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ABSTRACT

The rapid escalation of technology and the widespread emergence of modern tech-

nological equipments have resulted in the generation of humongous amounts of digital

data (in the form of images, videos and text). This has expanded the possibility of solving

real world problems using computational learning frameworks. However, while gathering

a large amount of data is cheap and easy, annotating them with class labels is an expensive

process in terms of time, labor and human expertise. This has paved the way for research in

the field of active learning. Such algorithms automatically select the salient and exemplar

instances from large quantities of unlabeled data and are effective in reducing human la-

beling effort in inducing classification models. To utilize the possible presence of multiple

labeling agents, there have been attempts towards a batch mode form of active learning,

where a batch of data instances is selected simultaneously for manual annotation. This

dissertation is aimed at the development of novel batch mode active learning algorithms

to reduce manual effort in training classification models in real world multimedia pattern

recognition applications. Four major contributions are proposed in this work: (i) a frame-

work for dynamic batch mode active learning, where the batch size and the specific data

instances to be queried are selected adaptively through a single formulation, based on the

complexity of the data stream in question, (ii) a batch mode active learning strategy for

fuzzy label classification problems, where there is an inherent imprecision and vagueness

in the class label definitions, (iii) batch mode active learning algorithms based on convex

relaxations of an NP-hard integer quadratic programming (IQP) problem, with guaran-

teed bounds on the solution quality and (iv) an active matrix completion algorithm and

its application to solve several variants of the active learning problem (transductive active

learning, multi-label active learning, active feature acquisition and active learning for re-

gression). These contributions are validated on the face recognition and facial expression

recognition problems (which are commonly encountered in real world applications like
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robotics, security and assistive technology for the blind and the visually impaired) and

also on collaborative filtering applications like movie recommendation.
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Chapter 1

INTRODUCTION AND MOTIVATION

1.1 Inspiration from Human Centered Multimedia Computing

Over the last decade, there has been an increasing focus on the development of assistive

technology to aid physically challenged individuals in their daily life activities. A promi-

nent number of these devices are based on the effective analysis and interpretation of video

data. For instance, people with severe paralysis often have communication abilities that are

limited to “yes” and “no” responses made with small head, hand or eye movements. Still,

they desire to express themselves in conversations with their families and caregivers and

initiate topics of discussion. To enable this, the “Camera Mouse” interface was developed

by researchers at Boston University [2]. The system tracks the user’s movements using

a video camera and translates them into movements of the mouse pointer on the screen.

Further, the increasing focus on accessibility has resulted in the design and development

of several assistive technologies to aid people with visual impairments in their daily activ-

ities. Most of these devices have been centered on enhancing the interaction of a user who

is blind or visually impaired with objects and environments, such as a computer monitor,

personal digital assistant, cellphone, road traffic, or a grocery store. Although these efforts

are very essential for the quality of life of these individuals, there is also a need (which

has so far not been seriously considered) to enrich the interactions of individuals who are

blind, with other individuals.

Non-verbal cues (including prosody, elements of the physical environment, the

appearance of communicators and physical movements) account for as much as 65% of

the information communicated during social interactions [1]. However, more than 1.1

million individuals in the US who are legally blind (and 37 million worldwide) have a

1



(a) A pair of glasses
with a small camera
mounted on the nose-
bridge

(b) A first prototype of the haptic belt. A
wireless version of this belt has already been
built in the second phase

Figure 1.1: A first prototype of the Social Interaction Assistant

limited experience of this privilege of social interactions. These individuals continue to

be faced with fundamental challenges in coping with everyday interactions in their social

lives. To address this basic need, the Center for Cognitive Ubiquitous Computing (CUbiC)

(http://cubic.asu.edu) at Arizona State University has focused its efforts on the design

and development of a Social Interaction Assistant (SIA) that is intended to enrich the

experience of visually challenged individuals by providing real-time access to information

about individuals and their surrounds.

In our current prototype, the Interaction Assistant device consists of a pair of

glasses with a small camera mounted on the nosebridge (as shown in Figure 1.1(a)). The

incoming video stream is analyzed using computer vision algorithms to extract informa-

tion about the surroundings. When a person comes in the field of view of the camera,

his/her face is captured using face detection algorithms. The identity of the person is then

determined by a recognition engine through a similarity match with a database of stored

images [3]. Most assistive devices provide only audio outputs, which is not a practical

solution for visually impaired individuals in the context of social interactions, as they use

their ears as their “eyes” to perceive the environment. To overcome this fundamental lim-

itation, we have designed a vibrotactile haptic belt, which consists of a set of 7 vibrators,
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to be worn by the user around his waist (Figure 1.1(b)). Information about the direction of

an approaching individual is conveyed through the location of vibration, and the distance

to the user is encoded in the duration of vibration. For more details about the functioning

of the system, please refer [4].

The video camera integrated into the SIA system has a high frame rate (typically

25 frames per second). Thus, within a short duration of time, a staggering number of

images will be acquired by the system. Moreover, these images will have considerable

redundancy among them because of the high frame rate of the camera. This massive

amount of superfluous data needs to be efficiently processed to ensure reliable functioning

of the end-to-end system. Further, to train the underlying classification models with the

acquired data, the captured images need to be provided with class labels. Manual labeling

of such a large scale data is an expensive process in terms of time, labor and human

expertise. Thus, a machine learning algorithm which can automatically select the salient

and exemplar instances for manual labeling from vast quantities of unlabeled data will be

paramount importance in facilitating the learning process in such an application.

The problem of hand labeling large amounts of data is commonly encountered

in a variety of applications in this era. Over the last couple of decades, technology has

advanced in leaps and bounds. This has resulted in the frequent generation of humongous

quantities of digital data (in the form of images, videos and text among others). These data

are typically unlabeled and need substantial human effort for annotation. A few examples

are presented here:

• Speech Recognition: Accurate labeling of speech utterances is extremely time con-

suming and requires trained linguists. Zhu [5] reported that annotation at the word

level can take ten times longer than the actual audio (e.g. one minute of speech takes

ten minutes to label) and annotating phonemes can take 400 times as long (nearly
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seven hours). The problem becomes even more severe and compounded for rare

languages or dialects.

• Information Extraction: Good information extraction systems must be trained us-

ing labeled documents with detailed annotations. Users hand label entities or rela-

tions of interest in text, such as person and organization names, or whether a person

works for a particular organization. Locating entities and relations can take a half-

hour or more for even simple newswire stories (Settles et al. [6]). Annotations for

other knowledge domains may require additional expertise, e.g. annotating gene and

disease mentions for biomedical information extraction usually requires PhD-level

biologists.

• Text Classification: Learning to classify documents (e.g. articles or web pages)

requires that users label each document with particular labels, like “relevant” or

“not relevant”. Annotation of thousands of these instances can be tedious and even

redundant.

The aforementioned applications motivate the development of a framework that

can automatically identify the representative samples from vast amounts of redundant and

unlabeled data. This can tremendously reduce human annotation effort in training clas-

sification / regression models to identify patterns in the data. In the machine learning

literature, such a framework is referred to as active learning.

1.2 Active Learning

The primary goal in any classification problem is to learn a function f : X → C, which

maps input feature vectors X into the corresponding output classes C. To develop a robust

recognition engine, it is indispensable to have a large amount of labeled data in the form

of a training set. Usually, this data is sampled at random from the underlying distribution
4



Figure 1.2: General Schema of a Passive Learner

Figure 1.3: General Schema of an Active Learner

and is then used to induce the classifier. This methodology is called passive learning. A

passive learner receives a randomly selected dataset from the world and outputs a classifier

[7] (as depicted in Figure 1.2).

However, as noted in Section 1.1, while gathering a large amount of unlabeled data

is cheap and easy, annotating them with class labels involves significant human effort. To

alleviate this problem, active learning strategies have been proposed in the literature. In-

stead of randomly selecting data points for manual labeling, active learners gather infor-

mation about the world by querying the class labels of certain specific unlabeled points

and receiving responses. The queries are not pre-defined, but are selected dynamically

based on the responses to the previous queries. This tremendously reduces the human

annotation effort as only a few points, that are identified by the algorithm, need to be la-

beled manually. Moreover, the ability of the active learner to adaptively query the world

based on past experience endows it with greater generalization capability, which makes it

better than the standard passive learner. Figure 1.3 depicts the general schema of an active

learner.
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1.3 General Approach to Active Learning

The fundamental step in active learning is to define the notion of a model M and its model

quality (or model loss Loss(M)). The definition of model and the associated model loss

can be tailored according to the specific application at hand. Given this notion of model

loss, an active learner selects the nest query as the one that will result in minimal loss

of the future model. This approach is myopic in the sense that the learner is attempting

to greedily ask the single best next query. Myopia is a standard approximation used in

sequential decision making problems [8, 9, 10]. While considering to ask a potential

query q, the learner needs to assess the loss of the subsequent model M′. The posterior

model M′ is the original model M updated with query q and response x. Since the learner

has no knowledge of the true response x of the potential query, it needs to perform some

kind of averaging or aggregation. A natural approach is to maintain a distribution over the

possible responses to each query. The expected model loss can then be computed for a

given query, where the expectation is taken over all the possible responses to that query:

Loss(q) = ExLoss(M′) (1.1)

This active learning framework results in selecting the query producing the mini-

mal expected model loss. In statistics, a standard alternative to minimizing the expected

model loss is to minimize the maximum loss [11]. This implies that the response x will

always be the response that gives the highest model loss:

Loss(q) = max
x

Loss(M′) (1.2)

This active learning strategy results in selecting the query that produces the mini-

max model loss. Both the averaging and the aggregation methods are useful - one may be

more advantageous over the other in specific situations. The general schema of an active

learner is depicted in Algorithm 1.
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Algorithm 1 General Schema of an Active Learner [7]
1: for i = 1 to totalQueries do
2: for each q in potentialQueries do
3: Evaluate Loss(q)
4: end for
5: Ask query q for which Loss(q) is lowest
6: Update model M with query q and response x
7: end for
8: return Model M

1.4 Active Learning in Education

The concept of active learning was initially promoted in the domain of education. Most of

the time, in a typical classroom setting, students are involved only passively in learning;

they merely listen to the instructor, glance occasionally at the blackboard or the slide and

read (when required) text books. Research shows that such passive involvement generally

leads to a limited retention of knowledge by students, as indicated in the “cone of learning”

shown in Figure 1.4 [12]:

Figure 1.4: The Cone of Learning

However, research clearly supports the widely accepted proposition that students

need to do more than just listen to learn [13]. By re-organizing or adapting the ways they
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present material to students, instructors can create an environment in which knowledge

retention is significantly increased, subject to the co-operation of the students. A method

to implement such an effective learning environment is through active learning. Active

learning involves students directly and actively in the learning process itself. Bonwell

and Eison [14] described active learning in the following fashion: “When using active

learning, students are engaged in more activities than just listening. They are involved

in dialog, debate, writing, and problem solving, as well as higher-order thinking, e.g.,

analysis, synthesis, evaluation”.

Similarly, Johnson et al. [15] defined cooperative learning as “the instructional

use of small groups so that students work together to maximize their own and each other’s

learning. Five essential components must be present for small-group learning to be truly

cooperative:

1. clear positive interdependence between students

2. face to face interaction

3. individual accountability

4. emphasize interpersonal and small-group skill

5. processes must be in place for group review to improve effectiveness.”

Prince [16] surveyed many different studies on active, collaborative, cooperative

and problem-based learning. Many faculty members across the Foundation Coalition

(FC) have been using active/cooperative learning student teams as an integral part of their

courses since the inception of the Coalition in 1993. These faculty members have coupled

their experience and expertise with research to create a number of resources that will help

them use active/cooperative learning together with their lectures. They unanimously agree

that proper active learning techniques have a powerful impact upon students’ learning, in

stimulating students’ thinking and in the effective transfer of knowledge.
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In the machine learning literature, a student corresponds to a classification model

while a teacher corresponds to the universe of data samples the model is supposed to learn

from. In the passive learning setting, data points are selected at random from the universe

to train the model. This is equivalent to the scenario when the students merely listen to

the instructor without actively participating in the learning process. In contrary, in ac-

tive learning, similar to the classroom environment, the learner actively learns from the

universe by asking intelligent queries and receiving responses. This has the potential to

produce a better model as it gets trained on the salient and exemplar instances from the

population. Thus, active learning in education is analogous to active machine learning.

This concept was therefore introduced in the machine learning literature about a couple of

decades back and has been a dynamic research topic since then.

1.5 Generalizations of Active Learning

In this section, we discuss some generalizations and extensions of the standard active

learning framework to different problem settings.

Active Learning for Structured Outputs

Many important learning problems involve predicting structured outputs on instances,

such as sequences and trees. For example, an information extraction problem can be

viewed as a sequence labeling task. Let x =< x1, . . . ,xT > be an observation sequence

of length T with a corresponding label sequence y =< y1, . . . ,yT >. Words in a sentence

correspond to tokens in the input sequence x, which are mapped to labels in y. The la-

bels indicate whether a given word belongs to a particular entity class of interest. Unlike

simpler classification tasks, each instance x in this setting is not represented by a single

feature vector, but rather a structured sequence of feature vectors, one for each token (or

word). For such problems, labels are typically predicted by a sequence model based on
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a probabilistic finite state machines, such as Conditional Random Fields (CRFs) or Hid-

den Markov Models (HMMs). Settles and Craven [17] evaluated a large number of active

learning algorithms for sequence labeling tasks using probabilistic sequence models like

CRFs. Most of these algorithms can be generalized to other probabilistic sequence models

such as HMMs [18, 19] and probabilistic context-free grammars [20, 21]. Thompson et

al. [22] proposed query strategies for structured output tasks like semantic parsing and

information extraction using inductive logic programming methods.

Active Feature Acquisition

In some learning problems, instances may have incomplete feature descriptions due to er-

rors in the acquisition process, reluctance of subjects to divulge information etc. Consider

a learning model used in medical diagnosis which has access to some patient symptom in-

formation, but not other data that require complex, expensive, or risky medical procedures.

Here, the task of the model is to suggest a diagnosis using incomplete patient information

as the feature set. Active feature selection can alleviate these problems by allowing the

learner to request more complete feature information. The assumption is that additional

features can be obtained at a cost, such as running additional diagnostic procedures. The

goal in active feature acquisition is to select the most informative features to obtain during

training, rather than randomly or exhaustively acquiring all new features for all training

instances. Several approaches have been proposed for active feature selection and data

acquisition [23, 24, 25].

Similarly, active classification considers the case in which missing feature values

may be obtained during classification (test time) rather than during training. Greiner et al.

[26] introduced this setting and provided a PAC-style theoretical analysis of learning such

classifiers given a fixed budget. Variants of naive Bayes [27] and decision tree [28] classi-

fiers have also been proposed to minimize costs at classification time. Typically, these are
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evaluated in terms of their total cost (feature acquisition plus misclassification) as a func-

tion of the number of missing values. The approaches are flexible enough to incorporate

other types of costs, such as delays between query time and value acquisition [29]. A dif-

ferent approach is to model the feature acquisition task as a sequence of decisions to either

acquire more information or to terminate and make a prediction [30]. Kapoor and Horvitz

[31] developed an algorithm that bridged active learning and real-time diagnostic feature

acquisition into a holistic approach to information acquisition that simultaneously consid-

ered the extension of the predicitve model and the probing of a case at hand. Sindhwani et

al. [32] addressed the problem of active dual supervision to optimally query an example

and feature labeling oracle to simultaneously collect two different forms of supervision,

with the objective of building the best classifier in the most cost-effective manner. Kong

et al. [33] studied the dual active feature and sample selection problem for graph classi-

fication. The authors demonstrated how to find a useful query graph and a set of optimal

features simultaneously to minimize the labeling efforts in graph classification.

Active Class Selection

The inherent assumption in an active learning problem is that a large amount of unlabeled

data is readily available, but labeling the data is time consuming and expensive. Ac-

tive class selection considers the opposite problem, where a learner is allowed to query a

known class label, and obtaining each instance incurs a cost. Lomasky et al. [34] proposed

several active class selection query algorithms for an “artificial nose” task, in which a ma-

chine learns to discriminate between different vapor types (the class labels) which must be

chemically synthesized (to generate the instances). Some of their approaches show signif-

icant gains over uniform class sampling, which is the passive learning equivalent.
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Active Clustering

Active learning has also been judiciously used in unsupervised learning, where the task is

to organize a large amount of unlabeled data in a meaningful way. Typical examples of

such algorithms include clustering, which exploit the latent structure in the data to derive

underlying patterns. Hofmann and Buhmann [35] proposed an active clustering algorithm

for proximity data based on an expected value of the information criterion. Some clut-

sreing algorithm operate under certain constraints, where a user can specify apriori that

two instances must belong to the same cluster, or that two others cannot. Grira et al. [36]

explored an active variant of this approach for image databases where queries take the

form of “must-link” and “cannot-link” constraints on similar or dissimilar images. Huang

and Mitchell [37] presented an active learning framework that integrated four different

types of user feedback into the clustering algorithm and provided empirical evidence of

substantial improvement in text clustering when user input was incorporated. Wauthier

et al. [38] developed an active learning algorithm for spectral clustering that incremen-

tally measured only those similarities which are most likely to remove uncertainty in an

intermediate clustering solution. Biswas and Jacobs [39] proposed an active clustering

algorithm which selected the most useful pairs to be manually annotated; the informa-

tiveness of a pair of points was computed based on the expected change in clustering that

could be induced using the points in question.

Active Learning for Regression

Although primarily used for classification, active learning has also been applied in regres-

sion problems to select the samples that are most informative in learning the regression

function. Castro et al. [40] analyzed the theoretical capabilities of active learning for

estimating regression functions in the presence of noise. The proposed theory showed
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promise in a number of applications, including field estimation using wireless sensor net-

works and fault line detection. Sugiyama and Rubens [41] proposed an ensemble active

learning algorithm for performing active learning and model selection simultaneously in

a linear regression problem. Sugiyama [42] also proposed an active learning approach

for linear regression using importance weighted least squares learning method based on

conditional expectation of the generalization error. Yu et al. [43] proposed a transduc-

tive active learning approach which exploited the presence of unlabeled data in a linear

regression learning problem. Burbidge et al. [44] presented a variance based Query by

Committee algorithm for active point selection in a regression setting.

Multi-Label Active Learning

Multi-label classification is a generalization of conventional classification problems, where

each data sample can have multiple labels [45, 46]. For instance, classifying the contents

of a natural scenery image is a multi-label problem, as a single image can have multiple

contents (like sunset, ocean, mountains etc.) associated with it. Annotating a data point

in a multi-label scenario requires a human oracle to check the presence/absence of every

possible class in the data point. Thus, the need for active learning in a multi-label setting is

even more pronounced. There has been some previous effort in the domain of multi-label

active learning. Singh et al. [47] and Brinker [48] proposed multi-label active learning

strategies based on uncertainty sampling using SVMs, where the uncertainty was quanti-

fied as the distance from the hyperplane and using the entropy of the learner. Zhang et al.

[49] proposed a multi-label active learning strategy where the uncertainties across multiple

views were fused for active sample selection. Li et al. [50] proposed two loss strategies

Max Loss and Mean Max Loss for SVM-based multi-label active learning. Along similar

lines, Yang et al. [51] proposed a multi-label active learning strategy for text classifica-

tion, where the sample selection was based on expected reduction in model loss. Hung
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and Lin [52] proposed a multi-label active learning framework which was characterized

by a major learner for making predictions and an auxiliary learner for helping with query

decisions and a query criterion based on the disagreement between the two learners. How-

ever, all these methods are based on querying all the labels of the selected samples and

do not exploit the inherent correlations among the labels of a given sample. Qi et al. [53]

proposed an efficient online adaptation model, based on the minimization of a multi-label

Bayesian classification error bound, which queried informative sample-label pairs instead

of all the labels of an unlabeled sample.

Multiple Instance Active Learning

In multiple instance (MI) learning problems, the instances are naturally organized into

bags and it is the bags instead of the individual instances, that are labeled for training [54].

A bag X = {x1,x2, . . . ,xN} is labeled negative if every instance it contains is negative. A

bag is labeled positive if at least one of its instances is positive (positive bags may also

contain negative instances). This framework has been applied to a wide variety of tasks

including drug activity prediction, content based image retrieval, text classification, stock

prediction and protein family modeling. Multiple instance active learning can reduce the

labeling burden in problem domains where labels can be acquired at both bag-level and

instance-level granularities. This approach is well-motivated in learning settings where it

is cheap to acquire bag labels and possible (but expensive) to acquire more fine-grained

instance labels. Settles et al. [55, 56] proposed an active query selection strategy to learn

from labels at mixed levels of granularity and demonstrated that learning from instance la-

bels can significantly improve performance of a basic MI learning algorithm in the content

based image retrieval and text classification domains. Liu et al. [57] proposed three strate-

gies for multiple instance active learning - (i) selecting bags only, (ii) selecting instances

only and (iii) selecting both bags and instances. The authors empirically established that
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selecting both bags and instances outperformed the other two strategies of selecting in-

stances or bags individually.

1.6 Analysis of Active Learning

In this section, we discuss some of the empirical and theoretical evidence for how and

when active learning approaches can be successful.

Empirical Analysis

Active learning is a well-studied topic in machine learning research. Numerous published

results and increased industry adoption seem to indicate that active learning methods have

matured to the point of practical use in many applications. However, there are some neg-

ative results on active learning that have been published in the literature. Schein and

Ungar [58] analyzed active learning using the logistic regression model and showed that

it can sometimes require more labeled instances than passive learning. Guo and Schuur-

mans [59] reported that active learning query strategies are sometimes worse than random

sampling. Gasperin [60] presented negative results for active learning in an anaphora reso-

lution task. Baldridge and Palmer [61] found an inconsistency in how well active learning

helps that seems to be correlated with the proficiency of the annotator (a domain expert

was better utilized by an active learner than a domain novice, who was better suited to a

passive learner). Nevertheless, as per majority of the published research, active learning is

effective in reducing the number of labeled instances to achieve a given level of accuracy.

Tomanek and Olsson [62] reported in a survey that 91% of researchers who used active

learning in large-scale annotation projects had their expectations fully or partially met.
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Theoretical Analysis

There have been some theoretical analyses on the performance of active learning algo-

rithms. They attempt to derive a bound on the number of queries required to learn a

sufficiently accurate model for a given task and prove theoretically that this number is

less than in the passive supervised setting. A strong theoretical result of pool based active

learning using the Query by Committee (QBC) algorithm was proposed by Freund et al.

[63]. The authors showed that, under a Bayesian assumption, it is possible to achieve a

generalization error ε after seeing O(d/ε) unlabeled instances, where d is the Vapnik-

Chervonenkis (VC) dimension [64] of the model space and requesting only O(d log1/ε)

labels. Bachrach et al. [65] presented improvements of the proposed approach by limiting

the version space via kernel functions. Wang and Zhou [66, 67] theoretically charaterized

the sample complexity of active learning in the non-realizable case under multi-view set-

tings in the presence of Tsybakov noise. Raginsky and Rakhlin [68] developed unified

information theoretic algorithms for deriving lower bounds for passive and active learning

schemes using the Alexander’s capacity function. Golovin et al. [69] proposed a novel

Bayesian active learning algorithm in the presence of noise and theoretically proved that

it was competitive with the optimal policy.

Dasgupta et al. [70] proposed a variant of the perceptron update rule, which could

achieve the same label complexity bounds as reported for QBC. The authors showed that

a standard perceptron makes a poor active learner in general requiring O(1/ε2) labels as

a lower bound. Dasgupta [71] also provided theoretical upper and lower bounds for active

learning in the more general pool-based setting. The same author [72] further showed that

for homogeneous linear separators in ℜd , the number of labels needed by an active learner

to achieve an error rate less than or equal to ε is O(d log2 1/ε), which is exponentially

smaller than the usual Ω(d/ε) sample complexity of supervised learning. Dasgupta et
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al. also proposed an importance-weighting based practical approach which has guaran-

teed label complexity bounds [73]. Balcan et al. [74] showed that asymptotically, active

learning strategies are better than supervised learning in the limit. Very recently, Dasgupta

[75] discussed mathematical properties and empirical performance about the two common

intuitions of active learning - selecting query points to shrink the space of the candidate

classifiers rapidly and exploiting natural clusters in the unlabeled dataset.

Most of these results have used theoretical frameworks similar to the standard PAC

model (probably approximately correct) [76] and assume that some model in the hypoth-

esis class can perfectly classify the instances and the data are noise-free. To overcome

these limitations, there have been recent work on agnostic active learning (Balcan et al.

[77]) which only assumes that the unlabeled data are drawn i.i.d from a fixed distribution.

Hanneke [78] provided upper bounds on the query complexity for the agnostic setting.

Dasgupta et al. [79] proposed an efficinet query selection algorithm by presenting a poly-

nomial time reduction from active learning to supervised learning for arbitrary input dis-

tributions and model classes. Beygelzimer et al. [80] presented a theoretical analysis of an

agnostic active learning algorithm that works without the notion of a version space (unlike

all previous active learning approaches) and is therefore computationally efficient. Wang

[81] proposed sufficient conditions under which agnostic active learning is strictly superior

to passive supervised learning. The author established that under some noise condition, if

the Bayesian classification boundary and the underlying distribution are smooth to a finite

order, active learning achieves polynomial improvement in the label complexity. These

agnostic active learning approaches explicitly use complexity bounds to determine which

hypotheses are viable and queries can be assessed by how valuable they are in distinguish-

ing among these viable hypotheses. These methods have attractive PAC-style convergence

guarantees and complexity bounds that are, in many cases, significantly better than passive

learning.
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However, most positive theoretical results have been based on intractable algo-

rithms, or methods otherwise too prohibitively complex to be used in practice. More-

over, these studies have largely only been for simple classification problems. In fact,

most are limited to binary classification with the goal of minimizing 0/1-loss and are not

easily adapted to other objective functions that may be more appropriate for many ap-

plications. Furthermore, some of these methods require an explicit enumeration over the

version space, which is not only often intractable but difficult to even consider for com-

plex learning models. However, some recent theoretical work has begun to address these

issues, coupled with promising empirical results [82, 73].

1.7 Related Research Areas

Research in the field of active learning is driven by two main ideas - the learner should

not be strictly passive and a large amount of unlabeled data is readily available. There

are a few areas in the machine learning literature which are based on similar settings - we

outline them briefly in this section.

Semi-Supervised Learning

Semi-supervised learning techniques [5] exploit the unlabeled data samples to learn a good

classification model. A basic semi-supervised learning technique is self-training, where

the learner is first trained with a small amount of labeled data, and then used to classify

the unlabeled data. Typically the most confident unlabeled instances, together with their

predicted labels, are added to the training set and the process repeats. A complementary

technique in active learning is uncertainty sampling (for details, please refer Chapter 2),

where the instances about which the model is least confident are selected for querying.

Similarly, co-training [83] uses ensemble methods for semi-supervised learning where
18



models are trained separately with labeled data which are then used to classify the unla-

beled data. The unlabeled samples for which a particular model’s confidence of prediction

exceeds a certain threshold are used to train the other models. Query by Committee is the

active learning counterpart, where the unlabeled sample for which the ensemble of learners

disagree the most is selected for manual annotation. We thus note that active learning and

semi-supervised learning share a few conceptual overlaps. Some active learning formula-

tions, in fact, are based on semi-supervised learning algorithms [84, 85, 86, 87]. Guillory

and Bilmes [88] considered the problem of active semi-supervised learning in an offline

transductive setting and proved that the error bound on undirected weighted graphs can be

generalized by replacing graph cuts with an arbitrary symmetric submodular function. He

et al. [89] proposed a novel active learning algorithm called Graph Regularized Exper-

imental Design (GRED) where active and semi-supervised learning are combined into a

single framework for pixel selection and colorization for the task of image compression.

Reinforcement Learning

In reinforcement learning [90], the learner interacts with the world via actions and tries

to find an optimal policy of behavior with respect to “rewards” it receives from the envi-

ronment. In order to perform well, the learner must be proactive. It is easy to converge

on a policy of actions that have worked well in the past but are sub-optimal. In order to

improve, a reinforcement learner must take risks and try out actions for which it is uncer-

tain about the outcome, just as an active learner requests labels for instances it is uncertain

how to label. This is often called the “exploration-exploitation” trade-off in the reinforce-

ment learning literature. Mihalkova and Mooney [91] proposed an active reinforcement

learning approach which aimed to reduce the number of actions required to find an opti-

mal policy. Epshteyn et al. [92] proposed an active reinforcement learning framework to

learn the transition probabilities of a Markov Decision Process (MDP) by exploring the
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regions of space in which the optimal policy is most sensitive. Hoi and Jin [93] proposed

a min-max approach to actively learn the

kernel matrix that selected the example pairs leading to the largest classification margin

even when the class assignments to the selected pairs are incorrect.

Equivalence Query Learning

An area closely related to active learning is learning with equivalence queries [94]. In

such a setting, instead of generating an instance to be labeled by the oracle, the learner

instead generates a hypothesis of the target concept class, and the oracle either confirms or

denies that the hypothesis is correct. If it is incorrect, the oracle should provide a counter-

example, i.e. an instance that would be labeled differently by the true concept and the

query hypothesis. However, there are only a few practical applications of equivalence

query learning, because an oracle often does not know (or cannot provide) an exact de-

scription of the concept class for most real-world problems.

1.8 Batch Mode Active Learning (BMAL)

In a typical active learning setting, the learner is exposed to a pool of unlabeled instances.

It is assumed that the data is independent and identically distributed (i.i.d) according to

some underlying distribution F(x) and the class labels y are distributed according to some

conditional distribution P(y|x). Given an unlabeled pool U , an active learner has three

components - ( f ,q,X). The first component f is the classifier that is trained on the current

training set X . The second component q is the query function which decides which in-

stance in the unlabeled pool is to be queried next for its class label. After a particular point

is selected, it is supplied to a human oracle for labeling and is then appended to the train-

ing set. The model is updated and the process is continued iteratively until some stopping
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criterion is satisfied. The active learner finally returns the classifier after a predetermined

number of queries.

However, selecting a single instance at a time for manual annotation requires fre-

quent model retraining as the classifiers need to be updated after every single query. With

the advent of technologies like the Amazon Mechanical Turk, it is now possible to lever-

age the intelligence of multiple human users simultaneously in labeling data instances to

train a classification model. To address this need, batch mode active learning (BMAL)

algorithms have been proposed in recent years. Such techniques select a batch of points

simultaneously from an unlabeled set for manual labeling and are effective in utilizing

the presence of parallel labeling agents and avoiding frequent classifier updates. Sample

applications of BMAL include content based image retrieval [95, 96], medical image clas-

sification [97] and text classification [98].

1.9 Rationale and Contributions

This work intends to develop novel batch mode active learning algorithms to reduce human

annotation effort in real world machine learning problems. This is of tremendous practi-

cal importance given the humongous amount of data that are being generated everyday in

today’s digital world. The proposed frameworks can be judiciously used to develop ma-

chine learning models with minimal human effort for a variety of real world applications.

Specifically, this work aims to provide four major contributions:

• A dynamic batch mode active learning framework which simultaneously solves for

both the batch size and the specific points that need to be queried for manual anno-

tation from an unlabeled set of instances, through a single formulation.

• A batch mode active learning strategy for fuzzy label classification problems where

there is an inherent imprecision and vagueness in the class label definitions.
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• Batch mode active learning algorithms based on convex relaxations of an NP-hard

integer quadratic programming (IQP) problem, with guaranteed bounds on the so-

lution quality

• An active matrix completion algorithm and its application to solve several variants of

the active learning problem (transductive active learning, multi-label active learning,

active feature acquisition and active learning for regression).

These contributions are validated on the face and expression recognition problems

on several challenging biometric datasets (more details on the datasets are presented in

the subsequent chapters). Automated recognition of human identity and human facial ex-

pression are fundamental problems that need to be solved as part and parcel of the Social

Interaction Assistant system for the visually impaired (as described in Section 1.1). In-

tegration of the proposed approaches in the design of such an assistive technology will

hopefully reduce the human annotation effort and aid in the development of reliable ma-

chine learning models for the challenging recognition tasks. Although validated on these

applications in this work, the proposed frameworks are generic and can be used in any

application where a large amount of unlabeled data is readily available, but labeling the

data is time consuming and expensive.

1.10 Thesis Overview

The subsequent chapters in this thesis are organized as follows: Chapter 2 discusses related

work on active learning that has been proposed in the literature, Chapters 3, 4, 5 and 6

describe the proposed contributions in details and present the results obtained. Chapter

7 depicts the generalizibility of the proposed batch mode active learning framework by

extending it to related problems (like learning from multiple sources of information and

context aware learning); Chapter 8 details an online active learning algorithm based on
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the Conformal Predictions (CP) Theory. Finally, Chapter 9 concludes with discussions

and pointers to future work.
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Chapter 2

RELATED WORK

In this chapter, we present a detailed survey of the different active learning algorithms that

have been proposed in the literature. Active learning can be categorized broadly as shown

in Figure 2.1. At the highest level, we can divide such methods into two types - pool-based

and online. Pool based active learning is further divided into Serial Query based Active

Learning and Batch Mode Active Learning. A comprehensive review of these categories

can be found in [99].

