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ABSTRACT
Including a covariate can increase power to deteaffect between two variables.
Although previous research has studied power inimied models, the extent to which
the inclusion of a mediator will increase the poveedetect a relation between two
variables has not been investigated. The firstysttentified situations where empirical
and analytical power of two tests of significanoed single mediator model was greater
than power of a bivariate significance test. Raslutim the first study indicated that
including a mediator increased statistical powesnrall samples with large effects and in
large samples with small effects. Next, a study e@slucted to assess when power was
greater for a significance test for a two mediat@del as compared with power of a
bivariate significance test. Results indicated theluding two mediators increased
power in small samples when both specific mediafégtts were large and in large
samples when both specific mediated effects wewdlsimplications of the results and

directions for future research are then discussed.
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Introduction

Adequate statistical power is essential in hypaothiesting. Many studies are
underpowered due to limited sample sizes or diltfyodetecting effects. This issue
extends from the test of a simple bivariate retegiop to tests of models containing
multiple independent variables, including mediatibntz and MacKinnon (2007) found
in a literature survey that 75% of 166 articlesneediation did not have adequate power
to detect effects. Research has indicated thatdimad) a mediator increases statistical
power, but this finding has not been studied iradiefFurthermore, increasing power
through use of multiple mediators is also likelyriorease power, but models with
multiple mediators have not been studied in thimrd. The current studies demonstrate
the situations in which the inclusion of a mediatoa bivariate model can increase
power to detect effects, and extend findings tartckision of a second mediator.
Statistical Power in Hypothesis Significance Testing

The power of a statistical test is traditionallyided as that test’s ability to detect
an effect when an effect is truly present in thpuydation (Neyman & Pearson, 1933).
Power depends on several key parameters involvegpathesis testing, namely Type |
error rate, sample size, and effect size (CoheB8)1%ower can be understood in terms
of the types of errors that can occur in hypothessng. Statisticallyy (a coefficient
which ranges from zero to one) represents theatatdich a test incorrectly identifies
the presence of a significant effect when no efifeectually present in the population, a
Type | error. Power is defined as (B); wherep represents the rate at which a test fails
to find an effect that is truly present in the plapion (also known as a Type Il error).
Different levels ofu determine the stringency of a test; keepirgjoser to zero reduces
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the likelihood that a Type | error will be made lbigo decreases the chances of finding
an effect that is truly present, thereby decreapmger. All else being equal, larger
sample sizes increase the probability of detea@mgffect if one exists. If an effect does
exist, the effect size gives a measure of the ntagaiof the effect. A very small effect
may be difficult to detect, which would decreas&pn and conversely a very large
effect would increase power. The three parametgpg T error, sample size, and effect
size are interdependent with power, and given hreet the fourth can be calculated
(Cohen, 1988). Cohen (1988) named a power val@e86fas a general guideline for
adequate power of a hypothesis test in the sodi@hses. Cohen (1988) defines a small
effect size as a correlation of 0.10, a mediumctieze as a correlation of 0.30, and a
large effect size as a correlation of 0.50.

To calculate the analytical power of a bivariaterelation coefficienpyy, the
correlation must first be transformed using thén&rgransformation. The transformation

is as follows:

. 1 1+p
Pxy=7IN X

- (1)
2 1-pyy

The transformeq',, is then divided by its standardrdp create @ score, which is

the noncentrality parameter for the alternativedtlgpsis distribution:

z, = Lx @)

The difference between _,,, on the central distribution and the noncentrality

parameter on the alternative hypothesis distrilout® , ,,, — z,) is thez value for the



alternative hypothesis distribution. Statisticalyeo is one minus the probability of the
value for the alternative hypothesis distributi@ecwrring under a normal distribution, or:

r=1-®(Z_,p Zp') (3)
These formulas can also be used in conjunction fivgkk and second-order partial
correlation coefficients to calculate power fordoate relationships in models with
multiple independent variables, such as singlemaultiple mediator models.

To calculate the analytical power of a regressioefficientd, the

coefficient must first be divided by its standartbeto produce the noncentrality
parameter for the alternative hypothesis distrdouti

o d (4)
Sd

Next, it is necessary to find the 9% percentile (for a two-tailed test) from the Stuicten
t distribution withN —k — 1 degrees of freedom, wheres the number of predictors in
the equation containing the regression coefficitdtistical power is one minus the
probability of thet value for the alternative hypothesis distributamturring under the
Student'st distribution at the 97"5percentile withN —k — 1 degrees of freedom.
Third Variable Effects

The addition of a third variable to the assocratetween two variables results in
several different types of relationships (MacKinna@08). A third variable (Z) can be
related to either the independent variable (X),dependent variable (Y), or both. When
Z is related to Y such that both X and Z have deceon Y, Z is called a covariate.
When Z is related to Y, including it in a model Wwisult in better prediction of Y, as
more variability in Y is explained by both Z andixan by X alone. However, when Z is
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also related to X such that the inclusion of Z madel alters the relationship between X
and Y, Z is a confounding variable. The independaniables X and Z may be somewhat
related, but as long as Z does not affect X's i@taship with Y, it is a covariate and not a
confounder. In some situations, including a thiadiable Z will affect the relationship
between X and Y such that the X to Y relationshffeds at different levels or extents of
Z; such a variable is a moderator. In ANOVA, arerattion between two independent
variables indicates that one of the variables matdsrthe effect of the other variable
(Baron & Kenny, 1986). In other words, the moder&affects the relation between X
and Y.

Mediators are defined by their intercession indhesal chain between X and Y,
referred to as the mediational chain (Cook & Caniph®79). For a variable to be
considered a mediator (M), X must cause M, andiin M must cause Y (MacKinnon,
2008). A classic example of mediation in the sostnces is the hypothesis that
attitudes affect intentions, which in turn affebthavior (Fishbein & Ajzen, 1975). A
mediator differs from a covariate or a confoundethiat causality does not play a role in
defining either a covariate or confounder. Both ratas and confounders affect the
relationship between X and Y, but while confoundeesrelated to both X and Y, there
are no causal assumptions. Baron and Kenny (198&6)glish between moderators and
mediators by specifying that moderators are alvwagspendent variables while
mediators shift between effects and causes, andnbaderators identify the
circumstances under which a given effect will oogirle mediators identify how or why

a given effect occurs.



Mediation: An Overview

Single mediator model. Figure 1 shows how the relationship between an
independent variable (X) and a dependent varidbleljanges when a mediator (M) is
added to a model.

- Insert Figure 1 about here -
The top diagram depicts a conventional bivariaggegsion model, which can also be
represented by the equation following notation iackinnon (2008):
The top diagram depicts a conventional bivariaggegsion model, which can also be
represented by the equation following notation iackinnon (2008):

Y=ip+cX +¢g; (5)
Where il is the intercept for the equation, ¢ esplpulation relationship between X and
Y (also known in reference to mediation as thel teff@ct), ancl is the variability in Y
that is not explained by X. Adding a mediator te thaditional regression model
generates the bottom diagram, which can also bresepted by two new equations:

Y=ip+Cc'X+bM + ¢, (6)

M=iz+aX +¢g;3 @)
From equation 6, b is the population relationsiépdeen M and Y, ¢’ is the population
relationship between X and Y controlling for thediaor M (also known at the direct
effect), anc2 is the variability in Y that is not explained by relationships with X and
M. From equation 7, a is the population relatiopdbetween X and M, ane8 is the
variability in M that is not explained by X. Thertsiant coefficients i2 and i3 are the

intercepts for the equations.



These parameters can be used to define the medtheet in two ways. The
mediated effecabis the product of tha andb paths; the total effectis equal to the
mediated effecab plus the direct effeat’. This results in the following equation:

ab=c-c (8)

Therefore, the mediated effect can be quantifieabas asc —c’; as discussed in

MacKinnon (2008), the two sides of the equation matybe equal for special cases of
regression, or for unequal sample sizes acrosdiegaaWherc’ is zero and thereforh
is equal tac, this is known as full mediation; partial mediatioccurs whew’ is nonzero.

For the above mediation equations to yield conrestilts, the same assumptions
that are required for regression analysis must (@tthen, Cohen, West, & Aiken, 2003).
The assumptions are as follows:

l.  Relationships among variables are assumed to éar|iand variables do not
interact.

Il.  No theoretically important variables have been tadifrom the model
represented by the equations.

lll.  The measures of X, M, and Y have acceptable rétgbnd validity without
significant measurement error.

IV. Residual errors of the equations are uncorrelateasa equations, are
uncorrelated with the predictor variables in eaghagion, and have equal
variances across values of the predictor.

For a more in depth discussion of these assumpiwthgespect to the single mediator

model, see MacKinnon (2008).



Parallel two mediator model. Adding a second mediator to the single mediator
model results in two different multiple mediator dets: the parallel two mediator model
and the sequential two mediator model. The parallelmediator model, which is
depicted in Figure 2, is the focus of this papesrerinformation on the sequential two
mediator model can be found in Taylor, MacKinnamd &ein (2008). The parallel two
mediator model is a simple extension of the singéeliator model, where the
independent variable (X) is now related to the deleat variable (Y) through a mediator
(M) and also through an additional mediatopM he mediators each have their own
separate effects within the model (as opposedtwsinitting the effect of X to Mo M,
to Y), hence the use of the term parallel.

- Insert Figure 2 about here -
This diagram can be represented by the followingaggns following notation in

MacKinnon (2008):

Y=ii+cX + g (9)

Y=ip+c'X+bM;+bM;y+e (20)
Mi=ig+auX + &3 (11)
Mo=ig+ aX + &4 (12)

Equation 9 is identical to equation 5, only contagrnthe independent variable X and
dependent variable Y. From equation ¢0is the population relationship between X and
Y controlling for the mediators Mand M, b; is the population relationship between M
and Y controlling for M and X,b, is the population relationship between &hd Y
controlling for My and X, and:; is the variability in Y not explained by its rataiships
with X, M1, and M. From equation 11, is the population relationship between &hd
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X, andes is the variability in M that is not explained by X. From equation a2is the
population relationship between,Mnd X, and, is the variability in M that is not
explained by X. The constant coefficients,, i3, andi4 are the intercepts for the
equations.

Because the two mediators each mediate the neddtijo between X and Y
separately, there are two mediated effects inttudel. The mediated effect of|Né the
product of they; andb; paths, and the mediated effect of il the product of tha, and
b, paths. Individually, these are the specific memtiaffects ;b, andasby,); together,
they are the total mediated effeatlf; + a;b,). In this model, since is still the total
effect andc’ is still the direct effect of X on Y controllingf the mediators, the total
effectc is equal to the direct effect plus the total mediated effect, resulting in the
following equation:

aib; +ah,=c-c 13)
Again, there are certain situations in which tigsality does not hold, but it is true for
the situations discussed here.

As the parallel two mediator model is a simpleseston of the single mediator
model, the same assumptions of the single medmadaoiel regression equations apply to
the parallel two mediator model regression equatidhe parallel two mediator model is
advantageous in that in can ameliorate the singl@aitor model by addressing the
assumption of no omitted influences. However, g®ieption of no interactions among
variables can become problematic in models withtipiel mediators, as the number of
possible interactions among variables increasesreqgially as the number of mediators

included in a model increases.



Mediation: Significance Tests

MacKinnon, Lockwood, Hoffman, West, and Sheets @00entified three main
approaches to significance testing in mediationsabsteps tests, product of coefficients
tests, and difference in coefficients tests. Thests have been developed in depth for
significance testing of the single mediator model] with varying modifications they
can also be used to test the significance of tihallphtwo mediator model (MacKinnon,
2008).

Causal steps. The most common approach to mediation in the ssciahces is
the causal steps approach, which stems from Jutianny’s (1981) pivotal work
discussing the circumstances necessary to detethreneediated effect; these
circumstances are also discussed in detail in BanonKenny'’s classic mediation article
(1986). Judd and Kenny’s requirements for detemmgimhediation in the single mediator
model stipulate that:

I.  The effect of X on Y ¢ path) is significant.
Il.  The effect of X on M4 path) is significant.
lll.  The effect of M on Y controlling for Xipath) is significant.
IV.  The effect of X on Y when adjusted for M (path) is not significant.
Baron and Kenny relax the requirements of the fooandition, and only require that the
first three conditions hold. MacKinnon et al. (20@@und that in a literature review of
200 articles involving mediation, the majority bem that used a formal test of
mediation used the causal steps approach folloBargn and Kenny. Additionally,
Social Sciences Citation Indexdicates that the Baron and Kenny article has loged
over 16000 times. MacKinnon et al. (2002) have dseeloped a joint significance test

9



based on the causal steps approach which tessgytiiécance ofa andb coefficients
separately.

The Baron and Kenny causal steps approach carbalgsed to test the parallel
two mediator model, with some adjustment of thainemments. As there are two specific
mediated effects, the second condition must haldhe effects of X on both Mand M
such that the; anda, paths are significant. The third condition musbahold for the
effects of M on Y and M on Y controlling for X and the other mediator, Bubat theb;
andb, paths are significant. While it is possible to tlie method of significance testing
for the parallel two mediator model, there are savenportant limitations to this method
when additional mediators are involved (MacKinn2d08, pp. 110-111). A test of joint
significance for the parallel two mediator modes Imat yet been developed.

Product of coefficients. The second category of mediation tests look at the
significance of the mediated effead, known as product of coefficients tests. The
significance for the product of the coefficientsrsst often tested usingzdest with a
standard error derived by Sobel (1982), who usedrthltivariate delta method based on

first derivatives.

S, =/ a’s’ +b’s? (14)
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The product of coefficients can also be testedgusonfidence limits based on the
product of two random normally distributed variab(&acKinnon, Fritz, Williams, &
Lockwood, 2007; MacKinnon, Lockwood, & Williams, @4).

The multivariate delta method can also be extemnoe@rive the solution for the
standard error of the total mediated effect forgheallel two mediator model
(MacKinnon, 2008). From equation 13, the total ma&sti effect isyb; + asb,, so the

standard error for the total mediated effect ifoHews:

Sapean, = \/ sibf +sa’ +s. by +s) a; +2a,a,s,, (15)
The covariance betwedn andb; iss,;, , and this value is necessary for computing the

standard error.

Differencein coefficients. The third set of significance tests for mediatithre
difference in coefficients tests, involve testihg tnediated effect — ¢ These tests for
mediation are more commonly used in the fields eflitine and epidemiology. Several
standard errors for these tests have been denvebd single mediator model by
McGuigan and Langholtz (1988), Freedman and Schm(2992), and Clogg, Petkova,
and Shihadeh (1992¥lacKinnon (2008) provides a formula for the standamor ofc —
¢’ for the parallel two mediator model as well.

Increasing Power Using Additional Variables

There has been extensive literature publishedhemiclusion of a third variable
in an experimental design to increase the powersttidy. The use of covariates to
increase power has been particularly well-docunter®me of the primary uses of a

covariate in analysis of covariance (ANCOVA) igrniorease the precision of a
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randomized experiment by reducing error variabii®pchran, 1957; Huck, 1972).
Miller and Chapman (2001) agree that the main gbaking ANCOVA should be to
increase power instead of using it to control fiauyp differences, as is often done in
practice.

Sometimes researchers wish to study the effextaf an outcome Y, but Y may
be difficult or costly to measure. Instead of loukdirectly to Y, they will find an
intermediate endpoint Z that is a surrogate fou¥hsthat the dependent variable X
affects the intermediate endpoint Z as it wouldalvd Z is a predictor of Y (Prentice,
1989, p. 432). Surrogate endpoints are often usetkdical research, as the true
endpoints of interest are more expensive or haodereasure (such as death rates of
participants as a measure of mortality). For exaiple presence of polyps has been
used as a surrogate endpoint for the outcome ohamncer (Freedman & Schatzkin,
1992).

Surrogate endpoints are also a way to increaspaiver of a study. As surrogate
endpoints are used in place of outcomes that #reudli or costly to measure, measuring
those true outcomes could reduce the sample sigifant size of the study (Prentice,
1989). Therefore, sample size or effect size candreased through the use of surrogate
endpoints (thereby increasing power).

Related to these concepts is the idea of an imekesign: including intermediate
points of measurement and using the weighted agaryfthose responses for each
subject as an outcome instead of just one resg#maemer & Thiemann, 1989). The
intensive design increases power without requiangncreased sample size over a
posttest-only randomized experimental design (Kexe&Thiemann, 1989), and can

12



also have increased power over a pretest-posesgirdgiven certain conditions,
although this design does require more measurepuamtis (Maxwell, 1998; Venter,
Maxwell, & Bolig, 2002).
Extension: Increasing Power Using a M ediator

In light of this research, it follows that the lasion of a mediating variable in a
model would lead to increased power. MacKinnon.g2802) compared all known
methods of testing mediation and identified theéstesth the best power and Type | error
rates, and found that due to the requirement ajrafeant X to Y relationship, the
Baron and Kenny and Judd and Kenny causal stefssféesnediation are underpowered.
Fritz and MacKinnon (2007) replicated this resfittding that whera andb paths were
small andc’ was zero, the sample size required to detect ddhated effect at 0.8 power
for the Baron and Kenny test was 20886. Givengbate tests of mediation have the
ability to detect effects when the relationshipiesn X and Y is nonsignificant, it
follows that including a mediator can increase poweer the bivariate model in some
situations. MacKinnon (2008, pp. 394-395) and F@ax, and MacKinnon (2012)
discuss this as well. With these findings in mithe next logical step will be to
determine the details of when this effect occurdhe inclusion of a single mediator, and
to extend this idea through the inclusion of migtimediators. The intention of this
paper is to determine when a mediation model tidtides one mediator or two parallel
mediators will be more powerful than a model whocitly examines the relationship

between X and Y.
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Hypotheses
1) There are systematic differences between combmabbparameters and
sample size where the test of X to M to Y is masev@rful than the test of a
bivariate relationship X to Y.
2) The increased power when a mediator is added wt#inel to the parallel two
mediator model.
Method
Single Mediator Model Empirical Power
A Monte Carlo simulation was used to compute eroginpower for the test of the
total effect, the product of coefficients test afdration for the single mediator model,
and the joint significance test of mediation fog gingle mediator model. SAS syntax
(Version 9.2 of the SAS System for Windows) for #i@ulation can be found in
Appendix A. In addition, a summary of the followisteps is included in Appendix B. A
macro was designed to loop through 384 differenttmoations of population sample
sizes (50, 100, 200, 500, 1000, and 5000) and ptpalpath parameters (0, 0.14, 0.39,
and 0.59) for each of the b, andc’ paths. Population path parameters were chosen in
accordance with those used in prior research onati@ad models (Fritz & MacKinnon,
2007; MacKinnon et al., 2002). PROC IML was theadiwith the RANNOR function
within the macro to generate random data with ndyndsstributed residuals for the

independent variable X. Data for X can be represeniith the following equation:
X =€ (16)
The program then used the mediation regressiortiegsdo create M and Y by

generating normally distributed residuals for eaahable using RANNOR, and using
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those residuals along with the predetermined paesand generated X variable in the
mediation equations.

