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ABSTRACT

In this thesis I model the thermal and structural evolution of Kuiper Belt Objects

(KBOs) and explore their ability to retain undifferentiated crusts of rock and ice over

geologic timescales. Previous calculations by Desch et al. (2009) predicted that ini-

tially homogenous KBOs comparable in size to Charon (R ∼ 600 km) have surfaces

too cold to permit the separation of rock and ice, and should always retain thick (≈ 85

km) crusts, despite the partial differentiation of rock and ice inside the body. The

retention of a thermally insulating, undifferentiated crust is favorable to the main-

tenance of subsurface liquid and potentially cryovolcanism on the KBO surface. A

potential objection to these models is that the dense crust of rock and ice overlying

an ice mantle represents a gravitationally unstable configuration that should over-

turn by Rayleigh-Taylor (RT) instabilities. I have calculated the growth rate of RT

instabilities at the ice-crust interface, including the effect of rock on the viscosity. I

have identified a critical ice viscosity for the instability to grow significantly over the

age of the solar system. I have calculated the viscosity as a function of tempera-

ture for conditions relevant to marginal instability. I find that RT instabilities on a

Charon-sized KBO require temperatures T > 143 K. Including this effect in thermal

evolution models of KBOs, I find that the undifferentiated crust on KBOs is thinner

than previously calculated, only ≈ 50 km. While thinner, this crustal thickness is still

significant, representing ≈ 25% of the KBO mass, and helps to maintain subsurface

liquid throughout most of the KBO’s history.
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Chapter 1

INTRODUCTION

1.1 Background

Although hypothesized to exist as early as 1930, the first Kuiper Belt Object

(KBO) wasn’t discovered until 1992 by Jewitt and Luu (1993). Clyde Tombaugh’s

discovery of Pluto in 1930 caused Frederick Leonard to speculate that Pluto might be

the first in a series of ultra-Neptunian bodies yet to be discovered in the Solar system

(Leonard 1930). In 1943 Kenneth Edgeworth postulated that the region beyond

Neptune might be populated by a very large number of comparatively small objects

left over from the formation of the solar system. He predicted that these objects might

be the source for comets (Edgeworth 1943). In 1951 Gerard Kuiper also predicted

the existence of a primordial disk of objects outside of the orbit of Pluto; however

he expected the disk to eventually scatter leaving this region of space empty today

(Kuiper 1951).

Since 1992, more than 1260 KBOs (Vitense et al. 2010) have been discovered with

semi-major axes ranging from 30 to 55 AU, including dwarf planets such as Pluto, Eris

and Haumea. The total number of KBOs with radii > 50 km has been modeled to be

> 100, 000, although the total mass contained within the Kuiper belt is expected to

be < 0.12 Earth masses (Vitense et al. 2010). Unlike their terrestrial cousins, many

KBOs (as well as the icy satellites of the giant planets) have densities on the order of

1 to 2 g cm−3, consistent with a ratio of ice to rock of greater than 50%. Compounds

such as crystalline water ice, methane and ammonia have been found on their surface

(Brown 2012). Their extremely low surface temperatures (∼ 40− 55 K), high water
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content and low densities make them unique objects in the solar system; and their

thermal evolution, differentiation and structure are only beginning to be understood

now.

Fig. 1.1 illustrates the relative size of eight of the largest Trans-Neptunian Objects

(TNOs) relative to Earth. TNOs include KBOs as well as scattered disk objects whose

semi-major axes can extend considerably further from the sun than classical KBOs.

As an example, Eris is roughly the same size as Pluto, but its aphelion occurs at ∼

98 AU.

Figure 1.1: An artist’s rendition displays eight of the largest TNOs. The radius
of Pluto and Eris are roughly equal at ∼ 1200 km, but Eris is substantially denser
(ρ̄Eris ∼ 2.52 g cm−3 and ρ̄Pluto = 1.75 g cm−3). Charon (RCharon ∼ 600 km and
ρ̄Charon ∼ 1.65 g cm−3) is the largest of Pluto’s moons, and is the primary focus of the
model runs performed in this thesis. Two other objects worth mentioning are Ceres,
which is located in the asteroid belt, and Neptune’s moon Triton, both of which are
believed to have originated in the Kuiper belt. Triton is larger than any of the KBOs
discovered to date (RTriton = 1350 km and ρ̄Triton = 2.06 g cm−3).