Figure 2.1: Categories of Active Learning

In a pool-based setting, the learner is exposed to a pool of unlabeled instances and

it iteratively selects one point at a time from the pool to be labeled manually. This is con-

tinued until the pool gets exhausted or some stopping criterion is satisfied. In contrast, in

an online setting, the learner does not have access to the entire unlabeled pool at once, but
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encounters the points sequentially over a period of time. At each instant, the model has

to decide whether to query the given point and update the hypothesis. We now present a

review of the online active learning approaches, followed by the more popular serial query

pool based active learning algorithms. We subsequently present existing work on batch

mode active learning, which is the main focus of this dissertation.

2.1 Online Active Learning

Sculley [100] proposed an online active learning framework to develop an automated spam

email filter system. The author used three online active learning techniques - label ef-

ficient b-sampling, logistic margin sampling and fixed margin sampling and concluded

that they can dramatically reduce the labeling cost to design a spam filter. Bianchi et al.

[101] provided regret bounds on an active learning algorithm for learning linear thresh-

olds from an i.i.d. stream of samples. Monteleoni and Kaariainen [102] analyzed the

performances of two online active learning algorithms in the optical character recognition

problem. The algorithms - DKM and CBGZ and their combined variants were seen to

consistently outperform random sampling. Dredze and Crammer [103] proposed an on-

line active learner for natural language processing, where the distance of a point from the

margin in a large-margin classifier was combined with parameter confidence. More re-

cently, Ho and Wechsler [104] used the transductive confidence machine framework and

the theory of conformal predictions to select query points in an online setting. The points

were queried based on the difference between the top two p− values computed using the

conformal predictions framework. Balasubramanian et al. [105] proposed a generalized

version of the above approach based on eigen-decomposition of matrices, where all the

p− values of a given point were incorporated to decide whether or not to query the par-

ticular point. The authors applied the transductive active learning approach in the online

setting to face recognition. The query by committee (QBC) algorithm is popularly used
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to query points in an online setting based on the level of disagreement among a group

of classifiers. If the disagreement is above a certain threshold, the point is queried for

its label. Melville et al. [106] used the Jensen Shannon divergence as a disagreement

measure to select query points in such a setting. Attenberg and Provost [107] combined

ideas from decision theory, cost-sensitive learning, online density estimation to develop a

framework for active inference and learning in the online setting. Mesterharm and Pazzani

[108] used online learning algorithms to solve active learning problems and provided per-

formance bounds of the algorithm in both the online and batch settings. Chu et al. [109]

proposed an online active learning framework based on variance minimization. Guillory

and Bilmes [88, 110] proposed an online prediction version of the sub-modular set cover

with connections to ranking and repeated active learning. In each round, the learning

algorithm receives a sequence of items together with a monotone sub-modular function

and suffers loss equal to the number of items needed, when items are selected in order

of the chosen sequence, to achieve a coverage constraint. The fundamental challenge in

online active learning is to design an appropriate query function without having access to

the entire unlabeled set; that is, the query function needs to be implemented on each data

instance as it arrives, without any knowledge of the samples that are to be encountered in

future.

2.2 Pool based Active Learning with Serial Query

Majority of the existing active learning approaches have been applied in the pool based

setting. These methods can be broadly categorized as follows: (i) SVM based methods,

(ii) Statistical methods, (iii) Ensemble based methods and (iv) Other miscellaneous ap-

proaches.
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SVM based methods

A sizable number of the pool based approaches are based on the Support Vector Machines

(SVM) algorithm. Tong and Koller [111] [112] designed the query function to select the

unlabeled point which is closest to the SVM decision boundary in the feature space. Tong

and Chang [113] applied the same concept in the image retrieval problem where in every

iteration, the point that was closest to the decision boundary was returned for labeling.

Schohn and Cohn [114] applied active learning with SVMs in the document classification

task and concluded that the classifier trained through active learning often outperforms

those that were trained on all the available data. Mitra et al. [115] assigned a confidence

c to examples within the current decision boundary indicating whether or not they were

true support vectors. Points were then queried probabilistically according to this confi-

dence factor. Another active learning scheme using SVMs was proposed by Campbell et

al. [116] where the next point to be queried was the one which minimized a predetermined

risk function. Cheng and Wang [117] used Co-SVMs in the image retrieval problem where

two SVMs trained separately on color and texture features were used to classify unlabeled

data - the points which were differently classified by the two SVMs were chosen to be la-

beled. Osugi et al. [118] proposed a probabilistic method of active learning which decided

between labeling examples near the decision boundary and exploring the input data space

for unknown pockets of points. Ebert et al. [119] analyzed different sampling criteria

including a novel density based approach and corroborated the importance of combining

exploration and exploitation for active learning. The authors also demonstrated that a time

varying combination of sampling criteria often leads to improved performance. Loy et

al. [120] presented a new unified framework for joint exploration and exploitation active

learning without any heuristic weighting to learn from video streams.
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Statistical methods

Statistical approaches quantify the informativeness of a data instance based on some sta-

tistical properties of the learner. Such methods can be further categorized as follows:

Uncertainty Sampling: The most commonly used query framework is uncertainty

sampling, where a learner queries instances about which it is maximally uncertain. Un-

certainty can be quantified in various ways - the expected 0/1 loss, which is computed

as 1 minus the maximum posterior probability under the current model, margin sampling

[19] and the most popular Shannon’s entropy [121]. Holub et al. [122] proposed an ac-

tive learning framework that attempted to minimize the expected entropy of the labels of

the data points in the unlabeled pool. MacKay [123] introduced information-theoretic ap-

proaches to active learning by measuring the informativeness of each data point within a

Bayesian learning framework. Cohn et al. [124] described a rudimentary form of active

learning which they called selective sampling. Here, the learner proceeded by examin-

ing the information already provided and then deriving a “region of uncertainty” where it

believed misclassification was still possible. Ho and Wechsler [125] investigated a trans-

ductive framework to active learning where they used k nearest neighbors as the classifier.

Li and Sethi [126] proposed an algorithm that identified samples that had more uncer-

tainty associated with them, as measured by the conditional error. Tang et al. [127] used

entropy based uncertainty scores to quantify the representativeness of a data point in a

natural language parsing application, which was used to design the query function. Lewis

and Gale [128] applied a probabilistic framework to active learning where the most un-

certain point was chosen for manual annotation. Park et al. [129] developed a framework

for optimal experimental design under the Gaussian Process Poisson model using uncer-

tainty sampling to estimate the non-linear function of a neuron’s stimulus sensitivity. Yan

et al. [130] proposed a strategy to simultaneously learn the most uncertain samples and
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the annotators to query the labels from for active learning, even when the expertise of the

annotators may not be consistent across the task domain. Kowdle et al. [131] presented

an uncertainty sampling based active learning approach for piecewise planar 3D recon-

struction of a scene. Roder et al. [132] proposed an uncertainty based active learning

approach where the class conditional probability p(y|x) was viewed as a random variable

and modeled using a second order distribution.

Expected Model Change: An active learning framework based on expected model

change uses a decision-theoretic approach and selects the instance that would impart the

greatest change to the current model if its label was known. An example query strategy in

this framework is the expected gradient length (EGL) approach where the change imparted

to the model is measured by the length of the training gradient. The learner queries the

instance which, if queried and added to the training set, would result in the new training

gradient of largest magnitude. This strategy was introduced by Settles et al. [133] and has

also been applied to probabilistic sequence models like CRFs [17].

Expected Error Reduction: This type of active learning algorithms aim to quan-

tify the amount of reduction of the generalization error. The idea is to estimate the ex-

pected future error of a model trained using L∪ {x,y} on the remaining unlabeled in-

stances in the unlabeled pool and query the instance with minimum expected future error

(sometimes called the risk). Roy and McCallum [134] first proposed the expected error

reduction framework for text classification using naive Bayes. The authors adopted a sam-

pling approach to estimate the expected reduction in error due to the labeling of a query.

The future error rate was estimated by log-loss using the entropy of the posterior class

distribution on a sample of the unlabeled examples. Zhu et al. [86] combined this frame-

work with a semi-supervised learning approach resulting in a dramatic improvement over

random or uncertainty sampling. Guo and Greiner [135] employed an optimistic variant

that biased the expectation towards the most likely label for computational convenience.
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The framework had the dual advantage of being near-optimal and being independent of

the model class. He and Cai [136] proposed a novel active subspace learning algorithm

based on expected error reduction, which used the most informative data samples to learn

an optimal subspace.

Variance Reduction: Minimizing the expectation of a loss function directly is

expensive, and in general this cannot be done in closed form. However, we can still

reduce generalization error indirectly by minimizing output variance, which sometimes

has a closed-form solution. Consider a regression problem, where the learning objective

is to minimize the standard error (i.e. squared-loss). The learner’s expected future error

can be decomposed as:

ET [(ŷ− y)2|x] = E[(y−E[y|x])2]+ (EL[ŷ]−E[y|x]])2 +EL[(ŷ−EL[ŷ])2]

where EL is an expectation over the labeled set L, E[.] is an expectation over the condi-

tional density P(y|x) and ET is an expectation over both; ŷ is the model’s predicted output

for a given instance x and y indicates the true label for that instance. The first term rep-

resents the noise, the second term, the bias and the third term the variance of the model.

Therefore, minimizing the variance is guaranteed to minimize the future generalization

error of the model (since the learner can do nothing about the bias and or noise compo-

nents). Cohn [137] and Cohn et al. [138] presented the first statistical analyses of active

learning for regression using the estimated distribution of the models output. They showed

that this can be done in closed-form for neural networks, Gaussian mixture models, and

locally-weighted linear regression. Bellare et al. [139] proposed an active learning algo-

rithm that approximately maximized the recall of a classifier under precision constraints

with provably sub-linear label complexity for the task of entity matching.
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Ensemble based methods

In ensemble based approaches, the Query by Committee (QBC) algorithm has been ex-

tensively applied. Seung et al. [140] proposed the first QBC approach by sampling a

committee of two random hypotheses that are consistent with the current labeled set. Fre-

und et al. [63], as well as Liere and Tadepalli [141] used the disagreement measure among

a committee of classifiers to select points from an unlabeled pool. McCallum and Nigam

[84] modified the Query by Committee method for estimating the document density while

applying active learning to the text classification problem. They also combined active

learning with Expectation Maximization to take advantage of the word co-occurrence in-

formation among the documents in the unlabeled pool. Melville and Mooney [24] pro-

posed an ensemble based active learning method that encouraged diversity among com-

mittee members. Abe and Mamitsuka [142] combined QBC with boosting and bagging.

The point to be queried next was the one on which the weighted majority voting by the

current hypothesis had the least margin. Argamon and Dagan [143] proposed a Query

by Committee algorithm in which the committee members were probabilistically selected

from a distribution conditioned by the current training set. Muslea et al. [85] proposed

a naive form of QBC, which they called co-testing, where an unlabeled point was ran-

domly selected on which the existing views disagreed. Zhang and Sun [144] proposed a

multile view multiple learner (MVML) active learning approach where the selecting sam-

pling strategy was implemented in three ways - by choosing samples just considering the

disagreement between the two views, just considering the disagreement within each view

and considering both the within-view and between-view disagreements. Another form of

QBC was proposed with the nearest neighbor classifier [145] [146] where each neigh-

bor was allowed to vote on the class label of an unlabeled point, with the proportion of

these votes representing the posterior label probability which was used as a disagreement
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measure for instance selection. Gao and Koller [147] presented an active classification

algoroithm where each classifier in a large ensemble is viewed as an observation which

can influence the classification process. Observations were selected dynamically based

on previous observations using a value-theoretic computation that balanced an estimate of

the expected classification gain as well as its computational cost. Yang [148] studied the

probelem of active learning in a stream based setting where the distribution of the samples

changed over time and proved upper bounds on the number of prediction mistakes and

number of label requests for disagreement based active learning algorithms.

Other miscellaneous approaches

In other kinds of pool based approaches, Baram et al. [149] proposed a master algorithm

which estimated the progress of each active learner in an ensemble during a learning ses-

sion and then dynamically switched over to the best performing one at each stage. Using

three active learning algorithms (Simple, Kernel Farthest First and Self-Conf) to construct

an ensemble, the authors empirically established that combining them online resulted in

a better performance than using any one of them. Blum and Chawla [150] developed an

algorithm based on graph-cuts to learn from both labeled and unlabeled data. Nigam et al.

[151] combined the Expectation Maximization (EM) algorithm with naive Bayes classifier

to learn from labeled and unlabeled text documents. Pelleg and Moore [152] proposed a

mixture model approach to solve the problem of anomalous rare category identification

in an unlabeled set with minimal human effort. Schein and Ungar [153] extended the

A-optimality criterion to pool based active learning using Logistic Regression classifiers.

Thompson et al. [22] applied the active learning framework to two non-classification

tasks: semantic parsing and information extraction. They concluded that about 44%

reduction in annotation cost was achieved using active learning in these complex tasks.

Clustering techniques have also been used to boost the performance of pool-based active

32



learning [82] [154]. There have also been efforts in incorporating contextual information

in active learning. Very recently, Kapoor et al. [155] incorporated match and non-match

constraints in active learning for face recognition. Qi et al. [156] presented a 2D active

learning scheme where sampling was done along both sample and label dimensions. The

authors proposed to select sample-label pairs to minimize a multi-label Bayesian classi-

fication error bound. Kothari and Jain [157] proposed a genetic algorithm based active

learning strategy to iteratively refine the class membership of the unlabeled patterns so

that the maximum a posteriori (MAP) based predicted labels of the points in the labeled

dataset were in agreement with the known labels. Joshi et al. [158] proposed an active

learning algorithm, where two data points were selected in each iteration, one from the

training set and one from the unlabeled set and the user had to give feedback regarding

whether or not the two samples belonged to the same class. This was the first effort in

designing an active learning framework where the user feedback was binary (yes/no) type.

Guo and Greiner [135] proposed an active learning approach that exploited the discrim-

inative partition information contained in the unlabeled instances and selected the query

instance that provided the maximum conditional mutual information about the labels of

the unlabeled samples given the labeled data. Tong and Koller [159] proposed an active

learning framework for parameter estimation in Bayesian networks.

Park and Pillow [160] presented a novel active learning scheme under hierarchical,

conditionally Gaussian priors that uses sequential Markov Chain Monte Carlo sampling to

model a mixture-of-Gaussians representation of a neuron’s receptive field (RF) field and

selects optimal stimuli using an approximate infomax criterion. Osborne et al. [161] pro-

posed several techniques for evidence estimation using the Bayesian Quadrature method,

including approximately imposing a positivity constraint, approximately marginalizing

hyper-parameters and using active sampling to select the locations of function evaluations

and concluded that the active learning approach yielded the most significant gains for in-
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tegral estimation. Tyagi and Cevher [162] proposed a randomized active sampling scheme

for estimating multi-index functions of the form f (x) = g(Ax) from point evaluations of f ,

where the function f is defined on the `2-ball in ℜd , g is twice continuously differentiable

almost everywhere and A ∈ ℜk×d is a rank k matrix where k << d. Sawade et al. [163]

devised an active comparison algorithm (for comparing the risks of two given predic-

tion models) that selects instances according to a sampling distribution which maximizes

the power of a statistical test applied to the observed empirical risks and thereby min-

imzes the likelihood of selecting the inferior model. The same authors [164, 165] further

proposed an active estimation procedure based on variance minimization to estimate the

Fα -measure of a given model on a fixed labeling budget. Ailon [166] proposed an active

learning framework for pairwise ranking using a query (and time) efficient decomposi-

tion procedure reducing the problem to smaller sub-problems in which the optimal loss

was high and uniform sampling sufficed. Jamieson and Nowak [167] examined the same

problem and proposed an active learning algorithm that exploited the natural relationships

among the objects to reduce the number of pairwise comparisons as compared to stan-

dard sorting based methods (n log2 n). Along similar lines, Charlin et al. [168] addressed

the problem of active learning of user preferences for matching problems by introduc-

ing a novel method for determining probabilistic matchings and developing strategies that

are sensitive to the specific matching objective. Jain et al. [169] proposed two hashing

based solutions (to retrieve near points in sub-linear time) for pool-based active learning

and empirically demonstrated the practicality of the algorithm to perform active selection

with millions of unlabeled samples. Garnett et al. [170] used Bayesian decision theory to

solve the problems of active search (actively uncover as many members of a given class

as possible) and active surveying (to actively query points to ultimately predict the class

proportion of a given class). Rashidi and Cook [171] proposed a novel active learning

method called RIQY (Rule Induced active learning QuerY), which can construct generic

active learning queries based on rule induction from multiple unlabeled instances. Ju-
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dah et al. [172] introduced a new approach based on reducing active imitation learning

to i.i.d active learning. Deng et al. [173] proposed a novel minimax bandit model for

active learning in the context of personalized treatment via biomarkers. Active learning

has been extensively used to address problems in multimedia and computer vision such as

video / image annotation [174, 175, 176, 177, 178], video search [179], image segmenta-

tion [180] and scene understanding [181] among others. Recent efforts in this area have

included a novel min-max approach to systematically combine multiple criteria (such as

informativeness and representativeness) for active sample selection [182], to appropriately

consider the information overlap across different domains for batch selection [183], ap-

plying active learning for link classification in signed networks [184, 185, 186, 187] as

well as application of active learning approaches to rapidly improve a multi-task adaptive

filtering system with minimal user/task-level feedback [188]. At the AISTATS 2010 chal-

lenge on active learning, several novel methodologies were proposed to address practical

challenges like large, noisy data, irrelevant attributes, missing values and mixed variable

types [189, 190, 191, 192, 193].

Salganicoff et al. [194] applied active learning to the vision based grasping prob-

lem. The authors combined the Interval Estimation (IE) active learning approach with

the classification tree algorithm ID-3 to develop a system which actively learns to select

the grasp approach directions. Morales et al. [195] applied active learning to measure

the grasping reliability. The algorithm accumulated the information gathered through suc-

cessive grasping attempts and chose the best configuration to grasp a given object. Dima

[196] proposed the Unlabeled Data Filtering (UDF) algorithm to solve the initialization

problem in active learning in robotics. Zhang and Kim [197] proposed an active learning

based path planner to plan the optimal path between a source and a destination in a path

planning application. The system learned incrementally and developed its knowledge to

plan suitable paths in real time. Cantin et al. [198] developed an active policy learning
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approach to be used in an exploration application. The method balanced exploration and

exploitation and used probabilistic active learning algorithm to predict the policies that

would produce higher expected gains. Dima et al. [199] described an active learning

algorithm based on kernel density estimation to identify exemplar images in a dataset.

They applied the concept to the problem of terrain classification and obstacle detection by

autonomous outdoor robots and concluded that the algorithm achieved comparable per-

formance in accuracy by labeling only a few sample and informative images. Tapus and

Mataric [200] developed active learning strategies to help stroke patients. Wiens and Gut-

tag [201] applied active learning algorithms to perform patient-adaptive and task-adaptive

heartbeat classification. Burl and Wang [202] applied active learning to study the behavior

of complex systems using physics based simulation codes. However, all these approaches

have been based on serial query strategies; we now review existing work on batch mode

active learning, which is the primary focus of this thesis.

2.3 Batch Mode Active Learning (BMAL)

As mentioned in Section 1.8, batch mode active learning algorithms are effective in utiliz-

ing the presence of multiple labeling oracles and avoiding frequent classifier training, as

they select a batch of points simultaneously for manual annotation. Existing approaches

for BMAL have largely been based on extending pool-based active learning methods to

select multiple instances simultaneously. They use greedy heuristics and select the top k

instances (k being the required batch size) from the unlabeled set for manual annotation.

Brinker [203] extended the version space concept proposed in [111] to query a diverse

batch of points using SVMs, where diversity was measured as the angle induced by the

hyperplane of the currently selected point to the hyperplanes of the already selected points.

Ding et al. [204] used cluster diversity and most possible error approximation bound as

the batch selection criteria. Zhang et al. [205] proposed a BMAL scheme that selected a
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diverse batch of points using the farthest-first traversal strategy. Schohn and Cohn [114]

proposed to query a batch of points based on their distance from the separating hyperplane

for a linear SVM. Xu et al. [206] proposed an SVM based BMAL strategy which com-

bined representativeness and diversity measures for batch selection. Demir et al. [207]

proposed an active learning algorithm for classification of remote sensing images using

a kernel clustering based strategy to assess the diversity and informativeness of samples

from each cluster. Ananthakrishnan et al. [208] presented a BMAL scheme for machine

translation systems that attempted to maximize the in-domain coverage by selecting sen-

tences which represent a balance between domain match, translation difficulty and batch

diversity. Shi et al. [209] proposed three criteria (minimum redundancy, maximum un-

certainty and maximum impact) to exploit the link based dependencies in a network and

actively select a batch of instances for user query.

However, extending the pool-based setting to the batch setting by considering the

top k instances does not account for other factors such as information overlap between the

selected points in a batch. More recently, this has led to newer efforts that are specifi-

cally intended to select batches of points using appropriate optimization strategies. Hoi et

al. [95, 97] used the Fischer information matrix as a measure of model uncertainty and

proposed to query the set of points that maximally reduced the Fischer information. The

batch selection criterion was formulated as a trace norm minimization problem:

min
q,M

trace(M)

s.t.:

M ≥ I1/2
p I−1

q I1/2
p

n

∑
i=1

qi,qi ≥ 0, i = 1, . . .n

Here, p(x) was the distribution of all unlabeled examples and q(x) was the distribution of

the unlabeled examples that were chosen for labeling, Ip and Iq were the Fischer informa-
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tion matrices of the classification model for distributions p(x) and q(x) respectively and

M was a slack matrix to upper bound the objective function. The optimization problem

was solved using semidefinite programming (SDP). The same authors [210] proposed a

BMAL scheme based on SVMs where a kernel function was first learned from a mixture

of labeled and unlabeled samples, which was then used to identify the informative and

diverse examples through a min-max framework. Joshi et al. [211] introduced a batch

mode active learning framework using submodular functions for multi-class image clas-

sification. The authors combined the uncertainty and diversity criteria into a submodular

objective function, which was solved using an iterative greedy algorithm. Shi and Zhao

[212] proposed a unified framework integrating sparse representation and batch mode ac-

tive learning. Based on the existing sparse family of classifiers, the authors defined the

corresponding batch mode sparse active learning family and explored their shared prop-

erties. Azimi et al. [213] proposed a batch mode active learning algorithm that first used

the Monte Carlo simulation to estimate the distribution of the unlabeled samples and then

attempted to select a batch of k instances that best matched this distribution. Zhao et al.

[214, 215] proposed a graph-based transductive BMAL framework based on label prop-

agation. Vijayanarasimhan et al. [216] formuated the BMAL problem as a continuous

optimization where the subset of possible queries was determined that maximized the im-

provement to the classifier’s objective without exceeding a specified budget. Guo and

Schuurmans [59] proposed a discriminative strategy that selected a batch of points which

maximized the log-likelihoods of the selected points with respect to their assigned class

labels and minimized the entropy of the unselected points in the unlabeled pool. Specif-

ically, the algorithm solved for a binary matrix µ , which optimistically assigned class

labels to the unlabeled points and simultaneously decided the points to be selected in the

batch, through the following objective function:

max
µ

∑
i∈Lt

logP(yi|xi,wt+1)+β ∑
j∈Ut

vt+1
j µ

T
j −α ∑

j∈Ut

(1−µ je)H(y|x j,wt+1)
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s.t.:

µ ∈ {0,1}|Ut |×2

µ ◦E = m

µ je≤ 1,∀ j

1T
µ ≤ (

1
2
+ ε)meT

Here, Lt and Ut were the current training and unlabeled sets at time t, vt+1
j was a row vector

[logP(y = 1|x j,wt+1), logP(y =−1|x j,wt+1)], e was a two entry column vector of 1s, 1 is

a |Ut | entry column vector with all 1s, E was a |Ut |×2 matrix with all entries 1, ε was a

user-provided parameter that controlled class balance during instance selection and β was

a parameter that was used to adjust the belief in the guessed labels. The selection variable

µ chose instances from Ut and also selected labels for the selected instances. Solving this

optimization yielded the optimal µ for instance selection for iteration t +1.

Very recently, Guo [217] proposed a batch mode active learning scheme which

maximized the mutual information between the labeled and unlabeled sets and was inde-

pendent of the classification model used. Let L and U be the current labeled and unlabeled

sets and Q be a set of cardinality b denoting the set of points that are selected. The selec-

tion strategy was formulated as the following optimization problem:

Q∗ = arg max
|Q|=b,Q⊆U

I(XL∪Q,XU\Q) = arg max
|Q|=b,Q⊆U

log |ΣL′L′|+ log |ΣU ′U ′|

where L′ = L∪Q and U ′ =U\Q. The mutual information criterion depended only on the

covariance matrices computed using the kernel functions over the instances. The max-

imum mutual information strategy attempted to select the batch of b instances from the

unlabeled set U to label, to maximize the log determinants of the covariance matrices over

the produced sets L′ and U ′. The methods described in [59] and [217] have well defined
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mathematical basis and have been shown to be the best performing BMAL schemes till

date [217].

All the aforementioned techniques of batch mode active learning assume that the

batch size (number of data points to be queried from an unlabeled set to be specified in

advance. This may not be a practical assumption as it is difficult to decide on a number

at random and without any knowledge of the data stream in question. Moreover, in many

real world applications, the label of each data point is fuzzy, that is, it is possible for one

point to belong to multiple classes with varying degrees. To the best of our knowledge, no

BMAL technique has been proposed to explicitly handle fuzzy label problems. Further,

the state-of-the-art BMAL schemes [59, 217] solve the batch selection problem by con-

vex relaxations of NP-hard integer programming problems. Even though they have been

empirically shown to demonstrate good performance, no formal guarantee has been estab-

lished on the qualities of the convex relaxations. Recently, the problem of low rank matrix

completion has gathered significant attention and is being used extensively in applications

like machine learning [218], computer vision and graphics [219] and recommendation

systems [220] among others. However, the problem of intelligently integrating human ex-

petise in completing a matrix has not been explored till date. This can potentially lead to

a better reconstruction of the incomplete matrix and can be of immense practical impor-

tance. In order to address these practical issues, we propose four major contributions in

this Ph.D dissertation:

1. A framework for dynamic batch mode active learning, where the batch size and

the specific points to be selected for manual annotation are simultaneously derived

through a single formulation.

2. A BMAL algorithm for fuzzy label classification problems, where there is an inher-

ent imprecision and vagueness in the class label definitions.
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3. Batch Mode Active Learning algorithms based on the convex relaxations of an NP-

hard integer quadratic programming (IQP) problem, with guaranteed bounds on the

solution quality.

4. An active matrix completion framework to leverage human intelligence in com-

pleting a data matrix and its application in different variants of the active learning

problem (transductive active learning, multi-label active learning, active feature ac-

quisition and active learning in regression).

The contributions are validated on the face recognition and facial expression recog-

nition applications. Reliable face and expression recognition are of paramount importance

in a Social Interaction Assistant technology, as detailed in Section 1.1. Automated recog-

nition of identity and facial expression of a subject can enable a visually challenged in-

dividual recognize his interaction partner and better understand his/her emotional state,

which in turn can facilitate effective social interaction. We detail each of the aforemen-

tioned contributions in the subsequent chapters. We also study the generalizibility of our

approach by extending it to related problems in machine learning like learning from mul-

tiple sources of information and context aware learning.
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Chapter 3

DYNAMIC BATCH MODE ACTIVE LEARNING

An ideal batch mode active learning (BMAL) system can be conceptualized as consisting

of two main steps: (i) deciding the batch size (number of image frames to be queried from

a given unlabeled video stream) and (ii) selecting the most appropriate images from the

unlabeled video once the batch size has been determined. Both these steps are critical in

ensuring maximum generalization capability of the learner with minimum human labeling

effort, which is the primary objective in any active learning application. However, the

existing few efforts on batch mode active learning focus only on the second step of iden-

tifying a criteria for selecting informative batches of data samples and require the batch

size to be specified in advance by the user [59, 217]. In a real world application, deciding

on the batch size (number of relevant instances in a data stream) in advance and without

any knowledge of the data stream being analyzed, may not lead to a good generalization

accuracy. The batch size should depend on the quality and complexity of the samples in

the unlabeled stream and also on the level of confidence of the current classifier on the un-

labeled data instances. In other words, there is a strong need for dynamic batch selection

in BMAL algorithms.

In this chapter, we present two novel batch mode active learning algorithms which

adaptively select samples for manual annotation based on the complexity of the data

stream being analyzed and the cost of labeling each unlabeled data sample. We develop a

formulation for dynamic batch selection which directly optimizes the performance of the

updated learner (the learner trained on the current training set together with the newly se-

lected batch). The batch selection problem is solved using the stochastic gradient descent

algorithm to simultaneously decide the batch size and identify the specific points that need
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to be queried for manual annotation, through a single framework. We also derive a second

formulation for dynamic batch selection based on the uncertainty of the current learner.

We exploit the properties of sub-modular functions and propose an efficient solution strat-

egy for adaptive batch selection through a single optimization framework. Due to its wide

usage, we focus on face based biometric recognition systems as the exemplar application

in this paper. Although validated on biometric data, the proposed frameworks are generic

and can be used in any application where it is required to select a number of representative

entities simultaneously from repetitious samples.

3.1 Clustering based Batch Size Selection : An Intuitive Approach

An intuitive strategy to decide the batch size dynamically is to use a clustering algorithm

to segregate the images in the unlabeled pool into relatively pure clusters (in terms of class

labels), followed by a method to compute the batch size. Since the number of subjects

(and hence the number of clusters) in an unlabeled set is an unknown, we need to exploit

the spatial distribution of the points for clustering. This motivates the usage of the DB-

SCAN algorithm to automatically isolate the high density regions of the unlabeled pool

into separate clusters. For details about this method, please refer [221]. Our initial ex-

periments confirmed the efficacy of DBSCAN in isolating the images of different subjects

into separate clusters.

The Silhouette Coefficient (based on the cohesion and separation measures of a

cluster) is a natural choice to decide the number of points to be queried from each cluster.

For the ith point in a cluster, the Silhouette Coefficient is defined as

si =
(bi−ai)

max(ai,bi)
(3.1)

where ai is the average distance of the ith point to all objects in its cluster and bi is the min-

imum of the average distances of the ith point to each of the other clusters. The Silhouette
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coefficient for an entire cluster can then be computed as the average of the coefficients of

each point forming the cluster. It can attain a maximum value of 1, where a high value de-

notes a compact and well separated cluster. Intuitively, we would like to select few points

for a compact and well-separated cluster and more points otherwise. Thus, the number

of points to be selected from a cluster should be proportional to (1 - the Silhouette coef-

ficient). Also, we would like to select more points from larger clusters. If m is the total

number of points, mi is the number of points in cluster i, SCi is the Silhouette coefficient

of cluster i and C is a constant, the number of points to be selected from cluster i can thus

be defined as:

Ni =C ∗ mi

m
∗ (1−SCi) (3.2)

This operation is performed for each of the identified clusters to compute the num-

ber of points to be selected (the sum of the values obtained across all clusters provides

the overall batch size). The dynamically computed batch size for each cluster can now

be passed as an input to any standard static BMAL procedure for selecting the required

number of points from the corresponding cluster.

The clustering based strategy for dynamic batch size selection suffers from two

main drawbacks - (i) it computes the batch size solely based on the spatial distribution of

the points in the unlabeled pool; the current training set is not considered in the batch size

calculation. Ideally, the knowledge available from the current training data should play a

role in deciding the batch size. (ii) It is a two step process, where the batch size is first

computed from the cluster structure of the data and then supplied as an input to a standard

batch mode active learning algorithm for the point selection process and thereby involves

significant computation. To overcome these limitations, we propose two dynamic BMAL

frameworks in the following sections.
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3.2 Dynamic Batch Mode Active Learning via Stochastic Gradient Descent (SGD)

Consider a BMAL setting which has a current labeled set Lt and a current classifier wt

trained on Lt . The classifier is exposed to an unlabeled video Ut at time t. The objective

is to select a batch B from the unlabeled stream in such a way that the classifier wt+1,

at time t + 1, trained on Lt ∪B has maximum generalization capability (we refer to wt+1

as the “future model” or “future classifier”). With unlabeled data being available, semi-

supervised learning methods have been proposed that train models by minimizing the

uncertainty of the labels for the unlabeled instances [222]. That is, to achieve a classifier

with good generalization performance, one can minimize the entropy of the missing labels

for the unlabeled data. In our active learning framework, we attempt to minimize the

entropy of the updated learner on the remaining |Ut − B| images after batch selection.

Let C denote the total number of classes. The entropy of the conditional distribution

P(y|x j,wt+1) is given by:

S(y|x j,wt+1) =−∑
y∈C

P(y|x j,wt+1) logP(y|x j,wt+1) (3.3)

Further, to maximize the contribution of the selected unlabeled samples, diversity

based selection criteria have been proposed [223] which ensure that the selected samples

are less similar with the already available labeled data. In our formulation, we quantify

the diversity, ρ j, of an unlabeled sample x j as its mean kernelized distance from all the

labeled points in the training set:

ρ j =
1
nl

nl

∑
i=1

φ(xi,x j) (3.4)

where nl is the number of samples in the training set and φ denotes the kernel function.

Such a distance measure has a concrete theoretical grounding and is popularly used in

metrics like the Maximum Mean Discrepancy (MMD) to quantify the difference between

two probability distributions [224, 225]. In our experiments, a Gaussian kernel with pa-
45



rameter 1 was used as the underlying kernel. The two conditions mentioned previously

can be satisfied by defining a score function as follows:

f (B) = ∑
j∈B

ρ j−λ1 ∑
j∈Ut−B

S(y|x j,wt+1) (3.5)

The first term denotes the sum of the average kernelized distances of each selected

unlabeled point from the labeled set, while the second term quantifies the sum of the

entropies of the updated learner on each remaining point in the unlabeled stream. λ1 is a

tradeoff parameter governing the relative importance of the two terms.

