, and 

transmitted via Broadband through a remote-site server to a clinician software and 

hardware interface, thus allowing the patient to be remotely located from the healthcare 

professional.  The screen displays instructions, reminders, and education selected and 

entered by the clinician for the patient to read.  Calendaring and managing tasks are 

available on the personal health system for the patient to use. The system can also 

receive email and establish video conference links with caregivers and health care 

providers. A software and hardware interface enables technicians to remotely complete 

routine maintenance and troubleshooting via the Broadband connection. 

 

The system is contained in a small plastic enclosure with a touch screen, video camera 

with privacy screen, microphones, and a reminder light mounted into the top of the case.  

On the back of the unit is a power socket, two medical device sockets for connection to 

specific physiological monitors, a headphone socket, a Broadband internet socket for 

connection to a Broadband cable, and a phone socket for connection to a standard 

phone line. It is an FDA Class 2 regulated medical product, CE marked, and available in 

at least ten different geographies globally.  

 

The Intel Health Care Management Suite® (HCMS) is a web-based patient monitoring 

software application for clinicians to be used in conjunction with their patient’s Health 

Guide System®.  Clinicians have the ability to video conference with patients, present 
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targeted multi-media educational content, develop personal care plans to manage 

chronic disease, access specific patient data, and prioritize patients based on 

“management by exception”.  Clinicians can select specific threshold values (high and/or 

low) for a particular vital sign for a specific patient, and outliers are automatically flagged 

per Table 3.  Patient measurement data can be reviewed in a graphic format to highlight 

trending results, as shown previously in Figure 1. 

 

Table 3.  The Intel HCMS® Patient Prioritization Scheme. 

Color Indication 

Red Patient’s data has been received and the vital 
sign is above the threshold set by the clinician 

Yellow Patient’s data has not been received 

Green Patient’s data has been received the vital sign is 
below the threshold set by the clinician 

 

 

While adequate, the clinician’s selection of threshold values can be improved from 

simply a clinical judgment criteria to a more robust and statistically-derived criteria.  

Numerous studies have demonstrated that the application of statistics can reveal 

previously hidden information that may evolve the field of patient care. Heart rate 

variability has been well studied statistically to quantitatively assess cardiovascular 

regulation (Barbieri 2005) (Akselrod 1981) (Malic 2006) (Kleiger 1987).  The biosignal 

decomposition of pulse oximetry, blood pressure, galvanic skin response, and skin 

temperature have also been studied using various statistical methods, such as 

independent component analysis, Kalman filter, multivariate autoregressive analysis, 

and K-nearest neighbor (Mower 2007) (Li 2008) (McNames 2008) (Stetson 2004) 

(McNames 2006).  In telemedicine, however, the clinician relies on the output of a 

regulated medical device as he would in an office setting, and does not have an 
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opportunity to elegantly decompose the signals to ascertain an improved course of 

action in patient care.  Until such time that medical device manufacturers, regulators, 

statisticians, clinicians, and payers are accepting of the biosignal decomposition, the 

clinician is left with the current clinically approved and regulated output from the medical 

devices (Table 4). 

 

Table 4.  Medical Devices. Example of medical devices with units, biosignal, and normal  

range. (“Normal range” is dependent on standard used, weight, age, gender, height,  

race, fitness, underlying genetics, and/or illness.) 

Medical 
Device 

Units Biosignal  Normal Range 

Pulse 
oximeter 

bpm 
SpO2 in 
% 

Heart rate 
Estimation of the 
saturation of oxygen; the 
relationship of oxygen-
bound hemoglobin 
compared to oxygen-
unbound hemoglobin 

60-100 bpm 
95 – 100 % 

Blood 
pressure 

mmHg Force per unit area that 
the blood exerts on the 
walls of blood vessels.  
Varies both in time and 
distance along the 
circulatory system. 

120/80 mmHg 

Peak flow L 
 
 
 
 
 
 
 
L/m   

FEV1: Forced expiratory 
volume in 1 second - this 
is the volume of air which 
can be forcibly exhaled 
from the lungs in the first 
second of a forced 
expiratory maneuver.   
  
PEF: Peak expiratory flow 
is the fastest speed air 
can be blown out of the 
lungs after inhalation, 
measured in liters per 
minute 

Normal is 75-80% of 
predicted value.  Typical 
absolute value 1.1 – 6.3 
L 
 
 
 
 
390-740 L/m 

Weight 
scale 

Lbs or kg Weight Age/gender/height 
dependent 
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Thus, in an effort to drive more robust information that the clinician can draw from 

monitoring simple vital signs, the application of statistical process control and predictive 

analytics from the industrial sector is considered. Coupled with clinical judgment, these 

tools can provide a translational conduit from combining key medical and industrial tools 

to an improved decision on patient care, and perhaps improved patient outcomes. 

 

Section 3.  Statistical Process Control 

Statistical process control (SPC) is defined as the use of valid analytical methods to 

identify the existence of special causes of variation in a process (Pyzdek 2003).  

Ubiquitously used in industry since the 1950s, improvements are made by identifying 

process variation, identifying its cause, selecting improvement methods and removing 

the causes.  Variation naturally occurs due to common causes, but key to measurable 

process improvement is to identify when special causes of variation occur.  In this 

manner, reaction is based on outliers caused by special causes and the natural variation 

of the process (common causes) can be explored “off-line”.  To achieve this, control 

charts can be used with control limits (e.g., thresholds) to predict the natural variation of 

the process due to common and special causes.  The term “control” was best described 

by Shewart in 1931 (Pyzdek 2003): 

 

“A phenomenon will be said to be controlled when, through the use of past 

experience, we can predict, at least within limits, how the phenomenon may be 

expected to vary in the future.  Here it is understood that prediction within limits 

means that we can state, at least approximately, the probability that the observed 

phenomenon will fall within the given limits.” 
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Testing the data on a control chart for unnatural patterns due to special causes can be 

done statistically based on probability distributions.  Examination of an “x-bar” or mean 

chart2 in a normal distribution yields the probabilities of a process in control as seen in 

Table 5 (Western Electric Company 1956).   

 

Table 5.  Probabilities and Zones. Used in tests for unnatural patterns (special causes) 

(Western Electric Company 1956). 

Area of Chart Probability Chart Designation Zone 

Above outer third .00135 Above 3σ  

Outer third .02135 Above 2σ Zone A 

Middle third .1360 Above 1σ Zone B 

Inner third .3413 Above centerline, x-bar Zone C 

Inner third .3413 Below centerline, x-bar 

Middle third .1360 Below 1σ Zone B 

Outer third .02135 Below 2σ Zone A 

Below outer third .00135 Below 3σ  

 

In applying these probabilities, three characteristics of a natural pattern emerge: 1) most 

points are near the centerline, 2) a few points are near the control limits, and 3) no points 

(or only a rare point) are beyond the control limits.  Unnatural patterns, or those caused 

by special causes, always involve the absence of one of these characteristics. The 

“Western Electric Rules”  (Western Electric Company 1956) utilize these probabilities to 

test for instability of a process and whether the system is actually changing or not (Table 

6).  These Rules can easily be applied to a trend chart automatically so the reader is 

notified when a statistical threshold has been breached, as shown in Figure 2 by a red 

circle and the annotation of the Rule that failed (i.e., “1” and “5”, see further discussion 

below).   

                                                
2
 Other control charts exist for asymmetrical distributions, such as p (percentage - Poisson, 

Bionomial), c (defects – Poisson), and u charts (average number of defects – Poisson). 
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Table 6.  Probability of Point.  Example of the probability of the point occurring in a 

specific zone.  

Point Location that  
Violates Statistical Thresholds 

Probability of the Point 
Occurring in this Zone 

Single point outside of the 3σ limit .0013 

2 out of 3 successive points fall in Zone A or 
beyond 

.0015 

4 out of 5 points fall in Zone B or beyond .0027 

8 in a row fall in Zone C or beyond on one 
side 

.0039 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  SPC Chart.  Example of Statistical Process Control chart (x-bar) with Western  

Electric Rules applied on a patient.   The two points circled in red labeled “1” and “5”  

have failed those specific Rules (per JMP® Pro 9.0.3, see Table 7).  UCL = Upper 

Control Limit = +3 sigma; LCL = Lower Control Limit = -3 sigma standard deviation. 
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Over the years, the Western Electric Rules have been supplemented with additional 

Rules for trending, with equally improbability of occurrence as the original Western 

Electric. While many statistical experts have been cited for additional Rules (Quinn-

Curtis, Inc 2012), the supplemental Rules are typically attributed to Dr. Douglas 

Montgomery (Montgomery 2004).  Typical SPC software (e.g., JMP®, MiniTab®) 

includes all those listed in Table 7 as the full complement of the Western Electric Rules. 

(Note: in some software, the Rules may have different numbers, but their point location 

and detection remain the same.) 

 

Table 7.  Western Electric Rules (as used by JMP® Pro 9.0.3 statistical software). 

Rule Point Location Detection 

Rule 
1 

One point beyond Zone A  
Detects a shift in the mean, an increase in the standard 
deviation, or a single aberration in the process.    

Rule 
2 

Nine points in a row in a 
single (upper or lower) side of 
Zone C or beyond  

Detects a shift in the process mean.  

Rule 
3 

Six points in a row steadily 
increasing or decreasing  

Detects a trend or drift in the process mean. Small trends will 
be signaled by this test before Test 1.  

Rule 
4 

Fourteen points in a row 
alternating up and down  

Detects systematic effects such as two alternately used 
machines, vendors, or operators.  

Rule 
5 

Two out of three points in a 
row in Zone A or beyond and 
the point itself is in Zone A or 
beyond.  

Detects a shift in the process average or increase in the 
standard deviation. Any two out of three points provide a 
positive test.  

Rule 
6 

Four out of five points in a row 
in Zone B or beyond and the 
point itself is in Zone B or 
beyond.  

Detects a shift in the process mean. Any four out of five 
points provide a positive test.  

Rule 
7 

Fifteen points in a row in Zone 
C, above and below the 
center line  

Detects stratification of subgroups when the observations in a 
single subgroup come from various sources with different 
means.  

Rule 
8 

Eight points in a row on both 
sides of the center line with 
none in Zones C  

Detects stratification of subgroups when the observations in 
one subgroup come from a single source, but subgroups 
come from different sources with different means.  

 

Statistical process control, and other quality improvement tools such as Six Sigma®, 

theory of constraints, SERVQUAL (Service Quality Framework) and Lean® have 

routinely been applied in healthcare settings to improve efficiencies and patient care, but 
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thus far have been limited to in-house processes such as throughput, cycle times, 

percent work completed, hospital trauma mortality, and service management (Kotagal 

2009) (Fralick 2006) (Clark 1998) (Young 2004).  The application of Statistical Process 

Control to monitoring vital signs has been inadequate with only cursory investigation in 

the literature.  Bansal (Bansal 2008) reported variances of two thermometers with no 

statistical inferences for the patients themselves.  Yang ( (Yang 2006) (Yang 2008) 

utilized cusum (cumulative sum control) charts to detect change in blood pressure with 

excellent results, although the population was anesthetized surgical patients in 

controlled situations rather than remote settings. 

 

The emergence of smartphones and tablets has buoyed the personal medical 

applications that can be downloaded and trended. HeartWise (Ollapp, SwEng LLC 

2012), for example, trends blood pressure, pulse, and weight, but the statistics are 

limited to mean, trending over time, and box charts.  Real-time rhythm and beat 

classification of electrocardiogram (EKG) was reported by Rodriguez (Rodriguez 2005) 

(J. Rodriguez 2005), and a number of EKG monitors are available that can have results 

uploaded into a personal computer or tablet, or have specific analyzer software available 

for the clinician such as atrial fibrillation, myocardial infarction, or QT interval.  None, 

thus far, have attempted to apply statistical process control to cardiac or other vital sign 

measurements.  

 

A recent study by Hokan proposed a low-cost adaptive tracking system for COPD 

patients in a home environment (Hokan 2013). Using a two-layer five-parameter back 

propagation artificial neural network learning cycle, Hokan was able to successfully 

demonstrate the classification of COPD patterns into normal, obstructive (including 
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asthma) and restrictive behavior.  It did not provide prediction or utilize SPC. It was 

unclear why a poor user interface on a mobile device was adequate, and no data 

supporting self-management or low-cost was evident in the study.  However, the study 

did demonstrate the evolution of tracking vital signs at home via a mobile device, as well 

as the use of a learning algorithm of a neural network using tansig in the activation 

nodes; other transformations are available, as will be demonstrated in this study. 

 

Lastly, the increasing use of mobile phones for managing health provides a platform to 

develop applications that are growing at a rapid pace.  Total 2011 revenues generated 

by mobile apps, health devices, and related services grew 7-fold to $718M. While the 

market is young, mobile health apps are expected to continue to reach billions by 2016 

(Dolan 2012).  Health applications for the Apple® iPhone® alone were estimated at 

13,000 for 2012, with over 20% targeted for chronic or cardio states (Dolan 2011). Most 

mobile-phone apps are educational while some are trending/tracking or depicting 

patterns (e.g., iBGStar glucose meter). It is inevitable that with the growing “internet of 

things” and petabytes of cloud data available, increased personalization will follow. The 

use of statistical process control, therefore, is a novel solution for health personalization 

in telemedicine or mobile devices of the future. 

 

Section 4.  Predictive Analytics 

Predictive analytics examines a priori knowledge of data and extracts variables to predict 

data points or trends in the future.  Utilizing regression methods, machine learning, or a 

host of different statistical tools, predictive analytics have become an elegant method 

with which to predict the future with a defined accuracy based on the models applied.  

Pattern recognition, for example, is a statistical tool often used in neural network 
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applications in machine learning.  It is defined as "the act of taking in raw data and taking 

an action based on the category of the pattern” (Duda 2001).   Using a priori pattern 

knowledge of the vital sign or the intrinsic pattern regularity itself, models can be created 

that may augment the clinician’s decision to better assess the patient’s trending. The oft-

used term “dynamic” implies that the pattern is being re-assessed with each new data 

point entered by the patient, and counteracts intrinsic data decay of a predictive model.    

 

The emergence of predictive analytic tools in new applications has been aided by the 

increase in compute processing.  From microprocessor initial clock speeds of 108 KHz  

with 2300 transistors in 1971 to 2.9 GHz with 1.4B transistors in 2012 (Intel Corporation 

2012), the ability to quickly compute challenging algorithms is becoming mainstay in 

literature as well as in consumer goods.  On-board predictive analytics can be seen in 

automotive, appliances, building maintenance, industrial controls, speech recognition, 

gaming consoles, and communication.  The use of decision support tools that use 

pattern recognition, such as Computer Aided Diagnosis (CADx) for radiological images, 

have become commonplace in hospitals and clinics.  CADx assists clinician’s 

interpretation of disease detection (such as breast cancer).  Telemedicine, however, has 

been slow to adopt these tools, likely due to the nascent technology of remote 

monitoring; interoperability, integrity, privacy/security and market penetration of the 

technology are the primary focus while decision support tools tend to be lagging in 

implementation (Helal 2009).  Requirements for evidence-based medicine, payer 

reimbursement models, and a challenging regulatory environment have also impeded 

the adoption of predictive analytics in remote monitoring. 
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However, with the congruence of increasing compute power, aging populaces, rising 

health care costs, remote monitoring for chronic disease, interoperability and 

connectivity demands by users, predictive analytics are beginning to be pulled from 

other applications and investigated for use in vital sign monitoring.   