The data vectors for X, M, and Y were combined entoatrix and a data set was
formed from that matrix. All three variables gertethwere continuous. The parameter
estimates, their standard errors, anailues were then estimated from the simulated data

in a series of regression analyses using the faligwegression equations:

Y, =i, +EX, +8 (17)
Yi:f2+é'Xi+6Mi+é? (18)
Mi:iA3+éXi+?% (29)

WhereC is the sample estimate for the relationbkiveen X and YA is the sample

estimate for the relationship between X andfM, théssample estimate for the

relationship between M and Y, al s the sampienase for the relationship between

X and Y controlling for M. The sample intercepts aepresented here &si,, ,apd

and the sample error variability for the equatiarsé, ,&, , andg; .

Each set of results was saved into individual data and then compiled into a
single new data set. Within the new data set, séveariables were created to conduct
significance tests and generate power values. €gts bf mediation were included: The
product of coefficients test using the multivaridtdta standard error of the indirect
effectab, and the joint significance test testim@gndb separately. These were used based
on findings from MacKinnon et al. (2002), whichtéd the multivariate delta method as
the most commonly used product of coefficients &gt found the joint significance test

to have a good balance of power and Type | erroth Bests included were two-tailed
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tests. The product of coefficients test was coretlibly dividing the product of generated

estimatesab by its multivariate delta standard error:

z.=— (20)
s

A ztest was then conducted by comparing the absedite of z; to 1.96 (the 97.5

percentile under the normal distribution). The hyyeses for the product of coefficients
test are as follows:
Ho: ab=0

H.: ab=0

The joint significance test was conducted by testive significance of thé arfl
coefficients separately. For each coefficient,daeedp value from the regression
analysis was compared to 0.05. The hypothesetégpint significance test are as
follows:

Ho: a=b=0

Hi: az0andb=0ora=0andb=0ora=0andb=0

Three binary variables were then created to gememapirical power values for
the test of the total effect, the product of caméints test, and the joint significance test.
For each of the three tests, a binary variable leguzero for a nonsignificant test and one
for a significant test.

The process of generating data, performing regressialyses, and testing for

mediation was repeated for a total of 1000 repbecet for each combination of
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population parameters and sample size. The meaatir binary significance variable is
the proportion of times out of 1000 that the teaswignificant (the power value for
combinations with non-zero population path paransetnd the Type | error value for
combinations with population path parameters etjuaéro).
Single Mediator Model Analytical Power

In addition to estimating empirical power of thegie mediator model, it is
possible to compute analytical power for the simgexliator model. The SAS program to
compute analytical power for the single mediatodeia@an be found in Appendix C. For
the single mediator model, the program calculatgalifation variances and covariances
for X, M, and Y based on different combinationgopulation path parameters and
sample sizes (the same ones used in the empiinicalagion). The covariance matrix for
the single mediator model can be found in MacKin(2008). Those variances and
covariances were then used to calculate zero-amtfirst-order partial correlation

effect sizes corresponding to the populaacandb paths as found in MacKinnon (2008):

O
P = (21)
OxOy
Pumy ~ Pxy P
Pk = MY xy Pxm (22)

VA= P35 )A- Ph)
Where py,, Is the correlation effect size correspogdmthea coefficient and
Pymx 1S the first-order partial correlation effect samresponding to thie coefficient.

The first-order partial correlation effect size remponding to the’ coefficient would be

Pyxm -
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The variances and covariances for the single nwdmodel were also used to

calculate the trua andb coefficients and their true standard errors:

a= T (23)
Ox
O_2
O =4|——— 24
(N-Do? 24

2
OO — O O
_ OxOwy xM 9 xy
b= 5 5 (25)
OxOn —Oxm

J L (26)
O, =

" V(N-Doyy - piu)

From the above standard error equatimﬂé, isapelption error variance

from the equation with X predicting M art»-;l‘f2 is thepoplation error variance from the

equation with X and M predicting Y. The values afo$or thea, b, andc’ population
parameters in the single mediator model are paHic@nts corresponding
approximately to Cohen’s small, medium, and larffecesizes (MacKinnon et al.,
2002).

Power was then calculated in two ways. First threatations above
corresponding ta andb were used to calculatezdest, which was then used to compute
analytical power as described in the introductibths paper. Then the path coefficients
a andb and their true standard errors were each usealc¢alate & test which was used
to compute analytical power, also described abawalytical formulas for power of the
joint significance test of mediation for the singhediator model can be found in Wang

and Xue (2012). For both methods of computing dralypower, the individual power
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values fora andb were then multiplied to calculate analytical powaralogous to the
joint significance test. Analytical power of theabmediated effecb cannot be
computed using the methods just described, asish@dtion of the product of two
random normally distributed variables is not norifabian, 1944; Craig, 1936).
However, it can be approximated by formingscore using the values alb ands,,. The
formula used is as follows (Wang & Xue, 2012):

ab
Tap =1=D(Z_ ) _S_) (27)

ab
Covariance Matrix for the Parallel Two Mediator M odel
In order to derive true formulas for the regressioefficients, standard errors of
regression coefficients, and effect sizes basecbarlations for the parallel two
mediator model, it was necessary to first deriveeghrallel two mediator model

covariance matrix, which is shown in Table 1.

Covariance algebra was used to derive formulathforariance of each variable
in the parallel two mediator model, and the covarés between each pair of variables.
For the full derivation of the covariance matrigesAppendix D. Syntax to compute the
true variances and covariances of the variabl&A8 can be found in Appendix I.

True Path Coefficientsand Standard Errorsfor the Parallel Two Mediator M odel

After using covariance algebra to derive the ciawvere matrix for the parallel two

mediator model, the variances and covariances wsé to derive formulas for the true

19



path coefficients and standard errors of the palrddlo mediator model in terms of

variable variances and covariances. The formulathiotrue path coefficients are as

follows:
o
a1 = X'\2/|1 (27)
Ox
Owmy — CIGXMl - bZO-MlMZ
b, = 2 (28)
Ml
o
a, =— 13" (29)
Ox

(30)

o'z XY ATy (31)

For the full derivation of the regression coe#itis, see Appendix E. The
formulas for the standard errors of the regressaefficients required some additional
work, as the mean squared errors of the regressjoations for X predicting Mand X
predicting My are in the numerator of the standard erro& @nda,. In addition, several
squared multiple correlations were part of the falam for the standard errorskmf b,
andc’. The formulas for the three error variances fromparallel two mediator model

regression equations were found using the covaemhbhetween variables:

o =0l -Col-2bc Oxm, ~ 2b,C' Txm, — 2blb2<7Mle - bfo',\r‘;Il - b220',\r‘;|2 (32)
o2 =o% —alo? (33)
o2 =02 —alo? (34)
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In the above equationscfz is the population erasrance of the regression
equation where Y is predicted by X,Mand M, ai is the population error variance of

the regression equation wherg M predicted by X, andri is the population error

variance of the regression equation wheggdvpredicted by X.
The formula for the squared multiple correlati@esi standardized regression
coefficients and bivariate correlations, and thenfalas for multiple correlations between

predictors use bivariate correlations between pteds only:

R$.X,M1,MZ =c" (Pyx) +b1(pM1Y ) +b; (Puy) (35)
2 2
R? _ Pux T Pux _ZleMZPMIXPsz
XM M, — 1- 2
-p
M1iM 2 (36)
P T P, = 2Pum, Pux P
M.X MM, MM, PMx PM,x
R1\2/|1.><,|\/|2 = 1 2 (37)
= Pwm,x
Prx + P, = 2Pum, Pux P
M,X MM, MM, POMx PM,x
Riaz.x,M1 = (38)

1_P|\2/|1x
Wherec'*, by*, andby* are true standardized regression coefficientsidJie
above formulas, the standard errors of the regressiefficients can be computed. The

standard errors for the regression coefficientsaarfollows:

O_2

£3

N )

5. = O 1 ,1_ R\?.X,MI,MZ (40)
B ow, 1= Rial.x,MZ N-3-1
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Oo =v|7o s (41)

o = oy 1 1- R\?.X,MI,MZ (42)
"oy V1-RE o U N-3-1
Oy 1 1- R\?.X,Ml,MZ
7 s V1-R? N-3-1 (43)
X X.M1,M,

Effect Sizesfor the Parallel Two Mediator M odél

The variances and covariances were then useditedell and partial correlation

effect sizes for the parallel two mediator modeébrmulas for the effect sizes are as

follows:
Doy = Oxm,
M, T TS TS 44
o2 od, 44
PMyx ~ PmM, xPM,y.x
Pumyxv, = > > (45)
\/1_ PMM, X \/1_10M2Y.X
Dy = O'xm,
M, =T 5 [ 2 46
o2 ok, (46)
PMyx = PmM, X PMy.x
PM,yxm, = > > 47)
\/1_ PMM, X Jl_lev.x
Pxym, = Pxm,m, PYM,M,
Pxy.MM, (48)

) \/1_ /0>%M2.M1 \/1_ péMz.Ml

Where equation 44 is the zero-order correlatioaaf$ize fora;, equation 45 is the
second-order partial correlation effect sizeldgrequation 46 is the zero-order
correlation effect size fax,, equation 47 is the second-order partial correfagiffect size
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for by, and equation 48 is the second-order partial tdrom effect size foc’. Appendix
F shows how the formulas can be produced from #énances and covariances between
variables.

Using the above formulas for correlation effezesias well as the formulas for
regression coefficients derived from the covariamegrix, a program was written to
determine the size of the regression coefficiemtsHis model that would correspond
approximately to Cohen’s small, medium, and largeedation effect sizes. The program
first calculated variances and covariances and ¢berelation and second-order patrtial
correlation effect sizes for the parallel two méatianodel using path parameters. After
iterating through, the parameter values were ménabhhnged to adjust the correlation
results to be as close to Cohen’s guidelines fallsmedium, and large effect sizes as
possible. The program determined thatdgms, a;, andby, a path coefficient of 0.101
corresponded to a small effect, a path coeffiodéit. 314 corresponded to a medium
effect, and a path coefficient of 0.577 correspandea large effect. Far, path
coefficients of 0.131, 0.400, and 0.740 correspdrtdesmall, medium, and large effects.
A SAS program that computes these values is showppendix G. These path
coefficients are necessary to set population patarpeters for analytical calculation of
power, and for generation of data to calculate ecaipower for the parallel two
mediator model.

Parallel Two Mediator Model Empirical Power

For the parallel two mediator model, a simulaticaswvritten to generate
empirical power for the test of the total effe@nd the test of the total mediated effect
a;b; + axb, over 500 replications. SAS syntax for the pardliled mediator model
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simulation can be found in Appendix H. A macro wlasigned to loop through 5120
different combinations of population sample siZg3 (L00, 200, 500, and 1000) and
population path parameters (fxr, by, a, andb,: 0, 0.101, 0.314, and 0.577; for O,
0.131, 0.400, and 0.740). PROC IML was then usé¢ld the RANNOR function within
the macro to generate random data with normallyidiged residuals for X. Data for i1
My, and Y were generated by creating normally diated residuals for each using
RANNOR. The data vectors for X, MM,, and Y were then concatenated into a single

matrix to form a data set. All four variables geated were continuous.

The parameter estimates, their standard errorgoVveriance between tHAQ and

A

b, estimates, and values were then estimated from the simulatedidadsseries of

regression analyses using the following regressgurations:

A

Y, =i, +CX, + & (49)
Y, :iA2+é'Xi +tA)lM1i+k32M2i+é2 (50)
M, =i, +4,X, +& (51)
M, =i, +&,X, +8&, (52)

Where¢ is the sample estimate for the relationbbigveen X and Y@, is the

sample estimate for the relationship between XMnd&, is the sample estimate for the
relationship between X andzl,\/lﬁl is the sample estimate for the relationship betwivi

and, 62 is the sample estimate for the relationbeipveen Mand Y, andC' is the

sample estimate for the relationship between X“aedntrolling for the mediators. The
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sample intercepts are represented hen'é aiAg i}, , i; aand the sample error

variability for the equations ar@ &, & , afd

Each set of results was saved into individual data and then compiled into a
single new data set. Within the new data set, s¢veriables were created to conduct
significance tests and generate power values. Wbddiled test of the total mediated

effect was conducted by dividing the sum of thec#memediated effect estimates

ab, +a,b, by its multivariate delta standard error, as iswath the single mediator
model:
__ab+apb,
&by +850, S.- - (53)
ab +a,b,
The absolute value of thestatistic was then compared to the 97.5 percentile

cutoff on the normal distribution. The hypothesasthe test of the total mediated effect
are as follows:

Ho: ab +ab, =0

Hi ab +ab,#0
Two binary variables were then created to genenamjgirical power values for the test of
the total effect and the test of the total mediatielct. Each time a test was performed, a
binary variable would be equal to zero for a nonigant test and equal to one for a
significant test.

In addition to the test of the total mediated eff¢he two specific mediated

effectsa;b; andazb, were tested for significance using both the prodf@icoefficients
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and joint significance tests. The hypotheses fertoduct of coefficients tests of the
specific mediated effects are as follows:

Ho: ab =0

Hi: ab =0

Ho: ab, =0

Hi: a,b, #0
The hypotheses for the joint significance teshef $pecific mediated effects are as
follows:

Ho: a,=0andb =0

Hi: a =0andb, =0, or g =0andb, =0, or a =0andb, =0

Ho: a,=0andb, =0

Hi: a, #0andb, =0, or a,=0andb, =0, or a, #0andb, =0

Binary variables were created for each test forsghecific mediated effects in the
same way they were for the single mediator model.

The process of generating data, performing regnessalyses, and testing for
significance was repeated a total of 500 times&wh combination of population
parameters and sample size. The mean for eacledreiiary variable is the proportion
of times out of 500 that the test was significahe (power value for combinations with
non-zero population path parameters and the Tyt value for combinations with

population path parameters equal to zero).
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Parallel Two Mediator Model Analytical Power

A program was also written to calculate analytmalver of the parallel two
mediator model. Syntax for the program is showAppendix I. For the parallel two
mediator model, the program calculated populat@mewices and covariances of X;,M
M,, and Y based on the combinations of parametersamgple sizes used in the
empirical simulation. Those variances and covagamnere then used to calculate zero-
order, first-order, and second-order partial catiehs, and the true formulas for each
path coefficient and the standard errors of théfimbents. Power was then calculated for
the specific mediated effects using both of thehoés for calculating analytical power
that were used in the single mediator model. Pdorathe total mediated effect was
computed by dividing the sum of the specific mestia¢ffects by the two mediator model
multivariate delta standard error to calculatevalue. The value was then used as the
noncentrality parameter to calculate power as desgin the introduction of this paper.

Results

Empirical Single Mediator Model Results

Empirical power values for combinations of paraanetind sample size where
power of the joint significance test exceeds powfahe test of the total effect are shown
in Appendix J. Empirical power values for combinas of parameters and sample size
where power of the product of coefficients testemds power of the test of the total
effect are shown in Appendix K. Of the 384 comhimrad of parameters and sample
sizes, the joint significance test had greater pdhen the test of the total effect 64
times, and the product of coefficients test hadmepower than the test of the total
effect 53 times. Results indicate that the tegbioft significance had more power than
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the product of coefficients test, as found eafacKinnon et al., 2002; Fritz &
MacKinnon, 2007). For all cases where power forjtiat significance and product of
coefficients tests was greater than power for ¢ise af the total effect, the direct effect
(c’) was always zero or small; whehis equal to zero this indicates full mediation.

Whena andb were smallé = b = .14), the joint significance and product of
coefficients tests had more power than the telietotal effect at larger sample sizes.
The test of the total effect had more power thanjdimt significance and product of
coefficients tests at smaller sample sizes whandb were small. For example, in
Appendix J for the case whemeandb were small& = b = .14), the test of the total effect
had more power than the joint significance testafsample size of 50. The joint
significance test had more power than the test@tdtal effect in every other sample
size. In Appendix K for the case whexe b = .14, the test of the total effect had more
power than the product of coefficients test urdihple size reached 200. However, when
a andb were larged = b = .59), the joint significance and product of dméénts tests
had more power than the test of the total effeshaller sample sizes. In both
Appendices J and K fa=b = .59, the joint significance and product of caeéints tests
had more power than the test of the total effesaimple sizes up to 200. At sample sizes
larger than 200, the test of the total effect dredjbint significance and product of
coefficients tests all had power of approximatatg dor largea andb.

In summary, two patterns of results emerged foisthgle mediator model. The
joint significance and product of coefficients seeid more power than the test of the
total effect when sample size was large and effgete small, and when sample size was
small and effects were large. Results from the &@mspirical simulation provide support
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for the first hypothesis that the significance gdst the single mediator model
systematically have more power than the test ofdted effect.
Empirical Parallel Two Mediator Model Results

Logistic regression was used to summarize thdteestithe two mediator model
simulation for all 2560000 datasets generated fitoar600 replications of 5120
combinations of parameters and sample size. Fér @aaset, a variable was created
which was equal to one if the test of the total ratedl effect was significant and the test
of the total effect was not, and was otherwise Etpuzero. Frequencies were obtained
for both values of this variable for each combioatdf population parameters and
sample size, such that there was a value for dggiéncy of zeros and a value for the
frequency of ones for each of the 5120 combinatidhese were used to create a new
dataset with 10240 observations. A weighted logisgression with a binary dependent
variable was then conducted. The predictors weméeced population values ef, b, ay,
b,, ¢’, andN, with all interactions between predictors includéde frequency of the
dependent variable for each combination of pararseted sample size was included as a
weight. Syntax for the weighted logistic regress®mehown in Appendix L.

Results for the main effects and interactionssa@vn in Appendix M. Because
of the large number of main effects and interactianalyzed and the very large sample
size, effects are considered importang # 0.0001. The highest order important
interactions were four-way interactions, so thaseiaterpreted first.

Of the important four-way interactions, the intgrans that most clearly describe

the results are the interaction betwegrby, ¢’, andN and the interaction betweeag, by,
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c’, andN. A series of graphs demonstrating this interacisashown in Figure 3, panels
Ato E.

- Insert Figure 3 about here -
Thea;*b;*c’*N interaction shows that as andb; increased anll decreased, the
proportion of cases where the test of the totaliated effect was significant and the test
of the total effect was not significant increasedt, only wherc’ was zero or smalj?(1,
N = 2559999) = 112.3059,< 0.0001. Wher’ was medium or large, the proportion of
cases where the test of the total mediated effastsignificant and the test of the total
effect was not significant dropped to zero forcalinbinations o&; andb; parameters
and sample size. The same pattern of results alsiatiue for thea,* by* ¢’* N interaction,
but for coefficients, andby, x*(1, N = 2559999) = 86.514p,< 0.0001. A series of
graphs demonstrating this interaction is shownigufe 4, panels A to E.

- Insert Figure 4 about here -

Another way to interpret the interactions wouldibéook at the behavior of the
individual coefficients across sample sizes. Itesgpp that when'’ is zero or small, there
were a larger proportion of cases where the testeofotal mediated effect was
significant and the test of the total effect was significant when they, a, b;, andb,
coefficients were large and sample size was sima#iddition, there were a larger
proportion of cases where the test of the totaliated effect was significant and the test
of the total effect was not significant when thefficients were small and sample size
was large. For example, in Figure 4a. whére 50,a, = b,= 0.577,c’ =0, the
proportion of cases where the test of the totaliated effect was significant and the test
of the total effect was not significant was 0.2 targest proportion at that combination
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of parameters and sample size. However, for theesamimbination of parameters, the
proportion dropped across sample sizes to 0.NM=a100, 0.01 aN = 200, and zero at
larger sample sizes. Conversely, in Figure 4a. eNer 50,a, = b, = 0.101,c’ =0, the
proportion of cases where the test of the totaliated effect was significant and the test
of the total effect was not significant was 0.07d @éhe proportion for that combination of
parameters increased across sample sizes to NL3 200, 0.16 aN = 200, 0.25 aN =
500, and 0.31 atl = 1000.