The problem therefore reduces to selecting a batch B of unlabeled images which

produces the maximum score f (B). Let the batch size (number of images to be selected

for annotation) be denoted by m, which is an unknown. Since there is no restriction on

the batch size m, the obvious solution to this problem is to select all the images in the

unlabeled video, leaving no image behind. Then, the entropy term becomes 0, and the

distance term attains its maximum value. Consequently, f (B) will also attain its maximum

score. However, querying all the images for their class labels is not an elegant solution and

defeats the basic purpose of active learning. To prevent this, we modify the score function

by enforcing a penalty on the batch size as follows:

f̃ (B) = ∑
j∈B

ρ j−λ1 ∑
j∈Ut−B

S(y|x j,wt+1)−λ2m (3.6)

The third term essentially reflects the cost associated with labeling the images,

as the value of the objective function decreases with every single image that needs to be

labeled. Defining the score function in this way ensures that any and every image is not

queried for its class label; only images for which the distance and entropy terms outweigh

the labeling cost term, get selected. The coefficient λ2 is the cost parameter and denotes the

cost associated with labeling one unlabeled data sample. This parameter can be set based

on the given application. For instance, manually labeling a face image is less tedious as
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compared to labeling a voicemail message as urgent/non-urgent (as the human oracle has

to listen to the entire message for accurate annotation). Thus, λ2 will have a smaller value

in case of a face recognition application, as compared to a voicemail recognition system.

In our experiments, we assume λ2 to be 1 and also explore the effect of this parameter on

the batch size and the accuracy of recognition.

As per Equation (3.6), we need to select a batch B of unlabeled images so as to

maximize f̃ (B). Since brute force search methods are prohibitive, we employ numerical

optimization techniques to solve this problem. We define a binary vector M of size |Ut |

where each entry denotes whether the corresponding point is to be queried for its class

label. We rewrite the objective function in Equation (3.6) into an equivalent function in

terms of the defined vector M:

max
M,m

∑
j∈Ut

ρ jM j−λ1 ∑
j∈Ut

(1−M j)S(y|x j,wt+1)−λ2m (3.7)

s.t.:

M j ∈ {0,1}, ∀ j (3.8)

In this formulation, note that if an entry of M is 1, the corresponding image will be

selected for annotation and if it is 0, the image will not be selected. The number of images

to be selected, is therefore equal to the number of non-zero entries in the vector M, or the

zero-norm of M. Hence,

m = ||M||0 ≈ ||M||1 = ∑
j

M j (3.9)

Here, we have replaced the zero norm of M by its tightest convex approximation,

which is the one-norm of M (similar to [226]). Also, from constraint 3.8, the one-norm

is simply the sum of the elements of the vector M. Substituting m in terms of M, the

formulation becomes:
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max
M

∑
j∈Ut

ρ jM j−λ1 ∑
j∈Ut

(1−M j)S(y|x j,wt+1)−λ2 ∑
j

M j (3.10)

s.t.:

M j ∈ {0,1}, ∀ j

The above optimization is an integer programming problem and is NP hard. We

therefore relax the constraint to make it a continuous optimization problem:

max
M

∑
j∈Ut

ρ jM j−λ1 ∑
j∈Ut

(1−M j)S(y|x j,wt+1)−λ2 ∑
j

M j (3.11)

s.t.:

0≤M j ≤ 1, ∀ j

Solving the Optimization Problem

We first define an objective function f (M) as:

f(M) = ∑
j∈Ut

ρ jM j−λ1 ∑
j∈Ut

(1−M j)S(y|x j,wt+1) (3.12)

−λ2 ∑
j

M j

To solve the optimization problem, we use the Quasi Newton method, which as-

sumes that the function can be approximated as a quadratic in the neighborhood of the

optimum point and iteratively updates the variable M to guide the functional value to-

wards this local optima. The first derivative of the function and the Hessian matrix of

second derivatives need to be computed as parts of the solution procedure. Assuming

wt+1 remains constant with small iterative updates of M, the first order derivative vector is

obtained by taking the partial of the objective with respect to M:

∇ f (M j) = ρ j +λ1S(y|x j,wt+1)−λ2 (3.13)

The Hessian starts as an identity matrix and is updated according to the BFGS method. In

each iteration, a quadratic programming problem is solved which yields an update direc-

tion for M. The step size is obtained using a backtrack line search method based on the
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Armijo Goldstein equation and guarantees monotonic convergence of the function to the

local optimum. The iterations are continued until the change in the value of the objective

function is negligible. The final value of M is used to govern the number of points and

the specific points to be selected for the given data stream (by greedily setting the top m

entries in M as 1 to recover the integer solution, where m = ∑ j M j). Hence, solving a single

optimization problem helps in dynamically deciding the batch size as well as selecting the

specific points for manual annotation. For further details about the Quasi Newton method,

please refer [227].

It is to be noted that the objective function is defined in terms of the future classifier

wt+1, which is unknown. To compute the entropy term using wt+1 in the Quasi Newton

iterations, we therefore need to estimate the class labels of the currently selected batch of

unlabeled samples so as to intelligently approximate wt+1. We used the semi-supervised

graph-based label propagation method GTAM (Graph Transduction via Alternating Min-

imization) proposed by Wang et al. [228] to derive the labels of the selected unlabeled

samples in each Quasi-Newton iteration. This method is efficient in terms of accuracy and

computational overhead [228]. We validate the efficiency of this method in our empirical

evaluations. The pseudocode of the complete dynamic BMAL algorithm is outlined in

Algorithm 2.

We also note that the specific terms in the objective function can be modified based

on the particular application in question. For instance, one may want to design an objective

function which selects samples by minimizing the uncertainty on the unselected examples

and by maximizing the representativeness between the selected and the unselected samples

in the unlabeled set. The same strategy based on a penalty on the batch size can be used

in the objective function containing the relevant terms.

The proposed dynamic batch selection framework has the computational complex-

ity of O(n2) (where n is the number of unlabeled data samples), which is the same as the
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Algorithm 2 Dynamic Batch Mode Active Learning via Stochastic Gradient Descent
(SGD)
Require: Training set Lt , Unlabeled set Ut , parameters λ1 and λ2, initial random guess for M, a

stopping threshold α

1: Initialize the Hessian matrix H as the identity matrix I
2: Evaluate the objective function f (M) (Equation 3.12) and the derivative vector ∇ f (M) (Equa-

tion 3.13)
3: repeat
4: Solve the QP problem as required by Quasi-Newton: QP(H,∇ f (M),M) and let the solution

be M∗

5: Compute the step size s from the Armijo Goldstein Equations.
6: Update M as Mnew = M + s(M∗−M)
7: Evaluate the new objective f (Mnew) and the new derivative vector ∇ f (Mnew) using Mnew

8: Calculate the difference in objective value: di f f = abs( f (M) - f (Mnew))
9: Update the Hessian H using the BFGS Equations

10: Update the objective value: f (M) = f (Mnew)
11: Update the derivative vector: ∇ f (M) = ∇ f (Mnew)
12: Update the vector M: M = Mnew

13: until di f f ≤ α

14: Compute batch size m = ∑M (Equation 3.9)
15: Greedily set the top m entries in M as 1 to recover the integer solution.
16: Select m points accordingly

state-of-the-art static BMAL techniques [59, 217], where the batch size needs to be pre-

specified. Thus, with the same computational complexity as state-of-the-art static BMAL

schemes, we solve for both the batch size and the specific data samples that need to be

queried from a given unlabeled data stream.

3.3 Dynamic Batch Mode Active Learning via Submodular Optimization

In this section, we present another novel dynamic batch mode active learning scheme

based on sub-modular optimization. Similar to the previous problem, we are given a

training set Lt and an unlabeled set Ut for adaptive batch selection. In this method, the

uncertainty of an unlabeled sample is computed as the entropy of the current model wt on

this sample (instead of the updated model wt+1, as in the previous formulation). However,

since the goal in active learning is to select a batch of unlabeled samples that are maximally
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informative for the updated model wt+1, we need to consider a redundancy based criterion

(which quantifies the similarity between a pair of samples) if we design the batch selection

condition based on the current model wt . This is because, if two points separately furnish

valuable information, but they furnish the same / overlapping information, then both of

them together may not be maximally informative for wt+1. The redundancy criterion is

important in this formulation, as the objective is to select a batch of useful samples for

wt+1 using only the current model wt . This was not necessary in the previous formulation

as the performance was directly optimized with respect to the future model wt+1.

In this work, redundancy was quantified as the minimum kernelized distance of

an unlabeled point from the already selected batch (other measures of distance or similar-

ity may be used based on the application in question). A greater value of the minimum

distance denotes a more promising point from the redundancy perspective. We would

like to select a batch of points where each point furnishes useful, but distinctly unique

information (we note that in the gradient descent based formulation, the performance was

optimized directly with respect to the future classifier wt+1 and so the redundancy based

term was unnecessary. In the present approach, the performance is quantified in terms

of the current model wt and hence we need the redundancy based term to ensure that we

do not select duplicate data samples). For this purpose, we formulate an objective func-

tion denoting the score of a set of points B as follows (we have the term quantifying the

kernelized distance from the training set, as before):

S(B) = ∑
xi∈B
{ρi +λ1E(xi)+λ2D(xi)} (3.14)

where ρi is the average kernelized distance of the unlabeled point xi from the training set,

as defined in Section 3.2, E(xi) is the entropy of xi based on the current model wt :
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E(xi) =−∑
y∈C

P(y|xi,wt) logP(y|xi,wt)

and

D(xi) = min
x j∈B: j 6=i

< xi,x j >

which quantifies the similarity of an unlabeled point from the already selected set (<,>

denotes the kernelized distance). λ1 and λ2 are tradeoff parameters controlling the relative

importance of the distance and entropy terms. Since the goal is to select a batch of points

with high aggregate uncertainty scores and high distance among them, the objective is to

select a set of points which maximizes the score S(B) as defined in Equation (3.14). This

score function is monotonically non-decreasing (will be proved later) and since there is no

restriction on the batch size, the obvious solution is to select all points in the unlabeled set

for manual annotation. Similar to the previous formulation, we therefore impose a penalty

on the batch size and modify the score function as follows:

Snew(B) = ∑
xi∈B
{ρi +λ1E(xi)+λ2D(xi)}−λ3|B| (3.15)

The last term in Equation (3.15) represents the cardinality of the set B and increases

as more points are queried in the batch. λ3 is the cost parameter which denotes the cost

of annotating each unlabeled sample (as discussed earlier). The optimal batch selection

criterion can thus be expressed as:

max
B⊆Ut

Snew(B) (3.16)

Due to the exponential nature of the search space, exhaustive search techniques are

not feasible. In the following sections, we derive an efficient strategy to solve the above

optimization problem.
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Submodularity of the Objective Function

Let Z be a finite set and let X ⊆Y ⊆ Z be two subsets of Z. Consider an element x ∈ Z\Y .

A function f : 2Z →ℜ is submodular if

f (X ∪{x})− f (X)≥ f (Y ∪{x})− f (Y )

That is, a function is submodular if adding an element to a set increases the func-

tional value by at least as much as adding the same element to its superset. This property

is called the diminishing returns property [229, 230].

Lemma 1. The score function S(B), as defined in Equation (3.14), is a submodular set

function.

Proof. Let B1 and B2 be two sets formed by selecting unlabeled points from Ut , such that

B1 ⊆ B2 ⊆Ut and consider an unselected instance x ∈Ut\B2. The increment in the value

of the objective function achieved by appending x to the set B1 is given by

S(B1∪{x})−S(B1) = ρx +λ1E(x)+λ2 min
x j∈B1

< x,x j >

Similarly, the increment obtained by appending x to the set B2 is:

S(B2∪{x})−S(B2) = ρx +λ1E(x)+λ2 min
x j∈B2

< x,x j >

Since, B1 ⊆ B2, the minimum distance of a point x from the other points will always be

greater for the set B1 as there may exist some point x j in the superset B2 which is closer to

x than any element in its subset B1. Hence,

min
x j∈B1

EuclidDist(x,x j)≥ min
x j∈B2

< x,x j >
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Thus, we have,

S(B1∪{x})−S(B1)≥ S(B2∪{x})−S(B2)

This completes the proof of the lemma.

Lemma 2. The score function S(B) is a monotonically non-decreasing function.

Proof. Let B1 denote the currently selected set of points and consider an element x ∈

Ut\B1, Ut being the unlabeled pool. If x is added to the current set, the value of the ob-

jective function changes by ρx+λ1E(x)+λ2 minx j∈B1 EuclidDist(x,x j). Both the entropy

and distance are non-negative quantities and hence,

S(B1∪{x})≥ S(B1)

This completes the proof.

Greedy Solution to the Optimization Problem

The problem of maximizing a submodular function is NP-hard. However, Nemhauser

et al. [229] established that for a function S, which is submodular and non-decreasing,

with S(φ) = 0, a greedy algorithm provides an efficient solution with near-optimal results

(from the definition of S in Equation (3.14), it is obvious that S(φ) = 0). The greedy

algorithm incrementally selects points from the unlabeled set by maximizing the gain in

the objective function in each iteration. It presents an incremental ordering of the samples

based on their degree of usefulness. A single run of the algorithm over the unlabeled

set therefore provides an ordered set of the unlabeled samples based on their information

content. The final objective value Snew(B) is then computed for every possible batch size

by subtracting the weighted set cardinality λ3 ∗ |B| from the corresponding score S(B).
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The maximal value of Snew(B) represents the desired batch size |B| and the desired set of

points in the set B. The pseudo-code is presented in Algorithm 3.

Algorithm 3 Dynamic Batch Mode Active Learning via Submodular Optimization
Require: Training set Lt and Unlabeled set Ut , parameters λ1, λ2 and λ3

1: Train a classifier wt on the training set Lt
2: B = {φ}
3: for i = 1→ |Ut | do
4: for all x ∈Ut\B do
5: Btemp = B∪{x}
6: Compute S(Btemp) as in Equation (3.14)
7: end for
8: Select the point xmax producing the largest gain in the objective function (Equation

3.14)
9: B = B∪{xmax}

10: Ut =Ut\{xmax}
11: Evaluate the current score S(B)
12: SnewB(i) = S(B)−λ3 ∗ |B|
13: end for
14: Batch Size m = argmax(Snew(B))
15: Point Set P = B(1 : m)
16: return m and P

Similar to the previous formulation, solving a single optimization problem yields

the batch size and the specific points to be selected for batch query. The time complexity

is O(n2) (similar to the state-of-the-art static BMAL algorithms), where n is the number

of unlabeled instances.

3.4 Using the Proposed Frameworks for Static BMAL

It is to be noted that the proposed frameworks can be used for batch mode active learning

in cases where the batch size is specified. If the batch size is fixed, there is no need to

balance the computation cost against the classification performance. Thus, the penalty

terms from the objective functions are dropped and a constraint is imposed on the batch

size. For example, for the gradient descent based method, the following problem is solved
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for static batch mode active learning where the penalty term on the batch size is dropped

from the objective and an equality constraint is appended on the batch size m:

max
M

∑
j∈Ut

ρ jM j−λ1 ∑
j∈Ut

(1−M j)S(y|x j,wt+1)

s.t.:

0≤M j ≤ 1, ∀ j and
|Ut |

∑
j=1

M j = m.

An analogous strategy is applied for static BMAL using the submodular optimiza-

tion framework:

max
B⊆Ut :|B|=m

S(B)

To achieve this, the outer loop in Algorithm 3 is run from 1 to the desired batch

size m and the set B returns the optimum set of points after the loop ends on line 13.

3.5 Experiments and Results

We conducted extensive experiments to depict the efficacy of the proposed dynamic batch

mode active learning algorithms. The cost parameter (λ2 for the SGD algorithm and λ3 for

the sub-modularity based framework) were selected to be 1 (we also empirically demon-

strate the effect of this parameter). The other weight parameters were selected to be 1

using cross-validation. Gaussian Mixture Models (GMMs) were used as the classifier in

our experiments because of their success in face recognition [231]. The parameters of each

Gaussian were trained using the Expectation Maximization (EM) algorithm [232]. For the

sake of fair run-time comparison, all the algorithms were implemented in MATLAB on a

quad-core Intel processor with 2.66 GHz CPU and 8 GB RAM.

Datasets and Feature Extraction

We used two challenging biometric datasets for our experiments: (1) The VidTIMIT

dataset [233], which contains video recordings of subjects reciting short sentences un-
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der unconstrained natural conditions and (2) the MOBIO dataset [234], which was re-

cently created for the MOBIO (Mobile Biometry) challenge to test state-of-the-art face

and speech recognition algorithms. It contains recordings of subjects under challeng-

ing real world conditions, captured using a hand-held device. Sample images from these

datasets are shown in Figure 3.1. Our purpose was to test the performance of active learn-

ing and so, for the MOBIO dataset, we did not follow the protocols specified in the actual

challenge, which were intended for person recognition. Both these datasets contain video

recordings of subjects under natural conditions where there is a redundancy of informa-

tion and are therefore appropriate to test active learning algorithms. The face images in

the video frames were automatically detected and cropped to 128 by 128. The Discrete

Cosine Transform (DCT) feature was used in all our experiments (for details about the

feature extraction process, please refer [235]).

Figure 3.1: Sample images from the VidTIMIT and MOBIO datasets

Experiment 1: Dynamic vs. Static BMAL

The purpose of this experiment was to demonstrate the efficacy of dynamic batch selection

over static selection (where the batch size needs to be specified in advance) in applications

like face recognition. 25 subjects were randomly selected from each dataset. A classifier

was induced with 10 training images of each of the 25 subjects. Unlabeled video streams

(each containing about 100 frames) were then presented to the learner. To demonstrate the
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generalizibility with different subject combinations, the number of subjects in each unla-

beled stream was varied between 1 and 10 (selected randoly from the set of 25). For each

stream, the batch size and the specific image samples were selected simultaneously using

the proposed optimization strategies. The classifier was updated with the selected im-

ages and tested on test videos containing the corresponding subject(s) as in the unlabeled

videos.

To illustrate the usefulness of dynamic batch size selection, the accuracy of the

proposed techniques was compared against the case when all the frames in the unlabeled

video were used for learning (this is assumed to be an estimate for the best achievable

performance, as there is no better way to quantify the same for a given video stream) and

also against the following static BMAL algorithms: (1) Disc, a discriminative batch mode

active learning strategy, proposed by Guo and Schuurmans [59], (2) Matrix, that queries

a batch of data samples by maximizing the mutual information between the labeled and

unlabeled sets [217], (3) Most Uncertain, where the top k uncertain points were queried

from the unlabeled video, k being the batch size, (4) svmD which incorporates diversity in

active learning using SVMs, as proposed by Brinker [203] and (5) Random, where a batch

of points is queried at random. The Disc and the Matrix approaches have been shown

to be the state-of-the-art BMAL techniques [217]. The static batch selection techniques

require the batch size to be specified in advance; the static batch size was selected as 10

(the effect of this parameter is studied later). The results are shown in Figure 3.2 and are

averaged over 10 trials to rule out effects of randomness. The x axis denotes the number of

subjects in the video stream and the y axis denotes the accuracy on test videos containing

the corresponding number of subjects. We see that, in both datasets, the accuracy obtained

with dynamic batch selection matches the best achievable accuracy more closely than any

of the static batch selection algorithms, including the state-of-the-art schemes.
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(a) VidTIMIT dataset (b) MOBIO dataset

Figure 3.2: Dynamic vs Static BMAL on the VidTIMIT and MOBIO datasets (static batch
size = 10). Best viewed in color.

In general, we can expect that if we select a greater number of images from an

unlabeled set, the updated learner will perform better on a test set containing the same

subjects. Thus, if we select a higher value of the batch size in a static BMAL learner, then

static selection is expected to perform better than in Figure 3.2. This is depicted in Figure

3.3 where the static batch size was taken as 80 instead of 10. We see that the static BMAL

schemes perform much better than before and the state-of-the-art techniques marginally

outweigh dynamic batch selection in terms of classification accuracy.

No. of subjects 1 2 3 4 5 6 7 8 9 10
VidTIMIT (PBS) 18.7 12.4 17.9 25.6 16.5 24.2 22.3 22.5 19.9 24.5
VidTIMIT (LCR) 61.3% 67.6% 62.1% 54.4% 63.5% 55.8% 57.7% 57.5% 60.1% 55.5%

MOBIO (PBS) 15.5 12.2 12.7 15.1 10.9 10.9 10.4 9.9 11.7 11.6
MOBIO (LCR) 64.5% 67.8% 67.3% 64.9% 69.1% 69.1% 69.6% 70.1% 68.3% 68.4%

Table 3.1: Mean predicted batch size (PBS) and percent labeling cost reduction (LCR)
using SGD based dynamic selection against static selection with batch size 80.

No. of subjects 1 2 3 4 5 6 7 8 9 10
VidTIMIT (PBS) 29.8 54.2 56.8 60.9 51.8 59.2 61.7 56.4 54.1 50.9
VidTIMIT (LCR) 50.2% 25.8% 23.2% 19.1% 28.2% 20.8% 18.3% 23.6% 25.9% 29.1%

MOBIO (PBS) 19.3 17.9 21.4 21.2 21.1 20.9 22.0 18.4 21.8 21.4
MOBIO (LCR) 60.7% 62.1% 58.6% 58.8% 58.9% 59.1% 58.0% 61.6% 58.2% 58.6%

Table 3.2: Mean predicted batch size (PBS) and percent labeling cost reduction (LCR)
using submodularity based dynamic selection against static selection with batch size 80.
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(a) VidTIMIT dataset (b) MOBIO dataset

Figure 3.3: Dynamic vs Static BMAL on the VidTIMIT and MOBIO datasets (static batch
size = 80). Best viewed in color.

However, to achieve this performance, the static selection required a significantly

greater number of images to be labeled than dynamic selection. Table 3.1 shows the mean

predicted batch size and mean percentage reduction in the number of images that had to

be labeled using SGD optimization based dynamic selection against static selection with

batch size 80. It is evident that for both the datasets, the static framework required a much

greater number of images to be labeled to marginally outweigh dynamic selection. The

same conclusion is evident in Table 3.2 which depicts the analogous values for the sub-

modular optimization based dynamic BMAL framework. Hence, by selecting a number at

random, the static batch selection strategies can sometimes query too few points leading to

poor generalization power of the updated learner, while in some cases it can entail consid-

erable labeling cost to attain a marginal improvement in accuracy. The dynamic selection

strategies, on the other hand, compute the batch size by striking a balance between the

uncertainty of the learner on the images in the unlabeled video and the cost of labeling the

images, and thus provide a more concrete basis to decide the batch size.
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Experiment 2: Batch Selection Criteria of BMAL Algorithms For a Given Batch Size

The purpose of this experiment was to analyze the efficacies of the batch selection criteria

of BMAL algorithms to study their usefulness in real world settings. Since the objective

was to study the batch selection criteria, the batch size was decided in advance. For the

proposed algorithms, the static versions were used (since the batch size was pre-specified),

as described in Section 3.4. Similar to Experiment 1, the proposed approaches were com-

pared against the two state-of-the-art BMAL techiques: Disc and Matrix, and the three

heuristic techniques: Most Uncertain, svmD and Random. A classifier was induced with

10 training images of each of 25 randomly chosen subjects. Unlabeled video streams (each

containing about 250 frames) were then presented to the classifier sequentially. The im-

ages in the video streams were randomly chosen from all 25 subjects and did not have any

particular proportion of subjects in them, to mimic general real-world conditions. A batch

of 10 images was queried from each video stream (that is, the batch size was fixed at 10

for each unlabeled video). After each batch selection, the selected images were appended

to the training set, the classifier updated and then tested on a test video containing about

5000 images spanning all the 25 subjects. The goal was to study the increment in accuracy

on the test set with increasing size of the training set. The results (averaged over 5 random

runs) are presented in Figure 3.4, where the x axis denotes the size of the labeled set and

the y axis denotes the accuracy on the test set.

It is evident that the proposed SGD and submodularity based techniques per-

form much better than svmD and Random sampling. The Most Uncertain depicts the

best performance among the heuristic techniques. We also note that the proposed al-

gorithms demonstrate comparable performance as Disc and Matrix, the state-of-the-art

BMAL schemes (in fact, they marginally outperform Matrix on the MOBIO dataset).

Thus, the proposed algorithms succeed in selecting the salient and prototypical data points
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(a) VidTIMIT dataset (b) MOBIO dataset

Figure 3.4: Batch Mode Active Learning on the VidTIMIT and MOBIO datasets (Best
viewed in color).

VidTIMIT MOBIO
SGD Dynamic BMAL 71.02 82.45

Submodular Dynamic BMAL 3.03 5.27
Disc 112.78 122.45

Matrix 38.22 36.79
svmD 1.05 1.17

Most Uncertain 1.23 1.92
Random 0.01 0.01

Table 3.3: Average time taken (in seconds) to query a batch of 10 images from an unla-
beled video with 250 images.

and require similar level of manual labeling effort as the state-of-the-art, to attain a given

level of generalization accuracy. We also note that the stochastic gradient descent based

scheme performs better than the sub-modular BMAL technique for both the datasets. This

can be attributed to the fact that the gradient descent strategy selects unlabeled points

for manual annotation by directly optimizing the performance with respect to the future

learner (the learner trained on the current training set together with the newly selected

batch); it therefore has greater efficiency in deciding the set of points which can furnish

maximal information. The submodular technique, on the other hand, uses the uncertainty

of the current model together with a redundancy-based batch selection criterion and does

not involve a “look-ahead” strategy using the future learner.
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However, since the stochastic gradient descent based BMAL strategy involves clas-

sifier retraining in each iteration (due to the involvement of the future learner), its running

time is significantly higher than the heuristic methods (as evident in Table 3.3). The sub-

modular framework, on the other hand, is solved using a greedy algorithm (and is devoid

of model retraining) and involves much lesser computational overhead, as depicted in the

run time values. Thus, depending on the requirements of a particular application, an ap-

propriate scheme can be adopted. While the heuristic techniques (svmD, Random and

Most Uncertain) depict promising running time values, their active learning performances

are worse than those of the proposed algorithms (Figure 3.4).

Experiment 3: Performance of the Proposed Dynamic BMAL with Varying Complexities

of a Video Stream

In a real world scenario, video streams have varying levels of complexities, in terms of

presence of unknown subjects (not present in the training set), unknown expressions, head

poses, changing illumination among others. To study the performance of the proposed

frameworks under such settings, we performed an experiment for dynamic batch selection

with varying complexities of a video stream. We compared our approaches against this

heuristic clustering based dynamic batch selection scheme (as described in Section 3.1) to

study their efficacy in selecting a proper batch size. This was done since no other adaptive

batch selection scheme has been proposed till date, to the best of our knowledge.

25 subjects from each dataset were selected and divided into two groups - a “known”

group containing 20 subjects and an “unknown” group containing the remaining 5 sub-

jects. A classifier was induced with 10 training images of each of the known subjects.

Unlabeled video streams were then presented to the learner and the batch size decided

by the optimization and the clustering schemes were noted. The proportion of unknown

subjects in the unlabeled video was gradually increased from 0% (where all the subjects
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in the unlabeled video were from the training set) to 100% (where none of the subjects in

the unlabeled video were present in the training set) in steps of 20%. Thus, the classifier

was exposed to different video streams of varying levels of new information. However, the

learner was not given any information about the composition of the video streams. Also,

the size of each video stream was kept the same (approximately 100 frames) to facilitate

fair comparison.

(a) Experiment with unknown subjects from
the VidTIMIT dataset

(b) Experiment with unknown subjects from
the MOBIO dataset

Figure 3.5: Study of the Proposed Dynamic Batch Selection Frameworks with Varying
Complexities of a Video Stream

The results of the aforementioned experiment (averaged over 10 trials to rule out

the effects of randomness) are shown in Figure 3.5. The x-axis denotes the percentage of

atypical images in the unlabeled pool and the y-axis denotes the batch size predicted using

both the proposed and clustering-based strategies. We note that in both the experiments,

as the proportion of salient images in the unlabeled stream increases, the uncertainty term

outweighs the annotation cost term in the objective functions and the proposed algorithms

decide on a larger batch size. This matches our intuition because, with growing percent-

ages of atypical images in the video stream, the confidence of the learner on those images

decreases and so it needs to query more images to attain good generalization capability.

The clustering based scheme, on the other hand, does not consider the training set in de-

ciding the batch size and so, it fails to reflect the uncertainty of the classifier. The batch
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size, therefore, does not bear any specific trend to the percentage of atypical images in

the unlabeled set. Thus, while the clustering scheme decides the number of points to be

queried based on a score computed from the spatial distribution of the unlabeled points,

the optimization based techniques provide a better criteria to decide the batch size by

considering the data typicalness with respect to the training set together with the labeling

cost.

Proportion of new identities 0% 20% 40% 60% 80% 100%
SGD Dynamic BMAL 96.5% 89% 82% 75% 87.1% 81.3%

Submodular Dynamic BMAL 95.1% 92.2% 91.9% 89% 88.9% 89.5%
Clustering approach 95.9% 85.6% 81.4% 70.6% 79.7% 74.6%

Table 3.4: Test set accuracies using Proposed and Clustering based Dynamic BMAL on
the VidTIMIT dataset with increasing proportions of new identities.

Proportion of new identities 0% 20% 40% 60% 80% 100%
SGD Dynamic BMAL 86% 73.5% 75.7% 78.3% 83.3% 87.4%

Submodular Dynamic BMAL 87.1% 79.9% 81.6% 85.3% 86.7% 90.5%
Clustering approach 72.2% 68.1% 53.3% 57.5% 55.9% 56.2%

Table 3.5: Test set accuracies using Proposed and Clustering based Dynamic BMAL on
the MOBIO dataset with increasing proportions of new identities.

Besides the predicted batch size, it is equally important to analyze the accuracy

obtained on test sets with similar compositions as the unlabeled videos. In case of the

clustering technique, the gradient descent based approach (Section 3.4) was used for batch

query once the batch size was determined [236]. Tables 3.4 and 3.5 show the accuracies

obtained on test videos from the VidTIMIT and MOBIO datasets using the optimization

and clustering based strategies. The proposed techniques appropriately reflect the uncer-

tainty of the learner and query points accordingly, while the clustering based scheme is a

heuristic approach to decide the batch size. Thus, while the optimization based techniques

consistently deliver high accuracy values on test videos, the accuracy obtained from the

clustering scheme is erratic and inconsistent with varying proportions of new identities in

the unlabeled stream. This is more accentuated in the MOBIO dataset. We also note that
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the submodularity based technique depicts better accuracy than the SGD based method

for both the datasets. However, a comparison of the accuracies of the two dynamic batch

selection techniques will not be fair here, as their selected batch sizes are different (as

evident from Figure 3.5), unlike the previous experiment, where the batch size was kept

constant to facilitate fair comparison. The important thing to note in this experiment is

the fact that for both the proposed dynamic batch selection algorithms, the predicted batch

size appropriately reflects the complexity of the data.

Experiment 4: Effect of the Cost Parameter

In the experiments described above, the value of the cost parameter (λ2 for the SGD based

method and λ3 for the sub-modularity based method) was taken as 1. Here, we study the

effect of this parameter on the batch size and the accuracy. As in the previous experiment,

the training set consisted of 250 images and the test set had 5000 images spanning all

subjects. An unlabeled video steam (with 250 frames) was then presented for dynamic

batch selection and the selected images were appended to the training set (note that in this

case, we are not interested in studying the growth in accuracy with increasing size of the

training set, hence we focus on the accuracy obtained after dynamic batch selection from

a single unlabeled video).

Figure 3.6 shows the results (averaged over 20 different unlabeled video streams)

of the SGD based algorithm, where the weight parameter λ2 was varied between 0 and 2.

We note that, an increase in the value of the cost parameter leads to a reduction of the pre-

dicted batch size and also the generalization accuracy. This corroborates our intuition as

an increase in the labeling cost per sample restricts the number of unlabeled samples that

can be purchased for labeling, which also degrades the accuracy on the same test set. Our

observation revealed that the difference in accuracy for λ2 = 0 and λ2 = 2 was about 7%.

A similar result was obtained for the parameter λ3 in the sub-modularity based algorithm.
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(a) Study of the Cost Parameter on the VidTIMIT
dataset

(b) Study of the Cost Parameter on the MOBIO
dataset

Figure 3.6: Effect of the Cost Parameter in the SGD based Dynamic BMAL

Experiment 5: Study of Solution Quality

To solve the SGD based optimization problem for dynamic batch selection, the integer

constraints in Equation (3.10) were relaxed into continuous constraints in Equation (3.11).

Similarly, for the sub-modularity based approach, a greedy algorithm was used to solve

the dynamic batch selection problem in Equation (3.15). Both these strategies lead to sub-

optimal solutions and it is important to study the quality of the solutions obtained from the

relaxations. To this end, 400 random unlabeled video streams were taken from the Vid-

TIMIT and the MOBIO datasets and the relaxed batch selection algorithms were applied

for dynamic batch selection. Also, an exhaustive search was performed to find the best

solution for a given unlabeled stream by brute-force. The ratio f (x̂)
f (x∗) was computed for the

400 random samples, where x̂ is the solution obtained after relaxation, x∗ is the optimal

solution obtained by a brute-force search and f is the objective function to be maximized

(Equation (3.10) for the SGD based approach and Equation (3.15) for the sub-modularity

algorithm).
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(a) Study of the Solution Quality on the VidTIMIT
dataset

(b) Study of the Solution Quality on the MOBIO
dataset

Figure 3.7: Validation of Solution Quality for the SGD and Submodularity based Dynamic
BMAL

The results are presented in Figure 3.7 and depict the fact that the aforementioned

ratio is very close to 1 (greater than 0.8 for most of the test cases). Thus, the functional

value attained by solving the relaxation is very close to the optimal functional value. The

results lead to the conclusion that both the relaxations produce high quality solutions of

the corresponding optimization problems. However, we also note that for the MOBIO

dataset, the SGD algorithm sometimes yielded poor solutions (where the ratio is less than

0.3); this is mostly because of bad starting points of the stochastic gradient descent algo-

rithm, which led to bad local optima.