 

As mentioned above in Background, Section 2, The Intel Health Guide System®, few 

investigators have up-leveled pattern recognition in predictive analytics from the 

decomposition of the biosignal to the actual output that a clinician sees.  This may be 

due to Yang’s (Yang 2008) observation that artifact contamination and the clinician’s 

intuitive observations are not addressed; Garg (Garg 2010) echoed similar sentiments 

regarding noisy data with varying space and time attributes.   Helal (Helal 2009) 

investigated diabetes patients unobtrusively in their homes (“Smart Homes”) while 

collecting behavioral, blood pressure, and glucose data. He applied Hidden Markov 

Model classification, achieving 98% recognition accuracy of activities and chewing.  A 

review of “Smart” wearables for remote health monitoring by Lymberis (Lymberis 2003) 

indicated that embedded medical decisions have relied thus far on fuzzy logic or neural 

network models. Lisetti (Lisetti 2004) performed an extensive literature survey in the 

study of physiological signals recognizing human emotions: a number of statistical tools 

were applied in studies such as Analysis of Variance (ANOVA) and Multivariate Analysis 

of Variance (MANOVA). In other studies Lisetti reported, Hidden Markov Models, 

Sequential Floating Forward Search (SFFS), Fisher Projection (FP), Principal 

Component Analysis (PCA), and Discriminate Function Analysis (DFA) were applied.  

No common analytic tool was used, however, suggesting that there is a wide range of 

applications and ramifications for applying a particular statistic. Accuracy and validation 

of these tools were not reported in his review. 
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As Pantelopoulos  (Pantelopoulos 2010) indicates, a large amount of multidimensional 

data will have to be interpreted by clinicians in order to detect changes and trends.  

Another area of focus has been the use and theory of decision support systems 

(Western Electric Company 1956) (Falas 2008) (Fodor 2010) (Eren 2008) which are 

typically computerized expert systems that utilize artificial intelligence and machine 

learning to supplement a clinician’s decisions.  At its most basic level, decision support 

systems can be suggestions based on simple algorithms.  Eren (Eren 2008) reports that 

there are two types of decision support systems: rules-based or expert systems 

(including probabilistic and cognitive models).  While this study is not intended to be an 

“elegant” decision support system, it will approach the data output with predictive 

analytic tools to challenge a clinician’s threshold value selection.  Further integration into 

a more complex system is out of scope for this study.   

 

The foundation of any predictive analytic process typically includes 1) data acquisition 

from the sensor 2) feature generation and pre-processing, 2) feature extraction and 

selection, 4) classifier design, and 5) system evaluation using a training set (Theodoridis 

2009).  As shown in Figure 3, this end-to-end process is often iterative and each step of 

the process requires complex trial and error of the algorithms.   
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Figure 3.  Predictive Analytics Process. Typical process flow (Theodoridis 2009) for 

predictive analytics, with algorithm examples and iterative symbols added by student. 

 

Section 5.  COPD and CHF 

Chronic obstructive pulmonary disease (COPD) is a chronic lung disease that is 

progressive and irreversible.  The damaged airways, which can no longer efficiently 

process oxygen, can result in wheezing, coughing, and shortness of breath.  Chronic 

bronchitis and emphysema are forms of COPD.  Congestive heart failure (CHF) is 

progressively debilitating and often leads to death.  The heart can no longer pump blood 

efficiently and effectively, and the lungs and lower extremities fill with fluid as circulation 

is challenged.  These two diseases can occur together, particularly in late stage, and are 
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often co-morbid with other diseases such as pneumonia, arrhythmia, and hypertension 

(Clinical Cases and Images 2012) (Growth House, Inc. 2012).    

 

Clinical management of COPD includes removal of lung irritants, such as smoke, 

pollutants, and inadvertent gas exposure.  Treatment includes bronchodilators 

(anticholinergic and beta-adrenergic agonist drugs), anti-inflammatory agents including 

steroids, and supplemental oxygen, if needed (Net Wellness 2008) (The Merck Manual 

Home Health Handbook 2008). Management of fluids, exercise, and irritants help 

prevent flare-ups, and antibiotics are typically prescribed if bacterial infection is 

suspected.   

 

Clinical management of CHF includes diuretics, anticoagulants, beta blockers, and ACE 

(angiotensin converting enzyme) inhibitors. Finding the specific cause of the heart failure 

(such as hypertension or valve defect) can guide treatment (American Heart Association 

2012). 

 

AdvaMed’s report (Stachura 2007) on remote monitoring of COPD and CHF indicates 

that demonstrated health benefits occurred in terms of reduced hospitalization days, 

reduced clinic visits, enhanced quality of life, and satisfaction with technology.  In 

addition, cost benefits were demonstrated for patients, home care agencies, and the 

health care system. 

 

Remote monitoring of vital signs for patients with COPD and CHF are currently limited 

by peripheral devices approved by regulatory agencies for telemedicine as well as the 

ecosystem to transfer the reading to the clinician without error.  With a weight scale, 
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blood pressure monitor, peak flow device, and pulse oximeter, however, the clinician can 

monitor key physiological parameters for change (Table 8), and treat the patient 

accordingly. 

 

Table 8.  Physiological Parameters.  Changes in key physiological parameters for  

COPD and CHF.  See Table 4 for descriptions of each parameter. 

Disease Weight Blood 
pressure 

FEV1 PEF SpO2 Pulse 

CHF Increases Increases Decreases Decreases Decreases Increases/ 
Arrhythmia 

COPD Increases 
in severe 
cases 

Increases Decreases Decreases Decreases Increases/ 
Arrhythmia 

 

 

Chapter 3.  Methodology 

Section 1.  Alpha Test:  Proof of Concept (PoC)   

The first opportunity to apply Shewart-Western Electric analyses will be to examine four 

field failures of a peak flow device (brand and model not specified due to corporate 

respect), attached as a peripheral to the HGS.  It is used for remote monitoring of elders 

(>70 yrs) with a clinical diagnosis of COPD and/or CHF (the HCMS and HGS requires a 

clinician’s prescription).  Patients will be de-identified, and no patient contact occurred.  

Each patient will have an FEV1 (Forced Expiratory Volume in 1 second from 0.01 to 9.99 

L) and PEF (Peak Expiratory Flow rate from 50 to 900 L/min.)3.  Data will be analyzed 

(using JMP® 9.0.3) within patient only, and sorted by FEV1 and PEF.    

 

                                                
3
 FEV1 and PEF are indirect measurements of airway capability.  While they can be correlated,  

that correlation can be offset by about 30%.  No correlation between FEV1 and PEF was 

attempted herein. 
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This PoC will determine if there is abnormal variability of normal peak flow readings in 

patients who reported unusually and often physiological improbable high peak flow 

readings. By applying statistical threshold violations using the Shewart-Western Electric 

analyses, this initial investigation will demonstrate the field efficacy of applying SPC.  

Results will assist in determining whether the device will be withdrawn from patients and 

stop usage, or allow the patients to continue using the device until long-term failure is 

seen.  This preliminary PoC will serve as an alpha test of SPC for remote monitoring and 

aid in subsequent research design, source of errors, and data analysis in this overall 

study.  It will not address specific aims or hypotheses. 

 

Section 2.  Beta Test:  Developing and Testing with One Patient  

Patient #1, from the population described above, will be selected to develop and test the 

Predictive Analytics Process described in Figure 3. This patient will be selected 1) to 

maintain continuity from the alpha test, and 2) because the patient’s data detected a 

change in mean as denoted by the rule violations. 

 

Various statistics and algorithms throughout the Predictive Analytics Process (Figure 3) 

will be explored in order to optimize solutions for testing the hypotheses described in 

Chapter 1.  This will provide the basis for testing additional patients.  The beta test will 

not address specific aims or hypotheses. 

 

Section 3.  Final Construct:  Sensor, Feature Generation and Pre-processing 

Following the alpha and beta testing, additional patients’ data will be investigated. The 

total population data set will be captured from the HGS and HGMS and consist of twenty 

unknown elder patients (>70 yrs, specific age not given) with a history of COPD and/or 
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CHF at various states of disease.  (Four of the twenty patients come from the Alpha 

Test, above). Patients will have been monitored by clinicians and provided feed-forward 

sensor data of FEV1 from peak flow devices (brand and model not specified due to 

corporate request) at a frequency pre-determined by the clinician.  This frequency is 

typically on a daily basis, but the data may be captured intermittently (i.e., occasionally 

skip a day or two) depending on the patient’s compliance level; monitoring frequency is 

different for every patient.  Patient data will be de-identified, limited to that provided, and 

created as a time series.  No disease outcome data, interventions, or subsequent 

monitoring will be available. (Patients’ weight, blood pressure, SpO2, and heart rate 

were captured but led to too small of sample for analysis and correlation.)   

  

Additional pre-processing will consist of filtering for double entry; some device usability 

nuances can cause double entry in HCMS, causing integrity issues in analysis 

(consistent with Yang’s observation (Yang 2008)).  Data will be filtered for sensor entries 

made within ten minutes.  These data will be averaged, and/or obvious outliers removed.  

If threshold data is not provided by the clinician, GOLD (Global Initiative for Chronic 

Obstructive Lung Disease 2013) standards will be sought and applied, and/or an 

independent clinician will determine a theoretical threshold.  Consideration of a 

malfunctioning device may be taken into consideration if physiological implications are 

nonsensical; obvious outliers will be purged.  

 

Section 4.  Final Construct:  Feature Extraction and Selection      

The feature extraction and selection will consist of fundamental statistical analyses 

within each patient’s FEV1 output:  mean, standard deviation, 3-sigma control limits, 
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skewness, kurtosis, variance, covariance, and distribution (should any subsequent 

analytic tool be highly dependent on a specific distribution).  

 

Data will then be subjected to Shewart-Western Electric analyses, utilizing the Rules in 

Table 7.  These statistically-derived thresholds will be compared to the clinician-derived 

thresholds.  Per Table 2 above, the four schemas (TP, FN, FP and TN) will be classified 

for each data point within each patient.  This classification of each data point is the basis 

for future analyses and provides data for the classifier design, below. 

 

The Shewart-Western Electric Analysis and subsequent comparison between [TP, TN] 

and [FN, FP] utilizing cumulative z statistic will satisfy the first specific aim and 

Hypothesis A, and provide foundation for the second specific aim.  All tests at p<0.005 

will be considered statistically significant. 

 

Section 5.  Final Construct:  Classifier Design   

Many options exist for classifier designs within predictive analytics.  However, due to the 

Shewart-Western Electric analyses and subsequent categorization of each data point, 

the data is, by design, already classified into four distinct schemas as noted above.   

 

Section 6.  Final Construct:  System Evaluation   

Models will be explored to find the best fit for predicted responses to satisfy the second 

specific aim.  Since data is limited to that provided, later data points of the sensor will 

attempted to be removed and used for comparison between predicted and actual, based 

on statistically- or clinician-derived thresholds.  Because of the inherent time-series 

nature of the data, regression models, additive models (e.g., Winters Method), or neural 
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network algorithms may be applicable based on model fit.  The predicted data point 

based on the model will be compared to the actual data point and its inherent four 

schema classifier (TP, TN, FP, FN) utilizing statistical tools. All tests with a Generalized 

R-squared >.80 will be considered significant. (R-squared reflects the amount of 

variation in a model, and ranges from 0-1.0. It reflects how well the regression line fits 

the data, with 1.0 indicating the regression line fitting the data very well.  It is used 

typically in predictive models to assess how much variation there will be in a future point, 

and how well the model fits the data.)  As noted in the Introduction above, the term 

“predictive”, while used similarly in the nascent industry of analytics, is actually learning 

(inclusive of training and validation) the four schema threshold classifications.  

 

Training and validation of the data will initially be performed using the Levenberg-

Marquardt algorithm, an iterative back propagation technique that locates the minimum 

of a function that is expressed as the sum of squares of nonlinear functions.  Other 

training and validation algorithms may be considered depending on results of the R-

squared.  Training and validation are expected successful at .80 Generalized R-squared.  

This will address the second specific aim and its hypotheses B and C.  

 

An attempt to forecast a future point in time that has not yet been performed by the 

patient will be made using various analytic tools.  It will address the third specific aim 

and its hypothesis D. 

 

Section 7.   Validation with Clinicians: Ground Truth 

Five clinicians will be interviewed (face-to-face) to ascertain the ground truth of selecting 

a statistically-derived threshold and/or the clinician-derived threshold.   Assessing their 
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professional calibration regarding this study may provide insight into practical usability 

and clinical interpretation.  The interview, slated for a 15-30 minutes, will be carefully 

worded to minimize bias.  The design of the scripted interview will be vetted by a 

clinician (Dr. Ronald Borg, Phoenix, AZ) and a member(s) of the student’s Graduate 

Supervisory Committee.  Lastly, the interview will apply good Usability and User 

Experience practice as described by the STC Community (Society of Technical 

Communication 2013).  The scripted interview can be found in Appendix A. 

 

Chapter 4.  Data Analysis and Results 

Section 1.  Alpha Test: Proof of Concept (PoC)   

Four patients’ peak flow sensor data were provided by the field.  These four showed 

unusually high or physiologically improbable results for COPD and/or CHF conditions.  

Preprocessing was performed as described above for each patient’s data point 

(approximately 200 original measurements each for four patients). Shewart-Western 

Electric analyses were applied as statistical thresholds.  No clinician applied thresholds 

(high or low) were provided.  Time span generally ranged from 12 to 18 months for each 

patient, but the frequency of measurement was different for each patient, depending on 

clinician protocol and/or patient compliancy.  This frequency of measurement difference 

within each patient may play a significant part in predictive modeling. 

 

FEV1 and PEF data from patients #1, 10, 11, and 12 were subjected to Shewart-

Western Electric analyses.  Patients #1 (Figures 4 and 5) and #10 (Figures 6 and 7) 

have zones A, B, and C identified, corresponding with +/- 1σ, 2σ, and 3σ. UCL (Upper 

Control Limit) and LCL (Lower Control Limit) are +/- 3σ, respectively.  Each point for 

FEV1 and PEF was tested to the Western Electric Rules of Table 7.  A number of 
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measurements have violated the statistical threshold (noted in red with the 

corresponding rule violated); most notably, a number of statistical threshold violations 

are above the mean where a clinician may typically only identify the lower threshold. Low  

FEV1 and PEF measurements are clinically significant in a COPD and/or CHF patient 

(indicative of breathing difficulties); however, without the statistical analyses, the clinician 

has eliminated the opportunity to immediately identify a potential “common cause” (such 

as a failing peak flow device).  The clinician has also eliminated the opportunity to 

engage in improved personalized telemedicine, even though a measurement may 

appear close to the mean but violated threshold. In Patient #1, for example, the FEV1 

measurements post 11/30/09 indicate that a likely improvement is occurring and 

prescription medicine may be altered.  Conversely, the clinician may miss the 

opportunity to find a drifting peak flow meter that is not reflective of the patient’s actual 

health. 
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Figure 4.  Patient #1 FEV1 Control Chart.  A, B, C zones correspond to +/- 1σ, 2σ, and  

3σ, respectively.  UCL = Upper Control Limit or +3σ.  LCL = Lower Control Limit or -3σ.   

Avg = statistical mean.  Red circles indicate statistical threshold violations per Table 7,  

with the specific rule violated. 
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Figure 5.  Patient #1 PEF Control Chart.  A, B, C zones correspond to +/- 1σ, 2σ, and  

3σ, respectively.  UCL = Upper Control Limit or +3σ.  LCL = Lower Control Limit or -3σ.   

Avg = statistical mean.  Red circles indicate statistical threshold violations per Table 7,  

with the specific Rule violated. 

 

 



  35 

  
 

Figure 6.  Patient #10 FEV1 Control Chart.   A, B, C zones correspond to +/- 1σ, 

2σ, and 3σ, respectively.  UCL = Upper Control Limit or +3σ.  LCL = Lower Control  

Limit or -3σ.  Avg = statistical mean.  Red circles indicate statistical threshold violations 

per Table 7, with the specific Rule violated. 
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Figure 7.  Patient #10 PEF Control Chart.  A, B, C zones correspond to +/- 1σ, 

2σ, and 3σ, respectively.  UCL = Upper Control Limit or +3σ.  LCL = Lower Control  

Limit or -3σ.  Avg = statistical mean.  Red circles indicate statistical threshold violations 

per Table 7, with the specific Rule violated. 

