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ABSTRACT

This research is focused on two separate but related topics. The first uses an
electroencephalographic (EEG) brain-computer interface (BCI) to explore the
phenomenon of motor learning transfer. The second takes a closer look at the EEG-BCI
itself and tests an adternate way of mapping EEG signals into machine commands.

We test whether motor learning transfer is more related to use of shared neural
structures between imagery and motor execution or to more generalized cognitive factors.
Using an EEG-BCI, wetrain one group of participantsto control the movements of acursor
using embodied motor imagery. A second group is trained to control the cursor using
abstract motor imagery. A third control group practices moving the cursor using an arm
and finger on atouch screen. We hypothesized that if motor learning transfer is related to
the use of shared neural structures then the embodied motor imagery group would show
more learning transfer than the abstract imaging group. If, on the other hand, motor learning
transfer results from more general cognitive processes, then the abstract motor imagery
group should also demonstrate motor learning transfer to the manual performance of the
same task.

Our findings support that motor learning transfer is due to the use of shared neural
structures between imaging and motor execution of atask. The abstract group showed no
motor learning transfer despite being better at EEG-BCI control than the embodied group.
The fact that more participants were able to learn EEG-BCI control using abstract imagery
suggests that abstract imagery may be more suitable for EEG-BCls for some disabilities,

while embodied imagery may be more suitable for others.



In Part 2, EEG data collected in the above experiment was used to train an artificial
neural network (ANN) to map EEG signals to machine commands. We found that our
open-source ANN using spectrograms generated from SFFTs is fundamentally different
and in some ways superior to Emotiv’ s proprietary method. Our use of novel combinations
of existing technologies along with abstract and embodied imagery facilitates adaptive

customization of EEG-BCI control to meet needs of individual users.
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PREFACE

This document is divided into two sections. The first uses an electroencephalo-
graphic (EEG) brain-computer interface (BCI) to explore the phenomenon of motor
learning transfer. The second takes acloser look at the EEG brain-computer interface itself
and tests an alternate way of mapping EEG signals into machine commands.

Our primary goal isto better understand the roots of motor learning transfer (MLT).
To that end we test whether MLT is more related to the use of shared neural structure
between imagery and motor execution or to more generalized cognitive factors including
attention, motivation and arousal. Experimental design and analysis of results are discussed
in Chapters 1 through 7.

Our secondary goal is to explore alternate ways of mapping EEG signals into
machine commands. To explore this we use an artificial neural network (ANN) to map

EEG datainto machine commands. This is further discussed in Chapter Eight.
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SECTION 1: THE TRANSFER OF MOTOR LEARNING
CHAPTER ONE
INTRODUCTION.

Thorndike et al., (1901) first described the transfer of learning as the improvement
of one mental function based upon the efficiency of another mental function. Since then,
the transfer of learning has been studied in many contexts, from simple reaching
movements to coordination dynamics and complex abstract thinking (Adams, 1987).

We are primarily interested in the transfer of motor learning skills, where speed and
accuracy learned in one scenario facilitate learning a similar motor skill in another context.
Ample experimental evidence suggests that practice using only motor imagery (Ml)
facilitates performance of the homologous physical task. Some have hypothesized that
learning transfer results from the use of shared neural circuitry between imagined and
physical tasks: practice with one leads to improvement in the other (Decety, 1996; Y aguez
et al., 1998).

Though an appealing hypothesis, the fact that learning also transfers to non-
homologous motor systems has led others to suggest that improvements in motor
performance after motor imagery is a much more general phenomenon related to
motivation, attention, general arousal and other cognitive processes (Paivio, 1985; Hall et
al., 1998; Ste-Marie & Cumming, 2001). In astar line-drawing task, transference of skills
occurred between distal and proximal musculature (Vangheluwe et al., 2004). Intermanual
transfer of a complex finger tapping sequences transfers actually better from imagery than
from actual physical practice (Amemiya et a., 2010). In all the aforementioned cases,

improvements in performance transferred to non-homologous musculature, suggesting that
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the cognitive components of the task may be more important than the motor components
for learning transfer.

To test which hypothesis best models reality, we teach participants to control a
machine using a brain-computer interface (BCl) and different types of mental imagery.
Practice controlling a BCl using abstract disembodied imagery should only lead to
improvements in performing the physical task if transfer is a general process involving
motivation, focus, general arousal and other cognitive processes. If, however, transfer of
motor learning is more related to the use of neural structures shared between imagined and
physical tasks, then no learning transfer should occur after practice using disembodied
abstract imagery for BCI control.

We chose an off-the-shelf EEG device from Emotiv, Inc. because it is non-invasive
and relatively easy to use. The intricacies of this device and how it was used are discussed
in Chapters 4 and 5. An EEG-BCI alows us to perform a physical task without engaging
the neural structures normally associated with the motor execution of that task. We
compare and contrast motor learning transfer (MLT) using embodied mental imagery
(EMI) and disembodied abstract imagery (AMI). A control group merely practices
physically performing atask for the same amount of time that the other groups mentally
rehearse their assigned imagery tasks.

In EMI, the execution of the physical task is merely imagined thereby recruiting
the use of neural structures normally associated with the performance of the actual physical
task. In contrast, because abstract disembodied conceptsare used in AMI, we engage neural
structures that are not normally associated with the performance of a physical task. By
comparing the transfer of motor learning in these three conditions (EMI, AMI, and control)

2



we provide evidence that supports either the notion that MLT results from the use of shared
neural structures between imagined and physical tasks, or that it is a result of other
mechanisms including motivation, attention and general arousal. If MLT results from the
use of shared neural structures involved both in motor imagery and in the performance of
the physical task, wewould expect greater learning transfer when embodied motor imagery
is practiced than when non-embodied abstract motor imagery is used. On the other hand,
if MLT is more related to attention, motivation and arousal, then we would expect little
difference in transfer between the EMI and AMI conditions.

Our secondary goa was to explore an aternate way of mapping EEG signals into
machine commands. An off-the-shelf EEG-BCI was used to perform the above experiment.
However, the process of mapping EEG signals to machine commands is proprietary. In
chapter 8, we describe an alternate method of mapping EEG signals to machine commands
using an artificial neural network (ANN) and short timeinterval FFTs. We suggest that this
open source method of mapping EEG signals to machine commands will foster the
development and proliferation of EEG-BCI technology for all and facilitate superior EEG

control performance for alarge variety of individuals.



CHAPTER TWO
MOTOR LEARNING TRANSFER (MLT).

There is already much experimental and clinical evidence to suggest that motor
performance can be improved by mental imagery of the motor function in question. Perry
(1939) used five tasks of different complexity (three hole tapping, card sorting, inserting
round and sgquare pegs into holes arranged in a grid, amore cognitive task where digits are
substituted for symbols, and finally mirror tracing task). Imaginary practice improved
performance in the actual motor execution of the five tasks to varying degrees. He found
that five imaginary trials (300 seconds of total practice) in each task were as good as 4
actual peg board trials, 3 actual digit substitutions, 2 actual mirror tracings, 1 actual card
sorting, and 1 actual hole tapping trials. Yaguez et a. (1998) used two tasks. He had
subjects use ballistic movements to connect circles and draw identical figures at various
scales. He found significant improvements in both speed and accuracy of movements after
10 minutes of imaginary practice doing the tasks. Gentili et al. (2010) found significant
improvements in speed and accuracy in an arm pointing task after imagery practice. They
also found partial improvement the task performance using the opposite arm in a mirrored
task. Performance improvements suggested that subjects were able to internally simulate
the dynamics and kinematics of their arm movements with apparently high precision.
Debarnot et al. (2011) used mental imagery of finger tapping patterns rehearsed at different
speeds and found that systematic increases in the speed of mental rehearsal did not translate
to increased speeds in actual performance. However, mental rehearsal at any speed

improved actua performance.



Perhaps more surprisingly, mental imagery seems to improve not only
coordination, but also increases the amount of force muscles involved can generate. For
example, in afour week training period, EMI increased strength in an isometric movement
by 22% (as compared to 30% for actual movement) without increasing electromyographic
(EMG) activity (Yueand Cole, 1992; see also Ranganathan et al., 2004). Reiser et al., 2011
combined different proportions of imaginary muscular contractions with actual isometric
contractions. They concluded that significant strength gains can be achieved even when up
to 75% of physical training units are replaced by imaginary units.

As a result, mental imagery is being increasingly used in strength training and
rehabilitation (Silvoni et al., 2011 - stroke rehabilitation; Reiser et al., 2011 - grength
training; Page et al., 2011 - stroke rehabilitation; Silvoni et al., 2009 - Amyotrophic Lateral
Sclerosis (ALS); Buttler and Page, 2006 - stroke rehabilitation).

Why should the aforementioned improvements in physical performance occur as a
result of mental imagery? Neurophysiological studies have reported that imagined
movements and physically executed movements involve the same neural substrates (Miller
et al. 2010; Ehrsson et a., 2003; Jeannerod 2001; Filimon, 2004). Because imagined
movements share the same temporal and kinematic relationships, neural infrastructure, and
autonomic responses (heart and respiration rates) as the corresponding physical
movements, it is reasonable to expect that practice in one will have some impact on the
other (Decety, 1996; Y aguez et al., 1998).

Although appealing, the above theory does not account for the fact that transfer of
motor learning also occurs when one practices a motor task with one set of muscles and
later tests performance with another. For instance, right-hand learning of a finger maze

5



enhanced opposite hand performance learning in avertically flipped maze, while left-hand
learning enhanced opposite hand learning on a mirror reversed maze regardless of hand
dominance (Stoddard and Vaid, 1996). In a star line-drawing task, transfer of skills
occurred both from gross motor movementsto fine motor movements, aswell as, from fine
motor to gross motor (Vangheluwe et a., 2004). In fact, Yasuda and Miyamura (1983)
found that even unused ipsilateral musculature strength is improved after embodied motor
imagery (EMI). Amemiya et al. (2010) suggested that if motor execution and
corresponding feedback isimportant for intermanual transfer, then motor execution would
lead to more intermanual transfer than imagery. However, if abstract knowledge acquired
during training is more important, then intermanual transfer during imagery would be equal
or greater for imagery than motor execution. Using acomplex finger sequence tapping task,
they found that intermanual transfer was greater for imagery than for the manual execution
groups. Keeping in mind that EMI activates somatotopically organized sections of the
primary motor cortex in a systematic manner and activates body-part-specific
representations in the nonprimary motor areas (Ehrsson et a., 2003), learning transfer to
non-homologous areas suggests that motor transfer involves more than the activation of
homologous neural structures. If networksfor activating different body parts are different,
how then can motor learning spill out into areas not directly involved in the imagery task?
The above findings suggest that the transfer of motor learning must be a far more general
process than the shared neural structures hypothesis presumes. Transfer of motor learning
to different body parts involving different neural structures suggests that the transfer of
motor learning has more to do with arousal, attention, mental exercise or other cognitive
process (Paivio 1985; Hall et al., 1998; Ste-Marie and Cumming, 2001). So far, the transfer

6



of motor learning has been investigated in neural mechanisms involved in an embodied
framework®. That is, when one imagines moving one's limbs as if one were physically
performing a task, one becomes better at physically executing the task. Using an EEG
device with mental imagery is essentially the same thing except that a physical task is
executed by amachine asadirect result of imagery. When one practices imagining amotor
act to dlicit aresponse from a properly calibrated EEG-BCI, the embodied mental imagery
(EMI) should translate to measureable improvements on performance of the actual physical
task.