The models presented in this thesis are an extension of the model presented in

Desch et al. (2009) and explore the thermal evolution and differentiation processes
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for KBOs and other small icy bodies. One of the main results of this model, and

one that I will be exploring in detail, is the possibility that KBOs only partially

differentiate, resulting in the presence of a thick undifferentiated crust. This crust

is thermally insulating and can help sustain internal temperatures high enough to

support the presence of subsurface oceans. As the subsurface liquid freezes, it may find

its way to the surface through self-propagating cracks, allowing cryovolcanism to occur

(Crawford and Stevenson 1988). This cryovolcanism can result in the resurfacing of

KBOs, a process frequently observed on the icy moons of the giant planets.

Another intriguing possibility that may result from these subsurface oceans is the

creation of conditions that might be suitable for the formation of life. At the bottom

of these subsurface oceans, where the liquid comes into contact with the hot rocky

core, chemical reactions similar to those found in the “black smokers” at the bottom of

Earth’s oceans might occur. Admittedly, this is a long-shot, but still remains within

the realm of possibility. Therefore, establishing the existence of an undifferentiated

crust may have broader implications, especially for cryovolcanism.

Cryovolcanism has been established as a process for reshaping the surfaces of many

icy bodies in the solar system. Observations of many of the icy satellites of the giant

planets show evidence for cryovolcanism on their surface, and the implied presence of

subsurface liquids. Since the time of the Voyager missions, Europa has been known

to have an extremely young surface (∼ 50 Myr) (Smith et al. 1979; Zahnle et al.

2003), and there is mounting evidence for the role of cryovolcanism on its resurfacing

(Figueredo and Greeley 2004). Additionally, magnetometer measurements from the

Galileo probe strongly indicate that Europa contains a subsurface ocean (Kivelson

et al. 2000). On Ganymede, bright terrain on its surface has been interpreted as

resulting from cryovolcanism in places where liquid has filled in low-lying grabens

(Showman et al. 2004).
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Further evidence for cryovolcanism exists on Enceladus, where much of its surface

appears to be extremely young and uncratered resulting from recent resurfacing events

(< 108 yr). It also has tectonic features which may be the result of cryovolcanism

(Kargel and Pozio 1996). In addition, the Cassini probe has made the remarkable

observation of a plume of icy material escaping from the moon’s southern polar region,

a region which is especially young and active (Porco et al. 2006; Hansen et al. 2006).

On Titan, the Cassini Titan Radar Mapper observed evidence for a large shield

volcano along with three calderas and several flows, all indicative of cryovolcanism.

Finally, many other outer solar system satellites such as Miranda, Ariel and Triton

show extensive evidence for cryovolcanic activity. In most of these cases, the source

of the heat flux for this tectonic activity is theorized to be the result of both tidal dis-

sipation and internal radiogenic heating (Nimmo et al. 2002; Nimmo and Pappalardo

2004; Dombard and McKinnon 2001). Therefore, it is unclear from these observations

whether an isolated KBO of similar radius will experience cryovolcanism without hav-

ing available the additional source of heating from tidal forces. Additionally, there

are currently no observations of KBOs with sufficient resolution to determine their

surface morphology, although this situation will change when the New Horizons probe

arrives at the Pluto/Charon system in 2015.

For now, the evidence for cryovolcanism on the surface of KBOs is more indirect

and includes spectroscopic observations of crystalline water ice and ammonia on the

surface of KBO. Crystalline water ice is converted to amorphous ice through exposure

to galactic cosmic rays (GCRs) with energies ∼ 3 eV per molecule, and evidence

for ammonia hydrates is removed by particles with energy ∼ 100 eV per molecule

(Mastrapa and Brown 2006; Cook et al. 2007). When the additional ionizing effect of

ultraviolet solar photons is included, Cook et al. (2007) determined that the spectral

signatures for crystalline water ice and ammonia hydrates should be destroyed within
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0.03 and 1 Myr, respectively. This makes the discovery of these compounds on the

surface of KBOs difficult to explain.

Cryovolcanism provides a possible mechanism to replenish the crystalline water ice

and ammonia hydrates found on the surface of KBOs, as water containing ammonia

is erupted from their interior onto the surface. This possibility is enhanced by the

ability of ammonia to lower the melting point of water from 273 to 176 K, thus

facilitating the possibility for cryovolcanism at the very low temperatures found in

KBOs. In particular, Cook et al. (2007) used their observations for the presence of

crystalline water ice and ammonia hydrates on the surface of Pluto’s moon Charon,

to argue for the existence of cryovolcanism on Charon.

An alternative mechanism for the creation of the crystalline water ice found on

the surface of KBOs is from the heat generated by micrometeorite impacts into the

amorphous ice. These have the ability to locally anneal the ice, recrystallizing it.

Cook et al. (2007) estimated that these impacts can anneal ice on timescales of ∼ 5

Myr. However, they also found that the amorphization of crystalline water ice can

occur on timescales as low as 3×104 yr through the action of GCRs and UV photons.