Experiment 6: GTAM Algorithm for Label Prediction

In this experiment, we validate the efficacy of the graph based transductive algorithm

(GTAM) proposed by Wang et al. [228] to assign labels to the current batch of unlabeled

samples in order to estimate the future classifier wt+1 in the iterations of the SGD algo-

rithm. The performance of GTAM was studied on a test set of 1000 images with different

sizes of the training set ranging from 200 to 600.
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(a) Study of the Efficacy of GTAM on the VidTIMIT
dataset

(b) Study of the Efficacy of GTAM on the MOBIO
dataset

Figure 3.8: Validation of the Efficacy of GTAM

The results are reported in Figure 3.8, which plots the test error against different

training set sizes. We note that with only 200 labeled samples, the GTAM algorithm pro-

duces a generalization error of about 10% and it reduces further with increasing sizes of

the labeled set. This corroborates that the GTAM algorithm is effective in accurately as-

signing labels to unlabeled samples and thus provides a good approximation of the future

classifier wt+1 in the Quasi Newton iterations of the SGD based dynamic BMAL algo-

rithm.

3.6 Discussions

In this chapter, we proposed two novel approaches of dynamic batch mode active learning,

which adaptively select the batch size and the specific data samples for manual annotation

based on the level of complexity of a data stream and the cost of annotation of each un-

labeled data sample. Unlike the previously proposed approaches of BMAL, which need

the batch size as an input, our framework incorporates the labeling cost in the batch se-

lection criterion and computes the batch size automatically. The batch size and selection

criteria are integrated into a single formulation and solving a single optimization problem
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yields the desired batch size and the specific samples for query. The frameworks were

validated on the face recognition application using two challenging biometric datasets.

Our results corroborated the efficacies of the approaches against static BMAL in terms

of dynamically identifying the batch size for a given data stream based on its complexity

level and the labeling cost of the images. The proposed algorithms also depicted compara-

ble performance against the state-of-the-art static BMAL techniques, when the batch size

was pre-specified. We further note that for a given batch size, the gradient descent based

scheme has a better label complexity than the sub-modularity approach, but the latter out-

weighs the former in terms of computation time. Thus, based on the requirements of a

given application, an appropriate technique can be selected. Moreover, the algorithms are

flexible and the specific terms in the objective function can be modified based on the re-

quirements of a particular application. We also empirically established that our algorithms

yield high quality solutions of the relaxations of the corresponding NP-hard problems.

The proposed frameworks can also be used for dynamic batch selection through a

single formulation in problems where multiple sources of information are available, such

as video containing both face and speech data of an individual or multiple image features

extracted from a given face image. Learning from multiple sources can be superior to

learning from a single source, if the sources are used appropriately [237]. Let Ut1 and Ut2

denote the unlabeled data streams from the two sources of information. Then, the objective

functions can be modified by appending relevant terms from the two sources, together with

a penalty on the batch size. In case of the stochastic gradient descent method, the following

selection criterion can be used for dynamic BMAL:

max
M

∑
j∈Ut1

ρ jM j− ∑
j∈Ut1

(1−M j)S(y|x j,wt+1)+ ∑
j∈Ut2

ρ jM j

− ∑
j∈Ut2

(1−M j)S(y|x j,wt+1)−∑
j

M j
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This can be solved in a similar way using the Quasi Newton method. Further, let x1i

and x2i denote the feature representations from the two sources of information and let E1,

D1 and E2, D2 be the entropy and the distance functions for the two sources, as defined in

Section 3.3. The submodular technique can be adapted for dynamic batch selection from

two sources using the following score function:

Snew(B) = ∑
x1i∈B
{ρ(x1i)+E(x1i)+D(x1i)}

+ ∑
x2i∈B
{ρ(x2i)+E(x2i)+D(x2i)}− |B|

This can be solved in an analogous way as Algorithm 3, where the submodular and

non-decreasing score function is defined as:

S(B) = ∑
x1i∈B
{ρ(x1i)+E(x1i)+D(xi1)}

+ ∑
x2i∈B
{ρ(x2i)+E(x2i)+D(x2i)}

Moreover, if contextual information is available (eg. location of a subject, at home

or in office), the same approach can be used to construct a prior probability vector depict-

ing the chances of seeing particular acquaintances in a given context. The entropy term

can then be computed on the posterior probabilities obtained by multiplying the likelihood

values returned by the classifier with the context aware prior. Thus, subjects not expected

in a given context (eg. a home acquaintance in an office setting) will have low priors

and consequently, the corresponding posteriors will not contribute much in the entropy

calculation. The frameworks can therefore be extended to context-aware adaptive batch

selection.
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Chapter 4

BATCH MODE ACTIVE LEARNING FOR FUZZY LABEL PROBLEMS : AN

ANALYSIS WITH FACIAL EXPRESSION RECOGNITION

Facial expressions play a pivotal role in effective social interactions. Expressions have

been recognized as one of the most powerful and immediate means for human beings

to communicate their emotions, intentions and opinions to each other. Recent advance-

ments in human-computer interaction (HCI) have spurred active research in the field of

automated recognition of facial expressions ([238], [239]). Computer systems endowed

with this capability have a wide range of applications including assistive technologies, se-

curity, law enforcement, psychiatry and telecommunications among others. In our earlier

research [1], (as mentioned in Section 1.1) we have developed a social interaction assistant

system intended to aid visually challenged individuals to interact with their sighted peers.

The system consists of a pair of glasses with a small camera mounted on the nose-bridge,

which the user wears (as shown in Figure 4.1). Efficient analysis of the incoming video

stream using computer vision algorithms enables the blind individual better understand

and interpret the surroundings. In such an application, accurate estimation of the facial

expressions of the subjects in the video stream can enable the visually impaired user judge

their emotional states, which is important for effective social interactions.

Figure 4.1: The Social Interaction Assistant for individuals with visual impairments [1]
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Ekman [240, 241] gave evidence about the universality of facial expressions and

proposed six basic expressions that convey human emotion - anger, disgust, fear, happy,

sad and surprise. However, these categories have an inherent vagueness in their definitions

as there is no clear distinction between the class boundaries. Hence, it is more appropri-

ate to consider a particular data sample as belonging to different classes with varying

degrees. Therefore, expression recognition is often treated as a problem involving fuzzy

class labels. Moreover, it has been shown that such fuzzy label assignment allows a bet-

ter representation of each point with respect to the different classes, which can improve

the accuracy of the classification model [242, 243]. In this chapter, we propose a novel

framework for batch mode active learning in the fuzzy label context. To the best of our

knowledge, this is the first attempt to develop such an algorithm for fuzzy label classi-

fication problems. We propose an optimization-based strategy for batch selection from

an unlabeled set and exploit the properties of sub-modular functions to derive an effi-

cient solution with provable performance guarantees. Although validated only on facial

expression data in this work, the proposed framework is generic and can be used in any

application involving fuzzy labels (document classification [244] or image segmentation

[245], for instance). Our BMAL framework for fuzzy label problems is based on the no-

tion of fuzzy sets and membership functions. We briefly introduce the basic concepts in

the following section.

4.1 Fuzzy Sets and Membership Functions

Fuzzy sets are sets whose elements have varying degrees of memberships [246]. In clas-

sical set theory, the membership of elements in a set is assessed in binary terms according

to a bivalent condition an element either belongs or does not belong to the set. In contrast,

fuzzy set theory permits each element to possess varying degrees of membership, which

is quantified by the membership function of the fuzzy set. The membership function out-
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puts a value in the real unit interval [0,1] for each element in the set, denoting its level of

membership to the set. Fuzzy sets generalize classical sets, since the indicator functions

of classical sets are special cases of the membership functions of fuzzy sets, if the latter

only take values 0 or 1. In fuzzy set theory, classical bivalent sets are usually called crisp

sets. The fuzzy set theory can be used in a wide range of domains in which information is

incomplete or imprecise, such as bioinformatics.

Formally, a fuzzy set is a pair (A,µA), where A is a set and µA is the membership

function of the set, that is, µA : A→ [0,1] [247]. For each element x∈A, µA(x) is called the

grade or membership of x in the set. The element x is not included in the set if µA(x) = 0

and fully included if µA(x) = 1. These cases resemble the classical crisp sets. x is called a

fuzzy member if 0 < µA(x)< 1. The set {x∈ A|µA(x)> 0} is called the support of (A,µA)

and the set {x ∈ A|µA(x) = 1} is called its kernel. In the context of fuzzy classification,

the trained fuzzy classifier for each class represents the membership function for that class

and outputs the membership value of a given point with respect to the class in question.

4.2 Batch Mode Active Learning for Fuzzy Label Problems

Consider a batch mode active learning problem, where we are given a training set Lt

and an unlabeled set Ut at time t. Both the training and the unlabeled sets have fuzzy

class labels. However, only the labels of the training points are known. Let wt be the

fuzzy classification model trained on Lt . The objective is to select a batch A (containing k

points) from Ut in such a way that the future learner wt+1, trained on Lt
⋃

A, has maximum

generalization capability. Let Y denote the set of possible classes in the problem.

The fundamental idea of batch mode active learning is to identify the salient exam-

ples for manual annotation. An example could be considered useful for annotation if the

current classification model has a high level of uncertainty in classifying it. Thus, uncer-

tainty or entropy of an unlabeled point is a measure of informativeness of that point. The
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entropy of a point in the fuzzy theory domain can be defined using the concept of mem-

bership functions. For a fuzzy set A with membership function µA, the fuzzy entropy of

a point x for |Y | membership functions is computed as follows [248] (here, µi(x) denotes

the degree of membership of point x with respect to class i):

H =−
|Y |

∑
i=1
{µi(x) log(µi(x))+(1−µi(x)) log(1−µi(x))} (4.1)

However, merely considering uncertainty as the batch selection criterion ignores

the redundancy among the selected data points (which results from very similar and nearly

duplicate samples). If two points separately furnish valuable information, but they furnish

the same/overlapping information, then the knowledge gained by querying both the points

is not substantial. Thus, a metric to quantify the diversity among the selected data sam-

ples is critical in formulating the batch selection criterion. In this work, the redundancy

of an unlabeled example was quantified as the minimum Euclidean distance of this point

from the already selected batch. A greater value of this minimum distance depicts a more

promising point from the diversity perspective. We would like to select a batch of unla-

beled points where each point furnishes useful, but distinctly unique information. To this

end, we formulate an objective function denoting the score of a set of points A as follows:

S(A) = ∑
xi∈A
{E(xi)+λD(xi)} (4.2)

where E(xi) is the fuzzy entropy of the unlabeled point xi computed using the membership

functions as described in Equation (4.1) and

D(xi) = min
x j∈A: j<i

EuclidDist(xi,x j) (4.3)

λ is a tradeoff parameter controlling the relative importance of the uncertainty and distance

terms. By definition, we have S(φ) = 0. Since the goal is to select a batch of points

with high aggregate uncertainty scores and high distance among them, the optimal batch

selection condition can be expressed as the following optimization problem:
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max
A⊂Ut :|A|=k

S(A) (4.4)

Due to the exponential nature of the search space, exhaustive search techniques are

not feasible. In the following sections, we derive an efficient strategy to solve the above

optimization problem.

4.3 Submodularity of the Objective Function

Let U be a finite set and let A⊆ B⊆U be two subsets of U . Consider an element x∈U\B.

A function f : 2U →ℜ is submodular if

f (A∪{x})− f (A)≥ f (B∪{x})− f (B) (4.5)

That is, a function is submodular if adding an element to a set increases the func-

tional value by at least as much as adding the same element to its superset. This property

is called the diminishing returns property [229, 230].

Lemma 3. The score function S(A) for batch selection, as defined in Equation (4.2), is a

submodular set function.

Proof. Let A and B be two sets formed by selecting unlabeled points from Ut , such that

A ⊆ B ⊆Ut and consider an unselected instance x ∈Ut\B. The increment in the value of

the objective function achieved by appending x to the already selected set A is given by

S(A∪{x})−S(A) = E(x)+λ min
x j∈A

EuclidDist(x,x j)

Similarly, the increment obtained by appending x to the already selected set B is:

S(B∪{x})−S(B) = E(x)+λ min
x j∈B

EuclidDist(x,x j)
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Since, A ⊆ B, the minimum distance of a point x will always be greater for the set A as

there may exist some point x j in the superset B which is closer to x than any element in its

subset A. Hence,

min
x j∈A

EuclidDist(x,x j)≥ min
x j∈B

EuclidDist(x,x j)

Thus, we have,

S(A∪{x})−S(A)≥ S(B∪{x})−S(B)

This completes the proof of the lemma.

Lemma 4. The score function S(A) is a monotonically non-decreasing function.

Proof. Let A denote the currently selected set of points and consider an element x ∈Ut\A,

Ut being the unlabeled pool. If x is added to the current set, the value of the objective

function changes by E(x)+ λ minx j∈A EuclidDist(x,x j). Both the entropy and distance

are positive quantities and hence,

S(A∪{x})≥ S(A)

This completes the proof.

4.4 Greedy Solution with Performance Guarantees

The problem of maximizing a submodular function, as given in Equation (4.4), is NP-hard.

However, Nemhauser et al. [229] established that for a function S, which is submodular

and non-decreasing, with S(φ) = 0, a greedy algorithm provides an efficient solution with

near-optimal results. The rationale of the greedy algorithm is to iteratively select points

by maximizing the incremental gain in the objective function at each step. Let Ag be
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the solution set obtained by the greedy algorithm and Amax be the best possible solution

set that can be achieved with this optimization formulation. Then, the functional value

obtained using the greedy solution can be related to the best achievable value through the

following inequality (proved by Nemhauser et al. [229]):

S(Ag)≥ (1− 1
e
)S(Amax) (4.6)

That is, the greedy algorithm is guaranteed to find a solution which achieves at least

a constant fraction (1− 1
e ) ≈ 63% of the optimal solution. Moreover, no other approxi-

mation algorithm can give a better performance guarantee unless P = NP [229]. Based

on this result, we propose an efficient algorithm for active batch selection. The following

pseudocode outlines our algorithm:

Algorithm 4 Batch Mode Active Learning for Fuzzy Classification
Require: Training set Lt , Unlabeled set Ut and batch size k

1: Train a classifier wt on the training set Lt
2: A = {φ}
3: for i = 1→ k do
4: for all x ∈Ut\A do
5: Atemp = A∪{x}
6: Compute S(Atemp) as in Equation (4.2)
7: end for
8: Select the point xmax producing the largest gain in the objective function (Equation

4.2)
9: A = A∪{xmax}

10: Ut =Ut\{xmax}
11: end for
12: return A

We note that to compute the entropy term in the objective function, we merely

need to apply the trained model on the unlabeled points to derive the class membership

values of the points. This does not require classifier retraining in each step (unlike [59])

and hence is computationally very efficient. Evidently, when the fuzzy entropy is replaced

by the regular Shannon entropy, this formulation can be applied to problems beyond fuzzy
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classification. This corroborates the generalizibility of the framework in efficiently select-

ing a batch of promising data samples, with provable performance guarantees.

4.5 Experiments and Results

In this section, we present the empirical results of the proposed fuzzy BMAL algorithm.

Datasets and Feature Extraction

We used the MMI and the MindReading datasets in our experiments. The MMI dataset

contains videos of subjects exhibiting various expressions and is extensively used in ex-

pression recognition research [249]. The MindReading is a computer based guide to

emotions primarily collected to help individuals diagnosed with autism recognize facial

expressions of emotion [250]. Both these datasets contain videos of subjects under chal-

lenging real world conditions and thereby represent an appropriate ground to test our algo-

rithms for active learning in facial expression recognition. Videos containing the six basic

expressions for 30 subjects were selected from the databases. Relevant frames around the

peak of the expression were extracted from each video. Automated facial detection [251]

was applied to crop the faces. The images were subsampled to 96×96 and filtered using

a Gabor filter bank of 4 orientations and 4 spatial frequencies [252]. The output from the

filter was subsampled to 16×16 pixels. Every frame from the video generated 16 Gabor

outputs of size 16× 16 pixels. These were concatenated into a single vector of 4096 di-

mensions. PCA was applied to reduce the dimensionality to 100 retaining about 98% of

the variance.

Classification Model

Fuzzy neural network was used for classification (due to its efficacy in fuzzy classifica-

tion [253]). It allows effective representation of the membership degrees of every data

point relative to all the classes. The output layer contained 6 nodes which represented the
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membership values of each point with respect to the 6 expression classes. A single hidden

layer of 50 nodes was used and the model was trained using the standard backpropagation

algorithm.

Experimental Setup

The active learning process started with 60 labeled instances, 10 from each of the 6 expres-

sion categories. The learner was exposed to an unlabeled pool of 1000 points and a test

set of about 2000 points was set aside to judge the generalization capability of the model.

For a fixed batch size k, the algorithm iteratively selects k points from the unlabeled pool

to be labeled each time. After batch selection, the selected points were removed from the

unlabeled pool and appended to the training set. The goal was to study the improvement

in performance on the test set as the newly selected instances are added to the training set

(this setup is similar to previous work [59]).

Ground Truth

An image bank containing about 100 images from each expression class was isolated for

data fuzzification. The class labels of the points in the training and unlabeled sets were

fuzzified using robust measures of inter and intra class dispersions. For details about this

method, please refer [253]. The label of each training and unlabeled point was repre-

sented using continuous values in the [0,1] interval denoting its proximity value to the

corresponding class centers in the image bank. To predict the class label of a test point,

the trained fuzzy model was applied to derive the fuzzy membership values of the differ-

ent classes and the output was de-fuzzified by predicting the class corresponding to the

maximum value. (The purpose of the image bank is to get ground truth fuzzy labels for a

given unlabeled point; it plays the role of a human oracle who is entrusted with the task of

assigning ground truth labels to the selected points during active learning).
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Experiment 1: Fuzzy BMAL vs. Random Sampling

In this experiment, we studied the performance of the proposed fuzzy BMAL technique

against Random Sampling, where a batch of points was selected at random from the un-

labeled pool (this was used as a baseline for comparison, since no other fuzzy BMAL

schemes have been proposed in the literature). The batch size k was taken as 10 in this

experiment (similar to [59]).

(a) The MMI Dataset (b) The MindReading Dataset

Figure 4.2: Comparison of Fuzzy BMAL against Random Sampling (Best viewed in color)

The results are shown in Figure 4.2. Each graph represents the average perfor-

mance over 5 random runs with different permutations of the training, testing and unla-

beled sets. The x axis represents the size of the training set and the y axis depicts the

accuracy obtained on the test set. We note that the proposed fuzzy BMAL algorithm out-

performs random sampling as its accuracy on the test set grows at a faster rate. The label

complexity (number of data points that need to be labeled to achieve a given level of ac-

curacy) is much less in case of the proposed method.
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Experiment 2: Fuzzy BMAL vs. Crisp BMAL

The purpose of this experiment was to present a comparative study of the proposed fuzzy

BMAL technique against crisp BMAL. We used two crisp batch mode active learning

algorithms in this work - (i) the discriminative batch mode active learning algorithm pro-

posed by Guo and Schuurmans [59], which has been shown to be the best performing crisp

BMAL technique till date [217] (the basic idea of this framework was to select a batch of

points which maximized the log-likelihoods of the selected points with respect to their

assigned class labels and minimized the entropy of the unselected points in the unlabeled

pool with respect to the future learner, as detailed in Section 2.3 ) and (ii) the crisp ver-

sion of the proposed approach, where the fuzzy entropy term in the objective function was

replaced with the Shannon entropy and the crisp labels of the training and unlabeled sets

were retained (they were not fuzzified using the image bank).

(a) The MMI Dataset (b) The MindReading Dataset

Figure 4.3: Comparison of Fuzzy BMAL against Crisp BMAL and the Discriminative
BMAL algorithm (Best viewed in color)

Figure 4.3 shows the performance (averaged over 5 runs) for the same experimen-

tal setup as before. We note that the proposed fuzzy BMAL approach achieves comparable

performance to the state-of-the-art algorithm. However, the optimization problem in the

discriminative algorithm is non-convex and needs to be solved using iterative techniques
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like Quasi-Newton. It also requires the classification model to be retrained in every it-

eration during batch selection. Thus, it involves severe computational overhead which

adversely affects the run time. Table 4.1 presents a comparison of the average time taken

to query a batch of 10 points from the unlabeled pool. It is evident that our algorithm

surpasses the discriminative approach by a considerable margin in terms of the running

time. The proposed scheme thus achieves comparable performance to the state-of-the-art

BMAL technique at a significantly lower running time. We also note that although the

crisp version of the proposed method achieves comparable performance as the fuzzy ver-

sion, the fuzzy version has a much lower label complexity, which is the primary goal in

active learning. These results show tremendous promise in using fuzzy theory concepts

for batch mode active learning in problems like expression recognition, where there is an

inherent imprecision and vagueness in the class label definitions.

Dataset Fuzzy BMAL Discriminative BMAL
MMI 0.9075 555.1616

MindReading 0.6890 509.7487

Table 4.1: Average time (in seconds) taken by the Fuzzy and Discriminative Batch Mode
Active Learning techniques to query a batch of 10 points from the unlabeled pool.

4.6 Discussions

In this chapter, we proposed a novel batch mode active learning framework for fuzzy la-

bel classification problems. Our batch selection criterion is based on the uncertainty and

redundancy furnished by a set of points. We exploited the theory of submodular functions

to derive a greedy algorithm to solve the optimization problem driving the active learn-

ing process. The proposed framework is efficient in terms of accuracy and computation

time and also has strong performance guarantees. Although validated only on fuzzy label

problems in this chapter, the proposed framework is generic and can be easily extended

to crisp label classification problems. The results in the previous section demonstrate that

the proposed approach has tremendous potential in reducing human annotation effort in
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real world fuzzy classification problems like facial expression recognition and can also be

scaled to large datasets commonly encountered in today’s digital world.
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Chapter 5

ACTIVE BATCH SELECTION VIA CONVEX RELAXATIONS WITH

GUARANTEED SOLUTION BOUNDS

In this chapter, we attempt to derive novel batch mode active learning algorithms which

provide strong theoretical guarantees on the quality of the obtained solutions. State-of-the-

art BMAL techniques typically formulate the batch selection task as an NP-hard integer

programming problem. Convex relaxations of the NP-hard problems are then solved to

select an appropriate batch of unlabeled samples [59, 217]. Even though such techniques

depict promising empirical performance, no formal mathematical guarantee has been es-

tablished on the solution qualities of the convex relaxations. In this work, we first formu-

late the batch selection as an NP-hard integer quadratic programming (IQP) problem. We

then propose a linear programming (LP) based relaxation and show that the batch selec-

tion task reduces to a score ranking problem; we hence call this method BatchRank. We

also propose a semi-definite programming (SDP) based relaxation and use randomization

techniques to solve the BMAL problem; we therefore name this algorithm BatchRand.

Further, we derive a deterministic bound on the quality of the first relaxation and a proba-

bilistic bound on the quality of the second. To the best of our knowledge, this is the first

research effort to provide concrete mathematical guarantees on the solution quality of the

batch mode active learning problem. (We note here that the purpose of this work is not to

derive a bound on the number of queries required to achieve a given generalization error in

active learning. This problem has been extensively studied in the literature [73, 78, 254].

Our objective is to derive mathematical guarantees on the solution qualities of the convex

relaxations of the batch mode active learning problem, which, to the best of our knowl-

edge, has not been addressed till date). We also empirically validate that the proposed
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algorithms deliver high quality solutions and are robust to label noise and population im-

balance.

5.1 The Proposed Batch Mode Active Learning Formulation

Consider a batch mode active learning problem, where we are given a training set Lt and

an unlabeled set Ut at time t. Let wt be the classifier trained on Lt . The objective is to

select a batch B (containing k points) from Ut in such a way that the future learner wt+1,

trained on Lt
⋃

B, has maximum generalization capability. Let Y denote the set of possible

classes in the problem. We quantify the quality of a batch of selected samples based

on their informativeness and diversity, that is, we would like to select a batch of samples

such that each point furnishes valuable information and the selected samples have minimal

redundancy among them.

Formally, we compute an information vector c ∈ ℜ|Ut |×1 where c(i) denotes the

information furnished by the point xi in the unlabeled pool. The uncertainty of the trained

model wt on a point xi is used as a measure of the informativeness of xi; higher uncertainty

values denote higher degrees of information. The uncertainty of an unlabeled point xi (that

is, c(i)) is computed as the entropy S(y|xi,wt) of the distribution P(y|xi,wt), such that

c(i) = S(y|xi,wt) =−∑
y∈Y

P(y|xi,wt) logP(y|xi,wt) (5.1)

In addition to c, a divergence matrix R ∈ ℜ|Ut |×|Ut | is also defined whose (i, j)th

entry is a measure of redundancy between unlabeled points xi and x j (higher the value of

Ri j, lower the redundancy). The divergence measure between two points is an estimate of

the amount of information overlap between the points, which is captured by the symmetric

Kullback Leibler divergence. Let pi and p j denote the vectors of posterior probabilities of

two points xi and x j in the unlabeled pool with respect to all the classes. Then, the (i, j)th
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entry in R equals the symmetric KL divergence between these two vectors (for details,

please refer [255]):

R(i, j) =
|Y |

∑
y=1

(pi
y− p j

y) log
pi

y

p j
y

(5.2)

By definition, all the entries in c and R are non-negative, that is, ci ≥ 0 and ri j ≥

0. Also, Rii = 0,∀i. Given c and R, our objective is to select a batch of points having

high information scores and high divergence (or minimal redundancy) among them. For

notational simplicity, we combine c and R into a single matrix D ∈ℜ|Ut |×|Ut | as follows:

D(i, j) =


R(i, j), if i 6= j

λ .c(i), if i = j
(5.3)

where each entry in the matrix D is non-negative, that is di j ≥ 0,∀i, j. λ is a trade-off

parameter. (We note that the matrix D can be defined suitably based on the application at

hand. Since defining the most suitable batch selection criterion for a given application is

not the focus of this work, we proceed with the criterion based on entropy and redundancy

and explain our framework.)

We now formulate the batch selection task as an explicit mathematical optimization

problem, where the objective is to select a batch of points with high aggregate uncertainty

scores and high divergences among them. Specifically, we define a binary vector m with

|Ut | entries (m ∈ {0,1}|Ut |×1) where each entry mi denotes whether the corresponding

unlabeled point xi will be included in the batch (mi = 1) or not (mi = 0). Our batch

selection criterion (with given batch size k) can thus be expressed using the following

integer quadratic programming (IQP) problem:

max
m

mT Dm

s.t. mi ∈ {0,1},∀i and
|Ut |

∑
i=1

mi = k (5.4)
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The binary constraint on mi makes this IQP problem NP-hard. We now propose

two convex relaxations to solve this NP-hard problem.

5.2 BatchRank : Convex Relaxation I

We first show that the IQP in Equation (5.4) is equivalent to an Integer Linear Program-

ming (ILP) problem in the following Lemma.

Lemma 5. The Integer Quadratic Programming batch mode active learning formulation

in Equation (5.4) can be simplified into an equivalent Integer Linear Programming (ILP)

problem.

Proof. We introduce a binary matrix Z = (zi j) with zi j = mi.m j. Thus, the optimization

problem in (5.4) reduces to:

max
m,Z

∑
i, j

di jzi j

s.t. zi j = mim j,
|Ut |

∑
i=1

mi = k, and mi ∈ {0,1},∀i (5.5)

The quadratic equality constraint zi j = mim j makes this problem difficult to solve.

Interestingly, we can show that this quadratic constraint, in fact, allows itself to be repre-

sented as a simpler linear inequality −mi−m j +2zi j ≤ 0,∀i, j. This ensures that the value

of zi j is 0 if either mi or m j (or both) is equal to 0. When both mi and m j are equal to 1, zi j

is free to be either 0 or 1. However, the maximization criterion in (5.5) forces the value of

zi j to be 1 since di j ≥ 0. Hence, the problem can now be written as:

max
m,Z

∑
i, j

di jzi j

s.t. −mi−m j +2zi j ≤ 0,∀i, j

and
|Ut |

∑
i=1

mi = k,mi,zi j ∈ {0,1},∀i, j (5.6)

This is an integer LP problem, proving Lemma 5.
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Although a global maximum exists for the ILP, it is computationally expensive to

compute. To solve such an ILP, a standard approach is to employ the LP relaxation.

Lemma 6. The convex LP relaxation of the above ILP (Equation 5.6) in Lemma 5 is

equivalent to a ranking formulation based on the entries in the matrix D.

Proof. We consider the following linear program relaxation:

max
m,Z

∑
i, j

di jzi j

s.t. −mi−m j +2zi j ≤ 0,∀i, j,
|Ut |

∑
i=1

mi = k

and mi,zi j ∈ [0,1],∀i, j (5.7)

Since this is a maximization problem with di j ≥ 0, at optimality, zi j =
mi+m j

2 (from

the inequality constraint −mi−m j +2zi j ≤ 0). Hence, (5.7) is equivalent to:

max
m

1
2 ∑

i, j
di j(mi +m j)

s.t.
|Ut |

∑
i=1

mi = k and mi ∈ [0,1],∀i (5.8)

This formulation admits an analytical (as well as an integer) solution for m by a

simple ranking based on the entries in the matrix D. The objective in (5.8) can be written as

∑i, j di jmi +∑i, j di jm j. Since the matrix D is symmetric, the maximization problem essen-

tially becomes equivalent to ranking the column sums of D (hence the name BatchRank).

This proves Lemma 6.

The pseudo-code for the BatchRank algorithm is given below. The complexity of

the algorithm is O(n2), where n is the number of unlabeled samples.
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Algorithm 5 BatchRank algorithm for Batch Mode Active Learning
Require: Training set Lt , Unlabeled set Ut and batch size k

1: Train a classifier wt on the training set Lt
2: Compute information vector c (Equation 5.1) and the divergence matrix R (Equation

5.2) using wt

3: Compute the matrix D, as described in Equation (5.3)
4: Compute a vector v ∈ℜ|Ut |×1 containing the column sums of D
5: Identify the k largest entries in v and select the corresponding unlabeled points from

Ut in the batch

Solution Bound of BatchRank

In this section, we prove a bound on the solution to the convex LP relaxation in (5.8) with

respect to the solution of the original NP-hard integer quadratic programming problem.

To this end, we transform the original maximization problem in Equation (5.4) into an

equivalent minimization problem through the following objective function:

f (m) = ||D||1−mT Dm (5.9)

where ||D||1 = ∑i, j di j. We note that since ||D||1 is constant for a given matrix D, maxi-

mizing mT Dm as in Equation (5.4) is equivalent to minimizing the function f (.) defined

above, that is, maximizing mT Dm and minimizing f (.) as defined above will fetch exactly

the same solution to the variable m. Since we are interested in the solution quality of

m, we prove an upper bound on the minimization problem in Equation (5.9). Since the

solution to m is the same, it is essentially equivalent to proving a bound on the original

maximization problem in Equation (5.4). The main result is summarized in the following

theorem:

Theorem 1. Let m∗ and m̂ be optimal solutions of (5.4) and (5.8) respectively. Then,

f (m̂)≤ 2 f (m∗)
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Proof. The optimization in (5.8) is an LP relaxation of the quadratic formulation in (5.4)

and thus the objective value of (5.8) is larger than that of (5.4). That is,

m∗T Dm∗ ≤ 1
2 ∑

i, j
di j(m̂i + m̂ j)

=
1
2 ∑

i, j:m̂i+m̂ j=1
di j + ∑

i, j:m̂i+m̂ j=2
di j (5.10)

Since all entries in D are non-negative, the following holds:

||D||1 = ∑
i j

di j

= ∑
i, j:m̂i+m̂ j=2

di j + ∑
i, j:m̂i+m̂ j=1

di j + ∑
i, j:m̂i+m̂ j=0

di j

≥ ∑
i, j:m̂i+m̂ j=2

di j + ∑
i, j:m̂i+m̂ j=1

di j

Thus,

∑
i, j:m̂i+m̂ j=1

di j ≤ ||D||1− ∑
i, j:m̂i+m̂ j=2

di j (5.11)

Combining the above two, we have

f (m∗) = ||D||1−m∗T Dm∗

≥ ||D||1−
1
2 ∑

i, j:m̂i+m̂ j=1
di j− ∑

i, j:m̂i+m̂ j=2
di j

≥ ||D||1−
1
2

||D||1− ∑
i, j:m̂i+m̂ j=2

di j


− ∑

i, j:m̂i+m̂ j=2
di j

=
1
2

||D||1− ∑
i, j:m̂i+m̂ j=2

di j

=
1
2

f (m̂)

The first inequality follows from Equation (5.10) and the second from Equation

(5.11). The last equality is true because in the evaluation of mT Dm, only the indices
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where both mi and m j are 1 will survive, others will vanish. This completes the proof of

the theorem. We thus note that the convex relaxation of the original NP-hard problem in

BatchRank has a guaranteed bound on the solution quality.

