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ABSTRACT 

Cyanovirin-N (CV-N) is a naturally occurring lectin originally isolated from the cyanobacteria 

Nostoc ellipsosporum. This 11 kDa lectin is 101 amino acids long with two binding sites, one at 

each end of the protein. CV-N specifically binds to terminal Manα1-2Manα motifs on the 

branched, high mannose Man9 and Man8 glycosylations found on enveloped viruses including 

Ebola, Influenza, and HIV. wt-CVN has micromolar binding to soluble Manα1-2Manα and also 

inhibits HIV entry at low nanomolar concentrations. CV-N's high affinity and specificity for Manα1-

2Manα makes it an excellent lectin to study for its glycan-specific properties. The long-term aim of 

this project is to make a variety of mutant CV-Ns to specifically bind other glycan targets. Such a 

set of lectins may be used as screening reagents to identify biomarkers and other glycan motifs of 

interest. As proof of concept, a T7 phage display library was constructed using P51G-m4-CVN 

genes mutated at positions 41, 44, 52, 53, 56, 74, and 76 in binding Domain B. Five CV-N 

mutants were selected from the library and expressed in BL21(DE3) E. coli. Two of the mutants, 

SSDGLQQ-P51Gm4-CVN and AAGRLSK-P51Gm4-CVN, were sufficiently stable for 

characterization and were examined by CD, Tm, ELISA, and glycan array. Both proteins have CD 

minima at approximately 213 nm, indicating largely β-sheet structure, and have Tm values greater 

than 40°C. ELISA against gp120 and RNase B demonstrate both proteins’ ability to bind high 

mannose glycans. To more specifically determine the binding specificity of each protein, 

AAGRLSK-P51Gm4-CVN, SSDGLQQ-P51Gm4-CVN, wt-CVN, and P51G-m4-CVN were sent to 

the Consortium for Functional Glycomics (CFG) for glycan array analysis. AAGRLSK-P51Gm4-

CVN, wt-CVN, and P51G-m4-CVN, have identical specificities for high mannose glycans 

containing terminal Manα1-2Manα. SSDGLQQ-P51Gm4-CVN binds to terminal GlcNAcα1-4Gal 

motifs and a subgroup of high mannose glycans bound by P51G-m4-CVN. SSDGLQQ-wt-CVN 

was produced to restore anti-HIV activity and has a high nanomolar EC50 value compared to wt-

CVN’s low nanomolar activity. Overall, these experiments show that CV-N Domain B can be 

mutated and retain specificity identical to wt-CVN or acquire new glycan specificities. This first 

generation information can be used to produce glycan-specific lectins for a variety of applications.  
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CHAPTER 1 

ABSTRACT 

The 101 amino acid lectin Cyanovirin-N (CV-N) was discovered in an anti-HIV screen. Its 

low nanomolar anti-HIV activity has made it of great interest. CV-N has broad antiviral activity 

across a variety of HIV strains and blocks viral infection by binding to high-mannose 

glycosylations on gp120. This antiviral activity is mediated by multivalent interactions with CV-N’s 

two binding domains. CV-N has a pseudo sequence repeat from 1-50 and 51-101, and two 

binding domains containing residues 1-38 and 90-101 in Domain A, and 39-89 in Domain B. The 

protein can also exist as a domain swapped dimer. Several studies were conducted in which 

either Domain A or Domain B were knocked out, allowing each domain to be studied individually. 

The binding pocket in Domain B is deep and binds well to Manα1-2Manα. Domain A has a 

shallower pocket that also binds Manα1-2Manα. P51G-m4-CVN has a stabilizing mutation that 

also reduces the protein’s ability to dimerize, while ΔQ50-m4-CVN and S52P-m4-CVN produce 

obligate domain swapped dimers. Whether it’s two Domain A’s, two Domain B’s, or one of each 

domain, two active binding domains are required for anti-HIV activity. Related to CV-N is a family 

of proteins called CV-N Homologs (CVNH). This group of proteins is predicted to have very 

similar backbone structures to CV-N and a variety of glycan binding specificities. 

BACKGROUND 

Glycans and Lectins. Protein-carbohydrate interactions are essential for many in vivo 

biological functions including cell-cell interactions and many host-pathogen interactions. The field 

of glycobiology is relatively young and much research is being performed to specifically 

understand the role of glycans in biology and human diseases (Varki, 2009). Proteins can fold 

into a variety of conformations based on the linear arrangement of their amino acids. Glycans are 

built from monomeric sugars which can be linked together in a variety of ways, including 

branched structures, giving glycans far more structural variability than proteins (Varki, 2009).  

Unlike cellular proteins, glycans are not directly encoded in an organism's DNA and may 

be added to proteins as posttranslational modifications. Two common types of glycosylation, N-

linked and O-linked glycans, are attached to specific amino acids in protein sequences. During 
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translation, some proteins enter the endoplasmic reticulum (ER) and receive N-linked 

glycosylations. Further processing occurs in the Golgi complex where the N-linked glycans can 

be modified and O-linked glycans may be added (Alberts, 2002). However, not every potential 

glycosylation site will receive a sugar. Glycosylation is partially based on conformational 

availability of the linkage site and potential glycosylation sites buried in the protein are far less 

likely to receive glycans (Varki, 2009).  

N-linked glycans are attached at Asn when the amino acid sequence is Asn-X-Ser/Thr, 

where X is any residue except Pro. All N-linked glycans begin as large structures containing two 

N-acetylglucosamines (GlcNAc), nine mannoses, and three glucoses. They can be processed 

into high-mannose, complex type, or hybrid-type N-linked glycans. Each type has the basic 

subunit of an Asn, two GlcNAcs followed by a β1-4 linked mannose, and two branched mannoses 

attached by α1-3 and α1-6 linkages (Alberts, 2002; Varki, 2009). Figure 1 shows examples of 

each of the major types of N-linked glycosylations, including high-mannose, complex-type, and 

hybrid-type. 

 
 

Figure 1: Subgroups of N-linked glycans. This is figure use with permission (Bolmstedt, O'Keefe, 
Shenoy, McMahon, & Boyd, 2001). 

 
O-linked glycosylations can be attached to Thr and Ser residues. Though specific 

recognition sequences are not usually known, there is often an abundance of Pro near the 
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glycosylation sites. One common form of O-linked glycosylations, mucins, occurs in the epithelia 

and mucus of the respiratory, genitourinary, and gastrointestinal tracts. Mucins contain a large 

variety of glycan structures and one peptide can have hundreds of glycosylated sites. They can 

also polymerize, giving viscosity to mucus and helping to protect individuals from pathogenic 

organisms (Varki, 2009).  

Lectins are proteins that bind to glycans, and such proteins are found throughout nature 

(Alberts, 2002; Arnaud, Audfray, & Imberty, 2013; Varki, 2009). Glycans and lectins often work 

together to accomplish many important biological tasks, such as pathogen-host binding and 

immune system function. The binding pockets of many lectins are shallow (Arnaud et al., 2013; C. 

A. Bewley, 2001; Varki, 2009) and accommodate between one and three terminal 

monosaccharides (Varki, 2009). Considering the large glycan diversity, many lectins are quite 

specific for their targets, often associating through hydrogen bonding (Arnaud et al., 2013). Most 

characterized lectins have µM to low mM binding affinity at a single binding site and commonly 

act multivalently to produce nM to µM avidity (Arnaud et al., 2013; C. A. Bewley, 2001; Varki, 

2009; Shenoy et al., 2002). Multivalent interactions are common among lectins and can be 

essential for certain tasks such as antiviral activity (Fromme et al., 2007; Y. Liu et al., 2009). 

Wild-type CVN (wt-CVN). CV-N is a 101 amino acid, 11 kDa lectin identified during a 

natural products screen for anti-HIV agents. Wild-type cyanovirin-N (wt-CVN) comes from 

cyanobacterium Nostoc ellipsosporum (blue-green algae) and its ability to prevent HIV infection 

has made it a well-studied lectin (Boyd et al., 1997). CV-N has internal sequence homology 

between the first fifty and second fifty amino acids. Sequence alignment of amino acids 1-50 and 

51-101, with a one residue space at position 16, reveals 16 strictly conserved residues with 13 

more that are modestly mutated (Gustafson et al., 1997). wt-CVN also contains two disulfide 

bonds, one between residues 8 and 22, and another between residues 58 and 73 (Gustafson et 

al., 1997). Figure 2 illustrates the sequence homology with dark lines for exactly conserved 

residues and dotted lines for similar residues.  
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Figure 2. Sequence alignment of internal CV-N repeat. There is a sequence gap (*) at residue 16. 
Solid bars indicate identical amino acids and dashes indicate modestly mutated residues. The 
large lines indicate disulfide bonds. (Gustafson et al., 1997)  
 

Each of wt-CVN's sequence repeats forms a three-stranded β-sheet, a helical turn, and β-

hairpin (L. Liu, Byeon, Bahar, & Gronenborn, 2012; Percudani, Montanini, & Ottonello, 2005). The 

β-hairpin from one repeat interacts with the three-stranded β-sheet of the other repeat via 

hydrophobic interactions (C. A. Bewley et al., 1998). Figure 4A shows an NMR structure (PDB: 

1IIY) of wt-CVN, with residues 1-50 in yellow and 51-101 in blue.  

CV-N also has two binding sites, one at each end of the protein (C. A. Bewley & Otero-

Quintero, 2001). Binding Domain A comprises residues 1-38 and 90-101 and Domain B 

comprises residues 39-89 (Barrientos & Gronenborn, 2002; C. A. Bewley et al., 1998; Yang et al., 

1999). As seen in Figure 4B, each binding domain has part of each sequence repeat, with 

Domain A in green and Domain B in burgundy. CV-N is ~25Å wide and 55Å long with ~40Å 

between the center of each binding site (C. A. Bewley & Otero-Quintero, 2001), and contains no 

glycosylations (Boyd et al., 1997; Gustafson et al., 1997). 

 
Figure 3. Sequence alignment of wt-CVN Domain A and Domain B. Domain A comprises 
residues 90-101 and 1-38, and Domain B comprises residues 39-89. Figure adapted from (C. A. 
Bewley, 2001).  
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Figure 4. NMR structure of wt-CVN bound to Manα1-2Manα (PDB: 1IIY). N and C termini are in 
the right side of the protein. A) The pseudo sequence repeat is demonstrated by amino acids 1-
50 in yellow and 51-101 in blue; B) Binding Domain A comprises amino acids 1-38 and 90-101 in 
green, and Domain B comprises amino acids 39-89 in burgundy. 
 

wt-CVN is monomeric in the NMR solution structure, but the solved crystal structure shows 

that it can also exist as a domain-swapped dimer (Yang et al., 1999). Domain swapping in CV-N 

is facilitated by the helical linker region comprising amino acids 50-56 (Botos et al., 2002; 

Fromme et al., 2007; L. Liu et al., 2012; Yang et al., 1999). Figure 5 shows the wt-CVN dimer in 

which residues 1-50 and 51'-101' and residues 1'-50' and 51-101 associate, giving the protein 

four binding sites. Both regions of the dimer have similar structures to their monomeric form 

except for the extended linker region (Botos et al., 2002; Yang et al., 1999). 

 
 

Figure 5. Domain-swapped dimer CV-N crystal structure (PDB: 3GXZ) Glycans were omitted from 
the figure. CV-N is shown in green and CV-N’ is pink. The N terminus of each protein is blue and 
the C terminus is orange. A) CV-N dimer with the linker region 49-54 in yellow. B) A rotated view 
of the dimer showing association of CV-N and CV-N’.  

 
wt-CVN Binding. wt-CVN was shown to bind glycoprotein 120 (gp120) on the Human 

Immunodeficiency Virus (HIV) envelope and prevent HIV infection and cell-cell transmission in in 

vitro cellular assays (Boyd et al., 1997). Remarkably, CV-N is effective against a variety of strains 

including HIV-1 primary isolates and lab strains, HIV-2, and simian immunodeficiency virus (SIV) 

(Boyd et al., 1997).  
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HIV is a retrovirus belonging to the subgroup lentiviruses, which cause diseases that 

progress slowly (Acheson, 2007). The enveloped virus is covered in glycoprotein spikes made of 

a transmembrane domain, gp41, which is noncovalently attached to external gp120 (J. Liu, 

Bartesaghi, Borgnia, Sapiro, & Subramaniam, 2008; O'Keefe et al., 2000). gp120 exists on the 

viral membrane as a trimer and is heavily glycosylated, with glycosylation accounting for ~50% of 

the protein’s molecular weight (Hu, Mahmood, & Shattock, 2007; Kwong et al., 1998). Of 

approximately 24 N-linked glycosylations on gp120, 13 are complex type glycans and about 11 

are N-linked high mannose sites (Scanlan, Offer, Zitzmann, & Dwek, 2007; Xiong, Fan, & 

Kitazato, 2010; Yeh, Seals, Murphy, van Halbeek, & Cummings, 1993; Zhu, Borchers, Bienstock, 

& Tomer, 2000).  

HIV infection is mediated by gp120 and gp41 binding to CD4+ cells, usually T-lymphocytes 

and macrophages expressing chemokine CXCR4 and CCR5, respectively (Acheson, 2007; Esté 

& Telenti, 2007; Wilen, Tilton, & Doms, 2012). There are also HIV strains that recognize both 

coreceptors. Host cell entry begins when gp120 binds to CD4, followed by secondary binding to 

co-receptor CCR5 or CXCR4. CD4 binding causes conformational changes in gp120 and gp41, 

allowing the helical gp41 trimer to insert itself into the host cell membrane. gp41 then rearranges 

into a six-helix bundle, allowing fusion of the viral and cell membranes (Alberts, 2002; Eckert & 

Kim, 2001; J. Liu et al., 2008; Wilen et al., 2012). Figure 6 depicts the HIV entry mechanism.  

 

Figure 6. Overview of HIV entry mechanism. To deliver the viral payload into cells, HIV Env, 
comprised of gp120 and gp41 subunits (1), first attaches to the host cell, bindingCD4 (2). This 
causes conformational changes in Env, allowing coreceptor binding, which is mediated in part by 
the V3 loop of Env (3). This initiates the membrane fusion process as the fusion peptide of gp41 
inserts into the target membrane, followed by six-helix bundle formation and complete membrane 
fusion (4) (Wilen et al., 2012). 
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Several binding studies showed that CV-N does not directly block the CD4 binding site on 

gp120 or prevent binding of several anti-gp120 antibodies (Boyd et al., 1997; Esser et al., 1999). 

One exception is human antibody 2G12, which is specific for Manα1-2Man terminal high-

mannose glycans (Calarese et al., 2005; Doores, Fulton, Huber, Wilson, & Burton, 2010), and 

overlaps with CV-N’s binding to gp120 (Alexandre et al., 2010; Dey et al., 2000; Esser et al., 

1999). To verify the glycan-dependent nature of binding, wt-CVN was incubated with non-

glycosylated gp120, but no significant binding was observed (Boyd et al., 1997; O'Keefe et al., 

2000; Shenoy, O'Keefe, Bolmstedt, Cartner, & Boyd, 2001). The densely N-glycosylated region 

where 2G12 and CV-N bind is located nearly opposite of the CD4 binding site on gp120 (Scanlan 

et al., 2007), consistent with the binding studies. Because CV-N prevents HIV infection by binding 

to viral high-mannose glycosylations, it can similarly bind high-mannose glycans on other 

enveloped viruses (C. A. Bewley, 2001; Bolmstedt et al., 2001; O'Keefe et al., 2000) including 

Ebola (Barrientos et al., 2003), simian immunodeficiency virus (SIV) (Boyd et al., 1997), feline 

immunodeficiency virus (FIV), measles, human herpes virus 6 (Dey et al., 2000), and influenza 

(O'Keefe et al., 2003). 