Tables 2 to 6 contain empirical power values fahlbe test of the total
mediated effect for the parallel two mediator maaiad the test of the total effect where
¢’ =0 or 0.131 (corresponding to zero or small eféezes forc’, which were the only
values ofc’ at which the test of the total mediated effect voamd to have more power

than the test of the total effect).

Combinations of parameters and sample size whertest of the total mediated
effect was more powerful than the test of the tetfdct are highlighted in bold red. It
appears that the test of the total mediated eff@stmore powerful than the test of the
total effect when effect sizes were large at smabenple sizes, and when effect sizes
were small at larger sample sizes, as was truth&single mediator model. For example,
the test of the total mediated effect was more phwehan the test of the total effect
when theay, ay, by, b, coefficients were all large fa¥ = 50, but both power values were
equal to one for all larger sample sizes. Howether test of the total mediated effect was
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more powerful than the test of the total effect whigea,, a,, b, b, coefficients were

small forN = 200 and above. In addition, there were more é¢oations of parameters
and sample size where the test of the total metieffect was more powerful than the
test of the total effect at lower sample sizes bseas sample size increased, the power
of both tests approached one for the larger effieess.

Beyond looking at combinations of parameters amdpde size where the test of
the total mediated effect was more powerful thantést of the total effect, it is of
interest to look at combinations where the tesheftotal mediated effect exceeded
adequate power of 0.80 (Cohen, 1988) and the tekedotal effect did not. In Tables 2
to 6, those cases are highlighted in bold bluerdhee 204 combinations where this
occurs, and for each sample size it is relativgbtesmatic. The tables show that the
general trend described above, which applies toaaibinations of parameters and
sample size where power of the test of the totaliated effect exceeds power of the test
of the total effect, is more pronounced for combores where the test of the total
mediated effect exceeded adequate power of 0.8¢hartest of the total effect did not.

The logistic regression results showed that aeceffize increased and sample
size decreased, there was a larger proportionsgiscahere the test of the total mediated
effect was significant and the test of the toté&fwas not significant (but only wheh
was zero or small). Wheei was zero or small, empirical power was greatetHertest
of the total mediated effect than for the testhaf total effect in two cases: (1) when
effect sizes were small and sample size was largp(2) when effect sizes were large
and sample size was small. Looking at the comlonativhere empirical power exceeded
0.80 for the test of the total mediated effect, aatifor the test of the total effect,
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revealed that these combinations followed the s@ieit more pronounced) general
trend that all combinations did. Results from thead empirical simulation provide
support for the second hypothesis that the tegteoparallel two mediator model
systematically has more power than the test ofdte effect.
Comparison of Analytical and Empirical Power: Single Mediator M odel

Table 7 shows a comparison of results for analaod empirical power of the

joint significance test for the single mediator rahaollapsed across levels ©f

Only power of the models is considered in this¢globmbinations wher@or b is zero

are measures of Type | error rate). Analytical pogaes not vary across levelsf so
empirical power has been averaged across levelsfof comparison. Empirical power is
compared to analytical power calculated both usmgelation coefficients and
regression coefficients.

All three methods of calculating power yielded gamresults. The largest
discrepancy between the two methods of calculatimajytical power was never greater
than an absolute value of 0.02. The largest disecreypbetween empirical power and
analytical power calculated using correlation cioefhts was 0.032 & = 200,a=b =
0.14. The largest discrepancy between empiricalep@nd analytical power calculated
using regression coefficients was 0.04Nat 50,a = b = 0.39. The discrepancies
between empirical and analytical power decreasesdiaple size increased. Results from
the program to compute analytical power of thelsimgediator model are very close to
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results from the empirical simulation, indicatimgt both programs produced relatively
accurate power values for the joint significanc td the single mediator model.
Table 8 shows a comparison of results for analaod empirical power of the

product of coefficients test for the single mediatwdel, collapsed across levelscaf

Only combinations where all coefficients are gre#tan zero are showa @ndb at

0.14, 0.39, and 0.59). There were discrepanciegdast empirical and analytical power

of the product of coefficients test for the singlediator model due to the way analytical
power was calculated. Analytical power was smdalan empirical power by at least

0.03 for 6 combinations of parameters and sampk and empirical power was smaller
than analytical power by at least 0.03 for 11 carabons of parameters and sample size.
When analytical power was smaller than empiricalgo the greatest difference in

power values was 0.097 Idt= 100,a = b = 0.39. When empirical power was smaller
than analytical power, the greatest differenceawgr values was 0.202 Ht= 200,a=b
=0.14.

Differences between analytical and empirical poefehe product of coefficients
test for the single mediator model occurred bec#usenethod of computing analytical
power that was used does not necessarily extefushtbions of variables, as it assumes a
normal distribution underlying variables. The disition underlying the product of two

variables is non-normal, but it approximates norasaéffect size and sample size
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increase (Springer, 1979). When sample size ardtedfzes are large, analytical power
and empirical power should become very similar, @adle 8 indicates that they do.
Comparison of Analytical and Empirical Power: Parallel Two Mediator M odel

Total mediated effect. Table 9 shows a comparison of results for anai/and
empirical power of the test of the total mediatédat for the parallel two mediator

model, collapsed across levelscof

Only combinations where all coefficients from tipesific mediated effects are greater
than zero are showiy( b;, a, andb, at 0.101, 0.314, and 0.577). There were large
discrepancies between empirical and analytical p@ivehe test of the total mediated
effect for the parallel two mediator model duehte tvay analytical power was
calculated. Analytical power was smaller than emgpimpower by at least 0.03 for 163
combinations of parameters and sample size, andtieaipower was smaller than
analytical power by at least 0.03 for 36 combinatiof parameters and sample size.
When analytical power was smaller than empiricalgo the greatest difference in
power values was 0.306 dt= 100,a; = 0.577,b; = 0.314,a, = 0.577, andb, = 0.101.
When empirical power was smaller than analyticalgo the greatest difference in
power values was 0.146 dt= 50,a; =b; = 0.314,a, =b, = 0.101.

As with the single mediator model, differencesamn analytical and empirical
power of the test of the total mediated effecttha parallel two mediator model occurred
because the method of computing analytical powetrwlas used does not necessarily
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extend to functions of variables, as it assumesrmal distribution underlying variables.
However, Table 9 indicates that when sample sizeefiect sizes are large, analytical
power and empirical power become very similar hey tare expected to.

Specific mediated effects. Table 10 shows a comparison of results for analitic
and empirical power of the joint significance tekthe specific mediated effeatb, for

the parallel two mediator model, collapsed acresslk ofa, by, andc’.

Analytical power fora;b; does not vary across levelsaf b,, orc’, so empirical power
has been averaged across levels,plb,, andc’ for comparison. Results show that the
comparison of analytical and empirical power far pecific mediated effeatb; is
similar to the comparison of power for the singlediator model, in that the three
methods of calculating power yield very similaruks. Fora;b;, the largest discrepancy
between the two methods of calculating analyticatgr was never greater than an
absolute value of 0.018. The largest discrepantyd®n empirical power and analytical
power calculated using correlation coefficients W&@07 atN = 200,a; = 0.101,b; =
0.14. The largest discrepancy between empiricalep@nd analytical power calculated
using regression coefficients was -0.028lat 50,a; = b; = 0.577.

Table 11 shows a comparison of results for aradland empirical power of the
joint significance test of the specific mediatetkefayb, for the parallel two mediator

model, collapsed across levelsagfb;, andc’.



Insert Table 11 about here

For agh,, the largest discrepancy between the two methbdalculating analytical
power was never greater than an absolute valuéd@B0The largest discrepancy
between empirical power and analytical power cali@ad using correlation coefficients
was 0.011 aN = 50,a, = 0.314,b, = 0.577. The largest discrepancy between empirical
power and analytical power calculated using regoessoefficients was -0.017 Bk= 50,
a, = b, = 0.577. Results from the program to compute anallypower of the specific
mediated effects for the parallel two mediator m@ude very close to results for the
specific mediated effects from the empirical siniola, indicating that both methods
produced relatively accurate power values for tiet jsignificance tests of the specific
mediated effects for the parallel two mediator mode
Typel Error Rates

For the single mediator model, results from th@ieical simulation with
combinations where one or both of the populatioapetersa or b is equal to zero
provided empirical Type | error rates. Empiricalp&yl error rates for both tests whare

=b = 0 for the single mediator model can be foundiable 12.

For all sample sizes, wher= b = 0 the product of coefficients test had Typerberates
around zero, and the test of joint significance Tiggde | error rates around 0.001. Both
tests underestimated Type | error rates, as foumailier research (MacKinnon et al.,
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2002). However, when only one coefficient was z@&ige | error rates increased to
values closer to 0.05.

For the parallel two mediator model, when eitheor b; was zero theyb; term
was zero, and when eithar or b, was zero theyb, term was zero. Therefore, results
from the simulation with combinations where both ahb; andayb, terms are zero
provide empirical Type | error rates. To reducedaheunt of information presented,
combinations whera; =b; =a, =b, = 0 are provided here as measures of empirical

Type | error for the product of coefficients tastliable 13.

As for the single mediator model, the product affticients test of the parallel two
mediator model underestimated Type | error ratgp€Tl error rates were also around
zero for this model). These Type | error ratesimg@ccordance with previous research on
Type | error rates of tests for the mediated effbtacKinnon et al., 2002).
Power Comparison for Parameters Greater than One

The power differences for the total and indireff¢cts above were consistent for
the single and parallel two mediator models. Howgfer both models, the parameters
used to generate power values were less thantaseflinterest to know if these
findings hold for parameters greater than one.nvestigate this possibility, an empirical
search was made using the program in Appendix Ml ferl00 using coefficients of

1.01, 3.14, and 5.77 fax, by, a, andb,, and O forc’, for a total of 81 combinations of
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parameters. In addition, the variance of X andettner variances of M M,, and Y were
changed from a value of one to a value of 10.
Power values for the test of the total effect Hredtest of the total mediated effect

using coefficients greater than onéNat 100 can be found in Table 14.

For many of the combinations of parameterld at 100, power was equal to one for tests
of both the total and total mediated effects. Alnbinations of parameters had power
above 0.90 for tests of both effects. When powé&resawere not equal, power of the test
of the total mediated effect was always greaten fh@ver of the test of the total effect.
For example, at; =b; = 1.01,a, =b, = 1.01, power of the test of the total mediated
effect was 0.994 and power of the test of the teff@ict was 0.946. Power for the test of
the total mediated effect was greater than powéhnetest of the total effect for the
combinations of small and medium coefficients, aena; or a, was small ant, or b,
was large.

The increase in coefficient size faib;, azb,, andc led to more powerful tests for
both the total and total mediated effects as coatpaith results using combinations of
parameters less than one because the parametéasgare All of the coefficients greater
than one corresponded to large effect sizes, reguft adequate power for all
combinations of parameters testedNat 100. Adding a mediator to increase power is of

less interest when power values for all combinatiare above Cohen’s (1988) guideline
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for adequate power, because it is not necessangtease power when power is
adequate.
Bootstrap Comparison to Empirical Power for Parallel Two Mediator M odel
Analytical power for the total indirect effect ftre parallel two mediator model
was inaccurate because the assumed normal digtnifot the test is only true for very
large sample and effect sizes. That is, the rdtthetotal mediated effect to the standard
error of the total mediated effect does not haweranal distribution unless sample and
effect size are very large. Because it was notiplest accurately compute analytical
power for the parallel two mediator model, a SA8gpam was written to compute
bootstrapped power values for the total mediatéeted;bi+asb, and for the total effect
cin order to check the accuracy of the empirical povwalue comparisons found for the
total and total mediated effects. The bootstraphogkis an appropriate method for
comparison because it generates asymmetric cokdatervals based on the
distribution of the indirect effect instead of assng a normal distribution. The program
can be found in Appendix N. A flowchart of the bstoap process can be found in
Appendix O. The bootstrap program was used to olgawer for 10 combinations of
parameters and sample size for comparison to tipérieal results. The combinations to
be bootstrapped were randomly selected from thebomations where the total mediated
effect is more powerful than the total effect. Tiiegram simulated one sample of data
for X, M1, M, and Y based on the mediation equations, anddbeducted bootstrap for
that single dataset by sampling with replacemenhfthat sample of data to get
observations, forming the first bootstrap sampiehke bootstrap sample, the valuesaf
b, &, b, andc were generated and saved. This process of randsanipling with
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replacement and saving values of the coefficierats repeated 1000 times to create 1000
bootstrap samples for the first simulated datazset,the saved bootstrapped valueg, pf
b, a, b, andc were used to create confidence intervals for dked nediated effec;b;

+ azb, and the total effeat. Binary variables were then generated for thd toid total
mediated effects that were equal to one when thédmnce interval did not include zero
and equal to zero when the confidence intervaliohetl zero.

This process of simulating a dataset, generatingoastrap confidence interval,
and creating binary variables for significance lblase the confidence interval was
repeated 1000 times, simulating 1000 datasetsmidans of the binary variables from
the 1000 simulated datasets were the bootstrappadrp/alues of the total and total
mediated effects.

A comparison of bootstrapped and empirical povetues for the total and total

mediated effects for the parallel two mediator ma@da be found in Table 15.

Results show that the power values are very sirfolathe bootstrap and empirical
methods. The largest discrepancy between empaitwbootstrapped power values for
the total mediated effect was a discrepancy of&.@#ich occurred atl = 50,a; =

0.101,b; =0.314,a, = 0.577, andb, = 0.577. The largest discrepancy between empirical
and bootstrapped power values for the total effext a discrepancy of 0.045, which
occurred aN = 50,a; = 0.577b; = 0.577,a, = 0.314, andb, = 0.101. These bootstrap
results confirm that the empirical power value cangons for the total and total
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mediated effects for the parallel two mediator m@de accurate. Most importantly, the
bootstrap results confirm that the cases where ptoveetect the total mediated effect is
greater than power to detect the total effect.
Comparison of Standard Errorsof Total and Indirect Effects

For the majority of the combinations of parameterd sample sizes in this study,
the test of mediation is more powerful than thé eéshe total effect when’ is equal to
zero, and therefore when the total and indireeat$f are equal (that ia;b; + axb, = c or
ab = ¢). This means that for the test of the indireceeifto be more powerful, the test of
significance fora;b; + ab, or ab must be larger than the test of significancecfor
Because the tests of significance are computedviging the effects by their standard
errors, it follows that if the test of the indirexftect is more powerful than the test of the
total effect, the standard error of the total dffacist be larger than the standard error of
the indirect effect.

Table 16 shows a comparison of the analyticaldgtecherrors ot andab for the
single mediator model next to power of the tests arfidab for combinations whera
andb are greater than zero aads equal to zero & = 100, a sample of the
combinations used in the full empirical simulatidie analytical program in Appendix

C was used to compute these values.

Results from the analytical program show that walers equal tac andc’ is
equal to zero, the standard errocca$ larger than the standard errorabf Furthermore,
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when the standard error ofs larger than the standard erroabf power of the test aib
is larger than power of the testof

A further study of this effect at smaller samplees and smaller effect sizes
showed that while the standard errocad always larger than the standard erroalof
whenab andc are equal, whea or b approaches zero the power of the testof
becomes smaller than the testoT his effect is true for cases whexrer b is very small
but not zero. For example ldt= 100, whera is equal to 0.14 anldlis equal to 0.001%; is
equal to 0.0014. The standard erroabfs 0.01422 and the standard erroc o
0.10102 so the standard errorafifis smaller than the standard erroicpbut power of
the test ofab is equal to 0.00714 while power of the test of equal to 0.02508.
Although power of the test afapproaches 0.025 for very small effects, poweheftest
of ab decreases to below 0.025.
Ranges of Correlations Between X and Y for Which Including a Mediator Will
I ncrease Power

While analytical formulas are useful for determmthe conditions under which
power will be greater for the test of mediationritiar the test o€, in practice
researchers performing power analyses may only aaveea of the expected
correlations between variables and an expectedlsasige. Therefore, it is also useful to
find ranges of correlations between variables fbiclv adding a mediator would increase
power. Table 17 shows the ranges of correlatiohsden X and Y for which adding one
mediator would increase power fdr= 50, 100, 200, 500, 1000, and 5000. The range of
correlations only includes values of correlatidmat twould result in inadequate power for
the test ot (power of less than 0.80). That is, any correfatarger than the maximum
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correlation given would result in adequate powettlie test ot (power of greater than

0.80).

As sample size increases, the range of correlabietvgeen X and Y where the inclusion
of a mediator would be beneficial to power decreasbe minimum and maximum
correlations between X and Y also decrease as sasigd increases, meaning the
correlations between X and Y that would result iorenpower when a mediator is added
are smaller for larger sample sizes, and largesriualler sample sizes. In addition, while
the table includes the range of correlations betwéand Y for which adding a mediator
would increase power when power of the test isfless than 0.80, the inclusion of a
mediator will not always increase power to be &6l N = 1000. Even ai = 1000, the
minimum power ofabis 0.781488, which does not quite reach adequatepof 0.80.

At smaller sample sizes, the inclusion of a mediatay only marginally increase the
power of a study. For example, the minimum powealoéatN = 50 is 0.0522368. In this
case, power would still be much too low to detdfetats.

However, the smallest correlation between X artiat would result in increased
power with the addition of a mediator is 0.00994&%d forN = 1000 or greater, the
inclusion of a mediator will increase power to anmmum of 0.781488. A correlation
between X and Y of 0.0099499 corresponds to a skl effect size. This is of interest
for researchers with large sample sizes but vesllszffect sizes who wish to increase
the power of their studies.
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In addition, the largest correlation between X &nithat would result in increased
power with the addition of a mediator is 0.3806Bich corresponds to a medium
effect size. Any correlation larger than 0.3806W&fuld result in adequate power for the
test ofc. This indicates that researchers with limited si@nsfzes who expect to obtain a
medium effect size can benefit from including a ragat in their model.

Discussion
Summary of Results

The purpose of this paper was to identify situsdiorhere the test of the indirect
effect is more powerful than the test of the teféct for both single and two mediator
models, to show that it is possible under certaitumstances to use a mediator or
mediators to increase power. The results showedtibanclusion of mediators increases
power when effects are small and sample sizegeJand when effects are large and
sample size is small. These results extended frenmtirect effecab for the single
mediator model to the specific indirect effeatb; andayb, for the parallel two mediator
model. These are the most important findings frbrs $tudy, as they can inform a
researcher with a fixed sample size and fixed e8ees of how much power can be
increased by including one or two mediators.