To test whether rehearsal with mental imagery transfers to physical performance
because of activation of homologous neural structures or because of more general cognitive
processes we trained participants to use an EEG-BCI device to control a mouse on a
computer screen using two distinct types of imagery. First, participants imagine moving
their arms and fingers to move the cursor while keeping their arms and fingers resting
comfortably on their laps. We then use the corresponding EEG patterns to generate control
signalsto move the mouse on the screen. If only rehearsal with EMI leadsto improvements
in the physical performance of the task, this will support the notion that it is the exercise
of neural resources used in common between imagery and physical practice that leads to
transfer. In contrast, if transfer also occurs when participants imagine disembodied abstract
concepts, thereby engaging neural structures not involved in performance of the physical
task, this will support the notion that transfer is the result of more general cognitive

processes including attention, motivation, and arousal.

! Embodied also includes a third person perspective (asin seeing oneself perform an
action).
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We explore if practice visualizing abstract concepts (AMI), as opposed to
visualizing embodied tasks (EMI) aso translates to improvements in the actual
performance of physical tasks. Using abstract thought to control a device is an important
consideration? since the target of some BCI systems are those with motoric handicaps due
to some disruption in their neural infrastructure. Controlling tasks by contemplating
abstract ideas may be particularly relevant for people with Amyotrophic Lateral Sclerosis
(ALS) ® whose primary motor cortex activation is reduced or altered (Stanton, et al., 2007;
Riva et al., 2012), and people with Parkinson's disease® or for stroke survivors who may
be suffering from reduced motor abilities. Patients with left frontal and right posterior
parietal lesions, for instance, are unable to imagine a motor task (Johnson, 2000).
Contemplating abstract thoughts instead of visualizing embodied movements may offer an
alternative means of machine control for these individuals. Contemplating abstract
thoughts as a means of machine control may also produce EEG signals less contaminated
by concurrent observations of the movement of others. These “cleaner” signals may be a
benefit for EEG-BCI control in general. A comparison of EEG-BCI control using EMI or

AMI will be done in Chapter 7

2 Kostov and Polak , 2000 werethe first to mention the possibility of using abstract thoughts
to produce EEG signals for use in BCI's, but to our knowledge it has not been well tested.
3 ALSis adegenerative disease that affects the metabolism of motor neurons in the cortex
and spinal cord. Because the primary motor cortex is involved in motor imagery (Snitzler
et al., 1997), it islikely that motor imagery in ALS patients will also be adversely affected.
4 Yaguez et al., 1999 showed those with Parkinson’s disease did not benefit from motor
imagery, whereas person’s with Huntington’s disease did.
8



CHAPTER THREE

EPOC® EEG BRAIN-COMPUTER INTERFACE (BCI).

In a typical EEG-BCI, participants generate a control signal by imagining the
movement of their arms or fingers (embodied homologous mental imagery). To move a
cursor up or down, a person simply imagines moving the cursor up or down with hisor her
arm or finger. The unique constellation of EEG patterns generated with each period of
mental imagery are then mapped to desired commands, which can be used for controlling
adevice.

However, theoretically, any consistently distinguishable signal can be used for
control. We therefore also asked some participants to contemplate abstract disembodied
concepts (e.g. happiness, fulfillment, regret, justice). Then, just aswith embodied imagery,
we mapped the corresponding EEG signatures to specific control signals (up, down, or
neutral).

EEG signals are a time series of voltages read at the surface of the scalp. The
locations of the electrodes and their associated namesare depicted in Figure 1. EEG signals
are notoriously noisy and impossible to interpret without the aid of sophisticated
mathematical analysis. Figure 2 shows a typical time sequence of raw EEG data. It is
important to note that the skull acts as alow passfilter (i.e. permits only low frequencies
to pass). Signals reaching the surface are relatively weak compared to electromyographic
(EMG) signals emanating from the musculature on the surface of the skull. Figure 3 a-d
shows how EMG signals completely overshadow EEG signals when cranial musculature
is activated. These figures are presented for three reasons. First, they demonstrate that

EMG signals are easily distinguishable from EEG signals by their amplitude. Weak EMG

9



signals are, however, an unremovable confound. Secondly, these figures highlight the
importance of remaining relaxed and as immobile as possible during EEG recordings and
EEG-BCI control. Finally, these figures suggest that the amplitude of the signals may be
used as amarker for EEG vs. EMG signals. A more detailed discussion on how to interpret

these raw EEG signals follows in Chapter 4.

Figure 1. The relative locations of electrodes used in this document and their associated
labels.

10
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Figure 2. Raw EEG signals from the 14 electrodes depicted on the surface of the skull at

the top left of the figure. The signals are from a user sitting still in front of a monitor in
arelaxed state.
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Figure 3. EEG/EMG data. Low amplitude waves correspond to EEG signals. (a) High
amplitude waves correspond to the subject’ s eyes moving side to side. (b) High amplitude
signals correspond to the eyes moving up and down. (¢) Moving the head up and down.
(d) Swallowing. The green and red vertical lines indicate the onset and end of muscle
activity.
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CHAPTER FOUR
DATA ACQUISITION.

Figure 4 shows the wireless EPOC® headset used for collecting EEG signals. We
chose an EPOC® EEG headset for several reasons. First, it is compact and wireless.
Second, it isrelatively inexpensive and easy to use. Thirdly, a software development pack
is available that allows us to write cussom code for any application we wish to develop.
Finally, we were able to retrieve and record al 14 channels of EEG datain “real” time.

Machine commands along with the EEG readings associated with those commands
are transmitted wirelessly every 100ms or so. Although each electrode is sampled every
7.8 ms, they are unfortunately not time stamped. It is therefore necessary for the computer
receiving the EEG signals to back timestamp the signals relative to the time the packet of
signals was received.

The electrodes are made of a felt material which must be kept moist with a saline
solution (i.e. contact lens solution) in order to maintain electrical conductivity. Though
simple to use, the fact that electrodes must be kept moist makes the machine unsuitable for

long term continuous use. It is, nonetheless, useful as aresearch tool.

13



Figure4. Thewireless EPOC® headset. There are 14 useable electrodesin all: 8 frontal
electrodes, 2 reference electrodes, 2 occipital, 2 temporal, and 2 parietal electrodes. Two
accelerometers are also available to detect movement forward and back as well as side to

side. We elected not to use these signals at this time.
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EEG CALIBRATION AND MACHINE CONTROL

The EPOC® wireless headset must first be calibrated for each participant. To
calibrate, users must hold an image in mind for 8 seconds while the apparatus records the
EEG traces of 14 electrodes placed on the scalp. The set of EEG traces recorded for that 8
second interval are then assigned to a particular control command (i.e. move cursor up,
down, or keep still). After each 8 second calibration, the participant reimagines what they
previously held in mind for 8 seconds in an attempt to move the cursor. This process is
repeated several times until the user can reliably move the cursor in the desired direction
by reproducing the EEG pattern recorded for each control signal. Participants may require
many recordings before the apparatus can reliably distinguish consistent differences in the
EEG traces. Indeed, many participants were unable to produce reliably repeatable signals
necessary for machine control in the two hour period alotted for the experiment described
in Chapters 5-7. | himself required several hours over a one week period before reliable
control could be achieved. We presumed that the ability to stay focused and consistently
reproduce the imagery used when recording without extraneous signals is paramount. The
algorithm used for this decoding is proprietary to Emotiv Corporation. We attempted our
own method of decoding EEG signals in Chapter 8.

The EEG-BCI basically consists of the EEG apparatus and C++ and Python code
to map EEG signals and EPOC® commands into actions on acomputer. The C++ program
simply collects the EEG signals and EPOC® commands, then sends the resulting data
packets to the receiving application. Each data packet consists of an EPOC® derived
machine command and the preceding EEG signals leading up to that command. The

Python program receives the EEG data and EPOC® commands and converts them into
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mouse movements on the screen. Here we focused on just three commands: moving the
mouse up, down, and remaining motionless (neutral).

The code for both of these programs is freely available by contacting the author at
flavio.dasilva@asu.edu. As mentioned earlier, calibration and training is an iterative
process. Calibration involves recording 8 sec EEG samples of the user relaxing and
clearing their mind, imagining moving their arm and fingers up and down, or imagining
distinct disembodied abstract concepts. The recorded EEG patterns are then assigned to
one of three controls: up, down, or neutral. Once calibrated, it becomes the user’s job
during training and practice to learn to recreate, as close as possible, the EEG patterns
generated during calibration. Several EEG recordings are made of each desired control
command using assigned imagery method, interspersed with periods of practice until the
user achieves a certain level of competence and confidence. Miller et al. (2010) have
shown that with feedback, participants can learn to modify both their high (76-100 Hz) and
low frequency (8-32 Hz) cortical surface potentials. Although Miller et al. (2010) used
electrocorticography (ECoG)® instead of EEG, Miller’s low frequency range (8-32 Hz) is
compatible with non-invasive scalp surface EEG recordings. Therefore, we were confident
that users would be able to learn adequate machine control using EEG. A more precise

description of the training process is discussed in Chapter 5.

> ECoG isamethod of recording electrical activity in the brain by placing el ectrodes directly on the surface
of the brain, bypassing the skull)
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CHAPTER FIVE
EXPLORING MOTOR LEARNING TRANSFER

Hypotheses.