Cell fusion assays more specifically demonstrated the binding of wt-CVN to Man9GlcNAc2 

(Man9) and Man8GlcNAc2 D1D3 (Man8) with nanomolar affinity (C. A. Bewley & Otero-Quintero, 

2001). Further analysis by NMR determined that wt-CVN binds soluble Manα1-2Manα with low 

micromolar affinity (C. A. Bewley, 2001; C. A. Bewley & Otero-Quintero, 2001). NMR and 

isothermal titration calorimetry (ITC) experiments indicate that Domain A has a weaker affinity for 

Manα1-2Manα than Domain B with ITC yielding Ka values of 6.8 (±4) x 10
5
 M

-1
 and 7.2 (±4) x 10

6
 

M
-1

 respectively (C. A. Bewley, 2001; C. A. Bewley & Otero-Quintero, 2001). CV-N’s binding sites 

also recognize the three trimannose arms of Man9 (Manα1-2Manα1-2Man, Manα1-2Manα1-

3Man, Manα1-2Manα1-6Man) with affinities ranging from millimolar to micromolar (C. A. Bewley, 

Kiyonaka, & Hamachi, 2002). 

The NMR structure of CV-N bound to Manα1-2Manα revealed the amino acid positions 

involved in sugar binding (C. A. Bewley, 2001; C. A. Bewley & Otero-Quintero, 2001). Domain A 

uses seven amino acids: K3, Q6, T7, E23, T25, N93, and I94. Domain B uses 10 residues: E41, 
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N42, D44, S52, N53, E56, T57, K74, R76, and Q78 to bind to dimannose. In order to sequentially 

identify equivalent residues in each binding site, the sequences for each domain were aligned. 

Figure 3 shows the alignment of the amino acid sequences for each domain. Domain B has a 

deeper binding pocket than Domain A (C. A. Bewley, 2001; C. A. Bewley & Otero-Quintero, 

2001), which is partially due to smaller, nonpolar residues at positions Ala92, Gly2, and Gly27 in 

Domain A. The symmetrically equivalent residues in Domain B are Glu41, Ser52, and Gln78, 

which are polar residues with side chains larger than Ala and Gly (C. A. Bewley, 2001). Domain B 

has a deeper binding pocket and tighter binding to dimannose than does Domain A (C. A. 

Bewley, 2001). 

Molecular dynamics studies have revealed a cap-and-lock mechanism in Arg76 of Domain 

B (Margulis, 2005). Arg76 has been observed in three different confirmations in NMR (C. A. 

Bewley, 2001) and x-ray crystallography studies (Fromme, Katiliene, Fromme, & Ghirlanda, 

2008). Once the dimannose is bound in Domain B, Arg76 can form two direct hydrogen bonds 

with the sugar, or one water-mediated hydrogen bond. The observed variability combined with the 

supporting computational data suggests a locking mechanism in which Arg76 provides additional 

lectin interactions with the bound sugar. Margulis et al. and Fromme et al. suggest that this 

locking mechanism may contribute to the high affinity binding of CV-N to dimannose.  

The same molecular dynamics studies have also pointed to Glu41 as being important to 

the specificity of CV-N for its ligands (Margulis, 2005). The orientation of the hydroxyl group on 

bound mannose is important for hydrogen bond formation with Glu41 and Margulis et al. suggest 

that this single residue may play a major role in the protein's specificity.  

Hinge Region Mutants. wt-CVN exists as a domain-swapped dimer when it is crystallized 

(Yang et al., 1999). Several linker region mutants of CV-N have been produced, demonstrating 

that a single mutation or deletion can strongly influence the protein's oligomeric state. Domain 

swapping is found in a variety of proteins and involves two or more of the same protein 

exchanging motifs via a helical linker region (Bennett, Schlunegger, & Eisenberg, 1995). This can 

be achieved by refolding a high concentration of the protein from denaturing conditions, changing 
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the pH or temperature (Barrientos, Louis, Botos, et al., 2002; Bennett et al., 1995; Fromme et al., 

2007). 

wt-CVN has a Pro at position 51, which has fewer allowed confirmations than many other 

amino acids, and promotes linker extension by causing residues 50-53 to have unfavorable 

conformations. Dimeric wt-CVN has an extended linker region in each protein, allowing the amino 

acids to have more favorable conformations (Barrientos, Louis, Botos, et al., 2002). Monomeric 

wt-CVN can be changed from monomer to dimer when 0.3-1.0 mM protein is denatured in 8 M 

urea and refolded, or protein of at least 2 mM is incubated at 38°C. Dimeric wt-CVN can be 

returned to the monomer form by incubation at 38°C for at least 12 hours (Barrientos, Louis, 

Botos, et al., 2002). A recent paper discusses the thermodynamics and kinetics of domain-

swapping in CV-N (L. Liu et al., 2012). Because of a high energy barrier similar to that for 

unfolding, it is suggested that CV-N transitions from monomer to dimer and visa-versa by 

unfolding and refolding. 

To better understand the hinge region of CV-N, residues 50-56 (Fromme et al., 2007) were 

mutated in several ways. One such mutant, S52P-CVN was discovered in a T7 phage display 

library of CV-N genes produced by error-prone-PCR (EP-PCR) (Han, Xiong, Mori, & Boyd, 2002). 

This mutant is exclusively dimeric because prolines at positions 51 and 52 forced CV-N into the 

more open hinge confirmation in the domain-swapped dimer (Barrientos, Lasala, Delgado, 

Sanchez, & Gronenborn, 2004; Barrientos, Louis, Botos, et al., 2002; Han et al., 2002). S52P-

CVN has low nanomolar anti-HIV activity (Han et al., 2002) and has a Tm = 53.5 ± 0.5°C 

(Barrientos et al., 2004). 

A second hinge region mutant, ΔQ50-CVN was produced in which the glutamine at 

position 50 was removed from the protein leaving a 100 amino acid version of CV-N with a 

shortened linker (Kelley, Chang, & Bewley, 2002). The shortened linker forced exclusive CV-N 

domain swapping due to less favorable steric interactions among the remaining amino acids 

(Barrientos et al., 2004; Kelley et al., 2002). ΔQ50-CVN also has low nanomolar anti-HIV activity 

and a melting temperature of 50.2 ± 0.5°C (Barrientos et al., 2004). 
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Another hinge region mutant, P51G-CVN, can form a dimer or monomer, but prefers the 

monomeric state (Barrientos, Louis, Botos, et al., 2002; Fromme et al., 2007) because Gly can 

achieve more favorable conformations than Pro in the same position. P51G-CVN dimer can be 

produced under similar conditions as wt-CVN dimer (Barrientos, Louis, Botos, et al., 2002; 

Fromme et al., 2007). Like the other hinge region mutants, P51G-CVN also has low nanomolar 

anti-HIV activity (Mori et al., 2002). P51G-CVN is more thermally stable than wt-CVN, S52P-CVN, 

and ΔQ50-CVN with a Tm = 67.8 ± 0.5°C (Barrientos, Louis, Botos, et al., 2002; Mori et al., 2002). 

Interestingly, Gly is conserved at position 51 among CV-N homologs (CVNH), which will be 

discussed later (Percudani et al., 2005). 

m4-CVN. With the discovery of two binding sites with different affinities for Manα1-2Manα, 

clarification was desired to determine if one or two binding sites are required for anti-HIV activity. 

NMR and ITC experiments indicate that Domain A has a weaker affinity for Manα1-2Manα than 

Domain B, with ITC yielding Ka values of 6.8 (±4) x 10
5
 M

-1
 and 7.2 (±4) x 10

6
 M

-1
  respectively (C. 

A. Bewley, 2001; C. A. Bewley & Otero-Quintero, 2001). To determine the need for Domain A in 

anti-HIV activity, three mutants were created with two, three, or four modified amino acids in 

Domain A. m2-CVN with mutations K3N and E23I still bound dimannose, but m3-CVN (K3N, 

E23I, N93A) and m4-CVN (K3N, T7A, E23I, and N93A) prevented binding of dimannose to 

Domain A (L. Chang, 2002). These binding studies were performed by NMR and the results also 

indicated conservation of the wt-CVN fold and Domain B's ability to bind dimannose. However, 

m4-CVN has a significantly lower thermal stability with Tm = 45°C (Fromme et al., 2007). Potent 

anti-HIV activity was also retained and low nanomolar IC50 values were observed for wt-CVN, m3-

CVN, and m4-CVN (L. Chang, 2002). Based on these results, Chang et al concluded that only 

Domain B, with high affinity binding to dimannose, was required for anti-HIV activity and the lower 

affinity Domain A was not needed. 

P51G-m4-CVN and CVN
mutDB

.
 
To further understand the role of multivalent interactions in 

CV-N's anti-HIV activity, P51G-m4-CVN was produced (Fromme et al., 2007). This CV-N mutant 

contains the P51G mutation (Barrientos, Louis, Botos, et al., 2002) to stabilize the protein and 

discourage dimer formation, and has Domain A inactivated by mutations K3N, T7A, E23I, and 
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N93A so that it no longer binds Manα1-2Manα (L. Chang, 2002). With these mutations, P51G-

m4-CVN has only one active binding site and is expressed almost exclusively as a monomer. 

Like wt-CVN and P51G-CVN, it can be made into a dimer when it is denatured and refolded at 

high concentrations (Fromme et al., 2007). Even with the four destabilizing mutations in Domain 

A, P51G-m4-CVN is quite thermally stable, with an initially reported Tm of 62°C (Fromme et al., 

2007).  

Anti-HIV activity was measured using a XTT-tetraxolium assay (Fromme et al., 2007; 

Gulakowski, McMahon, Staley, Moran, & Boyd, 1991). m4-CVN and P51G-m4-CVN were 

assayed in parallel and m4-CVN demonstrated nanomolar activity while P51G-m4-CVN did not 

exhibit antiviral activity up to the 1 µM maximum concentration. Upon observing m4-CVN's 

nanomolar anti-HIV activity, Chang et al. concluded that only a single binding site was required 

for CVN's antiviral activity (L. Chang, 2002). Monomeric m4-CVN was used for his anti-HIV 

assay, but the protein likely dimerized during the assay, restoring its antiviral activity (Fromme et 

al., 2007). Monomeric wt-CVN is capable of converting to the domain-swapped dimer during 

prolonged incubation at 38°C. Barrientos et al. demonstrated that one third of a 2.2 mM 

monomeric wt-CVN sample was converted to dimer after 4 days at 38°C (Barrientos, Louis, 

Botos, et al., 2002). Though wt-CVN was used at much lower concentrations in the antiviral 

assay, the assay was conducted over six days at 38°C and wt-CVN likely achieved a monomer-

dimer equilibrium under these conditions. P51G-m4-CVN is a thermally stable monomer in the 

assay conditions and clearly demonstrates that at least two active binding domains are required 

for potent anti-HIV activity (Fromme et al., 2007). Though P51G-m4-CVN does not retain anti-HIV 

activity, it does bind to gp120 and Manα1-2Man with nanomolar and micromolar affinities 

respectively [(Fromme et al., 2007) and unpublished data]. This is consistent with an early 

mutation study establishing that CV-N can bind gp120 without retaining anti-HIV activity (Mori et 

al., 1997). 

Barrientos et al. also produced a CV-N mutant (CVN
mutDB

) containing P51G and E41A, 

N42A, T57A, R76A, and Q78G to inactivate Domain B (Barrientos, Matei, Lasala, Delgado, & 

Gronenborn, 2006; Matei, Furey, & Gronenborn, 2008). CVN
mutDB

 has a Tm of 72°C and does not 
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bind gp120 in ELISA or exhibit antiviral activity. However, ITC shows that Domain A does have a 

Kd = 4.3 ± 0.3 µM for Man9. Knocking out Domain B reinforces the finding that CV-N requires 

multivalent interactions for anti-HIV activity. 

ΔQ50-m4-CVN and S52P-m4-CVN. To further demonstrate the importance of multivalent 

interactions in CV-N’s anti-HIV activity, my lab also produced mutants ΔQ50-m4-CVN and S52P-

m4-CVN (Y. Liu et al., 2009). These mutants combine K3N, T7A, E23I, N93A (m4-CVN), and 

hinge region mutations designed to force domain swapping. ΔQ50-m4-CVN lacks Pro51 found in 

wt-CVN, giving it a shorter linker region (Kelley et al., 2002). S52P-m4-CVN has two prolines in 

the linker region, Pro51 and Ser52Pro (Han et al., 2002). These modifications cause sterically 

unfavorable amino acid conformations in the hinge region (50-56) allowing these mutants to favor 

the open linker position and form domain-swapped dimers (Barrientos et al., 2004; Barrientos, 

Louis, Botos, et al., 2002; Han et al., 2002; Kelley et al., 2002). The dimeric form of each mutant 

has two active B Domains and no active A Domains. ELISA against gp120 shows that ΔQ50-m4-

CVN and S52P-m4-CVN have nanomolar binding worse than monomeric wt-CVN, but better than 

monomeric P51G-m4-CVN (Y. Liu et al., 2009). ΔQ50-m4-CVN and S52P-m4-CVN also possess 

anti-HIV activity of EC50 = 320 nM and ~3000 nM respectively, which are both worse than wt-CVN 

(Y. Liu et al., 2009).  

ΔQ50-m4-CVN and S52P-m4-CVN are not very thermally stable, with Tm of 32.8°C and 

39.5°C respectively, which likely contributed to their reduced antiviral activity (Y. Liu et al., 2009). 

The anti-HIV assay was conducted at 38°C which is near or above their melting points, indicating 

that much or all of the CV-N was denatured by the end of the six day assay. The combination of 

four destabilizing Domain A mutations and linker mutations favoring extended linkers destabilize 

the proteins more than either of the mutations alone (Barrientos et al., 2004; Fromme et al., 2007; 

Y. Liu et al., 2009). Despite less than ideal protein stability, these two CV-N mutants demonstrate 

that antiviral activity is the result of multivalent interactions. The results also demonstrate that 

multivalency can be achieved by two active binding domains in monomeric CV-N or by two active 

domains in dimeric CV-N. 
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Covalent Dimers. Due to the transient nature of some of the dimer species, and to further 

examine the avidity effect of multiple binding sites, covalent dimers have been produced in two 

separate labs.  

Matei et al produced a CV-N mutant [CVN
ΔA

]ssd with inactivated Domain A, P51G linker 

mutation, and a G2C mutation to allow dimerization by disulfide bond formation (Matei et al., 

2010). These mutations created a species with only one active domain in the monomeric form, 

with two active domains in the disulfide-bonded dimer. [CVN
ΔA

]ssd has slightly worse anti-HIV 

activity than P51G-CVN, and the monomeric [CVN
ΔA

]ssm showed no anti-HIV activity up to 100 

nM. While [CVN
ΔA

]ssd did not have improved anti-HIV activity, it did reinforce the idea that 

multivalent interactions are required for CV-N's anti-HIV activity.  

Keeffe et al produced several wt-CVN dimers in which two proteins were attached in 

series, C-terminus to N-terminus (CVN2) (Keeffe et al., 2011). A peptide linker between zero and 

20 amino acids long was used to attach the two proteins. CVN2 can exist as two monomers 

attached by the linker, or in a domain-swapped form. Anti-HIV activity was slightly increased for 

CVN2 over wt-CVN, but only by three to six fold. This group also made trimer (CVN3) and 

tetramer (CVN4) versions, but these species did not show improved anti-HIV activity. The authors 

hypothesized that CVN3 and CVN4 did not show improved anti-HIV activity due to possible 

orientation away from the glycan target or that some of the binding sites may be blocked by the 

protein itself. Domain knockout versions of CVN2 were also produced, reinforcing the need for 

multivalent CV-N interactions for anti-HIV activity. 

To date, covalent dimer or higher order CV-N structures have not exhibited substantially 

improved anti-HIV activity, but have further verified the need for at least two active binding 

domains for antiviral activity. 

CVN-Homologs. CV-N has a predominantly β-sheet fold and, as can be seen in Figure 7, 

sequence searches have revealed a family of similar sequences in a variety of species 

(Percudani et al., 2005). These CV-N homologs (CVNH) have nine strictly conserved residues, 11 

partially conserved residues, and structure recognition methods indicate conserved secondary 

structure. Most of the conserved residues are located in the protein core, with only four conserved 
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in the binding pockets. Residues 7 and 93 are conserved in Domain A and 42 and 57 are in 

Domain B. The previously discussed m4-CVN mutant takes advantage of this and mutates 

residues 3, 7, 23, and 93 to abolish mannose binding activity in Domain A (L. Chang, 2002). A 

similar approach was employed with CVN
mutDB

, in which E41A, N42A, T57A, R76A, and Q78G 

were mutated to abolish binding by Domain B (Barrientos et al., 2006). With the exception of 

amino acid 76, all of these positions are highly conserved among CVNH. Interestingly, Gly 41 is 

strictly conserved among CVNH, but Glu 41 is native in CV-N.  