5.3 BatchRand: Convex Relaxation II

In this section, we attempt to further improve the theoretical guarantee of the solution

quality of the NP hard batch selection problem. We therefore propose a second relaxation

based on a randomized approximation algorithm (hence the name BatchRand) and show

that it achieves a probabilistic bound of 87.856%. Starting with Equation (5.4), we first

make the following variable transformation:

yi = 2(mi−
1
2
)⇒ mi =

yi +1
2

⇒
n

∑
i=1

yi = 2
n

∑
i=1

mi−n = 2k−n , p

where n = |Ut | is the number of unlabeled data samples in the unlabeled pool. The entire

optimization problem in Equation (5.4) is now rewritten in terms of the new variable y

(ignoring the constant 1
4 ):

max
y ∑

i, j
di j(yi +1)(y j +1)

s.t. yi ∈ {−1,1},∀i and
|Ut |

∑
i=1

yi = p (5.12)

Multi-dimensional Relaxation

Since solving the integer quadratic program in Equation (5.12) is NP hard, we consider

relaxations of the constraints. Specifically, we follow the strategy proposed by Goemans

and Williamson [256], where each variable yi is relaxed to a multidimensional vector vi

belonging to ℜn of unit Euclidean norm, instead of a one dimensional scalar variable. In

other words, we assume that each vector vi belongs to the n-dimensional unit sphere Sn.
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The relaxation of the NP hard problem in Equation (5.12) is therefore given by (ignoring

the constant 1):

max
v ∑

i, j
di j(vT

i v j + vT
0 vi + vT

0 v j) (5.13)

s.t. vi ∈ Sn,∀i and
|Ut |

∑
i=1

vi = p (5.14)

where v0 is a vector of n-dimensions with all entries 1. Once we solve for the vectors

v from this formulation (we present the solution details below), we select a random unit

vector r that is uniformly distributed on the unit sphere and find the dot product of r with

every vector vi. We then select the set of unlabeled points whose corresponding v vectors

yield a positive dot product with the random unit vector r, as in [256]. We note that the

number of positive dot products may not exactly equal the desired batch size k. However,

due to the equality constraint in Equation (5.14), the expected number of positive dot prod-

ucts equals the batch size k.

Semi-Definite Programming (SDP) Relaxation

Using the decomposition Y = BT B, we note that any positive semi-definite (psd) matrix

with diagonal entries 1 corresponds to a set of unit vectors vi if we correspond the vector

vi to the ith column of the matrix B. Then, yi j = viv j, which accounts for the term vT
i v j

in the objective function of Equation (5.13). However, to incorporate the terms vT
0 vi and

vT
0 v j in the objective, the matrix Y is decomposed as

Y =

vT
0

BT

(v0 B

)

where B = [v1 v2 . . .vn]. We can therefore rewrite the entire relaxation in terms of the

defined matrix Y (in the previous equation) as follows:

max
Y

∑
i, j

di, j(Yi+1, j+1 +Y1,i+1 +Y1, j+1)
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s.t. Yii = 1, for i = 2 to n+1,
n+1

∑
j=2

Y1 j = p, Y11 = n

and Y � 0 (Y is psd)

This is a semi-definite programming (SDP) problem and can be solved using existing

software packages like SeDuMi. The pseudocode of the BatchRand algorithm is provided

below. The complexity of the algorithm is O(n3), n being the number of unlabeled data

samples.

Algorithm 6 BatchRand algorithm for Batch Mode Active Learning
Require: Training set Lt , Unlabeled set Ut and batch size k

1: Train a classifier wt on the training set Lt
2: Compute information vector c (Equation 5.1) and the divergence matrix R (Equation

5.2) using wt

3: Compute the matrix D, as described in Equation (5.3)
4: Solve the optimization problem (Equation 5.13) to yield a set of vectors v
5: Select a random unit vector r and evaluate the dot product of r with each vector vi
6: Select the set of unlabeled points S = {i|vi.r ≥ 0} for manual annotation

Probabilistic Solution Guarantee

We first rewrite the objective in Equation (5.13) in a simplified form as follows:

∑
i, j

di j(vT
i v j + vT

0 vi + vT
0 v j) = ∑

i, j
d̂i j(vT

i v j)

where v0 is the vector obtained from the first row of the decomposed matrix after solv-

ing the SDP problem and d̂i j is obtained from di j, to simplify the representation. The

main result regarding the solution bound of the BatchRand algorithm is summarized in

the following theorem:

Theorem 2. Let W denote the value of the objective function produced using the BatchRand

algorithm and E(W ) denote its expectation. Also, let D̂total denote the sum of all entries

in the matrix D̂. Then,the following bound holds:

[E(W )+ D̂total]≥ 0.87856
[
∑ d̂i jviv j + D̂total

]
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Proof. Consider a random unit vector r. By the linearity of expectation, the expectation

of the value of the objective function is given by:

E(W ) = ∑ d̂i j[1.Pr(sgn(vi.r) = sgn(v j.r))

+(−1).Pr(sgn(vi.r) 6= sgn(v j.r))]

= ∑ d̂i j[1−2.Pr(sgn(vi.r) 6= sgn(v j.r))]

= ∑ d̂i j

[
1−2

arccos(vi.v j)

π

]
where sgn(x) = 1 if x ≥ 0 and −1 otherwise. The last equality follows from the result

proved by Goemans and Williamson [256]. Further, it can be shown that for −1≤ z≤ 1,

1− arccos(z)
π
≥ α.1

2(1+ z), where

α = min
0≤θ≤π

2
π
.

θ

1− cosθ
≥ 0.87856

(the proof of the above inequality can be found in [256]). That is, 1−2arccos(z)
π

≥ α(1+

z)− 1. Since in our formulation, the vis are all unit vectors, we have −1 ≤ z = viv j ≤

1, ∀i, j. Therefore, 1−2arccos(viv j)
π

≥ α(1+ viv j)−1.

Combining all of the above, we get

E(W )≥∑ d̂i j[α(1+ viv j)−1]

= α ∑ d̂i jviv j +(α−1)D̂total

⇒ [E(W )+ D̂total]≥ α

[
∑ d̂i jviv j + D̂total

]
which proves the theorem.

5.4 Computational Considerations

We note that the time complexity of BatchRank is O(n2) and that of BatchRand is O(n3).

This may limit the scalability of the algorithms to very large datasets. To overcome this,

we used a sub-sampling strategy in our empirical study, where the current classifier was
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applied to all the unlabeled data samples and the batch selection was restricted to the top p

uncertain samples (given by the entropy values of the current model). The value of p was

taken as 400 in our experiments and can be suitably selected based on a given application.

In future, we plan to investigate other sub-sampling strategies; for instance, another sub-

sampling approach may be to perform a k-means clustering on the unlabeled data with

k = p, take the p cluster centers as the sub-sampled pool and restrict the batch selection

to this subset. This method will select the representative samples from the unlabeled set

into the sub-sampled pool, as opposed to selecting the uncertain samples, as in our exper-

iments. Comparing the two approaches is an interesting direction of future research.

5.5 Experiments and Results

In this section, we empirically study the performance of the proposed BatchRank and

BatchRand algorithms.

Datasets and Feature Extraction

The datasets used in our experiments are detailed below:

UCI datasets: We used 9 datasets (binary and multi-class) from the UCI Machine

Learning Repository [257] as benchmarks to validate our algorithms.

Face Recognition datasets: We also used two challenging biometric datasets in

our experiments: (1) The VidTIMIT dataset [233], which contains video recordings of

subjects reciting short sentences under unconstrained natural conditions and (2) the MO-

BIO dataset [234], which was recently created for the MOBIO (Mobile Biometry) chal-

lenge to test state-of-the-art face and speech recognition algorithms. It contains recordings

of subjects under challenging real world conditions, captured using a hand-held device.

(Our purpose was to test the performance of active learning and so, for the MOBIO dataset,
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we did not follow the protocols specified in the actual challenge, which were intended for

person recognition.) Both these datasets contain video recordings of subjects under natu-

ral conditions where there is a redundancy of information and are therefore appropriate to

test active learning algorithms. The face images in the video frames were automatically

detected and cropped to 128 by 128. The Discrete Cosine Transform (DCT) feature was

extracted from the face images [235] and PCA was used to reduce the dimension to 100,

retaining about 99% of the variance.

Facial Expression Recognition datasets: We further used two challenging facial

expression recognition datasets - the MMI and the MindReading datasets, to test our al-

gorithms. The MMI dataset contains videos of subjects exhibiting various expressions

and is extensively used in expression recognition research [249]. The MindReading is a

computer based guide to emotions primarily collected to help individuals diagnosed with

autism recognize facial expressions of emotion [250]. Both these datasets contain videos

of subjects under challenging real world conditions and thereby represent an appropriate

ground to test our algorithms for active learning in facial expression recognition. Videos

containing the six basic expressions for 30 subjects were selected from the databases.

Relevant frames around the peak of the expression were extracted from each video. Auto-

mated facial detection [251] was applied to crop the faces. The Gabor filter was applied to

the images for feature extraction ([252]) and PCA was used to reduce the dimensionality

to 100, retaining about 98% of the variance.

Multi-Label datasets: In addition, we also validated our algorithms on two multi-

label datasets - the Scene and the Yeast. These are widely used in multi-label learning

research [258].

The value of the weight parameter λ was selected as 1 based on preliminary ex-

periments.
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Competing Algorithms and Experiment Set-up

We compared the proposed algorithms against the following batch mode active learning

strategies proposed in the literature: (1) Random, where a batch of points is queried at

random from the unlabeled set (this is used for baseline comparison), (2) Most Uncertain,

where the top k uncertain points are queried from the unlabeled set, k being the batch

size, (3) Fisher, that selects a batch of samples for manual annotation by maximizing the

Fisher information of the classification model (proposed by Hoi et al. [95]), (4) Disc,

a discriminative strategy that selects a batch of points by optimizing the performance of

the future learner, proposed by Guo and Schuurmans [59] and (5) Matrix, that queries

a batch of unlabeled points by maximizing the mutual information between the labeled

and unlabeled points [217]. The Disc and Matrix approaches have been shown to be the

state-of-the-art BMAL schemes [217].

For each dataset, we started with an initial labeled training set, an unlabeled pool

and a test set. For a fixed batch size k, each algorithm repeatedly selected k instances from

the unlabeled pool to be labeled each time (as mentioned in Section 5.3, the number of

points queried by BatchRand may not be exactly k, this algorithm was therefore used first

to note the exact number of samples queried in each iteration; these values were then used

in the other algorithms to query the same number of points in the corresponding iteration,

for fair comparison). After each batch selection, the selected points were removed from the

unlabeled pool and appended to the training set. The goal was to study the improvement

in performance on the test set with an increasing size of the training set (this experimental

setup is similar to earlier work [59],[217]). All the results were averaged over 10 runs to

rule out the effects of randomness. The sub-sampling strategy, mentioned in Section 5.4,

was used for the BatchRand and BatchRank algorithms when the size of the unlabeled set

was more than 400. Logistic Regression (LR) was used as the base classifier (similar to
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[59]). The training, unlabeled and test splits for each dataset are summarized in Table 5.1.

The algorithms were implemented in MATLAB on a quad-core Intel processor with 2.66

GHz CPU and 8 GB RAM.

Dataset Classes Dimensionality Training Unlabeled Testing
Breast Cancer 2 30 10 259 300

Heart 2 13 4 120 146
Musk 2 166 2 500 490
Spect 2 22 7 110 150
Wine 3 13 3 87 88

Waveform 3 20 9 1000 500
Vehicles 4 18 16 500 330

Image Segmentation 7 19 35 300 2000
Handwritten Digits 10 64 50 1000 2751

VidTIMIT 25 100 250 1000 4500
MOBIO 25 100 50 1000 4500

MindReading 6 100 50 1000 1511
MMI 6 100 50 1000 1785
Scene 6 294 10 350 2047
Yeast 14 103 10 600 1807

Table 5.1: Dataset Details

Experiment 1: Batch Mode Active Learning on Binary and Multi-class Datasets

The results on the UCI datasets are reported in Figure 5.1. In each graph, the x axis denotes

the size of the labeled training set and the y axis denotes the accuracy obtained on the test

set. As mentioned earlier, the objective was to study the growth in accuracy on the test set

as more and more points are queried from the unlabeled set.

From the results, it is evident that BatchRand and BatchRank outperform Random

sampling on all the datasets, as the accuracy grows at a faster rate with increasing size of

the labeled set. This shows that the proposed approaches succeed in selecting the salient

and prototypical samples from the unlabeled data population and attain a given level of ac-

curacy with the least number of labeled examples. The Most Uncertain and Fisher methods

perform better than random sampling, but are not as good as the proposed algorithms. The

proposed frameworks consistently depict comparable performance to Disc and Matrix, the

state-of-the-art BMAL techniques. Also, we note that the BatchRand approach performs
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better than BatchRank. This corroborates our intuition as the BatchRand method offers a

much better expected performance guarantee than BatchRank.

(a) Breast Cancer (b) Heart (c) Musk

(d) Spect (e) Wine (f) Waveform

(g) Vehicles (h) Image Segmentation (i) Digits

Figure 5.1: Batch Mode Active Learning on the UCI datasets. (Best viewed in color.)

Figure 5.2 depicts the results on the face recognition and facial expression recog-

nition datasets. We note that our algorithms once again depict comparable performance

as the state-of-the-art (the BatchRand method in fact, marginally outweighs Disc and Ma-

trix on the VidTIMIT and MindReading datasets). We also note that the random sam-

pling method may sometimes depict good performance, as in the VidTIMIT and MOBIO

datasets. However, it is not consistent and performs poorly in the other datasets.
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(a) VidTIMIT Face Dataset (b) MOBIO Face Dataset

(c) MindReading Expression Dataset (d) MMI Expression Dataset

Figure 5.2: Batch Mode Active Learning Face Recognition and Facial Expression Recog-
nition datasets. (Best viewed in color.)

Experiment 2: Batch Mode Active Learning on Multi-Label Datasets

Multi-label learning is a generalization of conventional single-label learning, where each

data sample can have multiple labels associated with it. Manual annotation of samples

is even more difficult in a multi-label application, as the user has to scan through all

the possible labels to decide the label set of a particular example. Thus, batch mode

active learning is of paramount importance in such settings. The proposed BatchRank

and BatchRand frameworks are flexible and can be extended to multi-label contexts. We

demonstrate their performance on two benchmark multi-label datasets in this section. For
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this purpose, the entropy term in the matrix D was modified and was computed as the

average entropy over the individual classes:

S(Y |xi,wt) =
1
|Y |

|Y |

∑
j=1

[pi
j log pi

j +(1− pi
j) log(1− pi

j)]

The proposed approaches were compared against (i) Random Selection, (ii) Dis-

tance based Selection, in which an SVM was trained for each possible class and the k

closest unlabeled points (k being the batch size) to all the hyperplanes in the feature space

were selected for annotation, (as in [48]) and (iii) Entropy based Selection, where the en-

tropy was computed for every unlabeled instance and the top k points were queried based

on the entropy ranking (as in [47]). A polynomial kernel SVM was used as the base classi-

fier because of its established performance in multi-label learning [48]. We used the Scene

and the Yeast datasets in our experiments. The natural scene dataset contains 2407 natu-

ral images belonging to one or more of the six natural scene categories including beach,

sunset, foliage, field, mountain and urban. The images are first converted into CIE Luv

color space and then the first and second color moments (mean and variance) are extracted

over a 7× 7 grid on the image, resulting in a 294 dimensional feature vector [259]. The

Yeast dataset consists of micro-array expression data and phylogenetic profiles with 2417

genes. Each gene in the set belongs to one or more of the 14 different functional classes

and is represented as a 103 dimensional feature vector. Further details about this biolog-

ical dataset can be found in [260]. The results on these two datasets are shown in Figure

5.3 and corroborate the conclusions drawn in the previous experiments, with BatchRand

depicting the best performance.

Experiment 3: Run Time Analysis

In this section, we perform an analysis of the computation time of each of the batch

mode active learning algorithms. Table 5.2 (binary and multi-class datasets) and Table

5.3 (multi-label datasets) report the average time taken to query a batch of samples from
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(a) Multi-label Scene dataset (b) Multi-label Yeast dataset

Figure 5.3: Multi-label Batch Mode Active Learning on the Scene and Yeast datasets.
(Best viewed in color.)

Dataset US R MU F D M BRank BRand
Wine 87 0.01 0.06 0.49 6.92 1.02 0.22 0.86
Spect 110 0.01 0.11 0.78 1.18 2.34 0.21 3.91
Heart 120 0.01 0.08 0.33 5.21 1.80 0.24 0.37

Breast Cancer 259 0.01 0.23 0.46 16.23 5.78 0.40 0.49
Image Segmentation 300 0.01 0.25 0.64 12.09 3.61 0.69 1.44

Musk 500 0.01 0.12 1.03 96.14 35.51 1.35 2.17
Vehicles 500 0.01 0.18 0.97 27.04 9.87 1.39 2.94

Waveform 1000 0.01 0.58 1.03 296.43 122.34 3.57 11.38
Handwritten Digits 1000 0.01 0.53 1.56 977.28 234.78 7.35 19.47

VidTIMIT 1000 0.01 1.78 3.92 923.65 171.88 14.27 26.08
MOBIO 1000 0.01 1.18 2.37 757.43 204.57 11.92 24.69

MindReading 1000 0.01 1.48 1.78 88.71 12.23 6.19 13.32
MMI 1000 0.01 0.44 1.86 73.94 129.77 6.43 11.94

Table 5.2: Time taken (in seconds) to query a batch of samples from an unlabeled set.
(Binary and Multi-class Datasets).

an unlabeled set for all the algorithms (here, US: Unlabeled Set Size, R: Random, MU:

MostUncertain, F: Fisher, D: Discriminative, M: Matrix Partition, BRank: BatchRank,

BRand: BatchRand). We note that random selection and uncertainty based selection are

the most efficient in terms for running time. The Fisher information based selection frame-

work also has low computation time. BatchRank and BatchRand surpass Disc by a sub-

stantial margin in terms of running time. The improvement is more prominent in case of

the larger datasets (VidTIMIT, MOBIO and Handwritten Digits) thus demonstrating their
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Dataset US R B MU BRank BRand
Scene 350 0.01 0.72 1.39 0.77 2.28
Yeast 600 0.01 0.54 1.89 2.58 5.74

Table 5.3: Time taken (in seconds) to query a batch of samples from an unlabeled set
(Multi-label Datasets).

potential for large scale learning. The Disc algorithm involves intensive computation and

classifier retraining as part of the optimization process, which adversely affects its running

time. The Matrix algorithm is better than Disc (as observed in [217]) but is slower as com-

pared to BatchRank and BatchRand. The results unanimously point to the conclusion that

the proposed approaches deliver comparable performance as the state-of-the-art BMAL

algorithms at a significantly lower computation time.

Experiment 4: Validation of the Solution Bounds

To empirically validate the solution bounds of the proposed algorithms, we generated ran-

dom symmetric matrices D, with di j ≥ 0. We derived the optimal solutions m∗ and m̂

by solving the integer programming problem in (5.4) and the relaxed formulation in (5.8)

respectively for the BatchRank algorithm. Note that the ILP formulation in (5.4) can be

solved exactly for small-scale problems. The ratio f (m̂)
f (m∗) was computed for the given ma-

trix D and for a specific batch size k, where f (.) was the function defined in Equation

(5.9). This was necessary because the solution bound was proved on the objective f (.)

and not on the original objective defined in Equation (5.4). We also computed the ratio
E(W )+D̂total

∑ d̂i jviv j+D̂total
as described in Theorem 2 for the BatchRand algorithm. Figure 5.4 shows

sample results obtained on 3 test cases with different matrix dimensions (the batch size

k was taken as 10 in all cases). Each graph shows the ratio f (m̂)
f (m∗) and E(W )+D̂total

∑ d̂i jviv j+D̂total
for

500 different matrices of the same dimension. For the BatchRank framework, it is evident

that the ratio of the functional values is less than 2 in all cases, which validates the bound

established in Section 5.2. Moreover, in all the test cases, the ratio is only slightly greater
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than 1 (in the range 1.2 to 1.4), which shows that the functional value obtained using

the proposed method is very close to that obtained using the optimal solution. In case of

BatchRand, we note that the ratio is always greater than 87% validating the bound proved

in Theorem 2. Further, we note that the ratio is actually very close to 93% in most cases

depicting that the solutions obtained in practise are much better than the theoretical guar-

antee. We therefore conclude that both BatchRank and BatchRand produce high quality

approximations of the corresponding relaxations.

(a) 20×20 Test Cases (b) 30×30 Test Cases (c) 50×50 Test Cases

Figure 5.4: Validation of Solution Bounds of BatchRank and BatchRand. (Best viewed in
color.)

Experiment 5: Noise Sensitivity

In many real-world scenarios, the labels of the data samples are noisy, either due to errors

in data collection, or even because of human annotation errors. In this section, we study

the label-noise sensitivity of the BatchRank and BatchRand algorithms. To simulate the

situation, we artificially imparted stochastic labeling noise to the unlabeled samples. An

n% noise implies that the samples are randomly given an incorrect label with a probability

of n%. The labels of the test set were kept unchanged and the algorithms were run on clean

as well as noisy data. We compared the proposed algorithms against random selection on

the VidTIMIT dataset.
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The results are depicted in Figure 5.5, which plots the active learning curves for

BatchRank, BatchRand and Random sampling with 10% and 20% labeling noise. As

expected, the classification accuracy reduces in the presence of noise. But, from Figure

5.5(a), we note that, even with 10% labeling noise, the accuracy of both BatchRank and

BatchRand drops only marginally as compared to the values on clean data and the final

accuracy matches very closely to that obtained using clean data. Further, both the methods

outperform random sampling on the same amount of noisy data and even on clean data.

Even with 20% labeling noise, the final accuracy values of BatchRank and BatchRand are

very close to those obtained using clean data. These results corroborate the fact that the

proposed algorithms are robust to a significant amount of labeling noise.

(a) 10 percent label noise (b) 20 percent label noise

Figure 5.5: Noise Sensitivity of BatchRank and BatchRand on the VidTIMIT dataset.
(Best viewed in color.)

A possible reason for this is the fact that both the BatchRank and BatchRand algo-

rithms select unlabeled samples for query which are the most uncertain (and also diverse)

with respect to the current classification model. Considering a binary classification prob-

lem, the uncertain samples typically lie close to the decision hyperplane. If the user gives

an incorrect label of such an unlabeled sample, it will have minimal effect on the orienta-

tion of the decision boundary. In contrast, an incorrect label of a sample deep inside the
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region of a certain class can have much more severe effects on the decision boundary. The

same argument can be extended to a multi-class classification problem with C classes by

treating it as C binary classification problems using the one-vs-rest approach. Thus, the

batch selection criterion of the proposed frameworks endow them with the capability to

counter label noise and deliver high classification accuracy.

Experiment 6: Population Imbalance

In real-world data, there is often a large variation in the number of samples belonging to the

different classes. In this section, we study the performance of BatchRank and BatchRand

to counter population imbalance. We once again present the results on the VidTIMIT

dataset and compare the proposed algorithms against random selection. To simulate the

real world scenario, an unlabeled pool of samples, with largely varying number of in-

stances per class, was presented to the active learner for batch selection. The test set was

kept unchanged. Figure 5.6(a) depicts the percentage of images of each of the 25 classes

that were present in the unlabeled pool.

(a) Percentage of images of each class in the unla-
beled set

(b) Classwise Accuracy

Figure 5.6: Population Imbalance : VidTIMIT dataset. (Best viewed in color.)
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Random selection suffers since it does not integrate the composition of the unla-

beled pool relative to the current training set in the batch selection process. In contrast,

the proposed frameworks accurately identify the salient instances from the unlabeled set

based on the uncertainty and divergence criteria. Thus, regardless of the composition of

the unlabeled set, they append useful information to the underlying classification model

and consistently deliver high accuracy on the individual classes. This is evident from

Figure 5.6(b) which plots the accuracy of each class for random sampling and the active

learning methods. We see that the proposed algorithms depict better performance than

random selection in 20 of the 25 classes. They also comprehensively outperform random

sampling in the overall classification accuracy, as evident from the confusion matrices in

Figure 5.7. We note that BatchRank and BatchRand lead to much lower confusion among

the classes and beat random sampling by about 6%. This emaphasizes their robustness to

population imbalance.

(a) Random Selection (b) BatchRank (c) BatchRand

Figure 5.7: Population Imbalance : Confusion matrices for Random Selection, BatchRank
and BatchRand (Max trace = 4500) : VidTIMIT dataset.

Experiment 7: Visual Demonstration

In this section, we present a visual demonstration of the efficacy of the proposed algo-

rithms in selecting salient images from video streams containing redundant data. To this

end, we applied BatchRand and BatchRank on the video “si1909” of subject “fadg0” from
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the VidTIMIT dataset and the algorithms were required to select a batch of 10 frames from

the video (containing about 117 frames). The images selected by BatchRand, BatchRank

and random sampling are shown in Figures 5.8, 5.9 and 5.10 respectively. It is evident that

random selection captured a much lesser variation in facial appearances as compared to

the proposed techniques.

Figure 5.8: Batch of images selected using BatchRand

Figure 5.9: Batch of images selected using BatchRank

Figure 5.10: Batch of images selected using Random Sampling

To study the performance more objectively, the total pairwise distance was com-

puted between all the selected images for these methods. Our preliminary experiments
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confirmed the efficacy of the DCT feature in ensuring varied facial appearances are at

a larger distance than similar looking faces. Thus, a higher value of the total pairwise

distance would mean that images with multifarious appearances were selected. Selec-

tion of redundant images will reduce the value of the total pairwise distance. The results

of pairwise distance computation are presented in Figure 5.11. We note that BatchRank

and BatchRand selected a more diverse set of images compared to random sampling, as

depicted by the total pairwise distance values.

Figure 5.11: Total pairwise distance among the selected images

5.6 Discussions

In this chapter, we proposed two novel batch mode active learning algorithms called

BatchRank and BatchRand. Starting with an NP-hard optimization problem, we derived

two convex relaxations and established bounds on the solution quality of each relaxation.

Our empirical results on several challenging binary, multi-class and multi-label datasets

corroborate the fact that the proposed approaches perform at par with the state-of-the-art

BMAL techniques and also deliver high quality solutions. Our results also verified the

proved theoretical bounds. We further demonstrated the robustness of the proposed algo-

rithms to real-world issues like label noise and population imbalance.
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Chapter 6

ACTIVE MATRIX COMPLETION

Recovering a matrix from a sampling of its entries is a problem of rapidly growing interest

and has been studied under the name of matrix completion. It occurs in many areas of en-

gineering and applied science. However, considering the enormity of data in the modern

era, manually completing all the entries in a matrix will be an expensive process in terms

of time, labor and human expertise. It is therefore natural to extend the idea of active

learning to the matrix completion problem. To this end, appropriately identifying a subset

of missing entries (for manual annotation) in an incomplete matrix is critically important;

this can potentially lead to better reconstructions of the incomplete matrix with minimal

human effort. In this chapter, we propose novel algorithms to address this issue. Since

the query locations are actively selected by the algorithms, we refer to these methods as

active matrix completion algorithms. To the best of our knowledge, this is the first effort

to develop algorithms which can incorporate human supervision in actively completing

a matrix. Such a framework will also be immensely useful in problems like multi-class

active learning, multi-label active learning, transductive active learning and active feature

acquisition, where the data can be represented as a matrix of observations and selective

human supervision can be exploited to solve the problem in question.

6.1 Background

The data collected in most modern applications are mostly structured in the form of matri-

ces (for instance, a grayscale image is a matrix of pixel intensity values; in a recommenda-

tion system, the data is represented in the form of a matrix, where each row is a user, each

column is an object and the corresponding entry represents the rating given by the particu-
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lar user to that object). The problem of matrix completion, or reconstructing a matrix from

a set of partially observed entries, is of immense practical importance. Missing values oc-

cur due to a number of reasons, including ignorance of the concerned individual about

the value of the entry in question or unwillingness of a subject to divulge some sensitive

information. It is a recurrent problem in applications like machine learning [218], com-

puter vision and graphics [219], recommendation systems [220], clinical research [261],

DNA microarray analysis [262] and climatic data analysis [263] among others. Missing

data in any of these applications can bias results, reduce generalizability and lead to erro-

neous conclusions. The ultimate consequence of missing data is distortion from the truth,

reducing the validity of study results. For instance, in a hypothetical study of the course

of dementia, persons who become unable to follow directions may not complete formal

cognitive testing and will have missing test scores. Over time, as those who are unable

to complete the tests do not contribute data, the mean and range of cognitive test scores

will appear better than they really are, which can mislead data analysts. Such problems

have motivated active research in the area of matrix completion to estimate the missing

entries in a matrix from a subset of observations. Several matrix completion algorithms

have been proposed over the last couple of decades to address this practical and useful

challenge [264, 265, 266, 267].

Of late, there has been a growing interest in the development of machine learn-

ing algorithms with “humans-in-the-loop”, (such as active learning) which have shown

tremendous promise in the development of reliable classification and regression models.

It is therefore logical to conceive of the development of matrix completion algorithms

with selective human supervision. This can potentially lead to better reconstruction of

the partially observed data matrix. As an exemplar application, consider a movie recom-

mendation system where the data is organized in the form of a matrix with rows denoting

users, columns denoting movies and entries in the matrix representing the rating given by
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a particular user to a particular movie. In such a system, vendors provide recommenda-

tions based on the users’ preferences. However, each user rates only a few movies and

such a matrix happens to be extremely sparse. To infer the preference of a user on an un-

rated movie (in order to provide an efficient recommendation), an accurate reconstruction

of the sparse matrix is imperative. A framework which can identify the missing entries

in the matrix having maximal prediction uncertainty will be of immense use to facilitate

completion of the matrix in such a situation. Given a set of such entries in the matrix,

the corresponding users can be requested to provide ratings for the corresponding movies.

Knowledge of these uncertain entries can enable a better reconstruction of the ratings ma-

trix, which in turn, can lead to a better inference regarding the preference of a user on an

unrated movie.

In this chapter, we propose novel algorithms to integrate the intelligence of human

oracles in the matrix completion problem. We develop frameworks to quantify the uncer-

tainty of prediction of each missing entry in the matrix, which can be used to identify the

indices which need to be labeled manually. The frameworks are generic and can be used

in conjunction with any popular matrix completion algorithm (EM/SVD and others). Fur-

ther, we demonstrate how the proposed frameworks can be adapted to different variants

of active learning (multi-class, multi-label, transductive active learning, active feature ac-

quisition) to select a set of exemplar unlabeled data instances for manual annotation. We

hope that this work will serve as a motivation for the development of matrix completion

algorithms with “human-in-the-loop” and their adaptations in other interactive problem

settings. We first present a brief survey of matrix completion algorithms followed by our

active matrix completion frameworks.
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6.2 Matrix Completion : A Brief Survey

Most matrix completion algorithms usually assume that the underlying data matrix has

low rank. The problem of low rank matrix completion has been addressed in the context

of machine learning [218], computer vision [219] and recommendation systems [220],

among others. Low rank matrix completion is typically posed as the following optimiza-

tion problem:

min
X

1
2
||X−M||2Ω

s.t. rank(X)≤ r (6.1)

where X ,M ∈ℜp×q and the elements of M in the set Ω are given while the remaining el-

ements are missing. Fazel et al. [268] heuristically used the matrix trace norm to approx-

imate the rank of matrices. Later, Candes and Recht [269, 270] theoretically justified the

usage of trace norm as an approximation of the matrix rank. Srebro et al. [271] employed

second order conic programming (SOCP) to formulate a trace norm related problem in

matrix factorization. However, the SOCP based approach was computationally intensive

and did not scale to large matrices. To address this issue, Ma et al. [267] applied the fixed

point and Bregman iterative methods to solve the rank minimization problem for large

scale matrices. Cai et al. [266] proposed a singular value thresholding algorithm to ad-

dress the same problem of large scale matrix completion. Candes and Tao [264] presented

optimality results quantifying the minimum number of entries needed to recover a matrix

of rank r exactly by any method. Candes and Recht [269] proved that most low rank ma-

trices can be exactly recovered from most sets of sampled entries, even though these sets

have small cardinality. They also proved that this can be achieved by solving a convex

optimization problem. Recht [265] further improved on these results to provide a bound

on the number of entries required to reconstruct a low rank matrix which is optimal upto

a small numeric constant and one logarithmic factor. Hastie et al. [272] proposed three
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methods for matrix completion - one based on singular value decomposition (SVD), one

on nearest neighbor averaging and a third on repeated regressions. Schneider [263] pro-

posed a method to impute the missing values using the Expectation Maximization (EM)

algorithm. Liu et al. [273] extended the idea of matrix completion to tensors and proposed

a method for estimating missing values in visual data. Yi et al. [274] proposed a matrix

completion based approach for crowdclustering, where m users were asked to complete

the similarity matrix, the set of entries which were not agreed upon by the majority were

treated as missing and were imputed using a matrix completion algorithm. This frame-

work, however, was not focused on actively selecting a subset of uncertain entries in the

matrix to query their ground truth values.

The fundamental idea behind the proposed algorithms is to compute a measure of

uncertainty of prediction of every missing entry in the incomplete data matrix. The top

uncertain entries can then be queried for manual annotation. We present three strategies

to quantify the uncertainty of prediction and consequently, three active matrix completion

algorithms. We first present the mathematical details of these algorithms; we then present

methodologies to improve the computational efficiency of our frameworks, so as to make

them scalable to large datasets.