We have several distinct hypotheses about motor learning transfer from mental
imagery practice and performance using an EEG-BCI. First, because abstract imagery is
more distributed throughout the brain than the imagined motion of one’s arm and finger,
we expect that it will be easier to learn EEG-BCI using abstract imagery than embodied
imagery. That is, we expect more participants to be able to master EEG-BCI when using
abstract imagery than when using embodied imagery (Hia). We aso expect that the time
required to master EEG-BCI will be less for those using abstract imagery than those using
embodied imagery (Huip):

Hla: Nabstract BCI > NEmbodied BCI (1)
Hlb: Tabstract BCI < TEmbodied BCI (2)

Secondly, we expect that if motor learning transfer occurs at all, the mean RM Seror®
in performing the actual motor execution of the task will be smaller after practice than

before practice for all three conditions:

HZa: RMSErrorbefore > RMSErrorafter (3)

If motor learning transfer (MLT) is due to the shared use of neural structures
between imagery and motor execution, then the mean MLT should be greater for the

embodied group than for the abstract group. That is, the reduction in RMS error should be

6 See page 20
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greater for the embodied group than for the abstract group (Hazb). Furthermore, we expect
that the number of participants who showed MLT will be greater in the embodied group

than in the abstract group (Hzc).

HZb: ARlv[sError embodied > ARlv[sError abstract (4)
HZC: NEmbodiedMLT > NAbstract MLT (5)

On the other hand, if motor learning transfer is due to motivation, arousal, and other
psychological factors, and assuming both groups are equally motivated, the mean MLT (or
the reduction in RM S error) should be the same for the embodied and abstract groups (Hzd).

In addition the number of participants who demonstrate ML T would be the same for both

groups (Hae)
HZd: ARNISError embodied = ARNISError abstract (6)
HZe: NEmbodiedMLT = NAbstract MLT (7)

We expect that manual motor practice will, of course, produce the most learning

transfer from practice to execution.

H3 : ARlv[sManual > or(ARMSError embodied’ ARlv[sError abstract) (8)
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Experimental Design.

We chose a 2x3 within subjects design to compare each participant’s ability to
perform a physical task pre- and post-training (see Table 1). We divided 36 subjects into
three groups. Group 1 learned to control the cursor by imagining moving their arm and
finger and used the associated EEG signalsto control the cursor. Group 2 learned to control
the cursor by contemplating different abstract (disembodied) concepts (e.g. courage, fear,
justice, freedom, etc.) and used the associated EEG signals to control the cursor. Group 3,
the control group, merely practiced moving the cursor by physically touching the computer
screen and moving their arm and finger up and down. The same pre- and post-training
manual performance measures were taken for each member of each group. Each group
received as much training as required (up to 1.5 hours) to learn to control the cursor using

one of the two methods of EEG control (embodied and abstract imaging).

Table 1. Experimental designisa 2 x 3 within subjects design. Each participant’s ability
to manually perform the motor task will be measured before and after one hour of
training in one of three conditions: abstract imagery, embodied imagery, and actual
physical practice.

Type of practice 1 — 1.5 hours)
Embodied Abstract Physical
Il magery Il magery (Control)
Pre-practice Performance Performance Performance
measure measure measure
Pogt-practice Performance Performance Performance
measure measure measure
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The Task and Associated Performance M easures.

In order to measure learning transfer, we used a sine wave tracking task similar to
Carey (1990) and Carey et al. (2002). Participants are required to move a cursor up or down
in order to follow a target bobbing up and down on an oscillating sine wave moving
horizontally across a computer touch screen. A touch screen was used (Dell I nspiron 1090)
so participants could freely slide their index finger up and down on the screen to move the
cursor. A trial consisted of moving the cursor (with a finger on atouch screen) so that it
remained as close as possible to the target moving up and down for one minute. Figure 5
shows a fictitious participant performing the physical task.

The root mean squared error between the vertical position of the cursor and the
target was used to assess the participant’ s ability to physically perform the motor task. The

root mean squared error was computed as follows:

’Z(C —Ty)?
RMSrror = YTY) (9)

Where:
Ty = the vertical position of the target (red ball)
Cy = the position of the cursor (white ball) controlled by the participant

N = isthe number of samples (recorded a 100 times per second)

Learning transfer was assessed by comparing each participant’s cursor tracking
ability, the RMS,,.,, before and after an hour of training using one of three methods to
move the cursor: 1) Embodied Motor Imagery: using EEG signals generated by only

imagining moving one's finger and arm up and down on the screen, 2) Abstract Motor
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Imagery: using EEG signals obtained by contemplating more abstract concepts like love,
hate, and justice to move the cursor, or 3) Physical Movement: using only index finger and
arm movements on atouch screen as in the pre and post training trials. Five one minute
pre- and post-BCl EEG training test trials were used to assess the participant’s ability to

perform the tracking task.

Score: 26 dist 134 U

Up Sensitiity -
D Sensitivity +
On Sensithity -

M Sensitivity +

" Wiave Speed .
" CurSpeed+

Figure 5. The user interface for the pre- and post-practice test sessions. This shows a
sample of the display presented to the user along with abluetrail generated by their cursor
movements. The white line is an oscillating sine wave moving to the left. The computer
tracks the vertical direction of the sine wave as it passes through the center of the screen
with the red ball and line. In this figure, the participant manually moves the white ball
by touching the screen with his’her finger and moving it up and down. This manual
method of moving the cursor was used to assess the participant’s ability to track the
moving red cursor before and after training. During training only, each participant was
assigned to practice moving the white cursor up and down using one of the three methods
described above (see text). The dark blue line shows the history of the participant’s
movements.
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Participants.

Participants were recruited from the pool of graduate and undergraduate research
assistants in the psychology and bioengineering departments as well as many volunteers
from an undergraduate statistics class who earned extra credit for their participation. All
participants signed informed consent forms and the experimental protocol was carried out
in agreement with legal requirements and international norms in accordance with the
Institutional Review Board (IRB). Participants were not detained more than two hours,
and were informed to take as many breaks as necessary to prevent fatigue. All participants
indicated that they chose to volunteer because they were interested in learning to control a
machine using only their thoughts. As a courtesy to those who were randomly assigned to
the control condition (to physically practice moving the cursor up and down using their
finger for an hour), we allotted forty-five minutes at the end their session to teach them
how to use EEG for machine control.

Following recommended Emotive protocol, participants were situated in a quiet
room and fitted with the EPOC® EEG apparatus (Figure 4) which was adjusted and
moistened with saline solution until all electrodes provided a consistently strong signal.
EEG signals were acquired while participants sat upright in a chair with hands resting in
their laps at arm’s length away from a computer monitor. Participants were then instructed
to relax their muscles and remain still to reduce undesirable noise in the EEG signals.
Participants with particularly thick hair, wearing hair extensions, or with any other
characteristic that made EEG signal reception impossible were discontinued fromthetrials.

Only one participant during pilot testing had to be rejected for these reasons.
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EEG-BCI-Training.

Prior to use, the EPOC® wireless headset must first be calibrated for each
participant. After moistening each electrode, the apparatus was placed on the participant’s
scalp such that the front electrodes were three finger widths from the top of the brow, and
the two reference pads are comfortably situated on the bone behind the ears (the mastoid
process). Participants were then informed to sit relaxed in front of a computer monitor
with their hands comfortably on their laps. Prior to calibration, participants were also
shown a graphical representation of their EEG signals (Figure 2). They were then asked to
cough, frown, smile, and move parts of their body asthey observed the patterns of the EEG
voltages (as in Figure 3). This was done so we could stress the importance of remaining
still and calm throughout the experiment.

Once the above preliminaries were completed, participants were asked to clear their
minds and relax with their eyes open while their EEG patterns were recorded for eight
seconds. These EEG patterns were then assigned to the neutral command. Next,
participants were again asked to relax and keep their eyes open as they imagined either
moving the cursor up using their finger and arm, or to imagine a previously agreed-to
abstract concept per their assigned condition. During this 8 second mental imagery period,
we again recorded the EEG signals and assigned them to the up command. Finally, we
asked the participants to remain relaxed for another eight seconds as they imagined either
moving the cursor down with their finger and arm, or another distinctly different pre-
agreed-to abstract concept. These EEG recordings were assigned to the down command.

Oncethispreliminary calibration was completed, the cursor began to move and participants
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were allowed to practice moving the cursor up and down by repeating their pre-recorded
mental imagery.

Initially, performance may appear random, in which case more calibration
recordings are done as described above. Periodic testing is performed to assess participants
level of control. Testing is performed as depicted in Figure 6. The fixation phase is
coincident with an audible “beep” and remains visible for one second. An instruction then
follows which remains visible for 3 seconds. The instruction and fixation cross is then
removed as the to-be-controlled cursor appears for 10 seconds. During this phase, the
participant attempts to move the cursor as instructed by using the same mental imagery
used during the recording phase. The percentage of cursor movesthat were consistent with
the instruction are prominently displayed at the edge of the screen. In the embodied
condition, the words “up”, “down”, or “neutral” will appear on the instruction screen. In
the abstract condition, a single word will appear to remind participants of the pre-agreed-
to abstract concept to be imagined. Depending on the result of the testing, more eight
second recordings of each of the command conditions may be warranted. This iterative
calibration and training process is continued until the participant is either able to correctly
produce up, down, and neutral commands 50% of the time or their allotted time is up. Note
that the correct move will be performed correctly 33% of the time by chance). If and when
the participant is able to perform each of the desired moves 50% of the time, EEG
calibration is fixed. The resulting calibration parameters remain unchanged throughout the
remainder of the training period. Since the participant’s intent is presumably consistent
with the instructions given on the screen, these recordings are later used to train the neural
network discussed in Chapter 8.
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Once participants reached the minimum of 50% correct on each of the commands,
they were then given the option of practicing using imagery to cause the cursor to follow
the moving sine-wave target using the same screen that was used during the physical task
(except with EEG-BCI control this time), or to continue practicing as in the calibration
phase. In either case, mental imagery for control was practiced for one hour. During this
practice phase participants were encouraged to take as many small breaks as needed to
avoid fatigue.

After one hour of practice moving the cursor in the assigned condition, participants
were given afew moments of rest. After this small resting phase (5 minutes or less), each
participant was again tested on their ability to manually track the moving target by using
their finger to move the cursor on a touch screen as they did prior to EEG-BCI training.
The ability to control a cursor using the EEG-BCI, as well as the assessment of motor

learning transfer, is discussed in the next chapter.

Fixation

| nstruction
| Task

| Instruction
| Task

| Instruction
Neutralr—/_. | Task
Down —/\/1 r(.