Similarly, Pro 51 is found in CV-N while Gly 51 is commonly found, though not strictly 

conserved, in CVNH (Percudani et al., 2005). This information was considered during 

experimental design, and residues conserved in CV-N and CVNH were conserved in my Domain 

B mutant library. Because Glu 41 was different from the CVNH consensus and it is important for 

CV-N binding (Margulis, 2005), it was mutated in my experiments. Finally, many of the CVNH 

sequences lacked the two disulfide bonds found in CV-N.  

 
Figure 7. Sequence alignment of CV-N homologs (CVNH). Conserved residues are highlighted. 
(Percudani et al., 2005) 
 

To briefly illustrate the structural similarities of CV-N and CVNHs, solution structures of 

CrCVNH (from Ceratopteris richardii), TbCVNH (from Tuber borchii), and NcCVNH (from 
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Neurospora crassa) are displayed in Figure 8 (Koharudin, Viscomi, Jee, Ottonello, & Gronenborn, 

2008). Each of these proteins binds Manα1-2Man and has additional glycan specificities. 

TbCVNH and NcCVNH have only one binding site each and CrCVNH has two binding sites. 

Consistent with CV-N, two binding sites are required for anti-HIV activity among all three CVNHs 

as evidenced by CrCVNH having anti-HIV and TbCVNH and NcCVNH having very weak or non-

existent anti-HIV activity. All three CVNHs have very similar 3-D structures to each other and to 

CV-N, with some variation in length, disulfide bonds, and loop regions.  

 

Figure 8. NMR structures of CV-N homologs. A) TbCVNH (PDB: 2JZK) B) GzCVNH (PDB: 2L2F) 
C) CrCVNH (PDB: 2JZJ) 
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CHAPTER 2 

T7 PHAGE DISPLAY LIBRARY 

ABSTRACT 

In order to study the CV-N Domain B binding pocket, amino acids 41, 44, 52, 53, 56, 74, 

and 76 were randomized in P51G-m4-CVN. The mutated genes were used to make a T7 phage 

display library of CV-N Domain B mutants. The library was selected against gp120 for four rounds 

of biopanning, followed by one round against RNase B, and a sixth and final round against 

gp120. Nine DNA sequences were sampled from each of rounds 3-6, for a total of 36 sequences. 

Seven unique sequences were identified, five of which are full length CV-N sequences and two 

contain a stop codon. Randomized positions of the unique full length sequences were compared 

to P51G-m4-CVN. There was very little residue conservation among the mutants when compared 

to P51G-m4-CVN, with only two instances of residue conservation observed. Conservation of 

charged versus uncharged amino acids was examined as well as bulky verses small residues. 

R76 in P51G-m4-CVN was only conserved in LPRANHR-P51Gm4-CVN, but all of the sequences 

contain bulky, charged amino acids at that position. Conversely, E41 in P51G-m4-CVN was not 

conserved and the position was consistently filled with uncharged, small amino acids in harmony 

with CVNH sequence studies. The two truncated sequences were 73 and 75 residues long, 

including most of the Domain B binding site. However, approximately 25% of each protein is 

missing and it is unlikely that either sequence could fold properly. 

INTRODUCTION 

CV-N has been well studied in its anti-HIV and anti-viral capacities, but this project is 

designed to study CV-N as a lectin and develop a method by which it can be modified to 

specifically bind other glycan motifs. As proof of concept, P51G-m4-CVN will be selected for 

binding to gp120. Subsequently, CV-N could be modified to specifically bind other glycans, 

making it a source of customizable lectins.  

T7 Phage Display. Phage display is a powerful tool used to select peptides or proteins 

with specific characteristics from large libraries of molecules. A gene or gene library of interest 

can be ligated into a phage capsid gene and expressed on the outside of the phage as part of its 
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protein coat. Phage display is useful because the protein and DNA are kept together throughout 

the selection process. Once the desired proteins are identified, individual genes reveal the 

sequences of interest and can be used to produce more protein. T7 phage was chosen for this 

project, and it has been successfully used by another group studying CV-N (Han et al., 2002). 

This particular virus has an icosahedral shape (60 nm capsid) with a tail and six tail fibers. It also 

has a 40 Kb linear, double-stranded DNA genome (Acheson, 2007). T7 is a lytic phage and lyses 

the host E. coli when progeny virions are released (Novagen, 2002; Rosenberg, 1996). T7 also 

grows relatively quickly compared to other phage (Novagen, 2002).  

T7 phage display systems are available in high-copy and low-copy versions from Novagen 

(Rosenberg, 1996). T7 phage naturally produce two forms of their capsid protein, 10A and 10B. 

The capsid can be made of one protein or the other or a mixture of both. For phage display, 

Novagen has modified the T7 genome to only express 10B, including the recombinant gene. A 

gene of interest can be ligated into the phage genome cloning region beginning at amino acid 

348. High copy phage are completely formed from recombinant 10B capsid protein and display 

peptides up to 39 amino acids long on all 415 capsid proteins. To accommodate longer genes, 

low copy phage only express 0.1 to 1 copy of a protein or peptide up to about 1200 amino acids 

in length. CV-N is 101 amino acids long and I selected the Novagen T7Select 1-1 low copy phage 

display system (Novagen, 2002). In this case, the phage are grown in BLT5615 E. coli that also 

contain a plasmid for producing 10A under control of the lacUV5 promoter. The phage gene 

produces capsid 10B, but has been modified to reduce production from wild-type levels. T7 

phage grown in this strain incorporate 10A protein produced by the bacterial plasmid and 10B 

from the phage genome.  

Library Selection. As proof of concept, I used recombinant gp120 as the binding target for 

this protocol. Future work will employ other glycan targets that are not native for wt-CVN. wt-CVN 

and P51G-m4-CVN are known to bind gp120 at the Manα1-2Manα motif of N-linked high-

mannose Man8 and Man9 (C. A. Bewley, 2001; C. A. Bewley & Otero-Quintero, 2001). 

Recombinant gp120 (rgp120) was obtained from the NIH AIDS Reagent program (NIH AIDS 

Research and Reference Reagent Program, Division of AIDS, NIAID, NIH: HIV-1 gp120 CM, Cat 



 

 18 

# 2968). It was produced in a baculovirus expression system in insect cells, likely similar to the 

protocol described by Yeh, et al. (Yeh et al., 1993). Their rgp120 contains 22 N-linked, high 

mannose glycans, and has no O-linked glycans.  

A positive selection control was used to retain CV-N mutants that bound to high-mannose 

glycans. Ribonuclease B (RNase B) has one high-mannose N-linked glycosylation, but is 

otherwise quite different in structure from gp120 (Goodsell, 2008; J. Liu et al., 2008), making 

RNase B a suitable positive control. RNase B and ribonuclease A (RNase A) are ~15 kDa and 

13.7 kDa enzymes that are found in the liver and degrade RNA (Sigma). These two enzymes are 

the same with the exception of a single N-linked glycosylation on RNase B and no glycosylation 

on RNase A. RNase B has a single N-linked glycosylation at Asn34 (Sigma) ranging in structure 

from Man5 to Man9 (Hua et al., 2012; Prien, Ashline, Lapadula, Zhang, & Reinhold, 2009; Sigma). 

According to Hua et al., Man5 appears on RNase B almost 50% of the time with Man8 and Man9 

each accounting for 10% or fewer of the glycan species.  

CV-N Gene Library. For phage display and binding studies, I decided to use P51G-m4-

CVN (Fromme et al., 2007), which has four mutations that destroy Domain A's ability to recognize 

Manα1-2Manα (L. Chang, 2002). This arrangement allows me to study Domain B without 

multivalent interactions from Domain A. Hinge region mutation P51G (Mori et al., 2002) was also 

incorporated to discourage CV-N from forming domain-swapped dimers. Once Domain B has 

been characterized, Domain A activity can be restored and modified for the target of interest.  

The first amino acid of wt-CVN is Leu. However, genes inserted into the T7 phage gene 

10B must be compatible with digestion by EcoRI and HindIII on the 5' and 3' ends respectively. 

EcoRI's restriction site is GAATTC, leaving AATT as the 5' sticky end, and requiring CV-N to 

begin with Asn-Ser. Leu was replaced with Ser, and Asn was added to the beginning of the 

genes. Likewise, the 3' end of the CV-N library genes ended with the HindIII restriction site 

AAGCTT. 

The crystal structure of P51G-m4-CVN (PDB: 2Z21) alone and P51G-m4-CVN (PDB: 

2PYS and 2RDK) bound to Manα1-2Manα were previously solved (Fromme et al., 2007). Ten 

amino acids in Domain B are involved in binding dimannose, including 41, 42, 44, 52, 53, 56, 57, 
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74, 76, and 78. Residues 42, 57, and 78 are conserved in CVN-homolog sequence alignments 

(Percudani et al., 2005) and were not mutated in this library. Gly41 was conserved among CVNH, 

but wt-CVN contains Glu41. Because wt-CVN Glu41 is not consistent with CVNH conserved 

Gly41, the position was randomized in the T7 phage display library. The remaining six positions 

(44, 52, 53, 56, 74, 76) were also randomized in the library. 

METHODS 

T7 Phage Display Library. The P51G-m4-CVN T7 phage display library was created by 

randomizing amino acids 41, 44, 52, 53, 56, 74, and 76 in the Domain B active site of P51G-m4-

CVN. The previously described P51G-m4-CVN (Fromme et al., 2007) is the "wild-type" protein for 

the library. It contains mutations K3N, T7A, E23I, and N93A (collectively called m4) in Domain A 

that remove Manα1-2Manα binding ability (L. Chang, 2002). P51G (Mori et al., 2002) stabilizes 

the protein. To accommodate ligation of library genes into T7 vector arms, Asn was added to the 

beginning of the gene and the first amino acid was mutated from Leu to Ser. The amino acid 

sequence is as follows, with x representing points of mutation: 

SGNFSQACYNSAIQGSVLTSTCIRTNGGYNTSSIDLNSVIxNVxGSLKWQGxxFIxTCRNTQLAGS

SELAAECxTxAQQFVSTKINLDDHIAAIDGTLKYELEHHHHHH 

GenScript (Piscataway, NJ) used site-directed mutagenesis to produce the library of 

genes. Each of the randomized position was represented by the codon NNS, where N 

incorporates A, T, G, or C, and S incorporates G or C. The genes were delivered as PCR product 

with 7-9 extra base pairs on each end to facilitate restriction enzyme digestion.  

Library construction was performed using the T7Select 1-1b Cloning Kit and T7Select 

Packaging Kit (Novagen) and the protocols below are based on Novagen's kit protocols. CV-N 

library genes were digested with EcoRI and HindIII (New England Biolabs). The digestion was 

performed with 20 µL library DNA (50 ng/µl), 24 µL nuclease free water, 1 µL HindIII, and 5 µL 

10x NEBuffer2. The reaction was incubated for 40 min at 37°C followed by addition of 1 µL EcoRI 

and incubation at 37°C for an additional 30 min.  

After digestion, the genes were mixed with 5x loading dye (QIAGEN) and run in TAE (40 

mM Tris, 19.4 mM acetic acid, 1 mM EDTA, pH 8.5) 1% agarose gel electrophoresis for 1.5-2 
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hours at 80v. DNA was extracted from the gel using the Promega Wizard SV Gel and PCR 

Clean-Up System. T4 DNA ligase (New England Biolabs) was used to ligate the P51G-m4-CVN 

library genes into T7 vector DNA at a molar ratio of 8:1 insert:vector with the reaction being 

incubated for 16 hours at 16°C.  

After ligation, the genes were packaged into T7 phage particles using T7Select Packaging 

Extract. 5 µL of ligation reaction was added to 25 µL of packaging extract and incubated at room 

temperature for 2 hours. The reaction was stopped by adding 270 µL LB. 

Plaque Assay. Plaque assay was performed on the initial phage library and again after 

amplification. Agar plates containing 50 µg/mL carbenicillin were prepared and incubated at 37°C 

for one hour prior to use. LB and phage were mixed to give dilutions of 1:10
3
 to 1:10

6
 for initial 

recombinant phage and 1:10
11

 to 1:10
14 

for amplified phage library. 100 µL of each phage dilution 

were mixed with 3 mL top agarose (1 g tryptone, 0.5 g yeast extract, 0.5 g NaCl, 0.6 g agarose, 

100mL) and 250 µL mid-log BLT5615 (add IPTG, 1 mM final concentration, 30 minutes prior to 

use). 

The library was amplified by the liquid lysate method at the 500 mL scale (Novagen, 2002). 

500 mL BLT5615 was grown up with 50 µg/mL carbenicillin and induced with IPTG (1 mM final 

concentration) 30 minutes before use. The phage library was added to the culture, with 100-1000 

cells per pfu. The culture was incubated at 37°C and 250 rpm for a few hours until lysis was 

observed. The lysate was centrifuged for 10 minutes at 8000xg and the supernatant was stored 

at 4°C. 

Biopanning. Selection of the phage display library was performed using a polystyrene 96-

well plate (Nunc). The plate was washed a few times with water and tapped dry on a paper towel. 

The two targets used for biopanning were gp120 (NIH AIDS Research and Reference Reagent 

Program, Division of AIDS, NIAID, NIH: HIV-1 gp120 CM, Cat # 2968) and RNase B (Sigma). 

gp120 was used for four rounds followed by one round of RNase B and then one more round of 

gp120. gp120 (11µg/mL) in TBS pH 7.4 (10mM Tris, 0.15mM NaCl), RNase B (10µg/mL in TBS 

pH 7.4), and TBS-Tween 0.1%, pH 8.0, were prepared. 100 µL of target was added to one well of 

the plate. The plate was covered and incubated for 3 hours at room temperature. After incubation, 
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the well was washed three times with TBS (pH 7.4). 200 µL blocking buffer (5% BSA [w/v] in 

water) was added to each well. The plate was covered and stored overnight at 4°C, washed six 

times with water, and stored until use at 4°C with 200 µL of water in each well.  

The water was removed from the 96-well plate and 60 µL phage library (2.08x10
12

 pfu/mL) 

and 40 µL TBST pH 8.0 were added to the well and incubated for 1 h at room temperature 

followed by six washes with TBST. After washing, 200 µL T7 Elution Buffer (10.6 mM Tris, 35.4 

mM SDS, pH 7.5) was added to the plate. It was covered and incubated for 20 minutes at room 

temperature. The T7 Elution Buffer was removed by pipette and added to 50 mL of mid-log 

BLT5615 (add IPTG, 1 mM final concentration, 30 minutes prior to use). The bacteria and phage 

were incubated at 37°C and 250 rpm until lysis was observed. The culture was centrifuged at 

7740xg (rmax) for 10 minutes and the supernatant was saved at 4°C. Plaque assay was performed 

using phage dilutions 1:10
10

 to 1:10
14

.  

Phage Plaque Sequencing. After six rounds of biopanning, nine plaques per round were 

selected from the plaque assay plates of rounds 3-6. Each plaque was scraped from the agar 

plate and prepared for PCR according to the Novagen protocol (Novagen, 2002). Harvested 

plaques were suspended in 100 µL of 10 mM EDTA, pH 8.0, vortexed, and then incubated at 

65°C for 10 minutes. The suspended plaque was centrifuged for 3 minutes. 2 µL of phage lysate 

was combined with 5 µL NovaTaq Buffer (with MgCl2), 1 µL T7SelectUP Primer (5 pmol/µl), 1uL 

T7SelectDOWN Primer (5 pmol/µl), 1 µl dNTP mix (10 mM of each nucleotide), 1.25 U NovaTaq 

DNA polymerase, and water up to 50 µL total volume. PCR amplification was performed for 35 

cycles at 94°C for 50 sec, 50°C for 1 min, 72°C for 1 min, and a final extension at 72°C for 6 

minutes. 10 µL of each sample was run on a TAE 1% agarose gel to check its length and make 

sure there was a CV-N gene in the phage vector. The DNA was also sequenced using the 

T7Select UP and DOWN primers (Novagen) at the Arizona State University DNA Laboratory 

(School of Life Sciences).  
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RESULTS 

The phage display library has a theoretical size of 1.28x10
9
 different proteins. This is 

calculated by X
n
 where X is the number of amino acids possible at that position and n is the 

number of positions mutated. Based on plaque assay, the initial size of the T7 phage display 

library was 1.41x10
6
 pfu. The initial library was amplified to provide additional copies of each 

mutant and a larger working volume for the library. 