The conditions for when power of the test of theirect effect will be greater
than power of the test of the total effect wer® d&sind in the comparison of standard
errors ofc andab, and therefore in terms of variances and covaesmanong variables.
This means that if a researcher has an expectediange matrix among variables based
on previous literature it would be possible to tisese variances and covariances to
determine if the standard erroroWill be larger than the standard erroradi If it is, the
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researcher would benefit from adding a mediatah#¢oexisting model. In addition, if a
researcher has only a fixed sample size and arcgeorrelation between two
variables based on previous literature, the ranfesrrelations between two variables
that will result in increased power when a medisgadded are provided here for a
subset of sample sizes that are common in thelsmences.
Fit with Earlier Literature

Previous research on significance tests of medidtas shown that some tests are
more powerful because they do not require the &dtatt to be significant. The results of
this study confirm that under certain conditionsewlthe indirect effect and the total
effect are equal, the test of the indirect effeitit lve significant while the test of the total
effect will not. This supports findings in existifigerature, and extends this concept to a
model with multiple mediators as well. The restikse also confirm that the joint
significance test of mediation for the single méalianodel is more powerful than the
product of coefficients test using the multivarididta standard error, which supports
findings in MacKinnon et al. (2002). In additiona@Kinnon et al. (2002) found that the
Type | error rates of the product of coefficientsl goint significance tests are too low at
less than 0.05. The Type | error rates examingdignstudy correspond to the error rates
found in the aforementioned publication.
Proximal vs. Distal Mediators: Effects on Power

For the single mediator model, whieis larger thara (that is, the mediator is
closer in time or more highly related to the outeovhthan to X), the mediator M is
considered a distal mediator. Wheeis larger thar (that is, the mediator is closer in
time or more highly related to X than to Y), M isnsidered a proximal mediator.
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According the previous research, the tesaloWill be more powerful for models with
distal mediators than for models with proximal na¢dis due to collinearity between X
and M (Hoyle & Kenny, 1999). When collinearity betn X and M is high, the standard
error of theb path is increased, leading to a less powerfuldesignificance. Results
from Fritz and Mackinnon (2007) support this poggmonstrating that required sample
size is larger for conditions wheads larger thar. This effect is discussed as well in
Kenny and Judd (2013).

As the test ofibis known to be more powerful whéns larger thara, it follows
that when comparing power of the testbfto power of the test a, the gain in power
over the test of would be greater in conditions whdyés larger thara. This effect is
seen in the results from this study. For exampl&ppendix J aN = 200,a=0.39,b =
0.59,c’ = 0, adding a mediator increased power by 0.21#evatN = 200,a= 0.59,b =
0.39,c’ = 0, adding a mediator increased power by 0.1B2.ificrease in power was
larger for the condition whetewas larger thaa.

The effect was also shown for the parallel two atd model results, where
whenb; or b, was larger tham; or a,, the increase in power would be greater. For
example, in Table 9 & = 200,a; =a, = 0.101,b; = b, = 0.577, adding two mediators
increased power by 0.246, whileNit= 200,a; =a, = 0.577b; =b, = 0.101, adding two
mediators increased power by 0.166. The increapewer was larger for the condition
where theb; andb; coefficients were larger than taganda, coefficients.

Limitations

This study shows that mediators can be used tease statistical power given

certain circumstances. However, it is importantetalize that including a mediator will
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not always increase power. In some situationsudinf a mediator may fail to change
the relationship between X and Y or decrease theepto detect the relationship
between X and Y. As the current study shows thauding a mediator will increase
power when the standard erroradk greater than the standard erroabfit follows that
the standard error afwill not always be larger than the standard eofab. Whenc is
equal toab and the standard errors are equal there will béifference in power to detect
effects, and whenis equal taab and the standard error ab is larger than the standard
error ofc then the test of will be more powerful than the test ab.

Future Directions

Although the current study examines a single medmodel and a two mediator
model, the gain in power achieved from adding ntedsashould be assessed for more
complex models with multiple mediators. The two mta model examined here is a
parallel model, meaning the effect of X on Y is gltaneously transmitted through two
mediators, as opposed to transmitting the effe tf M; to M, to Y. Such a model
would be considered a sequential two mediator madethe effects of X on Y are
transmitted sequentially first through,Mnd then through M The increase in power
from using a sequential two mediator model ovelvariate model should be studied in
future research. The power gained from includingeriban two mediators in a model
should be studied as well.

Future research should also address issues wiacmference for the two
mediator model. Identification and sensitivity @fusal mediation analysis has been
studied for the parallel two mediator model (Ima¥&mamoto, 2013) and for the
sequential two mediator model (Albert & Nelson, 20Avin, Shpitser, & Pearl, 2005;
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Robins, 2003), but the decomposition of causalctgfen a counterfactual framework
becomes more complex as multiple mediators aredatda model (Daniel, De Stavola,
& Cousens, 2013). Causal inference is a key commarfenodels with mediators, as a
mediator is hypothesized to be intermediate inctesal relationship between X and Y.
Sufficient power is a key component in the desigd implementation of any
study in the social sciences. This paper demoesttagt including one or more
mediators can increase power to detect effecteef@archers with fixed effect sizes or
sample sizes. The most important result in thiepé&pthe finding that including multiple
mediators in a model will increase power over doolva a bivariate model. Another
finding is the specific conditions under which uding one or more mediators will
increase power. This is important for planningeeaarch design, as it provides both an
analytical formula for knowing when the inclusiohaomediator is beneficial as well as
guidelines for researchers with an expected effieet and sample size who wish to use
mediators to increase power. Indeed, these findinlj®e of use for all researchers who

are interested in mediation as a method for inangagtatistical power.
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Table 9

Conrparison of Empirical and Analytical Power of the Test of the Total Mediated Effect for the Parallel Two Mediator Model Across Levels of ¢’

N = 5C N = 10C N = 20( N = 500 N = 100(
Emp t Emg t Emp t Emg t Emg t

a;=0.101p; =0.107 _ a;=0.101,b; = 0.107 0.00€ 0.08.  0.02 0.12¢€  0.09¢ 021 053¢ 0.45.  0.96¢ 0.74C
a;=0.101b; =0.10!  az=0.101b, = 0.31¢ 0.02: 0113  0.08¢ 0.187  0.30¢ 0331 0.771 0.67¢  0.97C 0.92¢
a;=0.101b,; =0.10!  a;=0.101b, =057 0.06¢ 0116  0.17¢ 0.19:  0.35¢ 0.34:  0.73: 0.69:  0.95¢ 0.931
a;=0.101,b; = 0.10: .314,0, = 0.10: 0.02¢ 0.09€  0.08¢ 0.15¢  0.28¢ 0.26¢  0.761 0567  0.96¢ 0.85¢
a;=0.101,b; = 0.10: .314,0; = 0.31¢ 0.15¢ 0.29:  0.57i 0526 0.96¢ 0.82:  1.00C 0.99¢ 1 1
a;=0.101b,; =0.10!  a;=0.314b, =057 0.44% 0.45:  0.83¢ 075  0.99¢ 0.96% 1 1.00¢ 1 1
a;=0.101b,=0.10!  a=0.577,b, =0.10: 0.072 0100  0.171 0.16z  0.337 0.28: 071 0.59%  0.943 0.873
a;=0.101b,=0.10!  a;=0.577,b, =0.31¢ 0.41% 0.41¢  0.83¢ 0.706 0.9 0.94¢ 1 1.00¢ 1 1
a;=0.101b,; =0.10!  a;=0.577,b, =057, 0.86¢ 0.751  1.00C 0.96€ 1 1.00¢ 1 1 1 1
a;=0.101b,=0.31¢  a,=0.101b, =0.10: 0.01¢ 0113 0.08t 0187 031 0.331  0.75¢ 0.67¢  0.96¢ 0.92¢
a;=0.101b,=0.31« a,=0.101b,=0.31¢ 0.05% 0.14.  0.191 0.25C  0.47: 0.44¢  0.88! 0.82i  0.99 0.98¢
a;=0.101b, =0.31«  a;=0.101b; =05/, 0.10¢ 0.146  0.24: 0.25: 0477 0.45:  0.85i 0.83:  0.991 0.98¢
a;=0.101b,=0.31¢  a;=0.314,b, = 0.10: 0.05¢ 0.12¢  0.18¢ 0218  0.44¢ 0.39C  0.88! 0761  0.99¢ 0.96¢
a;=0.101b,=0.31« a,=0.314,b, =0.31¢ 0.22¢ 0.31f  0.61¢ 056:  0.951 0.85¢ 1 0.99¢ 1 1
a;=0.101,b, = 0.31¢ = 0.46¢ 0.47:  0.84: 0.77¢  0.99: 0.971 1 1.00¢ 1 1
a;=0.101,b, = 0.31¢ 0.091 0127  0.21i 0217 0.45¢ 0.38¢  0.85¢ 0.75¢  0.99( 0.96¢
a;=0.101,b; = 0.31¢ 0.437 043¢  0.83¢ 0.73¢  0.99: 0.95¢ 1 1.00¢ 1 1
a;=0.101b,=0.31¢ a,=0.577,b,=0.57. 0.86¢ 0.75¢  0.99i 0.96¢ 1 1.00¢ 1 1 1 1
a;=0.101b,=0.577  az=0.101b, = 0.10: 0.06% 0116  0.15¢ 0.19:  0.32¢ 0.34:  0.74( 0.69¢  0.95( 0.931
a;=0.101b,=0.577  az=0.101b, =0.31¢ 0.09z 0.146  0.24¢ 0.25:  0.45¢ 0.45:  0.85: 0.83:  0.991 0.98¢
a;=0.101b,=0.57"  a;=0.101b, =057 0.115 0.15¢  0.25¢ 0.27¢  0.517 0.49¢  0.88( 0.87:  0.99¢ 0.99:
a;=0.101b,=0.57"  a=0.314,b, =0.10 0.09¢ 0137  0.22¢ 023t 0.45: 0.42;  0.85: 0.79¢  0.99: 0.973
a;=0.101b,=0.577  a;=0.314b, =0.31¢ 0.237 0.28¢  0.547 0514 0.85¢ 0.81C  0.99¢ 0.99¢ 1 1.00¢
a;=0.101b,=0.577  a;=0.314b, =057, 0.41¢ 0.440  0.78( 073 097t 0.951 1 1.00¢ 1 1
a;=0.101b,=0.57"  a;=0.577,b, =0.10 0.12¢ 0.14.  0.24¢ 025  0.50: 0.447  0.88¢ 0.82i  0.99¢ 0.98¢
a;=0.101b, =05/, @z =0.5//b;=0.31¢ 0.43¢ 0.41€  0.77¢ 0707 097z 0.94¢ 1 1.00¢ 1 1
a;=0.101b,=0.577  a;=0.577b, =057, 0.77¢ 0720  0.98: 0.95¢ 1 0.99¢ 1 1 1 1
a;=0.314,b,=0.10!  a,=0.101b, =0.10: 0.02¢ 0.09  0.091 0.15¢  0.29: 0.26¢  0.75( 0561 0.97C 0.85¢
a,=0.314,b,=0.10: @, =0.101,b, = 0.3« 0.05€ 0126 0.17¢ 0.21f  0.46€ 0.39C  0.88! 0.761  0.997 0.96¢
a;=0.314,b,=0.10!  a;=0.101b, =057 0.10¢ 0137  0.21¢ 0238 0.42¢ 0.42;  0.86! 0.98¢ 0.973
a;=0.314,b,=0.10.  a,=0.314,b, =0.10: 0.05¢ 0.09¢  0.17¢ 0.161  0.461 0.28:  0.86: 0.991 0.87¢
a;=0.314,b,=0.10! a,=0.314,b, =0.31¢ 0.21¢ 0.24: 061 0.441  0.94¢ 0.73: 1 1 1.00¢

.3140; = 0100 @, =0.314,0, =057 0.44¢ 0.40C  0.84¢ 0687  0.98¢ 0.93¢ 1 1 1
a;=0.314,b,=0.10.  a;=0.577,b, =0.10: 0.10€ 0101  0.23 0.16¢  0.43¢ 0.28¢  0.86: 0.991 0.88:
a;=0.314,b,=0.10! a,=0.577,b,=0.31¢ 0.461 0337  0.85¢ 059 0987 0.88% 1 1 1
a;=0.314,b, = 0.10: 0.84¢ 0.65: 0.9 0.921 1 0.99¢ 1 1 1
a;=0.314,b, = 0.31¢ 0.14¢ 0.29:  0.59: 0526 0.97C 0.82% 1 1 1
a;=0.314,b, = 0.31¢ 0.232 0.31f  0.63t 0565  0.94: 0.85¢ 1 1 1
a;=0.314,b, = 0.31 0.24¢ 0.28¢  0.53( 0514 0.86¢ 0.81C  0.99¢ 1 1.00¢

.314,0; = 0.31¢ 0.21¢ 0.24:  0.631 0.441 0,951 0.73% 1 1 1.00¢
a;=0.314,b, = 0.31¢ 0.48¢ 0.42;  0.94 0715 1.00C 0.95¢ 1 1 1
a;=0.314,b,=0.31« a,=0.314b, =057 0.67¢ 0.56:  0.96¢ 0.86C 1 0.991 1 1 1 1
2,=0.314b, =031« a,=0.577,p, = 0.10 0.25¢ 0.20¢  0.55¢ 0.37C  0.857 0.64C  0.99¢ 0.957 1 0.99¢

.314b1 =031« a,=0.577,0, = 0.31¢ 0.66€ 048t 0.961 0791 1.00C 0.973 1 1.00¢ 1 1
a;=0.314b, =031« a;=0577b, =057, 0.94¢ 0.76¢ 1 0.97¢ 1 1.00¢ 1 1 1 1
a;=0.314,b,=0.57" a;=0.101b, =0.10 0.41¢ 0.45:  0.83t 075  0.991 0.96% 1 1.00¢ 1 1
a;=0.314,b, =05/,  a;=0.101b; =0.31¢ 0.45¢ 0.47:  0.85] 0.77¢  0.99¢ 0.971 1 1.00¢ 1 1

.314b, =057, a,=0.101,b, = 0.57, 0.42¢ 0.440  0.77: 073t 097t 0.95% 1 1.00¢ 1 1
a;=0.314,b,=0.57" a,=0.314,b, =0.10 0.451 0.400  0.84¢ 0687  0.99¢ 0.93¢ 1 1.00¢ 1 1
a;=0.314,b,=0.57" a,=0.314b,=0.31¢ 0.67¢ 0.56¢  0.96¢ 0.86¢ 1 0.991 1 1 1 1
a;=0.314b,=0.577  a;=0.314b, =057, 0.79¢ 0.68(  0.98t 0.93¢ 1 0.99¢ 1 1 1 1
a;=0.314b,=0.577  a;=0.577,b,=0.10 0.421 0.33¢  0.781 0.601  0.97¢ 0.88¢ 1 0.99¢ 1 1
a;=0.314,b,=0.57" a;=0.577,b,=0.31¢ 0.77€ 0.61f  0.98¢ 0.89¢ 1 0.99¢ 1 1 1 1
a;=0.314b,=0.577  a;=0577b, =057, 0.957 0.83¢ 1 0.987 1 1.00¢ 1 1 1 1
a;=0577,b;=0.10.  az=0.101b, = 0.10: 0.07€ 0.100  0.14¢ 0.16z  0.337 0.28:  0.71¢ 059  0.95¢ 0.871
a;=0577,b,=0.10!  a;=0.101b, =0.31¢ 0.09¢ 0127  0.22i 0217 0.44¢ 0.38¢  0.85: 0.75¢  0.98¢ 0.96¢
a;=0577,b,=0.10!  a;=0.101b, =057 0.132 0.14¢  0.26¢ 0.25C  0.497 0.447  0.87: 0.82i  0.99i 0.98¢
a;=0.577,b, = 0.10: = 0.10¢ 0101  0.23( 0.16¢  0.46¢ 0.28¢t  0.84: 0.60¢  0.99: 0.88:
a;=0.577,by = 0.10: 0.24¢ 0.20:  0.53¢ 0.37C  0.86¢ 0.64C  0.99¢ 0.951 1 0.99¢
a;=0.577,b, = 0.10: 0.42¢ 0.33¢  0.781 0601  0.97¢ 0.88¢ 1 0.99¢ 1 1
a;=0.577,b, = 0.10: 0.13¢ 0.10:  0.26¢ 0.165  0.48¢ 0.29C  0.89( 0.60¢  0.99: 0.88¢
a;=0.577,b, = 0.10: 0.432 0277 0.77¢ 050z 0.977 0.80¢ 1 0.99¢ 1 1
a;=0.577,b, = 0.10: 0.77¢ 0.546  0.98( 0.84¢ 1 0.98¢ 1 1 1
a1=0.5//,by=0.31 0.401 0.41¢  0.821 0706 0.99: 0.94¢ 1 1 1 1
a;=0577b;=0.31¢  a;=0.101b, =0.31¢ 0.447 043¢ 0.85¢ 0.73¢  0.991 0.95¢ 1 1 1 1
a;=0577b,=0.31¢  a;=0.101b; =057 0.42: 0.41€  0.76¢ 0707 0.97¢ 0.94¢ 1 1 1 1
a;=0577,b,=0.31«  a,=0.314,b, =0.10 0.43¢ 0337 0.84¢ 059¢  0.99: 0.88% 1 0.99¢ 1 1
a;=0.5//,b,=0.31 .314,0; = 0.31¢ 0.673 048t 0.971 0.791 1 0.973 1 1 1 1
a;=0577b,=0.31¢  a,=0.314b, =057 0.77% 0.61f  0.98¢ 0.89¢ 1 0.99¢ 1 1 1 1
a;=0577,b,=0.31«  a;=0.577,b, =0.10 0.42¢ 0277 0.77¢ 050: 097z 0.80¢ 1 0.99¢ 1 1
a,=0.577,p, = 0.3 =0.577,b,=0.31¢ 0.791 0521  0.98¢ 0.82¢ 1 0.98¢ 1 1 1 1
a;=0577b,=0.31¢  a;=0577b, =057, 0.95¢ 0.75¢ 1 0.96¢ 1 1 1 1 1 1
a;=0577,b,=0.57"  a;=0.101,b, =0.10: 0.851 0.751  0.99¢ 0.96€ 1 1 1 1 1 1
a;=0577,b,=0.57"  a;=0.101b,=0.31¢ 0.85% 0.75¢  0.99¢ 0.96¢ 1 1 1 1 1 1
a;=0577b,=0.57"  a;=0.101b; =057, 0.79¢ 0.72(  0.98t 0.95¢ 1 0.99¢ 1 1 1 1
a;=0577b,=0.57"  a;=0.314,b, =0.10: 0.85¢€ 0.65:  0.99¢ 0.921 1 0.99¢ 1 1 1 1
a;=0577,b,=0.57" a;=0.314,b, =0.31¢ 0.941 0.76¢ 1 0.97¢ 1 1 1 1 1 1
a;=0.577,b; =0.577 az=0.314,b, = 0.57° 0.95¢ 0.83¢ 1 0.987 1 1 1 1 1 1
a;=0577b1=0.57"  az=0.577,b, =0.10 0.77¢ 0.546  0.98¢ 0.84€ 1 0.98¢ 1 1 1 1
a;=0577b,=0.577  a;=0.577b,=0.31¢ 0.95¢ 0.75¢ 1 0.96¢ 1 1 1 1 1 1
a;=0577,b,=0.57" a;=0.577,b,=0.57. 0.99¢ 0.90¢ 1 0.99¢ 1 1 1 1 1 1

Note: Empirical power is represented here as ‘Emp’, and enelytical power calculated using regression coefficients end their standerd errors is represented here s ‘t’.
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Table 12

Type | Error Rates for the Single Mediator Model,a=b =0

Type | Error Rétes (a)