6.3 Active Matrix Completion using the Conditional Gaussian Distribution

This method treats each row (or column, as the case may be) of the data matrix as a particu-

lar case (or sample).For each case, it is assumed that the set of missing entries conditioned

on the set of observed entries follows a multivariate normal distribution. A well-known

result from statistical learning theory enables us to compute the mean and the covariance

matrix of this conditional distribution. The overarching idea is to impute the missing en-

tries of each case with the conditional mean vector while the diagonal elements of the

covariance matrix of the conditional distribution quantifies the variance (uncertainty) as-
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sociated with each imputation. The top k uncertain entries across the entire matrix (where

k is the batch size or the allowable number of entries that can be queried) are then selected

for manual annotation. Our algorithm is based on the GLasso and MissGlasso frameworks

that have been proposed for sparse inverse covariance estimation of the multivariate nor-

mal distribution in the presence of missing entries. We now present the details of these

methods.

GLasso

Consider a variable X (of dimensionality p) which follows the multi-variate normal distri-

bution with mean vector µ and covariance matrix Σ that is, X ∼ N(µ,Σ). The problem of

Graphical Lasso (or GLasso) [275] is to estimate the parameters µ and Σ from a complete

random sample x = (x1,x2, . . . ,xn)
T . Let K denote the concentration matrix, K = Σ−1. A

typical approach is to minimize the negative `1-penalized log-likelihood [275]:

−`(µ,K;x)+λ ||K||1 =−
n
2

log |K|+ 1
2

n

∑
i=1

(xi−µ)T K(xi−µ)+λ ||K||1 (6.2)

where K is a positive semidefinite matrix, λ > 0 is a tuning parameter and ||K||1 =

∑
p
j, j′=1 |K j j′|. The minimizer K̂ can be obtained by solving the following optimization

problem:

K̂ = argmin
K�0

(− log |K|+ tr(KS)+ρ||K||1) (6.3)

where S = 1
n ∑

n
i=1(xi− x̄)(xi− x̄)T and ρ = 2λ

n . Friedman et al. [276] proposed an efficient

algorithm called GLasso to solve the optimization problem (6.3).

MissGlasso

This algorithm was proposed by Stadler and Buhlmann [277] to estimate the mean and

covariance matrix of the multi-variate normal model in the presence of missing entries.
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Let x = (xobs,xmis) denote the set of observed values and missing values respectively

of a random sample x of size n. Further, let xobs = (xobs,1,xobs,2, . . . ,xobs,n) where xobs,i

represents the set of observed variables for case i, i = 1, . . .n. The likelihood function is

now based on the observed indices for each case and is summed over all the cases:

`(µ,Σ;xobs) =−
1
2

n

∑
i=1

(log |Σobs,i|+(xobs,i−µobs,i)
T (Σobs,i)

−1(xobs,i−µobs,i)) (6.4)

where µobs,i and Σobs,i are the mean and covariance matrix of the observed components of

X for case i. Equivalently, in terms of K:

`(µ,K;xobs) =−
1
2

n

∑
i=1

(log |(K−1)obs,i|+(xobs,i−µobs,i)
T (K−1

obs,i)
−1(xobs,i−µobs,i)) (6.5)

Similar to Equation (6.2), the inference for µ and K are now based on the sum of the

observed log-likelihood over all the cases, together with an `1 penalty on the concentration

matrix K:

µ̂, K̂ = argmin
(µ,K):K�0

− `(µ,K;xobs)+λ ||K||1 (6.6)

This problem can be solved using a well-known theorem on partitioned Gaussians, which

can be stated as follows [232]. Consider a joint Gaussian distribution N(x|µ,Σ) with

K = Σ−1 and consider a partition

x =

xa

xb

 , µ =

µa

µb



Σ =

Σaa Σab

Σba Σbb

 , K =

Kaa Kab

Kba Kbb


Then, xa conditioned on xb will also follow a normal distribution and its mean

and covariance can be expressed in terms of the known parameters [232], that is Xa|b ∼

N(µa|b,Σa|b) where
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µa|b = µa−K−1
aa Kab(xb−µb) (6.7)

Σa|b = K−1
aa (6.8)

Assuming that for each case in the data, the set of missing entries conditioned

on the set of observed entries follows a multivariate normal distribution, the problem in

Equation (6.6) can be solved using the results stated above together with the Expecta-

tion Maximization (EM) algorithm. The complete data x follows a multivariate normal

distribution which belongs to the exponential family with sufficient statistics

T1 = xT .1 =

(
n

∑
i=1

xi1,
n

∑
i=1

xi2, . . . ,
n

∑
i=1

xip

)

and

T2 = xT x

The log-likelihood for the complete data, given in Equation (6.2) can be expressed

in terms of the sufficient statistics T1 and T2 as follows:

−`(µ,K;x)+λ ||K||1 =−
n
2

log |K|+ n
2

µ
T Kµ−µ

T KT1 +
1
2

tr(KT2)+λ ||K||1 (6.9)

which is linear in T1 and T2. The expected complete penalized log-likelihood is denoted

by:

Q(µ,K|µ
′
,K
′
) =−E[`(µ,K;x)|xobs,µ

′
,K
′
]+λ ||K||1

The EM algorithm works by iterating between the E step and the M step. Let

(µm,Km) denote the parameter values in iteration m.

E step: In the expectation step, the expected value of the complete penalized log-

likelihood is computed. As the complete penalized log-likelihood is linear in terms of the

sufficient statistics T1 and T2, the E step essentially consists of calculating the expected
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values of the parameters T1 and T2 based on the current observations together with the

current values of the mean vector and the covariance matrix:

T m+1
1 = E[T1|xobs,µ

m,Km]

T m+1
2 = E[T2|xobs,µ

m,Km]

To evaluate these, we need to compute the conditional expectation of xi j and xi jxi j′

for i = 1, . . . ,n and j, j′ = 1, . . . , p. Assuming for each case, the set of missing entries

conditioned on the set of observed entries is normally distributed, Equation (6.7) gives

E[xi j|xobs,i,µ
m,Km] =


xi j if xi j is observed

c j if xi j is missing

where the vector c is defined as (from Equation (6.7))

c = µ
m
mis− (Km

mis,mis)
−1Km

mis,obs(xobs,i−µ
m
obs)

Here, Kmis,mis is the sub-matrix of K with rows and columns corresponding to the missing

entries for case i. Kmis,obs is defined analogously. Similarly,

E[xi jxi j′|xobs,i,µ
m,Km] =


xi jxi j′ if xi j and xi j′ are observed

xi jc j′ if xi j observed xi j′ missing

(Km
mis,mis)

−1
j j′ + c jc j′ if xi j,xi j′ missing

M step: In the maximization step, the expected log-likelihood for the complete

dataset is maximized to obtain the update equations for the mean vector and the covariance

matrix. Differentiating Equation (6.9) with respect to µ and equating it to 0, we get the

update equation for µ as:

µ
m+1 =

1
n

T m+1
1
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Also, from a re-organization of the terms in Equation (6.9), it is evident that the

covariance matrix can be updated by solving the following optimization problem:

Km+1 = argmin
K�0

(
− log |K|+ tr(KS(m+1))+

2λ

n
||K||1

)

where Sm+1 = 1
nT m+1

2 −µm+1(µm+1)T . The M step therefore reduces to a standard GLasso

problem, as discussed in Section 6.3. The E step and the M step are iterated until conver-

gence. Once the final matrix K is obtained, the covariance matrix corresponding to the

missing entries for a particular case (or data sample) i can be derived as the inverse of the

sub-matrix of K with rows and columns corresponding to the missing variables for case i.

The diagonal elements of the covariance matrix quantify the variance of prediction of each

of the missing entries for that case. Thus, it is possible to estimate the variance (uncer-

tainty) of prediction of each of the missing entries (on a case-by-case basis) in the partially

observed matrix. The missing entries are ranked in descending order of their uncertainties

and the top k entries (k being the required batch size) are queried for manual annotation.

6.4 Active Matrix Completion using Query by Committee (QBC)

The QBC framework quantifies the prediction uncertainty based on the level of disagree-

ment among an ensemble of matrix completion algorithms. Specifically, a committee of

matrix completion algorithms are applied on the partially observed data matrix to impute

the missing values. The variance of prediction (among the committee members) of each

missing entry is taken as a measure of uncertainty of that entry. The top k uncertain en-

tries are then queried for manual annotation. We used the following three commonly used

matrix completion algorithms as members of our committee:

k-NN: The k nearest neighbors (k-NN) method identifies the k most similar fea-

tures to the current one with a missing value and uses the average of these k nearest neigh-

bors as a guess for the missing one [272].
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EM: This method imputes the missing values using the Expectation Maximization

(EM) algorithm [263]. An iteration of the EM algorithm involves two steps. In the E

step, the mean and covariance matrix are estimated from the data matrix (with the missing

entries filled with zeros or estimates from the previous M step); in the M step, the missing

value of each data column is filled in with their conditional expectation values based on the

available entries and the estimated mean and covariance. The mean and the covariance are

re-estimated based on the newly filled matrix and the process is iterated until convergence.

SVD: Singular value decomposition (SVD) is a standard method for matrix com-

pletion based on low-rank approximation [272]. In this method, some initial guesses are

first provided to the missing data values. SVD is then applied to obtain a low rank approx-

imation of the filled-in data matrix. The missing values are then updated based on their

corresponding values in the low rank estimation. SVD is applied to the updated matrix

again and the process is iterated until convergence.

6.5 Active Matrix Completion using Committee Stability

This approach is similar to the QBC strategy. However, instead of different matrix comple-

tion techniques, we used the same SVD based imputation algorithm with different values

of the rank parameter to form the committee. The uncertainty of prediction of each miss-

ing entry was computed as the variance of the values from the committee members for that

entry, as before. We refer to this method as the stability based active matrix completion

algorithm since it essentially measures the regularity of prediction of a particular entry

from an ensemble of predictors (similar to the QBC framework).

A general pseudo-code of the three active matrix completion algorithms is pre-

sented in Algorithm 7.
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Algorithm 7 Active Matrix Completion
Require: A partially observed matrix M ∈ℜp×q, set Ω of observed indices, batch size k

and number of iterations n

1: for rounds = 1→ n do
2: Complete the partially observed matrix and compute the variance of prediction of

every missing entry (as detailed in Sections 6.3, 6.4 and 6.5)
3: Sort the missing entries in descending order of their uncertainty (variance) values
4: Query the ground truth values of the top k uncertain entries from human oracles
5: Update the matrix with the newly acquired entries
6: Complete the matrix using any standard matrix completion algorithm
7: Compute the reconstruction error
8: end for
9: return The completed matrix after n iterations

6.6 Computational Considerations

In Section 6.3, we noted that the active matrix completion algorithm based on Conditional

Gaussian distribution involves estimation of the inverse covariance matrix K (in the M

step of the EM algorithm). Also, both the QBC and the Stability based algorithms involve

low rank matrix completion using the singular value decomposition technique. These can

adversely affect the computation time for large scale matrices. In this section, we present

two efficient algorithms - one for inverse covariance estimation and the other for low rank

matrix completion, to speed up the computations in our algorithms.

Efficient Inverse Covariance Estimation

Sparse inverse covariance estimation is typically achieved using the GLasso algorithm

[276], which solves the following problem:

K̂ = argmin
K�0

(− log |K|+ tr(KS)+λ ||K||1) (6.10)

where S is the sample covariance matrix of dimension p× p. To address the scalability

issue, we used the thresholding strategy, proposed by Mazumder and Hastie [278], for
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large scale graphical lasso. The authors presented a novel property characterizing the

family of solutions to the graphical lasso problem in Equation (6.10) as a function of the

regularization parameter λ , which states that the vertex partition induced by the connected

components of the non-zero pattern of the estimated concentration matrix (at λ ) and the

thresholded sample covariance matrix S (at λ ) are exactly equal. Specifically, the sparsity

pattern of the solution K̂(λ ) to (6.10) gives rise to the symmetric edge matrix/skeleton

∈ {0,1}p×p defined by:

E1(λ )i j =


1 if K̂(λ )

i j 6= 0, i 6= j

0 otherwise

This defines a symmetric graph G(λ )
1 = (V,E1(λ )), and suppose that it admits a

decomposition into m1(λ ) connected components:

G(λ )
1 = ∪m1(λ )

l=1 G(λ )
1l (6.11)

where G(λ )
1l = (V̂ (λ )

l ,E1(λ )l ). Now, a thresholding on the entries of the sample covariance

matrix S (for a given λ ) is performed to obtain a graph edge skeleton E(λ )
2 ∈ {0,1}p×p

defined by:

E2(λ )i j =


1 if |Si j| > λ , i 6= j

0 otherwise

The symmetric matrix E2(λ ) defines a symmetric graph on the nodes V = {1, . . . , p}

given by G(λ )
2 = (V,E2(λ )). The graph G(λ )

2 admits a decomposition into connected com-

ponents given by:

G(λ )
2 = ∪m2(λ )

l=1 G(λ )
2l (6.12)

where G(λ )
2l = (V (λ )

l ,E2(λ )l ) are the components of the graph G(λ )
2 . Mazumder and Hastie

[278] proved that the vertex partition of the connected components of (6.12) is exactly
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equal to that of (6.11). This implies that the optimization problem in (6.10) completely

separates into m2(λ ) separate sub-problems of the same form as (6.10). The sub-problems

have size equal to the number of nodes in each component pi = |Vi|, i = 1, . . . ,m2(λ ).

Also, the cost of computing the connected components of the thresholded sample covari-

ance graph (6.12) is much smaller than the cost of fitting graphical models (6.10). Further,

the computations pertaining to the covariance graph can be done off-line and are amenable

to parallel processing. This property of thresholding a graph into connected components

facilitates efficient computation of the inverse covariance matrix for large scale data. For

more details, please refer to [278].

Efficient Low Rank Matrix Completion

A standard approach to solve the low rank matrix completion problem (Equation (6.1)) is

to relax the rank function to its convex surrogate trace norm, which is then solved using

singular value decomposition (SVD) operations. To avoid the computational overhead

of SVD, some researchers proposed to sacrifice the convexity by local searching. These

methods only require light-weighted matrix computations and are scalable. In this work,

we used the low rank factorization LMaFit proposed in [279]. The main idea of the method

is presented as follows. For a low rank matrix X ∈Rm,n of rank r, where r < min(m,n),

we can represent the matrix by X = UV where U ∈ Rm,r and V ∈ Rr,n, we plugin this

product form of X into the objective and solve the following problem:

(U∗,V∗,Z∗) = argmin
U,V,Z

‖UV−Z‖2
F s.t.PΩ(Z) = PΩ(X0)

where Z ∈Rm,n is an auxiliary matrix and the required low rank matrix is given by X∗ =

U∗V∗. The formulation can be directly solved by the block coordinate descent algorithm.

In each step of the algorithm, two least squares problems need to be solved, which can be

effectively reduced to a single least squares problem [279].

124



Algorithm 8 Block coordinate descent for efficient low rank matrix completion
Ensure: U∗,V∗,Z∗, Ω, X0
Require: V0,Z0

V− = V0,X− = X0
while true do

perform QR decomposition on Z−VT
− and let Q be its orthogonal basis.

U+ = Q
V+ = QZ−
Z+ = U+V++PΩ(X0−U+V+)
if convergence break
return U− = U+,V− = V+,Z− = Z+

end while
return U∗ = U+,V∗ = V+,Z∗ = Z+

The improved algorithm is outlined in Algorithm 8. Since QR decomposition is

very cheap for the matrices Z−VT
−, the major computational cost in Algorithm 8 is the

computation of U+V+ for computing Z+ = U+V++PΩ(X0−U+V+). Note that Z+ is a

sparse + low rank structure, thus there is no need to compute the multiplication operation,

but directly work on the sparse + low rank structure whenever Z+ is used. This reduces

the computational complexity and makes the method scalable.

6.7 Experiments and Results

In this section, we study the performance of the proposed active matrix completion algo-

rithms. We started with a given data matrix and manually deleted a certain percentage

(ranging from 40% to 98%) of the entries at random. The active matrix completion algo-

rithms (refered to as Conditional Gaussian, QBC and Stability for the methods proposed

in Sections 6.3, 6.4 and 6.5 respectively) were then applied to query a fixed number of

entries in each iteration. After the batch query, the selected locations in the matrix were

annotated using a human oracle (we simulated this by supplying the ground truth value of

the batch of selected indices). The matrix was then completed using any standard matrix

completion algorithm (we used the SVD based completion algorithm [272] in our work).
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The reconstruction error was then computed as the Frobenius norm of the error matrix

(the difference between the original data matrix and the predicted matrix, normalized by

the number of indices predicted). The process was then repeated and the reduction in the

reconstruction error with increasing number of iterations (equivalently, with increasing

number of observed entries) was noted. We compared our results against the case where

there was no human intervention and the matrix was merely completed using the SVD

algorithm (referred to as passive completion in our experiments). We also compared our

approaches against the case where the query locations for manual annotation were selected

at random.

Experiment 1: Image Datasets

Figure 6.1: GrayScale images used in our experiments

We first conducted experiments on images (represented as grayscale matrices of

size 256× 256). We used four commonly used images in computer vision research -

the Lena, Cameraman, Vegetables and Building images for our study. These images are

shown in Figure 6.1. The degree of sparsity (percentage of missing entries to begin with)

was set to 60%. The batch size (number of entries to be queried in each iteration) was set

to 50 and the process was repeated for 50 iterations. The results were averaged over 5 runs

(where the specific positions of the missing entries in the starting matrix were randomly

permuted) to rule out the effects of randomness. Since these datasets are relatively small

in size, we used the standard SVD method here (and not the algorithm detailed in Section
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6.6). For the inverse covariance estimation, the efficient approach proposed by Mazumder

and Hastie [278] was used. The results are presented in Figure 6.2.

(a) Lena (b) Cameraman

(c) Vegetables (d) Buildings

Figure 6.2: Active Matrix Completion on Image Datasets (Best viewed in color). Degree
of Sparsity = 60%

The x axis denotes the number of queried entries and the y axis denotes the re-

construction error. The objective was to study the rate of decrease of the error as more

and more entries in the matrix were labeled. The dotted horizontal line depicts the sce-

nario when no human being is involved in the matrix completion process - the matrix is

merely completed using SVD imputation (note that since there is no human labelers for

this method, the number of observed entries remain the same, which leads to the same
127



error value from iteration to iteration; this line is plotted for comparison between active

and passive completion). It is evident that active matrix completion results in enormous

reduction in the reconstruction error. This corroborates the advantage of leveraging hu-

man intelligence in the matrix completion process. We further note that all the proposed

algorithms outperform random sampling as the errors drop at a faster rate (with increas-

ing number of observed entries) using the proposed methodologies. The method based on

Conditional Gaussians depicts the best performance on these datasets. Further empirical

studies (not presented here) revealed that the pattern of the graphs remained the same for

different degrees of sparsity (20%, 40% and 80%) - the only difference being the absolute

values of the reconstruction errors.

Experiment 2: Recommendation Systems

Recommendation systems is an important application of the proposed active matrix com-

pletion algorithms where requesting the rating of a particular object (movie, music, book)

from a particular user makes intuitive sense. The proposed algorithms can be used to ju-

diciously exploit human intelligence to facilitate a more accurate reconstruction, which in

turn, can help making better recommendations to appropriate users. We used the following

recommendation datasets in our experiments: (1) MovieLens 100k, (2) MovieLens 1M,

(3) Netflix, all of which contain ratings given by a group of users on a set of movies, (4)

Jester, containing the user ratings of jokes and (5) Dating Recommendation, containing

anonymous ratings of profiles made by users. These datasets have been extensively used

to validate recommendation prediction algorithms [280, 281]. In each dataset, rows rep-

resent users, columns represent items and the matrix entry denotes the rating given by a

particular user for a particular item. The details of the datasets together with their sparsity

levels or the percentage of missing entries, are reported in Table 6.1.
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Dataset Rows Cols Matrix Size Sparsity Level
Movie 100k 943 1682 1.58 M 93.7%
Movie 1M 1000 2000 2 M 96.2%

Netflix 442 8307 3.67 M 97.6%
Jester 5000 100 0.5 M 28.12%
Dating 152 17906 2.7 M 98.2%

Table 6.1: Recommendation Datasets Details

These datasets inherently contain a lot of missing entries as it was not possible to

get the ratings of each of the items from all the users. However, to test the performance

of our algorithms from iteration to iteration, we need the ground truth values of all the

entries in the matrix. To alleviate this issue, we focused only on the set of observed entries

in the matrix and manually deleted 50% of the observed entries in each dataset. The

active matrix completion algorithms were then run on the entire matrix and the prediction

uncertainty values were ranked only on the set of entries which were manually deleted.

After supplying the ground truth values of these indices, the matrix was completed and

the error was measured only on the observed subset of the matrix. The batch size was set

at 50 and the process was repeated for 100 iterations. As before, the results were averaged

over 5 random runs. The efficient matrix completion algorithm (Section 6.6) was used in

place of the standard SVD (for the QBC and the Stability based active matrix completion

algorithms) for these datasets.

Figure 6.3 depicts the performance on these datasets. We once again note that

the incorporation of human supervision significantly reduces the reconstruction error (as

evident from the dashed line represeting passive completion and the solid lines represent-

ing active matrix completion). The QBC and the Conditional Gaussian based algorithms

consistently depict good performance across all the datasets; QBC, in fact, marginally

outweighs the Conditional Gaussian based framework and achieves the lowest reconstruc-

tion error after 100 iterations. The stability based method mostly demonstrates better

performance than random sampling, except the Jester dataset, where it performs almost
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at-par with random selection. From the results, we also note that random sampling can

sometimes depict good performance (as in the Movie 100k dataset). However, it is not

consistent across datasets in its performance.

(a) Movie 100k (b) Movie 1M (c) Netflix

(d) Jester (e) Dating

Figure 6.3: Active Matrix Completion on Recommendation Datasets (Best viewed in
color)

Experiment 3: Computation Time Analysis

In this section we study the computation time of each of the active matrix completion

algorithms to select a batch of entries from a matrix for manual annotation. The results

are presented in Table 6.2. Other than Random Sampling, the QBC approach is the most

efficient in terms of computation time and can handle a matrix with about 3.67 million en-

tries in less than 2 minutes. The Stability and the Conditional Gaussian based frameworks

also depict promising runtime values and can scale to a matrix with 3.67 million entries

in approximately 5 minutes (for the dating recommendation dataset however, the Condi-

tional Gaussian based approach took almost 15 minutes for each batch query; the reason
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Datasets Random QBC Stability Conditional Gaussian
Lena 0.91 7.40 17.14 14.89

Cameraman 0.94 7.28 12.56 12.34
Vegetables 0.42 8.72 14.18 15.28
Building 0.89 17.50 17.33 17.09

Movie 100k 1.07 12.59 49.81 32.54
Movie 1M 1.76 17.18 56.77 138.62

Netflix 1.78 93.87 245.69 328.37
Jester 1.97 12.31 30.40 19.56
Dating 1.59 31.92 235.86 883.67

Table 6.2: Average time taken (seconds) to query a batch of indices from the matrix.

behind this needs to be investigated). From this table, it is evident that the QR decomposi-

tion based algorithm for efficient matrix completion and the connected components based

graph-theoretic method for scalable inverse covariance estimation are effective in signif-

icantly reducing the computational overhead of the proposed frameworks. Thus, besides

outweighing passive matrix completion and random sampling in terms of error reduction,

the proposed active matrix completion algorithms are also efficient computationally and

thus have the potential to scale to large datasets.

6.8 Extension to Active Learning Problem Settings

In this section, we demonstrate how the proposed approach can be extended to solve sev-

eral variants of the active learning problem. We specifically focus on transductive active

learning, multi-label active learning, active learning in regression and active feature acqui-

sition. In addressing these problems, each column of the matrix is assumed to constitute

a data point with feature values and class labels. Depending on the problem at hand, the

active matrix completion frameworks are applied to query informative samples either from

the features sub-matrix or from the labels sub-matrix. These features/labels are annotated

manually and the reduction in generalization error is studied with increasing amount of

information obtained.
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Transductive Active Learning

The concept of transductive inference was introduced by Vapnik [282]. The formal prob-

lem setting for transductive inference is defined as follows: Given a set of ` training pairs

(x1,y1),(x2,y2), . . .(x`,y`), where xi ∈ ℜd , yi ∈ {−1,1} and a sequence of k test vectors

x`+1, . . . ,x`+k, find among an admissible set of binary vectors Y = {y`+1, . . . ,y`+k}, the

one that classifies the test vectors with the least number of errors. It is assumed that

x`+1, . . . ,x`+k are random i.i.d vectors drawn according to the same (unknown) distribu-

tion P(x). The classifications y of the vectors x are defined by some (unknown) conditional

probability function P(y|x). A transductive learning problem is different from an inductive

problem in at least two respects [283]. Firstly, the learning algorithm does not necessar-

ily have to learn a general rule, it only needs to predict accurately for a finite number of

test examples. Thus, it has the obvious advantage of not having to specify a particular

learning model (and its parameters) apriori. Second, the test examples are known a priori

and can be observed by the learning algorithm during training. This allows the learning

algorithm to exploit any information that might be contained in the test examples. Trans-

ductive learning is therefore a particular case of semi-supervised learning, since it allows

the learning algorithm to exploit the unlabeled examples in the test set. Popular learning

algorithms based on transductive inference include transductive support vector machines

(TSVMs) [284, 285, 286], the Conformal Predictions Theory [287, 288] and graph-based

algorithms [228, 289, 290] among others.

In this section, we apply the active matrix completion algorithms to the problem

of transductive active learning. The class labels are represented as {−1,1}; during predic-

tion, the matrix is completed and if the value of a label entry is positive, it is discretized

as 1 and if it negative, it is discretized as −1 (similar to the approach in [291]). The

Breast Cancer and the Spect datasets (from the UCI Machine Learning Repository [257])
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were used for this experiment. The Breast Cancer dataset has 569 samples with 30 at-

tributes, where each patient is categorized as having or not having cancer. The features

were computed from a digitized image of a fine needle aspirate (FNA) of a breast mass.

They describe characteristics of the cell nuclei present in the image. The Spect dataset

describes diagnosing of cardiac Single Proton Emission Computed Tomography (SPECT)

images. Each of the patients is classified into two categories: normal and abnormal. The

database of 267 SPECT image sets (patients) was processed to extract features that sum-

marize the original SPECT images. As a result, 44 continuous feature pattern was created

for each patient. The pattern was further processed to obtain 22 binary feature patterns.

80% of the labels were deleted at random from the two datasets and were treated as un-

labeled samples. The results (averaged over 3 runs to rule out the effects of randomness)

are depicted in Figure 6.4. The x axis denotes the number of samples queried an the y axis

denotes the percentage error on the test set. The batch size was taken as 10 for both the

datasets and the process was repeated for 30 and 20 iterations for the two datasets respec-

tively.

(a) Breast Cancer (b) Spect

Figure 6.4: Transductive Active Learning using Active Matrix Completion (Best viewed
in color).
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It is evident that the error decreases at a much faster rate for the active selection

techniques as compared to random sampling. This certifies the fact that the active matrix

completion techniques succeed in querying the salient and exemplar instances and induc-

ing a reliable model with minimal human effort.

Multi-label Active Learning

Multi-label classification is a generalization of conventional classification problems, where

each data sample can have multiple labels [45, 46]. Most of the previous work on multi-

label active learning use the SVM classifier to quantify the uncertainty of an unlabeled

sample (based on distance from the hyperplane or entropy) which is then used for batch

selection [48, 50, 47, 49, 51]. However, all these methods request all the labels of an

unlabeled sample once it is selected for query. In a multi-label learning problem, the la-

bels share an inherent correlation and for each selected sample, only some effective labels

need to be annotated while others can be inferred by exploring the label correlations. The

contribution of each label in minimizing the classification error is different. Thus, it is

important to develop multi-label active learning techniques which query specific sample-

label pairs rather than all the labels of a given sample.

An effective way to exploit the label correlations is through low-rank matrix com-

pletion [291]. Minimizing the rank of the data matrix provides a natural way to exploit the

dependencies among the labels of a multi-label sample. Thus, the proposed active matrix

completion methodologies can be judiciously used to query the informative sample-label

pairs and efficiently model the label correlations. The Scene (2407 samples, 6 classes,

14442 sample-label pairs) and the Yeast (2417 samples, 14 classes, 33838 sample-label

pairs) multi-label datasets were used for this experiment. 60% of the sample-label pairs

were deleted at random. The batch size was taken as 80 for the Scene dataset and 100

for the Yeast dataset and the process was iterated over 100 rounds. The results (averaged
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over 3 random trials) are presented in Figure 6.5 where the x axis represents the number

of sample-label pairs queried and the y axis denotes the test set error. They corroborate

our previous findings, emphasizing the efficacy of the proposed algorithms for multi-label

active learning.

(a) Scene (b) Yeast

Figure 6.5: Multi-Label Active Learning using Active Matrix Completion (Best viewed in
color).

Active Learning in Regression

Contrary to classification problems, where the class labels are discrete, the labels in a

regression problem are continuous. In this section, we depict the performance of our ac-

tive matrix completion algorithms on regression problems (for our algorithms, the matrix

entries being discrete or continuous is unimportant - so the exact same methods can be

applied to regression settings). We used the FacePix and the AVEC datasets in our exper-

iments.

The FacePix dataset [292] contains images of subjects under natural conditions

with head poses ranging from −90o to 90o. Automatically determining the head pose of

a subject is important in applications ranging from robotics to assistive technology. Since

head pose is a continuous variable (and can assume any value in the range [−90,90]), this
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is a regression problem. Sample pose images from this dataset are shown in Figure 6.6.

The Laplacian of Gaussian (LoG) feature was used in this experiment yielding vectors of

dimension 2560 and PCA was used to reduce the dimension to 100.

Figure 6.6: Pose images from the FacePix dataset

The Audio Visual Emotion Challenge (AVEC) [293] is a continuous human emo-

tion recognition dataset that contains facial video data annotated with continuous emotion

responses. The dataset contains Linear Binary Pattern (LBP) features [294] extracted for

each video frame. Each video frame was divided into 10× 10 image blocks and LBPs

were calculated at each pixel in each block. A histogram of 59 LBPs was generated for

each image block and all these 100 histograms were concatenated to a single feature vector

of dimension 5900. Each video frame was annotated with four values, each corresponding

to arousal, power, expectancy and valence. The values for arousal, power and valence lie

between [−0.6608,0.6083], [−0.4559,0.7720] and [−0.6332,0.7774] respectively. But

since expectancy values had a very different range of values between [13.2320,84.0560],

they were normalized to lie between [−0.7,0.7]. Each video was down-sampled by 7%

to obtain a total of 2874 image samples. PCA was used to reduce the dimension from

5900 to 100 retaining about 98% of the variance. This is a regression problem with four

labels, where the labels share an inherent correlation among them. Thus, the active ma-

trix completion algorithms provide a natural way to exploit this correlation and query the

informative sample-label pairs for manual annotation.

60% of the labels (for the FacePix Pose dataset) and sample-label pairs (for the

AVEC dataset) were deleted at random and active learning was used to query the infor-

mative labels / sample-label pairs. The batch size was taken as 30 for FacePix and 60
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for the AVEC dataset and the process was repeated over 100 iterations. The results (av-

eraged over 3 random runs) are shown in Figure 6.7 where the x axis denotes the number

of samples queried (for the FacePix dataset) / the number of sample-label pairs queried

(for the AVEC dataset) and the y axis denotes the mean squared error on the test set. It

is evident that all the active matrix completion algorithms result in a rapid decrease in the

test error with increasing number of queries. We also note that random sampling depicts

good performance on both these datasets.

(a) FacePix Pose (b) AVEC

Figure 6.7: Active Learning in Regression using Active Matrix Completion (Best viewed
in color).

Active Feature Acquisition

The incomplete-data problem, in which certain features are missing for particular data

points, exists in a wide range of fields, including social sciences, computer vision, biolog-

ical systems and remote sensing. In multi-sensor remote-sensing applications, incomplete

data can result when only a subset of physical sensors (e.g. radar, infrared, acoustic) are

deployed at certain regions. In a medical diagnosis application, the data for a particular

patient may have missing features corresponding to the medical tests that could not be

performed due to the associated time / costs. In such applications, it is possible to acquire
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the missing data at a cost. In a medical diagnosis task, deciding which medical tests to

administer would be equivalent to deciding which missing data values to acquire. Acquir-

ing data is usually a time consuming, laborious task, which necessitates an active feature

acquisition process. In contrast to conventional active learning, which selects the most

beneficial samples to labels, this process would select the most informative features to

acquire.

In this section, we demonstrate the usefulness of the proposed active matrix com-

pletion frameworks for active feature acquisition. The Breast Cancer and the Spect datasets

were once again used for this experiment. Both these datasets represent natural settings

for developing predictive models to classify a patient as normal or abnormal, where the ac-

quisition of features has an associated cost. In our experiments, 60% of the feature values

were deleted at random from the two datasets. The batch size was taken as 100 for Breast

Cancer and 30 for the Spect dataset and the process was repeated over 100 iterations. The

goal was to select the informative features so as to better diagnose patient as benign or ma-

lignant. We therefore study the decrease in generalization error with increasing number of

features acquired. The averaged results (over 3 random trials) are depicted in Figure 6.8

and once again corroborate the efficacy of active sample selection over passive (random)

selection. The QBC and Stability based methods particularly depict good performance.