Following six rounds of selection, nine plaques were sequence from the plaque assay 

rounds 3-6. Of 36 plaques surveyed, two did not have a CV-N gene, and seven unique CV-N 

sequences were identified. Two of the unique sequences contained stop codons and five were 

full length sequences. Figures 9-12 show all of the isolated sequences and the parent P51G-m4-

CVN for comparison.  

 
Figure 9. Mutant CV-N protein sequences isolated from biopanning round 3 (binding gp120) 
 
 

 
Figure 10. Mutant CV-N protein sequence isolated from biopanning round 4 (binding gp120) 
 
 

 
Figure 11. Mutant CV-N protein sequences isolated from biopanning round 5 (binding RNase B) 
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Figure 12. Mutant CV-N protein sequences isolated from biopanning round 6 (binding gp120) 

 
 
Round 3 gave three different sequences, round 4 gave five sequences, round 5 gave two 

sequences, and round 6 also gave two sequences. Round four had the greatest sequence 

diversity, followed by a sharp drop in diversity when the library was selected against RNase B. 

CKDNRNH-P51Gm4-CVN was the only full length sequence selected from rounds 5 (RNase B) 

and 6 (gp120), and was the most frequently identified sequence found in 50% of the 36 plaques 

surveyed. Interestingly, PHRVLP*-P51Gm4-CVN contains a stop codon, but was isolated and 

enriched above most of the full length sequences. All five of the unique full length sequences are 

compared to P51G-m4-CVN in Figure 13 and their occurrences are described in Table 1.  

 
Figure 13. All unique full length sequences compared with P51G-m4-CVN parent sequence. 

 
Table 1  

Occurrences of Unique CV-N Sequences in Biopanning Rounds 3-6 

 

 
As Figure 13 shows, there is very little sequence conservation from the parent protein to 

the mutants. Likewise, there is not much sequence similarity among the five full length proteins. 

The limited sequence conservation occurs at position 52 where Asp and Gly occur twice each 

and in residue 56 where Leu occurs twice. There is no sequence conservation among the 
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mutants at any other position. When comparing mutant residues to P51G-m4-CVN, the only 

sequence conservation is in CKDNRNH-P51Gm4-CVN at Asn53 and LPRANHR-P51Gm4-CVN 

at Arg76.  

Table 2 compares the charged residues of P51G-m4-CVN and the full length CV-N 

mutants. For simplicity, only the mutated positions are shown. Residues 41, 44, 56, 74, and 76 of 

P51G-m4-CVN are charged, while residues 52 and 53 are polar residues. However, the mutants 

show an almost opposite pattern. Residues 52, 53, and 76 tend to have charged residues while 

residues 41, 44, 56, and 74 tend to have non-charged residues. Except for conservation of 

charged residues at position 76, the trend is reversed from P51G-m4-CVN to the mutants. 

Table 2  
 
Charged Residues at Amino Acids 41, 44, 52, 53, 56, 74, and 76 of Mutated CV-N  

 
Note: Charged residues are in green, P51G-m4-CVN is the top sequence and the five full length 
library mutants are below the position numbers. 

 
 
Mutated residues were also compared based on side chain size. Smaller residues were 

considered Ala, Ile, Leu, Val, Asn, Cys, Ser, Thr, Asp, and Gly. Larger residues are Phe, Trp, Tyr, 

Gln, Met, Glu, Arg, His, Lys, and Pro. Table 3 compares parent protein P51G-m4-CVN residues 

with those of the library mutants. Positions 44, 52, and 53 are smaller amino acids in the parent 

protein and also tend to be small in the mutants. Position 76 is a larger residue both in the parent 

and mutant proteins. However, position 41 was large in the parent, but four of five mutants have 

smaller residues. Similarly, E56 and K74 in P51G-m4-CVN were now mostly smaller residues in 

the mutants with three of five mutants in each case having smaller residues. 
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Table 3  
 
Amino Acid Side Chain Size Comparison at Positions 41, 44, 52, 53, 56, 74, and 76 in P51G-m4-
CVN and CV-N Mutants  

 

Note: Small residues are in blue, P51G-m4-CVN is the top sequence and the five full length 
library mutants are below. 
 

Figure 14 shows a PyMOL model of the domain B binding pocket for each full length 

mutant. The models were created by superimposing mutations on the previously solved P51G-

m4-CVN crystal structure (PDB 2Z21) (Fromme et al., 2007). The actual crystal structure of 

P51G-m4-CVN is also included for comparison.  

 

Figure 14. PyMOL models of Domain B library mutations using the P51G-m4-CVN crystal 
structure (PDB 2PYS). Amino acids 41 are red, 44 are pink, 52 are orange, 53 are yellow, 56 are 
green, 74 are blue, and 76 are purple. A) P51G-m4-CVNbound to dimannose, B) P51G-m4-CVN, 
C) SSDGLQQ-P51Gm4-CVN, D) PTGEQAP-P51Gm4-CVN, E) LPRANHR-P51Gm4-CVN, F) 
CKDNRNH-P51Gm4-CVN, G) AAGRLSK-P51Gm4-CVN. 
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wt-CVN and P51G-m4-CVN have deep Domain B binding pockets that hug the sugar, and 

cap it in place with Arg76 (Margulis, 2005). The PyMOL images in Figure 14 are possible Domain 

B conformations for the library mutants. Some mutated amino acids are shorter than those found 

in 51G-m4-CVN, indicating that some of the binding pockets may be shallower than the wild-type 

conformation. 

The two mutants with stop codons were also modeled in PyMOL. PSCRK*S-P51Gm4-CVN 

contains a stop codon at position 74 and PHRVLP*-P51Gm4-CVN has a stop codon at 76. These 

proteins were not completely expressed because of the stop codons. Figure 15 shows truncated 

versions of the crystal structure of P51G-m4-CVN (PDB 2PYS). The protein is shown at 73 amino 

acids, 75 amino acids, and the full 101 amino acid versions. Truncation at 73 and 75 eliminates 

part of the Domain B binding site and half of the second sequence repeat, including the β-hairpin 

that associates with Domain A. 

 
Figure 15. Full length P51G-m4-CVN and truncated mutants. Whole protein view comparison of 
truncated mutants using the crystal structure of P51G-m4-CVN bound to 2α-Mannobiose (PDB: 
2PYS). A) P51G-m4-CVN 75 amino acids long, B) P51G-m4-CVN 73 amino acids long, C) P51G-
m4-CVN full length monomer.  

 
DISCUSSION 

Biopanning of the T7 phage display library yielded seven unique CV-N sequences, five of 

them full length and two with stop codons mid-sequence. Of the 36 sequences sampled (nine 

plaques each of rounds 3-6), round 3 gave three different sequences, round 4 gave five 
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sequences, round 5 gave two sequences, and round 6 also gave two sequences. There were 

also two sequences in round 3 that did not contain a CV-N gene. Native T7 phage in the library is 

likely due to incomplete digestion of vector arms prior to insertion of library genes. Since there 

were no native phage observed in rounds 4-6, it is assumed that this species was reduced or 

eliminated from the pool because it didn't specifically bind to any motif on gp120 or RNase B. 

More rounds of selection were performed with this library than is typical for phage display 

(Novagen, 2002; Smith & Petrenko, 1997). Two to four rounds of biopanning are usually 

performed. As Smith and Petrenko pointed out, there is a balance between stringency and yield. 

If selection is too strict, then some of the desirable proteins will be lost. In this case, the number 

of rounds was too high and the phage population was nearly homogeneous. Greater sequence 

diversity was observed in the first four rounds of selection than in the last two rounds. By the 

fourth round of biopanning, CKDNRNH-P51Gm4-CVN was significantly enriched and selection 

against RNase B in the fifth round shifted the population to almost exclusively favor this mutant. 

Because the sample diversity was so low for rounds five and six, genes from rounds three and 

four were also sequenced.  

Before selecting against RNase B, library mutants were being selected for their ability to 

bind any part of gp120. There are several different glycans on gp120 and more stringent 

conditions are required to select for binding to a single glycan type. Making RNase B the target in 

round two instead of round five would provide a more specific selection for Man9 while retaining 

some diversity in the population. Since the only common motif between gp120 and RNase B is 

Man9, there should be a low risk of selecting sequences specific for other portions of RNase B or 

gp120 in the positive control selection.  

The five viable protein sequences show limited residue conservation compared to 

themselves and to P51G-m4-CVN. Table 2 examines the conservation of charged residues and 

the mutants have an almost opposite configuration of charged versus uncharged residues. P51G-

m4-CVN has charged residues at 41, 44, 56, 74, and 76, and polar residues at positions 52 and 

53. Three of the mutants also have charged residues at 76, but none at 41, one at 44, three at 52, 

two at 53, and one each at 56 and 74.  
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Amino acid size was compared for the mutated positions. E41 in P51G-m4-CVN was not 

conserved in CVNH and is not conserved in the sequences selected by phage display. In both 

cases, amino acids smaller than Glu are present. Since Gly41 is strictly conserved among CVNH, 

it is not surprising that the phage display library would also favor smaller residues. Fromme and 

Margulis describe the importance of steric specificity at E41 for CV-N binding to dimannose. 

Though small amino acids are conserved at position 41, none of the mutants have retained Glu. 

Binding studies will shed additional light on the importance of E41 for CV-N's lectin specificity. 

Among P51G-m4-CVN and the selected sequences, position 76 is almost exclusively 

larger, charged amino acids. This suggests that a bulky, charged residue at this position is 

important to Domain B's ability to bind glycans. Conservation of large, charged amino acids at 

position 76 agrees well with computational studies (Margulis, 2005) and crystal structures of 

P51G-m4-CVN (Fromme et al., 2008) that demonstrate a cap and lock mechanism. Among 

residues 44, 52, and 53, there seems to be a preference for smaller amino acids in agreement 

with P51G-m4-CVN. Finally, positions 56 and 74 were bulkier amino acids in P51G-m4-CVN, but 

three of five mutants at each position favor smaller residues. Overall, the selected sequences 

suggest that Domain B favors smaller, uncharged residues at position 41 and bulky, charged 

residues at position 76. 

Of the seven unique sequences isolated by biopanning T7 phage library, two contain stop 

codons. PSCRK*S-P51Gm4-CVN and PHRVLP*-P51Gm4-CVN each contain a stop codon at 

positions 74 and 76 respectively. All four cysteines are still present at positions 8, 22, 58, and 73. 

However, Figure 15 shows that approximately half of the second sequence repeat is missing as is 

the β-hairpin that normally associates with Domain A. A third of Domain B's β-sheet is also 

missing. With 26-28 residues missing in a 101 amino acid protein, the protein is probably not 

folded correctly and may exhibit some non-specific binding. These truncated sequences were not 

studied any further.  
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CHAPTER 3 

CYANOVIRIN-N MUTANT EXPRESSION AND PURIFICATION 

ABSTRACT 

Five full length CV-N sequences were isolated from the T7 phage display library. These 

genes were modified and inserted into pET26b+ expression vector and BL21(DE3) E. coli for 

protein expression. Each purified protein was examined using MALDI-TOF MS to compare the 

actual and calculated molecular weights. All five sequences were expressed with an N-terminal 

pelB leader sequence, which targets the protein to the periplasm, and a C-terminal His-tag. The 

CV-N mutant genes were also PCR modified to contain an N-terminal His-tag and (TEV) 

cleavage site. Under typical culture conditions, a large amount of CV-N in each BL21-(DE3) 

preparation was located in inclusion bodies, with a smaller amount going into the soluble fraction. 

The predominant localization of protein to inclusion bodies is consistent with other CV-N mutants 

expressed in this lab. Cold growth with benzyl alcohol promotes increased production of soluble, 

folded protein in the periplasmic fraction and eliminates the need for purification under denaturing 

conditions. SSDGLQQ-P51Gm4-CVN was the most studied of the mutants, and a SSDGLQQ-wt-

CVN mutant was also created to restore anti-HIV activity. AAGRLSK-P51Gm4-CVN and 

PTGEQAP-P51Gm4-CVN were isolated from the soluble cell fraction and both are soluble under 

native conditions. CKDNRNH-P51Gm4-CVN was the only full length sequence identified in 

rounds five and six of phage library selection, but CKDNRNH-P51Gm4-CVN and LPRANHR-

P51Gm4-CVN are generally insoluble under native conditions and it was very difficult to obtain 

any soluble sample of either protein.  

INTRODUCTION 

Protein Expression. Proteins of interest can be recombinantly produced in a variety of 

biological systems including bacteria, yeast, insect and mammalian cells. Each system has its 

advantages and disadvantages for expressing recombinant proteins, but E. coli is the most 

commonly used and best studied system.  

Cells use signal sequences to target proteins to specific intracellular locations. A system 

common in recombinant protein expression is the 22 amino acid, N-terminal pelB leader 
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sequence expressed with the protein and enzymatically cleaved upon the protein's arrival in the 

periplasm (Baneyx, 2004). pelB interacts with SecB, which transports the partially folded protein 

to the cytoplasmic membrane for export to the periplasmic space. Within the periplasm, a variety 

of chaperones are available to promote proper disulfide bond formation and protein folding. 

Because correct disulfide bond formation is critical to wt-CVN’s anti-HIV function (Mori et al., 

1997), many protocols target the protein to and extract it from the periplasmic cell fraction 

(Barrientos et al., 2004; Barrientos et al., 2006; Boyd et al., 1997; Mori et al., 1998; Mori et al., 

1997). Though many groups isolate CV-N from the periplasm, CV-N tends to localize in insoluble 

inclusion bodies as evidenced by high protein yields of 40 mg/L or more when protein is 

recovered under denaturing conditions (Colleluori et al., 2005; Fromme et al., 2007; Xiong et al., 

2010). wt-CVN, P51G-m4-CVN, S52P-m4-CVN, and ΔQ50-m4-CVN have been successfully 

isolated from inclusion bodies (Barrientos, Louis, Botos, et al., 2002; Barrientos, Louis, Hung, et 

al., 2002; Fromme et al., 2007; Y. Liu et al., 2009). 

Several strategies are available to promote or increase formation of soluble recombinant 

protein in E. coli, including cooler culture temperature and addition of benzyl alcohol (de Marco, 

Vigh, Diamant, & Goloubinoff, 2005; Horvath et al., 1998; Shigapova et al., 2005). Benzyl alcohol 

makes the cellular membrane more fluid and induces production of chaperone proteins (de Marco 

et al., 2005; Horvath et al., 1998; Shigapova et al., 2005). These molecular chaperones help 

refold misfolded and aggregated recombinant protein, yielding a higher amount of soluble, folded 

protein. 

His-tag Cleavage. Since there are many different proteins expressed in each bacterial 

cell, protein tags are often used to help isolate the recombinant protein of interest. One of the 

most commonly used tags is the six histidine, or 6His-tag. Placed on the N or C terminus, this tag 

has a high affinity for Ni
2+

 and other metal ions. At times it is also advantageous to remove the 

tag after the protein has been purified since tags can detrimentally affect protein folding (Kapust, 

Tozser, Copeland, & Waugh, 2002). Several proteases are available to cleave 6His-tags. These 

enzymes recognize specific protein sequences, which may be included between the His-tag and 

protein sequences. A protease with high sequence specificity is tobacco etch virus protease 
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(TEV), which recognizes the seven residues Glu-Asn-Leu-Tyr-Phe-Gln-Gly/Ser, with cleavage 

occurring between Gln and Gly/Ser (Kapust et al., 2002). Some TEV constructs also have a His-

tag and will bind to a Ni column to facilitate purification of cleaved protein from the TEV and 

cleaved tags. 