Up A

Figure 6. EEG BCI testing phase. The process starts with a 1 sec fixation screen, followed
by a 3 sec instruction (“up”, “down” or “neutral” in the embodied condition, or the agreed
upon abstract concept in the abstract condition). After the three second instructions, the
participant is given 10 sec to move the cursor using only their thoughts. The process is
repeated for each command.
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. . Percent correct DN=

Desired Move: DOWN Percent corrct UP-
Time Elapsed:  -0.009 min

Target pos: 380 350

Up Sensitivity = 1.000
Dn Sensitivity = 1.000
Neut Sensitvty. = 2.000

Wave Speed = 0.0050
Cursor speed = 15

Figure 7. Theinterface for calibration and training. The user is instructed to imagine an
abstract concept or an embodied motion for 8 seconds. The resultant EEG patterns are
assigned to aparticular cursor direction. After each 8 second session the cursor is allowed
to move when the user again imagines as instructed. 1f the cursor movesin the appropriate
direction as instructed 50% of the time, the machine is considered properly calibrated.
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CHAPTER SIX

RESULTS

Proportion of participantsableto learn EEG brain-computer control.

First, it isimportant to notethat not all participants were able to learn to control the
cursor with the EEG signals emanating through their skulls. Figure 8 (a) shows the
proportion of participants that were able to learn to criteria (LTC). LTC indicates that a
participant was able produce the desired machine command (up, down, or neutral) a
minimum of 50% of the time as compared to random which is 33.33%. Because
participants volunteered for the study in order to learn EEG machine control, we allotted
45 minutes after al training and testing was completed to teach the control group how to
use EEG signals for machine control to prevent them from becoming disappointed. Figure
8 (b) shows the proportion of those in the control group, who practiced the physical task
for an hour first, that were able to learn to criteria within the last 45 minutes’.

There were no statistically significant differences in the proportion of participants
that were able to LTC using abstract imagery versus embodied imagery (two-tailed t-test,
mean proportion change = 0.25, t(22)=2.074 , p=0.237). Only 41% embodied versus 66%
of abstract participants were able to learn EEG-BCI control to the 50% correct LTC level
in the time allotted. There adso was no datistically significant difference between those
who practiced the physical motor task first and those who did not in terms of the proportion
of participants able to learn control in the time allotted (two-tailed t-test, t(33)=1.193 ,

p=0.242).

7 Randomized between EMI and AMI
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Figure 8. (@) The proportion of participants that were able to reach a minimum of 50%
correct on each of the machine commands (up, down, and neutral). Error bars are std error
(Stdev/Sart(N)). The differences between those using abstract imagery and embodied
imagery were not, however, gatistically significant (mean proportion change = 0.25, two-
talled t-tedt, t(22)=1.216, p=0.237). (b) The proportion of control participants that were
ableto learn each of the machine commandsto criteria. The differences are not satistically
significant (mean proportion change = 0.0, two-tailed t-tet, t(6)=0, p=1.0). No significant
differences between those who physically practiced using their finger for an hour first, then
subsequently learning EEG BCI, from those who attempted to learn BCI without prior
finger practice (mean proportion change = 0.18, two-tailed t-test, t(33)=1.193, p=0.242).
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Timerequired to learn EEG-BCI.

The time it took for each group to learn control to criteria (50% correct) is shown
in Figure 9 (a and b). The first figure shows that on average, it took about seventeen
minutes to learn EEG brain-computer control for those that were actually able to learn.
There was no significant difference in the amount of time it took to learn the control task
between the embodied and abstract groups (mean time difference = 2.68 min, two-tailed t-
test, t(9)= -.298, p=0.773). Interestingly, however, there was a marginal learning
advantage for members of the control group who practiced the physical task for one hour
first to learn control using embodied imagery (mean time difference = 15.77 min, two-
talled t-test, t(5)=-2.215, p=0.077). This phenomenon may warrant further study at alater
date.

The above findings are in direct contradiction to what was expected in Hypothesis
1p. That is, the number of participants able to learn EEG-BCI (as measured by our LTC)
using abstract imagery was not greater than the number of participants who used embodied
imagery. Additionally, thetimeto LTC, was not different for the two groups. However, in
retrospect, using a one-time measure of LTC (i.e. 50% correct on up, down, and neutral
moves) may not have been the best measure of learning. Another measure of learning will

be discussed in the next section.
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Figure 9. (a) Thetime required to learn EEG BCI to criteria (for those who were able to
learn). Error bars are std. error (Stdev/Sgrt(N)). The differences are not, however,
statistically significant (two-tailed t-test, t(9)= -.298, p=0.773). (b) The amount of time
required to learn EEG BCI to criteria after an hour of physical practice. The differences
are not quite significant (two-tailed, t(5)= -2.215, p=0.077). Low df values reflect
adjustments for unequal variances.
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Learning over time (continuous cycle RM Serrors).

Figure 10 shows the performance of a single subject over the course of practice. A
performance test was taken approximately every two minutes. With practice, this
participant not only improved their mean percent correct moves (up, down, or neutral),
they also decreased the standard deviation of the percent of correct moves. The slopes of
the percent correct and standard deviation curves were both significantly different from
zero, indicating that EEG-BCI control performance improved over time (Regression of
Mean % Correct, F(1,28) = 8.12, p=0.008, regression of the standard deviations of the
percent correct moves, F(1,28) = 7.29, p=0.012).

In retrospect, this regression of the mean percent correct is a better method of
assessing competence in EEG-BCI control than the one-time reaching 50 % correct
reported earlier. A participant could have reached a one-time 50% correct on up, down,
and neutral moves by chance alone. Whereasa statistically valid test would have been more
appropriate. When we use regression to distinguish those who were able to learn EEG-BCI
from those who were not we found that 5 out of 12 participants (41.7%) who used abstract
imagery marginally improved their BCl performance during the practice period (positive
slopes with p<0.1). In contrast, only 1 out of 12 participants (8.3 %) who used embodied
imagery improved their BCl performance during the practice period.

The probability of getting exactly k or more participants out of 12 who improve
their performance during practice is expressed in the cumulative binomial probability mass

function (where N = 12, and p=0.5):

N

P(x=k) = Zx=k (x!(ll\;’ix)!px(l — p)(N"‘)) (10)
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For a dign test, p is set a 0.5. A sign test should indicate if the number of
participants who merely improved their scores could have occurred by chance. If we are
interested in the number of participants who significantly improved to p<0.1 or p<0.05
levels, then we set p=0.1 or 0.05 respectively. The number of participants who improved
their percent correct scores during practice in each condition is shown in Figure 11. The
probability of getting 5 or more participants who improved their scores to the p<0.1 level
is significant (p=0.0038). However, the probability of having one or more participants
improve to the p=0.1 level is not significant (p=0.377). Appendix A has a discussion on
binomial distributions and showsthe probabilities of the number of participants who should
improve to different significance levels. It seems, therefore, that EEG-BCI control may be

easier to learn using abstract imagery than embodied.

In contrast to Figures 8 and 9, Figure 11 provides direct confirmation of hypothesis
H1. described above. As we suspected, the number of participants able to learn EEG-BCI
control in the allotted time was greater for those who practiced abstract imagery than for
those who practiced embodied imagery. Asindicated earlier, we suspected that this would
be the case because embodied EEG signals are more or less confined to the premotor and
motor cortices, whereas abstract concepts can be more widely distributed over the entire
brain. As aresult, we suspected that EEG signals for abstract concepts would be easier to

distinguish than EEG signals for imaginary up and down moves.
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Figure 10. Evidence for learning BCI task. The mean percent correct and std. deviation for
up, down, and neutral moves for asingle participant as afunction of time are shown above.
This participant clearly shows learning over the course of one hour of practice. BCl test
performed around every two minutes. With more practice, the Mean % correct increased
significantly, (Regression of Mean % Correct, F(1,28)=8.125, p=0.008). The standard
deviations of the Mean % correct correspondingly decreased with practice (Regression of
Stdev, F(1,28)=7.29, p=0.011). Not all participants showed this pattern of improvement.
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Figure 11. The number of participants in each group that were able to demonstrate a
significant positive improvement in % correct up, down, and neutral moves over the
course of training. Using the binomial distribution discussed in the next section and in
Appendix A with ap=0.1level, 5 out of 12 participants in the ABS group is significantly
different from chance (p<0.004), while 1 out of 12 is not (p=0.718).



Motor Learning Transfer.

In order to assess whether or not participants were able to transfer the motor control
they learned using EEG-BCI into improvements in their ability to physically perform the
task, we measured the RM S error of the vertical distance between the cursor and the target
bobbing on amoving sine-wave. Prior to any EEG-BCI training, each participant was asked
to manually track the movement of the target with their finger fivetimes. The RMS errors
of each of these trials were recorded as the ‘before’ measures. After one hour of training
and practice using the EEG-BCI, participants were again asked to physically track the
movement of the target using their finger fivetimes. The RMS errorsof each of thesetrials
constitute the * after’ measures. Comparing the RM S errors of the before and after measures
gives us an indication of the amount of motor learning transfer that occurred due to the
intervening practice that occurred between the before and after measures. An omnibus 2x3
ANOVA suggests that there is a significant difference before and after (F(1,66) = 13.16,
p<0.001) and a significant interaction between groups (F(2,66)=4.702, p=0.01). Thisisin
direct support of Hypothesis Hoa above. That is, if motor learning transfer occurs a al, the
RMS errors before practice will be greater than the RMS errors after practice.

As acheck against alphainflation, Tukey's HSD test was performed. Our F-scores
exceed what would be required for alpha inflation to be a concern (HSD critical value =
3.55, Fuefore/after(1,66) = 13.16, Finteraction (2,66) = 4.7) (Gravetter & Wallnau, 2011). Pairwise
t-tests were performed to evaluate before and after differences in RMS errors. Table 3
shows the RMS error means of the before and after tests along with their associated p-
values using one-tailed t-tests. We used a one tailed t-test to compare the before and after
RMS error of tracking performance assuming equal variances. We used the one-tailed test
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because there is no evidence to support the notion that practicing a task would lead to
poorer performance (Gravetter & Wallnau, 2000, p349). A smaller RMSerror inthe ‘ After’
column supports that learning transfer has taken place. P-values less that 0.05 show that
the learning transfer that occurred was significant.

None of the participants who practiced abstract imagery significantly (p< 0.05)
improved their performance onthe manual task. The one significant slope wasinthewrong
direction, indicating their motor performance was worse after an hour of abstract imagery
practice. In contrast, one third of participants who practiced embodied imagery
significantly improved (p a a 0.05 criterion level) their performance in the manual task.
Surprisingly, only two thirds (six with p a a 0.05 criterion level, plus two with p=0.057)
of participants who manually practiced the task for one hour significantly improved their
performance in the physical task. The above isreflected in Figure 12 below.