6.9 Discussions

In this chapter, we presented novel algorithms to leverage the intelligence of human ora-

cles to actively complete a partially observed data matrix. We presented two ensemble-

based methods - Query-by-Committee and a Stability-based method and a strategy based

on Conditional Gaussian distributions to compute the uncertainty of prediction of every

missing entry in the matrix. The top k entries were then selected for manual annotation,

where k is the desired batch size. Our results corroborated the advantage of active matrix

138



(a) Breast Cancer (b) Spect

Figure 6.8: Active Feature Acquisition using Active Matrix Completion (Best viewed in
color).

completion over passive completion and also the efficacy of the algorithms in appropri-

ately identifying a set of missing entries over random sampling in reducing the recon-

struction error. To the best of our knowledge, this is the first research effort to intelligently

exploit human supervision in the matrix completion problem, which is frequently encoun-

tered in data mining, machine learning and computer vision applications.

We also demonstrated how the proposed active matrix completion algorithms can

be extended to solve several variants of the active learning problem, like transductive ac-

tive learning, multi-label active learning, active learning in regression and active feature

acquisition, to train a classification / regression model with minimal human effort. Our

empirical analysis depicted tremendous promise in using the proposed methodologies to

solve such problems. This corroborates the versatility of the framework in solving a va-

riety of problems in collaborative filtering and active learning. We hope that this work

will serve as a preliminary step in the development of matrix completion algorithms with

“human-in-the-loop” and their adaptations in other interactive problem settings.
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Chapter 7

GENERALIZATIONS AND EXTENSIONS

The fundamental rationale of the proposed batch mode active learning framework, as ex-

plained in Chapter 3, is based on selecting a set of m unlabeled points to ensure that the

modified learner has low uncertainty on the unselected unlabeled points and also to select

points that are diverse from the current set of labeled instances. The two conditions were

combined into the following objective function, which drove the batch selection process:

max
M

∑
j∈Ut

ρ jM j−λ ∑
j∈Ut

(1−M j)S(y|x j,wt+1) (7.1)

s.t.:

M ∈ {0,1} and MT 1 = m

The indicator vector M was used to guide the point selection. The relaxed version of the

above optimization problem was solved using the Quasi Newton method. In this chapter,

we present a few variants of the batch selection criterion to corroborate the generalizibility

of the framework. We also depict how the framework can be used for active batch selec-

tion when multiple sources of information are available. The flexibility of the approach is

further certified by extending it to incorporate contextual information, which is frequently

available in real world machine learning applications.

7.1 Varying the Criteria for Batch Selection

The active batch selection frameworks were mostly validated on the face based biometric

recognition application. Considering the specific challenges of face-based biometrics, we

would like to ensure that our learner, in addition to learning from the uncertain samples

(as selected by the entropy term) also learns from the informative visages made briefly by
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the subjects (e.g. a sudden smile or a sudden eyebrow raise). These images lie away from

the main body of points, possibly in sparsely populated regions. To address this issue,

it may be useful to design an objective function which selects samples from the sparsely

populated regions of the unlabeled pool together with the samples that are uncertain for

the current learner. Also, in certain situations, we may desire to place more weightage on

the entropy term for batch selection so as to emphasize more on the uncertain unlabeled

samples (as the diversity and density based terms involve distance based computations,

which can be deceptive in high dimensional spaces). We present two objective functions

to handle such situations.

Sparsity based Objective Function

We compute the sparsity of an unlabeled sample as its average Euclidean distance from

the other unlabeled samples. Thus, samples that are located far away from the main body

of points will have a high sparsity measure and vice versa. The purpose of this objec-

tive function is to ensure that the distance of each selected unlabeled point from the other

unlabeled samples is maximum and the entropy of the updated classifier on the remain-

ing points in the unlabeled pool is minimum. These conditions can be satisfied by the

following definition:

max
M

∑
j∈Ut

D jM j−λ ∑
j∈Ut

(1−M j)S(y|x j,wt+1) (7.2)

s.t.:

M ∈ {0,1} and MT 1 = m (7.3)

where D j denotes the average Euclidean distance of the unlabeled point x j from the other

unlabeled samples and m is the user specified batch size (we focus on the static scenario
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here; the extension to the dynamic scenario is trivial). M can be solved using the Quasi

Newton framework to guide the point selection process.

Perplexity based Objective Function

Perplexity is a measure in information theory used to quantify how perplexed or confused

a classifier is in predicting a test point. It is defined as 2 raised to the power of entropy

[295]:

PPL = 2S = 2−∑y∈C P(y) logP(y)

On similar lines as the diversity based selection criterion, we can define an objective func-

tion which selects points that are maximally diverse compared to the current training set

and minimizes the perplexity of the points remaining in the unlabeled pool after batch

selection. The perplexity term magnifies the value of entropy and dominates the point

selection process.

max
M

∑
j∈Ut

ρ jM j−λ ∑
j∈Ut

(1−M j)PPL(y|x j,wt+1) (7.4)

s.t.:

M ∈ {0,1} and MT 1 = m (7.5)

The selection vector M is solved using the Quasi Newton method, after relaxing constraint

7.5.

Comparison against the heuristic approaches

To depict their generalizibility, a training set was induced with 10 images of each of 25

subjects from the VidTIMIT and MBGC datasets. Unlabeled video streams, each contain-

ing 250 images were presented to the learner and a batch of 10 was queried from each.

The growth in accuracy was studied on a test set containing 4500 images spanning all the
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25 subjects. The training, test and the unlabeled sets were chosen at random - no partic-

ular proportion of subjects was maintained in the training and unlabeled sets. The results

using the diversity, sparsity and perplexity based objective functions, together with the

heuristic techniques (random sampling, SVM angular diversity based selection and uncer-

tainty based sampling) are shown in Figure 7.1. It is noted that all the objective functions

perform better than the heuristic BMAL techniques, corroborating their usefulness. This

shows that the proposed framework is generalizible and by suitably choosing a batch se-

lection criterion, it can substantially reduce human annotation effort as compared to the

heuristic BMAL algorithms. The perplexity based variant depicts the best performance

in both the datasets emphasizing the usefulness of the entropy based criterion in batch

selection.

(a) Batch Mode Active Learning on the VidTIMIT
dataset

(b) Batch Mode Active Learning on the MBGC
dataset

Figure 7.1: Performances of different Batch Mode Active Learning schemes on the Vid-
TIMIT and MBGC datasets (Best viewed in color).

7.2 Learning from Multiple Sources of Information

Most biometric systems used in real world applications are unimodal [296], that is they

rely on a single modality to carry out the authentication / recognition task. Such systems

suffer from a variety of problems:
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• the data collected may be corrupted by noise

• a user may interact incorrectly with a sensor, for example, may provide an incorrect

facial pose

• it is possible that a particular trait of two different persons are very similar

• a single trait may be subject to spoof attacks

Multimodal systems seek to alleviate this problem by consolidating evidence from

multiple sensors. This can lead to better and reliable performance of the recognition /

validation system. The individual pieces of information, being independent, are fairly

robust to noise. Multimodal systems can be classified into 5 categories as shown in Figure

7.2 [297].

Figure 7.2: Categorization of approaches towards multimodal biometrics

When two modalities are used for person recognition, proper fusion schemes are

required to combine the information provided by multiple modalities to perform effective

recognition. In a multimodal biometric system, the information can be fused at different
144



levels. The various categories of fusion levels are summarized in Figure 8.4 (as illustrated

in [298]). Dasarathy [299] categorized these approaches as data-level fusion (where data

is combined), feature-level fusion (where features are extracted from the data in differ-

ent modalities separately, which are then combined) and decision-level fusion (where the

information is fused at the decision-making level). Over the last two decades, several ap-

proaches of multimodal fusion in biometrics have been explored [300] [301] [302] and it

has been established that learning from mutiple sources can be superior to learning from a

single source, if the sources are used appropriately [237]. In this section, we establish how

the proposed batch mode active learning framework can be extended to integrate multiple

sources of information.

Figure 7.3: An overview of the approaches to information fusion

Batch Mode Active Learning from Multiple Sources of Information

Consider the case of learning from two sources of information, where we are given two

training sets Lt1 and Lt2 and two unlabeled sets Ut1 and Ut2 corresponding to the two
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sources. As before, we would like to sample points from each stream, not excluding the

sparsely populated regions. Also, for each data point that is not selected in the batch, a

condition can be imposed ensuring that the predictions from the two models obtained from

each of the sources, agree to a large extent. A metric measuring the difference between two

probability distributions can be used for this purpose. The symmetric Kullback Leibler

divergence was used as a measure of difference in this work. The objective function

guiding the point selection can therefore be modified as:

max
M

∑
j∈Ut1

ρ jM j + ∑
j∈Ut2

ρ jM j−λ ∑
j
(1−M j)KLD(y|xUt1

j wt+1,y|xUt2
j wt+1) (7.6)

s.t.:

M ∈ {0,1} and MT 1 = m (7.7)

where

KLD(P,Q) =
n

∑
i=1

(pi−qi) log
pi

qi
(7.8)

is the symmetric Kullback Leibler divergence between probability distributions P and Q

[255]. The third term in Equation (7.6) denotes the Kullback Leibler divergence between

the predicted probabilities of each unselected point from the two unlabeled sources Ut1 and

Ut2, which is to be minimized. The vector M, which governs the point selection, however,

will remain the same across the sources of information. Together with constraints from

Equation (7.7), the problem can be solved using the Quasi Newton method in a similar

manner as before.

It is interesting to note that in case of a single source of information, Equation

(7.6) reduces to Equation (7.1) in the original formulation. The second term in Equation

7.6 vanishes, and from Equation (7.8), we note that when Q is non-existent, the KLD term

becomes ∑
n
i=1 pi log pi, which is the negative entropy of distribution P.
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To demonstrate this idea, we represent multiple sources using multiple features

from each face image. In addition to DCT, the Scale Invariant Feature Transform (SIFT)

feature [303] was used as the second source of information. Two classifiers were trained

separately on the two features. A batch of unlabeled points was selected according to

Equation (7.6) and the corresponding classifiers were updated with the selected batch.

They were then applied on separate test sets for each feature to yield two sets of class

probabilities for each test point. Three simple fusion rules - average, minimum and max-

imum - were then applied to combine the two sets of probability values. The results on

the VidTIMIT and the MBGC datasets are shown in Figure 7.4, where the results are

compared with the proposed framework using only the DCT information.

(a) VidTIMIT dataset (b) MBGC dataset

Figure 7.4: Batch Mode Active Learning from multiple sources on the VidTIMIT and
MBGC datasets.

For each fusion strategy, the performance tremendously improves when the two

sources are used together for learning. This depicts the merit of the framework for ef-

fective batch selection in the presence of multiple sources of information. We also note

that the three fusion strategies depict almost similar performance on both the datasets. Al-

though validated using multiple image features in this work, the framework can be applied

in conjunction with any two (or more) data sources. In the Social Interaction Assistant, for

example, the same batch selection strategy can be used with the video and audio modali-
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ties for robust person recognition. This will be taken up as part of our future work. We also

intend to explore other fusion strategies like the Dempster-Shafer theory and the Dezert-

Smarandache Theory.

7.3 Context Aware Learning

Context awareness has gained popularity as a mechanism to improve the performance of

an application in ubiquitous computing environments. In a challenging problem like bio-

metric / object recognition, contextual information can provide useful cues to increase the

robustness of the recognition engine. Context has been defined in the machine learning lit-

erature in different ways and its precise definition is open to discussion. However, proper

interpretation of context in a given application can improve the performance of the sys-

tem and can also add practicality to the underlying computational framework. We briefly

review a few context aware learning techniques that have been proposed in the literature.

Torralba [304] introduced a context aware fremwork for object detection which

modeled the relationship between context and object properties based on the correlation

between the statistics of low level features across the entire scene and the objects that it

contained. The resulting scheme served as an effective procedure for object priming, con-

text driven focus of attention and automatic scale selection on real world scenes. Strat

and Fischler [305] used contextual information to improve the performance of object de-

tection in complex outdoor scenes. Olson and Chun [306] argued that invariant spatial

relationships of objects may provide a rich source of contextual information. The authors

investigated whether both local context that surround a target and long range context that

does not spatially coincide with a target can influence target localization. They concluded

that implicit learning of spatial context was robust across noise and biased towards spa-

tially grouped information. Song and Leung [307] developed an algorithm which exploited

contextual information like the color and texture of clothes for robust person recognition.
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Using context awareness in active learning is almost unexplored. Very recently,

Kapoor et al. [155] incorporated match and non-match constraints in active learning for

face recognition. However, this work was aimed at selecting one face image at a time

(pool-based setting). In this section, we extend the proposed batch mode active learning

framework to incorporate contextual information.

Batch Mode Active Learning Framework to Incorporate Contextual Information

In this work, context was defined as the location of a user, for the sake of simplicity

without any loss in generality (similar to Dey et al. [308]). It was assumed that at any given

location, the user is cognizant of the subjects to be expected in that location (for example,

work acquaintances in an office setting or family members in a home setting). This was

used to construct a prior probability vector depicting the chances of seeing each subject at

a given location. In such a situation, a logical strategy for querying instances would be to

guarantee that the images remaining in the unlabeled video after batch selection have low

entropy with respect to the subjects expected in the given context. Thus, the performance

score function can be modified to ensure that the entropy is computed only on the subjects

that are present in a given video stream:

f (B) = ∑
i∈B

ρi−λ ∑
j∈Ut−B

Scontext(y|x j,wt+1)

Here, Scontext is the context aware entropy term. For each unlabeled image, this term was

computed from the posterior probabilities, which in turn were obtained by multiplying the

likelihoods returned by the trained GMM classifier with the context aware prior. Thus,

subjects not expected in a given context will have low priors and consequently, the cor-

responding posteriors will not contribute much in computing Scontext . To simulate this

situation, three contexts were arbitrarily defined and 8 random subjects (chosen from the

set of 25) were assigned to each context. BMAL was used to select batches of samples
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from unlabeled video streams in each context. The updated classifiers were then tested

on videos in the respective context. The context-ignorant learner was implemented using

equal class priors in the entropy term. Note that this process generates different models

for each of the contexts after applying the BMAL methodology.

(a) VidTIMIT dataset (b) MBGC dataset

Figure 7.5: Context Aware Learning on the VidTIMIT and MBGC datasets.

Figure 7.5 shows the accuracies obtained on the VidTIMIT and MBGC test videos (aver-

aged over three trials in each context). It is noted that in each context, the context aware

learner produces better accuracy on test videos than the context ignorant learner. Thus,

incorporation of context in the formulation further helps in querying salient images. How-

ever, as mentioned earlier, the limitation of this approach is that a classifier trained in a

given context will perform well only in that context. Nonetheless, many real world prob-

lems have, or can be reduced to, only a limited set of contexts. It is therefore possible

to maintain an ensemble of context specific learners ensuring that a classifier trained in a

given context has the highest weightage when tested in the same context. This makes the

proposed approach feasible as well as meritorious.
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7.4 Discussions

In this chapter, we demonstrated the generalizibility of the proposed batch mode active

learning framework. We analyzed the performance using different variants of the objec-

tive function for batch selection. We also corroborated the flexibility of our framework

by extending it to incorporate information from multiple sources and also contextual in-

formation, which are frequently available in biometrics based recognition systems. The

results obtained speak of the potential of this method in being used for real world biometric

recognition applications, like the Social Interaction Assistant.

From the results, it is evident that the density, diversity and perplexity based ob-

jective functions outweigh the heuristic BMAL techniques. However, given an unlabeled

video stream, it becomes important to decide which one of them should be used to se-

lect images. This may be a difficult choice if no prior knowledge is available about the

video stream in question. A possible solution may be to maintain an ensemble of objec-

tive functions and dynamically select one based on some criteria. Moreover, the Quasi

Newton solution strategy requires the objective function to be differentiable. Thus, non-

differentiable functions (for example, functions with a max/min sub-function) cannot be

handled using this method. One may want to design an objective function having a term

ensuring that for each image in the unlabeled video stream, the highest class probability

predicted by the current classifier has to exceed a given threshold. A solution strategy

involving Quasi Newton will not allow such a formulation. However, efforts have been

made to optimize non-differentiable objective functions as described in [309]; such an ap-

proach will be explored in our future work to solve optimization problems with max / min

functions.
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Chapter 8

RELATED CONTRIBUTIONS

Active learning techniques primarily rely on the definition of a suitable query function, a

function that queries each unlabeled point to decide on its appropriateness and relevance

in training a classification model. Query functions in existing active learning techniques

often select examples that have the most uncertainty [123], least confidence [103] or maxi-

mum disagreement among a committee of classifiers [63]. Most of the existing approaches

have been based on inductive inference, where a general classifier function is learnt from

existing training examples to predict the class labels of new examples. However, in re-

cent years, there has been a growing interest on transductive inference [282], where the

training examples are directly used to develop a reasoning to predict the labels of new

examples. In this chapter, we propose a Generalized Query by Transduction approach for

active learning in the online (stream-based) setting using p-values obtained from the Con-

formal Predictions (CP) framework. The main contributions of this work are two-fold.

Firstly, we introduce the Generalized Query by Transduction (GQBT) approach for ac-

tive learning using the theory of conformal predictions that can be used with any pattern

classification algorithm in an online setting. Secondly, while most existing active learning

approaches evaluate a single critereon (such as confidence, uncertainty or disagreement),

there have been more recent efforts to combine multiple criteria (such as representative-

ness, informativeness and diversity by Shen et al. [223]) to select appropriate examples.

We show how the proposed active learning approach can be used to combine multiple

criteria for active learning. We demonstrate the improved performance of the proposed

approach with commonly used datasets from the UCI Machine Learning repository, and

apply the approach to face recognition to validate its applicability and performance in a
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challenging real-world problem. We first present a background of the CP framework and

then detail our online active learning algorithm.

8.1 Theory of Conformal Predictions

The theory of conformal predictions was recently developed by Vovk, Shafer and Gam-

merman [287, 310] based on the principles of algorithmic randomness, transductive in-

ference and hypothesis testing. This theory is based on the relationship derived between

transductive inference and the Kolmogorov complexity [311] of an i.i.d. (identically in-

dependently distributed) sequence of data instances. Consider the set of labeled data in-

stances to be represented as the sequence Z = ((x1,y1), . . . ,(xn,yn)), where xi is a data

instance, and yi is the corresponding class label. If l(Z) is the length of this sequence, and

C(Z) is its Kolmogorov complexity (the length of the minimal description of Z using a

universal description language), then:

δ (Z) = l(Z)−C(Z) (8.1)

where δ (Z) is called the randomness deficiency of the sequence Z. Intuitively, Equation

(8.1) states that lower the value of δ (Z), the higher is the randomness of the sequence. As

a corollary, if there was a new data instance xn+1, and we were to predict its label based on

the available labeled data Z, the confidence in the prediction would be low, if the sequence

Z was highly random i.e. δ (Z) was low.

Evidently, the challenge is the computation of the randomness deficiency, δ (Z), of

a given sequence Z. This is achieved using the Martin-Lof test for randomness, which can

be summarized as a function t : Z∗→ N (the set of natural numbers with 0 and ∞), such

that ∀n ∈ N,m ∈ N,P ∈ Pn:

P{z ∈ Zn : t(z)≥ m} ≤ 2−m (8.2)
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where Pn is the set of computable probability distributions. Equation (8.2) can also be

written as:

P{z ∈ Zn : t(z) ∈ [m,∞)} ≤ 2−m (8.3)

Now, if we use the transformation f (x) = 2−x, Equation (8.3) can in turn be written in

terms of a new function t ′(z):

P
{

z ∈ Zn : t ′(z) ∈
(
0,2−m]}≤ 2−m (8.4)

Hence, a function t ′ : Z∗→ (0,2−m] is a Martin-Lof test for randomness if ∀m,n ∈ N, the

following holds true:

P
{

z ∈ Zn : t ′(z)≤ 2−m}≤ 2−m (8.5)

If 2−m is substituted for a constant, say r, and r is restricted to the interval [0,1], Equation

(8.5) is equiavalent to the definition of a p-value typically used in statistics for hypothesis

testing. Given a null hypothesis H0 and a test statistic, p-value is simply defined as the

probability of obtaining a result at least as extreme as the one that was actually observed,

assuming that the null hypothesis is true. In other words, the p-value is the smallest signif-

icance level of the test for which H0 is rejected based on the observed data, i.e. the p-value

provides a measure of the extent to which the observed data supports or disproves the null

hypothesis.

To translate this theory to pattern classification problems, Vovk et al. [310] defined

a non-conformity measure that quantifies the conformity of a data point to a particular class

label. This non-conformity measure can be appropriately designed for any classifier under

consideration, thereby allowing the concept to be generalized to different kinds of pattern

classification problems. To illustrate this idea, the non-conformity measure of a data point

xi for a k-Nearest Neighbor classifier is defined as:
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α
y
i =

∑
k
j=1 Dy

i j

∑
k
j=1 D−y

i j

(8.6)

where Dy
i denotes the list of sorted distances between a particular data point xi and other

data points with the same class label, say y. D−y
i denotes the list of sorted distances

between xi and data points with any class label other than y. Dy
i j is the jth shortest distance

in the list of sorted distances, Dy
i . In short, α

y
i measures the distance of the k nearest

neighbors belonging to the class label y, against the k nearest neighbors from data points

with other class labels (Figure 8.1). Note that the higher the value of α
y
i , the more non-

conformal the data point is with respect to the current class label i.e. the probability of it

belonging to other classes is high.

Figure 8.1: An illustration of the non-conformity measure defined for k-NN

Given a new test data point, say xn+1, a null hypothesis is assumed that xn+1 be-

longs to the class label, say, yp. The non-conformity measures of all the data points in the

system so far are re-computed assuming the null hypothesis is true. A p-value function

(which satisfies the Martin-Lof test definition in Equation (8.5) is defined as:

p(αyp
n+1) =

count
{

i : α
yp
i ≥ α

yp
n+1
}

m
(8.7)

where α
yp
n+1 is the non-conformity measure of xn+1, assuming it is assigned the class label

yp, and m is the total number of data instances. In simple terms, Equation (8.7) states that
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the p-value of a data instance belonging to a particular label is the normalized count of the

data instances that have a higher non-conformity score than the current data instance, xn+1.

It is evident that the p-value is highest when all non-conformity measures of training data

belonging to class yp are higher than that of the new test point, xn+1, which points out that

xn+1 is most conformal to the class yp. This process is repeated with the null hypothesis

supporting each of the class labels, and the highest of the p-values is used to decide the

actual class label assigned to xn+1, thus providing a transductive inferential procedure for

classification. The largest p-value is called the credibility and 1 minus the second largest

p-value is refered to as the confidence. The general schema of Conformal Predictors in the

classification setting is depicted in Algorithm 9.

Algorithm 9 Conformal Predictors for Classification
Require: Training set T = {(x1,y1) , ...,(xn,yn)}, xi ∈ X , number of classes M,

yi ∈ Y = y1,y2, . . . ,yM, classifier Ξ

1: Get new unlabeled example xn+1.
2: for all class labels, yi, where i = 1, . . . ,M do
3: Assign label yi to xn+1.
4: Update the classifier Ξ, with T ∪{xn+1,yi}.
5: Compute non-conformity measure value, α

yi
n+1 to compute the p-value, Pi, w.r.t.

class yi (Equation 8.7) using the conformal predictions framework.
6: end for
7: Output the conformal prediction regions Γ1−ε = {yi : Pyi > ε,yi ∈ Y}, where 1− ε is

the confidence level.

One of the key features of this framework is the calibration of the obtained con-

fidence values in an online setting. Probabilities generated by inductive inference ap-

proaches in an online setting are often not meaningful since the model needs to be con-

tinuously updated with every new example. However, the theory behind the conformal

prediction framework guarantees that the probability (or confidence) values obtained us-

ing this transductive inference framework manifest as the actual error frequencies in the

online setting i.e. they are well-calibrated [288]. This is depicted in Figure 8.2, which

plots the cumulative number of errors with increasing number of test samples at various
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confidence levels. We note that, at every level of confidence, the number of errors com-

mitted by the system is upper bounded by the threshold (which can be set by the user).

Figure 8.2: Performance of the CP Framework on the Cardiac Patient Dataset. Note that
the errors are calibrated at each of the confidence levels. For instance, at 80% confidence
level, the number of errors will always be less than 20% of the total number of test exam-
ples.

We now present the proposed Generalized Query by Transduction approach for

online active learning, which is derived from the conformal predictions framework that

was described above.

8.2 Generalized Query by Transduction (GQBT)

The p-values for each of the class labels obtained using the principles of transductive

inference, as outlined in the theory of conformal predictions, are used to design the query

function in the proposed approach. Ho and Wechsler proposed a similar approach in [104],

where the query function was limited to using the top two p-values (amongst the list of

p-values obtained for all the class labels). They formally defined the closeness between

the top two p-values, I(xn+1) = p j− pk, as the measure of the quality of information in an

unlabeled example in the active learning process. The example is queried if I(xn+1)< δ ,
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for an empirically determined threshold δ . In the proposed approach, we generalize the

query function to use all (or as many as required) p-values that are obtained using the

conformal predictions framework. We also call this approach generalized since it can

be integrated into any existing classification algorithm. In addition, we show how this

framework can integrate multiple criteria in the proposed query function. We illustrate the

proposed approach using suitable examples, and compare the performance of our approach

with Ho and Wechsler’s QBT [104], along with random sampling, Query by Committee,

and a Support Vector Machine (SVM) margin-based active learner.

In the proposed GQBT approach, we define a matrix C which contains the absolute

value of the pairwise differences between all the p-values obtained from the conformal

predictions framework:

Ci j(P) =
∣∣Pi−Pj

∣∣ (8.8)

where i, j = 1, . . . ,M and M is the number of classes. Since this C matrix has diagonal

elements as zero and is symmetric, its eigendecomposition provides a naturally useful

measure with interesting properties. The largest eigen-value of C, say η(C), assumes

values that are directly proportional to the average pairwise differences between the p-

values. Further, it is possible to prove that for any given set of p-values, the matrix C will

always have exactly one positive eigenvalue, which we used as a measure of disagreement

in this work (please refer Appendix A for a mathematical proof of this proposition). When

all the p-values are equal, η(C) is trivially zero. As the pairwise differences between the

p-values increase, η(C) increases proportionately. We now show why η(C) provides a

natural measure of the extent of disagreement between the p-values, which we intend to

use in the proposed approach.

The eigendecomposition of C is given by the characteristic equation:

|C−λ I|= 0 (8.9)
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where |.| is the matrix determinant. When the pairwise differences are multiplied by a

constant factor, say d, the new C, say C∗, is equal to dC. The characteristic equation for

C∗ is given by:

|C∗−λ
∗I|= 0 (8.10)

where λ ∗ are the eigenvalues of C∗. Substituting C∗ = dC,

|dC−λ
∗I|= 0⇒

∣∣∣∣d(C− λ ∗

d
I)
∣∣∣∣= 0 (8.11)

⇒ |dI|
∣∣∣∣C− λ ∗

d
I
∣∣∣∣= 0 (8.12)

Since |dI| 6= 0,

⇒
∣∣∣∣C− λ ∗

d
I
∣∣∣∣= 0 (8.13)

Comparing Equations (8.13) and Equation (8.9),

λ =
λ ∗

d
(8.14)

that is, the eigenvalues λ ∗ are also multiplied by the same constant factor d. For another

C matrix, say Ĉ, whose average pairwise difference lies between the original average

pairwise difference in C and that in C∗, the corresponding eigenvalues λ̂ will lie between

λ and λ ∗. We exploit this ordering of eigenvalues as a natural measure of the extent of

disagreement among the p-values obtained.

Since p-values assume values in the interval [0,1], the largest eigenvalue, η(C),

tends to have low numeric values. For convenience of implementation, we compute the

inverse of C, and use the largest eigenvalue of C−1 in our work. Since η(C−1) is in-

versely proportional to the average difference between the p-values, we accordingly factor

this in the design of our query condition. The proposed GQBT approach is presented in

Algorithm 10.
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Algorithm 10 Generalized Query by Transduction for Online Active Learning
Require: Training set T = {(x1,y1) , ...,(xn,yn)}, classifier Ξ, selection threshold δ , stopping

threshold γ , number of classes M, number of queried points p, budget constraint β (maximum
number of points that can be queried)

1: initialize p← 0
2: repeat
3: Get new unlabeled example xn+1.
4: for all class labels, yi, where i = 1, . . . ,M do
5: Assign label yi to xn+1.
6: Update the classifier Ξ, with T ∪{xn+1,yi}.
7: Compute non-conformity measure value, α

yi
n+1 to compute the p-value, Pi, w.r.t. class yi

(Equation 8.7) using the conformal predictions framework.
8: end for
9: Construct the matrix C, such that Ci j(P) =

∣∣Pi−Pj
∣∣ (Equation 8.8).

10: Compute η(C−1) as the largest eigenvalue of C−1.
11: if η(C−1)> δ then
12: Add xn+1 to training set i.e. T ← T ∪{xn+1,yc}, where yc is the correct label for xn+1.
13: p← p+1.
14: end if
15: until η(C−1)> γ or p < β

Almost all online active learning algorithms rely on empirically obtained thresh-

olds to decide if an unlabeled example needs to be queried. In contrast, in this approach,

the largest eigenvalue has a straightforward connotation that can be exploited. The selec-

tion threshold δ is initialized to the largest eigenvalue of the C−1 matrix that is constructed

assuming the pairwise differences between the p-values are equal to a unit percentage (i.e.

0.01) each. Similar to what was proved in Equation (8.14), the eigenvalues for C−1 are

divided by a factor of d, when C is multiplied by d. Hence, when the pairwise differ-

ences are equal to 0.02 each, the largest eigenvalue of the corresponding C−1 matrix is

now equal to δ

2 . To apply this in the algorithm, if no examples are selected after, say r,

examples are observed, the selection threshold is changed to: δ ← δ

2 , thus allowing for a

more accommodative threshold. Depending on the dataset under consideration, this can

progressively be continued at periodic intervals to δ ← δ

3 ,δ ←
δ

4 , and so on, as may be

required in a particular setting. This provides for an automatic methodology to set (and

modify) threshold values, where the query condition becomes lenient with time.
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We use SVM as the classifier in this work for a few reasons. Firstly, there have been

several active learning techniques in the recent past that have used the margin distance in

a SVM to query examples in active learning [111, 104], leading to the popularity of SVMs

in active learning. Secondly, there have been recent efforts to develop incremental SVMs

for an online setting [312] to train newer examples into an existing SVM model. One of

the primary limitations of the proposed approach (or any transductive inference approach,

for that matter) is the computational overhead in Steps 5-7 in Algorithm 10 for each class

label. The use of incremental SVMs substantially offsets this limitation. Thirdly, the La-

grange multipliers obtained while training a SVM are a straightforward choice to consider

as non-conformity scores, as pointed out by Vovk et al. [310]. The Lagrange multipliers,

αi, i = 1, . . . ,n, are computed while maximixing the dual formulation in the soft margin

SVM:

Q(α) =−1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jK(xi,x j)+
n

∑
i=1

αi (8.15)

subject to constraints ∑
n
i=1 αiyi = 0 and 0 ≤ αi ≤ C, i = 1, . . . ,n, and K(.) is the kernel

function. The Lagrange multipliers’ values are zero for examples outside the margin, and

lie between 0 and C for examples on and within the margin, thereby providing a natural

monotonic measure of non-conformity w.r.t. the corresponding class.

Why Generalized QBT?

Before we present the experimental results, we show how the proposed GQBT is a gen-

eralization of the QBT approach proposed by Ho and Wechsler [104]. Ho and Wechsler

define the quality of information of a new data example as I(xn+1) = p j− pk, where p j

and pk are the highest 2 p-values obtained using the conformal predictions framework. We

define the quality of information using the largest eigenvalue of the matrix C containing

the pairwise differences between all p-values. In a binary classification problem (or if only
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the top 2 p-values are used in a multi-class setting), our approach becomes the same as Ho

and Wechsler’s. This is because C is now given by:

 0 |p1− p2|

|p1− p2| 0


whose largest eigenvalue is |p1− p2| itself, which is the measure used by Ho and Wech-

sler. However, the progressive choice of selection threshold values in our approach (as

δ , δ

2 , etc. detailed earlier) performs better than the empirical choice of thresholds in Ho

and Wechsler’s approach. This is illustrated in Figure 8.3, which shows how the proposed

GQBT approach has a lower label complexity i.e. it achieves the highest accuracy by

querying much fewer points than Ho and Wechsler’s approach.

Figure 8.3: Comparison of the proposed GQBT approach with Ho and Wechsler’s QBT
approach on the Musk dataset from the UCI Machine Learning repository. Note that our
approach reaches the peak accuracy by querying ≈ 80 examples, while the latter needs ≈
160 examples.
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Combining multiple criteria for active learning

It may often be essential to combine multiple criteria to decide if a particular unlabeled

example needs to be queried for its true label, and included in the training set, and there

have been recent efforts in this direction [223]. In our work, for example, in addition to

the Lagrange multipliers (whose values are closely related to the distance of the example

from the SVM margin), it may be useful to consider another non-conformity measure that

estimates the density of examples in the neighborhood of a given unlabeled example. This

can be defined using the k-NN classifier (a non-parametric density estimator), as stated

earlier in Equation (8.6) in Section 8.1. Evidently, the theory of conformal predictions

can also be used with this measure to obtain another set of p-values. We use results

from statistical hypothesis testing to combine these p-values. Given that the p-value is

a uniformly distributed random variable on the interval [0,1], the combined significance

level or p-value of n individual p-values can be given as [313]:

k
n−1

∑
i=0

(− lnk)i

i!
(8.16)

where k = (p1× p2× p3 . . .× pn), the product of the given set of p-values. While we

use this approach in our work, there are other methods in hypothesis testing to combine

p-values [314], which can be used too. Figure 8.4 shows the improvement in performance

obtained (on the same dataset as in Figure 8.3) by combining the p-values obtained using

the non-conformity measures computed from the SVM and the k-NN classifier.