Product of Joint
a b ¢ Coefficients Significance
N 50 0 0 0 0 0
0 0 014 O 0.001
0 0 03¢ O 0.001
0 0 05¢ O 0.001
10 O 0 0 0 0.001
0 0 012 O 0.001
0 0 03¢ O 0.001
0 0 05¢ O 0.001
20C O 0 0 0 0
0 0 014 O 0.001
0 0 03¢ 0 0
0 0 05¢ O 0.001
50C O 0 0 0 0.001
0 0 012 O 0
0 0 03¢ O 0
0 0 0.5¢ 0.001 0.001
100C O 0 0 0 0.00z
0 0 012 O 0.00¢
0 0 03¢ O 0.001
0 0 05¢ O 0.001
500C O 0 0 0 0.00¢
0 0 014 O 0.001
0 0 03¢ O 0.001
0 0 05¢ O 0.00:
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Table 13

Type | Error Rates for the Parallel Two Mediator 8, ab, = a,b, =0

R

o
=

&

b,

c

Type | Error
Rates )

Product of
Coefficients

100

200

500

1000

OO0 OO0 O0O00pO0OO0O0 00 O0oO

lcN Nl NcNeNololeNoNe ol e NeNo oo NeNo e

cN Nl N oNeNololeNoNo ol e NeNo oo NeNo e

lcNeNolF e NeNeloleNoNe ol e NN oo ReNo o)

0.14
0.39
0.59

0.14
0.39
0.59

0.14
0.39
0.59

0.14
0.39
0.59

0.14
0.39
0.59

o o
o o
N N
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Table 1€

Conrperison of Fower and Standerd Errors of eb end ¢ for the Single Mediator Model
Where ¢’=0and N =100

a b ab c S Sab . T ab
0.14 0.14 0.0196 0.0196 0.1020 0.0201 0.0385 0.0779
0.14 0.39 0.0546 0.0546 0.1084 0.0419 0.0723 0.2688
0.14 0.59 0.0826  0.0826 0.1173 0.0613 0.1038 0.2790
0.39 0.14 0.0546  0.0546 0.1020 0.0420 0.0767 0.2688
0.39 0.39 0.1521 0.1521 0.1084 0.0559 0.2847 0.9279
0.39 0.59 0.2301 0.2301 0.1173 0.0716 0.4917 0.9631
0.59 0.14 0.0826 0.0826 0.1020 0.0616 0.1240 0.2790
0.59 0.39 0.2301 0.2301 0.1084 0.0717 0.5539 0.9631
0.59 0.59 0.3481 0.3481 0.1173 0.0845 0.8290 0.9996
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Table 17

Réenges of Correlations Between X andY for Which Including ¢ Mediator Will Increase

Power
N Minimumr,, — Maximum r,,

50 0.0287229 0.3806169
100 0.0196078 0.2721655
200 0.0099499 0.1929221
500 0.0099499 0.1239751

1000 0.0099499 0.0881474
5000 0.0099499 0.0391931
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Figure Captions
Figure 1.Path diagrams for the regression and one mediatdels. Adapted from
MacKinnon, 2008.
Figure 2.Path diagram for the parallel multiple mediator mloddapted from
MacKinnon, 2008.
Figure 3.Plots for the Four-Way Interaction betwesmnb;, ¢’ andN AcrossN.

Figure 4.Plots for the Four-Way Interaction betwesenb,, ¢’ andN AcrossN.
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Figure 3, Panel D.
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Figure 4, Panel B.
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APPENDIX A

PROGRAM TO COMPUTE EMPIRICAL POWER FOR THE SINGLEADIATOR

MODEL
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*/ Automatically deletes log so it doesn’'t haveb cleared */
FILENAME NULLOG DUMMY 'C:\NULL'";
PROC PRINTTO LOG=NULLOG;

% macr o medsim

%donsize =1 %to 1,
%doaparm =1 %to 4;

%do bparm =1 %to 4;

%do cparm =1 %to 4;
%donumsamps £ %to 1000;

proc iml;

a ={0,.14,.39,.59};

b ={0,.14,.39,.59};

cp ={0,.14,.39,.59};

n = {50,100,200,500,1000,5000};
varx =1;

resvarm =1,

resvary =1,

/* calculate variances based on paths */

covxm = a[&aparmi]*varx;

varm = (a[&aparmi]** 2)*varx + resvarm;

*resvarm = 1 - ((a[aparm,1]**2)*varx);

*resvary = 1 - ((b[bparm,1]**2)*varm + (cp[cparmtR)*varx + 2*b[bparm,1]*cp[cparm,1]*covxm);

/* create x scores */
x = rannor(j(n[&nsizel], 1,0));

/* generate residuals for m */
/* sqrt(resvarm) = the std for the residual disitibn */
resm = sqrt(resvarm)*rannor(j(n[&nsiZé,1,0));

/* generate m via regression equation */
m = a[&aparml]*x + resm;

/* generate residuals for y */
/* sqgrt(resvary) = the std for the residual digttibn */
resy = sqrt(resvary)*rannor(j(n[&nsiZg,1,0));

/* generate y via regression equation */
y = b[&bparm]1]*m + cp[&cparm1]*x + resy;

[* concatenate vectors into single matrix */
medvars =x || m]||y;

[* create sas data set dat from iml matrix medvars
create dat from medvars[colname = {x m y}];
append from medvars;

*proc means data = dat;
*var X my resm resy;
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ods listing close;

proc reg data = dat;

model m = x;

ods output ParameterEstimates = apath;
run;

ods listing close;

proc reg data = dat;

model y = x m;

ods output ParameterEstimates = bpath;
run;

ods listing close;

proc reg data = dat;

model y = X;

ods output ParameterEstimates = total;
run;

data apath;

set apath;

where variable =X';

keep estimate stderr probt;
run;

data apath;

set apath;

rename estimate = a;
rename stderr = ase;
rename probt = pa;
run;

data cprime;

set bpath;

where variable =X';
keep estimate stderr;
run;

data cprime;

set cprime;

rename estimate = cprime;
rename stderr = cprimese;
run;

data bpath;

set bpath;

where variable =M";

keep estimate stderr probt;
run;

data bpath;

set bpath;

rename estimate = b;
rename stderr = bse;
rename probt = pb;
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run;

data total,

set total;

where variable =X';

keep estimate stderr probt;
run;

data total,

set total;

rename estimate = c;
rename stderr = cse;
rename probt = cpvalue;
run;

data medparms;
merge apath bpath cprime total,
run;

data medparms;
set medparms;

csig =0;
if cpvalue <.05 then csig =1;

/*Product of Coefficients Test*/

ab = a*b;

sobelse = sqgrt(a*a*bse*bse + b*b*ase*ase);
sobelz = ab / sobelse;

sobelsig =0;

if abs(sobelz) .96 then sobelsig ;

/*Joint Significance Test*/
jointsig =0;
if pa <.05 and pb <05 then jointsig =1;

if &nsize =1 then sampsize 50;

if &nsize =2 then sampsize £00;
if &nsize =3 then sampsize 200;
if &nsize =4 then sampsize 500;
if &nsize =5 then sampsize £000;
if &nsize =6 then sampsize 5000;

if &aparm =1 then apath ;

if &aparm =2 then apath =14;
if &aparm =3 then apath =39;
if &aparm =4 then apath =59;

if &bparm =1 then bpath ©;

if &bparm =2 then bpath =14;
if &bparm =3 then bpath =39;
if &bparm =4 then bpath =59;

if &cparm =1 then cpath 9;
if &cparm =2 then cpath =14;



if &cparm =3 then cpath =39;
if &cparm =4 then cpath =59;

file "c:\\HPO\medsimple50.dathod;
put @1 (a) ©.6)

@10 (ase) 8.6)

@20 (pa) 8.6)

@30 (b) 8.6)

@40 (bse) 8.6)

@50 (pb) (.6)

@60 (cprime) 8.6)
@70 (cprimese) §.6)
@80 (c) (8.6)

@90 (cse) B.6)
@100 (cpvalue) 8.6)
@110 (csig) 8.6)
@120 (ab) @.6)
@130 (sobelse){.6)
@140 (sobelz) 8.6)
@150 (sobelsig) §.6)
@160 (jointsig) (8.6)
@170 (sampsize)q.6)
@180 (apath) 8.6)
@190 (bpath) 8.6)
@200 (cpath) 8.6);

run;

%end
%end
%end
%end
%end

% mend;
%medsim
run;

data medparms;

infile "c:\HPO\medsimple50.dat"

input a ase pa b bse pb cprime cprimese ¢ cse cpvalje cs
ab sobelse sobelz sobelsig jointsig sampsize dpetth cpath;
run;

proc sort data= medparms;
by sampsize apath bpath cpath;
run;

proc means data= medparmsoprint,

vara b c cprime ab pa pb cpvalue sobelsig csig jigints

by sampsize apath bpath cpath;

outputout = powertablanean= a b ¢ cprime ab pa pb cpvalue sobelsig csidgign
run;

proc print data= powertable;
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run;
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APPENDIX B

STEP-BY-STEP DESCRIPTION OF SAS EMPIRICAL SIMULATNOFOR SINGLE

MEDIATOR MODEL
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9.

Specify sample sizes (50, 100, 200, 500, 1000, h@Qtaths (0, 0.14, 0.39,
0.59),b paths (0, 0.14, 0.39, 0.59), atidhaths (0, 0.14, 0.39, 0.59)

Within PROC IML, generating data of specified saengikze:

specify variance of X as 1, residual variances adrM Y as 1

Calculate the covariance between X and M and tharvee of M based on
specified variances

Using RANNOR, generate random data for X (indepansariable) with
normally distributed residuals

Generate data for M (mediator), using RANNOR toegate normally distributed
residuals then using those residuals in a regneggjaation with the specified
parameter

Generate data for Y (dependent variable), using RAR to generate normally
distributed residuals then using those residuagsriggression equation with the

specified parameters

. Concatenate vectors of variables X, M, and Y ingingle matrix, then create a

SAS data set from the matrix

Run series of regression equations and renameaaedise resulting parameter
estimates, standard errors, and p values foa,tbhec’, andc coefficients in a
series of data sets

Create a new data set by combiningdhl, c’, andc data sets

10.1n the new data set, create a variable that isléquawhen the value forc is

greater than .05 (nonsignificant) and equal to &mthep value forc is less than
.05 (significant)
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11.In the new data set, calculate the product of atefftsz test using the mediated
effectab and the multivariate delta standard error, andtera variable that is
equal to 0 when the product of coefficiens less than 1.96 (nonsignificant) and
equal to 1 when the product of coefficienis greater than 1.96 (significant)

12.1n the new data set, create another variable shequal to O when thgvalues for
a andb are greater than .05 (nonsignificant) and equalwhen the values for
a andb are less than .05 (significant)

13. Export the variables from the new data set intexafile to be saved to a
specified location (generates 1000 replicationsawh specified combination of
parameters)

14.End macro

15.Import saved data set into SAS and use PROC MEANS&t the means of the
variables (mean over 1000 replications); ex. thveabée that is O when is not
significant and 1 when significant displays as @portion of times over 1000
replications that is significant (hence, the power value wites not zero and the

Type | error whert is zero)
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APPENDIX C

PROGRAM TO COMPUTE ANALYTICAL POWER OF THE SINGLE EDIATOR

MODEL
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*Last edited September 16, 2012;
*This program computes the power to detect the atedieffect;

odshtml close

odslisting;

data &

inputab cp N

doa =0, 0.14, 0.39, 0.59;

dob =0, 0.14, 0.39, 0.59;

docp =0, 0.14, 0.39, 0.59;

do n =50, 100, 200, 500, 1000, 5000;

c=a*b+cp ab=a*h

sassqri1/(N-2)); sb=sqri(1/(N-3)); scsqr(1/(n-2)):

*This section computes true variances and covagis@as in Section 4.10 based
on residual error variance equal to 1. Note thafl XX, VX2X2, and VX3X3 are
the residual variance in equations 3.1, 3.2, aBdr8spectively;
ERROR-=1;ERRORM=1;ERRORY4;

BMX=A;BYM=B; BYX=CP;NOBS=N;

EMOD14ERROR** 2;

EMOD2FERRORM** 2;

EMOD3=ERRORy** 2;

VX1X1=EMODJ;

CY1X1=BMX*EMOD1,;

CY2X1=BYM*BMX*VX1X1+BYX*EMOD1 ;
CY1Y1=BMX*BMX*VX1X1+EMOD2 ;
CY2Y1=BMX*BMX*BYM*VX1X1+BMX*BYX*EMOD1+BYM*EMOD2 ;
CY2Y2=BYM*BYM* (BMX*BMX*EMOD1+EMOD2 )+2*BMX*BYM*BYX*VX1X1+BYX*BYX*EM
OD1

+EMOD3,

*This section computes population correlations;
RY1X1=CY1X1SQRTVX1X1*CY1Y1);
RY2X1=CY2X1/SQRTVX1X1*CY2Y2);
RY2Y1=CY2Y1/SQRT(CY1Y1*CY2Y2);
partryxm=ry2x1-ry2y1*ry1x1)/sqri{(1-ry2yl*ry2y1)* (1-ry1x1*ry1x1));
partrymx=ry2yl-ry2x1*ry1xD)/sqri{(1-ry2x1*ry2x1)* (1-ry1x1*ry1x1));

TRUEA=emod2{(NOBS-2)* (VX1X1));
TRUESEA=sqr{TRUEA);

TRUEB=(emod3(NOBS-3))* (L/CY1Y1/(1-RY1X1*RY1X1));
TRUESEB=qr{TRUEB);

TRUERAT=(BMX*BYM )/BYX;

TRUEPROP{BMX*BYM )/((BMX*BYM )+BYX);

*Calculation of true mean squared error;
dermsel=cy2yZbyx+bmx*bym)* (byx+bmx*bym)*vx1x1;
dermse2=cy2y2-bym*bym*cylyl-byx*byx*vx1x2*byx*bym*cylx1;
dermse3=cylyl-bmx*bhmx*vx1x1

*Calculation of true standard errors pow referpoover;
powseasqgri{dermse3(nobs2)*Vx1x1));powsecsqridermsel(nobs2)*Vx1x1));
rmod2<ry2y1*ry2yl+ry2x1*ry2x12*ry2y1*ry2x1*ry1x1)/(1-ry1x1*ry1x1);
powsebsqgri{dermse(nobs3)*cylyl*(1-rylx1*ry1x1)));
powsecpsqridermseZ(nobs3)*Vx1x1* (1-ry1x1*ry1x1)));

94



[**Calculation of power of RY2X1 (correlation foraoeff) using z test;*/
*CPRIME=((1/2)*LOG((1+RY2X1)/(1-RY2X1)));*/
/*SDCPRIME=1/SQRT(NOBS-3);*/
[*ZCPRIME=CPRIME/SDCPRIME;*/

[*ZC=1.96-ZCPRIME;*/

[*ZPOWERC=1-PROBNORM(ZC);*/

[**Calculation of power of c using t test;*/
[*TC=C/POWSEC;*/

[*TZC=1.96-TC;*/

[*DFC=NOBS-2;*/
*TPOWERC=1-PROBT(TZC,DFC);*/

*Calculation of power of RY1X1 (correlation for a&ff) using z test;
APRIME=((1/2)* LOG((1+RY1X1)/(1-RY1X1)));
SDAPRIME=1/SQRTINOBS-3);

ZAPRIME=APRIME/SDAPRIME

ZA=1.96-ZAPRIME;

ZPOWERA=1-PROBNORMZA);

*Calculation of power of a using t test;
TA=ABS(A/POWSEA);

IF TA GT 20 THEN TA = 20;
TCRITA=TINV(.975,NOBS-2);
TPOWERA=L-PROBT(TCRITA,N-2,TA);

*Calculation of power of partrymx (correlation fbrcoeff) using z test;
BPRIME=((1/2)* LOG((1+partrymy/(1-partrymx));
SDBPRIME=l/SQRT(NOBS3);

ZBPRIME=BPRIME/SDBPRIME

ZB=1.96-ZBPRIME;

ZPOWERB=-PROBNORMZB);

*Calculation of power of b using t test;
TB=B/POWSEB

IF TB GT20 THEN TB =20;
TCRITB=TINV (.975,NOBS-3);
TPOWERB=-PROBT(TCRITB,N-3,TB);

*Calculation of difference in power calculations tfoand b;
APOWERDIFF=ZPOWERA-TPOWERA
BPOWERDIFF=ZPOWERB-TPOWERB

*Calculation of power of ab from t and z tests;
ZPOWERAB=ZPOWERA*ZPOWERB
TPOWERAB=TPOWERA*TPOWERB

*Calculation of differences between power values;
ABPOWERDIFF=ZPOWERAB-TPOWERAB

output
end
end
end
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end
cards
00050

proc sort;
BY NOBSAB CP,

RUN;

odshtml body ='C:\Users\Dropbox\Masters\Analytical work\Power €taations\poweroutab.x|s'
proc print; var NOBS A B CP ta tcrita tpowera zpowera apowerdiff tpdwepowerb bpowerdiff

zpowerab tpowerab abpowerdiff

run;
odshtml close
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APPENDIX D

DERIVATION OF THE COVARIANCE MATRIX FOR THE PARALLE TWO

MEDIATOR MODEL
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Y=ip+cX+e
Y=i+c'X+bMi+bM;>+e
Mi=ig+aX + &3

Mo =ig+ axX + &4

Cov[X, Mq] = Cov(X, a1 X + &3)
=a;Cov(X, X) + Cov(X,e3)
= a0’

CoVv[X, Mg] = Cov(X, axX + &4)
=a,Cov(X, X) + Cov(X,es)
= a90’x

COV[X, Y] = COV(X, c'X+bM1+boM, + 82)
=c’'Cov(X, X) +b;Cov(X, M) + bCov(X, M,) + Cov(X,e&2)
= C’sz + albl Gzl + agbg (525

COV[M]_, Y] = COV(a]_X + g3, C'X + biM1 + boM, + 82)
= a]_C’COV(X, X) + a1b1Cov(X, M]_) + aleCov(X, Mz) + a1C0v(X, 82) +
C’COV(X, 83) + b]_COV(M]_, 83) + szOV(Mz, 83) + COV(?g, 82)
=aC 62)( + a21b1 sz + ayab; 02)( + b1Cov(a1X + &3, 83) + b2Cov(a2X +
&4, 83)
=aC GZX + azlbl GZX +ajaby GZX + bl 02 3

COV[Mz, Y] = Cov(a2X + g4, C'X + b1M1 + oM, + 82)
=a,C'Cov(X, X) +ab1Cov(X, M;) + abh,Cov(X, Mp) +aCov(X, &) +
C’COV(X, 84) + b1COV(M1, 84) + szOV(Mz, 84) + COV(Sz, 84)
= a)C’ (52)( + ajab; (52)( + a22b2 (52)( + b1Cov(a1X + &3, 84) + bchV(azx +
€4, £4)
= agc’ Gzl + ayaoh; Gzl + angg (Szl + bg (52 &4

COV[M]_, Mz] = COV(a]_X + g3, X + 84)
:COV(a]_X, az)() + COV(83, 84)
=10 x

Cov[X, X] = o’

2

Cov[My, My] = 8%6°% +0° .3

Cov[Mz, My] = 8%6°x +6° 4

COV[Y, Y] = COV(C’X + biM1 +boMs + 65, ’X + biM1 + boM5 + 82)
= Cov('X, ¢’'X) + Cov(c'X, byM1) + Cov(c'X, boMy) + Cov(C’' X, &) +
COV(D]_M 1, C’X) + COV(b]_M 1, biM 1) + COV@]_M 1, boM 2) + COV@]_M 1, 82) +
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COV(DzM 2, C'X) + COV(sz 2, 1M 1) + COV@zM 2, boM 2) + COV@zM 2, 82) +
COV@z, C’X) + COV(82, biM 1) + COV(€2, szz) + COV(€2, 82)

=C 262)( +c'biag 62)( + c’boa sz + bic'a; 02)( + b21(a2162x + 02 33) +
agazbiby sz +C’boay sz + agaphiby sz + b22(3-2202x +0° ca) + o° 2

=c 262x + 20'b1al GZX + ZC’bgag GZX + 2alagblb262£ + bzl(azlﬁzl + 62 é)_
+ bzg(azgﬁzx + (52 ME: (52 £2
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APPENDIX E

DERIVATION OF TRUE REGRESSION COEFFICIENTS FOR THRARALLEL

TWO MEDIATOR MODEL
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ai.
Cov[X, Mq] = a;CoV[X, X]

a; = Cov[X, Mi]
Cov[X,X]

adp.

