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ABSTRACT

The increasing popularity of Twitter renders improved trustworthiness and rele-

vance assessment of tweets much more important for search. However, given the limi-

tations on the size of tweets, it is hard to extract measures for ranking from the tweet’s

content alone. I propose a method of ranking tweets by generating a reputation score for

each tweet that is based not just on content, but also additional information from the Twit-

ter ecosystem that consists of users, tweets, and the web pages that tweets link to. This

information is obtained by modeling the Twitter ecosystem as a three-layer graph. The

reputation score is used to power two novel methods of ranking tweets by propagating the

reputation over an agreement graph based on tweets’ content similarity. Additionally, I

show how the agreement graph helps counter tweet spam. An evaluation of my method on

16 million tweets from the TREC 2011 Microblog Dataset shows that it doubles the preci-

sion over baseline Twitter Search and achieves higher precision than current state of the art

method. I present a detailed internal empirical evaluation of RAProp in comparison to sev-

eral alternative approaches proposed by me, as well as external evaluation in comparison

to the current state of the art method.
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Chapter 1

INTRODUCTION

Twitter, the popular microblogging service, is increasingly being looked upon as a source

of the latest news and trends. The open nature of the platform, as well as the lack of

restrictions on who can post information on it, leads to fast dissemination of all kinds

of information on events ranging from breaking news to very niche occurrences. This

has contributed even further to the growth of Twitter’s user base, and has engendered the

establishment of Twitter as a pre-eminent data source for users’ queries – especially about

hot topics – on the web. In a logical extension of this phenomenon, search engines and

on-line retailers now consider real-time trends from tweets in their ranking of products,

dissemination of news and in providing recommendations [2, 12] –leading to large-scale

pecuniary implications. However, these monetary implications lead to increased incentives

for abusing and circumventing the system, and this is manifested as microblog spamming.

The open nature of Twitter proves to be a double-edged sword in such scenarios, and leaves

them extremely vulnerable to the propagation of false information from profit-seeking and

malicious users (cf. [23, 26]).

Spam techniques have proliferated much more widely on the open internet than

they have on Twitter, so it should stand to reason that their effects can also be countered

and negated to a large extent. Indeed, given powerful search techniques that can detect and

neutralize spam-infused results, the average user should not even have to be aware of this

issue. Unfortunately, Twitter’s native search does not seem to consider the possibility of

users crafting malicious tweets, and instead only considers the presence of query keywords,

and the temporal proximity (recency) of, tweets ([28]). However, given Twitters model, an

increase in the number of queries on a specific topic is usually also accompanied by an

increase in the number of total tweets related to that topic. For example, when Apple

releases a new model of the iPhone, Twitter searches related to this topic shoot up; so
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do the total number of tweets that contain the string iPhone. These tweets may be more

relevant to the query than a tweet that contain the query keyword but has no relation to the

current breaking event.

To be precise, Twitter’s native search does consider that the presence of a term in

a large number of tweets is a strong indicator of popularity; indeed, it even measures such

popularity for each tweet by measuring the number of re-tweets that it receives. While

Twitter considers the number of re-tweet instances as the feature that make a particular

tweet popular, it is not the sole such feature. In particular, this takes no note of content-

based similarity and hence content-centric popularity; i.e., two tweets may not be related

via a re-tweet, yet they may be semantically very similar. Another feature that is often

muddled up due to re-tweets is trust – re-tweeting may not necessarily indicate trust, since

most users re-tweet without verifying the contents of the tweet. Twitter tries to address this

issue by filtering out spam tweets ([27]); however, while tweets that Twitter identifies as

spam may well be untrustworthy, it cannot be assumed that tweets not marked as spam are

all trustworthy. Moreover, providing correct and relevant information often requires more

than just removal of spam (cf. [23]). Even when tweets are not malicious or deliberately

manipulated, they may still be incorrect from a content perspective. Hence I need better

ways to quantify and measure both the content-based popularity, as well as trustworthiness

of a tweet given a query.

The function of a good ranking mechanism must be to rank tweets based on a com-

bination of these features, such that the ones that are most relevant to a users query while

being both popular and trustworthy float to the top, and malicious and less relevant tweets

are suppressed to the lower portions of the results. Furthermore, since this ranking is an

on-line operation that must displace the status quo, the computation time of the entire oper-

ation must also be acceptable. Such problems are relevant not just to Twitter itself, but also

to search engines and on-line retailers that exploit Twitter trends for rankings and profit.
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Web search engines such as Google have dealt with similar problems that involve ranking

web pages (documents) by using link analysis methods such as PageRank [6] to estimate

the trustworthiness and popularity of pages. However, no such methods exist for tweets

currently. Link analysis cannot be directly applied since there are no hyper links between

tweets - the one link that does exist is re-tweeting, and the problems with using those ex-

clusively have been outlined previously. Other approaches such as certifying tweets, or the

users who post them, are both impractical and self-defeating. It is hard to verify millions

of unknown existing users, and new users; besides, this leads to an evisceration of the very

charm of open microblogging, which is that anyone may say anything. Furthermore, users

who do not verify the veracity of information before re-tweeting – a phenomenon that is

quite common, particularly for hot topics – contribute further to the propagation of false

information that must be filtered by search methods.

Additionally, the single biggest difference between web and microblog search is the

difference in the size of the documents – tweets are almost always much shorter. Finally,

although trust assessment in the web and semantic web are addressed previously [17, 15,

25], these methods bootstrap from a seed set of nodes or edges with manually assigned

trust values. However, large scale and real-time content on Twitter make such methods

inapplicable for tweets.

1.1 My Approach

In response to the shortcomings of the current methods for ranking tweets, in this paper

I propose RAProp (short for “reputation propagation”). My high level idea is similar to

the TrustRank approach proposed by Gyöngyi et. al. ([17])–assess the reputation of the

tweet messages, and propagate these scores over the inter-tweet endorsement structure.

The realization of this idea is however complicated by two technical challenges: (i) it is

not feasible to get reputation scores manually (as done by Gyöngyi et. al.) and (ii) there is
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Figure 1.1: The mediator model used, with the different methods I considered & my pro-
posed method RAProp.

no ready-made endorsement structure between tweets1. The main contribution of RAProp

is effectively addressing these two challenges.

To avoid manual reputation assessment, I develop a method for automatically as-

sessing reputation using the features of the Twitter eco-system consisting of tweet content,

twitter users, linked web pages, and inter-relationships between these. To make-up for the

lack of endorsement structure, I compute pairwise agreement between the content of indi-

vidual tweets, and interpret the degree of agreement as the strength of endorsement among

tweets.