 

Patient #11 was subjected to the same preprocessing and analyses as Patients #1 and 

#10, above.  Figures 8 and 9 depict the FEV1 and PEF, respectively, of Patient #11, with 

statistical threshold violations indicated in red.  Once the common cause data (in this 

case, a failing peak flow meter) were removed at 9/01/09, Shewart-Western Electric 

analyses was re-applied.  As seen in Figures 10 and 11, only “special causes” are now 

identified by red and specific rule violated is noted.  These examples exemplify the 

importance of identifying and characterizing “the process” (in this case, the patient), prior 

to implementing Shewart-Western Electric analyses. 
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Figure 8.  Patient #11 FEV1 Control Chart.  A, B, C zones correspond to +/- 1σ, 

2σ, and 3σ, respectively.  UCL = Upper Control Limit or +3σ.  LCL = Lower Control  

Limit or -3σ.  Avg = statistical mean.  Red circles indicate statistical threshold violations 

per Table 7, with the specific rule violated. 
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Figure 9.  Patient #11 Recalculated FEV1 Control Chart.  Obvious outliers have been   

removed.  A, B, C zones correspond to +/- 1σ, 2σ, and 3σ, respectively.  UCL = Upper  

Control Limit or +3σ.  LCL = Lower Control Limit or -3σ.  Avg = statistical mean.  Red  

circles indicate statistical threshold violations per Table 7, with the specific rule violated. 
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Figure 10.  Patient #11 PEF Control Chart.  A, B, C zones correspond to +/- 1σ, 

2σ, and 3σ, respectively.  UCL = Upper Control Limit or +3σ.  LCL = Lower Control  

Limit or -3σ.  Avg = statistical mean.  Red circles indicate statistical threshold violations 

per Table 7, with the specific Rule violated.   
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Figure 11.  Patient #11 Recalculated PEF Control Chart. Obvious outliers have been   

removed.  A, B, C zones correspond to +/- 1σ, 2σ, and 3σ, respectively.  UCL = Upper  

Control Limit or +3σ.  LCL = Lower Control Limit or -3σ.  Avg = statistical mean.  Red  

circles indicate statistical threshold violations per Table 7, with the specific Rule violated. 

Note the reduction of violations compared to Figure 10, prior to outliers being removed.  

Once the common cause of a failing peak flow device was removed at 09/01/09, 

Shewart-Western Electric analyses were re-applied, showing fewer as well as different 

statistical threshold violations. 
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Patient #12, preprocessed and analyzed per above, depicts a similar common cause as 

Patient #11 (a suspected failing peak flow meter), but in this case the outliers occur 

throughout the time span in Figure 12.   By identifying the common cause (e.g., 

characterizing the process) and removing data point outliers from the population, new 

statistical thresholds are applied in Figure 13.  It is clear that, should a clinician only 

apply upper and lower thresholds, unique opportunities to understand the patient and his 

clinical manifestations evaporate due to the lack of statistical analyses.  The following 

questions may be posed by the clinician; without the statistical analyses the clinician 

may be copasetic, unaware that probabilities exist that something may be going very 

right or very wrong with the patient’s health: 

 Is the patient using the device correctly?  

 Is the peak flow device operating appropriately and accurately?  

 Is the patient in distress?  

 Is the patient improving? 

 Are the patient’s activity and/or environment influencing the peak flow reading? 

 Has the patient and device’s security and privacy been violated? 
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Figure 12.  Patient #12 PEF Control Chart.  A, B, C zones correspond to +/- 1σ, 

2σ, and 3σ, respectively.  UCL = Upper Control Limit or +3σ.  LCL = Lower Control  

Limit or -3σ.  Avg = statistical mean.  Red circles indicate statistical threshold violations 

per Table 7, with the specific rule violated.  
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Figure 13.  Patient #12 Recalculated PEF Control Chart. Obvious outliers have  

been removed.  A, B, C zones correspond to +/- 1σ, 2σ, and 3σ, respectively.  UCL =  

Upper Control Limit or +3σ.  LCL = Lower Control Limit or -3σ.  Avg = statistical mean.   

Red circles indicate statistical threshold violations per Table 7, with the specific rule  

violated.  Note the reduction of violations compared to Figure 12, prior to outliers being  

removed. Once the common cause of a failing peak flow device was removed at  

09/01/09, Shewart-Western Electric analyses were re-applied, showing fewer as well as  

different statistical threshold violations. 

  

It was determined through visual and electrical validation that the peak flow device high 

points were due to an optical sensor failure, internal to the peak flow device.  The sensor 

was outdated, and it was determined that shelf-life and reliability issues (causing 

increased failure rate towards end of life or “bathtub” curve effects) impacted the 

longevity of the peak flow device and caused the intermittent failures, i.e., a “common 

cause”.  An automated Shewart-Western Electric analyses would have highlighted the 

failure immediately and reduced customer dissatisfaction due to field failure issues.  The 
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data suggested that, should a clinician observe erratic and improbable results, the 

device should be returned and replaced.   

 

This alpha test demonstrated the field efficacy of applying SPC in that applying clinician 

high and low thresholds alone are inadequate for seeing the unusual drift of readings, 

including a statistical shift in mean.  

 

Section 2.  Beta Test: Developing and Testing the Process with One Patient    

Results for the Predictive Analytics Process (Figure 3) follow for Patient #1, and include 

sensor, feature generation and pre-processing, feature extraction and selection, 

classifier design, and system evaluation. Patient #1 was randomly selected from the 

patient population. 

 

Sensor, Feature Generation, and Pre-processing 

Raw, de-identified FEV1 data from Patient #1 peak flow device was collected and filtered 

for double and too-frequent entries as described above. Thresholds were not provided 

by the clinician; therefore, a threshold of .8 L/s was identified based on the GOLD criteria 

and patient’s mean value, indicative of severe COPD (only low thresholds are typically 

used in COPD and/or CHF telemonitoring). This was validated as acceptable by a local 

physician, given the lack of information regarding the patient. 

 

Feature Extraction and Selection  

Basic statistical analyses were completed for Patient #1. The distribution, mean, 

standard distribution, variance, skewness, and kurtosis were produced and evaluated 

(Figure 14).   The Shapiro-Wilk test for normality indicates at, an alpha level of 0.05, the 
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p-value (stated below as “Prob<W”) is slightly significant for normality.  Skewness (lack 

of symmetry) of .64 is likely reflective of the longer upper tail.  Kurtosis (data that are 

peaked or flat relative to the normal distribution) is 1.3 reflective of the heaviness of the 

tail.  Normalization and/or transformation may be necessary to better fit the data into 

normal distribution if required.  This distribution was verified to be Log Normal. 

 

 

Figure 14.  Patient #1 FEV1 Test for Normality and Moments. 

 
Next, a Shewart-Western Electric analysis was performed on Patient #1 data, indicating 

Lower Control Limit (-3σ) of 0.687, Upper Control Limit (+3σ) of 1.103, and mean of 

0.896 (Figure 15). Nine points that violated the statistically-derived thresholds (i.e., out of 

control) was marked with the rule number violated.  The clinician-derived threshold was 

marked at .8 L/s FEV1, and, therefore, all points below .8 are classified as violating the 

clinician-derived threshold, a total of 12.  Two of the failed clinician-derived points also 

failed the Western Electric Rules. Each data point was classified into TP, FP, FN, and 

FP per Table 2.  Summary of the classification for Patient #1 is in Table 9. 
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Figure 15.  Patient #1 FEV1 Control Chart with Thresholds. Clinician-derived threshold  

of .8 L and statistically-derived thresholds are marked with rule violated. UCL = Upper 

Control Limit.  LCL = Lower Control Limit. 
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Table 9.  FEV1 Classification of Breached Thresholds.  Each point in the time  

series was assigned either TP, FN, FP, or TN depending on whether the point passed or  

failed a statistically- or clinician-derived threshold. 

Intervention Test 

Number 
breached 
violations 
for Patient 

#1 

State 
Statistically 

Derived 
State 

Clinician 
Derived 

Combined 
State 

Intervened TP 2 1 
Threshold 
violation 1 

Threshold 
violation 1,1 

Did not 
intervene but 
should have 
(statistically) FN  7 1 

Threshold 
violation 0 

No 
threshold 
violation 1,0 

Intervened 
but shouldn't 

have 
(statistically)  FP  10 0 

No threshold 
violation 1 

Threshold 
violation 0,1 

No 
intervention 
necessary TN 55 0 

No threshold 
violation 0 

No 
threshold 
violation 0,0 

 

 

As an alternative, CUSUM (cumulative sum) and V-mask were also calculated based on 

Montgomery (Montgomery 1994) and Lucas (Lucas 1982).  It provides a different 

schema (sequential) for identifying out-of-control points (i.e., failed thresholds) by 

calculating the cumulative sum of differences between the values and the mean, and 

applying a V-mask (for both min and max)4. The V-mask provides visual detectability of 

the failed threshold easier, and can detect small changes of about 1.5σ or less.    

 

CUSUM considers several points prior, while the Western Electric Rules consider the 

point before, and, therefore, CUSUM is able to detect smaller shifts in the data. If the 

                                                
4
 A V-mask is calculated via K, the rise in the arm corresponding to one sampling unit, and h, the 

rise in the arm to the distance d from origin to vertex. 
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process remains in control, the points will hover around zero, while if they are drifting 

upwards or downwards, the process is shifting and an assignable cause should be 

investigated. In the case of the COPD patient, this may be an alternate method for 

clinicians to assess their patients’ health. 

 

Data from Patient #1 were subjected to CUSUM analysis (Figure 16), indicating that the 

patient is downward trending, and exceeds the threshold towards the latter dates.  While 

this approach minimizes false positives, it does not allow each point to be easily 

classified into the four-schema classification (TP, FN, FP, TN) put forth in this study. 

 

 

Figure 16.  Patient #1 FEV1 CUSUM Results. Circled area indicates out-of-control 

points, but patient also exhibits downward trending.  V-masks (i.e., UCL and LCL) should 

be applied after every measurement to insure faster feedback on “threshold” violation. 

“h” is the vertical distance between the upper and lower arms of the V-mask.   



  49 

Additional statistics were calculated for FEV1 for Patient #1.   A Student’s t-test to 

compare means between [TP, TN] and [FP. FN] with means of 0.9008 and 0.8744, 

respectively, resulted in t = 0.9705 (assuming equal variances) and t = -0.64011 

(assuming unequal variances) with p<.05.  This indicated that the means were not 

significantly different from one another.   Other means comparison tests also verified that 

the means were not significantly different (Tukey-Kramer, Best Hsu’s MCB, Dunnett’s).  

An ANOVA indicated variances are equal (F=0.9419); however, other tests (O’Brien 

(F=21.1728), Levene (F=21.5023), and Bartlett (F=21.6117)) reject that hypothesis 

(p<0.05). Power is a poor 0.1598.   Obviously, these statistics are disappointing and 

likely reflective of the low sample size; in classifier design (discussed below), further 

classification was attempted using clustering techniques. 

 

Classifier Design 

Further investigations were performed on the [TP, TN] and [FN, FP] classification   

applied to Patient #1 FEV1 values.  Figure 17 represents the Receiver Operating 

Characteristic (ROC) curve, a calculation where the highest true positive rate and lowest 

false positive rate is considered perfect classification (at point 0,1). The ROC curve 

presents sensitivity, the probability that a given x value correctly predicts [FN, FP] and 

specificity, the probability of incorrectly predicting [FN, FP] (shown in Figure 18 as 1-

specificity). Specificity is also known as recall. Given [TP, TN] and [FN, FP].  A ROC 

curve for Patient #1 yielded the matrix in Figure 18 and resulting graph in Figure 19.  

The resulting graph indicates that, between these two groups, the probabilistic difference 

in predicting [FN, FP] interventions is above a random guess for Patient #1 given the 

area under curve = 0.651. 
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Figure 17.  ROC.  General diagram of a Receiver Operating Curve (ROC) 

 
 

 
 
Figure 18.  Patient #1 Confusion Matrix. Patient #1 FEV1 data sorted by TP, FN, FP, TN  

for ROC preparation. 

 
 
 
 



  51 

 

Figure 19.  Patient #1 FEV1 ROC. Patient #1 FEV1 Receiver Operating Curve using 

[FN, FP] to be positive level. Area under curve = 0.651.  The line drawn at a 45 degree 

angle tangent to the curve segregates the true positive rate (TPR = TP(TP+FN)) and the 

false positive rate (FPR = FP(FP+TN); this line indicates where the cost of true positive 

and the false negative are the same.  The curve represents a logistic probability of each 

value x correctly or incorrectly predicting [FN, FP].  This graph indicates that the 

probabilistic difference in predicting [FN, FP] interventions is above a random guess. 

  

While the results of the Shewart – Western Electric analysis essentially provide feature 

classification, additional analysis between the classifications was performed.  Clusters 

were assigned:  cluster 1 = FP; cluster 2 =; TN; cluster 3 = FN; and cluster 4 = TP.  

Analysis of means of FEV1 by cluster (Figure 20) shows visually that the means of 
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clusters 2 and 3 (uppermost circle and smallest circle, respectively) are significantly 

different from means of clusters 1 and 4 – expected since the clinician threshold was set 

at .8 for PEV1. Clusters 2 and 3 represent no clinical threshold violations while cluster 1 

and 4 represent statistical threshold violation and no statistical threshold violation (per 

Table 9, above). 

 

 

  

Figure 20.  Patient #1 FEV1 Data by Cluster. 

 
 
An ANOVA was completed (Figure 21), with an improved R-squared of .54, and 

statistically significant F Ratio of 27.88.  Variances of each cluster were compared using 

O’Brien’s method and found to be unequal (F ratio = 11.6, prob>F = <0.0001).  Following 

these analyses, a number of other classifier algorithms were tested.  Linear and 

Quadratic Discriminate analyses were completed:  the Quadratic indicated that of 74 

readings and their respective four clusters, 15 points (20.3%) were “misclassified”.  In 

examination of these misclassifications, 13/15 would have failed (i.e., had a threshold 

violation either statistically or by clinician) suggesting an increase in false negatives. 
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Oneway Anova 
Summary of Fit 

  

Rsquare 0.544404 
Adj Rsquare 0.524878 
Root Mean Square Error 0.06788 
Mean of Response 0.894764 
Observations (or Sum Wgts) 74 

 
Analysis of Variance 

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Cluster 3 0.38541000 0.128470 27.8816 <.0001* 
Error 70 0.32253909 0.004608   
C. Total 73 0.70794909    

 
Means for Oneway Anova 

Level Number Mean Std Error Lower 95% Upper 95% 
1 10 0.75800 0.02147 0.71519 0.8008 
2 55 0.90632 0.00915 0.88806 0.9246 
3 7 1.04071 0.02566 0.98954 1.0919 
4 2 0.75000 0.04800 0.65427 0.8457 

 

 
Figure 21.  Patient #1 FEV1 ANOVA Summary of Fit by Cluster. The fit is unexceptional, 

noted by the “Rsquare” = 0.544404. 

 

 

System Evaluation 

Following Figure 22, a number of models were explored to find the best fit for predicted 

responses. Since new data is unavailable for each patient, the approach was to utilize as 

few as FEV1 readings as possible to predict whether the next reading would fall into a 

specific cluster. 

 

 

Figure 22.  General Process for Achieving Predicted Responses. 
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Winter’s Method (equal to a seasonal ARIMA, or a triple exponential smoothing method 

to forecast within a time series) performed better than other time-series smoothing 

models, though it is still a relatively poor fit (Figure 23).  The resulting graph was still not 

adequate to validate a cluster, as observed by the unremarkable “RSquare”. 