The number of participants who improved their motor performance in each
condition is shown in Figure 12. A simple equal probability sign test (p=0.5), reveals that
only in the manual practice condition were the number of participants who improved
significant. However, when considering only those who improved to a p = 0.1 criterion
level, the number of participants who improved in both the manual and embodied imagery
practice conditions were significant. The same is true when considering the number of
participants who improved to a p=0.05 criterion level. The number of participants who
improved in the abstract imagery practice condition was not significant. Appendix A has a
discussion on binomial distributions and shows the probabilities of the number of

participants who should improve to different significance levels.
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These findings arein direct support of hypothesisHoc and arein direct contradiction
to hypothesis Hze discussed above. That is, the number of participants who demonstrated
significant motor learning transfer (MLT), was greater for those practicing embodied

imagery than for those practicing abstract imagery.
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TRANSFER: Number of participantsthat significantly
improved performance on the manual task using cutoffs
at p<0.5, p<0.1, and p<0.05 respectively
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Figure 12. Evidence for motor learning transfer 1. The number of participants in each
group that significantly improved their performance on the manual task after one hour
of practice using cutoffs at p<=0.5, p<=0.1, and p<= 0.05, respectively. The p values
listed above each column indicate the probability that that number of participants
improved by chance alone. A simple signtest isdonewithap<=0.5. Only inthe manual
practice condition is the number of participants who merely improved statistically
different from chance. However, it is not likely that the number of participants who
improved to the 0.1 and 0.5 levels occurred by chance in both the manual and embodied
groups. The number of participants who improved in the abstract condition was not
significant at any level.
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Figure 13 (a) and (b) depicts two aternate ways of graphically representing motor
learning transfer. Both (a) and (b) show the slopes of the manual task performance RMS
error. Figure 13 (a) compares the before and after scores of each group so the slopes can
be readily seen. Figure 13 (b) compares only the mean slopes of each group. That is, the
mean slopes (averaged over all participants in each group) of the RMS errors before and
after practice are significantly different for each of the three groups. The mean before and
after RMS errorsfor the abstract condition were not significantly different from each other
(one-tailed t-teg, t(22) = .319, p = 0.376). However, the mean before and after RMS errors
for the embodied and the manual conditions were significantly different from each other
(one-tailed t-tests, t(22) = 2.657, p= 0.007 and , t(22) = 3.16, p=0.002, respectively).
Combined, the above indicate that the reduction in RMS error in the embodied practice
condition was significantly greater than the reduction in RMS error in the abstract
condition. This is in direct support of Hypothesis Ha, and in direct contradiction to
Hypothesis Haq discussed above. 1n other words, those who practiced abstract imagery for
an hour did not improve their manual performance, while those who practiced embodied
imagery or manually practiced for an hour did improve their skill.

Tests were also done to compare the slopes of each condition to each other. A
single factor ANOVA performed on al the slopes indicates a significant difference
(F(2,33) = p<0.001). Again using one-tailed t-tests to compare each pair of conditions
individually also suggeststhey are all significantly different from one another (abstract vs.
manual: t(22)=5.072, p<0.001; embodied vs. manual: t(22)=3.25, p=0.002. and finally,
abstract vs. embodied: t1(22)=1.929, p=0.0334). Again, these findings support the notion
that each type of practice conferred different amounts of motor learning transference to the
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participants. Those who manually practiced showed the greatest improvement. Those who
practiced embodied imagery showed a moderate amount of improvement. Finally, those
who practiced abstract imagery showed no improvement at all.

The amount of transfer in each group was consistent with hypothesis Hz discussed
above. Namely, the amount of MLT was greatest for the manual practice group, followed
by the embodied imagery group, followed by the abstract imagery group.

Our only way to assess the time required to learn EEG-BCI control was to use the
time to first achieve 50% correct for each of the three types of moves. Thiswas shownin
Figure 9. There were no significant differences in the amount of time to reach 50% correct
in each of the three types of moves between the embodied and abstract groups. This
supports the null version of hypothesis Hi,. That is, although the number of participants
able to learn EEG-BCI control using abstract imagery was significantly greater than the
number of participants who could learn EEG-BCI using embodied imagery, there was no
significant differences between the two groups in the amount of time it took to learn EEG-

BCI control for those who actually learned EEG-BCI control.

41



Mean RMSError before and
after training

93 - —e— Abstract
53 -
_ 51 - —=—Embodied
% 49 - ——Manual
n 47—

A

=> | § T
x * I

Slope of RMSerror (Muer = Hpefore

Changein RMSerror
before and after 1 hour of

practice

-20

.18 error bars=
T Std Error

43
g 41 \V'
39 \l
37 T
35 . . Man Emb Abs
Before After Type of practice
(a) (b)

Figure 13. Evidence for motor learning transfer 2. Comparison of the before and after
manual performance RMS errors between cursor position and target position. (a) The
mean RMS error before and after practice. (b) The change in RMS error before and after
practice. A single factor between groups ANOVA suggest all slopes are significantly
different from one another (F(2,33)=14.42, p<0.001). One-tailed t-teststo compare each
pair of conditions suggests they are all significantly different from one another (abstract
vs. manual: t(22)=5.07, p<0.001. embodied vs. manual: t(22)=3.25, p=0.002. and finally,

abstract vs. embodied: t(22)=1.928, p=0.0334).
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CHAPTER SEVEN
DISCUSSION

Motor Learning Transfer.

Based on previous studies using embodied mental imagery (EMI), we expected that
those who imagined moving their fingers and arms to move the cursor would also get better
at physically moving the cursor with their arms. The negative slope in Figure 12 indicates
that those who imagined moving their arms and finger up and down to control a cursor did,
in fact, improve their ability to perform the physical task, although not as much as those
who actually physically practiced thetask. What was unclear was whether or not those who
learned to move the cursor using abstract disembodied imagery would also improve their
performance in the physical task. The absence of a significantly negative slope for those
that used abstract imagery suggests that they did not improve their ability to perform the
physical task. Moreover, no member of the abstract group significantly improved their
performance of the manual task even after an hour of practice with abstract imagery, yet
one third of the embodied imagery group along with two thirds of the manual group did
show improvement after an hour of practice. There isaclear difference in motor learning
transfer when abstract imagery vs. embodied imagery is practiced.

The results suggest that the group who used abstract disembodied imagery did not
transfer their skillsinto the performance of the physical task (i.e. the before and after RMS
errors were not significantly different (ARMS = 0.94 pixels; one-tailed t-test, t(22)=.319,
p = 0.376, Cohen's d=0.529). The results also suggest that the group who practiced

embodied imagery did demonstrate motor learning transfer to the physical task (i.e. the
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before and after RM S errors were significantly different; (ARMS = 5.57 pixels; one-tailed
t-test one tailed, t(22)=2.647, p= 0.007, Cohen’ s d=1.098).

Together, these findings go against Paivio’'s (1986) suggestion that performance
improvements after mental imagery practice might simply be due to motivational factors
such increased arousal and attention. In the EEG-BCI task, more participants who used
abstract imagery learned to control the cursor than those who used embodied imagery
(Figure 8). Clearly then, the abstract group was at least as motivated as the embodied group,
yet they showed no motor learning transfer to the physical task. The embodied group did
show motor learning transfer. These findings support Decety’ s (1996) and Y aguez’ s (1998)
contention that the transfer of motor learning is due to the fact that the same neural
structures which are used in embodied imagery are also the structures that are involved in
the actual motor execution of the imagined act. Our experimental design, however, was not
able to address the original concerns expressed by Paivio and others. That is, we do not

attempt to explain why motor learning transfers to non-homologous musculature.

Abstract Imagery May Be Better For EEG-BCI Control.

It was originally thought that EEG signals derived from abstract disembodied
imagery would be easier to differentiate than EEG signals derived from embodied imagery
because abstract imagery may be more distributed throughout the brain than motor
imagery. Although there was no statistically significant difference in the number of
participants in the embodied and abstract groups who could reach the 50 % correct criteria
in the time allotted, trend analysis revealed something quite different. Trend analysis

showed that while 41.7% of those using abstract imagery were able to learn EEG-BCI
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control, only 8.3% of those using embodied were able to do so. There was considerable
difference in the number of participants who showed improvement in the EEG-BCI task
over time between the two groups. It seems therefore, that it is easier to learn EEG-BCI
control using abstract imagery than embodied imagery.

It may be that the relevant EEG signals for abstract representations may be more
widespread over the skull than those involved in hand and finger movements. Miller (2010)
showed that both imagery and movement of the hand excited similar area in the frontal
cortical areas. Lamm, et al. (2007) showed that mental rotation excited large areas of the
parietal cortex. Additionally, Lehmann et a. (2010) demonstrated that discrete nouns with
high and low imageabiltiy (e.g. “table” vs. “gist”) highlighted posterior and frontal
temporal lobesrespectively. If theaboveistrue, then it may bethat abstract imagery, and/or
embodied imagery, along with mental rotations may be useful manipulations for
optimizing control with EEB BCI apparatus. It isgood to keep these concepts in mind when
designing EEG-BCI apparatus targeted at those with disabilities. A person with ALS, for
example, may find it beneficial to use abstract imagery for EEG-BCI control. Learning
transfer to physical movements are likely to be of little use due to the degenerative nature
of the neuromuscular disease. A stroke patient who hopes to regain some control of the
paralytic limb, however, may be better off learning to control the EEG-BCI using embodied
imagery. Evenif it is more difficult to learn, the potential for motor learning transfer may

justify the extra effort.
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SECTION 2
ARTIFICIAL NEURAL NETWORK FOR EEG SIGNAL PROCESSING
CHAPTER EIGHT

INTRODUCTION

It is unsatisfying that this research required the use of proprietary signal analysis
software to map the output of the 14 EEG electrodes onto the up/down/neutral cursor
control signals. In addition, the proprietary decoding algorithm does not improve over time.
Once the machine is calibrated, the parameters are set. Short of recalibration, the best the
user can do is learn to repeat the EEG patterns he or she produced during calibration. This
calibration first, control later approach has been used by others for EEG-BCI based control
(Bradberry, et al., 2011). In the following section we will explore an alternative approach
that uses a back propagation artificial neural network to better map the power spectrum of
EEG signals into machine commands. Using a neural network that can learn from
experience will make possible EEG-BCI control applications that adapt to users and
improve over time. This is an important consideration because temporal and spatial
changes which occur in the brain during learning will likely alter EEG patterns as well
(Driemeyer et al., 2008). Our aternative open-source method of EEG-BCI control can be

configured to adapt to users over time in future applications.