More specifically, in RAProp, I model the twitter ecosystem as a three layer graph,

consisting of a user layer, a tweet layer and a web page layer. The reputation of tweets are

computed considering all three layers using a random-forest learner. Within the tweet layer,

I exploit collective intelligence of the related tweets to derive the reputation, by considering

re-tweets and the semantic similarity (agreement) between the tweets. Features from the

user layer are transmitted to the tweet layer by using the “tweeted-by” links; features from

the web layer are transmitted to the tweet layer by the URLs in the tweets. These features

are then combined to find the initial reputation score. Final reputation score is computed

by disseminating these scores among the tweet layer through the agreement and re-tweet

links.

1Although re-tweeting can be viewed as endorsement, it provides a very sparse and biased endorsement
structure.
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I implement and evaluate RAProp within a mediator model, as shown in Figure 1.1.

The implementation thus assumes access only to a ranked set of microblogs, rather than

the entire tweet dataset.

It is thus useful for search engines that wish to exploit real-time results from mi-

croblogs to improve the results they return (e.g. news search). Many of these search en-

gines do not own or house all of the relevant microblog data, but have ways of querying it

at search time. Further the mediator assumption also makes the implementation applicable

to any microblog service as long as it provides minimal query only access ([30]).

I present a detailed internal empirical evaluation of RAProp in comparison to sev-

eral alternative approaches proposed by me, as well as external evaluation in comparison

to the current state of the art method and Twitter Search. I also present the internal and

external evaluation of my method in a non-mediator model where I assume to have all the

tweets pre-indexed. My evaluation is done on the TREC microblog dataset (consisting of

16 million tweets), and the results show that RAProp leads to significant improvements in

precision of the ranked results.

1.2 Organization of Thesis

In Chapter 2, I explain how I model the Twitter ecosystem in order to extract a measure of

reputation for each tweet. I then describe in Chapter 3 the notion of agreement between

tweets, and in Chapter 4, I present my ranking methods which use the reputation scores

and an agreement graph generated via the methods in the preceding Chapter. I then discuss

alternative approaches to ranking in Chapter 5. I then explain why I believe my method

does work better than other baselines and in Chapter 6 presents my evaluation, and the

various results that validate my hypotheses. I conclude with an overview of related work.
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Chapter 2

MODELING THE TWITTER ECOSYSTEM

The trustworthiness of a tweet may be derived from the trustworthiness of the user who

tweets it, the trustworthiness of the web URL mentioned in the tweet (if any) and the

popularity of the tweet. I model the entire tweet ecosystem as a three layer graph as shown

in Figure 2.1. Each layer in this model corresponds to one of the characteristics of a

tweet mentioned above – the content, the user, and the links that are part of that tweet.

The first layer I consider consists of the set U of all users u such that a tweet tu by u is

returned as part of the result set R for the query. Measuring trustworthiness of a user by

itself is a heavy researched topic [8, 29]. Most of these research concentrates on judging

the trustworthiness of existing users in twitter. Hence it has no or low trustworthiness

predicting capabilities for a user who was not part of the data set which was used for

computing the trustworthiness. Since the user base of twitter is growing exponentially, I

believe that my user trustworthiness algorithm needs to predict the trustworthiness of not

just users that were in my dataset but also users that were not part of my dataset. Hence, I

compute the trustworthiness of a user from the user profile information. The user features

that I use are the follower count, friends count, whether that user (profile) is verified, the

time since the profile was created, and the total number of statuses (tweets) posted by

that user. Another advantage of computing trustworthiness of a user from the user profile

features is that I would be able to more quickly adjust my trustworthiness score of a user

in accordance with any changes that happens in the profile(e.g.. sudden increase in the

number of followers).

The second layer consists of the content of the tweets in R; i.e., the tweets them-

selves. I select some features of a tweet that were found to do well in determining the

trustworthiness of that tweet [7]. The features I pick include whether the tweet is a re-

tweet; the number of hash-tags; the length of the tweet; whether tweet mentions a user; the

6
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Figure 2.1: Three layer ecosystem of Twitter space composed of user layer, tweets layer
and the web layer.

number of favorites received; the number of re-tweets received; and whether the tweet con-

tains a question mark, exclamation mark, smile or frown. I believe that these features are

a good indicator of the trustworthiness and relevance of content of the tweet. For example

the presence of a smiley or a question mark in the tweet is a good indicator the tweet is not

an authoritative account on that query topic. Hence the user may not be interested in such

a tweet for that query and there by making it an indicator of relevance as well. To these

features, I add a feature of my own: TF-IDF similarity which is weighed by proximity of

the query keywords in the tweet. These features helps me determine the relevance of the

tweet to the query. Due to the fact that tweets are short length documents, I do not expect

the query terms to be present in the tweet multiple times. This leads to the Term Frequency

(TF) being either 0 or 1. Proximity of the query keywords in the tweet is a very important

feature when judging the relevance. This is because I cannot rely on the mere existence of

the query keywords; most tweets returned by the Twitter search interface already contain

all the keywords in the query. I try to account for this in my TF-IDF similarity score by

exponentially decaying the TF-IDF similarity based on the proximity of the query terms in

the tweet. Thus the similarity of a tweet r to the query Q is defined as:

7



S = T(ti,Q)× e
−w×d

l

where T (ti,Q) is the TF-IDF similarity of the tweet ti to the query,Q, w = 0.2 is a constant

that decides the weight for proximity score, l is number of terms in the query and d is the

sum of distances between each term in the query to its nearest neighbour.

The third and final web layer consists of the links that are used in tweets. A number

of tweets link to external websites, and it would be remiss to throw that information away

when considering the relevance of tweets. Additionally, the web has an existing, easily

query-able repository that scores web pages based on some notion of trust and influence

– PageRank. For each tweet that contains a web link, I instantiate a node that represents

that link in the web layer of the graph. There are links from that tweet to the node in

the web layer, as well as intra-layer links among the nodes in the web layer based on link

relationships on the open web.

The proposed ranking is performed in the tweets layer, but all three layers are used

to compute what I call the Reputation Score. The agreement from the tweet layer, as well

as the influence scores from the user layer and the trust/influence scores from the web

layer are assigned to the respective tweets using the inter-layer links. In this way, each

tweet collects its score, and at the end of this computation the entire set of returned results

(tweets) R consists of scored tweets. I compute the Reputation Score for each tweet r ∈ R

using these features defined.

2.1 Computing Reputation Score

In order to rank the result set RQ considering trustworthiness, I need a measure of trust-

worthiness for each tweet. However, for deriving these metrics there are no established or

authoritative sources to compare against. Furthermore, as noted previously, tweets differ

from web pages in that they are constrained to be much shorter and contain no explicit

hyper links between them. This rules out the direct application of existing web search

8



methodologies for trust assessment—like Pagerank [6]—or methods used in the Semantic

Web [15]. The paucity of content means that additional meta information contained in each

tweet may be mined and used in the search process. I use the user, web page and the tweet

meta information as the features that determines the trustworthiness of a tweet.