Cov[X, M3] = a,CoV[X, X]

a; = Cov[X, Mj]
Cov[X,X]

b]_:

COV[Ml, Y] = aC’ sz + a21b1 02)( + ajab; sz +b; 62 &3
:C’COV[X, M]_] + b]_COV[M]_, M]_] + szOV[Ml, Mz]

b;Cov[M1, M;] = Cov[My, Y] - ¢’CoV[X, M1] - b,Cov[M31, Mj]

b; = Cov[My, Y] - ¢’Cov[X, M4] - b,Cov[M;, M5]
Cov[M;, M4]

sz
COV[Mz, Y] = axC’ sz + ayab; (52)( + a22b2 sz + b, (52 o4
:C’COV[X, Mz] + b]_COV[Ml, Mz] + b2COV[|V|2, Mz]

b,Cov[M,, My] = Cov[My, Y] - c’CoVv[X, My] — b1Cov[M;, Mj]

b, = Cov[M,, Y] - ¢’'Cov[X, M;] — b1Cov[M3, My]
COV[Mz, Mz]

c
COV[X, Y] = C'sz +a;b; 62)( + azb, 62)(
=c'CoV[X, X] + b;Cov[X, M;] + b,Cov[X, My]

c’Cov[X, X] = CoVv[X, Y] - byCoV[X, M4] - b,CoV[X, M]

¢’ = Cov[X, Y] -b;Cov[X, M4] - b,CoV[X, My]
Cov[X, X]
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APPENDIX F

EFFECT SIZE FORMULAS FOR THE PARALLEL TWO MEDIATORIODEL
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Dy = Owm,y
MY = T
Jo2 Jo?
P _ Owmy
MY =
Jo2 Jo?
Dy = Oxy
Xy =
Voxoy
o
For ai: p,, =-——
T Jo? Joh
Oxm
For a: p,,, = 2
2 2 2
Ox /0w,
For b;:
P - P P
Pruivson, = M1Y.X2 MM . X M22Y.X where
\/1_ PrM,.x \/1_ PM,y.x
P _ Pwmy ~ Pxm, Pxy
MYX — '
Jl_piml\/l_piv
P _ Pwm, T Pxm, Pxw,
MM, X = '
\/1_ p)%Ml\/l_ /0>§M2
P _ Pwv,y T Pxm, Pxy
MY.X =
\/1_ p)%M2 \/1_ Prv
For by:
PM,y.x T PmM, x Pm,y.x
Pwmyxm, = > > , Where
\/1_ PMM,.X \/1_ Pwm,y.x
_ Pwv,y T Pxm, Pxy
Pwmyx =

V1= PR 1= P25
Pumt, = Pxun, P,
VL= PR, 1= Piu,
Puy — Pxun, Py

VA= P, 1= Pl

PmmM,x =

Pmyx =

For c’:
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Pxym; ~ Pxm M Pym,m,

PXxymMM,

_ Pxy ~ Pxn, Puy
V- PR, 1= Pl
_ P, ~ P, P,
NN

Py = Puy Pru,
VL= PRy 1= P,

Pxym,

Pxm,M,

Pym,m, =

) \/1_ p)%Mz.Ml \/1_ :0\3M2.M1

, where
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APPENDIX G

PROGRAM TO DETERMINE PATH COEFFICIENT VALUES BASEDN EFFECT

SIZES FOR THE PARALLEL TWO MEDIATOR MODEL
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*This program computes analytical effect sizestlf@r parallel two mediator model;

*The first four sets of "do" statements were useddrate through values of parameters

that would produce correlations of 0.1, 0.3, arig 0.

*The final set of "do" statements were the finadlues that resulted in the desired correlations;

data a;
inputal a2 bl b2 cp N;

/*do al =0, 0.05, 0.1, 0.15, 0.20, 0.25, 0.38500.40, 0.45, 0.50, 0.55, 0.60;*/
/*do a2 =0, 0.05, 0.1, 0.15, 0.20, 0.25, 0.38500.40, 0.45, 0.50, 0.55, 0.60;*/
/*do bl =0, 0.05, 0.1, 0.15, 0.20, 0.25, 0.33500.40, 0.45, 0.50, 0.55, 0.60;*/
/*do b2 =0, 0.05, 0.1, 0.15, 0.20, 0.25, 0.33500.40, 0.45, 0.50, 0.55, 0.60;*/
/*do cp =0, 0.05, 0.1, 0.15, 0.20, 0.25, 0.38500.40, 0.45, 0.50, 0.55, 0.60;*/
[**/

/*do al =0, 0.14, 0.39, 0.59;*/

/*do a2 =0, 0.14, 0.39, 0.59;*/

/*do bl =0, 0.14, 0.39, 0.59;*/

/*do b2 =0, 0.14, 0.39, 0.59;*/

/*do cp =0, 0.14, 0.39, 0.59;*

¥

/*do al =0.105, 0.110, 0.115, 0.320, 0.325, 0,83885, 0.590, 0.595;*/

/*do a2 = 0.105, 0.110, 0.115, 0.320, 0.325, 0.83885, 0.590, 0.595;*/

/*do bl =0.105, 0.110, 0.115, 0.320, 0.325, 0,388635, 0.590, 0.595;*/

/*do b2 =0.105, 0.110, 0.115, 0.320, 0.325, 0,38635, 0.590, 0.595;*/

/*do cp = 0.120, 0.125, 0.130, 0.370, 0.375, 0,380;*/

1**/

/*do al =0.102, 0.103, 0.104, 0.317, 0.318, 0,81882, 0.583, 0.584;*/

/*do a2 = 0.102, 0.103, 0.104, 0.317, 0.318, 0,81882, 0.583, 0.584;*/

/*do bl =0.102, 0.103, 0.104, 0.317, 0.318, 0,31982, 0.583, 0.584;*/

/*do b2 = 0.102, 0.103, 0.104, 0.317, 0.318, 0,31982, 0.583, 0.584;*/

/*do cp = 0.131, 0.385, 0.715;*/

doal =0, 0.101, 0.314, 0.577
doa2 =0, 0.101, 0.314, 0.577
dobl =0, 0.101, 0.314, 0.577;
dob2 =0, 0.101, 0.314, 0.577;
docp =0, 0.131, 0.40, 0.74;

don =50;

albl=al*bi;

a2b2=a2*b2;

c=albl+a2b2+cp;

sa=sqrt{/(N-2)); sb=sqrt{/(N-3)); sc=sqrt{/(n-2));

*This section computes true variances and covagisabased
on residual error variance equal to 1;

ERROR=;ERRORM1<,ERRORM2=;ERRORY=L,

EMOD1=(ERROR)*%;
EMOD2=(ERRORY)*2;
EMOD3=(ERRORM1)*%;
EMOD4=(ERRORM2)*%;
CXX=EMOD1;

106



CM1X=A1*EMOD1;

CM2X=A2*EMOD1;

CYX=CP*EMOD1+B1*CM1X+B2*CM2X;

CM1M1=A1*A1*EMOD1+EMODS3;

CM2M1=A1*CM2X;

CYM1=A1*CYX+B1*EMOD3;

CM2M2=A2*A2*EMOD1+EMODA4;

CYM2=A2*CYX+B2*EMODA4;
CYY=(CP*CP*EMOD1)+@*A1*B1*CP*EMOD1)+(2*A2*B2*CP*EMOD1)+(2*A1*A2*B1*B2*EMO
D1)+(B1*B1*(A1*A1*EMOD1+EMOD2))+(B2*B2*(A2*A2*EMOD1 +EMOD3))+EMOD4;

*This section computes population correlations;
RM1X=CM1X/SQRT(CXX*CM1M1);
RM2X=CM2X/SQRT(CXX*CM2M2);
RYX=CYX/SQRT(CXX*CYY);
RM1M2=CM2M1/SQRT(CM1M1*CM2M2);
RM1Y=CYM1/SQRT(CM1M1*CYY);
RM2Y=CYM2/SQRT(CM2M2*CYY);

XRM1Y=(RM1Y-RM1X*RYX)/SQRT((1-RMLX*RMLX)*( 1-RYX*RYX));
XRM2Y=(RM2Y-RM2X*RYX)/SQRT((1-RM2X*RM2X)*( 1-RYX*RYX));
XRM1M2=(RM1M2-RM1X*RM2X)/SQRT((l-RM1X*RM1X)*( 1-RM2X*RM2X));
M1RXY=(RYX-RML1X*RML1Y)/SQRT((1-RM1X*RM1X)*( 1-RM1Y*RM1Y));
M1RXM2=(RM2X-RMIX*RM1M2)/SQRT((L-RM1X*RM1X)*( 1-RM1M2*RM1M2));
M1RM2Y=(RM2Y-RM1Y*RM1M2)/SQRT((-RM1Y*RMLY)*( 1-RM1IM2*RM1M2));

XM2RM1Y=(XRM1Y-XRMIM2*XRM2Y)/SQRT((1-XRM1IM2*XRM1M2)*( 1-XRM2Y*XRM2Y)):
XM1RM2Y=(XRM2Y-XRMIM2*XRML1Y)/SQRT((1-XRM1IM2*XRM1M2)*( 1-XRM1Y*XRMLY)):
MIM2RXY=(M1RXY-MIRXM2*M1RM2Y)/SQRT((1-M1RXM2*M1RXM2)*( 1-
M1RM2Y*M1RM2Y));

output

end

end

end

end

end

end

cards
0000050

proc print; varal a2 bl b2 cp n rm1lx rm2x xm2rmly xmlrm2y mimg2rxy
run;

title 'Plot of effect sizes for the parallel two mediatoodel;
proc gplot;
plotrmlx * al;
plot xm2rmly * b1,
plot m1m2rxy * cp;
symbollvalue=dot;
run;
quit;
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APPENDIX H

PROGRAM TO COMPUTE EMPIRICAL POWER FOR THE PARALLEIWO

MEDIATOR MODEL
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/*Simulation for two mediator parallel model*/
[*Corresponding with MacKinnon (2008) notation,

a=al
b=bl
cp=c'
d=a2
e =b2
x=X
m =M1
q=M2
y=Y
*/

FILENAME NULLOG DUMMY 'C:\NULL';
PROC PRINTTO LOG=NULLOG,;

% macr o medsimpara

%donsize =5 %to 5;
%doaparm =2 %to 2;

%do bparm =1 %to 4;
%docparm =1 %to 4;
%dodparm =1 %to 4;

%do eparm =1 %to 4;

%do numsamps 2 %to 500;

proc iml;

a ={0,0.101,0.314,0.577};
b = {0,0.101,0.314,0.577},
cp = {0,0.131,0.400,0.740},
d ={0,0.101,0.314,0.577},
e ={0,0.101,0.314,0.577};
n = {50,100,200,500,1000},
varx =1,

resvarm =1,

resvarq =1,

resvary =1,

/* calculate variances based on paths */

*covxm = a[&aparm,1]*varx;

*varm = (a[&aparm,1]**2)*varx + resvarm;

*resvarm = 1 - ((a[aparm,1]**2)*varx);

*resvary = 1 - ((b[bparm,1]**2)*varm + (cp[cparm®R)*varx + 2*b[bparm,1]*cp[cparm,1]*covxm);

[* create x scores */
x = rannor(j(n[&nsiz€l], 1,0));

[* generate residuals for m */
/* sgrt(resvarm) = the std for the residual disitibn */
resm = sqrt(resvarm)*rannor(j(n[&nsizé,1,0));

/* generate m via regression equation */
m = a[&aparml]*x + resm;
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/* generate residuals for q */
/* sgrt(resvarq) = the std for the residual digitibn */
resq = sqrt(resvarg)*rannor(j(n[&nsiZg,1,0));

/* generate q via regression equation */
g = d[&dparm]]*x + resq;

/* generate residuals for y */
[* sqrt(resvary) = the std for the residual digttibn */
resy = sqrt(resvary)*rannor(j(n[&nsiZg,1,0));

/* generate y via regression equation */
y = b[&bparm]1]*m + e[&eparml]*q + cp[&cparm,1]*Xx + resy;

[* concatenate vectors into single matrix */
medvars =x||m]|q|ly;

[* create sas data set dat from iml matrix medvars
create dat from medvars[colname = {x m g y}];
append from medvars;

*proc means data = dat;
*var X my resm resy,

ods listing close;
proc reg data = dat;

model m = x;
ods output ParameterEstimates = apath;
run;

ods listing close;

proc reg data = dat;

model q = x;

ods output ParameterEstimates = dpath;

ods listing close;

proc reg data = dat;

model y = x m g/ covb;

ods output ParameterEstimates = cprimepath Covivest;
run;

/*ods listing close;*/

[*proc reg data = dat;*/

/*model y = x m q / covb;*/

/*ods output ParameterEstimates = bpath;*/
[*run;*/

¥/

[*ods listing close;*/

[*proc reg data = dat;*/

/*model y = x m q / covb;*/

/*ods output ParameterEstimates = epath;*/
[*run;*/

ods listing close;
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proc reg data = dat;

model y = X;

ods output ParameterEstimates = total;
run;

data apath;

set apath;

where variable =X';
keep estimate stderr;
run;

data apath;

set apath;

rename estimate = a;
rename stderr = ase;
run;

data dpath;

set dpath;

where variable =X';
keep estimate stderr;
run;

data dpath;

set dpath;

rename estimate = d;
rename stderr = dse;
run;

data bpath;

set cprimepath;
where variable =M";
keep estimate stderr;
run;

data bpath;

set bpath;

rename estimate = b;
rename stderr = bse;
run;

data epath;

set cprimepath;
where variable 2Q,
keep estimate stderr;
run;

data epath;

set epath;

rename estimate = e;
rename stderr = ese;
run;

data cprimepath;
set cprimepath;
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where variable =X';
keep estimate stderr;
run;

data cprimepath;

set cprimepath;

rename estimate = cprime;
rename stderr = cprimese;
run;

data total,

set total;

where variable 2X';

keep estimate stderr probt;
run;

data total,

set total;

rename estimate = c;
rename stderr = cse;
rename probt = cpvalue;
run;

data covest;

set covest;

where variable 2Q,
keep m;

run;

data covest;

set covest;

rename m = covbe;
run;

data medparms;
merge apath dpath bpath epath cprimepath totaktove
run;

data medparms;
set medparms;

csig =0;
if cpvalue <.05 then csig =1,

ab = a*b;

de = d*e;

sobelse = sqgrt(a*a*bse*bse + b*h*ase*ase + d*d*ese*+ e*e*dse*dse #*a*d*covbe);
sobelz = (ab + de) / sobelse;

sobelsig =0;

if abs(sobelz) .96 then sobelsig ;

ta=a/ase;
pa=(-probfabs(ta),df))2;

tb=b/bse;
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pb=(1-probi{abs(tb),df))?;

td=d/dse;
pd=(1-probiabs(td),df))?;

te=e/ese;
pe=(-probfabs(te),df))2;

asig;
if pa <0.05thenasig;

bsig=0;
if pb <0.05thenbsig=l,;

dsig=0;
if pd <0.05thendsig=L;

esig=;
if pe <0.05thenesig;

absesgria*a*bse*bse + b*b*ase*ase);
zab=ab/abse;

absobelsigg;

if abs(zab) >.96thenabsobelsigz;

abjointsig®;
if pa <0.05andpb <0.05thenabjointsig;

desesgri{d*d*ese*ese + e*e*dse*dse);
zde=de/dese;

desobelsigg;

if abs(zde) =.96thendesobelsigz;

dejointsig®;
if pd <0.05andpe <0.05thendejointsig;

if &nsize =1 then sampsize 50;

if &nsize =2 then sampsize £00;
if &nsize =3 then sampsize 200;
if &nsize =4 then sampsize 500;
if &nsize =5 then sampsize £000;

if &aparm =1 then apath 9;

if &aparm =2 then apath 9.101;
if &aparm =3 then apath 314;
if &aparm =4 then apath 577,

if &bparm =1 then bpath 9,

if &bparm =2 then bpath =101;
if &bparm =3 then bpath =314;
if &bparm =4 then bpath =577;

if &dparm =1 then dpath %,
if &dparm =2 then dpath =101;
if &dparm =3 then dpath =314;
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if &dparm =4 then dpath =577;

if &eparm =1 then epath %;

if &eparm =2 then epath =101,
if &eparm =3 then epath =314;
if &eparm =4 then epath =577,

if &cparm =1 then cpath 9;

if &cparm =2 then cpath =131,
if &cparm =3 then cpath =40;
if &cparm =4 then cpath =74;

file "c:\\HPO\medsimpara.dathod;
put @1 (a) ©.6)

@10 (ase) 8.6)

@20 (b) (8.6)

@30 (bse) 8.6)

@40 (d) 8.6)

@50 (dse) 8.6)

@60 (e) 8.6)

@70 (ese) 8.6)

@80 (cprime) 8.6)
@90 (cprimese) §.6)
@100 (c) (8.6)

@110 (cse) 8.6)
@120 (cpvalue) 8.6)
@130 (csig) 8.6)
@140 (ab) @.6)
@150 (de) @.6)
@160 (sobelse){.6)
@170 (sobelz) 8.6)
@180 (sobelsig) 8.6)
@190 (sampsize)q.6)
@200 (apath) 8.6)
@210 (bpath) 8.6)
@220 (dpath) 8.6)
@230 (epath) 8.6)
@240 (cpath) 8.6)
@250 (covbe) 8.6);

run;

%end
%end
%end
%end
%end
%end
%end

% mend;
%medsimpara
run;

data medparms;
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infile "c:\HPO\medsimpara.dat"

inputa ase b bse d dse e ese cprime cprimese ¢ cdacpsy

ab de sobelse sobelz sobelsig sampsize apath dypeitn epath cpath covbe;
run;

proc sort data= medparms;
by sampsize apath bpath dpath epath cpath;
run;

proc means data= medparmsoprint,

vara b d e c cprime ab de sobelsig csig;

by sampsize apath bpath dpath epath cpath;

outputout = powertablethreenean= a b d e ¢ cprime ab de sobelsig csig;
run;

proc means data= medparms;
var covbe;
run;

proc print data= powertablethree;
run;
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APPENDIX |