Artificial Neural Network Basics.
Artificial Neural Networks (ANNSs) are really nothing more than a collection of
massively interconnected processing elements assembled in various ways. In a typical

ANN, the processing elements (also called units or “Neurons’) are organized into layers
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such that each neuron in onelayer is connected to every neuron inthe next layer (see Figure
13). The input to each neuron is either from the environment (in the first layer), or the sum
of all the activation levels of each neuron in the immediately preceding layer multiplied by
the strength of the connections between them (Input; = £ AjWj;). The output of each neuron
is usually a non-linear function of the sum of all its inputs. We used the tanh(x) sigmoid
function shown in Figure 14. The sigmoid function is a squashing function which limits
the output so that it ranges between negative and positive one. When the sum of inputsis
alarge positive number, the neural output is one; when the sum of inputsisalarge negative
number, the neural output in negative one. The sigmoid activation function increases the
probability that each neuron will be in a state somewhere between negative and positive
one.

The beauty of these types of networksisthat the connection strengths between each
neuron can be gradually adjusted so that a set of inputs can be mapped into a set of desired
outputs. The gradual adjustment of the strengths of the interconnections between neurons
S0 asto create mapping from inputs to desired outputs is loosely referred to as “learning”
in an ANN. There are many possible learning algorithms available to train ANNs. Here
we will use a basic back-propagation algorithm (Rumelhart et al., 1995). In back-
propagation, the actual output is compared to some desired output. Then the error is used

to adjust the weights backwards through the net such that:
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dE
dw (t)

wAw = —«a (11)

Where:

dE
dw (t)

isthe derivative (slope) of the error E at timet (in epocs)

a isthe learning rate

Essentially, this becomes a gradient descent function in a hyperspace of all possible
weights. There is always a danger that the network will find alocal minimum in that space
and not be able to continue its descent into the most optimum solution. Variable learning
rates and a momentum term help meliorate this situation. These issues will be discussed

further in the network architecture section.
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Pxx (1 — 14)
Neutral

Down

Up

i j k 0

Inputi = PxXx

Aj = X InputiW;

Ax = Z AWk

Output, = X AxWko

Where::

A = sigmoid(input) = Activation of a given neuron

Each sguare represents a processing element or “neuron”.

Figure 14. Basic ANN architecture. Each electrode provides inputs to 20 neurons using
the 4x5 Pxx power matrix generated as described in the text. Together, the 14 electrodes
provide inputs to 280 neurons in layer (i). Neural layer (j) and (k) are hidden layers.
Layer (0) is the output layer. There are three output neurons and only one is active a a
time. One represents an up command, another the down command, and the last the neutral
command.

49



Sigmoid function

! !

./
02 it
5 /;
L, /-
g s

-5 0 5
X

Figure 15. Thetanh(x) function. Note the output 1S bounded by -1.0 and 1.0 as x ranges
from -oo to + 0. Notethat thisisanon-linear function as opposed to linear models most

often used in psychology today.
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EEG-BCI Artificial Neural Network Inputs.

Our goal here isto map a set of EEG signals into one of three output commands:
up, down, and neutral. It isevident from Figures 2 and 3 in Chapter 3, that raw EEG signals
may be difficult to interpret. To pull out relevant information from the raw EEG data, we
first create a spectrogram of the incoming signals by taking short time interval fast Fourier
transforms (SFFTs) of the data. | will not go into the mathematics of Fourier here as they
well covered elseawhere (Cerna and Harvey, 2000). However, | will demonstrate their
usefulness in the discussion that follows. Figure 16 shows a spectrogram made using the
SFFTs. The x-axis representstime. The vertical axis shows frequency. The color indicates
the power (or rate of energy transferred in Joules/s) of the different frequencies at specific
timewindows (red isrelatively higher power than blue). The power is negative because we
are looking at EEG signals backwards in time from the moment the command is received.
The information in figures like this will be used as inputs into an artificial neural network
used to map EEG data into machine commands.

Underlying the colorful figure isreally a matrix of power values, Pxx, whose size
is the number of time bins by the number of frequency bins. The spectrogram functions
smears the colors (here representing the power at a particular frequency and time) over the
range of the Pxx time and frequency bins. The values of the Pxx matrix are better
represented using a radial basis function (Rbf) around the power values. We further
simplified the Pxx matrix by scaling the power values so that they range from zero to one.
The resulting Pxx power matrix is shown in Figure 17. The scaling of the Pxx values is

performed as follows:
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Pxx(i,j)— MinPxx (]_2)

NeWPXX(lr]) = (MaxPxx - MinPxx)

The SFFTs allow us to retain some of the time information in the data. The length
of the time window and the amount of overlap between each window used for the FFT
affect the frequency and time resolutions that are possible from a given set of EEG inputs.
As the length of the time windows are increased, the frequency resolution is increased at
the expense of the time resolution. On the other hand, a shorter time window improves the
time resolution at the expense of frequency resolution (lower frequencies disappear in
shorter time widows). We need a compromise between the length of the time and frequency
resolutions we wish to resolve. But first we must explore the specifications of the EEG
equipment.

The EPOC® headset samples each electrode at 128 samples per second. That is a
sample every 1/128 = 7.8 ms. EPOC® recommends polling for new commands 10 times
per second (or every 100 ms). Therefore each sample of user intention is based on 12
separate EEG readings of each of the 14 electrodes (i.e. 100/7.8 = 12.8). The maximum
frequency we can detect at this sampling rate is defined by the Nyquist criteria (Cerna and
Harvey, 2000), fmax = 1/(2i), where i indicates the sampling interval. The maximum

frequency we can hope to detect is 64Hz (i.e. 1/2(0.0078) = 64.1).
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Power Spectrograms: training “down”;
Hanning Window; NFFT=8; Overlaps = 6; pad to 16
P7

(9sss9INCr) JOMOd

Frequency (Hz)

Time (ms)

Figure 16. Power spectrogram of electrode P7 while the participant was imagining
moving the cursor down with her arm and finger. Note that at time O, the data packet is

received. EEG dataoccurs prior to command. The power values are negative because we
are looking backwards in time.
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Power Spectrograms: training “down”;
Hanning Window; NFFT=8; Overlaps = 6; pad to 16
P7
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Figure 17. Power spectrum viewed through radial basis function. Power matrix values
plotted with aradial basis function to reduce the color smear of overlapping windows of
electrode P7. Participant was imagining moving the cursor down with her arm and finger.
Power has been scaled so that it ranges from zero to 1.0. Axes reflect row and column of
Pxx matrix.



In addition to sampling rate, we must also determine the number of samples needed.
National Instruments, Inc. suggests a minimum of 3 cycles need to be sampled for proper
frequency identification (Cerna and Harvey, 2000). Since we are sampling twice as fast
(128 Hz) as the maximum signal frequency that can be detected (64 Hz), and we need to
sample for aminimum of three cycles, we need at least 6 data points (6 = (2 samples/cycle)
x 3 cycles). We used 8 data points for each SFFT calculation.

Although EPOC® recommends polling for new commands every 100ms, in reality,
commands are sent only when a command was recognized. Data packets are only
transmitted when there is a corresponding command. As a result, the data packets that
arrive at the host computer may be of different lengths, and may arrive at times varying
from the suggested 100ms polling interval. To ensure a consistent number of samples, a
record is kept of preceding EEG values. The appropriate number of these records are
tacked on to the back end of each data packet to ensure a consistent number of samples for
each set of SFFTs calculations. Although the packets are discrete and of inconsistent
length, stitching together data from multiple packets assures that we are getting consistent
and continuous EEG signals.

SFFTswere calculated using awindow of eight data samples sliding over atotal of
16 data points. Each successive SFFT calculation overlapped the previous by six samples.
Figure 18 showsthat five 8 data point windows can be fitted into 16 data points when each
window overlaps the previous by 6 points. The time of each of these windows is known
relative to the time the data packet was received. Each SFFT transformation is performed
over each time window. Although an FFT transformation loses the time information, the
five small windows provide five time bins which allow us to retain arecord of time. We
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wanted at least 5 time bins, so elected to use a moving record of 16 data points from each
electrode.

The shape of the sliding window affects the spectral estimate computed with the
SFFTs. We used a Hanning window because it is commonly used in narrow band

applications (Cerna & Harvey, 2000).

SFFT1 SFFT2 SFFRT3 ...

s oo o

0 1 2 3 45 6 7 8 910 111213141516 18 19 20 2122
Time series data

Figure 18. Graphical depiction of SFFT. Each SFFT is computed using an 8 data point
window. The data window of each subsequent SFFT overlaps the previous by 6 data
points. The SFFT window evaluated the power of each frequency band at a particular
time. With awindow of 8 datapoints, 5timewindows are possible. Notethat the centers
between each time window are two data points apart. When sampled every 7.8 ms, our
time resolution is 15 ms. The triangle is for illustrative purposes only, we used a
Hanning window (see text)

Figures 19-21 show spectrograms of the SFFTs taken from the voltage values of
each electrode over approximately 100 mstime intervals. Each plot contains both time and
frequency distributions, as well as the power (color) contained in each time and frequency
bin. The image is generated from a power matrix (Pxx) obtained when the SFFTs are
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calculated within each time window. The number of time bins (in our case 5), the number
of frequency bins (in our case 8), and the amount of window overlap (in our case 6)
determine the dimensions of the Pxx matrix. The power matrix and associated spectrogram
images reflect differences which may be exploited to generate desired output commands.

Each element of the power matrix (Pxx) provides the input to the single neuron in
the ANN. Each ANN input neuron contains the mean power of the EEG signal for about
15.6 ms and frequencies that span about 8 Hz.

We elected to turn the 8x5 spectrogram from each electrode into a4x5 set of inputs
to reduce the number of input neurons to a total of 280 (4x5x14= 280). This reduction in
inputs was accomplished by averaging every two rows in the Pxx matrix, thus reducing the

number of rows by two. Each frequency bin now spans 16 Hz.
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Power Spectrogramsthrough RB function: Training
“DOWN”; Hanning window; NFFT = 8; Padded to 16
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Figure 19. Spectrograms of short time interval FFTs for each electrode of a participant
contemplating an abstract concept that has been mapped to the down command. The x-
axis shows time bins. The vertical axis shows frequency. The color indicates the power
scaled so that it is between 0 and 1.

Power Spectrogramsthrough RB function: Training
“UP”; Hanning window; NFFT = 8; Padded to 16
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Time Bins (each 15.6 ms)

Frequency Bins
(incrementsin 8 Hz)

Figure 20. Spectrograms of short time interval FFTs for each electrode of a participant
contemplating an abstract concept that has been associated with the up command. The x-
axis shows time bins. The vertical axis shows frequency. The color indicates the power
which has been scaled so that it is between 0 and 1.
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Power Spectrograms through RB function: Training
“NEUTRAL”; Hanning window; NFFT = 8; Padded to 16
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Figure 21. Spectrograms of short time interval FFTs for each electrode of a participant
contemplating an abstract concept that has been associated with the neutral command.
The x-axis shows time bins. The vertical axis shows frequency. The color indicates the
power which has been scaled so that it is between O and 1.
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Network Architecture.