To learn the reputation score from features, I use a Random Forest based learning to

rank method. I train the Random Forest with the User, Tweet and Web features described

previously. I used the gold standard relevance values (described in Chapter 6.1) for training

and testing my model. I randomly pick 5% of the gold standard dataset for training the

model, and another 5% to test the trained model (the remaining data is reserved for the

experiments). Since I did not want to penalize tweets that do not contain a URL or user

information that I were not able to crawl, I impute the missing respective feature values

with population average. I normalize the reputation score to lie between 0 and 1. The time

taken for the prediction of scores for each tweet using Random Forest is nearly negligible,

which helps me keep my algorithm computation time to the minimum. Using the features

chosen by this method, I get a score – the Reputation Score – for each tweet.

9



Chapter 3

AGREEMENT

Reputation of tweet is heavily influenced by the user who tweeted the tweet and page rank

of the web page mentioned in the tweet. Hence, Reputation Score of a tweet may be

considered to be more of a measure of trustworthiness or popularity of the user rather than

relevance or popularity of the content of the tweet. For example, for the query BBC News

Staff Cuts, the Result Set, R may contain tweets from BBC News that has no relevance for

the query - “BBC News: Police in bid to cut wages bill http://bbc.in/emdnQY”. Although

it is evident that the tweet has no relevance to the query, such tweets would gain high

Reputation score as the user - BBC News - and the url - http://bbc.in - are reputed. I

hypothesize that relevant tweets are those tweets that contain a popular and trustworthy

content. As Popularity of a tweet is measured by the number of re-tweets it gets, the

popularity of a content may be measured by the number of independent trustworthy users

who endorse that content.

Approaches such as TrustRank [17] use the hyper-links among the web pages as

a sort of endorsement structure to propagate trust on the surface web. Although the re-

tweet relations among Twitter messages can be seen as a sort of endorsement, they fall far

short both because of their sparsity and because re-tweeting is not nearly as deliberate as

inserting hyper-links. In this chapter, I develop of a complementary endorsement struc-

ture among tweets by interpreting mutual agreement between two tweets as an implicit

endorsement.

3.1 Agreement as a Metric for Popularity & Trust

Given the scale of data on Twitter, especially for popular topics, it is quite normal for a

large number of tweets to refer to the same semantic concept or topic. The very notion of

using re-tweets as a metric of popularity is based on the idea that a tweet which is tweeted

out many times (re-tweeted) must be popular. Using agreement as a metric to measure

10



popularity of a topic can be seen as a logical extension of using re-tweets to measure the

popularity of a tweet. The very notion of using re-tweets as a metric of popularity is based

on the idea that a tweet which is tweeted out many times (re-tweeted) must be popular. It is

then a logical extension to consider not just the idea of re-tweets as endorsements, but also

the presence of tweets that display a high degree of similarity with popular tweets (without

being exactly the same) as independent verification. This kind of high degree of similarity

can be computed from the pair-wise agreement of the content of two tweets, and this gives

me a good way to measure the popularity of a tweet in terms of the number of other tweets

that seem to be close to it.

Using agreement to measure the trustworthiness have been found to perform

well [5]. If two independent users agree on the same fact – that is, they tweet out the

same thing – it is likely that those tweets are trustworthy. As the number of users who

tweet semantically similar tweets increases, so does the belief in the idea that those tweets

are all trustworthy. Notice that this may not be the case with syntactic similarity (i.e., na-

tive re-tweets): in those cases, it is totally possible that an untrustworthy tweet is picked up

and re-tweeted a number of times. However, tweets that are syntactically slightly different,

but semantically very close (in terms of their content and topic) are often indicators of in-

dependent sources and thus trustworthiness. More generally, this idea is based off of the

(web) notion that agreement is more indicative of trustworthiness than just native re-tweets.

The reader is directed to work by Balakrishnan & Kambhampati [5] for a more general ex-

planation of why agreement is likely to indicate trustworthiness and relevance. Therefore

tweets that are syntactically slightly different, but semantically very close (in terms of their

content and topic) are often indicators of independent sources and thus trustworthiness.

3.2 Agreement Computation

Computing the semantic agreement (as outlined above) between tweets at query-time while

still satisfying timing and efficiency concerns is a challenging task. Due to this, only com-

putationally simple methods may be realistically used. TF-IDF similarity has been found

11



POS Tag POSWT()
Proper noun 4.0
Common noun 3.0
Pronoun 1.0
Verb 1.0
Adjective / Adverb 3.0
Interjection / Preposition .5
Existential .2
Hashtags 6.0
URL 8.0
Numerical 2.0

Table 3.1: Part of speech weights for various POS tags

to perform well when measuring semantic similarity for named entity matching[10] and

for computing semantic similarity between web database entities [5]. In the web scenario,

IDF makes sure that more common words such as verbs are weighted lesser than nouns

which are less frequent. But due to the sparsity of verb and other stop words in tweets, I

noticed that IDF for some verbs to be much higher than the nouns and adverbs. Hence, I

weight the TF-IDF similarity for each part of speech differently such that I weigh the tags

that are important for agreement higher than other tags which does not highly correlate to

agreement. I use a Twitter POS tagger [14] to identify the parts of speech of each tweet.

Hence Agreement of a pair of tweet T1,T2 is defined as:

AG(T1,T2) = ∑
t∈(T1∩T2)

T Ft(T1)×T Ft(T2)× IDF(t)2×POSWT (t)

where POSWT (ti) is given as according to the table 3.1

I compute TF-IDF similarity on the stop word removed and stemmed result set,

R. However, due to the way Twitter’s native search (and hence my method, which tries to

improve it) is set up, every single result r ∈ R contains the query term(s) in Q. Thus the

actual content that is used for the agreement computation - and thus ranking - is actually

the residual content of a tweet. The residual content is that part of a tweet r ∈ R which
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does not contain the query Q; that is, r \Q. This ensures that the IDF value of the query

term as well as other common words that are not stop words is negligible in the similarity

computation, and guarantees that the agreement computation is not affected by this. Instead

of normalizing the TF-IDF similarity by the normalization factor, I divide the TF-IDF

similarity only by the highest TF value. Normalization was a necessity in web where

web pages has no bound limit and normalization helps me penalize documents with large

number of terms along with the query terms and give higher score to documents that have

only fewer terms. But in the case of twitter, the document size is bound (140 characters),

hence I do not penalize for using the entire 140 characters as they might bring in more

content relevant to the query. I penalize tweets that repeat the terms multiple times as

existence of the same term that agree on multiple times does not increase the agreement

value.
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Chapter 4

RANKING USING AGREEMENT AND REPUTATION

The ultimate aim of any efficient search procedure is to rank the set R of returned results

with respect to a given query Q in terms of the following: (1) relevance, and thus perti-

nence1 of a specific result r ∈ RQ to Q; and (2) the trust reposed in r. These two (at times

orthogonal) metrics must be combined into a single score for each r, in order to make the

ranking process easier. Ranking based solely on the Reputation Score may not capture the

true relevance of a tweet to the query, and ranking purely on agreement may lead to spam

clusters gaining prominence.