METHODS 

Non-cleavable C-terminal His-tag Mutants. The CV-N genes isolated from the selection 

needed some modifications before they could be properly expressed in E. coli. The restriction 

sites EcoRI and HindIII were used for phage display, but were not ideal for protein expression. All 

five of the full length CV-N genes isolated in T7 phage selection were modified to include the 

NdeI restriction site and pelB leader sequence on the 5' end and restriction site XhoI at the 3' 

end. This gene design has been described previously (Barrientos, Louis, Botos, et al., 2002; 

Fromme et al., 2007; Mori et al., 1998). SSDGLQQ-P51Gm4-CVN, AAGRLSK-P51Gm4-CVN, 

PTGEQAP-P51Gm4-CVN, CKDNRNH-P51Gm4-CVN, and LPRANHR-P51Gm4-CVN genes 

were synthesized by GenScript and arrived in the pUC57 cloning vector. For each gene, 1 µg of 

DNA was digested with NdeI and XhoI (New England Biolabs) and purified by 1% agarose 1xTAE 

(1 mM EDTA, 1 M glacial acetic acid, 40.0 mM Tris, pH 8.5) gel electrophoresis. The CV-N gene 

fragment was extracted from the gel using Promega's Wizard SV Gel and PCR Clean-up System. 

pET26b+ (Novagen) was digested and purified in the same manner. Ligation was performed 

using T4 DNA ligase (New England Biolabs), 2 µL 10x T4 DNA Ligase Reaction Buffer, 100 ng 

pET26b+ and 15 ng CV-N genes in a 20 µl total volume. The reaction was incubated for 10 

minutes at room temperature before transformation into BL21-(DE3) cells (Stratagene). 

Transformed cells were plated on agar containing 15 µg/mL kanamycin and grown overnight at 

37°C. Several colonies were grown in liquid culture to make glycerol stocks and verify the CV-N 

gene sequence. 10 mL overnight culture of transformed cells was treated with Promega Wizard 

Plus SV Miniprep DNA Purification System to extract the DNA. The DNA was sent to Arizona 

State University's DNA lab for sequencing.  

PCR Modification for N-terminal His-tag, TEV cleavable Mutants. In order to study the 

mutants without a His-tag, the CV-N genes were modified to include an N-terminal His-tag and 
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TEV cleavage site, and the pelB leader sequence was removed. Three primers were designed to 

PCR modify the mutant genes. The starting gene was the form isolated from the phage library 

with EcoRI and HindIII restriction sites and the C-terminal His-tag. Three overhanging primers 

were designed, requiring two sequential PCR reactions. The PCR primers are as follows (from 

Integrated DNA Technologies): 

Outside Forward 5'- AGTCAACATATGCACCATCACCATCACCATGAGAACCTGTAC - 3'; Inside 

Forward 5' - CATCACCATGAGAACCTGTACTTCCAGTCAGGCAACTTTAGCCAG - 3'; Reverse 

5' - TGACCTGACCTCGAGTCATTCATATTTCAGGGTGCCATCG - 3'. 

The first PCR reaction used primers Reverse and Inside Forward. A 50 µl reaction was 

prepared including 1 µl dNTP (10 mM each base), 2.5 µl of each primer (10 µM), 1 ng template 

DNA, 0.5 µl Phusion Hot Start II DNA polymerase (New England Biolabs), 10 µl HF buffer, and 

water. The reaction proceeded at 98°C for 30 seconds followed by 35 cycles of 98°C for 30 

seconds, 52.3°C for 30 seconds, and 72°C for 30 seconds. The reaction was held at 72°C for 6 

minutes followed by storage at 4°C. After PCR, the reaction was run on a 1% agarose TAE gel to 

purify the gene and confirm its size. The modified CV-N gene was extracted from the gel, as 

described above, and used for the second PCR reaction. 

The second PCR reaction called for primers Reverse and Outside Forward. The template 

DNA was the purified product of the first PCR reaction, and the remaining reagents were the 

same as described above. The reaction proceeded at 98°C for 30 seconds followed by 35 cycles 

of 98°C for 30 seconds, 52.9°C for 30 seconds, and 72°C for 30 seconds. The reaction was held 

at 72°C for 6 minutes followed by storage at 4°C. The reaction was gel purified and gene size 

was confirmed.  

After the second PCR modification, the CVN genes and pET26b(+) were digested with 

NdeI and XhoI. The digested gene was purified by Promega's Wizard SV Gel and PCR Clean-up 

System while the vector was purified by agarose gel electrophoresis. The modified CV-N gene 

and pET26b(+) were ligated as described above and the plasmid was transformed into BL21-

(DE3) cells.  
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SSDGLQQ-wt-CVN. After mutant SSDGLQQ-P51Gm4-CVN was expressed in E. coli and 

characterized, the Domain B mutations were made to wt-CVN without P51G or the four Domain A 

inactivating mutations (L. Chang, 2002). The SSDGLQQ-wt-CVN gene was designed to include 

an N-terminal His-tag and TEV cleavage site. GenScript produced the gene and sent it in pUC57. 

I ligated the gene into pET26b+ and transformed the plasmid into BL21(DE3) as described 

previously. 

Protein Expression and Purification from Inclusion Bodies. This protocol was used for 

wt-CVN, P51G-m4-CVN, all N-term His-tag library mutants, SSDGLQQ-wt-CVN, and all C-term 

His-tag library mutants. An agarose plate containing 15 µg/mL kanamycin was streaked from a 

bacteria stock and grown overnight at 37°C. A single colony was picked and grown overnight in 

10 mL LB pH 7.0 at 37°C and 250 rpm. The overnight culture was added to 1L of LB and grown 

at 37°C and 250 rpm until OD ~1.0-1.5, followed by addition of IPTG at 1 mM final concentration. 

The culture was further incubated for 3-4 hours at 37°C and 250 rpm, or overnight at 30°C and 

200 rpm. The cells were harvested by centrifugation at 4500xg and the supernatant was 

discarded. The pellet was used immediately or stored at -20°C until use. 

The cell pellet was resuspended in 100 mM Tris, pH 7.0, and sonicated on ice for 5 

minutes followed by 5 minutes rest. The sonication was done four times total and the lysate was 

centrifuged at 17000xg for 30min. The supernatant was discarded and the pellet was 

resuspended in clarifying buffer (100 mM Tris, 2 M urea, pH 7.0). The pellet was again 

centrifuged at 17000xg for 30 minutes and the clarifying buffer step was repeated. The pellet was 

then resuspended in 100 mM Tris, pH 8.0, followed again by 30 minutes of centrifugation. The 

final resuspension was in denaturing binding buffer (8 M urea, 0.5 M NaCl, 20 mM imidazole, 20 

mM Tris, pH 7.5) and the supernatant was filtered in preparation for Ni affinity chromatography.  

A 5 mL GE Healthcare HisTrap HP Ni column was prepared by equilibrating the resin with 

denaturing binding buffer (8 M urea, 0.5 M NaCl, 20 mM imidazole, 20 mM Tris, pH 7.5). The 

filtered protein was applied to the column followed by wash with denaturing binding buffer. The 

protein was then eluted by denaturing elution buffer (8 M urea, 0.5 M NaCl, 500 mM imidazole, 20 

mM Tris, pH 7.5).  
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Following the Ni column, fractions were run on SDS-PAGE to determine protein purity and 

location. Fractions containing CV-N were pooled, DTT (5 mM final concentration) was added and 

the sample was incubated for at least 30 minutes at room temperature. The protein was dialyzed 

in 2L buffer (2M urea, 50mM Tris, pH 8.0) for 24 hours at room temperature, then in 2L Tris buffer 

(100 mM NaCl, 10mM Tris, pH 8.0) for 48 hours at room temp or 4°C. After 48 hours, the protein 

sample was moved to a fresh 2L of Tris buffer for another 48 hours. 

To remove any remaining impurities and remove any dimeric protein, the protein was run 

through a GE HiLoad 16/600 Superdex 75pg gel filtration column attached to an Agilent 1260 

Infinity bio-inert system under isocratic conditions in PBS, pH 7.4. 

Protein Purification from the Soluble Cytoplasm Fraction. This protocol was used for 

AAGRLSK-P51Gm4-CVN (C-term 6His-tag), CKDNRNH-P51Gm4-CVN (C-term 6His-tag), 

PTGEQAP-P51Gm4-CVN (C-term 6His-tag) and LPRANHR-P51Gm4-CVN (C-term 6His-tag). 

Harvested cells were resuspended in 100 mM Tris, pH 7.0, and put on ice. They were lysed by 

sonication for four cycles of 1 minute of sonication followed by 1 minute rest. The cell lysate was 

centrifuged at 24000xg for 45 minutes. The supernatant was filtered before Ni column purification. 

A 5 mL GE Healthcare HisTrap HP Ni column was prepared by equilibrating the resin with native 

binding buffer (0.5 M NaCl, 20 mM imidazole, 20 mM Tris, pH 7.5). The supernatant was applied 

to the column followed by wash with native binding buffer. The protein was then eluted by native 

elution buffer (0.5 M NaCl, 500 mM imidazole, 20 mM Tris, pH 7.5) followed by analysis on SDS-

PAGE.  

Periplasmic Protein Expression and Extraction. This protocol was used for wt-CVN, 

P51G-m4-CVN, SSDGLQQ-P51Gm4-CVN (C-term 6His-tag), CKDNRNH-P51Gm4-CVN (C-term 

6His-tag), and LPRANHR-P51Gm4-CVN (C-term 6His-tag). BL21(DE3) was grown to OD600 ~ 0.6 

at 37°C and 250 rpm. Benzyl alcohol (20 mM final concentration) and 0.4 mM IPTG were added 

followed by 17 hours of incubation at 20°C. The cells were harvested and resuspended in 30 mM 

Tris, 20% sucrose, and 0.5 mM EDTA (pH 7.5) for 10 minutes at room temperature with stirring. 

The cells were collected by centrifugation at 10,000 rpm at 4°C, followed by resuspension in cold 
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5 mM MgSO4 and stirring for 20 minutes on ice. The cells were centrifuged again and the 

supernatant contained the periplasmic fraction. 

Protein localization for pelB. The protein localization protocol was taken from Novagen's 

pET System Manual (Novagen, 2002). Briefly, samples were taken of the total cell, medium, 

periplasm, soluble cytosol, and insoluble cytosol. Each sample was prepared by addition of one 

part sample, one part 2x SDS sample buffer, heated for three minutes at >85°C, and then stored 

at -20°C until they were run in an SDS-PAGE. 

Protein localization for no pelB. The mutants with N-terminal His-tag and TEV cleavage 

site do not contain the pelB leader sequence and are therefore not likely to be found in the 

periplasm. A simplified protein localization protocol was used for these mutants. Harvested cells 

were either stored at -20°C until use or prepared directly after harvest. The media was discarded 

and the cell pellet was resuspended in 100mM Tris, pH 7.0, and sonicated three times for five 

minutes each, with five minutes between each time. The lysate was clarified by centrifugation at 

24000xg for 30 minutes. The supernatant containing the soluble protein fraction was saved. The 

pellet was washed twice in 100mM Tris, 2 M urea, pH 7.0, and each time centrifuged at 24000xg 

for 30 minutes. The wash supernatant was saved. A third wash was performed with 100 mM Tris, 

pH 7.0 followed by centrifugation at 24000xg for 30 minutes. The supernatant was saved. Finally, 

the pellet was resuspended in denaturing binding buffer (8 M urea, 0.5 M NaCl, 20 mM imidazole, 

20 mM Tris, pH 7.5) and incubated overnight at 4°C before centrifugation at 31000xg. The pellet 

was discarded and the supernatant was saved. 5 µl of supernatant from each step was mixed 

with 5 µl of 2x SDS Sample Buffer (Invitrogen) and heated for a few minutes and run on SDS-

PAGE.  

SDS-PAGE. Samples were prepared by mixing 5 µL of protein with 5 µL 2x Sample Buffer 

(Invitrogen) and heating the mixture to at least 80°C for 10-20 minutes and placed into a 16 % 

acrylamide SDS-PAGE. After running the gel, it was stained with Coomassie Brilliant Blue (0.25 g 

Coomassie Brilliant Blue R-250, 100 mL destaining solution) and destained (10% glacial acetic 

acid, 45% water, 45% methanol). The Mark 12 Unstained Standard (Life Technologies) was used 

as a molecular weight marker. 
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TEV cleavage. For CV-N mutants with an N-terminal, cleavable His-tag, the folded protein 

was incubated 1:100 with 2 mg/mL TEV (Sigma) or 1:1000 with TEV produced in-house. 

Following the reaction, the cleaved protein was separated from uncleaved-CVN, cleaved His-

tags, and TEV by Ni column under native conditions. A 5 mL GE Healthcare HisTrap HP Ni 

column was prepared by equilibrating the resin with native binding buffer (0.5 M NaCl, 20 mM 

imidazole, 20 mM Tris, pH 7.5). The filtered protein was applied to the column followed by wash 

with native binding buffer. The protein was then eluted by native elution buffer (0.5 M NaCl, 500 

mM imidazole, 20 mM Tris, pH 7.5). Cleaved protein was analyzed by SDS-PAGE. 

MALDI-TOF MS. After a protein was purified, its molecular weight was assessed by 

MALDI-TOF MS. Sinapic acid was suspended in 50% acetonitrile and mixed 1:1 or 1:10 with 1-2 

µl of protein sample and the mixture was spotted onto a 100 well stainless steel plate and 

analyzed by an Applied Biosystems Voyager System 4320. 

RESULTS  

SSDLQQ-m4-CVN was produced with two different His-tag configurations. Figure 16 

shows the various protein constructs, with the His-tags in red, the pelB leader sequence in blue, 

and TEV recognition sequence in green. The first sequence shows the pelB leader sequence for 

illustrative purposes, but the purified protein is the second sequence, with the pelB sequence 

cleaved by the cellular enzymes upon arrival in the periplasmic space. The lower sequence 

shows the N-terminal His-tag and TEV cleavage site. 

 
Figure 16. Histidine tag and pelB leader sequence placement on CV-N mutants. The first line is 
the pelB sequence attached to the CV-N gene that has a C-term His-tag. The second line is the 
expressed version in which the pelB sequence has been cleaved from CV-N. The third sequence 
is the N-terminal His-tag with TEV cleavage site. The last residue required for TEV recognition is 
the S at the beginning of CV-N. 
 

Following expression, various cell fractions were analyzed for the presence of CV-N. 

Figure 17 shows protein localization of N-terminal His-tag SSDGLQQ-P51Gm4-CVN. CV-N can 

be seen in the soluble cytoplasmic fraction and first wash step, but ~75% of the protein appears 

to be located in inclusion bodies as seen in lane 12 of the gel. 
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Figure 17. SDS-PAGE of protein localization for 12.4 kDa SSDGLQQ-P51Gm4-CVN with N-
terminal His-tag. 1,2) soluble fraction; 3,4) first 2 M urea wash; 5,7) second 2 M urea wash; 6) 
Mark 12 standard from Invitrogen; 11) Tris wash; 12) Inclusion bodies 8 M urea fraction 

 

For the C-terminal His-tag version of SSDGLQQ-P51Gm4-CVN, CV-N can be seen in 

Figure 18 in the soluble cytoplasmic portion and in inclusion bodies. The periplasmic and media 

fractions are very faint and it is hard to tell if there is any significant amount of CV-N in these 

fractions.  
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Figure 18. SDS-PAGE showing protein localization for 11.8 kDa C-terminal His-tag SSDGLQQ-
P51Gm4-CVN. 2) mark 12 standard, 3,4) inclusion bodies, 5,6) soluble cytoplasmic fraction, 7,8) 
periplasmic fraction, 9,10) media, 11) Total cell before IPTG induction, 12) Total cell at time of cell 
harvest. 