There are many other possible interconnection architectures, but here we will only
consider a feed-forward four layer network described below. The number of layersin a
feed-forward network determinesthe range of datathat can be mapped into desired outputs.
Lipman (1987) showed that the number of hidden layers can impact the level of processing
possible on agiven data set. For example, suppose we have a network with only two inputs
and two outputs. The two inputs represent two distinct features of some class of objects.
The two output units represent the two categories of objects the network is trying to
classify. Such a network, without any hidden layers, can only linearly separate a feature
Space into two sections (See Table 4). A single intermittent layer between the input and
output layers allows the network to perform more complex classification tasks (Lipman,
1987) . Two intermittent layers alows for an arbitray segmentation of an input space into

an arbritrary output space. We therefore elected to use two hidden layers in our network.
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Table 3.

Processing ability as function of hidden layers.
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Hldden Output Layer (k) coe o o ..
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Input Layer (i) Input (1)
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Another consideration is the number of neurons in each processing layer. Too few
neurons and the network will not learn. It turns out that it is easier to train networks with
excessive number of neurons. However, more neurons than necessary may cause over-
fitting which leads to poor generalization to untrained examples (Hunter et al., 2012).

Other considerations include the learning rate, the minimum error tolerated, the
momentum, and the level of activation of the target values. The performance of a
backpropagation error correction algorithm is very sensitive to the learning rate. If too
large, the network may oscillate and never settle to minimum error. If too small, then it
may take to long to settle on agood set of weights. Variable learning rates often improve
convergence rates (Danilo and Chambers, 2000). The momentum term is not part of the
gradient descent per se, but is merely a heuristic that reduces oscillations and increases
learning speed (Rumelhart et a., 1986). The minimum error tolerated is used to stop the
learning process. It is basically a “good enough” heuristic. The level of activation of the
target isset to 0.7 (instead of 1.0) so that the network can err on either side. It isjust another
heuristic that seemsto improve performance, perhaps because it prevents overlearning. To
arrive at a suitable combination of parameters, aswell asto determine the optimum number
of neurons in the middle layers, we used a trial and error method that can be followed in
Table5.

Table 5 shows our meandering search for a suitable combination of parameters.
Each row in the table represents a trial. Red numbers indicate which parameters were
changed in agiven trial. Green values represent the best parameter choices. The top part of
the table represents trials where about 100 examples of EEG signals for up, down, and
neutral imagery. The number of examples are doubled in the lower part of the table. The
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last column in Table 5 shows each network’s performance (% correct) under various
parameter changes. Note that the largest number of neurons does not necessarily produce
the best performance.

Another reason to limit the number of neurons in the network is that the number of
calculations required to propagate inputs through the network increases exponentially with
the number of neurons. A 3x3 neural arrangement has 9 interconnections. Propagating
across this network requires. 3(9)=27 calculations. Doubling the number of neurons so
that it is a 6x3, creates 18 connections, requiring 6(18)=108 calculations. The situation is
worse in afour layer network. It is desirable, therefore, to keep the number of neurons at
aminimum.

After the various iterations shown in Table 5, we settled on a 280x10x5x3 network
configuration, with a maximum allowed error of 0.015, a learning rate of 0.007, and a
momentum of 0.3. In the bottom of the table, we also list a few runs with identical
configurations, but doubled the number of examples used during training. No advantage
was found to doubling the number of examples, a troubling observation that will prove
instructive later on in this discussion. Let us now look a how this network performs on

data from other participants.
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Table 4.

Trial and error parameter selection. Each row inthe table representsatrial. Red numbers
indicate which parameters were changed in a given trial. Green values represent the best
parameter choices. The top part of the table represents trials where about 100 examples
of EEG signals for up, down, and neutral imagery. The number of examples are doubled

in the lower part of the table. No improvement is noted with more examples.

TRAINING SET SIZE (Up, Down, Neutral): 101, 101, 114
Number of neurons Variable parameters Training Stats %
In | Lyr(j) | Lyr(k) | Out | ErrtMax | L.R. | M. | Cycles | Time(s) | Correct

280 7 3 3 0.025 001 (03| 75 171 37.28
280 7 4 3 0.025 001 |03| 68 154 39.22
280 7 5 3 0.025 001 |03| 61 141 37.62
280 10 4 3 0.025 001 |03| 65 209 38.04
280 10 5 3 0.025 001 |03| 53 181 39.90
280 10 6 3 0.025 001 [03| 53 177 37.79
280 10 5 3 0.025 0.02 | 0.3| 399+

280 10 5 3 0.025 | 0.005 | 03| 53 169 39.56
280 10 5 3 0.025 | 0.015 |0.3| 53 169 39.64
280 10 5 3 0.025 | 0.007 |0.3| 53 168 39.90
280 10 5 3 0.025 | 0.008 |0.3| 53 169 39.81
280 10 5 3 0.025 | 0.0075]|0.3| 53 168 39.81
280 10 5 3 0.025 | 0.007 | 04| 49 160 38.80
280 10 5 3 0.025 | 0.007 | 0.2 69 218 38.80
280 10 4 3 0.025 | 0.007 | 0.2 72 231 38.12
280 12 5 3 0.025 | 0.007 | 0.2 63 242 37.79
280 7 4 3 0.025 | 0.007 |0.3| 68 160 38.88
280 10 5 3 0.025 | 0.007 | 0.3 60 195 40.83
280 7 4 3 | .1-.015 | .2-.007 | 03| 71 154 37.7
280 10 5 3 |.1-.015|.2-.007| 03| 71 218 38.29
280 10 5 3 |.1-.015|.2-.007| 03| 71 224 38.21
280 20 5 3 | .1-.015 | .2-.007 | 0.3 56 328 40.83
280 50 5 3 |.1-.015 | .2-.007| 03| 54 900 38.46
280 10 10 3 |.1-.015 | .2-.007| 03| 68 223 37.95
280 | 100 50 3

280 | 160 70 3

TRAINING SET SIZE (Up, Down, Neutra): 191, 191, 186
Number of neurons Variable parameters Training Stats %
In | Lyr(j) | Lyr(k) | Out | ErrMax | L.R. | M. | Cycles | Time(s) | Correct

280 10 5 3 0.015 | 0.007 |0.3| 75 443 39.15
280 10 5 3 |.1-.015 | .2-.007 | 0.3| 103 573 36.44
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Artificial Neural Network Performance.

Figure 22 (a) and (b) compare the ANN’s performance to that of the EPOC®
apparatus. Although our ANN shows evidence of learning and generalization, its
performance is not very impressive. Given that neural networks have been successfully
used in fault tolerant situations in pattern recognition and machine control (Deora and
Baja, 2012; Estrera et al., 2012; Yin et a., 2012, Singh, 2012), it is surprising that our
network did not perform better. Clearly the network was able to correctly map the EEG
patterns in the training sets, but only slightly better than chance on untrained patterns.
Although other network training algorithms are possible which reduce the probability of
finding a local minimum in the solution space, we used a simple error back-propagation
network for our task because these other algorithms are not well suited for large networks.
We used the minimum processing units possible to improve generalization (Wilamowski
and Yu, 2010).

The fact that performance was poor and that doubling the number of examples did
not improve the ANN’s performance suggests that we may have bad examples. The
importance of good training examples cannot be overstated.

I magine learning numbers for the first time when given erroneous information even
a small percentage of the time. Figure 23 illustrates this analogy. Suppose the first three
figures in the top row are given as examples of the number two. A consistent mapping
would be difficult especially when later given examples of the number three. However,
when averaged together (asin the fourth figure in the top row), the erroneous image of the

number three getslost inthe averaging process. Thissingle averaged example of anumber
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two isless likely to cause problems than the three separate examples containing fallacious
data. Of course, the above presumes that good examples are predominant in the data.

Our training set probably suffers from the same vagaries. Just because the training
program prompts the participant to imagine moving “UP’, or some pre-agreed-to abstract
concept, does not necessarily assure us that the participant isin fact doing so every 124 ms
(7.8 x 16 = 124 ms). Our training set could be replete with bogus EEG signals from
distracted participants. There are several options for dealing with thisissue. Most require
the collection of additional dataand each will be discussed below in the discussion section.
However, using only existing data, one could average the EEG data from several
consecutive commands. In doing so, “bad” EEG data would be averaged in with “good”
data so that errors would tend to “wash” out. Data averaging in this way would reduce the
chancesthat the learning algorithm would be led astray by erroneous data. To be clear, the
Pxx matrix for each electrode was averaged over seven consecutive trials before it was
used as atraining example, not the raw EEG data.

Figure 24 shows the ANN'’ s performance when seven consecutive data packets for
a given command are averaged and used as single training example. This is not the same
as increasing the number of examples. Rather, it ensures that bad examples are averaged
in with good examples so that they are no longer used as individual training trials. The
ANN'’s performance using data averaging is compared with EPOC® performance in the
next section. EPOC performance has been rank ordered from best to worst. Note that the
ANN performance (in terms of percent correct) is in fact, negatively correlated to the
performance of the EPOC agorithm (corr= -0.1325 and corr = -0.4325 for abstract and
embodied respectively).
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Figure 22. Performance of ANN in generating proper up, down, and neutral commands.
(a) EEG generated from abstract imagery. (b) EEG generated using embodied imagery.
Error bars are standard errors.
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Figure 23. Averaging training samples. lllustration of the concept of averaging examples
to reduce the deleterious effects of bad exemplars. Note that if the number three were
given as an example of atwo, confusion could result. But if the examples of twos were
averaged, the negative effects of the bad example is minimized (see averaged examples
in last column above).
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Figure 24. Performance of ANN in generating proper up, down, and neutral commands
when every 7 input Pxx matrices were averaged prior to propagation through network.
The %Correct are rank ordered by the EPOC group. (a) EEG generated from abstract
imagery. (b) EEG generated using embodied imagery. Error bars are standard errors.
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Network Performance with Data Averaging.