A better approach is to propagate the Reputation Scores over the Agreement Graph;

this can be seen as a trust-informed relevance assessment. I explain the construction of the

Agreement Graph, and the propagation of the Reputation Score over it, in Chapter 4.2. I

then explain why I restrict ourselves to a single propagation on that graph.

4.1 Picking the Result Set, R

Figure 4.1: Example of a tweet that use excessive stop words

I do my experiments on two different methods. One where I assume a mediator

model and other I assume I host the entire twitter data set. In the mediator model I assume

I don’t host the data. For each query,Q′ in the dataset, I collect the top-K results returned

by twitter. These results becomes my initial result set,R′.
1A result r is pertinent to a query Q iff it contains at least one of the keywords q ∈ Q.
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When I assume to host the entire data set, I do not need to simulate twitter. I query

the data set my self and the top-K results,R′ are picked from the list sorted by TF-IDF

similarity of the tweet to the query.

The initial data set, R′ is then filtered to remove any Re-tweets or Replies. I remove

the re-tweets and replies from my results set as the gold standard considers these tweets as

irrelevant to the query. As my method does not differentiate re-tweets and replies I remove

these tweets as a prepossessing step.

I add more terms to the query,Q′ to get the expanded query,Q. I select the expansion

terms from the initial data set,R′. I pick the top-5 nouns that have the highest TF-IDF score.

In order to constrain the expansion only to nouns, I run a twitter NLP parser [14] to Part

of speech tag the tweets. The TFs of each noun is then multiplied with its IDF value to

compute the TF-IDF score. The top-5 terms according to the TF-IDF score is added to the

query. The top-N tweets returned by Twitter for the expanded query becomes the result

set,R.

I believe that all words in the query term are not equally important. For example,

stop words or verbs are much less important than a noun. On web documents, IDF usually

takes care of weighting the nouns higher than stop words. But in the Twitter scenario, I

noticed that IDF is high for even stop words due to sparsity of presence of stop words in

tweets. This is especially important in the case of Twitter as there contains spam tweets

that use just stop words as in Figure 4.1. These tweets try to match the stop words in the

query in order to be part the results. Hence, I compute the TF-IDF similarity of result set,R

by weighting the Nouns 10 times higher than other word similarity. I also remove tweets

that contain less 4 terms in them as these tweets mostly only contain the query terms and

no other information.

Twitter matches query terms in URL as well while returning results. Thus, I add

the URL as chunks split by special characters as part of the tweet in order for agreement
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to account for keywords present in the URL alone. The tweets are stripped out of punc-

tuation,determiner,coordinating conjunction so that agreement is only over the important

terms.

4.2 Agreement Graph

I believe that although the scores using the features do represent relevance and trustworthi-

ness, there could exist tweets having a low Reputation score but still be relevant to the query

and trustworthy. This is due to the fact that the Reputation Scores may be biased towards

user popularity and the web page credibility and is not dependent on the actual content of

the tweet. I want my ranking to be based on the actual tweet content and not based on how

popular the user who tweeted and/or the web-page mentioned in the tweet are. However,

finding trustworthy and relevant tweet at query time is a computationally expensive oper-

ation. Also, due to the reason that news are tweeted in real-time, there might not be any

external source to verify the trustworthiness of the tweets. Hence I need to rely on user and

web-page trustworthiness to determine if the content of the tweet is trustworthy.

Agreement is different from relevance to query; computation of pairwise agreement

between any two tweets represents the similarity of their content to each other, not to

the query Q. Also, tweets which have low relevance to the query term may form cliques

between them and thereby gain high agreement. This problem is well known in other fields

as well, for example PageRank [4] on the web.

Hence, I am not able to exploit Agreement or Reputation Score by itself to compute

a trustworthy and relevant Result Set. But if I base my final ranking on the Reputation

Score, I need to provide the tweets of unpopular users but trustworthy content with a higher

Reputation score that they deserve. For the same, I use the agreement between the tweet

as a measure of deserved Reputation Score of the tweet. I propagate the Reputation Score

to the tweets that are trustworthy but are from less reputed users. The Reputation Score

propagation may be seen as a method to find which out of each agreement clusters are more
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trustworthy. The more trustworthy cluster is expected to contain more number of reputed

seed tweets. In the propagation step these seed tweets propagate their reputation to the

tweets that not highly reputed but has high agreement with the reputed tweets.

My result set RQ (for a specific query Q) is constructed such that all the tweets t ∈

RQ already bear some relevance to Q – tweets are chosen for inclusion in RQ as they contain

one or more keywords from the query, Q. I propagated the reputation on the agreement

graph that is formed by the agreement analysis detailed above. This ensures that if there is

a tweet in RQ that is highly relevant to Q, it will not be suppressed simply because it did

not carry enough reputation. More formally, I claim that the reputation of a tweet t ∈ RQ

will be the sum of its current reputation and the reputation of all tweets that agree with t

weighted by the magnitude of their agreement, i.e.

S′(Q, ti) = S(Q, ti)+ ∑
j∈E

wi j×S(Q, t j) ∀ (i, j) ∈ E

where w j is the agreement between tweet ti and t j and E is the edges in agreement graph.

The result set RQ is ranked by the newly computed S′(Q, t). In order to perform this com-

putation, I create a graph such that the vertices represents the tweets and edges between

the vertices representing the agreement between them. The tweets are ranked based on the

reputation score computed after the propagation. I evaluate the performance of my method,

RAProp, in my experiments in Chapter 6 and shows that it performs better than baseline.
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Chapter 5

DISCUSSION OF DESIGN CHOICES

In the previous chapters, I focused on a specific approach, RAProp–that involved comput-

ing reputation scores using the features from the 3-layer Twitter eco-system, and propagat-

ing the reputation scores over the implicit inter-tweet endorsement structure in terms of the

agreement graph. My framework however is general enough that it allows other variations

for ranking tweets. In the following, I describe some of the more compelling variations and

discuss their relative trade-off with respect to RAProp. In the next chapter, I will present

empirical comparison of these variations to RAProp.

5.1 Ranking Just by Features (FS)

Ranking tweets based on only features has been attempted before [13, 19]. I compare

the performance this kind of method – Feature Score (FS) – in my evaluations. Such

methods make the assumption that all reputed tweets that are pertinent to the query are

relevant as well. This is not always true - the reputation score may not capture the true

relevance of a tweet to the query. For example, for the query “apple jobs”, the top results

as ranked by reputation may be about the Apple founder, Steve Jobs. However, the query

may concern a recent jobs report that mentions Apple Computer Inc. In such cases, my

approach, which uses the Agreement Graph created using the residual content of the tweets,

is able to capture the popularity of the topic and therefore rank tweets pertaining to the more

popular topic higher than a less relevant tweet with a higher reputation. My results show

that my method indeed does perform better than using just the feature scores.