 
 

 Model: Winters Method (Additive) 
 Model Summary 

  

DF 54 
Sum of Squared Errors 0.59508385 
Variance Estimate 0.01102007 
Standard Deviation 0.10497653 
Akaike's 'A' Information Criterion -84.338562 
Schwarz's Bayesian Criterion -78.209408 
RSquare -0.4407742 
RSquare Adj -0.4913277 
MAPE 8.60995228 
MAE 0.07722535 
-2LogLikelihood -90.338562 
  

Stable Yes 
Invertible No 

 
    Hessian is not positive definite 
 
  Parameter Estimates 

Term Estimate Std Error t Ratio Prob>|t| 

Level Smoothing Weight 0.6687704 0.121079 5.52 <.0001* 
Trend Smoothing Weight 5.5511e-17 0.000000 . <.0001* 
Seasonal Smoothing Weight 1.0000000 5.199606 0.19 0.8482 

 

 
Figure 23.  Patient #1 FEV1 Winter’s Method (Smoothing Model).  
 
 
 
Continuing to search for an appropriate model, a neural network algorithm was 

attempted. The network was trained using the Levenberg-Marquardt back-propagation 

tool (MatLab® R2011b (7.13.0.564)). Using Patient #1’s FEV1 measurements as inputs, 

and clusters as outputs, Figure 24 and 25 reveal that this model, while improved  

(R >.40), is inadequate for predicting.  
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Figure 24.  Patient #1 LM Back-propagation Model.  Patient #1 FEV1 predictive results 

based on using a Levenberg-Marquardt back-propagation neural network.   
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Figure 25.  Patient #1 FEV1 Mean Squared Error of LM Validation.  Patient #1 FEV1 

results of Levenberg-Marquardt validation of the network using mean squared error. The 

best validation performance yielded 0.42579. 

 

Completing the Beta Test, further exploration using neural networks and/or other time 

series algorithms for the Final Construct using all twenty patients was launched.  The 

term and classification of “cluster” was found unnecessary for future analyses.  

Prediction of the classification of TP, FN, FP, or TN, predicted points (i.e., values) in 

time, and control chart zones (A, B, or C signifying +/- 3σ, 2σ, or 1σ, respectively) will be 

investigated based on the Beta Test learnings. Additional FEV1 data for Patient #1 was 

discovered; therefore, Patient #1’s analyses will be redone.  
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Section 3.  Final Construct:  Sensor, Feature Generation, and Pre-processing Results 

Raw, de-identified FEV1 data from twenty patients was secured from the server 

supporting the telemonitoring unit.  No patient contact occurred, and data was de-

identified prior to receipt by the student.  Each patient’s data was filtered for double and 

too-frequent entries as described above. Obvious outliers were removed; some had 

been missed during Beta Testing.  Approximately 10-15% of the entries over the course 

of the remote monitoring (typically about twelve to eighteen months) were discarded due 

to these reasons.  It was discovered during the course of the data analysis that none of 

the thresholds were provided by the clinicians; therefore, each patient was assigned 

their own lower threshold based on GOLD (Global Initiative for Chronic Obstructive Lung 

Disease 2013) criteria and patient’s mean value.  These thresholds were validated 

visually by a local clinician to be appropriate given the limited available information.  All 

specific aims and their respective hypotheses were validated in the Final Construct. 

 

Section 4.  Final Construct:  Feature Extraction and Selection      

The upper and lower control limits, mean, minimum, maximum, range, standard 

distribution, variance, skewness, kurtosis and distribution were examined for each of the 

twenty patients (Tables 10 and 11). Shewart-Western Electric analyses were also 

performed, and each one of the patients’ data points was classified into TP, FN, FP, or 

TN (Table 12).   
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Table 10.  All Patients’ Basic Statistics One. Patients’ #1-20 FEV1 N, Upper Control  

Limit (UCL), Lower Control Limit (LCL), mean, standard deviation, minimum, maximum,  

and range.  Summary statistics are noted below the value (SUM = summation; AVG =  

average).  

 

Patient # N UCL LCL Mean 
Std 
Dev Min Max Range 

1 126 1.181 0.667 0.924 0.125 0.710 1.300 0.590 

2 67 0.950 0.543 0.747 0.105 0.485 1.000 0.515 

3 81 1.093 0.601 0.847 0.880 0.620 1.020 0.400 

4 70 0.998 0.400 0.699 0.143 0.420 1.150 0.730 

5 77 0.852 0.319 0.586 0.103 0.230 0.890 0.660 

6 70 0.954 0.513 0.733 0.076 0.540 0.870 0.330 

7 60 0.812 0.221 0.517 0.113 0.160 0.660 0.500 

8 57 1.230 0.350 0.790 0.187 0.250 1.220 0.970 

9 66 3.816 1.817 2.817 0.348 1.880 3.880 2.000 

10 78 1.646 0.142 0.752 0.198 0.100 1.400 1.300 

11 49 1.853 1.063 1.458 0.135 1.190 1.740 0.550 

12 62 1.968 0.340 1.154 0.308 0.130 1.610 1.480 

13 382 1.732 0.798 1.265 0.182 0.670 1.800 1.130 

14 50 1.040 0.596 0.818 0.818 0.126 0.625 1.220 

15 59 0.9 0.374 0.637 0.090 0.450 0.780 0.330 

16 92 2.041 0.995 1.518 1.518 0.227 0.820 2.090 

17 60 0.725 0.435 0.58 0.580 0.058 0.400 0.680 

18 59 1.343 0.425 0.884 0.884 0.186 0.580 1.410 

19 64 0.984 0.647 0.815 0.059 0.675 1.000 0.325 

20 43 1.068 0.566 0.817 0.100 0.620 1.040 0.420 

 Summary 1672 1.359 0.591 0.968 0.347 0.486 1.189 0.882 

 Statistics SUM AVG AVG AVG AVG AVG AVG AVG 
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Table 11.  All Patients’ Basic Statistics Two. Patients’ #1 – 20 FEV1 N, variance,  

standard error, coefficient of variance, skewness, kurtosis, and distribution.  Summary  

statistics are noted below the value (SUM = summation, AVG = average). 

Patient # N Variance 
Std 

Error 
Coeff 
Var Skewness Kurtosis Distribution 

1 126 0.016 0.011 13.537 0.985 1.134 
Normal 2 
Mixture 

2 67 0.011 0.013 14.018 -0.030 0.036 Normal 

3 81 0.008 0.010 10.391 -0.293 -0.331 Weibull 

4 70 0.020 0.017 20.463 0.736 0.351 Log Normal 

5 77 0.011 0.012 17.582 -0.666 2.870 Johnson Su 

6 70 0.006 0.009 10.355 -0.283 -0.497 Weibull 

7 60 0.013 0.015 21.837 -1.482 2.024 Johnson SI 

8 57 0.035 0.025 23.615 0.056 0.903 Normal 

9 66 0.121 0.043 12.343 0.144 0.630 Normal 

10 78 0.039 0.022 26.278 -1.067 4.096 Johnson SI 

11 49 0.018 0.019 9.281 0.063 -0.828 Gamma/Normal 

12 62 0.095 0.039 26.650 -1.936 4.102 
Normal 2 
Mixture 

13 382 0.033 0.009 14.402 0.124 0.205 Normal 

14 50 0.595 0.016 0.018 0.904 0.823 Johnson SI 

15 59 0.008 0.012 14.075 -0.486 -0.750 Weibull 

16 92 1.270 0.052 0.024 -0.236 0.355 Johnson SI 

17 60 0.280 0.003 0.008 -0.898 0.950 Weibull 

18 59 0.830 0.035 0.024 0.035 0.594 
Normal 2 
Mixture 

19 64 0.003 0.007 7.238 0.536 0.698 Log Normal 

20 43 0.010 0.015 12.178 0.134 -0.208 Johnson Su 

 
Summary 1672 0.171 0.019 12.716 -0.183 0.858 

 Statistics SUM AVG AVG AVG AVG AVG 
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Table 12.  All Patients’ Four Schema Results, Pre-predictive Algorithm.  Patients’ #1-20  

FEV1 N, Upper Control Limit (UCL), Lower Control Limit  (LCL), mean, clinician-derived  

threshold, and the number of data points that are classified into TP, FN, FP, or TN.   

Summary statistics are noted below the values (SUM = summation; AVG = average).  

 

Patient # N Mean 
Clinician 

Threshold # TP # FN # FP # TN 

Percent 
Increase 

from FP to 
FN 

1 126 0.924 0.75 2 17 5 102 9.524 

2 67 0.747 0.65 6 17 9 35 11.940 

3 81 0.847 0.70 1 2 2 76 0.000 

4 70 0.699 0.55 2 18 8 42 14.286 

5 77 0.586 0.40 3 1 1 72 0.000 

6 70 0.733 0.65 0 1 11 58 -14.286 

7 60 0.517 0.35 3 0 2 55 -3.333 

8 57 0.790 0.67 2 0 10 45 -17.544 

9 66 2.817 2.40 2 10 6 48 6.061 

10 78 0.752 0.30 0 28 3 47 32.051 

11 49 1.458 1.30 0 3 6 40 -6.122 

12 62 1.154 0.75 3 3 2 54 1.613 

13 382 1.265 0.85 2 56 1 323 14.398 

14 50 0.818 0.70 4 12 4 30 16.000 

15 59 0.637 0.50 0 0 8 51 -13.559 

16 92 1.518 1.25 3 11 6 72 5.435 

17 60 0.58 0.52 5 3 6 46 -5.000 

18 59 0.884 0.69 4 4 4 47 0.000 

19 64 0.815 0.73 0 2 3 59 -1.563 

20 43 0.817 0.70 0 1 6 36 -11.628 

Summary 1672 0.968 0.771 2.1 9.5 5.2 66.9 1.914 

Statistics SUM AVG AVG AVG AVG AVG AVG AVG 

    
42 189 103 1338 

 

    
SUM SUM SUM SUM 
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Hypothesis A of the first specific aim can now be tested (prior to the application of the 

Predictive Analytics Process):  H0: FN=FP, and H1: FN≠FP, where H1 states that there 

will be a statistically significant (p<.005) difference in number of clinical interventions 

when statistically-derived thresholds are applied.  The standard normal (z) table shows 

that the lower critical z value for p<.005 is approximately 1.04.  The computed z value 

must be higher than the 1.04 in order to reject the null hypothesis.  Because the 

computed z = 1.1062, the null hypothesis is rejected.  It can be concluded that, at this 

level of significance, there is a difference between FN and FP (p<.005) when 

statistically-derived thresholds are applied.  Therefore, H0 of Hypothesis A is rejected, 

and H1 is accepted.  The clinician will have intervened an average of an additional 86   

times (or 11.3% =189/1672)*100) than he would have normally, when he intervened but 

shouldn’t have (or 6.2% = (103/1672)*100), based on statistically-derived thresholds.  

Figure 26 demonstrates the varied swings of the percent increase from FP to FN across 

all twenty patients.  Average increase, however, was only 1.914%.   
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Figure 26.  All Patients’ FEV1 Percent Increase from FP to FN. 

 

 
To understand if there was any stratification in the population, each patient’s FEV1 

values were evaluated for severity of the disease based primarily on GOLD standards.  

Though each patient’s disease state was not provided (i.e., COPD, CHF, or COPD/CHF 

or other co-morbidity such as diabetes),  FEV1 values fell into four different likely states 

of severity and were examined with the statistics of all patients (Figure 27 - 39 and 

Tables 13 – 15).  Note small sample size per disease severity.  The results of the non-

parametric tests of Wilcoxson/Kruskal-Wallis indicating significant difference between 

the groups (mild/moderate and severe/very severe) are included in appropriate graphs 

via their z value and Chi-Square. 
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Figure 27.  All Patients’ FEV1 Pareto Plot of Disease Severity.  Patients #1-20 FEV1 

Pareto plot of likely disease severity (out of 20 total patients in study) 

 

 

Figure 28.  All Patients’ FEV1 Mean vs. Disease Severity.  Actual values plus smoother. 
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Figure 29.  All Patients’ FEV1 Variance vs. Disease Severity.  Actual values plus 

smoother.  z = 1.745, Chi-Square = 3.202 indicating significant difference. 

 

 

Figure 30.  All Patients’ FEV1 Standard Error vs. Disease Severity.  Actual values plus 

smoother. z = 1.833, Chi-Square = 3.522 indicating significant difference. 
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.  

Figure 31.  All Patients’ FEV1 Coefficient of Variation vs. disease severity.  Actual values 

plus smoother.  z = 0, Chi-Square = 0.002 indicating no significant difference. 

 

 

Figure 32.  All Patients’ FEV1 Skewness vs. Disease Severity.  Actual values plus 

smoother.  z = 0, Chi-Square = 0.002 indicating no significant difference. 
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Figure 33.  All Patients’ FEV1 Kurtosis vs. Disease Severity.  Actual values plus 

smoother.  z = 0.348, Chi-Square = 0.154 indicating no significant difference. 

 

 

Figure 34.  All patients’ FEV1 Precision vs. Disease Severity. Actual values plus 

smoother. Precision = TP/(TP+FP), and represents positive predictive value (PPV) and 

quality of exactness.  z = 0.664, Chi-Square = 0.502 indicating no significant difference. 
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Figure 35.  All Patients’ FEV1 Recall vs. Disease Severity.  Actual values plus smoother. 

Recall = TP/(TP+FN), and represents quality of completeness and sensitivity. z = -0.443, 

Chi-Square = 0.237 indicating no significant difference. 
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Figure 36.  All Patients’ FEV1 F-score vs. Disease severity.  Actual values plus 

smoother.  F-score = 2TP/(TP+FN)-(TP+FP).  z = 1.779, Chi-Square = 3.359 indicating a 

significant difference; however, three patients (#3, 5, and 18) have zero increase and no 

F-score could be calculated resulting in inconclusive significance despite the z and Chi-

Square values. 
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Figure 37.  All Patients’ FEV1 LCL vs. Disease Severity.  LCL = lower control limit or -3σ.  

Actual values plus smoother.   

 

 

Figure 38.  All Patients’ FEV1 UCL vs. Disease Severity.  UCL = Upper Control Limit, or 

+3σ.  Actual values plus smoother.   
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Figure 39.  All Patients’ FEV1 FP to FN Increase vs. Disease Severity.  Mean %  
 
increase from FP to FN. Actual values plus smoother.  z = .7867, Chi-Square = 0.690  
 
indicating significant difference.  Mean of mild/moderate = 4.277 and severe/very severe  
 
= 1.126.  Standard deviation of mild/moderate = 7.452 and severe/very severe = 13.552. 
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Table 13.  All Patients’ FEV1 Disease Severity with Control Limits.  Patient #, N, UCL  

(Upper Control Limit), LCL (Lower Control Limit), mean, and disease severity.  Summary  

statistics are noted below the values (SUM = summation; AVG = average).  

 

Patient # N UCL LCL Mean 
Disease 
Severity 

1 126 1.181 0.667 0.924 Severe 

2 67 0.950 0.543 0.747 Severe 

3 81 1.093 0.601 0.847 Severe 

4 70 0.998 0.400 0.699 Severe 

5 77 0.852 0.319 0.586 Very Severe 

6 70 0.954 0.513 0.733 Severe 

7 60 0.812 0.221 0.517 Very Severe 

8 57 1.230 0.350 0.790 Severe 

9 66 3.816 1.817 2.817 Mild 

10 78 1.646 0.142 0.752 Severe 

11 49 1.853 1.063 1.458 Moderate 

12 62 1.968 0.340 1.154 Moderate 

13 382 1.732 0.798 1.265 Moderate 

14 50 1.040 0.596 0.818 Severe 

15 59 0.9 0.374 0.637 Very Severe 

16 92 2.041 0.995 1.518 Moderate 

17 60 0.725 0.435 0.58 Very Severe 

18 59 1.343 0.425 0.884 Severe 

19 64 0.984 0.647 0.815 Severe 

20 43 1.068 0.566 0.817 Severe 

Summary 1672 1.359 0.591 0.968 
 Statistics SUM AVG AVG AVG 
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Table 14.  All Patients’ FEV1 Disease Severity with Basic Stats. Patient #, N, variance,  
 
standard error, coefficient of variation, skewness, kurtosis, and disease severity.  
 