PROGRAM TO CALCULATE ANALYTICAL POWER OF THE PARALEL TWO

MEDIATOR MODEL
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*Last edited September 16, 2012;
*This program computes the power to detect the atedieffect;

data g

inputal bl a2 b2cp N
doal =0, 0.101, 0.314, 0.577,
dob1l =0, 0.101, 0.314, 0.577;
doa2 =0, 0.101, 0.314, 0.577,
dob2 =0, 0.101, 0.314, 0.577;
docp =0, 0.131, 0.4, 0.74;

do n =50, 100, 200, 500, 1000;

c=al*bl+a2*b2+cp
albl=al*bl
a2b2=a2*bh2

sal=sqri(1/(N-2));
sa2=sqri(1/(N-2));
sb1=sqri(1/(N-4));
sb2=sqri(1/(N-4));

*This formula does not match the formula belowtfoe true SEcp;
scp=sqri(1/(N-4));

ERROR-1;
ERRORM14,
ERRORM24;
ERRORY=L,

*This section computes true variances and covagsnc

EMOD14ERROR** 2;

EMOD2FERRORY)** 2;

EMOD3ERRORMJ)** 2;

EMOD4=5ERRORM2** 2;

NOBS=N;

CXX=EMOD1,;

CM1X=A1*EMOD1;

CM2X=A2*EMOD1;

CYX=CP*EMOD1+A1*B1*EMOD1+A2*B2*EMOD],
CM1M1=A1*A1*EMOD1+EMOD3;

CM1M2=A1*A2*EMOD1;
CM1Y=A1*CP*EMOD1+Al1*A1*B1*EMOD1+A1*A2*B2*EMOD1+B1*E MOD3;
CM2M2=A2*A2*EMOD1+EMOD4;
CM2Y=A2*CP*EMOD1+A1*A2*B1*EMOD1+A2*A2*B2*EMOD1+B2*E MOD4;
CYY=(CP*CP*EMODJ)+(2*A1*B1*CP*EMOD1)+(2*A2*B2*CP*EMOD1 )+(2*A1*A2*B1*B2*EMO
D1)+(B1*B1*(A1*A1*EMOD1+EMOD3))+(B2*B2* (A2*A2*EMOD1+EMOD4))+EMOD2,

*This section computes true standard errors;
SDX=SQRT(CXX);

SDM1=SQRT(CM1M1);
SDM2=SQRT(CM2M2);

SDY=SQRTCYY);

*This section computes population correlations (Rvihd RM2X serve as effect sizes for al and a2);
RM1X=CM1X/SQRT(CXX*CM1M1);
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RM2X=CM2X/SQRTCXX*CM2M2);
RYX=CYX/SQRTCXX*CYY );
RM1M2=CM1M2/SQRTCM1IM1*CM2M2);
RM1Y=CM1Y/SQRT(CM1IML*CYY);
RM2Y=CM2Y/SQRT(CM2M2*CYY);

*This section computes population first-order partiorrelations ("XRM1Y" would be the corr btwn m1
and y with x partialled);

XRM1Y=(RM1Y-RM1X*RYX)/SQRT(1-RM1X*RM1X)*(1-RYX*RYX));
XRM2Y=(RM2Y-RM2X*RY X )/SQRT((1-RM2X*RM2X)* (1-RYX*RYX));
XRM1M2=(RM1M2-RM1X*RM2X)/SQRT((1-RM1X*RM1X)*(1-RM2X*RM2X));
M1RXY=(RYX-RM1X*RM1Y )/SQRT((1-RM1X*RM1X)*(1-RM1Y*RM1Y));
M1RXM2=(RM2X-RM1X*RM1M2)/SQRT((1-RM1X*RM1X)*(1-RM1IM2*RM1M2));
M1RM2Y=(RM2Y-RM1Y*RM1M2)/SQRT((1-RM1Y*RM1Y)*(1-RM1IM2*RM1M2));

*This section computes population second-ordeligdartrrelations (effect sizes for b1, b2, and icng);
XM2RM1Y=(XRM1Y-XRM1M2*XRM2Y )/SQRT((1-XRM1M2*XRM1M2)*(1-XRM2Y*XRM2Y ));
XM1RM2Y=(XRM2Y-XRM1M2*XRM1Y )/SQRT((1-XRM1M2*XRM1M2)*(1-XRM1Y*XRML1Y ));
M1IM2RXY=(M1RXY-M1RXM2*M1RM2Y )/SQRT(1-M1RXM2*M1RXM2)*(1-
M1RM2Y*M1RM2Y));

*This section computes true standardized coeffisiéor b1, b2, and c';
B1STAR=B1*SDM1/SDY,
B2STAR=B2*SDM2/SDY,
CPSTAR=CP*SDX/SDY

*This section computes the squared multiple coti@ieand multiple correlations for standard errors;
RSQYXM1M25CPSTAR*RYX)+(B1STAR*RM1Y)+(B2STAR*RM2Y);
RSQM1{RM1X*RM1X+RM1M2*RM1M2-2*RM2X*RM1X*RM1M2 )/(1-RM2X*RM2X);
RSQM2HRM2X*RM2X+RM1M2*RM1M2-2*RM1X*RM2X*RM1M2 )/(1-RM1X*RM1X);
RSQXARM1X*RM1X+RM2X*RM2X- 2*RM1M2*RM1X*RM2X )/(1-RM1IM2*RM1M2);

*This section computes population coefficients lolase variances and covariances;
TRUEA1=CM1X/CXX;

TRUEA2=CM2X/CXX;

TRUEB1CM1Y-CP*CM1X-B2*CM1M2)/CM1M1;
TRUEB25CM2Y-CP*CM2X-B1*CM1M2)/CM2M2;

TRUEB22H((CXX*CM2Y-CM2X*CYX )*(CXX*CM1M1-CM1X*CM1X ))-((CXX*CM1Y-
CM1X*CYX)*(CXX*CM1M2-CM1X*CM2X ))/(((CM1X*CM2X-CXX*CM1M2 )* (CXX*CM1M2-
CM1X*CM2X))-((CM2X*CM2X-CXX*CM2M2 )* (CXX*CM1M1-CM1X*CM1X)));
TRUECPZCYX-B1*CM1X-B2*CM2X )/CXX;

*This code computes population mean squared efooithe three regression equations;
TRUEMSE2=CYY{CP*CP*CXX)-(2*B1*CP*CM1X)-(2*B2*CP*CM2X)-(2*B1*B2*CM1M2)-
(B1*B1*CM1M1)-(B2*B2*CM2M2);

TRUEMSE3=CM1M1-A1*A1*CXX;

TRUEMSE4=CM2M2-A2*A2*CXX;

*This code computes population variances/standaadsof the coefficients;
TRUEVARA1=TRUEMSE3((NOBS-2)*(CXX));

TRUESEA1-SQRT(TRUEVARAL);

TRUEVARA2=TRUEMSE4((NOBS-2)* (CXX));

TRUESEA2-SQRT(TRUEVARA2);
TRUESEB1%£SDY/SDM1)*SQRT((1-(RSQYXM1M2))/(NOBS-3))* SQRT1/(1-(RSQMD));
TRUESEB2%£SDY/SDM2*SQRT((1-(RSQYXM1M2))/(NOBS-3))* SQRT1/(1-(RSQM2));
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*This formula does not match the formula above; scp
TRUESECP£SDY/SDX)* SQRT((1-(RSQYXM1M2))/(NOBS-3))* SQRT(1/(1-(RSQX)));

*This code computes both the population and saprduct of coefficients standard errors of albl®a2b
TRUESEPOCSQRTTRUESEA1*TRUESEA1*B1*B1+TRUESEB1*TRUESEB1*A1*A1+TRESEA2
*TRUESEA2*B2*B2+TRUESEB2*TRUESEB2*A2*A22*A1*A2*TRUESEB1*TRUESEB2);

*Calculation of power of RM1X (correlation for abeff) using z test;
A1PRIME=((1/2)* LOG((1+RM1X)/(1-RM1X)));
SDA1PRIME=l/SQRTINOBS-3);
ZA1PRIME=A1PRIME/SDA1PRIME

ZA1=1.96-ZA1PRIME;

ZPOWERA1--PROBNORMZAL);

*Calculation of power of al using t test;
TA1=ABS(A1l/TRUESEAJ);

IF TA1 GT 20 THEN TA1 =20;
TCRITAL=TINV(.975,NOBS-2);
TPOWERAL1=-PROBT(TCRITA1NOBS-2,TAL);

*Calculation of power of RM2X (correlation for aBeff) using z test;
A2PRIME=(1/2)* LOG((1+RM2X)/(1-RM2X)));
SDA2PRIME=1/SQRTINOBS-3);
ZA2PRIME=A2PRIME/SDA2PRIME

ZA2=1.96-ZA2PRIME;

ZPOWERA2-1-PROBNORMZA2);

*Calculation of power of a2 using t test;
TA2=ABS(A2/TRUESEA2);

IF TA2 GT 20 THEN TA2 =20;

TCRITA2=TINV (.975,NOBS-2);
TPOWERA2=-PROBTTCRITA2NOBS-2,TA2);

*Calculation of power of XM2RML1Y (correlation forlbcoeff) using z test;
B1PRIME=((1/2)*LOG((1+XM2RM1Y)/(1-XM2RM1Y)));
SDB1PRIME=/SQRTINOBS-3);

ZB1PRIME=B1PRIME/SDB1PRIME

ZB1=1.96-ZB1PRIME

ZPOWERB14-PROBNORMZB1);

*Calculation of power of b1 using t test;
TB1=ABS(B1/TRUESEBY;

IF TB1 GT20 THEN TB1 =20;

TCRITB1=TINV (.975,NOBS-2);
TPOWERB14-PROBT(TCRITB1NOBS-2,TB1);

*Calculation of power of XM1RM2Y (correlation for2ocoeff) using z test;
B2PRIME=((1/2)*LOG((1+XM1RM2Y)/(1-XM1RM2Y)));
SDB2PRIME=/SQRTINOBS-3);

ZB2PRIME=B2PRIME/SDB2PRIME

ZB2=1.96-ZB2PRIME

ZPOWERB2-4-PROBNORMZB2);

*Calculation of power of b2 using t test;
TB2=ABS(B2/TRUESEB2;
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IF TB2 GT20 THEN TB2 =20;
TCRITB2=TINV (.975,NOBS-2);
TPOWERB24-PROBT(TCRITB2NOBS-2,TB2);

*Calculation of difference in power calculationg #il, a2, b1, and b2;
A1POWERDIFF=ZPOWERA1-TPOWERA1
A2POWERDIFF=ZPOWERA2-TPOWERA2
B1POWERDIFF=ZPOWERB1-TPOWERB1
B2POWERDIFF=ZPOWERB2-TPOWERB2

*Calculation of power of albl and a2b2 using z;test
ZPOWERA1B1=ZPOWERA1*ZPOWERB1
ZPOWERA2B2=ZPOWERA2*ZPOWERB2

*Calculation of power of albl and a2b2 using t;test
TPOWERA1B1=TPOWERA1*TPOWERB1
TPOWERA2B2=TPOWERA2*TPOWERB2

*Calculation of difference in power calculations &pecific mediated effects;
A1B1POWERDIFF=ZPOWERA1B1-TPOWERA1B1
A2B2POWERDIFF=ZPOWERA2B2-TPOWERA2B2

*Calculation of power of product of coefficientsing t test;
A1B1=A1*B1,;

A2B2=A2*B2;
A1B1A2B2=ABS(A1B1+A2B2)/TRUESEPOG;
Z2MED=1.96-A1B1A2B2
ZPOWER2MED=-PROBNORMZ2MED);

output

end

end

end

end

end

end

cards
0000050

/* PROC SORT;*/

I* BY A2B2POWERDIFF;*/
*RUN;*/

1**

[*PROC PRINT;*/

I* VAR A2B2POWERDIFF;*/
*RUN;*/

proc sort;
bynalbla2b2¢p
run;

odshtml body ='C:\Users\Dropbox\Masters\Analytical work\Power €dtions\poweroutab.x|s'
proc print;
VAR n al bl a2 b2 cp zpoweralbl tpoweralbl zpowerg2ivzra2b2 ZPOWER2MED
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RUN;
odshtml close

121



APPENDIX J

CONDITIONS WHERE POWER OF THE JOINT SIGNIFICANCE $E EXCEEDS

POWER OF THE TEST OF THE TOTAL EFFECT FOR THE SINGSMEDIATOR

MODEL
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Conditions where Power of the Joint SignificancetExceeds Power of the Test of
the Total Effect for the Single Mediator Model

1
a b c' C Total Joint Significance
N 50 014 039 O 0.0546 0.063  0.097
014 059 O 0.0826 0.083 0.153
039 014 O 0.0546 0.073 0.104
039 039 O 0.1521 0.173 0.518
0.39 0.39 0.14 0.2921 0.455 0.498
039 059 O 0.2301 0.267 0.688
0.39 059 0.14 0.3701 0.559 0.704
059 014 O 0.0826 0.075 0.143
059 039 O 0.2301 0.311 0.707
059 0.39 0.14 0.3701 0.646  0.709
059 059 O 0.3481 0.503 0.93
059 059 0.14 0.4881 0.823  0.947
100 0 039 O 0 0.046  0.049
014 014 O 0.0196 0.056 0.062
014 039 O 0.0546 0.077 0.274
014 059 O 0.0826 0.117  0.299
039 014 O 0.0546 0.076  0.286
039 039 O 0.1521 0.306 0.935
0.39 0.39 0.14 0.2921 0.779 0.92
039 059 O 0.2301 0.504 0.963
0.39 059 0.14 0.3701 0.889 0.971
059 014 O 0.0826 0.11 0.263
059 039 O 0.2301 0.567 0.971
059 0.39 0.14 0.3701 0.92 0.965
059 059 O 0.3481 0.845 0.999
059 059 0.14 0.4881 0982 1
200 0 059 O 0 0.04 0.047
014 014 O 0.0196 0.068 0.22
014 039 O 0.0546 0.119 0.489
0.14 059 O 0.0826 0.17 0.497
039 O 0 0 0.034 0.046
039 014 O 0.0546 0.113 0.516
039 039 O 0.1521 0.504  0.997
0.39 0.39 0.14 0.2921 0.97 1
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1000

5000
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0.14
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0.2301
0.3701
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0.0546
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0.0546
0.1521
0.2301
0.0826
0.2301

0.0196
0.0546
0.0826
0.0546
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0.0826

0.0196
0.0546
0.0826
0.0546

0.788
0.994
0.199
0.868
0.994
0.978
0.049
0.069
0.234
0.329
0.05
0.236
0.883
0.99
0.442
0.995
0.055
0.045
0.082
0.375
0.612
0.388
0.996
0.728
0.065
0.044
0.28
0.94
0.999
0.967

0.999
0.505

0.054
0.735
0.894
0.881
0.056
0.878

0.872

0.059
0.065
0.99
0.993
0.994
0.996

0.989
0.066
0.045
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APPENDIX K

CONDITIONS WHERE POWER OF THE PRODUCT OF COEFFICIENTEST

EXCEEDS POWER OF THE TEST OF THE TOTAL EFFECT FORE SINGLE

MEDIATOR MODEL
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Conditions where Power of the Product of Coeffitsehest Exceeds Power of the
Test of the Total Effect for the Single Mediatorddio

1
a b c' C Total Sobel
N 50 0.14 0.59 0 0.0826 0.083 0.089
0.39 0.39 0 0.1521 0.173 0.364
0.39 0.59 0 0.2301 0.267 0.579
0.39 0.59 0.14 0.3701 0.559 0.598
0.59 0.14 0 0.0826 0.075 0.098
0.59 0.39 0 0.2301 0.311 0.61
0.59 0.59 0 0.3481 0.503 0.89
0.59 0.59 0.14 0.4881 0.823 0.908
100 0.14 0.39 0 0.0546 0.077 0.182
0.14 0.59 0 0.0826 0.117 0.248
0.39 0.14 0 0.0546 0.076 0.185
0.39 0.39 0 0.1521 0.306 0.885
0.39 0.39 0.14 0.2921 0.779 0.868
0.39 0.59 0 0.2301 0.504 0.952
0.39 0.59 0.14 0.3701 0.889 0.963
0.59 0.14 0 0.0826 0.11 0.227
0.59 0.39 0 0.2301 0.567 0.956
0.59 0.39 0.14 0.3701 0.92 0.955
0.59 0.59 0 0.3481 0.845 0.999
0.59 0.59 0.14 0.4881 0.982 1
200 0 0.59 0 0 0.04 0.043
0.14 0.14 0 0.0196 0.068 0.082
0.14 0.39 0 0.0546 0.119 0.435
0.14 0.59 0 0.0826 0.17 0.484
0.39 0.14 0 0.0546 0.113 0.452
0.39 0.39 0 0.1521 0.504 0.997
0.39 0.39 0.14 0.2921 0.97 0.999
0.39 0.59 0 0.2301 0.788 1
0.39 0.59 0.14 0.3701 0.994 0.999
0.59 0.14 0 0.0826 0.199 0.486
0.59 0.39 0 0.2301 0.868 1
0.59 0.39 0.14 0.3701 0.994 1
0.59 0.59 0 0.3481 0.978 1
500 0 0.59 0 0 0.049 0.052
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APPENDIX L

SYNTAX FOR LOGISTIC REGRESSION ANALYSIS OF SIMULATN DATA
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data a;
input sampsize apath bpath dpath epath cpath case RiygBercent;
cards

run;

proc means dataea;

run;
data a2;

seta;
sampsizecent = sampsiz&70;
run;
data a3;

setaz;
apathcent = apath0-248;
run;
data a4;

seta3;
bpathcent = bpathG.248;
run;
data a5;

seta4;
dpathcent = dpath0.248;
run;
data a6;

setas;
epathcent = epath0:248;
run;
data a7;

setab;
cpathcent = cpathG.31775;
run;

*The following code produces odds ratio estimates] does not include a class statement so produces
main effects and interactions;
title 'Logistic regression with weights'
proc logistic data=a7;
weightfrequency;
modelcase = sampsizecent|apathcent|bpathcent|dpa#ipaghtient|cpathcenexph
odsoutputParameterEstimates = params;
run;
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APPENDIX M

LOGISTIC REGRESSION RESULTS PREDICTING CASES WHERBWER TO

DETECT THE TOTAL MEDIATED EFFECT EXCEEDED POWER TRETECT

THE TOTAL EFFECT FOR THE PARALLEL TWO MEDIATOR MODE
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Logistic Regression Results Predicting Cases WReveer to Detect the Total Mediated
Effect Exceeded Power to Detect the Total Effedii® Parallel Two Mediator Model