5.2 Ranking Just by Agreement (AG)

Another approach to ranking is by ranking tweets by considering only the agreement –

using a voting methodology – where each tweet contributes to the other tweets’ trust and

hence ranking. This is used in the context of web sources by Balakrishnan et al. ([5]).

However, the pairwise agreement between tweets represents the similarity of their content
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to each other, and says nothing about the relevance of the tweets to the query Q. This may

lead to the formation of cliques of high agreement but low relevance within the result set,

a problem that besets other voting methods. Agreement-based ranking is thus highly sus-

ceptible to irrelevant or untrustworthy tweet clusters occupying the top slots in the ranking.

My experiments confirm this, as the agreement (AG) ranking, when used alone, has lower

precision compared to my method.

5.3 Ranking with the Reputations of a Small Seed Set (SA)

I could also try to apply the ideas of Trust Rank [17] to the tweet scenario, where a small

set of tweets called the Seed Set is picked and considered trustworthy. The reputation of

that set is then propagated to all the tweets that agree with the tweets in the set. I pick the

top-S tweets based on the reputation score from the result set RQ, and denote this the seed

set. The tweets are then finally ranked based on the Seed Propagated reputation score. I

call this method SP, and see that my method outperforms even this method. Here I must

note that restricting the seed set’s size leads to the issue of picking the optimal size seed

set, as well as the issue of picking seeds that are diverse enough with respect to the overall

set RQ. Since I compute the reputation score without the need for human experts, I am

able to increase the size of my seed set without incurring significant additional overhead.

I hypothesized that increasing the size of the seed set gradually to the size of the set RQ

would lead to an increase in relevance. This is borne out by my experiments. In the limiting

case, I am essentially propagating the reputation score of every tweet in RQ to all the tweets

that agree with it – this turns into my novel ranking method, RAProp.

5.4 Ranking with Reputation Propagation to Fix-point

The number of propagations of reputation over the agreement graph may also be varied.

Many other approaches that deal with the semantic web and the web consider the transi-

tive nature of trust by using a multi-step propagation [3]. For Twitter, however, multiple

propagations may perform poorer than just a single propagation step.

19



.5

.4

.5

.3

T3
T1 T4

T2 T5

Figure 5.1: Illustration of propagation from trustworthy tweets to untrustworthy tweets

Consider the agreement graph which has tweets as the vertices in the graph and

edges between them represents the agreement between the tweets. Each tweet has a Rep-

utation Score associated with it. Unlike other approaches of propagation of scores over

graph [17, 6], I do not propagate my feature scores over the seed agreement graph until

reaching a steady state. I propagate the feature score over the seed agreement graph only

once.

Unlike the web scenario, the links between tweets in my case are implicit links

based on agreement. Thus, for a spam tweet to get agreement with a trustworthy tweet,

all it needs to do is to agree with the content of the trustworthy tweet. This is not the

case in web scenario where the trustworthy user is the one who controls the explicit links

in that page. Let me illustrate this with an example of exploiting multiple propagation of

Reputation score to rank a spam tweet higher in the ranked result.

Consider the scenario where a query on twitter, gives me the results such that there

are two set of tweets, one set contains all the tweets that contain the content which is trust-

worthy and the other set contains all the tweets that are spam in nature. Since twitter does

not consider trustworthiness of the tweets while ranking the tweets, it does not differentiate

between either of the set. The tweets that contain the query terms are returned by twitter

ranked by the chronological order. On the other hand in my case, I create the agreement

graph which would create two closely connected graph that are minimally connected. Let

me assume the two graphs are connected by a spam tweet that tries to be part of the top
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Figure 5.2: A trustworthy tweet with trustworthy URL

Figure 5.3: Spam tweet with trustworthy tweet text and spam URL

results by quoting the most popular tweet of the trustworthy tweet and using rest of the

tweet to input untrustworthy content as Figure 5.1. If I assume the case that I do multiple

propagation over the seed agreement graph, the feature score from the trustworthy tweets

(T1,T2) is propagated to the untrustworthy tweets (T4,T5) through the spam tweet, T3.

Since I assume on seed score to represent the trustworthiness and popularity of the content,

multiple iterations of the propagation would lead to untrustworthy tweets to be considered

as trustworthy and be ranked higher in the results than they should be.

Let me illustrate the above scenario with a real example from twitter. Figure 5.2

shows the tweet by Barack Obama after he won the 2012 Elections. The tweet became so

popular that it became the highest re-tweeted tweet. Spammer on seeing the popularity of

the tweet and the content in the tweet, tried to capitalize on the same by trying to use the

same content of the popular tweet and adding malicious content along with the same as in

figure 5.3. This malicious tweet may be considered as the tweet that could propagate the

trustworthiness from the trustworthy tweets to the untrustworthy tweets.

As the feature score s(Q,T) for each tweet is a measure of the trustworthiness and

popularity of the tweet and the user who tweeted it, I expect T1,T2 to have higher fea-
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ture score than T3,T4,T5. Hence I need to ensure that the during the propagation of the

feature scores I do not propagate the feature scores from trustworthy tweets to untrust-

worthy tweets. Since I propagate the feature scores only once over the agreement graph,

the untrustworthy tweets get only agreement from the other untrustworthy tweets eg. T4,

T5; the trustworthy tweets gets agreement from other trustworthy tweets eg. T1,T2. As I

assumed trustworthy tweets to have higher feature scores, they are expected to get higher

scores after propagation and since untrustworthy tweets are expected to have low scores

even after the propagation. The tweet that bridges the trust and untrustworthy graphs T3,

gets agreement from trustworthy and untrustworthy tweets in accordance to its agreement

with the untrustworthy and trustworthy tweets. Hence T3 is expected to get a feature score

in between the trustworthy and the untrustworthy tweets.

Since I propagate the feature score s(Q,T) over the agreement graph just once, T3

gets the feature score from T1,T2 and T4,T5 but the score is not passed over to T4,T5. As

I believe T1,T2 to have higher feature score than T4,T5 I would expect T1,T2 to be ranked

above T4,T5 and T3 to be ranked in between.

Additionally, agreement values are noisy due to inherent errors in computing se-

mantic agreement from text. Consequently, multiple propagations have a multiplying effect

and may result in untrustworthy tweets gaining in the final ranking. I demonstrate this phe-

nomenon in my experiments, by computing the precision values for multiple propagation

steps.