Summary statistics are noted below the values (SUM = summation; AVG = average).  
 
 

Patient # N Variance 
Std 

Error 
Coeff 
Var Skewness Kurtosis 

Disease 
Severity 

1 126 0.016 0.011 13.537 0.985 1.134 Severe 

2 67 0.011 0.013 14.018 -0.030 0.036 Severe 

3 81 0.008 0.010 10.391 -0.293 -0.331 Severe 

4 70 0.020 0.017 20.463 0.736 0.351 Severe 

5 77 0.011 0.012 17.582 -0.666 2.870 Very Severe 

6 70 0.006 0.009 10.355 -0.283 -0.497 Severe 

7 60 0.013 0.015 21.837 -1.482 2.024 Very Severe 

8 57 0.035 0.025 23.615 0.056 0.903 Severe 

9 66 0.121 0.043 12.343 0.144 0.630 Mild 

10 78 0.039 0.022 26.278 -1.067 4.096 Severe 

11 49 0.018 0.019 9.281 0.063 -0.828 Moderate 

12 62 0.095 0.039 26.650 -1.936 4.102 Moderate 

13 382 0.033 0.009 14.402 0.124 0.205 Moderate 

14 50 0.595 0.016 0.018 0.904 0.823 Severe 

15 59 0.008 0.012 14.075 -0.486 -0.750 Very Severe 

16 92 1.270 0.052 0.024 -0.236 0.355 Moderate 

17 60 0.280 0.003 0.008 -0.898 0.950 Very Severe 

18 59 0.830 0.035 0.024 0.035 0.594 Severe 

19 64 0.003 0.007 7.238 0.536 0.698 Severe 

20 43 0.010 0.015 12.178 0.134 -0.208 Severe 

Summary 1672 0.171 0.019 12.716 -0.183 0.858 
 Statistics SUM AVG AVG AVG AVG AVG 
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Table 15.  All Patients’ FEV1 Disease Severity with ROC Data.  Patient #, N,  

increase from FP to FN, precision, recall, F-score, and disease severity.  Summary  

statistics are noted below the values (SUM = summation; AVG = average).  

 

Patient # N 

Increase 
from FP 

to FN 
Precision 

(TP/(TP+FP) 
Recall 

(TP/(TP+FN) F-score 
Disease 
Severity 

1 126 9.524 0.286 0.105 0.333 Severe 

2 67 11.940 0.400 0.261 1.500 Severe 

3 81 0.000 0.333 0.333 #DIV/0! Severe 

4 70 14.286 0.200 0.100 0.400 Severe 

5 77 0.000 0.750 0.750 #DIV/0! 
Very 
Severe 

6 70 -14.286 0.000 0.000 0.000 Severe 

7 60 -3.333 0.600 1.000 -3.000 
Very 
Severe 

8 57 -17.544 0.167 1.000 -0.400 Severe 

9 66 6.061 0.250 0.167 1.000 Mild 

10 78 32.051 0.000 0.000 0.000 Severe 

11 49 -6.122 0.000 0.000 0.000 Moderate 

12 62 1.613 0.600 0.500 6.000 Moderate 

13 382 14.398 0.667 0.034 0.073 Moderate 

14 50 16.000 0.500 0.250 1.000 Severe 

15 59 -13.559 0.000 0.000 0.000 
Very 
Severe 

16 92 5.435 0.333 0.214 1.200 Moderate 

17 60 -5.000 0.455 0.625 -3.333 
Very 
Severe 

18 59 0.000 0.500 0.500 #DIV/0! Severe 

19 64 -1.563 0.000 0.000 0.000 Severe 

20 43 -11.628 0.000 0.000 0.000 Severe 

Summary 1672 1.914 0.302 0.292 
  Statistics SUM AVG AVG AVG 
   

 
 
 
Each patients’ FEV1 data was subjected to Shewart-Western Electric analysis, with A, B, 

C zones (+/- 3σ, 2σ, and 1σ, respectively) and rule violated annotated  (Figures 40 -59). 
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Figure 40.  Patient #1 FEV1 Shewart-Western Electric Analysis.  (Note additional data  
 
compared to Beta Test.) 

 
  

 

 

Figure 41.  Patient #2 FEV1 Shewart-Western Electric Analysis. 
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Figure 42.  Patient #3 FEV1 Shewart-Western Electric Analysis. 

  

 

 

Figure 43.  Patient #4 FEV1 Shewart-Western Electric Analysis. 
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Figure 44.  Patient #5 FEV1 Shewart-Western Electric Analysis. 
 
 
  

 

 
Figure 45.  Patient #6 FEV1 Shewart-Western Electric Analysis. 
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Figure 46.  Patient #7 FEV1 Shewart-Western Electric Analysis. 

 

  
  

 
 
Figure 47.  Patient #8 FEV1 Shewart-Western Electric Analysis. 
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Figure 48.  Patient #9 FEV1 Shewart-Western Electric Analysis. 
 
   
  

 

 

Figure 49.  Patient #10 FEV1 Shewart-Western Electric Analysis. 
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Figure 50.  Patient #11 FEV1 Shewart-Western Electric Analysis. 

  
 

  
 
Figure 51.  Patient #12 FEV1 Shewart-Western Electric Analysis. 
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Figure 52.  Patient #13 FEV1 Shewart-Western Electric Analysis. 
 
  
  

 
 
Figure 53.  Patient #14 FEV1 Shewart-Western Electric Analysis. 
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Figure 54.  Patient #15 FEV1 Shewart-Western Electric Analysis. 

 

  

 

 

Figure 55.  Patient #16 FEV1 Shewart-Western Electric Analysis. 
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Figure 56.  Patient #17 FEV1 Shewart-Western Electric Analysis 

  

 

 

Figure 57.  Patient #18 FEV1 Shewart-Western Electric Analysis. 
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Figure 58.  Patient #19 FEV1 Shewart-Western Electric Analysis. 

  
  

 

 

Figure 59.  Patient #20 FEV1 Shewart-Western Electric Analysis. 
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Each patient who had a statistically-derived threshold violation had a corresponding 

Western Electric Rule violation, per Table 7.  Figure 60,  Figure 61, and Table 16 

indicate that Western Electric Rule 2, followed by Rules 1 and 6, are the most prevalent.   

Rule 2 detects a shift in the process mean.  Rule 1 also detects a shift in the mean, an 

increase in the standard deviation, or a single aberration in the process (e.g., something 

unusual happened to the patient, such as mowing grass causing a COPD episode).  

Rule 6 also detects a shift in the mean; any four out of five points provide a positive test 

for Rule 6.  

  
 

 
  

 
 

Figure 60.  All Patients’ FEV1 Pareto of Western Electric Rules.  Patients #1-20 FEV1 

Pareto of average occurrence for a specific Western Electric Rule (see Table 7).  
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Figure 61.  All Patients’ FEV1 Average Rule Frequency.  Classification of Western  
 
Electric Rules versus the average frequency of occurrence in the population of 20  
 
patients. 
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Table 16.  Western Electric Rule Violations.  Pre-predictive Algorithm.  Note the high 

degree of process mean shift Rule violations in Rules 2, 1, and 6.  Summary statistics 

are noted below the values (AVG = average).  

 

Patient 
 # Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8 

1 8 3 0 0 2 6 0 0 

2 3 17 0 0 1 2 0 0 

3 0 1 0 0 2 0 0 0 

4 2 13 0 0 1 3 0 1 

5 4 0 0 0 0 0 0 0 

6 0 0 0 0 0 1 0 0 

7 2 0 0 0 1 0 0 0 

8 2 0 0 0 0 0 0 0 

9 1 0 0 7 0 3 0 1 

10 0 11 1 0 0 0 23 0 

11 0 0 0 3 0 0 0 0 

12 4 2 1 0 0 0 0 0 

13 5 30 2 0 4 17 0 0 

14 3 5 0 0 6 3 0 0 

15 0 0 0 0 0 0 0 0 

16 13 28 2 0 0 6 0 0 

17 1 0 0 0 0 5 2 0 

18 1 7 0 0 0 0 0 0 

19 1 0 0 0 1 0 0 0 

20 0 0 0 0 1 0 0 0 

Summary 2.5 5.85 0.3 0.5 0.95 2.3 1.25 0.1 

Statistics AVG AVG AVG AVG AVG AVG AVG AVG 
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Section 5.  Final Construct:  Classifier Design 
 
Patients’ classifiers are considered TP, FN, FP, and TN.  Each patient’s data points  
 
have been classified per Table 12.   
 

 

Section 6.  Final Construct:  System Evaluation 

In order to develop a model for prediction that was general enough for a variety of 

patients’ FEV1 values, a random K-fold was investigated.  Random K-fold is a general 

technique specifically targeted for small samples and serves as a cross-validation 

technique.  In a neural net platform, the data are randomly partitioned into “K” equal 

subsamples.  One subsample is specific for the validation group, and “K-1” subsamples 

are specific for the training group.  The cross-validation is then repeated “K” times and 

averaged to provide the best estimate.  The activation functions are applied (i.e., tanh, 

linear, and/or Gaussian) at the layers, and a logistic transformation is applied at the 

response (responses are TP, FN, FP, TN in this study).   

 

A random K-fold with an activation node of 1 Gaussian was applied due to its efficiency 

with small sample sizes.  Unfortunately, as can be seen in Table 17, this model was not 

adequate (i.e., specific aim 2, hypothesis B, Generalized R-square>.80) in predicting 

FEV1. 
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Table 17.  Results of Random K-fold with 1 Gaussian Nodes.  All patients’ FEV1  

subjected to random K-fold (5 folds), with 1 Gaussian activation node, 1 activation layer,  

and no boosting or trans-covariates.  Patient #, training Generalized R-square, validation  

R-square, # of misclassifications and training misclassification rate are presented.   

Summary statistics are noted below the values (AVG = average).  

 

Patient # 

Training 
Gen  R-
square 

Validation 
Gen R-
square 

# of 
Misclassifications 

1 0.786 0.860 11.000 

2 0.845 0.864 17.000 

3 0.209 -0.006 4.000 

4 0.636 0.514 15.000 

5 1.000 1.000 0.000 

6 0.970 1.000 1.000 

7 0.440 0.818 3.000 

8 1.000 1.000 0.000 

9 0.869 0.700 6.000 

10 0.641 0.704 22.000 

11 0.803 0.591 2.000 

12 0.512 0.630 6.000 

13 0.430 0.489 36.000 

14 0.682 0.574 9.000 

15 0.740 0.598 1.000 

16 0.611 0.853 9.000 

17 0.700 0.220 5.000 

18 0.746 0.766 5.000 

19 0.868 0.889 2.000 

20 0.871 0.986 1.000 

Summary 0.718 0.702 7.750 

Statistics AVG AVG AVG 

 

Varying combinations of linear, tanh, and Gaussian activation nodes were considered.  

All had less than Generalized R-square values desired per hypothesis B. A random K-

fold (5-folds) model was initiated with 3 tanh and 3 Gaussian activation nodes.   One 

activation layer (no hidden layers), one tour, and a squared penalty (to mitigate the 

tendency for the neural network to over-fit the data) were applied. No boosting was 



  89 

employed. Covariates were transformed (fitting option). The data was randomly divided 

by the software into training (estimates model parameters) and validation (validates 

predictive ability of the model) sets, approximately 75% and 25%, respectively.  Table 18 

summarizes the results. 

 

Table 18.  Results of Random K-fold with 3 tanh and 3 Gaussian Nodes.  All patients’  

FEV1 subjected to random K-fold (5 folds), with 3 tanh and 3 Gaussian activation nodes.  

One layer (no hidden layers), one tour, transformed covariates with a squared penalty  

were applied. No boosting was employed. Patient #, training Generalized R-square,  

validation Generalized R-square, # of misclassifications, and training misclassification  

rate are presented.  Summary statistics are noted below the values (AVG = average).  

 

Patient # 

Training 
Gen R-
square 

Validation 
Gen R-
square 

# of 
Misclassifi-

cations 

Training 
Misclass 

Rate  
1 0.791 0.569 7 0.069 

2 0.900 0.826 9 0.167 

3 0.769 1.000 2 0.031 

4 0.693 0.414 12 0.286 

5 1.000 1.000 0 0.000 

6 0.973 0.995 1 0.018 

7 0.482 0.762 3 0.063 

8 1.000 1.000 0 0.000 

9 0.683 0.661 8 0.151 

10 0.359 0.581 20 0.262 

11 0.809 0.965 3 0.075 

12 0.636 0.868 4 0.080 

13 0.367 0.156 44 0.144 

14 0.883 0.853 8 0.200 

15 0.934 0.936 1 0.026 

16 0.799 0.786 7 0.096 

17 0.729 0.773 7 0.146 

18 0.875 0.938 4 0.083 

19 0.995 0.998 0 0.000 

20 0.957 1.000 1 0.029 

Summary 0.782 0.804 7.05 0.096 

Statistics AVG AVG AVG AVG 
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Figure 62 diagrams the model.  Neural networks randomly use different starting points, 

and select the iteration with the best validation.  The patients were approximately evenly 

divided between the radial Gaussian and sigmoid tanh for the transformation formula 

(Table 19) and no significant correlations were found between the transformation 

formula type and other patient values presented. 

 

Figure 62.  Neural Net Diagram.  Diagram of tanh and Gaussian activation nodes in the  
 
random K-fold neural net. 
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Table 19.  All Patients’ FEV1 Transformation Formulae.  Patient #, training Generalized  

R-square, validation Generalized R-square, # of misclassifications, and training  

misclassification rate are also presented. Summary statistics are noted below the values  

(AVG = average). 

Patient # 

Training 
Gen R-
square 

Validation 
Gen R-
square 

# of 
Misclassifi-

cations 

Training 
Misclass 

Rate  
Transformation 

Formula 
1 0.791 0.569 7 0.069 ArcSinH 

2 0.900 0.826 9 0.167 Log 

3 0.769 1.000 2 0.031 Log 

4 0.693 0.414 12 0.286 Log 

5 1.000 1.000 0 0.000 ArcSinH 

6 0.973 0.995 1 0.018 Log 

7 0.482 0.762 3 0.063 ArcSinH 

8 1.000 1.000 0 0.000 ArcSinH 

9 0.683 0.661 8 0.151 Log 

10 0.359 0.581 20 0.262 ArcSinH 

11 0.809 0.965 3 0.075 Log 

12 0.636 0.868 4 0.080 ArcSinH 

13 0.367 0.156 44 0.144 ArcSinH 

14 0.883 0.853 8 0.200 Log 

15 0.934 0.936 1 0.026 Log 

16 0.799 0.786 7 0.096 ArcSinH 

17 0.729 0.773 7 0.146 ArcSinH 

18 0.875 0.938 4 0.083 Log 

19 0.995 0.998 0 0.000 ArcSinH 

20 0.957 1.000 1 0.029 ArcSinH 

 Summary 0.782 0.804 7.05 0.096 
  Statistics AVG AVG AVG AVG 
  

Table 20 details the shift from actual to predicted in this four-schema classification with 

the random K-fold applied the predicted values, and the confusion matrix of actual and 

predicted classification of TP, FN, FP, and TN.   When the data is reviewed further 

(Table 21), of the 141 changes (from actual to predicted) of the total 1672 (8.43%5), 

                                                
5
 This total is less than the 9.6% reported in Table 19 due to the Training Misclassification Rate 

being calculated on a smaller sample size (i.e., Training sample only). 
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there is no significant difference between the total number of changes to the predicted 

states of FN and FP.  In eleven predicted instances, the clinician intervened but 

shouldn’t have and in eleven additional predicted instances, the clinician did not 

intervene but should have based on the statistically-derived thresholds.  Of note, 

however, is the high 108 predicted instances that changed from FN (did not intervene 

but should have) to TN (no intervention necessary).  This represents approximately 77% 

of the total misclassifications.  62% of the FN to TN changes originated from only three 

of the 20 patients, Patients #4, 10, and 13.  In reviewing these patients’ analytics, there 

does not appear to be any cause and effect.   Two of the three patients (Patient #10 and 

13) had a significant number of outliers removed, but so did an additional two (Patient #1 

and 3) that did not exhibit the high predicted change from FN to TN. 