Thus, unless the flux of micrometeorites in the Kuiper belt is many order of magnitude

larger than that measured between 1 and 18 AU by Pioneer 10 (Humes 1980), the

annealing action of micrometeorites in insufficient to overcome the amorphizing effect

of GCRs and UV photons. So we are left with the question of how crystalline water

ice and ammonia can be maintained on the surface of KBOs. Cryovolcanism may

explain the crystalline ice on the surface.

With limited observational evidence for cryovolcanism on KBOs being available,

the task to predict the occurrence of cryovolcanism and related phenomena falls on

the modeling community. Direct imaging of Pluto and Charon will be possible when

the New Horizons probe arrives in 2015 (Stern 2008), thereby allowing us to directly
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determine whether they have experienced cryovolcanism. However, interpretation of

these results still requires a theoretical understanding of the mechanisms underpinning

cryovolcanism, and therefore a proper model for the differentiation and evolution of

the KBOs on which cryovolcanism is observed. Conversely, theoretical models can

help us to use observations of surface morphology and evidence for cryovolcanism to

help determine the internal structure of KBOs.

1.2 Thermal Evolution Models of Kuiper Belt Object Interiors

Desch et al. (2009) developed a numerical code to calculate the thermal evolution

for the interior of icy bodies with radii ranging from ∼ 400 - 1000 km. This code solves

the 1-D (spherical) heat conduction equation in a way that fully incorporates time-

dependence. While other models have either considered a completely homogeneous

body, or one that is fully differentiated, the differentiation process incorporated in this

model allows us to capture the effects of differentiation over time. As will be explained

in more detail in Chapter 4, the maintenance of subsurface liquid is optimized when a

hot rocky core lies beneath an enveloping ice mantle, which is in turn surrounded by

an undifferentiated crust of rock and ice. The crust acts to thermally insulate the ice

layer beneath it, so that sufficient heat is maintained at the core/mantle boundary

to sustain the presence of liquid for many Gyr into the evolution of the KBO. A final

component of the model is the inclusion of the effect of ammonia on the differentiation

process. Ammonia has the effect of dramatically lowering the viscosity of water ice to

the point where Stokes flow can differentiate the KBO at temperatures much lower

than would be otherwise possible, and it is a powerful antifreeze.

The code of Desch et al. (2009) is the first code to include all of the relevant

effects (time-dependence, ammonia, partial differentiation) on the thermal evolution

of KBOs, although other models have incorporated a subset of these effects. Ruiz
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(2003) estimated the depth of the ice layer on Triton’s surface using a steady-state

model. Hussman et al. (2006) created steady-state models for icy satellites and KBOs

that were either fully differentiated or homogeneous. De Sanctis et al. (2001) modeled

the thermal evolution of porous KBOs without consideration for differentiation, and

Shchuko et al. (2006) did the same for the small, porous KBO, Varuna. These models

were appropriate considering the small size of the objects that they were modeling.

Ellsworth and Shubert (1983) developed thermal evolution models for icy satellites,

but did not include changes to their structure due to differentiation. Prialnick and

Bar-Nun (1990) modeled the thermal evolution of icy satellites due to long and short-

lived radionuclides, but did not include the effects of differentiation or ammonia.

McKinnon (2002) modeled the thermal evolution of KBOs without consideration of

differentiation. The numerical code used by Schubert et al. (2007) to study Enceladus

includes the effects of time evolution and differentiation but does not include ammo-

nia. To our knowledge, the only other code that included all of the relevant effects is

that used by Castillo-Rogez et al. (2007a) which included time evolution as well as the

effects of ammonia and differentiation. While this code has been applied to Iapetus

(Castillo-Rogez et al. 2007a), Rhea (Castillo-Rogez, 2006) and Ceres (Castillo-Rogez

et al. 2007b), it has not yet been applied to KBOs.

The models of Desch et al. (2009) begin with the accretion of a mixture of rocky

material (ρrock = 3.25 g cm−3) and ices (ρice ∼ 1 g cm−3). Heating due to long-lived

radionuclides gradually warms the KBO. The inclusion of ammonia in the model with

χ ≥ 1% (where χ is the weight fraction of ammonia relative to ammonia plus water)

causes the viscosity of the ice to drop by 5 orders of magnitude when the temperature

of any given layer rises above 176 K. This drop in viscosity facilitates Stokes flow,

whereby meter-sized rocks separate from the ice and fall towards the core causing

the body to differentiate as illustrated in Fig. 1.2. Differentiation eventually creates
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Figure 1.2: Stokes flow of meter-sized rock through the ice layer, causing differenti-
ation to proceed outwards through the body. A 1-meter rock will fall ∼ 10 km/Myr
through the ice if T > 176 K, and less than 0.1 km/ 5 Gyr if T < 176 K.

a hot rocky core (ρ ∼ 3 g cm−3), surrounded by a liquid layer containing water and

ammonia, which is in turn surrounded by a pure water ice mantle (ρ ∼ 1 g cm−3).