 
For proteins extracted from inclusion bodies, 20-40mg of CV-N per prep was usually 

isolated from Ni column purification. If the protein had an N-terminal TEV cleavage site, the 

protein was refolded into native conditions and cut by TEV. As assessed by SDS-PAGE, the 

enzyme cut 50%-70% of cut protein. The cut protein was purified by Ni column to remove uncut 

CV-N, cleaved tags, and TEV.  

Because it was successfully purified from inclusion bodies in large quantities, SSDGLQQ-

P51Gm4-CVN became the most studied of the five CV-N mutants. It can be refolded from 

inclusion bodies as an N-terminal and C-terminal His-tag construct, and the C-terminal 6His-tag 

construct can also be produced by the benzyl alcohol method. 

AAGRLSK-P51Gm4-CVN (C-term 6His-tag) was purified from the soluble fraction. The N-

term 6His-tag version was more difficult to refold from inclusion bodies and a limited amount of 

this protein was produced due to precipitation. 

Unfortunately, even with C-term 6His-tag and benzyl alcohol expression conditions, 

CKDNRNH-P51Gm4-CVN and LPRANHR-P51Gm4-CVN were extremely difficult to purify as 

soluble proteins. CKDNRNH-P51Gm4-CVN was the only full length gene isolated from T7 phage 

display selection rounds five and six, and was the most frequently observed mutant in round four. 

CKDNRNH-P51Gm4-CVN with a C-term His-tag was not successfully isolated from the soluble 
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cytoplasmic fraction. This protein does not behave well and is quite difficult to prepare as a 

soluble protein.  

LPRANHR-P51Gm4-CVN (N-term 6His-tag) and PTGEQAP-P51Gm4-CVN (N-term 6His-

tag) were not successfully refolded from inclusion bodies and precipitated significantly under 

native conditions. PTGEQAP-P51Gm4-CVN (C-term 6His-tag) was successfully recovered from 

the soluble fraction. 

P51G-m4-CVN, wt-CVN, and SSDGLQQ-P51Gm4-CVN (C-term 6His-tag) were produced 

using the benzyl alcohol method for periplasmic protein production. As seen in Figure 19, about 

one third of the protein was found in the periplasmic, soluble cytosolic, and inclusion body 

fractions. This is a significant increase in periplasmic protein production over the standard 37°C 

expression method. 

 

Figure 19. Gel of benzyl alcohol growth of P51G-m4-CVN with pelB and C-term 6His-tag. Lane 1 
is the total cell before benzyl alcohol or IPTG. Lane 2 is the total cell with benzyl alcohol, but 
without IPTG. Lane 3 is total cell that has benzyl alcohol and IPTG. Lane 4 is the Mark 12 
standard (Life Technologies). Ni column fractions 2 and 3 are in lanes 5 and 6 for the periplasmic 
fraction, lanes 7 and 8 for the soluble cytosolic fraction, and lanes 9 and 10 for inclusion bodies. 
Gel from Haiyan Sun. 
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MALDI-TOF MS was performed on purified CV-N mutants to ensure the protein size was in 

agreement with calculated values. Table 4 shows the calculated molecular weight and the 

observed molecular weights by MALDI-TOF MS.  

Table 4  
 
Calculated and Observed Protein Molecular Weight Values of CV-N Proteins  

His-tag location Protein Calculated MW 
(Daltons) 

MW by MALDI-TOF MS 
(Daltons) 

C-terminal SSDGLQQ-P51Gm4-CVN 11,765 11,727 
 AAGRLSK-P51Gm4-CVN 11,733 11,695 
 CKDNRNH-P51Gm4-CVN 11,917 11,920 
 PTGEQAP-P51Gm4-CVN 11,730 11,733 
 LPRANHR-P51Gm4-CVN 11,895 11,898 
 P51G-m4-CVN 11,935 11,886 
 wt-CVN 12,078 12,069 

N-terminal SSDGLQQ-P51Gm4-CVN 12,449 12,474 
 AAGRLSK-P51Gm4-CVN 12,417 12,484 
 PTGEQAP-P51Gm4-CVN 12,414 12,487 
 CKDNRNH-P51Gm4-CVN 12,601 12,625 

No His-tag (TEV cut) SSDGLQQ-wt-CVN 10,843 10,869 
 AAGRLSK-P51Gm4-CVN 10,668 10,693 
 SSDGLQQ-P51Gm4-CVN 10,700 10,725 
 CKDNRNH-P51Gm4-CVN 10,852 10,869 

Note: MALDI-TOF MS was used to measure the protein samples. 
 
Each of the proteins was analyzed by analytical gel filtration to assess its oligomeric state. 

Figure 20 shows a gel filtration profile for wt-CVN, P51G-m4-CVN, and each of the CV-N 

mutants. P51G-m4-CVN, wt-CVN, AAGRLSK-P51Gm4-CVN, SSDGLQQ-P51Gm4-CVN, and 

SSDGLQQ-wt-CVN were largely monomeric with large peaks between 36 and 40 minutes. 

CKDNRNH-P51Gm4-CVN was a very low concentration, but there appears to be a monomer and 

dimer peak, but it is hard to tell the predominant species from this gel filtration run. PTGEQAP-

P51Gm4-CVN appears mostly dimeric with a large peak at 33 minutes. LPRANHR-P51Gm4-CVN 

has what appears to be a dimer peak at about 33 minutes, but the signal is relatively low.  
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Figure 20. Gel filtration profiles of CV-N mutants on a Superdex 75 10/300 GL gel filtration 
column. In A-G, peaks between 36 and 40 minutes are monomeric protein and peaks near 33 
minutes are dimeric protein. A) wt-CVN (C-term 6His-tag), B) P51G-m4-CVN (C-term 6His-tag), 
C) AAGRLSK-P51Gm4-CVN (C-term 6His-tag), D) CKDNRNH-P51Gm4-CVN (C-term 6His-tag), 
E) PTGEQAP-P51Gm4-CVN (C-term 6His-tag), F) LPRANHR-P51Gm4-CVN (C-term 6His-tag), 
G) SSDGLQQ-P51Gm4-CVN (N-term 6His-tag), H) SSDGLQQ-wt-CVN (no 6His-tag). 
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DISCUSSION 

Five CV-N mutant genes were identified by selecting the T7 phage display library against 

gp120 and RNase B. A non-cleavable C-terminal 6His-tag was incorporated into the phage library 

design and was present during selection. Each gene was modified to include the pelB leader 

sequence and was ligated into pET26b(+) at NdeI and XhoI. The pelB leader sequence targets 

CV-N to the periplasm, where the pelB tag is removed and the protein has a better environment 

in which to fold properly. When wt-CVN, P51G-m4-CVN, and the library mutants are expressed in 

BL21(DE3) at 30°C or 37°C, most of the protein is observed in inclusion bodies, while some is in 

the soluble cytoplasmic fraction, and very little is observed in the periplasmic fraction. 

Predominant inclusion body localization for CV-N is consistent with previous mutants produced in 

this lab (Fromme et al., 2007; Y. Liu et al., 2009) and large amounts of CV-N purified from 

inclusion bodies in other labs (Colleluori et al., 2005; Xiong et al., 2010). However, a significant 

amount of protein can be harvested from the periplasmic fraction when the culture is grown at 

20°C and benzyl alcohol (20 mM final concentration) is added at the time of induction. The benzyl 

alcohol method saves much time and effort in protein purification because the protein is already 

natively folded, eliminating the refolding steps, and it is more easily extracted from the cells. 

Each of the mutants was also PCR modified to have cleavable, N-terminal His-tags. The N-

terminal His-tag version includes a TEV cleavage site between the His-tag and CV-N, and does 

not have a pelB leader sequence. These CV-N mutants were found most abundantly in inclusion 

bodies and the lack of pelB eliminates the option of harvesting these proteins from the periplasm 

using benzyl alcohol and 20°C culture conditions.  

Despite containing the stabilizing P51G linker mutation, PTGEQAP-P51Gm4-CVN and 

LPRANHR-P51Gm4-CVN seem to be predominantly dimeric by analytical gel filtration. This could 

be due to specific mutations in each protein. Overall, the C-term 6His-tag construct with pelB 

leader sequence seems to yield more soluble protein than the N-term 6His-tag construct without 

pelB. This is especially true when the culture is grown with benzyl alcohol at 20°C. Two of the five 

CV-N mutants did not express well in BL21(DE3) despite being grown under two different 

conditions and trying two different 6His-tag placements. This problem may lie in the T7 phage 
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display library design, which included the C-term 6His-tag as part of the CV-N proteins displayed 

on-phage. Having an unstructured portion of the protein may have encouraged non-specific 

binding by some poorly folded mutants. To reduce non-specific binding, future generations of the 

phage display library will not contain a 6His-tag as part of the protein gene. Such a modification 

may be added after selection for purification convenience. 
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CHAPTER 4 

CHARACTERIZATION OF CYANOVIRIN-N MUTANTS 

ABSTRACT 

Five full length CV-N mutants were obtained from the phage library. Only a very small 

amount of soluble CKDNRNH-P51Gm4-CVN was obtained and observed by CD and Tm, 

revealing a Tm = 37.9 ± 0.27°C. PTGEQAP-P51Gm4-CVN is soluble under native conditions, but 

CD indicated random coil structure and the protein was not characterized further. SSDGLQQ-

P51Gm4-CVN and AAGRLSK-P51Gm4-CVN were purified in sufficient amounts to allow 

characterization by CD, Tm, ELISA, glycan array, and ITC. Both proteins have CD minima near 

213 nm, which is similar to P51G-m4-CVN and indicative of β-sheet structure. AAGRLSK-

P51Gm4-CVN and SSGDLQQ-P51Gm4-CVN are also thermally stable with Tm = 41.1 ± 0.37°C 

and Tm = 45.8 ± 0.28°C respectively. ELISA binding assays indicate binding specificity for gp120 

and RNase B. To more specifically determine their target glycans, wt-CVN, P51G-m4-CVN, 

AAGRLSK-P51Gm4-CVN and SSDGLQQ-P51Gm4-CVN were submitted to the Consortium for 

Functional Glycomics (CFG) for glycan array screening. This study indicated identical specificity 

for AAGRLSK-P51Gm4-CVN, P51G-m4-CVN, and wt-CVN. However, SSDGLQQ-P51Gm4-CVN 

was specific for some different high-mannose glycans and the GlcNAcα1-4Gal motif. ITC 

experiments were performed with P51G-m4-CVN and SSDGLQQ-P51Gm4-CVN against 2α-

Mannobiose and Man9 to further confirm the altered specificity of SSDGLQQ-P51Gm4-CVN 

compared to P51G-m4-CVN. P51G-m4-CVN binds 2α-Mannobiose with a Kd of 141 µM. Two of 

five CV-N mutants from the T7 phage display library were successfully characterized. The results 

demonstrate the ability of wt-CVN’s Domain B to be mutated and retain specificity for the parent 

glycans and for additional glycans. This technique can be used to make CV-N specific for other 

glycans and build a repertoire of useful lectins. 

INTRODUCTION 

Circular Dichroism (CD). CD shines polarized light through a protein sample in a cuvette. 

The resulting spectra are indicative of secondary structures. Figure 21 shows typical spectra 

shape for alpha helix, beta sheet, and random coil protein structures. The same instrument can 
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be used to monitor a protein sample as it is heated. The shift in ellipticity at specific wavelengths 

can be monitored to determine protein unfolding.  

 
Figure 21. Typical Spectra of 1) 100% α-helix, 2) 100% β-sheet, and 3) 100% random coil. 
(Greenfield, 1969) 
 

Glycan Array. Microarray technology has made it possible to study a large number of 

molecules quickly and efficiently. It is very valuable in areas such as glycomics, proteomics and 

genomics in which high-throughput methods are essential. Microarrays are typically produced by 

covalently binding molecules of interest to a solid surface, in this case glycans to glass. Hundreds 

of different glycans can be spotted or printed onto a single slide (Falciani, 2007). The Consortium 

for Functional Glycomics (CFG), a core laboratory at Emory University (Atlanta, GA), offers 

microarray screening against more than 600 glycans ("Consortium For Functional Glycomics"). 

CFG uses amine-reactive N-hydroxysuccinimide (NHS)-activated slides (Blixt et al., 2004). 

Microarray screening at CFG enables rapid assessment of lectin specificity and provides valuable 

information for further binding studies. In the case of the five CV-N mutants, CFG screening 

reveals the specificity of each mutant to the Manα1-2Man motif and identifies any cross-reactivity. 

XTT anti-HIV Assay. The XTT anti-HIV assay (Fromme et al., 2007; Gulakowski et al., 

1991) has been used to demonstrate CV-N's ability to inhibit HIV infection in vivo. The assay 

uses CEM-SS cells incubated with HIV-1 and various concentrations of CV-N for 6-7 days at 
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37°C. Viable cells are detected by their ability to metabolize 2,3-bis[2-methoxy-4-nitro-5-

sulfophenyl]-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) into formazan (XTT 

formazan) (Scudiero, 1988) at the end of the incubation period. The colored XTT formazan is 

quantified by spectrophotometric analysis at 450 nM (Gulakowski et al., 1991). 

Computational Docking. In addition to laboratory experiments, the five CV-N library 

mutants were also examined computationally. A flexible docking method was used to examine 

each mutant’s binding to dimannose (Bolia et al., 2012; Bolia, Gerek, & Ozkan, 2012; Bolia, 

Woodrum, Ozkan, & Ghirlanda, 2013). Some modeling protocols use a rigid protein with little or 

no consideration of how the protein and ligand move in response to one another. On the other 

hand, molecular dynamics (MD) studies extensively examine backbone and side-chain movement 

(Adcock et al., 2006). MD calculations are time consuming and expensive. Flexible docking is in 

between rigid docking and MD, accounting for backbone and side-chain movement, but in a less 

comprehensive manner than MD studies. For this study, BP-Dock starts with known protein 

crystal structures and perturbs each amino acid, one at a time, to see how the protein backbone 

responds. The protein and glycan are then docked. 

METHODS 

CD and Thermal Denaturation (Tm). CD was performed on a Jasco J-815 Spectrometer. 

CV-N samples of 10-60 µM were prepared in a 1 mm cuvette in 10 mM KH2PO4, pH 7.0 (pH 

adjusted with KOH), and scanned from 260-190 nm with data pitch 0.5 nm and scanning speed 

50 nm/min. Thermal denaturation temperatures (Tm) were also determined by observing the 

samples from 4°C-80°C or 4°C-96°C. Spectra were taken every 2°C with a scanning speed of 

100 nm/min, ramp of 1°C/min, data pitch of 0.5 nm, and scanning 260-190 nm. 

ELISA. This protocol is based on one previously described by Boyd, et al (Boyd et al., 

1997). A polystyrene 96-well plate (Nunc) was coated with 100 µL per well gp120 (1.1 µg/mL in 

PBS) or 100 µL RNase B (10 µg/mL in PBS) and incubated for two hours at 37°C. It was washed 

four times with PBS-Tween 0.05% (PBST) and 200 µL 3% BSA was incubated in the plate 

overnight at 4°C. The plate was washed with PBST and 100 µL of protein was added and 

incubated for 30 min at room temperature. After being washed, the plate was incubated with 100 
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µL anti-CV-N rabbit polyclonal antibodies (1.5 mg/mL diluted 1:1000 in PBS) for 30 min. The anti-

CV-N antibodies were kindly donated by Toshiyuki Mori and Barry O'Keefe at NCI. The plate was 

washed and then incubated for 30 min with 100 µl of the secondary antibody, stabilized goat anti-

rabbit HRP conjugate (Pierce, diluted in PBS to 0.01 µg/mL). After the final wash, 100 µL TMB 

(0.2 g/L 3,3',5,5'- tetramethylbenzidine and H2O2 0.01%, KPL Cat: 507600) was added to each 

well and the reaction was quenched with 100 µL 2 M sulfuric acid. The plate was read at 450 nm. 

The following reagent was obtained through the NIH AIDS Research and Reference Reagent 

Program, Division of AIDS, NIAID, NIH: HIV-1 gp120 CM, Cat # 2968, from DAIDS, NIAID. 