 

In some patients (#1, 2, 4, 9, 13, 14, and 16), it appears that the random k-fold has 

overfit the data, with the validation Generalized R-square lower than the training 

Generalized R-square.  The squared penalty was intended to mitigate that risk, and in 

many cases, the data did not have overfitting.  
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Table 20.  All Patients’ FEV1 Actual to Predicted Counts.   

Patient # 

TN 
to 
FN 

TP 
to 
FP 

FN 
to 
TN 

FN 
to 
FP 

TP 
to 
TN 

FP 
to 
TN 

FP 
to 
TP 

TN 
to 
FP SUM 

1 1 1 5 0 0 0 0 0 7 

2 3 1 5 0 0 0 0 0 9 

3 0 1 1 0 0 0 0 0 2 

4 1 0 10 1 0 0 0 0 12 

5 0 0 0 0 0 0 0 0 0 

6 0 0 1 0 0 0 0 0 1 

7 0 0 1 0 1 0 1 0 3 

8 0 0 0 0 0 0 0 0 0 

9 1 0 7 0 0 0 0 0 8 

10 4 0 16 0 0 0 0 0 20 

11 0 0 3 0 0 0 0 0 3 

12 0 0 3 0 0 0 0 1 4 

13 0 0 41 0 0 2 0 1 44 

14 1 1 4 0 0 0 2 0 8 

15 0 0 0 0 0 1 0 0 1 

16 0 1 5 0 0 0 1 0 7 

17 0 1 2 0 0 2 0 2 7 

18 0 0 3 0 0 0 1 0 4 

19 0 0 0 0 0 0 0 0 0 

20 0 0 1 0 0 0 0 0 1 

  0.55 0.3 5.4 0.05 0.05 0.25 0.25 0.2 
 Summary AVG AVG AVG AVG AVG AVG AVG AVG 
 Statistics 11 6 108 1 1 5 5 4   

 
SUM SUM SUM SUM SUM SUM SUM SUM 

  

 

 

Table 21.  All Patients’ FEV1 Frequency of Predicted State Changes. 

TP FN FP TN 

Act→Pred Count Act→Pred Count Act→Pred Count Act→Pred Count 

FP→TP 5 TN→FN 11 TP→FP 6 FN→TN 108 

        FN→FP 1 TP→TN 1 

        TN→FP 4 FP→TN 5 

Totals: 5   11   11   114 
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Likely disease state of each patient of Table 13 was compared to their training and 

validation Generalized R-square in Table 19.  As shown in Figures 63 and 64, a change 

from Mild or Moderate to Severe or Very Severe occurs in model fit.  Because these two 

populations (Mild/Moderate and Severe/Very Severe) are not normal distributions, the 

non-parametric Wilcoxon/Kruskal-Wallis Tests were performed.   In the training set, the 

Wilcoxon/Kruskal-Wallis Tests resulted in the z statistic (-1.746) and the Chi-Square 

(3.2043) indicating that, at p<.05, there is a significant difference between the two 

populations.  Applying the Wilcoxon/Kruskal-Wallis Tests to the validation set also 

indicated that there is a significant difference between the two populations (z=1.138, and 

Chi-Square=1.399). 

 

 

Figure 63.  All Patients’ Training R-square vs. Disease Severity.  Patients #1-20 COPD 

and/or CHF disease severity compared to the training Generalized R-square resulting 

from the random K-fold (3tanh and 3 Gaussian). 
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Figure 64. All Patients’ Validation R-square vs. Disease Severity.  Patients #1-20 COPD 

and/or CHF disease severity compared to the validation Generalized R-square resulting 

from the random K-fold (3tanh and 3 Gaussian). 

 

It is now possible to re-test hypothesis B of the second specific aim where H1 states that 

FEV1 measurements can be predicted demonstrating ≥ .80 Generalized R-square.  JMP 

software considers Generalized R-square to be equal to R2 in continuous normal 

responses, which is how FEV1’s data property is identified.  R2 is equal to 1 - (Sum of 

Squares of the error divided by the Sum of Squares of the total). A very weak model is 

reflected in a Generalized R-square of zero, whereas a perfect fit of the model is a 

Generalized R-square of one. It describes the proportion of variability in a data set that is 

provided by the random K-fold model.  In the training set seen in Table 19, the ranges of 

Generalized R-square are from .359 to 1, with an average of .782.  This does not meet 

H1, and, therefore, H1 is rejected for the training set and H0 is accepted.  In the validation 
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set seen in Table 19, the ranges of Generalized R-square are from .156 to 1, with an 

average of .804.  This does meet H1, and, therefore, H1 is accepted for the validation set 

and H0 is rejected.  

 

A summary of each patient’s actual and predicted FEV1 values using the random K-fold 

model as described above are presented in Figures 65 to 84, with selected statistics 

included. Note the value shift from actual to predicted on the y axes, as well as each 

data point, resulting from the transformation (3tanh and 3Gaussian).  A smoother is 

included, which is a cubic spline (λ = 0.05) and standardized x values.  The cubic spline 

is a third degree polynomial spliced together so the resulting curve is smooth.  

 

Figure 65.  Patient #1 Actual vs. Predicted FEV1.  Smoother and the clinician derived 

threshold noted. 
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Figure 66.  Patient #2 Actual vs. Predicted FEV1.  Smoother and the clinician derived 

threshold noted. 
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Figure 67.  Patient #3 Actual vs. Predicted FEV1.  Smoother and the clinician derived 

threshold noted. 
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Figure 68.  Patient #4 Actual vs. Predicted FEV1.  Smoother and the clinician derived 

threshold noted. 
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Figure 69.  Patient #5 Actual vs. Predicted FEV1.  Smoother and the clinician derived 

threshold noted. 
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Figure 70.  Patient #6 Actual vs. Predicted FEV1.  Smoother and the clinician derived 

threshold noted. 

 



  102 

 

Figure 71.  Patient #7 Actual vs. Predicted FEV1.  Smoother and the clinician derived 

threshold noted. 
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Figure 72.  Patient #8 Actual vs. Predicted FEV1.  Smoother and the clinician derived 

threshold noted. 
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Figure 73.  Patient #9 Actual vs. Predicted FEV1.  Smoother and the clinician derived 

threshold noted. 
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Figure 74.  Patient #10 Actual vs. Predicted FEV1.  Smoother and the clinician derived 

threshold noted. 
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Figure 75.  Patient #11 Actual vs. Predicted FEV1.  Smoother and the clinician derived 

threshold noted. 
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Figure 76.  Patient #12 Actual vs. Predicted FEV1.  Smoother and the clinician derived 

threshold noted. 
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Figure 77.  Patient #13 Actual vs. Predicted FEV1.  Smoother and the clinician derived 

threshold noted. 
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Figure 78.  Patient #14 Actual vs. Predicted FEV1.  Smoother and the clinician derived 

threshold noted. 
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Figure 79.  Patient #15 Actual vs. Predicted FEV1.  Smoother and the clinician derived 

threshold noted. 
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Figure 80.  Patient #16 Actual vs. Predicted FEV1.  Smoother and the clinician derived 

threshold noted. 
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Figure 81.  Patient #17 Actual vs. Predicted FEV1.  Smoother and the clinician derived 

threshold noted. 

 

 

 



  113 

 

Figure 82.  Patient #18 Actual vs. Predicted FEV1.  Smoother and the clinician derived 

threshold noted. 
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Figure 83.  Patient #19 Actual vs. Predicted FEV1. Smoother and the clinician derived 

threshold noted. 
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Figure 84.  Patient #20 Actual vs. Predicted FEV1.  Smoother and the clinician derived 

threshold noted. 

 

In order to test hypothesis C of the second specific aim which states that the pre- and 

post-predicted data point will be statistically different (p<.005) in SPC zone designation, 

the corresponding +/- 3σ zone point locality was compared before and after the random 

K-fold was applied.  The value of the zones was determined for each population (pre- 

and post-prediction), and then each data point was compared between the two.  Zones 

are designated per SPC convention:  A (+/- 3σ), B (+/- 2σ), C (+/- 1σ), and this study 

added O (Out-of-Control per Western Electric Rules). 
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Patient #1’s FEV1 SPC zone data were analyzed (Figure 85) for pre- and post-prediction 

agreement.  While a significant amount of data points were the same (as seen in the 

linear axis), there were a large number of data points that were pre-prediction zone A, B, 

C, and O that were not the same as their corresponding post-prediction zone.  Of Patient 

#1’s 126 total FEV1 data points, 25 (19.8%) were incorrectly predicted for the zone, 

resulting in an R-square of 0.573 and a Kappa Coefficient (degree of agreement) of 

0.703 (p<0.005).  To understand why, the individual pre- and post-prediction points were 

designated 0 (points agree pre- and post-prediction) or 1 (points did not agree pre- and 

post-prediction). The 0/1 designations were then plotted against the pre-prediction FEV1 

values (Figure 86) and post-prediction FEV1 values (Figure 87), and contingency 

analysis performed (Table 22) for Patient #1.  Points designated 1 in Table 22 that fell on 

or near the sigma values (“edge sigma”) were unremarkable.   The FEV1 zone data from 

Patient #1 coupled with low R-square and Kappa Coefficient do not indicate that pre- 

and post-prediction data are the same; therefore, for hypothesis C of the second specific 

aim H0 is rejected and H1 is accepted (p<0.005). The pre- and post-predicted data points 

are different. 
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Figure 85.  Patient #1 FEV1 SPC Zone Pre- vs. Post-prediction.  Patient #1 FEV1 SPC 

zone, pre-predicted vs. post-predicted following administration of a random K-fold as 

described earlier.  19.8% are mis-matched, resulting in a R-square of 0.573 and a Kappa 

Coefficient of 0.703 (p<0.005).  Chi-square is suspect due to small counts. 
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Figure 86.  Patient #1 FEV1 Matched Zones vs. Pre-prediction.  Patient #1 histogram of 

zone match (0 = match; 1 = did not match) vs. FEV1 pre-prediction values. 
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Figure 87.  Patient #1 FEV1 Matched Zones vs. Post-prediction.  Patient #1 FEV1 

histogram of zone match (0 = match; 1 = did not match) vs. FEV1 post-prediction values. 
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Table 22.  Patient #1 FEV1 Contingency Analysis.  Pre- and post-prediction zones of A, 

B, C, and O.  

Zone-
Pre-

prediction Cell A B C O 

A Count 1 0 0 5 

A Total % 0.793651 0 0 3.968254 

A Col % 12.5 0 0 20 

A Row % 16.66667 0 0 83.33333 

A Expected 0.380952 1.333333 3.095238 1.190476 

A Deviation 0.619048 -1.33333 -3.09524 3.809524 

A 
Cell 
Chi^2 1.005952 1.333333 3.095238 12.19048 

B Count 3 22 1 3 

B Total % 2.380952 17.46032 0.793651 2.380952 

B Col % 37.5 78.57143 1.538462 12 

B Row % 10.34483 75.86207 3.448276 10.34483 

B Expected 1.84127 6.444444 14.96032 5.753968 

B Deviation 1.15873 15.55556 -13.9603 -2.75397 

B 
Cell 
Chi^2 0.729201 37.54789 13.02716 1.318106 

C Count 0 2 62 0 

C Total % 0 1.587302 49.20635 0 

C Col % 0 7.142857 95.38462 0 

C Row % 0 3.125 96.875 0 

C Expected 4.063492 14.22222 33.01587 12.69841 

C Deviation -4.06349 -12.2222 28.98413 -12.6984 

C 
Cell 
Chi^2 4.063492 10.50347 25.44472 12.69841 

O Count 4 4 2 17 

O Total % 3.174603 3.174603 1.587302 13.49206 

O Col % 50 14.28571 3.076923 68 

O Row % 14.81481 14.81481 7.407407 62.96296 

O Expected 1.714286 6 13.92857 5.357143 

O Deviation 2.285714 -2 -11.9286 11.64286 

O 
Cell 
Chi^2 3.047619 0.666667 10.21575 25.30381 

 

 

Validating the conclusion from Patient #1 that H1 of hypothesis C is accepted, another 

patient’s data were examined.  Patient #3 FEV1 SPC zone data were also analyzed 
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(Figure 88) for pre- and post-prediction.  Similar to Patient #1, a significant amount of 

data points were the same (as seen on the linear axis), but a large number of data points 

exist that were pre-prediction zone A, B, C, and O that were not the same as their 

corresponding post-prediction zone.  Of Patient #3’s 81 total FEV1 data points, 36 

(44.4%) were incorrectly predicted for the zone, resulting in an R-square of 0.249 and a 

Kappa Coefficient (degree of agreement) of 0.147 (p<0.005).  To understand why, the 

individual pre- and post-prediction points were designated 0 (points agree pre- and post-

prediction) or 1 (points did not agree pre- and post-prediction). The 0/1 designations 

were then plotted against the pre-prediction FEV1 values (Figure 89) and post-prediction 

FEV1 values (Figure 90) for Patient #3.  Points designated 1 falling on or near the sigma 

values (“edge sigma”) were, again, unremarkable.   Patient #3’s FEV1 zone data 

coupled with low R-square and Kappa Coefficient do not significantly (p<0.005) indicate 

that pre- and post-prediction data are the same; therefore, H0 of hypothesis 3 of the 

second specific aim continues to be rejected and H1 continues to be accepted.  
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Figure 88.  Patient #3 FEV1 SPC Zone Pre- vs. Post-prediction.  Patient #3 FEV1 SPC 

zone, pre-prediction vs. post-prediction following administration of a random K-fold as 

described earlier.  44.4% are mis-matched, resulting in an R-square of 0.249 and a 

Kappa Coefficient of 0.147 (p<0.005).  Chi-square is suspect due to small counts. 
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Figure 89.  Patient #3 FEV1 Matched Zones vs. Pre-prediction.  Patient #3 histogram of 

zone match (0 = match; 1 = did not match) vs. FEV1 pre-prediction values. 
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Figure 90.  Patient #3 FEV1 Matched Zones vs. Post-prediction.  Patient #3 FEV1  
 
histogram of zone match (0 = match; 1 = did not match) vs. FEV1 post-prediction values. 
 
 
   
To address the third specific aim and its hypothesis D, forecasting a future value in time 

in an FEV1 series would provide the clinician and the patient insight into COPD and/or 

CHF, providing an opportunity to manage disease outcome prior to its actual occurrence.     

JMP 9.0.3 software was limited in its modeling platform for neural nets (which provided 

the prior random K-fold prediction for classification), and, therefore, the modeling 

platform was changed to autocorrelation. Dates in this platform are required to have 

equidistance between them, and, therefore, each FEV1 data was assigned 1-n and 

labeled “equivalent date”.  Utilizing 25 autocorrelation lags, 10 forecasts, a confidence 

interval of 0.95, constraints 0-1, and (where applicable) periods/season of 12, various 

smoothing methods were attempted for forecasting the next value in a series for Patient 
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#3.  Table 23 summarizes the smoothing methods and resulting negative R-squares 

which indicate a poor fit for the models. 

 

Table 23.  Patient #3 FEV1 Smoothing Methods.  Smoothing methods used to forecast a 

future value in the time series. The use of seasonal models is not applicable for the 

FEV1 data but is included for completeness. 