8.3 Experiments and Results

We compared the performance of the proposed GQBT approach with three other online ac-

tive learning algorithms together with random sampling. The methods are briefly outlined

below:
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Figure 8.4: Performance comparison on the Musk dataset (as in Figure 8.3). Note the
reduction in label complexity obtained by combining the p-values from the two non-
conformity measures discussed in Section 8.2. The proposed approach needs only ≈ 50
examples to reach the peak accuracy.

Random Sampling: In this method, when a new example arrives, we randomly

decide whether to query this point for its class label or not, i.e. each example is queried

with a probability of 0.5.

Margin based SVM: An SVM classifier is constructed from the given set of train-

ing instances. For an unlabeled example xn+1, its decision value f (x) = w.φ(x) + b is

computed and if it is below a certain threshold, the point is queried. If a certain number of

unlabeled points are not queried in succession, the threshold is updated as the average of

the SVM decision values of the unqueried examples.

Query by Committee: A committee consisting of two classifiers, SVM and k-NN

(with k = 10), was used. For a given unlabeled example, the SVM output values are

converted into probabilities using Platt’s method [315]. For k-NN, the class probability

for the unlabeled example is defined as the fraction of the number of points of a given

class occurring in its k nearest neighbors. Once we have the probability values from the

two classifiers, we compute the Kullback Leibler divergence between these two sets. A
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high divergence implies that the point is informative and should be queried. The threshold

for the KL divergence value was updated as described for the margin based SVM.

Query by Transduction: This is the method proposed by Ho and Wechsler [104] as

described previously.

We selected five datasets (with different number of classes, dimensions and in-

stances) from the UCI Machine Learning repository [257] to test the generalizibility of

the proposed approach. The datasets and their details are listed in Table 8.1.

Dataset Classes Size of Dim Initial Size of Size of
dataset training set unlabeled pool test set

Breast Cancer 2 569 30 10 259 300
Musk 2 1000 166 2 498 500
Wine 3 178 13 3 88 87

Waveform 3 5000 21 15 2485 2500
Image Segmentation 7 2310 19 35 175 2100

Table 8.1: Datasets from the UCI Machine Learning repository used in our experiments.
An equal number of examples from each class was used in the initial training set. For
example, for the Breast Cancer dataset, 5 examples from each class were used to form the
initial training set of 10 examples.

For each of the datasets, the initial training, testing and unlabeled pools were ran-

domly partitioned three different times and the results were averaged from these 3 runs.

Further, in each of the runs, the unlabeled pool was randomly permuted 10 different times

to remove any bias on the order in which the points are observed, and the results of these

10 trials were averaged for each run. A polynomial kernel was found to be the most well-

suited for all the datasets, as established by the peak accuracies achieved in our results.

The results of our experiments are presented in Figure 8.5 and Table 8.2. In each

of these experiments, the formulation of the proposed GQBT approach where the non-

conformity measures from the SVM and the k-NN are combined (as in Section 8.2) was

used. Table 8.2 shows the label complexity (the percentage of the unlabeled pool that was

queried to reach the peak accuracy in the active learning process) of each of the methods.
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(a) Breast Cancer dataset (b) Musk dataset (c) Wine dataset

(d) Waveform dataset (e) Image Segmentation dataset

Figure 8.5: Results with datasets from the UCI Machine Learning repository. In the Musk
dataset, the results started with an accuracy of ≈ 70%, but since all methods had similar
initial accuracies, the graph is shown from 85% accuracy onwards, where the differences
in performance are clearly seen.

The results are self-explanatory, and demonstrate the improvement in performance gained

using the proposed approach.

Application to Face Recognition

To evaluate the performance of the approach on a more challenging real-world problem,

we carried out experiments on face recognition from video, where the high redundancy

between frames in a video requires an active learning approach. We used the VidTIMIT

biometrics dataset [233], of which we used the video recordings of 25 subjects reciting

short sentences. Each of the videos are sliced and stored as JPEG images of resolution

512 by 384, on which automated face cropping was performed to crop out the face re-

gions. To extract the facial features, block based discrete cosine transform (DCT) was
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Dataset Random Margin-based Query by Ho-Wechsler’s Proposed
Sampling SVM Committee QBT GQBT

Breast Cancer 92.8% 83.6% 80% 46.8% 28%
Musk 77% 55% 72.33% 86.67% 24.33%
Wine 87.5% 78.75% 97.5% 47.5% 35%

Waveform 99.6% 100% 98.2% 98.6% 89.2%
Image Segmentation 100% 100% 100% 98.18% 66.06%

Table 8.2: Label complexities of each of the methods for all the datasets. Label complexity
is defined as the percentage of the unlabeled pool that is queried to reach the peak accuracy
in the active learning process. Note the low label complexities of the proposed approach in
all the cases. Also, note that the label complexities for the other methods on datasets like
Waveform and Image Segmentation are very high although the accuracy did increase at a
reasonable rate in the active learning process in Figure 8.5. This only implies that these
methods reached their peak accuracy when the unlabeled pool was almost exhausted.

used (similar to [235]). Each image was subdivided into 8 by 8 non-overlapping blocks,

and the DCT coefficients of each block were then ordered according to the zigzag scan

pattern. The DC co-efficient was discarded for illumination normalization, and the first 10

AC co-efficients of each block were selected to form compact local feature vectors. Each

local feature vector was normalized to unit norm. Concatenating the features from the

individual blocks yielded the global feature vector for the entire image. The cropped face

image had a resolution of 128 by 128 and thus the dimensionality of the extracted feature

vector was 2560. Principal Component Analysis (PCA) was then applied to reduce the

dimension to 100, retaining about 99% of the variance. 50 images of each subject were

randomly picked, and divided into the initial training set (10), unlabeled pool (20) and the

test set (20). A polynomial kernel was used for the SVM classifier. Similar to the previous

set of experiments, the unlabeled pool was randomly permuted 3 different times to remove

any bias on the order in which the points are observed, and the results of these 3 trials were

averaged. Figure 8.6 shows the results of our experiments. As shown, the proposed GQBT

once again demonstrated a significantly improved performance over the other approaches.
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Figure 8.6: Results obtained on the VidTIMIT dataset. Note that the GQBT approach led
to a significantly higher peak accuracy, and had a lower label complexity of 58.8% to reach
the peak accuracy. Label complexities of the other methods: Ho and Wechsler’s QBT -
98.2%; Query by Committee - 100%; Margin-based SVM - 89%; Random sampling -
99.6%

8.4 Discussions

In this chapter, we proposed a Generalized Query by Transduction (GQBT) approach for

active learning in the online setting. The results of our experiments with different datasets

from the UCI Machine Learning repository and on face recognition from video demon-

strated the improvement in performance (and reduction in label complexity) obtained us-

ing the proposed research. This approach can be used along with any pattern classification

algorithm with the definition of a suitable non-conformity measure. In a binary classifier,

the GQBT approach simplifies to the QBT approach proposed by Ho and Wechsler. Fur-

ther, multiple criteria can be combined using this approach to select appropriate examples

from the unlabeled pool, as described in the chapter.

One of the major limitations of this approach, as mentioned earlier, is the computa-

tional overhead of transductive inference at each step. With recent advances in incremental

classifiers, this limitation can be overcome to a large extent. As future work, we plan to
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study other approaches of combining p-values and their influence on the performance of

the approach. We also intend to study and identify appropriate stopping criteria for the

proposed active learning framework.
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Chapter 9

CONCLUSIONS AND FUTURE WORK

The increasing miniaturization of sensing technologies, together with their widespread

use, has resulted in the generation of humongous amounts of multimedia data (in the form

of images, audio and text among others) in today’s world. While this has expanded the

possibilities of solving real world problems (such as understanding the behavior of people,

objects and activities) using computational learning frameworks, selecting the salient data

samples from such huge collections of data has proved to be a significant and practical

challenge. Further, to train a reliable classification model, it is indispensable to have a

large quantity of labeled training data. Manual annotation of large amounts of data is an

expensive process in terms of time, labor and human expertise. This has set the stage for

research in the field of batch mode active learning (BMAL) in multimedia pattern recog-

nition applications. Such algorithms automatically identify the salient and representative

samples from large quantities of unlabeled data and tremendously reduce human annota-

tion effort in inducing a classification model. BMAL can be applied across all existing

classification methods and with any kind of data, thus making it a very generalizable ap-

proach. The success of active learning in several multimedia computing applications (such

as image retrieval, text/web mining, speech processing and social network analysis) has

resulted in the extension of the framework to problem settings beyond regular classifica-

tion. Batch mode active learning concepts have been extended to newer problem settings

like clustering, regression, feature selection and anomaly / rare category detection.

The objective of this dissertation was to develop novel batch mode active learn-

ing frameworks for multimedia pattern recognition applications. We specifically focused

on computer vision and assistive technology systems (for individuals with visual impair-
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ments) as our exemplar application domains. However, the research outcomes of this work

are fundamental by their impact and the solutions developed as part of this dissertation are

pertinent to a broader audience including information retrieval, document and text min-

ing, spam filtering, healthcare informatics, security systems and in any application where

the salient instances need to be automatically identified from large quantities of redundant

data. The intellectual merit lies not only in strong contributions in pattern recognition,

machine learning and computer vision but also opens up new research directions at the

intersection of these disciplines and in assistive technologies and cognitive decision sci-

ences.

9.1 Summary of Contributions

The key contributions made in this dissertation are summarized below:

• Dynamic Batch Mode Active Learning: Existing batch mode active learning tech-

niques are all static, that is, they require the batch size as an input parameter for batch

selection. However, deciding on a batch size at random and without any knowledge

of the data stream in question may lead to poor generalization capacity of the under-

lying learner. We proposed a dynamic BMAL framework which decides the batch

size adaptively based on the complexity of the data stream and the cost of annota-

tion of each unlabeled sample. We developed a stochastic gradient descent based ap-

proach to simultaneously solve the batch size and the specific instances to be queried

through a single formulation. The method has the same computational complexity

as existing static BMAL frameworks where the batch size needs to be pre-specified.

We also exploited the properties of sub-modular functions to derive a second adap-

tive BMAL technique which computes the batch size and selects unlabeled samples

for annotation through a single framework. The proposed methodologies were val-

idated on the VidTIMIT and the MOBIO face recognition datasets. Our empirical
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evaluations certified the potential of these approaches in appropriately identifying a

batch size for a given video stream and consistently delivering high accuracies on

unseen samples.

• Batch Mode Active Learning for Fuzzy Label Problems: Existing approaches of

batch mode active learning schemes are all developed for crisp labels, where there

is a clear distinction between the different class labels (like face recognition). How-

ever, some problems like facial expression recognition involve a fuzzy label space

where there is an inherent imprecision and vagueness in the class label definitions

and one class smoothly transitions into the other. A BMAL framework for fuzzy

label problems was also proposed as a part of this dissertation. The batch selection

problem was represented as the maximization of a sub-modular and monotonically

non-decreasing function. A greedy algorithm was used to derive an efficient solu-

tion with provable performance guarantees. Our experiments on the MindReading

and MMI expression recognition datasets corroborated the potential of this approach

over passive sampling and also over crisp BMAL in problems like facial expression

recognition.

• Batch Mode Active Learning with Guaranteed Solution Bounds: State-of-the-

art batch mode active learning frameworks define the batch selection as an NP-hard

integer programming problem. Convex relaxations are performed to solve the prob-

lem. Even though they depict impressive empirical performance, no formal guaran-

tees have been proved on the qualities of the relaxations. As one of the contributions,

the BMAL problem was posed as an NP-hard integer quadratic programming (IQP)

problem. Two convex relaxations, one based on linear programming and the other

on semi-definite programming were then performed to solve the NP-hard problem.

More importantly, a strong deterministic bound was derived on the quality of the first

relaxation and a probabilistic bound on the second. The proposed frameworks were
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validated on the VidTIMIT and MOBIO face recognition datasets, the MindRead-

ing and MMI expression recognition datasets and the Scene and Yeast multi-label

datasets. The results depicted that the BatchRank and BatchRand algorithms per-

form at-par with the state-of-the-art and also deliver high quality solutions. We also

demonstrated the robustness of the frameworks to real-world issues like noisy labels

and class imbalance.

• Active Matrix Completion: Low-rank matrix completion has been extensively

used in applications like computer vision and graphics and machine learning among

others. However, the problem of integrating human intelligence for matrix com-

pletion has not been explored. A framework for active matrix completion has been

proposed as one of the contributions in this work. Three different frameworks were

developed (based on Conditional Gaussians, committee uncertainty and committee

stability) to compute the uncertainty of prediction of every missing entry in the ma-

trix completion process, which was then used to decide the entries to be queried for

annotation. Efficient algorithms were used for sparse inverse covariance estimation

and singular value decomposition (SVD) of large scale matrices. The algorithms

were validated on image and recommendation datasets. The results depicted tremen-

dous promise in using active matrix completion over random or passive sampling in

accurately completing a partially observed matrix. The flexibility of the framework

was then demonstrated on related active learning problems like transductive active

learning, multi-label active learning, active learning in regression and active feature

acquisition. The results corroborated the merit of the approach.

Apart from these four basic contributions, the generalizibility of the proposed

batch mode active learning frameworks was corroborated by the promising results ob-

tained after varying the criteria for batch selection. The perplexity based objective func-

tion (which emphasizes the entropy of the updated learner) depicted the best performance
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on challenging real-world face recognition datasets. The framework was also extended

to integrate multiple sources of information (like face and speech modalities for person

recognition or multiple image features for image classification) for active batch selection.

The results depicted the improvement of active batch selection from multiple sources of

information over a single source. The flexibility of the framework was further emphasized

by extending it to incorporate prior contextual information, which are often available in

real-world applications (like the location of a person, the subjects expected to attend a

particular meeting). The empirical results depicted improved performance of the context-

aware learner over the context-ignorant learner.

A framework for online active learning was also developed using concepts from

the Conformal Predictions (CP) theory. This framework offers strong theoretical guaran-

tees on the error frequency of a learner in the online setting. The uncertainty of an unla-

beled example was quantified as the largest eigenvalue of the p-value difference matrix,

which was used to select samples for manual annotation. We established that the proposed

approach is a generalization of a previously proposed query by transduction framework,

where only the top two p-values of an unlabeled sample were used to compute the infor-

mation content. Our algorithm depicted promising results on the UCI Machine Learning

Repository and on the VidTIMIT biometric recognition dataset.

These contributions were validated on a number of challenging real-world datasets

like the datasets from the UCI Machine Learning Repository, face recognition (VidTIMIT

and MOBIO), facial expression recognition (MindReading and MMI), multi-label datasets

(Scene and Yeast) and regression problems (FacePix pose estimation, AVEC continuous

emotion recognition). All these problems are fundamental challenges in the design and

development of a Social Interaction Assistant system, as outlined in Chapter 1. During

the course of this work, other contributions related to addressing the problems in these

application domains (such as a framework for online active learning using the Conformal
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Predictions (CP) theory, an algorithm to maximize efficiency in the CP framework and an

algorithm to fuse information from multiple sources using p-values obtained from the CP

framework) were also proposed.

Dissemination: The various aspects of the contributions in this work have resulted

in a total of 16 peer-reviewed conference and workshop publications, 1 journal publica-

tion, 2 book chapters, 1 US patent and 2 US provisional patents. The dissemination venues

include the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE

International Conference on Computer Vision (ICCV), ACM Multimedia Conference, the

Neural Information Processing Systems (NIPS) conference, Springer Lecture Notes on

Computer Science and the Pattern Recognition journal among others. This work was also

presented at the Doctoral Symposium of the Association for the Advancement of Artifi-

cial Intelligence (AAAI), ACM Multimedia and SIAM Data Mining (SDM) conferences

and also at the Multimedia and Vision Meeting organized by IBM Research, the Seventh

Annual Machine Learning Symposium organized by the New York Academy of Sciences

and at the Machine Learning departments of Microsoft Research, Redmond and Carnegie

Mellon University.

9.2 Future Work

The contributions of this dissertation have shown tremendous promise in using batch mode

active learning techniques in real-world multimedia recognition applications. The results

depict the usefulness of the algorithms in reducing human annotation effort in inducing an

appropriate classification / regression model. The possibilities of future work are numer-

ous and a few sample directions are presented in this section.
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Dynamic Batch Mode Active Learning

The dynamic batch mode active learning algorithms, detailed in Chapter 3, were derived

by appending an L1 penalty to the objective function for batch selection. As part of our

future work, we will explore other mechanisms of dynamic batch size computation (e.g.

L2 regularization as the penalty term) and study the effects on the results.

The problem of adaptive batch selection is closely related to finding the correct

number of clusters in a clustering algorithm. Typically, such algorithms define an objective

function to quantify the quality of clustering and a penalty is appended on the number of

clusters to discourage a high quality clustering with a huge number of clusters. Recent

work in this domain has addressed the problem using Dirichlet processes [316, 317] - we

plan to investigate these in our ongoing work.

Our future work will also focus on studying the theoretical properties of the frame-

works to mathematically establish concrete performance guarantees on the solution qual-

ities for both the dynamic BMAL schemes. Further, in case of the stochastic gradient

descent based approach, the quadratic programming problem that needs to be solved as

part of the optimization process can be the main bottleneck, which increases the compu-

tation time (especially for large scale data). However, there have been recent efforts [318]

to efficiently solve QP problems by using a pivoting algorithm and the KKT conditions to

significantly reduce computations. This can be used in our approach, making it feasible

and meritorious even for large-scale data. We will explore this in our future work.

Batch Mode Active Learning for Fuzzy Classification

The BMAL framework for fuzzy label classification problems like facial expression recog-

nition, based on sub-modular optimization (Chapter 4) assumed every face image as a sin-

gle unlabeled sample. However, while face recognition can work on single images, it is
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more appropriate to consider video streams as data samples for facial expression recogni-

tion; an expression can be recognized with certainty over a number of frames rather than a

single frame. A promising direction of future research is to extend the active batch selec-

tion framework to video streams and study the effect on the results. Future work will also

involve rigorous validation of the proposed methodology in large scale learning problems

and in other multimedia applications involving fuzzy labels (e.g. recognizing the stages of

development of gene expression pattern images).

Batch Mode Active Learning with Guaranteed Solution Bounds

The BatchRank and BatchRand frameworks, discussed in Chapter 5, were based on the

assumption that the matrix D which encoded the uncertainty and divergence information

had only non-negative entries. As part of our future work, we intend to relax this assump-

tion and prove performance bounds for the case where D can have negative entries. We

will also explore efficient methods to compute the Schur complement in order to speed up

the SDP solution process in BatchRand. We further plan to extend this work to several

other related problems including binary matrix factorization and transfer-active learning.

Active Matrix Completion

The Conditional Gaussian method based active matrix completion framework (presented

in Chapter 6) is based on the computation of variance of every unobserved entry of each

data sample. This is derived from the sub-matrix of the covariance matrix with rows

and columns corresponding to the missing entries of a particular sample. However, apart

from the variance, the covariance matrix also provides the correlation among the different

entries (given by the off-diagonal elements). It will be interesting to factor the redundancy

(correlation) among the different entries in the batch selection criterion for this framework

and observe the impact on the results.
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Another important direction of future research is to prove performance bounds of

the query-by-committee based active matrix completion algorithms (QBC and Stability).

There is a rich body of literature on the theoretical guarantees of the QBC algorithm in

active learning [63, 319, 140], which quantify the expected number of queries required

to attain a certain level of generalization error. It will be interesting to derive analogous

bounds for the QBC-based algorithms.

Further, in certain applications, the data is in the form of an array of matrices

(known as tensors). For instance, in a video stream, each image can be represented as a

matrix of pixel values and the entire video is an array of matrices, one at every time point.

Recently, a tensor completion approach has been proposed [273], to estimate missing val-

ues in visual data. We intend to extend our active matrix completion algorithms to tensor

completion for active sample selection in higher order matrices.

Other Possible Directions of Future Work

Limitations and avenues of future work specific of each of the contributions in this dis-

sertation were stated above. However, there are other possible directions of future work

pertaining to active learning in general. Pointers to these directions are briefly described

below:

Hierarchical Batch Mode Active Learning: Classification problems usually as-

sume a flat label space. However, in some applications, the label space can be organized

in the form of a tree hierarchy. A classical example of such a problem is facial expres-

sion recognition which, as described in the context of the Social Interaction Assistant, is

one of the main motivating applications of this work. The MindReading dataset (used in

the context of fuzzy expression recognition) categorizes human expression into 24 basic

emotions and also presents a hierarchy of each emotion depending on its degree/strength.

For example, happy is a base emotion with 6 subclasses merry, delighted, amused, tri-
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umphant, jubilant and exonerated. This is helpful in studying the emotional state of a

person in more intricate details. As another example, consider a malware classification

system, which classifies files as clean or malicious. A malware is often represented as a

hierarchical structure consisting of a type (e.g. Worm, Backdoor), a platform (e.g. Win

32, Win NT), a family (e.g. Rbot, Puce) and a generation (e.g. Gen!A, Gen!B) [320].

The problem of hierarchical classification has been addressed in the literature [321, 322].

However, to the best of our knowledge, no active learning scheme has been proposed for

hierarchical label spaces. An interesting direction of future research is to develop a batch

mode active learning framework specially tailored for hierarchical label spaces.

Temporal Redundancy in Video Streams: Most of the active learning algorithms

in this dissertation were developed for video based multimedia applications. The video

stream was decomposed into images and query functions were designed to select a batch of

informative image samples for manual annotation. However, the images forming a video

stream share a temporal correlation and by treating each image sample independently, the

temporal redundancy has been ignored. An interesting direction of future research is to

integrate the temporal component of the video streams in the objective function for batch

selection and study the impact on the results.

Alternative Feedback Types: The user feedback in the proposed active learning

algorithms was in the form of class labels for classification / regression problems; that is,

the active learning algorithms identified a set of promising instances whose class labels

were acquired from human oracles. However, it is possible (and sometimes even benefi-

cial) to conceive of other means of user feedback to the learning algorithm. Joshi et al.

[158] developed a multi-class active learning framework where the user input was binary

- in each iteration, the algorithm selected a pair of unlabeled samples and the user merely

had to specify whether or not the two samples belonged to the same class. The authors

established that the binary feedback system minimized the user interaction time with the

179



system and succeeded in obtaining more accurate user inputs. A possible direction of fu-

ture research is to explore applications which require other means of user supervision to

the learning systems. For example, in a crowd-sourced setting, the objective is to estimate

the underlying scores of objects based on absolute and preference judgments provided by

a set of human users. The user input in such an application is in the form of full or partial

rankings, relative item comparisons or a combination [323, 324]. An active learner de-

signed for such an application will therefore need to identify a promising subset of objects

which need to be ranked manually to better infer the gold-standard scores of all the sam-

ples. It will also be interesting to develop active learning algorithms where the user input

is in the form of the distribution of class labels in the overall data corpus instead of the

label of a single unlabeled sample. Development of new forms of supervision in machine

learning applications also opens the door to alternative forms of active learning.

Stopping Criteria: An important aspect of any active learning framework is to

know when to stop learning. As noted in some of our results, the generalization accuracy

may reach a peak value and then start falling down as more samples are queried. Overfit-

ting may be one possible reason to explain this observation. There have been some efforts

to address this problem [325, 326, 327]. These methods are fairly similar, based on the

notion of an intrinsic measure of stability or self-confidence of the learner and that active

learning ceases to be useful once this measure begins to degrade. However, all these al-

gorithms are based on an intrinsic learner-decided threshold and are heuristic in nature.

Identifying an appropriate stopping criterion for active learning is still an open problem

and is a promising direction of future research.
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APPENDIX A

PROOF RELATED TO DISCREPANCY MEASURE IN GENERALIZED QUERY BY

TRANSDUCTION
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In Chapter 8, as part of the Generalized Query by Transduction approach, we de-

fined a matrix C which contains the absolute value of the pairwise differences between all

the p-values obtained from the Conformal Predictions framework:

Ci j(P) =
∣∣Pi−Pj

∣∣ (9.1)

We claimed that this matrix C will always have exactly one positive eigenvalue (which

was used as a measure of disagreement). We prove this claim in this appendix.

Lemma 7. An N by N square matrix which has−2 in all its superdiagonal entries, positive

constants in all entries of the last row and 0 in all the other positions, always has a positive

determinant.

Proof. Consider the case when N = 2. The matrix M2 can be written as:

M2 =

 0 −2

d1 d2


where d1 and d2 are positive constants. It is trivial to verify that this matrix has a positive

determinant. Let us also consider the case when N = 3. The matrix M3 is now given as:

M3 =


0 −2 0

0 0 −2

d1 d2 d3


Again, it is easy to verify that this matrix has a positive determinant. Let us now

assume that the proposition holds for some N = n, that is, let us assume that the following

matrix Mn has a positive determinant det(Mn):
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Mn =



0 −2 0 0 . . . 0

0 0 −2 0 . . . 0
...

d1 d2 d3 d4 . . . dn


Now, consider the case when N = n+1. The matrix Mn+1 is given by:

Mn+1 =



0 −2 0 0 . . . 0 0

0 0 −2 0 . . . 0 0
...

d1 d2 d3 d4 . . . dn dn+1


The determinant of Mn+1 is computed as:

det(Mn+1) =−(−2)

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −2 0 . . . 0 0

0 0 −2 . . . 0 0
...

d1 d3 d4 . . . dn dn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
The n× n matrix on the right is of a similar form as Mn, and hence its determinant, say

det(M̂n) is greater than zero. Therefore:

det(Mn+1) = 2×det(M̂n)> 0

since the dis are arbitrary constants. Thus, we see that if the proposition holds for N = n,

then it also holds for N = n+1. Therefore, by the principle of mathematical induction, we

conclude that the proposition holds for all N. This proves the lemma.
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Lemma 8. An N by N square matrix M where

• MNN = 0

• Mi j =−2 for all i, j with i = j except i = N and j = N

• MiN = 1, except when i = N

• MN j = a positive constant, except when j = N

• 0s in all other positions

has a positive determinant if N is odd and a negative determinant if N is even.

Proof. Let N = 2. The matrix M2 is given by:

M2 =

 −2 1

d1 0


Trivially, the determinant of M2 is negative for positive d1. Now, consider the case

when N = 3. The matrix M3 is given by:

M3 =


−2 0 1

0 −2 1

d1 d2 0


It is easy to verify that the determinant of this matrix is positive for positive values

of d1 and d2.

Let us assume that the proposition holds for N = 2n−1 and N = 2n, where n is a

positive integer. Let us consider the matrix M2n+1
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M2n+1 =



−2 0 0 . . . 0 1

0 −2 0 . . . 0 1
...

d1 d2 d3 . . . d2n 0


The determinant is given by

det(M2n+1) = (−2)

∣∣∣∣∣∣∣∣∣∣∣∣∣

−2 0 0 . . . 0 1

0 −2 0 . . . 0 1
...

d2 d3 d4 . . . d2n 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

+1×

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −2 0 . . . 0

0 0 −2 . . . 0
...

d1 d2 d3 . . . d2n

∣∣∣∣∣∣∣∣∣∣∣∣∣
The positive sign appears in front of 1 as it is in an odd position 2n+1. The first

determinant evaluates to a negative value as, by our assumption, the proposition holds for

N = 2n and the second determinant is positive by Lemma 7. Thus, det(M2n+1) is positive.

Now, consider the matrix M2n+2:

M2n+2 =



−2 0 0 . . . 0 1

0 −2 0 . . . 0 1
...

d1 d2 d3 . . . d2n+1 0
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Its determinant is given as:

det(M2n+2) = (−2)

∣∣∣∣∣∣∣∣∣∣∣∣∣

−2 0 0 . . . 0 1

0 −2 0 . . . 0 1
...

d2 d3 d4 . . . d2n+1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1×

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −2 0 . . . 0

0 0 −2 . . . 0
...

d1 d2 d3 . . . d2n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
The negative sign appears in front of 1 as it is in an even position 2n+2. The first

determinant is positive since it is proved that the proposition holds for N = 2n+ 1 and

the second determinant is positive by Lemma 1. Hence, det(M2n+2) is negative. Thus,

it is proved that if the proposition holds for N = 2n− 1 and N = 2n, then it also holds

for N = 2n+1 and N = 2n+2 and therefore, by the principle of mathematical induction,

Lemma 8 holds for all N.

Lemma 9. For any given set of N p-values, the matrix C has a positive determinant if N

is odd and a negative determinant if N is even.

Proof. Consider the case when N = 3 and let the three p-values be a, b and c. Let d1 be

the absolute difference between a and b and d2 be the absolute difference between b and

c. The matrix C3 is given by:
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C3 =


0 d1 d1 +d2

d1 0 d2

d1 +d2 d2 0


Its determinant is given by:

det(C3) =

∣∣∣∣∣∣∣∣∣∣
0 d1 d1 +d2

d1 0 d2

d1 +d2 d2 0

∣∣∣∣∣∣∣∣∣∣
Using the transformations Row1 = Row1 - Row2 and Row2 = Row2 - Row3, we

have:

det(C3) =

∣∣∣∣∣∣∣∣∣∣
−d1 d1 d1

−d2 −d2 d2

d1 +d2 d2 0

∣∣∣∣∣∣∣∣∣∣

= d1d2

∣∣∣∣∣∣∣∣∣∣
−1 1 1

−1 −1 1

d1 +d2 d2 0

∣∣∣∣∣∣∣∣∣∣
Using the transformations Column1 = Column1 - Column2 and Column2 = Col-

umn2 - Column3, we have:

det(C3) = d1d2

∣∣∣∣∣∣∣∣∣∣
−2 0 1

0 −2 1

d1 d2 0

∣∣∣∣∣∣∣∣∣∣
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⇒ det(C3)> 0

by Lemma 8.

In general, let the N p-values be a1,a2,a3 . . .aN . Let d1 be the absolute difference

between a1 and a2, d2 be the absolute difference between a2 and a3 and so on. The

determinant of the matrix C is then given by:

det(C) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 d1 d1 +d2 . . . ∑di

d1 0 d2 . . . ∑di−d1

...

∑di ∑di−d1 ∑di− (d1 +d2) . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
Using the transformations Row1 = Row1-Row2, Row2 = Row2-Row3 . . . Row(N-

1) = Row(N-1)-RowN, we get:

det(C) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−d1 d1 d1 . . . d1

−d2 −d2 d2 . . . d2

...

∑di ∑di−d1 ∑di− (d1 +d2) . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= d1d2 . . .dN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 1 1 . . . 1

−1 −1 1 . . . 1
...

∑di ∑di−d1 ∑di− (d1 +d2) . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
Using the transformations Column1 = Column1-Column2, Column2 = Column2-

Column3 . . . Column(N-1) = Column(N-1)-ColumnN, we get:
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det(C) = d1d2 . . .dN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

−2 0 0 . . . 1

0 −2 0 . . . 1
...

d1 d2 d3 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
Hence, det(C) > 0 if N is odd and det(C) < 0 if N is even, by Lemma 8. This

proves Lemma 9.

Theorem 3. The matrix C, which contains the absolute values of the pairwise differ-

ences between all the p-values obtained from the Conformal Predictions framework, i.e.

Ci j(P) =
∣∣Pi−Pj

∣∣, will always have exactly one positive eigenvalue.

Proof. Given an n×n matrix M, the characteristic polynomial of M is written as:

xn−g1xn−1 +g2xn−2− ...+(−1)ngn = 0 (9.2)

where the coefficient g j is the sum of the determinants of all the sub-matrices of M taken j

rows and columns at a time (symmetrically). Thus, g1 is the trace of M (i.e., the sum of the

diagonal elements), g2 is the sum of the determinants of the n(n−1)
2 sub-matrices that can

be formed from M by deleting all but two rows and columns (symmetrically), and so on.

Continuing in this way, we can find g3, g4,... up to gn, which of course is the determinant

of the entire n× n matrix. Note that the n roots of the characteristic polynomial are the

eigenvalues of the matrix M.

Now, let us assume that we have a similar characteristic polynomial for the given

matrix C. From Descartes’ rule of signs, if the terms of a single-variable polynomial

with real coefficients are ordered by descending variable exponent, then the number of
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positive roots of the polynomial is either equal to the number of sign differences between

consecutive nonzero coefficients, or less than it by a multiple of 2.

From Lemma 9, we know that det(C) > 0 if n is odd and det(C) < 0 if n is even.

Hence, in the equation for the characteristic polynomial (Equation 9.2), it is evident that

g1 is always positive (since it is the sum of sub-matrices of C, taking 1 row and column

at a time, each of whose determinant is positive). Similarly, g2 is always negative, g3 is

always positive, and so on. Substituting these signs in Equation (9.2), we see that the

characteristic polynomial for C has only one sign change between consecutive non-zero

co-efficients (between the first and second terms). Thus, from Descartes’ rule of signs, the

matrix C always has only one positive eigenvalue (root of the characteristic polynomial).

This proves the theorem.
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