NMR. SSDGLQQ-P51Gm4-CVN (N-term 6His-tag) used for NMR was grown in 1 L of M9 

minimal media, with 
15

N ammonium chloride (Cambridge Isotope Laboratories) being the only 

available nitrogen source in the media. M9 minimal media was prepared in two parts. 16 g 

Na2HPO4*7H2O, 3.5 g KH2PO4, 0.6 g NaCl, 1.25g NH4Cl (
15

N labeled), and water were mixed for 

a total volume of 1 L. The solution was checked to ensure it was between pH 7.0 and 7.5, and 

then it was autoclaved. After the media cooled, the following filter-sterilized reagents were added: 

2 mL 1M MgSO4, 100 µL 1M CaCl2, 20 mL 20% glucose, 0.5 mL 1 M thiamin, 1 mL 1000x trace 

metals (10 mM each FeCl3*6H2O, CuSO4*5H2O, MnSO4*H2O, ZnSO4*7H2O), 1 mL 30 mg/mL 

kanamycin. Bacteria were grown overnight in 10 mL LB and then added to 1 L of M9 media. 

SSDGLQQ-P51Gm4-CVN was purified from inclusion bodies according to the protocol described 

in Chapter 3. The protein was dialyzed into 10 mM KH2PO4, pH 6.0, and then concentrated to 

118.2 µM. Finally, 400 µl concentrated protein was mixed with 20 µl D2O. Titration was performed 

using 25 mM 2α-Mannobiose (Sigma M1050) on a Varian VNMRS 500 MHz NMR. Two molar 

equivalents of 2α-Mannobiose were added.  

Glycan Array. SSDGLQQ-P51Gm4-CVN (N-term 6His-tag), AAGRLSK-P51Gm4-CVN (C-

term 6His-tag), P51G-m4-CVN (C-term 6His-tag), and wt-CVN (C-term 6His-tag) were prepared 

for screening at the Consortium for Functional Glycomics. Protein was concentrated to 2 mg/mL 

in 1 mL 0.1mM sodium bicarbonate, pH 8.3. 2.5 mg 5-(and-6)-Carboxytetramethylrhodamine 

succinimidyl ester dye (C-1171 Invitrogen) was dissolved in 280 µL DMF. 25 µL dye was added 
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to the protein and stirred at room temperature for 1 hour. Excess dye was removed by size 

exclusion chromatography on a Bio-Rad DG10 desalting column equilibrated with PBS pH 7.4.  

Samples were sent to the Consortium for Functional Glycomics for microarray glycan 

screening. SSDGLQQ-P51Gm4-CVN was analyzed on the Mammalian Printed Array version 5.0 

and all other proteins were analyzed on Mammalian Printed Array version 5.1. Each array is 

printed on a glass slide with over 600 different glycans as previously described (Blixt et al., 2004; 

"Consortium For Functional Glycomics,").  

Anti-HIV Assay. wt-CVN and SSDGLQQ-wt-CVN, both without His-tags, were sent to the 

National Cancer Institute (NCI) lab of Barry O'keefe (Frederick, MD) for an anti-HIV activity assay. 

The assay uses CEM-SS cells incubated with HIV and eight concentrations of CV-N for six days 

at 5% CO2 and 37°C. At the end of the incubation period, viable cells were detected by addition of 

50 µl XTT, incubation at 37°C for 4 hours, followed by spectrophotometric analysis at 450 nm 

(Fromme et al., 2007; Gulakowski et al., 1991). 

Computational Protocol. The Backbone Perturbation-Dock (BP-Dock) flexible docking 

method (Bolia et al., 2012; Bolia, Gerek, & Ozkan, 2012; Bolia, Woodrum, Ozkan, & Ghirlanda, 

2013) was used to examine dimannose binding by P51G-m4-CVN (PDB: 2RDK), CVN
mutDB

 (PDB: 

3CZZ), and the five full-length CV-N mutants produced in my T7 phage display library. Briefly, 

each αC is a node and each is treated as if there is a spring in between. The structures are 

compared and similar structures are grouped together/eliminated. Amino acid side-chain 

conformations are then considered. All of these different structures will be considered when 

docking to the ligand. 

RESULTS 

Of the five full length CV-N sequences isolated from the T7 phage display library, only 

SSDGLQQ-P51Gm4-CVN and AAGRLSK-P51Gm4-CVN were significantly characterized.  

Secondary structure and Tm of the CV-N mutants were examined using CD. The CD 

spectra have minima at approximately 213 nm, indicating mainly β-sheet structure for each 

protein. Figure 22 gives spectra for each of the mutants produced. 
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Figure 22. CD spectra of CV-N mutants, wt-CVN, and P51G-m4-CVN. A) CD spectra of C-term 
6His-tag versions of mutants and wt-CVN and P51G-m4-CVN. B) SSDGLQQ-wt-CVN, and C-
term, N-term, and no tag versions of SSDGLQQ-P51Gm4-CVN. C) SSDGLQQ-P51Gm4-CVN at 
4°C and 96°C. 

 
Thermal denaturation studies were also performed. Table 5 gives the thermal denaturation 

temperatures based on a two-state model.  

  

C 

B A 
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Table 5  

Thermal Denaturation Temperatures Followed at 200 nm 

Protein Tm (°C) 

wt-CVN C-term 6H 51.9 ± 0.20°C 

SSDGLQQ-wt-CVN no 6H 52.9 ± 0.25°C 

P51G-m4-CVN C-term 6H 55.1 ± 0.20°C 

AAGRLSK-P51Gm4-CVN C-term 6H 41.1 ± 0.37°C 

SSDGLQQ-P51Gm4-CVN C-term 6H 45.8 ± 0.28°C 

SSDGLQQ-P51Gm4-CVN N-term 6H 49.2 ± 0.32°C 

CKDNRNH-P51Gm4-CVN 37.9 ± 0.27°C 

AAGRLSK-P51Gm4-CVN 42.5 ± 0.32°C 

P51G-m4-CVN no 6H 46.4 C 

SSDGLQQ-P51Gm4-CVN no 6H 55.5 ± 0.26°C 

AAGRLSK-P51Gm4-CVN no 6H 47.2 ± 0.18°C 

 

As expected, SSDGLQQ-P51Gm4-CVN was more thermally stable than SSDGLQQ-wt-

CVN, which does not have the stabilizing P51G mutation. Interestingly, SSDGLQQ-P51Gm4-

CVN and SSDGLQQ-wt-CVN have melting temperatures similar to P51G-m4-CVN and wt-CVN 

respectively. It is also noted that SSDGLQQ-CVN is more thermally stable than AAGRLSK-

P51Gm4-CVN and CKDNRNH-P51Gm4-CVN. Figure 23 follows each protein’s denaturation by 

CD at 200 nm. 
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Figure 23. Tm curves of CV-N, P51G-m4-CVN, and CV-N mutants at 200 nm. A) wt-CVN (C-term 
6His-tag) has a Tm = 51.9 ± 0.20°C. B) P51G-m4-CVN (C-term 6His-tag) has a Tm = 55.1 ± 
0.20°C. C) AAGRLSK-P51Gm4-CVN (C-term 6His-tag) has a Tm = 41.1 ± 0.37°C. D) SSDGLQQ-
wt-CVN (no 6His-tag) has a Tm = 52.9 ± 0.25°C. E) SSDGLQQ-P51Gm4-CVN (N-term 6His-tag) 
has a Tm = 49.2 ± 0.32°C. F) SSDGLQQ-P51Gm4-CVN (no 6His-tag) has a Tm = 55.5 ± 0.26°C. 
 

ELISA was performed against gp120 and RNase B. Figure 24 and Table 6 indicate 

nanomolar or low micromolar EC50 values for SSDGLQQ-P51Gm4-CVN (N-term 6His-tag), 
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SSDGLQQ-wt-CVN (tag), P51G-m4-CVN (C-term 6His-tag), and wt-CVN (C-term 6His-tag). 

SSDGLQQ-P51Gm4-CVN has 3.7 ± 0.5 µM binding compared to 84 ± 32 nM for P51G-m4-CVN, 

and 0.98 ± 1.3 nM for wt-CVN. SSDGLQQ-wt-CVN (no tag), AAGRLSK-P51Gm4-CVN (C-term 

6His-tag and N-term 6His-tag) and SSDGLQQ-P51Gm4-CVN (C-term 6His-tag, and no tag) also 

bound gp120, but the data could not be fit. 

 
Figure 24. ELISA binding curves. A) SSDGLQQ-P51Gm4-CVN (N-term 6His-tag), B) P51G-m4-
CVN (C-term 6His-tag), C) SSDGLQQ-wt-CVN (no tag), and D) wt-CVN (no tag) against gp120, 
with EC50 of 3.7 ± 0.5 µM and 84 ± 32 nM respectively. The EC50 is 0.98 ± 1.3 nM for wt-CVN (no 
tag). The SSDGLQQ-wt-CVN curve was not fit, but likely has a micromolar EC50.   

 
Table 6  
 
ELISA Binding Data for wt-CVN and CV-N Mutants Against RNase B and Recombinant gp120 

Protein Gp120 EC50 

SSDGLQQ-P51Gm4-CVN (N-term) 3.7 ± 0.5 µM 
P51G-m4-CVN (C-term) 84 ± 32 nM 

wt-CVN (no tag) 0.98 ± 1.3 nM 
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ELISA against RNase B was also performed to detect binding specificity for high-mannose 

glycans. Though the data was not fit, each protein also bound to RNase B. RNase B has a single 

high-mannose glycan ranging from Man5 to Man9 in size (Hua et al., 2012; Prien et al., 2009). CV-

N mutants bind to both proteins suggesting specificity for high-mannose glycans, the only 

common feature between gp120 and RNase B. 

 
SSDGLQQ-P51Gm4-CVN binding to 2α-Mannobiose was also qualitatively examined by 

NMR. After adding two molar equivalents of 2α-Mannobiose to SSDGLQQ-P51Gm4-CVN, no 

changes in peak intensity or peak shifting were observed. Though no binding was observed, the 

HSQC in Figure 26 shows that the protein is folded.  

 
Figure 25. HSQC showing folded 

15
N labeled SSDGLQQ-P51Gm4-CVN (N-term 6His-tag). Two 

molar equivalents of 2α-Mannobiose were titrated into the sample and no binding was observed. 
 

HSQC of SSDGLQQ-P51Gm4-CVN 
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To more broadly determine their binding specificities, wt-CVN (C-term 6His-tag), P51G-m4-

CVN (C-term 6His-tag), SSDGLQQ-P51Gm4-CVN (N-term 6His-tag), and AAGRLSK-P51Gm4-

CVN (C-term 6His-tag) were sent to CFG for glycan array analysis. SSDGLQQ-P51Gm4-CVN 

was screened on Mammalian Printed Array version 5.0. The remaining proteins were screened 

on Mammalian Printed Array version 5.1. These versions of the array are nearly identical. Version 

5.0 has 611 glycans and version 5.1 has 610 glycans, with the only difference being the absence 

of Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-3)Manb1-

4GlcNAcb1-4GlcNAcb-Sp13 (glycan 56 on version 5.0) on version 5.1 of the array.  

 

Figure 26. Glycans significantly bound by CV-N proteins on the CFG mammalian glycan array. A) 
Glycan array hits for wt-CVN, P51G-m4-CVN, AAGRLSK-P51Gm4-CVN, and SSDGLQQ-
P51Gm4-CVN. The glycans are listed in numerical order and are all numbered according to 
version 5.1 of the CFG mammalian glycan array. B) Pictorial representation of relevant mannose 
glycan structures on CFG mammalian glycan array version 5.1. C) Pictorial representation of 
relevant GlcNAcα1-4Gal glycan structures on CFG mammalian glycan array version 5.1. 
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As seen in Figure 27 and Appendix A, SSDGLQQ-P51Gm4-CVN binds well to two glycan 

motifs and has low levels of background binding. The 10 glycans bound most strongly to 

SSDGLQQ-P51Gm4-CVN contain either Manα1-2Manα1-2Man or GlcNAcα1-4Gal terminal 

motifs, indicating dual specificity. The comprehensive list of glycans strongly bound by 

SSDGLQQ-P51Gm4-CVN, AAGRLSK-P51Gm4-CVN, P51G-m4-CVN, and wt-CVN can be found 

in Appendix A.  

AAGRLSK-P51Gm4-CVN, P51G-m4-CVN, and wt-CVN have identical glycan specificity 

and bound best to the same 11 high mannose glycans. These include glycans 207, 211, 214, 

315, and 316 bound by SSDGLQQ-P51Gm4-CVN and an additional six mannose glycans. In 

harmony with previous studies (C. Bewley, 2002; C. A. Bewley, 2001), P51G-m4-CVN recognizes 

glycans containing Manα1-2Man.  

To demonstrate anti-HIV activity, the seven Domain B mutations in SSDGLQQ-P51Gm4-

CVN were made on wt-CVN, producing SSDGLQQ-wt-CVN. This protein has the new Domain B 

while retaining a native Domain A and linker region. SSDGLQQ-wt-CVN was sent to NCI for XTT 

anti-HIV assay, and the results are in Table 8. Wt-CVN has an EC50 of 3 nM while SSDGLQQ-wt-

CVN has 500 nM activity. Consistent with the ELISA binding data, SSDGLQQ-wt-CVN has less 

potent anti-HIV activity than wt-CVN. 

Table 7  

Anti-HIV Activity of wt-CVN, SSDGLQQ-wt-CVN, and P51G-m4-CVN as Measured by XTT 
Assay 

Protein EC50 

wt-CVN 3 nM 
SSDGLQQ-wt-CVN 500 nM 

P51G-m4-CVN* >>5000 nM 

Note: P51G-m4-CVN data comes from a previous assay (Fromme et al., 2007). 
 
In addition to the laboratory characterizations, all five CV-N library mutants, SSDGLQQ-wt-

CVN, P51G-m4-CVNC, and CV-N
mutDB

 (Barrientos et al., 2006) were examined computationally 

for binding to Manα1-2Man and Manα1-2Manα1-2Man. Both dimannose and trimannose were 

examined based on CFG results for AAGRLSK-P51Gm4-CVN and SSDGLQQ-P51Gm4-CVN. 

CV-N
mutDB

 is the negative control, its Domain B being unable to bind to Manα1-2Man, and P51G-
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m4-cvn is the positive control because it is the parent protein of my CV-N library mutants. Table 8 

gives ΔG values for each protein. 

Table 8  
 
Computational Data for Nine CV-N Proteins in Which Domain B Was Docked With Manα1-2Man 
and Manα1-2Manα1-2Man 

Protein (no tag) Manα1-2Man Manα1-2Manα1-2Man 

wt-CVN (1IIY) Domain B -12.94 kcal/mol -13.77 kcal/mol 
P51G-m4-CVN -17.25 kcal/mol -17.72 kcal/mol 

CV-N
mutDB

* -9.28 kcal/mol  
SSDGLQQ-wt-CVN -14.76 kcal/mol -15.82 kcal/mol 

SSDGLQQ-P51Gm4-CVN -12.61 kcal/mol -13.75 kcal/mol 
CKDNRNH-P51Gm4-CVN -11.67 kcal/mol  
PTGEQAP-P51Gm4-CVN -10.01 kcal/mol  
AAGRLSK-P51Gm4-CVN -11.77 kcal/mol -12.33 kcal/mol 
LPRANHR-P51Gm4-CVN -9.06 kcal/mol  

Note: This data was provided by Ashini Bolia. *protein originally described by Gronenborn 
(Barrientos et al., 2006). 
 

My coworker Ashini Bolia has kindly provided PyMOL models displaying potential 

hydrogen bonding between each of the five library mutants and dimannose. Figure 27 shows 

hydrogen bonds with the CV-N background and side-chains. Dimannose forms hydrogen bonds 

with the SSDGLQQ-P51Gm4-CVN backbone at residues Asn42, Ser44, Asp52, Gly53, and 

Gln74. The side-chains of Ser41, Gln74, and Gln76 also form hydrogen bonds with the glycan, for 

a total of seven amino acids interacting with the glycan. AAGRLSK-P51Gm4-CVN’s backbone 

interacts with dimannose at Asn42, Gly52, Arg53, and Ser74. The side-chains of Thr57 and 

Ser74 are also involved, totaling five amino acids interacting with the glycan. PTGEQAP-

P51Gm4-CVN’s model shows dimannose interacting with the protein backbone at Asn42 and 

Gly52, and side-chains of Asn42 and Glu53. This gives PTGEQAP-P51Gm4-CVN only three 

amino acids interacting with the glycan.  