The following discussion concerns only the ANN’ s performance when using data
averaging. There was no significant difference between the overall performance of the
ANN and the EPOC® in the abstract condition (two-tailed t-test, t(19)=0.587, p = 0.564).
There was also no significant difference between the overall performance of the ANN and
the EPOC® in the embodied condition (two-tailed t-test, t(21)=1.611; p = 0.122). There
was, however, asignificant difference between ANN performance and chance for both the
abstract and embodied condition (two-tailed t-test, t(11)=6.946; p<0.001 and t(11)=7.601;
p<0.001, respectively). That is, our ANN was an effective means of mapping user
intensions into machine commands and it was as effective as the EPOC® proprietary
algorithm. Interestingly, the standard errors of the ANN percent correct performance are
considerably smaller than those of the EPOC (two-tailed t-tests, t(22)=-2.117 p<0.045 for
abstract, and t(22)= -2.527 p<0.019 for embodied). This indicates that its performance on
up, down, and neutral moves were close to each other. That is, roughly the same percent
correct for each type of move. That is not so for the EPOC®, where the high standard errors
indicate that good performance on a particular command sacrifices performance on
another. For instance, it may do well on up commands, but not so well in neutral
commands. Visual inspection of Figure 23 (a) and (b) further, suggeststhat the participants
who performed well with the EPOC®, are not necessarily the same participants who
performed well using the ANN. In fact, the performance of the ANN is negatively
correlated to the performance of the EPOC. This observation suggests that our ANN
utilizing averaged power matrices calculated from SFFTs as inputs is a fundamentally
different approach from the proprietary one used by EPOC®. The fact that the performance
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of two mapping algorithms can be inversely correlated suggests that further exploration of
relevant EEG signal features is warranted.

We have stressed the importance of an error free training set and demonstrated the
use of data averaging to improve the performance of the ANN in the previous section. Here
we will now suggest other approaches to improving the quality of the training set. These
have not yet been explored because they will require the acquisition of additional data sets.

One possibility for assuring the quality of the training data set is to give the user a
trigger so that the user might indicate that they were, in fact, on task (i.e. “I was on task”,
or “Oops, | got distracted” trigger). However, given that the BCl commands of our system
are generated every 100 ms or so, and that it takes approximately 500 ms for a participant
to consciously decide to and actuate atrigger (Wegner, 2002, p. 57), we would first have
to esablish a method of synchronizing the trigger to the generated commands. One
possibility would be to generate the trigger from the EEG signals themselves using the
peak of the lateralized readiness potential (Wegner, 2002, p.50). However, we would still
need to backtrack and assign the trigger to a previously executed command. The trigger tag
on a particular move command could inform us whether or not those particular EEG
commands should be used for training or not.

Another possibility would be to extend the decision making time from the current
124 msto say, 500 ms. That is, instead of using 16 data points to generate acommand, use
64 (7.8 * 64 = 499 ms). This would facilitate the synchronization of a trigger to the

command because they could occur roughly in the same time window.
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Y et another possibility would be to assume a particular trigger value appliesto say,
the previous 5 - 10 commands. This would increase the likelihood that we could identify
EEG signals that were associated with the task, and not some other fleeting thought.

We have demonstrated that averaging signals from several consecutive data packets
dramatically improves the performance of our ANN. Implementing this approach in
conjunction with atrigger as discussed above could further ensure the EEG data being used
for training is not corrupted by EEG signals not related to the intended instruction.

In any of the above implementations, increasing the likelihood that good EEG
patterns are used for training would greatly simplify the learning and generalization

processes. Time did not permit these different approaches to be explored.
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CHAPTER NINE

SUMMARY AND CONCLUSIONS.

Transfer of motor learning.

In chapters 1-7, we attempted to better understand the transfer of motor learning.
We are fairly confident that we have demonstrated that the transfer of motor learning has
more to do with the utilization of shared neural structures during both imagery and actual
motor execution than with general arousal, attention, and other cognitive processes. Since
more participants in the abstract group were able to learn the task than those in the
embodied group, we are fairly certain that participants in the abstract group were at least
as motivated and engaged in the task as those in the embodied group. However, it was the
embodied group that showed learning transfer, not the abstract group. This underminesthe
notion that learning transfer has more to do with arousal, motivation, attention, and other
physiological and psychological factorsand bolstersthe notion that transfer isdueto shared
neural structures between imagination and physical performance. However, we were not
able to address the reasons that other psychological and physiological factors were
considered in the first place. That is, we ill have not addressed why there is transference
of motor learning to non-homologous musculature. If we accept that transference has to do
with shared neural infrastructure, then perhaps transference of motor learning to non-
homologous motor systems also has to do with shared neural structures.

Wang and Sainburg, (2006) demonstrated that when visuo-motor execution training
occursintheipsilateral workspace, transfer is symmetrical from dominant to non-dominant
arms and visa-versa. However, when the visuo-motor task occurs across the midline,

transfer is not symmetrical. Transfer of initial direction information only occurs from the
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nondominant to dominant arm, whereas information about final position only transfers
from the dominant to the nondominant arm. It seems that mirror image activation along
with inhibition across the midline must be taking place during motor execution. Although
Wang and Sainburg used actual physical practice, it remains to be seen if the same applies
to mental imagery. It may be that both imagery and motor execution activate mirrored
structures in the contralateral hemisphere, but the imagery does not provide the requisite
contralateral inhibition required during actual motor execution. This might explain the
Amemiyaet a’s. (2010) finding that motor execution did not transfer to the non-dominant
side, whereas motor imagery did (see also Kirsch & Hoffmann, 2010).

It may bethat shared neural infrastructure doesfully explain motor learning transfer
per se, but that transfer of motor learning to non-homologous motor structures involves
more complex patterns of excitation and inhibition that differ during imagery and motor
execution. Mirror image activations could, therefore, also offer an explanation for motor

learning transfer to non-homologous motor systems.
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Artificial Neural Networksfor Processing EEG Data.

In Chapter 8, we described away to map EEG signals generated with different types
of imagery into machine commands. We demonstrated that we can use fast Fourier
transforms of EEG data over short time windows, and use the resulting power matrices as
inputs to an artificial neural network which can learn the mapping from EEG signals to
desired commands using a simple error back-propagation algorithm.

We also stressed the importance of ensuring that bad examples are filtered out of
the training samples, and that data averaging is a viable method of addressing this issue.
We have suggested several alternative ways to ensure the quality of the training sets,
although we have not implemented them at thistime. It isimportant to notethat others have
suggested that introducing errors into the training set may actually improve performance
(Grossman & Lapedes, 1994). However, their method of introducing errorsinto the datais
appropriate only when there is paucity of data. |magine over-fitting acurveto afew sparse
data points. A perfect fit may produce a model that is a horrible predictor of the datain
general. In our situation, with examples generated around every 124 ms or 0, lack of
examples was not a concern.

The excitement generated over the possibility of controlling a machine with one's
thoughts made it easy to get volunteers for our study. However, many hurdles have to be
jumped before EEG-BCIs become more mainstream. The use of wet and often messy
electrodes and better signal filtering are but a few obstacles. Until dry electrodes become
more available, and the technology easier to useg, it is unlikely that EEG-BCI control will
become mainstream (Nijholt & Tan, 2008). Some companies and researchers are already
producing dry electrode EEG devices (G.tec Medical Engineering, Inc., Taheri et al., 1994;

75



Gargiulo et al. 2008), so it will not be long before EEG-BCI technology becomes more
ubiquitous.

We have demonstrated a relatively simple open source method for mapping EEG
signals into machine commands. In addition we have demonstrated that different types of
imagery (abstract versus embodied) may be best for different types of disabilities. That is,
ALS patients may be better off learning abstract imaging for EEG-BCI control, while
stroke patients may be better off learning embodied control. We suggest that this open
source method of mapping EEG signals to machine commands will foster the development
and proliferation of EEG-BCI technology for all and facilitate superior EEG control

performance for alarge variety of individuals.

Take Home M essages.

Part 1.

We utilized and EEG Brain Computer Interface (BCl) to explore the transfer of
motor learning from imagery to motor execution of atask. We demonstrated that EEG-BCI
control is generally easier to learn using abstract imagery than embodied imagery, but
motor learning transfer to motor performance can only be expected from embodied
imagery. We take this as evidence to suggest that the transfer of motor learning from
imagery to the motor execution is the result of shared neural infrastructure between
embodied imagery and actual motor execution.

Because motor learning transfer from imagery to motor execution can only be
expected with embodied imagery, embodied imagery is recommended if EEG-BCls are

being used for rehabilitation and training aimed at acquiring or reacquiring motor skills.
76



However, when one is not concerned with coupling EEG-BCI control with specific motor
processes (e.g. for those with degenerative diseases where there is currently no hope of
neuromuscular recovery such as ALS), abstract imagery is recommended, because it is

easier to learn. Of course when possible, physical motor execution practice is preferred.

Part 2.

EEG-BCI control can be achieved using a variety of methods. We introduce the use
of an artificial neural network that utilizes the averaged time-frequency-power
spectrograms of the EEG signals over time and have shown that it is as good as or better
than Emotiv’s proprietary method. In addition our method of mapping EEG signals into
computer commands can be configured so that it is adaptive to better match individual

predispositions and adjust to changing neural signatures as skill learning progresses.
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APPENDIX A

EXACT BINOMIAL DISTRIBUTIONS



To determine the probability of throwing a coin that turns up heads exactly x times
after 12 tosses with afair coins (p=0.5) we use the probability function wherep = 0.5, N =

12, isshow in Figure Al:

— — _ N-—
P(X B k) B (x!(N—x)!px(l P)( x))
(13)
The Probability of throwing exactly x number of heads in
12 tosses.
1.0
0.8
2
= 0.6
§ 04
0.2 e ® o
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00 o o e ® o o o
0 2 4 6 8 10 12
Number of heads

Figure Al. Probabilities with a fair coin. The probability of throwing exactly x number
of heads in 12 tosses with a fair coin (p=0.5).
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The cumulative probability that we throw x or more heads in 12 tosses with a fair

coin (p=0.5), shown in Figure A2, is given by the exact binomial distribution:

N

= N X(1 _ 4y (N—%)
P(X = k) Zx:k (x!(N—x)!p (1 P) )

(14)

The Probability of throwing exactly x number of heads in
12 tosses ( for afair coin p =.5)

10e o o
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X or more heads

Figure A2. Cumulative probabilities with a fair coin. The cumulative probability of
throwing x or more heads in 12 tosses with a fair coin (p=0.5).
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If however, our coin is not fair, we simply change the p value in the cumulative
probability function above to, say 0.05. The cumulative probability of throwing x or more

heads in 12 tosses with an unfair coin (p=0.05) is shown in Figure A3.

The Probability of throwing exactly x number of
headsin 12 tosses; p=0.05

10 o
0.8

0.6

Probability
o

04

0.2

0.0 ® ¢ o o o o o o o o

X or more heads

Figure A3. Cumulative probabilities with an unfair coin. The cumulative probability of
throwing x or more heads in 12 tosses with an unfair coin (p=0.05).

The above is the rationale for using the cumulative probability distribution to
determine the likelihood that the number of participants who improved after practice
occurred by chance or as aresult of practice. We ssimply changed coin to participants, and
the unfair coin has the p=0.05 probability that the participants did not get better merely by

chance alone.
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