Smoothing Method R-square 

Winter’s Method -0.498 

Seasonal Exponential Smoothing -0.498 

Damped Trend Linear Exponential Smoothing -0.052 

Linear (Holt) Exponential Smoothing -0.198 

Double Exponential Smoothing -0.207 

Simple Exponential Smoothing -0.050 

 

Following the unsuccessful smoothing methods for forecasting a future value in the time 

series of Patient #3’s FEV1, an autoregressive integrated moving average (ARIMA) was 

investigated.  The autoregressive order (p), non-seasonal differences/difference order 

(d), and moving average order (q) were varied using an intercept and constrained fit.  24 

combinations with 245 iterations each were completed, and resulted in a mixed ARIMA 

(p, d, q) of (45, 0, 49) with a .595 R-square.  Figure 91 is the resulting graph comparing 

the original n=81 pre-ARIMA FEV1 data points to the post-ARIMA (45, 0, 49) n=91 data 

values.    
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Figure 91.  Patient #3 FEV1 ARIMA.  Pre- vs. post-ARIMA (45, 0, 49) with smoother. 

 

 

Examining the SPC charts for pre- and post-ARIMA (45, 0, 49) results in Figures 92 and 

93.  The three original (pre-ARIMA) points in Figure 92 continue to be rejected in the 

post-ARIMA in Figure 93.  However, additional points are also rejected previous to data 

point 81; mean, UCL, and LCL have tightened in the post-ARIMA state.  This may 

provide clinical confidence that future points beyond data point 81 are realistic and 

should be addressed with the patient – before the patient has actually taken their FEV1 

value from their peak flow device, the next day or up to ten days in advance (Figure 91). 
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Figure 92.  Patient #3 FEV1 Shewart-Western Electric Analysis Pre-ARIMA.  Patient #3 

FEV1 Shewart-Western Electric analysis, using the original, pre-ARIMA FEV1 values.  

Note the three out-of-control points marked 5, 5, and 2 corresponding to the Western 

Electric Rules in Table 7.   
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Figure 93.  Patient #3 FEV1 Shewart-Western Electric Analysis Post-ARIMA.  This 

analysis is the post-ARIMA (45, 0, 49) for Patient #3.  Note the out-of-control points 

before Equivalent Date data point 81 compared to Figure 92.  From data point 81 

forward, only one point was out-of-control, data point 82, failing Western Electric Rule 1, 

per Table 7. 

 

The model summary for ARIMA (45, 0, 49) for forecasting the future point is shown in 

Table 24.  Model is considered stable and invertible.  Maximum iterations exceeded and 

Hessian is not positive.  A comparison of all models is listed in Table 25.  ARIMA (45, 0, 

49) Akaike’s Information Criteria (AIC) is better than many of the models, as is Mean 

Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE).  This satisfies the 

third specific aim and, with the ARIMA (45, 0, 49) R-square = .596, H1 is accepted and 

H0 is rejected. 
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Table 24.  Patient #3 Model Summary for ARIMA (45, 0, 49). 

Model Summary Parameter Value 

DF -14 

Sum of Squared Errors 0.007 

Akaike’s A Information Criterion -101.222 

Schwarz’s Bayesian Criterion 126.252 

R-square 0.595 

R-square Adjusted 3.309 

MAPE 5.064 

MAE 0.042 

-2LogLikelihood -291.221 
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Table 25.  Comparison of Models.  Results of attempted time series autocorrelation 

models.  ARIMA (45, 0, 49) is dark bordered. 

 

 

 

Model DF Variance AIC SBC RSquare  -2LogLH Weights MAPE MAE 

ARMA(60, 60)   40 -2.076e-7 -180.7284 108.99999 0.479 -422.7284 0.999650 5.141015 0.042  

ARIMA(0, 0, 0)   80 0.0077507 -162.7964 -160.4019 0.000 -164.7964 0.000128 8.830931 0.072  

AR(1)   79 0.0077672 -161.6315 -156.8426 0.010 -165.6315 0.000071 8.819699 0.072  

ARMA(1, 1)   78 0.0076881 -161.4564 -154.2730 0.032 -167.4564 0.000065 8.712183 0.071  

ARMA(2, 2)   76 0.0075686 -160.7106 -148.7383 0.070 -170.7106 0.000045 8.520167 0.069  

ARMA(1, 2)   77 0.0077118 -160.2364 -150.6586 0.042 -168.2364 0.000035 8.668685 0.071  

Simple 
Exponential 
Smoothing( Zero 
to One ) 

79 0.0078488 -155.3736 -152.9916 -0.05 -157.3736 0.000003 8.871462 0.073   

ARMA(5, 5)   70 0.0072135 -152.9262 -126.5873 0.122 -174.9262 0.000001 8.255124 0.067  

ARIMA(1, 1, 1)   77 0.007968 -152.4501 -145.3040 -0.04 -158.4501 0.000001 8.903106 0.073  

Damped-Trend 
Linear 
Exponential 
Smoothing 

77 0.0080527 -151.3736 -144.2275 -0.05 -157.3736 0.000000 8.871462 0.073  

ARMA(10, 10)   60 0.0061602 -150.2985 -100.0151 0.285 -192.2985 0.000000 6.973500 0.057  

ARMA(53, 53)   26 -8.305e-6 -149.2597 106.94633 0.549 -363.2597 0.000000 4.781040 0.040  

Double (Brown) 
Exponential 
Smoothing 

78 0.0086378 -142.6072 -140.2377 -0.21 -144.6072 0.000000 9.630992 0.078  

Linear (Holt) 
Exponential 
Smoothing 

77 0.0084945 -141.2297 -136.4908 -0.20 -145.2297 0.000000 9.588847 0.078  

ARMA(51, 51)   22 -2.076e-5 -134.7255 111.90271 0.474 -340.7255 0.000000 5.173569 0.042  

ARMA(15, 15)   50 0.00651 -133.9344 -59.70644 0.313 -195.9344 0.000000 6.962235 0.057  

ARMA(50, 50)   20 -4.684e-5 -130.5128 111.32656 0.592 -332.5128 0.000000 4.811297 0.040  

ARMA(49, 49)   18 -6.587e-5 -129.1002 107.95030 0.569 -327.1002 0.000000 4.879244 0.040  

ARMA(20, 20)   40 0.0058566 -127.2516 -29.07920 0.403 -209.2516 0.000000 6.361471 0.052  

ARI(1, 1)   78 0.0121836 -123.4736 -118.7096 -0.55 -127.4736 0.000000 10.422970 0.087  

ARMA(55, 55)   30 -1.045e-5 -123.2838 142.50008 0.463 -345.2838 0.000000 5.192873 0.043  

ARMA(51, 53)   24 -0.000027 -111.3781 140.03904 0.463 -321.3781 0.000000 5.313901 0.044  

ARMA(45, 45)   10 -0.001103 -102.1348 115.76011 0.574 -284.1348 0.000000 5.084743 0.042  

Seasonal 
Exponential 
Smoothing( 12, 
Zero to One ) 

66 0.0101807 -101.3475 -96.90853 -0.50 -105.3475 0.000000 10.843574 0.088  

ARMA(45, 49)   14 -0.000539 -101.2215 126.25117 0.596 -291.2215 0.000000 5.063732 0.042
344 

ARMA(40, 40)   0 . -100.1649 93.785460 0.566 -262.1649 0.000000 5.248708 0.043  

Winters Method 
(Additive) 

65 0.0103616 -99.34915 -92.69063 -0.50 -105.3492 0.000000 10.843449 0.088  

ARMA(47, 49)   16 -0.000435 -97.46418 134.79739 0.594 -291.4642 0.000000 4.952270 0.041  

ARMA(46, 49)   15 -0.000613 -96.19599 133.67113 0.586 -288.196 0.000000 5.106025 0.042  

ARMA(40, 49)   9 -0.003286 -84.01115 131.48928 0.580 -264.0111 0.000000 5.240258 0.043  

ARMA(1, 49)   30 306.96439 866.42773 988.54464 -3e+4 764.42773 0.000000 1251.0717 10.47  
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Section 7.  Validation with Clinician:  Establishing the Ground Truth 

Six clinicians were contacted regarding this study.  The first, a primary care physician in 

Phoenix, AZ, consulted with the author at length regarding how to approach the 

clinicians, what type of words to use (e.g., minimize the “tech talk”), and general 

considerations, such as limiting the face-to-face interviews to only 15 minutes. A copy of 

the scripted interview and associated charts used during the interview are included in 

Appendix B.  The student ensured clinician anonymity to lend candidness in their 

answers.  Selections a, b, and c were transformed to 1, 2, and 3 respectively to provide 

quantitative analysis. 

 

The remaining five clinicians were interviewed (four face to face, and one by phone).  All 

five are practicing physicians from Texas Tech Health Sciences Center, Lubbock, TX.  

Four are pulmonologists and one (Clinician #1) is an anesthesiologist. Tables 26-29 

summarize the quantitative responses to Questions 1-6 of the scripted interview.  It was 

encouraging to have results equal or better than 2 on a scale of 1-3, especially Question 

3.  While increased sensitivity might have been helpful (i.e., a scale of 1-5), the author 

found that the scale of 1-3 to be distinctive and minimalist enough to provide time for 

each clinician to ask questions and provide comments within the time allotment.  While 

15 minutes was the minimal interview time, the average was about 30 minutes.  The 

clinicians were engaged, curious, and anxious to help.  An overall average of 2.23 points 

resulted from the interviews. 
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Table 26.  Interview Questions and Clinician Responses.   

# Question 
Clinician 

Total Avg 
1 2 3 4 5 

1 If statistical process control were provided to you in 
addition to a clinical threshold you provide, would you 

3 2 2 2 2 11 2.2 

1)     Definitely not use it for interpreting a patient’s 
status 

2)     Might use it for interpreting a patient’s status 

3)     Definitely would use if for interpreting a patient’s 
status 

2 If statistical process control alone were provided to you 
without your clinical threshold, would you. 

3 2 3 1 3 12 2.4 

1)     Definitely not use it for interpreting a patient’s 
status 

2)     Might use it for interpreting a patient’s status 

3)     Definitely will use if for interpreting a patient’s 
status 

3 What are your initial thoughts about using statistical 
process control with vital signs? 

3 3 2 3 2 13 2.6 

1)     This type of approach is not appropriate for vital 
signs 

2)     It’s an interesting idea, but I will stay with current 
practice 

3)     I would like to see more of this type of approach in 
vital signs 

4 If you used statistical process control, would your 
clinical interpretation be 

3 2 2 1 2 10 2.0 

1)     No different than it is now 

2)     May be different than it is now 

3)     Very different than it is now 

5 If predicted points for vital signs were available to you, 
would you 

3 2 1 2 2 10 2.0 

1)     Definitely not use them 

2)     Might use them 

3)     Definitely would use them 

6 If predicted points for vital signs were available with 
statistical process control so that you could tell whether 
the patient was within his/her normal, would you 

3 3 2 1 2 11 2.2 

1)     Definitely not use them 

2)     Might use them 

3)     Definitely would use them 

  

SUMMARY STATISTICS 

18 14 12 10 13 67 

2.23 
TOTAL 
AVG 

SUM SUM SUM SUM SUM SUM 

3.0 2.3 2.0 1.7 2.2 

  AVG AVG AVG AVG AVG 
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Figure 94.  Stacked Chart Analysis of Clinician Responses to Questions 1-6.  Minimum 

total response is 5, mean is 10, and maximum is 15 points for all clinicians for each 

question. 

 

 

Figure 95.  Average Point Response to Questions 1-6 by All Clinicians.  Average is 2 for 

each question.  Overall average was 2.23 points. 
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Most revealing were the qualitative comments (see Table 27) during the interviews, 

including that of Question 7:  “What are your general thoughts about the use of this type 

of tool with vital signs to manage your patient’s clinical outcomes?”  General feeling 

about the topics of statistical process control and predictive analytics were “interesting” 

and ranged from decidedly excited about the possibilities (Clinician #1) to noticeably 

reserve or cautious (Clinician #4).  Each clinician was definitely unique in understanding 

and embracing the entirety of the concept.  Training on these type of tool(s) appeared to 

be a common theme, and reiterates what the original consulting physician observed. 
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Table 27.  Qualitative Responses by Clinicians. 

Clinician 
# 

Question 
# 

Comments/Quotes 

Clinician 
Ranked the 
Question 

(Scale 1-3) 

1 7 

I'm very positive.  This has been needed for a long time.  Confidence using 
these type of tools will increase with time, especially with behavioral 
prompts for the patients.  This would be extremely beneficial if I could have 
this and the other vital signs combined in the operating room. 

n/a 

2 3 We need experience to know if it's useful. 3 

2 4 We need to look at the increases carefully. 2 

2 6 I definitely would use them if we had a good track record. 3 

2 7 
I think it could help variability in the patient, especially when they have 
flare-ups but don't report them.  If you had this type of information, you 
could intervene.  Some patients are just indifferent. 

n/a 

3 1 

We have to take into account reimbursement.  It has the potential to be 
very useful.  When a peak flow device company wants to give me free 
devices to give to all my patients, I don't take them as it is taking away my 
bread and butter of earnings. 

2 

3 2 It's a learning opportunity  3 

3 3 Largely for financial reasons.  Potentially very valuable but doesn't mesh 
well with current reimbursement model 

2 

3 4 
Definitely expect to learn something.  If fact, even my clinical ideas might 
help the statistics learn.  We have a predicted value that's based on age, 
sex, and height and it doesn't change over time.   

2 

3 5 This isn't terribly helpful.  I am more interested in a general trend, especially 
over shift changes, rather than a point here or there in time.  

1 

3 6 I am more interested in present and past then the future 2 

3 7 

There is a big future for this, but not today.  It can become very valuable as 
medicine is changing.  One on one patient care is going to have to go.  This 
tool could decrease the number of patients and still generate revenue.  It 
can be used as a physician extender; for example, in nursing homes there 
is an increased concern about outliers.  Outliers can be potentially very 
valuable but current reimbursement models don't support.  It is potentially 
viable under managed care scenarios, yes, now it will work.  It is not good 
for solo practitioners, much better for group practice. 

n/a 

4 7 

If we could account for variables, it would be great but even us physicians 
don't know.  But not sure how I would use it in a clinical practice.  Might be 
good for devices but not on a patient.  We may or may not know the 
variables.  It's interesting.  ICU is a plethora of values, and it would be a 
useful tool and helpful in a controlled environment as I would know how my 
intervention impacts the numbers.  Doing this for septic shock would be 
best, along with electronic ICU (remote), as we need to have many points 
with long term trend changes, not just a flag for a point as is done now.   

n/a 

5 1 I would also consider where they live, like out in rural New Mexico, this 
would be helpful. 

2 

5 4 I don't want to ignore the data but it is not good 2 

5 7 
It's complicated and hard to understand, versus something I can glance at.  
I would probably be retrained in order to use it.  I'd like to learn more about 
it and learn about the clinical outcome. 

n/a 
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Chapter 5.  Conclusions and Recommendations 

This study provided an opportunity to examine twenty COPD and/or CHF elders’ peak 

flow FEV1 measurement in a telemedicine environment using an Intel Health Guide 

System® and its associated software.  It attempted to meet three specific aims and 

prove four hypotheses, summarized in Table 28. 

 

The first aim was to perform a Shewart-Western Electric analyses to examine 

statistically-derived threshold violations on FEV1 and compare to clinician-derived 

threshold violations for individual patients. This was accomplished by analyzing each 

FEV1 data point captured remotely from an Intel Health Guide System® following pre-

processing (i.e., removal of outliers, double readings, etc.).  Each data point was 

classified into one of four schemas:  TP, FN, FP, and TN.    The computed z value 

(1.1062) indicated a statistically valid difference (p<.005), rejecting H0.  Average 

increase from the clinician intervening when he shouldn’t have statistically to the clinician 

not intervening when he should have statistically was 1.914% (% Increase = (FN-

FP/total data points)*100). This results in less than an hour for a 40hr work week. 