Though CKDNRNH-P51Gm4-CVN and LPRANHR-P51Gm4-CVN were not very soluble in 

the lab, PyMOL models show dimannose interacting with six and seven amino acids, 

respectively, in Domain B. CKDNRNH-P51Gm4-CVN’s model shows potential hydrogen bonding 

with dimannose at residues Cys41, Asn42, Asn53, Thr57, Thr75, and Asn74. LPRANHR-

P51Gm4-CVN potentially interacts with dimannose at Asn42, Arg52, Ala53, Thr57, His74, Thr75, 

and Arg76. 
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Figure 27. PyMOL models of CV-N library mutant hydrogen bonds with dimannose. A, C, E, G, 
and I show hydrogen bonding between the CV-N mutant backbone and dimannose. B, D, F, H, 
and J show hydrogen bonding between CV-N side-chains and dimannose. These models were 
created in PyMOL and were kindly provided by Ashini Bolia. 
 



 

 58 

DISCUSSION 

Five full length CV-N mutants were isolated from the T7 phage display library. By CD, 

AAGRLSK-P51Gm4-CVN, SSDGLQQ-P51Gm4-CVN, and SSDGLQQ-wt-CVN have minima near 

213 nm, indicating mostly β-sheet structure. This is in agreement with wt-CVN and P51G-m4-

CVN, indicating similar secondary structure. 

Thermal denaturation temperatures were also obtained by CD. SSDGLQQ-P51Gm4-CVN 

(no 6His-tag) and P51G-m4-CVN (C-term 6His-tag) have Tm of 55°C and SSDGLQQ-wt-CVN (no 

6His-tag) and wt-CVN (C-term 6His-tag) both have Tm near 52°C. SSDGLQQ-P51Gm4-CVN and 

its wild-type version behave similarly to their parent proteins. They are easily refolded from 

inclusion bodies and have similar Tm and CD minima. Interestingly, the thermal denaturation 

temperature of SSDGLQQ-P51Gm4-CVN varies by as much as 10°C based on the location or 

absence of the 6His-tag. The no 6His-tag version has the highest Tm at 55.5 ± 0.26°C, the N-term 

6His-tag protein has Tm of 49.2 ± 0.32°C, and the C-term 6His-tag version has a Tm of 45.8 ± 

0.28°C. 

AAGRLSK-P51Gm4-CVN was the next most stable mutant, with Tm values of 47.2 ± 0.18 

°C without a tag, and 41.1 ± 0.37 °C with a C-term 6His-tag. As with SSDGLQQ-CVN, 6His-tag 

placement seems to influence the protein’s thermal stability.  

PTGEQAP-P51Gm4-CVN was soluble but not folded at room temperature under native 

conditions. Its CD minima near 202 nm indicates a random coil structure not typical of CV-N and 

it appears to be mostly or all dimer by gel filtration. LPRANHR-P51Gm4-CVN was not soluble 

under any of the expression or refolding conditions attempted. CKDNRNH-P51Gm4-CVN was 

quite difficult to obtain as a folded protein and only a small amount of the protein was sufficiently 

soluble to study by CD. It has a Tm value of 37.9 ± 0.27°C, which is too low for anti-HIV assay. 

CKDNRNH-P51Gm4-CVN has five cysteines, four of them found in wt-CVN, and one at position 

41 in Domain B.  

Overall, it seems that the 6His-tag affects the thermal stability of CVN mutants. 

Considering that C-term 6His-tag was the least stable version of SSDGLQQ-P51Gm4-CVN and 

AAGRLSK-P51Gm4-CVN, it is likely that including the C-term 6His-tag in the T7 phage display 
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library may have yielded a higher percentage of poorly folded proteins than a library without a 

6His-tag.  

In addition to thermal destabilization, the 6His-tag likely facilitates an increased level of 

non-specific binding. Despite being poorly folded, PTGEQAP-P51Gm4-CVN and CKDNRNH-

P51Gm4-CVN bind to gp120 and RNase B. This binding is likely achieved nonspecifically. 

PyMOL models furnished by Ashini demonstrate potential hydrogen bonds between each 

of the five library mutants and dimannose. SSDGLQQ-P51Gm4-CVN interacts with the glycan at 

five backbone amino acids throughout the Domain B cleft, and three side-chain amino acid 

interactions, for a total of seven amino acids interacting well with dimannose. AAGRLSK-

P51Gm4-CVN has fewer amino acids interacting with dimannose, but its five amino acids 

hydrogen bond with the glycan throughout the cleft, pointing toward good binding. PTGEQAP-

P51Gm4-CVN has only three amino acids predicted to hydrogen bond with dimannose. With 

Gly52 and Glu53 on one end and Asn42 on the other, the glycan seems to be held at its ends by 

the protein, probably resulting in weaker binding than SSDGLQQ-P51Gm4-CVN or AAGRLSK-

P51Gm4-CVN. 

Based on Ashini’s computational data in Table 8, Domain B of all five library mutants 

ranges from -9.06 kcal/mol for LPRANHR-P51Gm4-CVN to -12.61 kcal/mol for SSDGLQQ-

P51Gm4-CVN when docked with Manα1-2Man. The negative control CV-N
mutDB

 has -9.28 

kcal/mol interaction while positive control P51G-m4-CVN has -17.25 kcal/mol. This dimannose 

docking study indicates that LPRANHR-P51Gm4-CVN and PTGEQAP-P51Gm4-CVN weakly 

bind or don't bind dimannose as compared to CV-N
mutDB

 (Barrientos et al., 2006). SSDGLQQ-

P51Gm4-CVN, AAGRLSK-P51Gm4-CVN, and CKDNRNH-P51Gm4-CVN should bind, even if 

weakly, to dimannose, though none of the mutants approached the -17.25 kcal/mol of P51G-m4-

CVN. 

SSDGLQQ-P51Gm4-CVN (N-term 6His-tag) has an ELISA (gp120) EC50 of 3.7 ± 0.5 µM 

compared to 84 ± 32 nM for P51G-m4-CVN and 0.98 ± 1.3 nM for wt-CVN. SSDGLQQ-P51Gm4-

CVN bound gp120 and RNase B, indicating specificity for mannose glycans. ELISA data could 
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not be fit for SSDGLQQ-wt-CVN and AAGRLSK-P51Gm4-CVN, but both proteins may have 

micromolar EC50 against gp120. 

CFG glycan array screening of P51G-m4-CVN, wt-CVN, and AAGRLSK-P51Gm4-CVN 

indicates identical specificity by all three proteins for high-mannose glycans. Previously, Green et 

al sent P51G-CVN to CFG for glycan array screening on the Mammalian Printed Array version 

4.1 (Patsalo, Raleigh, & Green, 2011). This version of the array contains only 465 glycans 

compared to 610 on version 5.1. P51G-CVN bound best to mannose glycans, consistent with 

P51G-m4-CVN and wt-CVN. AAGRLSK-P51Gm4-CVN retains a large, charged amino acid at 

position 76, similar to wt-CVN and P51G-m4-CVN. The modest R76K mutation likely helps 

AAGRLSK-P51Gm4-CVN retain identical glycan specificity to its parent protein because it can 

cap and specifically bind the glycan (Margulis, 2005). 

Interestingly, the glycan array screen revealed a preference of SSDGLQQ-P51Gm4-CVN 

for Manα1-2Manα1-2Man terminal glycan motifs. This could be due, in part, to its slightly 

shallower Domain B binding site and a R76Q mutation that may slightly reduce the ability of 76 to 

cap the bound glycan (Margulis, 2005). Unlike P51G-m4-CVN, wt-CVN, and AAGRLSK-P51Gm4-

CVN, SSDGLQQ-P51Gm4-CVN binds to two distinct glycan motifs.  

SSDGLQQ-P51Gm4-CVN also has binding specificity for GlcNAcα1-4Gal. The second 

terminal glycan motif has been identified most frequently in human gastrointestinal epithelial and 

other mucosal tissues (Kawakubo et al., 2004; Lee et al., 2008). This glycan motif acts as an 

antibacterial agent against Helicobacter pylori, a common gastric pathogen (Kawakubo et al., 

2004). GlcNAcα1-4Gal blocks an enzyme important to the synthesis of a cholesterol cell wall 

component. The glycan is expressed below the surface of gastric mucosa, allowing H. pylori to 

colonize the top portion of mucosa, but preventing further infection.  

The protein selection method described in this experiment was too broad to select for exact 

glycan specificities, but it did demonstrate the ability to mutate CV-N Domain B and, in 

AAGRLSK-P51Gm4-CVN, retain glycan specificity identical to P51G-m4-CVN, while changing the 

glycan specificity of SSDGLQQ-P51Gm4-CVN. Future CV-N libraries should be selected against 
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the specific glycan of interest instead of a heterogeneous target. This will ensure that the protein 

binds to a specific glycan.  
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APPENDIX A 

 

Appendix A contains raw data from the Consortium for Functional Glycomics glycan array. 

The 10 or 11 glycans with the highest average RFU for each CV-N mutant are described. Please 

note that SSDGLQQ-P51Gm4-CVN was screened on Mammalian Printed Array version 5.0 and 

all other proteins were screened on Mammalian Printed Array version 5.1. These versions of the 

array are nearly identical. Version 5.0 has 611 glycans and version 5.1 has 610 glycans, with the 

only difference being the absence of Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-

6Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp13 (glycan 56 on version 5.0) on 

version 5.1 of the array. 

 

 
Figure 28. Glycomics array results for SSDGLQQ-P51Gm4-CVN (N-term 6His-tag) on CFG 
Mammalian Printed Array version 5.0. Two specificities were identified. 1) Manα1-2Manα1-2Man; 
2) GlcNAcα1-4Galβ1-4GlcNAcβ and GlcNAcα1-4Galβ1-3GlcNAcβ.  
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Table 9  
 
Top Hits for SSDGLQQ-P51Gm4-CVN (N-term 6His-tag) on CFG Mammalian Printed Array V 5.0 

Chart 
Number 

SSDG-m5-CVN (225ug/ml) CFG#2309 Slide#:15370 04/27/2012 
Alexa543 CMZ 

Average 
RFU StDev 

215 Mana1-2Mana1-2Mana1-6(Mana1-3)Mana-Sp9 12306 592 

339 
GlcNAca1-4Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-
Sp0 9654 882 

212 
Mana1-2Mana1-6(Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 7736 278 

317 
Mana1-2Mana1-6(Mana1-2Mana1-3)Mana1-6(Mana1-2Mana1-
2Mana1-3)Mana-Sp9 7651 461 

342 GlcNAca1-4Galb1-4GlcNAcb1-3Galb1-4Glcb-Sp0 6869 438 

344 GlcNAca1-4Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 6728 553 

208 Mana1-2Mana1-2Mana1-3Mana-Sp9 6275 104 

341 GlcNAca1-4Galb1-3GlcNAcb-Sp0 5390 803 

340 GlcNAca1-4Galb1-4GlcNAcb-Sp0 5298 241 

316 
Mana1-2Mana1-6(Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-
3)Mana-Sp9 5135 238 

Note: Version 5.0. SSDGLQQ-P51Gm4-CVN is specific for glycans containing Manα1-2Manα 

and GlcNAcα1-4Galβ  

 

 
Figure 29. Glycomics array results for AAGRLSK-P51Gm4-CVN (C-term 6His-tag) on CFG 

Mammalian Printed Array version 5.1. 
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Table 10  

 

Top Hits for AAGRLSK-P51Gm4-CVN (C-term 6His-tag) on GFC Mammalian Printed Array V 5.1 

Chart 
Number 

A-P51Gm4-CVN (77.4ug/ml) CFG#2309 Slide#:16038 V5.1 11/30/2012 
Alexa543 CMZ 

Average 
RFU 

214 Mana1-2Mana1-2Mana1-6(Mana1-3)Mana-Sp9 23805 

211 
Mana1-2Mana1-6(Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 22227 

316 
Mana1-2Mana1-6(Mana1-2Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-
3)Mana-Sp9 18774 

315 
Mana1-2Mana1-6(Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-3)Mana-
Sp9 16784 

207 Mana1-2Mana1-2Mana1-3Mana-Sp9 13632 

210 
Mana1-6(Mana1-2Mana1-3)Mana1-6(Mana1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp12 12168 

208 Mana1-2Mana1-6(Mana1-2Mana1-3)Mana-Sp9 8399 

212 
Mana1-2Mana1-6(Mana1-2Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 7184 

215 
Mana1-6(Mana1-3)Mana1-6(Mana1-2Mana1-3)Manb1-4GlcNAcb1-
4GlcNAcb-Sp12 6190 

216 
Mana1-6(Mana1-3)Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-
Sp12 1867 

209 Mana1-2Mana1-3Mana-Sp9 1395 

 

 
Figure 30. Glycomics array results for P51G-m4-CVN (C-term 6His-tag) on CFG Mammalian 

Printed Array version 5.1. 
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Table 11  

 

Top Hits for P51G-m4-CVN (C-term 6His-tag) on GFC Mammalian Printed Array V 5.1 

Chart 
Number 

P51Gm4-CVN (200ug/ml) CFG#2309 Slide#:16037 V5.1 11/30/2012 
Alexa543 CMZ 

Average 
RFU 

315 
Mana1-2Mana1-6(Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-
3)Mana-Sp9 42394 

207 Mana1-2Mana1-2Mana1-3Mana-Sp9 41677 

211 
Mana1-2Mana1-6(Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 40286 

208 Mana1-2Mana1-6(Mana1-2Mana1-3)Mana-Sp9 39218 

210 
Mana1-6(Mana1-2Mana1-3)Mana1-6(Mana1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp12 39138 

214 Mana1-2Mana1-2Mana1-6(Mana1-3)Mana-Sp9 38018 

209 Mana1-2Mana1-3Mana-Sp9 36735 

212 
Mana1-2Mana1-6(Mana1-2Mana1-3)Mana1-6(Mana1-2Mana1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 35885 

316 
Mana1-2Mana1-6(Mana1-2Mana1-3)Mana1-6(Mana1-2Mana1-
2Mana1-3)Mana-Sp9 35646 

215 
Mana1-6(Mana1-3)Mana1-6(Mana1-2Mana1-3)Manb1-4GlcNAcb1-
4GlcNAcb-Sp12 30941 

216 
Mana1-6(Mana1-3)Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-
Sp12 16499 

 

 
Figure 31. Glycomics array results for wt-CVN (C-term 6His-tag) on CFG Mammalian Printed 

Array version 5.1. 
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Table 12  

 

Top Hits for wt-CVN (C-term 6His-tag) on GFC Mammalian Printed Array V 5.1 

Chart 
Number 

WT-CVN (200ug/ml) CFG#2309 Slide#:16036 V5.1 11/30/2012 
Alexa543 CMZ 

Average 
RFU 

211 
Mana1-2Mana1-6(Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 45829 

212 
Mana1-2Mana1-6(Mana1-2Mana1-3)Mana1-6(Mana1-2Mana1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 40272 

214 Mana1-2Mana1-2Mana1-6(Mana1-3)Mana-Sp9 39790 

207 Mana1-2Mana1-2Mana1-3Mana-Sp9 39071 

209 Mana1-2Mana1-3Mana-Sp9 38695 

315 
Mana1-2Mana1-6(Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-
3)Mana-Sp9 37406 

208 Mana1-2Mana1-6(Mana1-2Mana1-3)Mana-Sp9 35476 

316 
Mana1-2Mana1-6(Mana1-2Mana1-3)Mana1-6(Mana1-2Mana1-
2Mana1-3)Mana-Sp9 34006 

215 
Mana1-6(Mana1-3)Mana1-6(Mana1-2Mana1-3)Manb1-4GlcNAcb1-
4GlcNAcb-Sp12 31762 

210 
Mana1-6(Mana1-2Mana1-3)Mana1-6(Mana1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp12 31625 

216 
Mana1-6(Mana1-3)Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-
Sp12 20562 
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