5.5 Computing Agreement considering Similar words

Latent semantic analysis (LSI) [11] is an option that could be attempted in order to better

compute agreement between tweets. LSI helps me to capture that some terms are closely

related to other terms. These terms may be synonyms or terms that frequently co-occur.

Hence Agreement over the tweets in the Latent Dimension helps me capture this similarity.

But during my experiments I noticed that LSI over the Result Set, R seems to produce a
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large number of sparse dimension. Reducing the dimensions to an acceptable number of

dimension as 30 gave me high level of loss of more than 60%. My experiments on the

reduced dimension showed that it had degraded performance than plain TF-IDF similarity.

I believe that the low document size of tweets does not help LSI capture synonyms and

co-occurrence as effectively as it could in the case of web pages. Also, LSI computation

took more than 30 minutes over a Result Set of size 2000.

5.6 Ranking using User,Page Rank Propagation(UPP)

Another idea of propagation may be to propagate just the trustworthiness using the agree-

ment graph. Pagerank is a measure of trustworthiness of a web page; likewise the user

features such as number of followers determines the trustworthiness of a user. PageRank

may be considered as an external measure of the trustworthiness of the content i.e. when a

user cites an external source such as CNN to substantiate his story, the story becomes more

credible as CNN is a trusted source. Similarly a user with high trustworthiness is more

likely to tweet trustworthy tweets. A tweet that has high agreement with a trustworthy

tweet is also considered to be trustworthy.

The inter-tweet agreement is used to propagate the web page trust and the user trust

to tweets that contain the same content. The trustworthiness acquired from propagated user

and page rank scores is used as a features along with the tweet features(which determines

the relevance of the tweet to the query) mentioned in Chapter 2 to rank the tweet according

to relevance and trust. The features are input to the Random Forest Learning to Rank

method. I believe ranking by propagation of user and page rank trust would do well on

result set,R that contain agreement clusters with atleast one reputed user and/or a reputed

web page linked. But on queries where there are clusters of reputed user and web pages and

other clusters with no reputed user or web page, the propagation step does not propagate

any trust. And there by degrading the method to accessing the relevance of a tweet based

on just the tweet features. My experiments confirm this hypothesis that UPP would not

perform well on all queries and there by having lesser average precision than my method.
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Chapter 6

EVALUTION AND DISCUSSION

In this chapter, I present an empirical evaluation of my proposed approach RAProp. I do

this by comparing it both to the Twitter’s native search, as well as the variations I discussed

in Chapter 5. I start by describing the dataset used for my experiments in Chapter 6.1. I then

discuss my experimental set-up in Chapter 6.2, and then present results that demonstrate

the merits of my approach in Chapter 6.3.

6.1 Dataset

For the purposes of this evaluation, the gold standard GQ is a set of tweets annotated by

TREC, where the annotations are with respect to their relevance to a given query Q. The

relevance of each tweet is denoted by 3 discrete, mutually exclusive values {−1, 0, 1}: −1

stands for an untrustworthy tweet, 0 signifies irrelevance, and 1 stands for tweets that are

relevant to the query. The gold standard gives me a way of evaluating tweets t in the search

results. It is generated by humans who examine the relevance of tweets to given queries.

Tweets containing the query keywords from Q are randomly sampled from a universal

space of tweets U , and ranked according to the scheme mentioned previously.

For my evaluation, I used the TREC 2011 Microblog Dataset ([24]).This collection

includes about 16 million tweets sampled from Twitter over a 2 week time period. It

represents over 5 million microbloggers, at an average of 3 tweets per user. My experiments

were conducted on the 49 queries that are provided along with this dataset (and thus 49

different gold standards, one for each query, as defined previously). The tweets in the gold

standard provided by the TREC is generated by randomly sampling tweets containing the

query keywords. Each tweet picked is given a relevance score of 0 and 1, 0 signifying the

tweet is not relevant to the query and 1 signifying the tweet is relevant to the query. Of

the 60129 tweets in the gold standard across 49 queries, 57048 are marked as not relevant

to the query, 2081 are marked as relevant to the query and 116 are marked as spam. This
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means that even though there are 2081 tweets that are marked as relevant, there is no

guarantee that a given query will feature k tweets that are highly relevant to it (and must

therefore be ranked the highest by any good top-k ranking). Furthermore, whether such

tweets are available for ranking also depends on the size of the set N from which tweets are

chosen for ranking in the first place. All of these issues lead to lower precision rates when

averaged across all queries. However, since the main purpose of my evaluation is to show

my superiority other baseline approaches, this is not a major concern. The user information

for all tweets in the dataset was crawled and stored off-line. I used the Pagerank API in

order to collect the PageRank of all the web URLs mentioned in the tweets in this set.

6.2 Experimental Setup

Using the set of returned tweets RQ that corresponds to a query Q, I evaluate each of the

ranking methods, as shown in Figure 1.1. Since my dataset is off-line (due to the use of the

TREC dataset and the gold standard as described above), I have no direct way of running

a Twitter search over that dataset. I thus simulate Twitter search (TS) on my dataset by

sorting a copy of RQ in reverse chronological order (i.e., latest first). I also use the methods

discussed in Chapter 5, as well as my proposed RAProp method, to rank RQ. I set the bag

size for my learning to rank method –Random Forest – as 10 and maximum number of

leafs for each tree as 20 to avoid over-fitting to the training data.

6.3 Internal Evaluation of methods

I compare my method,RAProp against the other design choices mentioned in Chapter 5. I

compare the precision of the different methods both while considering a mediator model

as well as a non-mediator model. In the mediator model, I pick the top-N tweets that

my simulated twitter returns and this is the input to all the various methods. In the non-

mediator model, the top-N tweets is selected by the TF-IDF similarity of the tweet to the

query.
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Figure 6.1: Comparison of the proposed approach against other design choices in mediator
model

6.3.1 Internal Evaluation of methods in a mediator model

I compared the top-K Precision at 5, 10, 20, 30 and MAP, of my method RAProp along

with the various approaches proposed in Chapter 6.2. Since not all relevant tweets from the

dataset for the query were part of the gold standard, I ignore those tweets that are not part

of the gold standard while computing the precision value. I pick the N most recent tweets

that contain one or more of the query keywords. For my experiments I set the seed size s

for Seed Propagate (SP) to be 5 and N = 2000.
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Figure 6.1, proves my hypothesis that RAProp has better precision values than using

Reputation Score alone (FS) or Agreement (AG) alone for ranking. It also proves that I am

able to achieve better precision scores by not restricting the propagation to a seed set as in

Seed Propagation(SP). I also proves that propagation of trust alone and then using that as

a feature for ranking, User/PG Propagate (UPP),does not perform as well as my method.