Predictor B SE  Waldsy2 df p é (odds ratio)
Intercept 9.914 0.083 14175.674 1<.0001%** 20219.2
N 0.018 0.000 4152.833 1<.0001%** 1.018
a 7.444  0.379 385.188 1<.0001%** 1710.182
N*ay 0.027 0.001 486.746 1<.0001%** 1.028
b, 6.662 0.383 303.197 1<.0001%** 782.03
N*b, 0.024 0.001 361.422 1<.0001%** 1.024
a*b; 28.407 1.727 270.594 1<.0001***  2.173E+12
N*a;*b; 0.085 0.006 230.500 1<.0001%** 1.089
a 7.203 0.381 357.823 1<.0001%** 1343.884
N*a, 0.026 0.001 455.892 1<.0001%** 1.027
a*a, 15.048 1.735  75.235 1<.0001%** 3428244
N*as*a, 0.033 0.006  34.709 1<.0001%** 1.034
bi*a 14314 1.750 66.916 1<.0001%** 1645465
N*b;*a, 0.033 0.006  34.147 1<.0001%** 1.034
ar*br*a, 35.805 7.898  20.551 1<.0001**  3.547E+15
N*a;*bi*a, 0.120 0.026  21.916 1<.0001%** 1.127
b, 6.420 0.385 278.228 1<.0001%** 613.873
N*b, 0.023 0.001 335.073 1<.0001%** 1.023
a*b 12.793 1.753  53.268 1<.0001%** 359739.1
N*a;*b, 0.027 0.006 22.819 1<.0001%** 1.028
by*b 12.046  1.768  46.420 1<.0001%** 170409.6
N*b:*b; 0.026 0.006 20.618 1<.0001*** 1.026
ar*b1*b, 29.453 7.978  13.629 1 0.0002 6.186E+12
N*a;*b1*b, 0.100 0.026  15.069 1 0.0001 1.105
ay*b; 25.852 1.748 218.732 1<.0001***  1.687E+11
N*az*b, 0.078 0.006 189.519 1<.0001%** 1.081
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ar*az*b
N*al*az*bz
br*az*b>
N*bl*az*bz
ar*b1*az*bs
N*al*b 1*a2*b2
c

N*c'

a;*c'
N*ap*c'
b]_*CI
N*bl*C'
a]_*b 1*C'
N*al*b 1*c'
ay*c'
N*ay*c'
a;*ar*c'
N*a*a,*c'
b]_*az*C'
N'kl')l*f';lz*cI
a]_*b 1*ay*c'
N*al*b *ay*c'
bz*CI
N*bz*C'
a]_*b 2*C'
N*al*bz*c'
b]_*b 2*C'
|\|*bl*b2"’CI
a]_*b 1*b2*C'

N*al*b 1*b 2*C'

27.301
0.091
24.234
0.085
104.500

0.241
24.966
0.052

20.211
0.061
17.899
0.052
68.806
0.188
19.513
0.059
21.761
0.069
21.177
0.071
58.033
0.216
17.199
0.049
16.725
0.052
15.519
0.050
42.728
0.164

7.959
0.026
8.028
0.026
36.208

0.117
0.265
0.001

1.205
0.004
1.215
0.004
5.482
0.018
1.209
0.004
5.507
0.018
5.555
0.018
25.064
0.081
1.222
0.004
5.564
0.018
5.612
0.018
25.316
0.082

11.766
12.574
9.112
10.723
8.328

4.237
8905.779
3688.429

281.475
245.922
217.017
171.139
157.522
112.305
260.339
225.344
15.612
14.896
14.535
15.721
5.361
7.093
198.051
154.292
9.035
8.267
7.647
7.667
2.849
4.039
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1 0.0006 7.19E+11
1 0.0004 1.096
1  0.0025 33460000000
1 0.0011 1.089
1 0.0039 2.401E+45
1 0.0395 1.272
1<.0001*** 69610000000
1<.0001*** 1.054
1<.0001*** 598930000
1<.0001*** 1.063
1<.0001*** 59336260
1<.0001*** 1.053
1<.0001***  7.618E+29
1<.0001*** 1.207
1<.0001*** 298000000
1<.0001*** 1.061
1<.0001*** 2822900000
1 0.0001 1.071
1 0.0001 1574000000
1<.0001*** 1.074
1 0.0206 1.597E+25
1 0.0077 1.241
1<.0001*** 29482576
1<.0001*** 1.051
1 0.0026 18346367
1 0.0040 1.053
1 0.0057 5491654
1 0.0056 1.052
1 0.0915 3.602E+18
1 0.0445 1.179



az*b 2*C'
N*az*bz*cI
a]_*az*bz*C'
N*al*az*b 2*C'
b]_*az*bz*C'
N*bl*az*b >*C'
al*b 1*a2*b2*c'

N*ai;*b*a *bo*c'

60.599
0.167
29.099
0.127
27.901
0.117
39.386
0.225

5.548 119.299
0.018 86.514
25.254 1.328
0.082 2.407
25.474 1.200
0.082 2.012
114.900 0.118
0.371 0.368

1<.0001***
1<.0001***

1

1
1
1
1
1

0.2492
0.1208
0.2734
0.1560
0.7317
0.5439

2.078E+26
1.182
4.341E+12
1.135
1.31E+12
1.124
1.273E+17
1.252
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APPENDIX N

PROGRAM TO COMPUTE BOOTSTRAP POWER FOR THE PARALLEWO

MEDIATOR MODEL
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/*Program edited from MacKinnon (2008) Ch. 12;*/

FILENAME NULLOG DUMMY 'C:\NULL';
proc printto log=nullog;

%MACRO
SIMULATE(NSIM,NOBS,A1,A2,B1,B2,CP,FILE, TYPE,ERRORRRORM1,ERRORM2,ERRORY,NB
0O0T);

DATA SUMMARY; SET _NULL_;

%DO I=1 %TO &NSIM;

DATA SIM;

DO I=1 TO &NOBS;
X=(&ERROR)*RANNOR();
M1=&A1*X+(&ERRORM1)*RANNOR(0);
M2=&A2*X+(&ERRORM2)*RANNOR(0);
Y=&CP*X+&B1*M1+&B2*M2+(&ERRORY)*RANNOR( 0);
X2=X*X:

%LET CC=(&A1*&B1)+(&A2*&B2)+&CP;
OUTPUT;

END;

[*Bootstrap*/

*This is where the bootstrap samples are made.;

*sampsize should be equal to the number of obsenain the dataset;
*rep is the number of bootstrap samples you want;

proc surveyselect data=sim noprint out=out2 methioslsampsize=&NOBS rep=&nboot outhits;
run;
quit;

proc reg data=OUT?2 outest=out3 tableout covout intipr
by Replicate;

model y = m1 m2 X;

model m1 = x;

model m2 = x;

model y = X;

data parm; set out3;
if TYPE_"ZPARMS'then delete;

data se; set out3;
if TYPE_"=STDERR'then delete;

data p; set out3;
if _TYPE_"=PVALUE' then delete;

data cov; set out3;
if TYPE_"=COV'then delete;
if NAME_"='M2'then delete;

data b1; set parm;

if MODEL_~=MODEL1'then delete;
bl=m1,;

keep Replicate b1,
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data blse; set se;

if MODEL_"='MODEL1'then delete;
blse=mi;

keep Replicate blse;

data b2; set parm;

if MODEL_~=MODEL1'then delete;
b2=m2;

keep Replicate b2;

data b2se; set se;

if MODEL_"=MODELL1'then delete;
b2se=m2;

keep Replicate b2se;

data covb1b2; set cov;

if MODEL_~=MODEL1'then delete;
covblb2=m1;

keep Replicate covb1b2;

data al; set parm;

if _MODEL_"='"MODELZ2'then delete;
al=x;

keep Replicate al;

data alse; set se;

if MODEL_"=MODELZ2'then delete;
alse=x;

keep Replicate alse;

data a2; set parm;

if _MODEL_"=MODELS3'then delete;
a2=x;

keep Replicate a2;

data a2se; set se;

if MODEL_"='MODELS3'then delete;
azse=x;

keep Replicate a2se;

data c; set parm;

if MODEL_"=MODEL4' then delete;
C=X;

keep Replicate c;

data cse; set se;

if _MODEL_"=MODEL4'then delete;
cse=x;

keep Replicate cse;

data cpval; set p;

if MODEL_~=MODEL4' then delete;
cpval=x;

keep Replicate cpval;
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data d; merge bl blse b2 b2se covb1lb2 al alsesaZz a2e cpval; by Replicate;

albl=al*bil;

a2b2=a2*h2;

med=albl+a2b2;

if med<=(&al*&b1l)+(&a2*&b?2) then zmeds; else zmeds;
if c<=&CC then zc3; else zc5;

proc means data=d noprint;
var zmed zc;
output out=out4 mean(zmed)=meanzmed mean(zc)=mganzc

data out4; set out4;
call symput{meanzmed,"meanzmed);
call symput(meanzc; meanzc);

proc sort data=d;
by med;

*Percentile Bootstrap;

data e; set d;

z0=probit(&meanzmed);

if _N_=(ceil(025*&nboot)) then call symput{CL95med" med);

if _N_=(ceil(975*&nboot)) then call symputUCL95med’, med);

if _N_=(ceil(&nboot*probnorm(2*z0)+probit(025)))) then call symputBCLCL95med', med);
if _N_=(ceil(&nboot*probnorm(2*z0)+probit(975)))) then call symputBCUCL95med’; med);
run;

quit;

proc sort data=d;
by c;

data g; set d;

zOc=probit(&meanzc);

if _N_=(ceil(025*&nboot)) then call symput{CL95c",c);

if _N_=(ceil(975*&nboot)) then call symputUCL95c", c¢);

if _N_=(ceil(&nboot*probnorm(?*z0c)+prohit(025)))) then call symput@CLCL95c", c);
if _N_=(ceil(&nboot*probnorm(®*z0c)+probit(975)))) then call symput@CUCL95c", ¢);
run;

quit;

data f; merge e g;

LCL95med=&LCL95med:;

UCL95med=&UCL95med;

BCLCL95med=&BCLCL95med;

BCUCL95med=&BCUCL95med;

LCL95c=&LCL95c;

UCL95¢c=&UCL95c;

BCLCL95¢c=&BCLCL95c;

BCUCL95¢c=&BCUCL95c;

MEDSIGBC=);

IF BCLCL95med GTO AND BCUCL95med GTO THEN MEDSIGBCH;
IF BCLCL95med LTO AND BCUCL95med LTO THEN MEDSIGBC4;

137



MEDSIG=0;

IF LCL95med GTO AND UCL95med GTO THEN MEDSIG=L;
IF LCL95med LTO AND UCL95med LTO THEN MEDSIG=L,
CSIGBC);

IF BCLCL95¢c GTO AND BCUCL95c GTO THEN CSIGBC4,
IF BCLCL95c LTO AND BCUCL95c LTO THEN CSIGBC4,
CSIG=);

IF LCL95c GTO AND UCL95c GTO THEN CSIG=,

IF LCL95c LT O AND UCL95c LTO THEN CSIG4,

*appends results into summary dataset;
data test; set f;

data new; set summary;

data summary; set new test;

%END,;

%MEND;

¥

*%SIMULATE(NSIM=1000,NOBS=100,A1=0.101,A2=0.314,B0.101,B2=0.577,CP=0,*
*FILE=TEMP,TYPE="CCC',ERROR=1,ERRORM1=1, ERRORMZ2ERRORY=1,NBOOT=1000);*
¥/

*%SIMULATE(NSIM=1000,NOBS=200,A1=0,A2=0.314,B1=0280.314,CP=0,*/
[*FILE=TEMP,TYPE='CCC',ERROR=1,ERRORM1=1,ERRORM2ERRORY=1,NBOOT=1000);*

*%SIMULATE(NSIM=1000,NOBS=1000,A1=0.101,A2=0.1011B0.101,B2=0.101,CP=0,*/
[*FILE=TEMP,TYPE='CCC',ERROR=1,ERRORM1=1,ERRORM2ERRORY=1,NBOOT=1000);*

*%SIMULATE(NSIM=1000,NOBS=50,A1=0.101,A2=0.577,B2:314,B2=0.577,CP=0,*/
*FILE=TEMP,TYPE='CCC',ERROR=1,ERRORM1=1, ERRORMZ2ERRORY=1,NBOOT=1000);*
¥

*%SIMULATE(NSIM=1000,NOBS=50,A1=0.577,A2=0.314,BQ:577,B2=0.101,CP=0,*/
*FILE=TEMP,TYPE="CCC',ERROR=1,ERRORM1=1, ERRORMZ2ERRORY=1,NBOOT=1000);*

*%SIMULATE(NSIM=1000,NOBS=100,A1=0.101,A2=0.577,B80.314,B2=0.314,CP=0,*/
[*FILE=TEMP,TYPE='CCC',ERROR=1,ERRORM1=1,ERRORM2ERRORY=1,NBOOT=1000);*
[**/

*%SIMULATE(NSIM=1000,NOBS=200,A1=0.314,A2=0.101,B0.314,B2=0,CP=0,*/
[*FILE=TEMP,TYPE='CCC',ERROR=1,ERRORM1=1,ERRORM2ERRORY=1,NBOOT=1000);*/

*%SIMULATE(NSIM=1000,NOBS=500,A1=0.577,A2=0.577,80.101,82=0.101,CP=0,*
*FILE=TEMP,TYPE="CCC',ERROR=1,ERRORM1=1, ERRORMZ2ERRORY=1,NBOOT=1000);*/

%SIMULATE (NSIM=1000,NOBS=500,A1=0.101,A2=0.314,B81=0.314,B2=0.101,CP=0,
FILE=TEMP,TYPE=CCC,ERROR-,ERRORM1+4,ERRORM24,ERRORY=1,NBOOT=1000);

*%SIMULATE(NSIM=1000,NOBS=1000,A1=0.101,A2=0.3141B0.577,B2=0.101,CP=0,*/
[*FILE=TEMP,TYPE='CCC',ERROR=1,ERRORM1=1,ERRORM2ERRORY=1,NBOOT=1000);*

proc means data=SUMMARY;
run;
[*proc print data=f noobs;*/
[*var LCL95 UCL95 BCLCL95 BCUCL95;*/
[**/
[*run;*/
[*quit;*/
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APPENDIX O

FLOWCHART OF BOOTSTRAP SIMULATION FOR POWER OF PARREL TWO

MEDIATOR MODEL
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Generate 1 sample of data for X,
MI, M2, and Y

v

Bootstrap sample of
Observations

Repeat 1000 times

v

Generate and save values of a;. by,
5, #15, and ¢ based on bootsirap
sample

1000 bootstrap samples

Y

Create confidence intervals for ¢ and
iy + a:h; based on 1NM saved
values of a,, by, @5, by, and ¢

Repeat 1000 times
1000 simulated datasets

Y

h 4

Mean of binary variables is
hootstrapped power value

Cienerate binary variables
= 1 when CI does not include 0
= 0 when CI includes 0
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APPENDIX P

DOCUMENT NOTATION
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Pmm,.x

Pwm,y.x

Pwm,y.xu,

Pwm,y.x

P,y xm,

Pxm

Pxwm,

Pxm,

Pxm,.M,
Pxy

P xy

Type | error, the rate at which a test incorseatkentifies the presence of a
significant effect when no effect is present.

Type Il error, the rate at which a test failsitalfan effect that is truly
present.

True error variability in the mediation regressgguations.
Power, an alternative representation equal tonoines the probability of
az value for the alternative hypothesis distributamturring under a

normal distribution.

Population first-order partial correlation betwednand M partialling X.
Population first-order partial correlation betwed; and Y partialling X.

Population second-order partial correlation betwigle and Y partialling
X and M, and the effect size measure for theoefficient.

Population first-order partial correlation betwedd, and Y partialling X.

Population second-order partial correlation betwigle and Y partialling
X and My, and the effect size measure for theoefficient.

Population bivariate correlation between X andaMid the effect size
measure for tha coefficient.

Population bivariate correlation between X angd &hd the effect size
measure for the; coefficient.

Population bivariate correlation between X ang Bhd the effect size
measure for thea, coefficient.

Population first-order correlation between X anglpdrtialling M.
Population bivariate correlation between varial{eand Y.
Population bivariate correlation between varialdeand Y, transformed

using a Fisher transformation for use in the calitcoh of analytical
power.
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Pxy.m,

Pxy.mM,

Pymx

Pym,m,

Population first-order correlation between X ahgdartialling M;.

Population second-order partial correlation betw¥end Y, and the
effect size measure for ticecoefficient.

Population first-order correlation between M angaftialling X, and the
first-order partial correlation effect size measiaetheb coefficient.

Population first-order correlation between Y angpdrtialling M.
True standard error of tleecoefficient.

True standard error of tlag coefficient.

True standard error of tlag coefficient.

True standard error of thecoefficient.

True standard error of tlog coefficient.

True standard error of tlg coefficient.

True standard error of theé coefficient.

True variance of M.

True variance of X.

True variance of Y.

Population error variance from the equation withiXl M predicting Y

for the single mediator model, and from the equmtiith X, M, and My
predicting Y for the parallel two mediator model.

Population error variance from the equation witpr¥dicting M for the

single mediator model, and from the equation witpr&dicting M for the
parallel two mediator model.

143



by

by*

b

by*

Population error variance from the equation witpr¥dicting M for the
parallel two mediator model.

Power, a test’s ability to detect an effect whareffect is truly present.
Population path coefficient representing relatip between X and M.
Sample path coefficient representing relationgi@pveen X and M.
Population path coefficient representing relatlip between X and M
Sample path coefficient representing relation&i@fwveen X and M
Population path coefficient representing relatlip between X and M
Sample path coefficient representing relation&i@fween X and M
Population path coefficient representing relatip between M and Y.

Sample path coefficient representing relationfigpveen M and Y.

Population path coefficient representing relahip between Mand Y.

Population standardized path coefficient représgmrelationship between

M. and Y.

Sample path coefficient representing relationsleiieen M and Y.

Population path coefficient representing relatop between Mand Y.

Population standardized path coefficient représgmrelationship between

M, and Y.

Sample path coefficient representing relationskefvieen M and Y.
Population path coefficient representing relahip between X and Y.
Sample path coefficient representing relationgi@pveen X and .
Population path coefficient representing relatiopdetween X and Y

controlling for M in the single mediator model, afiod M; and M, in the
parallel two mediator model.
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Population standardized path coefficient représgmrelationship between
X and Y controlling for M in the single mediator del, and for M and

M. in the parallel two mediator model.

Sample path coefficient representing relationfigipveen X and Y
controlling for M in the single mediator model, aiod M; and M in the
parallel two mediator model.

General population regression coefficient, usae ke describe
calculation of power.

Sample error variability in X.

Sample error variability in the mediation regressquations.

Population intercept in the mediation regressiquations.

Sample intercept in the mediation regression &gus

Number of predictors in a regression equation.
Mediator in the single mediator model.
Mediator in the parallel two mediator model.
Mediator in the parallel two mediator model.
Sample size.

Significance level of a statistical test.

Population squared multiple correlation for thegtial two mediator
model.

Population squared multiple correlation for X with and M.

Population squared multiple correlation fog With X and M.

Population squared multiple correlation fog With X and M.
Multivariate delta standard error for the singiediator model.
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S.- Sample multivariate delta standard error fordimgle mediator model.

Subranh, Multivariate delta standard error for the paratVed mediator model.

Sd Standard error of a general population regressoafficient.

t Parametric test based on thastribution.

X Independent variable.

Y Dependent variable.

Z Third variable, either a covariate, confoundemmderator; used in
conceptual examples in this document.

Z . Value ofz corresponding to the 97'®ercentile point of the standard
normal distribution wherx = 0.05, with a value of 1.96.

Z; Product of coefficients test of significance foe tsimulated sample
mediated effect for the single mediator model.

A Beah Product of coefficients test of significance foe tsimulated sample
+ap0,

mediated effect for the parallel two mediator model

Z, Noncentrality parameter for the alternative hypsth distribution, used in

the calculation of analytical power of a bivariagéationship.
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