 

However, the seemingly low average increase is deceiving, particularly when the range 

is examined (-17.544 to 32.051% increase).  This speaks to the wide variation seen in 

other statistics as well (i.e., skewness, mean, distribution, etc.) and may be minimized in 

the future by controlling sources of error.  Sources of error may include age, gender, 

prescription drugs, clinician intervention, compliance, co-morbidity, sample size, and 

other COPD and/or CHF vital sign measurements cited in Table 4 and 8.  It has been 

demonstrated that applying statistical process control to individual patient FEV1 

measurements may provide an option to the clinician, whether replacing or adding to the 
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clinician-derived threshold, but additional studies to validate improved patient outcome 

using SPC is advised. 

 

This study’s second aim was to apply predictive algorithms to individual FEV1 

measurements and compare the statistically- and clinician-derived threshold violations 

for the same population as described above.  The algorithms and models show promise 

for training and validating the predictive model for future FEV1 vital signs.  The training 

set resulted in an average Generalized R-square of 0.782, less than the targeted .80 for 

accepting H1, and, therefore, H0 is accepted for the training set.  The validation 

Generalized R-square at .804, on the other hand, did meet the target of .80, and, 

therefore, H1 is accepted for the validation set.  It can be said, therefore, that a 

statistically significant learning classifier in the form of a random K-fold was achieved for 

the thresholds.   

 

Once again, the variation observed in the Generalized R-square is noticeable: a range 

from .359 (extremely poor fit) to 1 (perfect fit) for the training set, and .156 to 1 for the 

validation set.  Determining the root cause of this significant variation in developing the 

system model was elusive and one may conclude that sources of error played a key role 

in the wide range.  Average number of misclassifications (7.05) and corresponding 

average training misclassification rate (.096, or 9.6%) were better than informally 

expected, and provides some confidence that predictive models for illnesses are 

possible.  Further studies to experimentally block sources of variation and error are 

recommended. 
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Hypothesis C of Table 28, also supported the second aim of this study.  This hypothesis 

compared pre- and post-predicted statistical zones (A (+/- 3σ), B (+/- 2σ), C (+/- 1σ), and 

this study added O (Out-of-Control per Western Electric Rules)). Two patients, #1 and 

#3, were analyzed and both R-square (.573 and .249, respectively) and Kappa (.703 and 

.147, respectively) for agreement between the pre- and post-predicted zone failed to 

meet H0 hypothesis that the zones were the same; H1 is accepted in both patients, 

indicating that there is a difference between pre- and post-predicted zones. 

 

Additional analyses of the patient population were enlightening.  Western Electric Rules 

1, 2, and 6 accounted for 77.4% of the total Rule violations, indicating shifts in process 

means.  Rule 2, nine points in a row in a single (upper or lower) side of Zone C or 

beyond, accounted for 42.5% of the total Rule violations alone.  This information may be 

helpful to clinicians if they were cognizant that the probability of nine points in a row 

occurring in a single side of the mean occurring was less than .0039.  

 

The relationship between disease severity and model fit was an interesting discovery.  

Patients segregated by disease state (mild, moderate, severe, and very severe) and 

their FEV1 data subjected to random K-fold indicated that severe and very severe were 

statistically a better fit to the model.  Mild and moderate Generalized R-squares were 

compared to severe and very severe Generalized R-squares, and found to be 

statistically different, with Wilcoxon/Kruskal-Wallis z values and Chi-Squares at -1.746 

and 3.204 for the training set, respectively, and at 1.138 and 1.399 for the validation set, 

respectively.  The difference between the two groups (mild/moderate and severe/very 

severe) may be explained by the significant physiological consumption of COPD and/or 

CHF at later disease stages.  A larger sample size with varying stages of disease and 
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sources of error controlled is recommended to validate these results found on twenty 

patients. 

 

Wilcoxson/Kruskal-Wallis Tests were also calculated for variance vs. disease severity  

(Figure 29), standard error vs. disease severity (Figure 30), and percent increase from 

FP to FN vs. disease severity (Figure 39).  All showed a significant difference between 

the mild/moderate and severe/very severe groups. The significance seen in the percent 

increase from FP to FN demonstrated that the severe/very severe population was 

actually less (mean=1.13) than the mild/moderate group (mean=4.28).  However, with 

the p>|z| = -0.4314 and p>Chi-Square = 0.4063, the difference is not strongly significant 

and further tests with more patients are recommended.  Other Wilcoxson/Kruskal-Wallis 

Tests were calculated for disease severity and coefficient of variance (Figure 31), 

skewness (Figure 32) , Kurtosis (Figure 33), precision (Figure 34), and recall (Figure 35) 

did not show a significant difference between mild/moderate and severe/very severe 

groups. 

 

In answering hypothesis D of the third specific aim as to whether an individual’s FEV1 

measurement can be forecasted prior to its occurrence, many models were explored 

(Table 25).  The mixed ARIMA (45, 0, 49) model with an optimized R-square fit of 0.596 

showed encouraging results in forecasting up to 10 points in advance. Fewer points to 

forecast were examined, but no improvement in the model occurred.  It is recommended 

that, as larger sample sizes of patients are secured with sources of error identified and 

blocked for analyses, additive models be explored.   
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Table 28.  Summary of Hypotheses, Specific Aims, and Results. 

Hypo-
thesis  

Specific 
Aim 

H0 H1 Source Result 

A 1 There will not 
be a 
statistically 
significant 
increase of 
clinical 
interventions 
when statistical 
thresholds are 
applied (False 
Negatives) 
prior to 
application of 
predictive 
algorithms. 
FN=FP 

There will be a 
statistically 
significant 
(p<.005) 
increase of 
clinical 
interventions 
when statistical 
thresholds are 
applied (False 
Negatives) prior 
to application of 
predictive 
algorithms. 
FN≠FP 

Final 
Construct, 
Feature 
Extraction 
and 
Selection 
using 
statistical 
process 
control 

H0 is rejected, 
based on z = 
1.106. H1 is 
statistically valid 
and true.  There is 
a statistically 
significant increase 
of clinican 
interventions when 
statistical 
thresholds are 
applied. All 
patients’ data 
examined. 

B 
 

2 An FEV1 
classification 
cannot be 
predicted, 
demonstrating 
less than an 
.80 
Generalized R-
square. 

An FEV1 
classification 
can be predicted 
demonstrating ≥ 
.80 Generalized 
R-square. 

Final 
Construct, 
System 
Evaluation 
using 
random k-
fold 

H0 is accepted for 
the training set 
(Generalized R-
square = .782), but 
H0 is rejected for 
the validation set 
(Generalized R-
square = .804). All 
patients’ data 
examined. 

C 2 The pre- and 
post-predicted 
data point will 
not 
demonstrate a 
statistical 
difference in 
zone 
designation. 

The pre- and 
post-predicted 
data point will be 
statistically 
different 
(p<.005) in zone 
designation. 

Final 
Construct, 
System 
Evaluation 

Patient #1: H1 is 
accepted based on 
R-square of .573 
and Kappa of .703 
(p<.005) for 
agreement. 
Therefore, H0 is 
rejected.  
Patient #3: H1 is 
accepted based on 
R-square of .249 
and Kappa of .147 
(p<.005) for 
agreement. 
Therefore, H0 is 
rejected. 

D 3 FEV1 cannot 
be forecasted, 
demonstrating 
less than .60   
R-square  

FEV1 can be 
forecasted, 
demonstrating 
≥.60 R-square 

Final 
Construct, 
System 
Evaluation, 
using 
ARIMA 
(45,0,49) 

Patient #3:  H1 is 
accepted based on 
R-square = .596.  
Therefore, H0 is 
rejected. 
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Clinician interviews were positive and generally above average for the tools’ potential 

capabilities; therefore, ground truth is validated based on the sample size (five 

clinicians).  Increased clinician input would be critical for development of this tool(s).  It 

would be imperative for developing such software to insure ease of use for physicians   

to enhance user experience as well as integration into the physicians’ course of patient 

analysis and outcome; it was clear during the interviews that statistics and/or analytics 

were areas that clinicians were not entirely convinced nor comfortable, but definitely 

willing to consider new approaches with further data and training.  The clinician accepted 

statistical process control (Questions 1-4) more than predictive analytics (Questions 5-

6), but further validation is needed given the small sample size of clinicians.  A prototype 

software package may be a solution to increased acceptance of predictive FEV1 or other 

vital signs. 

  

Based on this study, therefore, it can be concluded that it is possible and significant to 

compare statistically-derived thresholds to clinician-derived thresholds.  Although the 

increase in work effort by the clinician is less than 2%, the clinical implications to patient 

outcome do need to be explored further.  It can also be concluded that, by using a 

random K-fold neural net, validation of the predicted classification can be a relatively 

strong learning model.  While this study was not able to demonstrate agreement in 

zones before and after the predicted model, the ARIMA model was able to forecast 

future points with some confidence.  Lastly, it can also be concluded that disease states 

do have a statistical impact on model fit. 

 

Other analytic approaches may be considered for increase in model fit.  Applying 

support vector machines (SVMs) may be an important option to consider for 
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classification.  SVMs provide an optimal hyperplane for linearly separable patterns, but 

can be extended to patterns that are not linearly separable by transformation of original 

data to map into a new space (e.g., Kernel Function).  It is a pattern recognition and 

classification tool that may be a more elegant representation than random K-fold or 

ARIMA models.  Bundling different models, particularly with the grouping of many vital 

signs to ascertain patient status, may be an area for further study. 

 

By controlling sources of error and exploring other algorithms, the role of statistics and 

advanced analytics can and should be explored further in better managing chronic 

diseases such as COPD and CHF.  With the increase of captured patient data from new 

sources such as mobile and telemonitoring form factors, it may be one of the more 

plausible options to deal with the growing number of elders in the world. 
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Hello, my name is Celeste Fralick.  I am a doctoral student in Biomedical Engineering at 

Arizona State University.  I am studying the impact of statistics and predictive analytics 

in remote telemonitoring of elders with COPD and/or CHF.  My data is limited to only 

peak flow output, FEV1 (Forced Expiratory Volume in 1 second), and I have no other 

information about the patients. The FEV1 was captured automatically by their 

telemonitoring unit at home, and the time span is about 1 – 1.5 years.   

 

I would appreciate your candid answers to 7 questions.  This should take about 15 

minutes to complete.  Your answers will be used, but you will remain anonymous.  If you 

have any questions during the exercise, please don’t hesitate to ask. I will record your 

answers, and may take notes during our conversation.  

 

The first three charts (show Charts 1, 2, and 3) show three different patient’s FEV1 

average (mean) in green and 3 standard deviations away from the average (mean) in 

red. Upper Control Limit or UCL is +3 standard deviations.  Lower Control Limit or LCL is 

-3 standard deviations.   Each chart is personalized, as each person has their own 

average and standard deviation.  

 

A medical threshold was placed on each patient, so the clinician could be notified if the 

patient went below this number and he/she could intervene.  The next three charts (of 

the same patients) include that threshold (show Charts 4, 5, 6). 

 

in the 1950’s a method known as statistical process control (aka SPC) was developed 

that identified the probability of a point occurring in a chart.  Eight Rules were created to 
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help the reader of a chart know when to intervene, as some probabilities of a point 

occurring are less than .4%.  

 
In the same three patients, these Rules were applied and are indicated by a Rule 

number that failed (show Charts 7, 8, 9).  Most of the Rules that failed in these charts 

are Rules that indicate a shift in the mean or a shift in the standard deviation. (If asked to 

see the Rules, provide them.) The clinician is expected to intervene when a Rule fails, as 

the probability of that point occurring is so small.  Note that some clinician threshold 

points do not fail if statistical process control and the Rules are applied.  This infers that 

the patient’s data is within their normal variation according to statistical process control 

and the Rules about probability. 

The following questions assume that statistical process control and its Rules are 

provided in an automated format for ease of use. 

Questions: 

1. If statistical process control were provided to you in addition to a clinical 

threshold you provide, would you  

a) Definitely not use it for interpreting a patient’s status 

b) Might use it for interpreting a patient’s status 

c) Definitely would use if for interpreting a patient’s status 

2. If statistical process control alone were provided to you without your clinical 

threshold, would you. 

a) Definitely not use it for interpreting a patient’s status 

b) Might use it for interpreting a patient’s status 

c) Definitely will use if for interpreting a patient’s status 
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3. What are your initial thoughts about using statistical process control with vital 

signs? 

a) This type of approach is not appropriate for vital signs 

b) It’s an interesting idea, but I will stay with current practice 

c) I would like to see more of this type of approach in vital signs  

4. If you used statistical process control, would your clinical interpretation be 

a) No different than it is now 

b) May be different than it is now  

c) Very different than it is now 

 
One more chart, and we’ll be done.  Chart 10 shows a patient with their actual FEV1 in 

blue provided for points 1 – 81, and their predicted FEV1 in red for points 1 – 81, and 

new predictions 82  - 92 (show Chart #10).  So the blue line is before prediction and the 

red line is after prediction. 

The following questions assume that predicted points and statistical process control 

would be automated for ease of use 

5. If predicted points for vital signs were available to you, would you 

a) Definitely not use them  

b) Might use them 

c) Definitely would use them 

6. If predicted points for vital signs were available with statistical process control so 

that you could tell whether the patient was within his/her normal, would you 

a) Definitely not use them  

b) Might use them 

c) Definitely would use them 
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7. What are your general thoughts about the use of this type of tool with vital signs 

to manage your patient’s clinical outcomes? 

 

Do you have any final comments or questions?   Thank you for your time and 

consideration.  This concludes the interview. 

 

  

 

Chart 1.  Patient #1 
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Chart 2.  Patient #16 
 
 

 
 
Chart 3.  Patient #17 
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Chart 4.  Patient #1 (Clinician Threshold = .75) 

 

 

 

Chart 5.  Patient #16 (Clinician Threshold = 1.25) 
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Chart 6.  Patient #17 (Clinician Threshold = .52) 

 

 
 

Chart 7.  Patient #1 (Clinician Threshold = .75) 
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Chart 8.  Patient #16 (Clinician Threshold = 1.25) 
 
 

 
 
Chart 9.  Patient #17 (Clinician Threshold = .52)  
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Chart 10.  Patient #3 Predicted FEV1 Values 
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Rule Point Location Detection 

Rule 
1 

One point beyond Zone A  
Detects a shift in the mean, an increase in the standard 
deviation, or a single aberration in the process.    

Rule 
2 

Nine points in a row in a 
single (upper or lower) side of 
Zone C or beyond  

Detects a shift in the process mean.  

Rule 
3 

Six points in a row steadily 
increasing or decreasing  

Detects a trend or drift in the process mean. Small trends will 
be signaled by this test before Test 1.  

Rule 
4 

Fourteen points in a row 
alternating up and down  

Detects systematic effects such as two alternately used 
machines, vendors, or operators.  

Rule 
5 

Two out of three points in a 
row in Zone A or beyond and 
the point itself is in Zone A or 
beyond.  

Detects a shift in the process average or increase in the 
standard deviation. Any two out of three points provide a 
positive test.  

Rule 
6 

Four out of five points in a row 
in Zone B or beyond and the 
point itself is in Zone B or 
beyond.  

Detects a shift in the process mean. Any four out of five 
points provide a positive test.  

Rule 
7 

Fifteen points in a row in Zone 
C, above and below the 
center line  

Detects stratification of subgroups when the observations in a 
single subgroup come from various sources with different 
means.  

Rule 
8 

Eight points in a row on both 
sides of the center line with 
none in Zones C  

Detects stratification of subgroups when the observations in 
one subgroup come from a single source, but subgroups 
come from different sources with different means.  
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