Since there exist less than K relevant documents in the Result Set R, the precision values

are expected to drop as the value of k increases. However, RAProp maintains its dominance

over the other methods and the baseline. Additionally, the MAP values show that RAProp

is able to place relevant results higher as compared to the other methods.
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Figure 6.2: Comparison of the proposed approach against other design choices in a non-
mediator model

6.3.2 Internal Evaluation of methods in a non-mediator model

I compared the top-K Precision at 5, 10, 20, 30 and MAP, of the proposed method assuming

I have the entire twitter dataset. This allows me to choose the Result Set,R from the entire

data set instead of top-N from simulated twitter results. I choose the Result Set,R by picking

the top-N tweets according to TF-IDF similarity of the tweet to the query, as mentioned in

Chapter 4.1.

27



As I can see from the Figure 6.2, my method gets better precision scores than all

other design choices considered. This proves that my method, RAProp is able to achieve

higher precision even on a non-mediator model where the Result Set,R is expected to have

higher number of relevant documents. I also notice that although User/PG Propagate (UPP)

has nearly comparable precision values as my method, it does not achieve higher precision

scores than my method. Since, UPP achieves lesser precision scores and is computationally

more expensive I believe that RAProp is a significantly better approach.

6.3.3 Varying the Size of Seed Set
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Figure 6.3: Precision and MAP across various seed set sizes.

As mentioned in Chapter 5, I varied the size of seed set to measure the change in

precision values at each size of the seed set. I believe that the precision values level off

at a seed set size lesser than N. I verify my hypothesis by computing the precision and

MAP values at various values of the seed set size S; the results are as shown in Figure

6.3. As expected, there is an increase in the Precision and MAP values as I increase the

seed set size, until a level off at size 500. Thus at some point, adding more tweets into the

seed set fails to increase the Precision; however, I have no method of computing that exact

cut-off point without an empirical evaluation, since it is likely to vary by dataset and query.

However, given that I need to pre-compute the reputation scores of all tweets in order to

28



get a seed set of tweets with the highest reputations (whether its size be 5 or 500), there is

no significant additional overhead to increasing the seed set size gradually to N.
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Figure 6.4: Precision and MAP across multiple propagations of RAProp

6.3.4 1-ply vs. Multiple Ply

I compare the top-k Precision at 5, 10, 20, 30 results and MAP (Mean Average Precision)

values for various numbers of propagations over the Agreement Graph. Zero iterations can

be considered as ranking based only on initial reputation scores, which is the FS method.

One iteration over the agreement graph is the RAProp method. As shown in Figure 6.4,

propagating the reputation score over the agreement graph certainly improves the Precision

and MAP scores. However, I see that multiple iterations lead to a reduction of Precision

and MAP scores. This validates my claim in Chapter 5 that multiple propagations would

lead to a decrease in relevance.
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Figure 6.5: External Evaluation of RAProp against Twitter and USC/ISI while assuming a
mediator model

6.4 External Evaluation of methods

In this section, I evaluate the performance of my method RAProp to two other exter-

nal baselines, Twitter Search and USC/ISI method. In order to compare my method to

the current Twitter Search(TS), I simulate Twitter Search over my data set by sorting the

tweets that contain the query keywords in the reverse chronological order. I also compare

my method with the TREC Microblog 2011 best performing method by Metzler and Cai

(USC/ISI) [21]. USC/ISI uses a full dependence Markov Random Field Model, Indri, to

achieve a relevance score for each tweet in the dataset. Indri creates a off-line index on

the entire tweets dataset in order to provide a relevance score for each tweet in the entire

tweets dataset. This score along with other tweet specific features such as length of tweet,

existence of a URL or a hash-tag is used by a Learning to Rank method to rank the tweets.

In our experiments, I compare the performance of my method against the USC/ISI method

both as a mediator and non mediator. In the non-mediator model, I run the queries over the

entire tweet dataset index. On the mediator model, since I assume I do not have access to

the entire dataset. I create a per query index on the top-N tweets returned by twitter for that
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query as I assume that is the entire tweets available for that query.

I compare the performance of my method over these baselines while assuming a

mediator model as well non-mediator model. As shown in Figure 6.5, when I assume a

mediator model, my model RAProp achieves more than 200% higher precision than the

default twitter search. Also, I am able to achieve higher precision than the current state of

the art ranking method, USC/ISI by achieving higher precision scores for all values of K.
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Figure 6.6: External Evaluation of RAProp against USC/ISI on a non-mediator model

I also compare the precision of my method against the state of the art method,

USC/ISI while not assuming to be a mediator. In this method the USC/ISI method is able

to index the entire tweet database. The queries are run over this index and the similarity

score of each tweet returned by Indri is then combined with other features to finally rank

the tweets for that query. I then compare the top-K results of the ranked results with the

ranked results of RAProp. As shown in Figure 6.6, I noticed that RAProp is able to match

the precision of USC/ISI at precision at 10 and get higher precision values than the state

of the art for higher values of K. Also, I am able to achieve higher MAP values than the

USC/ISI ranking. This proves that I am able to rank more relevant results higher in the

ranking than USC/ISI ranking.
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6.5 Discussion

We have seen that my method RAProp achieves higher precision scores that other ap-

proaches mentioned as well as the current state of the art. In this section I hypothesize

why my method works better than other methods and baselines considered. I believe that

ranking tweets should be based on the content of the tweets. But due to the real-time nature

of twitter I have no authoritative source that may be used to measure the trustworthiness

and relevance of the tweets. Thus I fall back to the belief that popular users produce trust-

worthy tweets. I use the tweets from popular users as seed nodes that are considered to

be trustworthy. Since, I try to assess the popularity of a user in real-time I try a Machine

Learning Method that tries to trustworthiness of each tweet. Since I believe the popularity

of a user is not a binary assignment, I train the machine learning to assign a score between 0

and 1. The popular nodes although are trustworthy, they are not the only trustworthy nodes

in the dataset. There are tweets that from lesser popular users but still contain trustwor-

thy content. I use the inter-tweet agreement as a measure to propagate this trust from the

popular tweets to tweets that contain the same or similar content but are from lesser popu-

lar users. I then rank the tweets based on this popularity score which I call as Reputation

Score.

Let me consider an scenario of a how my method works. Consider the agreement

graph, for the query “Keith Olbermann new job” from my dataset,shown in Figure 6.7. The

nodes in grey circles represents the tweets that are considered relevant, the nodes in white

triangles are the ones that are irrelevant by the gold standard. And the nodes in yellow

trapezium are the ones that are not present in gold standard and hence I do not know if they

are relevant or not. The node size represents the Reputation Score assigned by the Random

Forest. The agreement between two tweets is represented by the edge width.

I can see that the relevant tweets form clusters and has high agreement with each

other. Likewise the irrelevant tweets form their own clusters. Hence, agreement alone does
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Query P@5 P@10 P@20 P@30 % of Relevant Tweets
Haiti Aristide return 1.00 1.00 0.90 0.767 0.14
Pakistan diplomat arrest murder 1.00 0.90 0.85 0.86 0.17
Toyota Recall 1.00 1.00 1.00 1.00 0.34
release of ”The Rite” 1.00 1.00 0.95 0.76 0.12
Emanuel residency court rulings 1.00 1.00 0.90 0.76 0.17
Kucinich olive pit lawsuit 1.00 0.80 0.85 0.73 0.11

Table 6.1: Precision Values of the best performing queries

Query P@5 P@10 P@20 P@30 % of Relevant Tweets
2022 FIFA soccer 0.00 0.00 0.00 0.00 0.04
Mexico drug war 0.00 0.00 0.10 0.10 0.05
Egyptian evacuation 0.20 0.20 0.10 0.07 0.06
Holland Iran envoy recall 0.00 0.00 0.00 0.00 0.05
State of the Union and jobs 0.00 0.10 0.10 0.07 0.01

Table 6.2: Precision Values of the worst performing queries

not help me distinguish between the relevant tweet cluster from the irrelevant tweet cluster.

I notice that the relevant clusters have atleast one tweet that has high Reputation Score.

Since, other tweets have high agreement with this tweet the propagation of the Reputation

Score in the relevant tweets cluster increases the Reputation Score of all the other tweets

that agree with that tweet. While in the irrelevant tweet cluster since the Reputation Score

of any of the tweet is lower than the relevant cluster, the propagation of that still keeps the

Reputation Score of the propagated tweets to be still lower than the relevant tweet clusters.

This makes my Ranking rank the relevant tweets higher in its ranking compared to the

irrelevant tweets.

In order to analyze the performance of my algorithm over various queries, let me

pick a selection of queries where my algorithm does really well (Table 6.1) and where my

algorithm does not perform well (Table 6.2). I notice that the queries where I perform really

well have a higher percentage of relevant tweets in the data set,R. Although the increase

in relevant tweets is marginal, I believe that having the higher number of relevant tweets

33



makes my method perform better. I believe that the additional number of relevant tweets

leads to the existence of more reputed tweets in each cluster and there by helping me rank

the relevant tweets higher by the propagation of the score to tweets that agree to it.
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Figure 6.7: Tweet Agreement Graph where the nodes represents the tweets and edges rep-
resenting the agreement between tweets. The edge width represents amount of agreement
and node size represents the Reputation Score.
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Chapter 7

RELATED WORK

Although ranking tweets has received attention recently (c.f. [24, 21]), much of it is focused

only on relevance. Most such approaches need background information on the query term

which is usually not available for trending topics. A quality model based on the probability

of re-tweeting [9] has been proposed which tries to associate the words in each tweet to

the re-tweeting probability. I believe that this approach would not be effective in scenarios

where the query brings in more opinions and less authoritative tweets. There are also

multiple approaches [22, 13, 19, 18] that try to rank tweets based on specific features of

the user who tweeted the tweet. These methods are comparable to the Feature Score (FS)

method. My approach complements these by adding trustworthiness of the tweets to the

ranking algorithm, and can thus be seen as folding many of the features from previous work

into a ranking algorithm. Ranking using the mentioned Web Page as a part of the tweet

have been considered [20]. I believe that adding web page content to the tweet dilutes the

content of the tweet and hence ranking would be based solely on the content of the web

page. Hence, the ranking would degrade to ranking web pages.

The user follower-followee relation graph has been used to compute the popularity

and trustworthy of a user [8, 29, 1]. These approaches have no predictability when it comes

to a user that was not part of the data set on which the popularity was found. They also

take much longer for a change in the relation graph to reflect in the popularity score as

the algorithm needs to be run over the entire follower-followee relation graph so as to get

the new popularity values. Credibility analysis of Twitter stories has been attempted by

Castillo et al. [7], who try to classify Twitter story threads as credible or non-credible. My

problem is different, since I try to assess the credibility of individual tweets. As the feature

space is much smaller for an individual tweet – compared to Twitter story threads – the

problem becomes harder.

35



Propagating trust over explicit links has been found to be effective in web scenar-

ios [6, 17]. I cannot apply these directly to micro-blog scenarios as there are no explicit

links between the documents. Finding relevant and trustworthy results based on implicit

and explicit network structures has been considered previously [16, 5]. Real time web

search considering tweet ranking has also been attempted [2, 12]. I consider the inverse

approach of considering the web page “prestige” to improve the ranking. To the best of

my knowledge, ranking of tweets considering trust and content popularity has not been

attempted. Ranking tweets based on the propagated user authority values have been at-

tempted by Yang [31]. Since the propagation is done over the re-tweet graph, I expect

tweets from popular users to be ranked higher. I additionally base my ranking on the con-

tent and relevance to the query.
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Chapter 8

CONCLUSIONS

Twitter and other microblogs have been increasingly used as a source of real-time news.

Their popularity and effectiveness have lead search engines and news platforms to use them

as a measure of real-time trends and breaking news. The popularity and uncurated nature

of these microblogs makes it suspectable to spams. Twitter Search may be considered as

a real-time information search on a topic. Hence there is a need to provide results that

are highly relevant to the query and that are trustworthy. Twitter defines the recency of

the tweet as the measure of relevancy. Hence, Twitter sorts the tweets that contain the

query keyword in the level of recency and it counters spam by blocking accounts that

are suspected to be malicious in nature. I believe although recency of the tweet may be

considered as a factor for relevancy, it shouldn’t be the only measure of relevancy. Also,

I believe that I need a more granular definition for trustworthy as all non-malicious tweets

may not be trustworthy tweets.

I propose a method to rank the microblogs considering the relevance ant trustwor-

thiness of the content. I model the Twitter ecosystem as a three layer graph consisting of

user, web and tweet layers. I compute the reputation scores of entities in all the three layers.

These scores are transmitted to the tweet layer through inter-layer links, and combined to

formulate a single reputation score using a random-forest learner. Finally, I propagate the

reputation scores between the tweets through agreement links, thereby leveraging collec-

tive intelligence of tweets to compute trust.

My detailed experiments on a large TREC microblog dataset shows that agreement

or Reputation Score alone is not able to achieve the same performance as combining them

together. I also evaluate the performance of various design choices I made and show that

my method performs better than other variants possible. My external evaluations show that

the proposed method improves the precision of ranking not only over the Twitter’s own
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ranking but also over the current state of the art ranking algorithm. Although the algorithm

was proposed for a mediator model, I show that the algorithm performs better than other

baselines even when this assumption is relaxed. I explain why I believe multiple values

of propagation of the Reputation Score over the agreement graph may not lead to better

results. This intuition was later proved right using the empirical evaluations. I also try to

explain why I believe RAProp is performing better than other baselines and design choices

considered. Thus, I propose a novel ranking approaches for microblogs that considers

relevance and trust that achieves better results than current state of the art method on the

same dataset.
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