The model predicts that for a Charon-sized body with ρ̄ = 1.70 g cm−3, the outer

crust will never rise above T = 176 K and will therefore never differentiate. This

is due to the extremely low surface temperatures of KBOs which result in very high

viscosities near their surfaces. This partial differentiation results in the formation of

an undifferentiated rockk/ice crust with a depth of 85 km as illustrated in Fig. 1.3.

The model also predicts the presence of subsurface liquid today that could be a source

for current cryovolcanism on Charon.
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Figure 1.3: Depiction of the differentiation model of Desch et al. (2009). It is
assumed that differentiation occurs from inside out, because temperatures decrease
from the center of the body to its surface. As individual layers rise above 176 K, each
layer will begin to differentiate via Stokes flow as 1 meter-sized rocks fall towards the
core. This model predicts that a Charon-sized will only partially differentiate out to
a radius of Rdiff , leaving an undifferentiated crust of ≈ 85 km.
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1.3 Current Research

In this research I address two significant objections to the numerical models of

Desch et al. (2009). The first is the assumption of differentiation due to the action

of Stokes flow. If χ < 1%, the drop in viscosity of the ammonia-bearing ice at 176 K

may be insufficient to cause the separation of ice from rock on geological timescales.

Furthermore, if the rock that originally accreted to form the KBO is composed of

centimeter-sized particles as opposed to meter-sized rock, the separation of rock from

ice will only occur at much higher temperatures. In either case, differentiation is

still likely inside the KBO, but might not begin until the temperature of any given

shell reaches the melting point of water ice at 273 K. The second objection is that

the existence of an undifferentiated crust with density ρ̄ = 1.70 g cm−3 overlying a

lower-density ice mantle with ρice ∼ 1 g cm−3 is gravitationally unstable, and therefore

prone to Rayleigh-Taylor instabilities. It is conceivable that these instabilities could

completely overturn the crust. This thesis quantifies the ability of Rayleigh-Taylor

instabilities to overturn the undifferentiated crust of KBOs. In particular, I focus on

the ability for a Charon-like object to maintain an undifferentiated crust, since we

may be able to get observational verification for the model when the New Horizons

probe reaches Charon in 2015.

To be clear, the models I developed for this research assume that some differenti-

ation has already occurred, either via Stokes flow, or when the ice matrix has reached

its melting point at 273 K. So we now have a partially differentiated body, where a

rocky core is surrounded by a liquid layer and ice mantle and finally the undifferenti-

ated crust. This crust may be unstable to gravitational overturn over geological time

frames. My current research explores whether this partially differentiated body will

now fully differentiate due to Rayleigh-Taylor instabilities.
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This thesis is organized as follows. In Chapter 2, I perform a linear stability

analysis on the boundary layer between the ice mantle and the overlying crust based

on the work of Chandrasekhar (1961). I use this analysis to determine a critical

viscosity ηcrit for the ice layer at which a disturbance can grow in amplitude by a factor

of 10 in 1.5 Gyr (roughly the time the interface will be at its maximum temperature

for a body like Charon). If the viscosity of the ice layer is greater than ηcrit, then we

do not expect any disturbance to be strong enough to overturn the crust. Chapter

3 explores the distinctly non-Newtonian rheology of the water ice at the very low

temperatures found in the ice mantle. Based on the work of Goldsby and Kohlstedt

(2001), I determine a composite flow law for the ice which enables me to model the

relationship between the viscosity of the ice and its temperature. From this I am able

to determine a differentiation temperature Tdiff which corresponds with the viscosity

ηcrit determined in Chapter 2. Chapter 4 reviews the thermal evolution code of Desch

et al. (2009) which is the basis for my models. Chapter 5 is a summary and discussion

of my results determined by using a Tdiff appropriate for Rayleigh-Taylor instabilities.

In this chapter I vary some of the material parameters for the model of Charon, and in

each case I determine the thickness of the resulting undifferentiated crust. The final

chapter concludes with the result that even with the inclusion of Rayleigh-Taylor

instabilities, our Charon analog still retains an undifferentiated crust of at least 50

km up to the present.
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Chapter 2

RAYLEIGH-TAYLOR INSTABILITIES

2.1 Derivation of Growth Rates

2.1.1 Overview

This chapter explores the effect of Rayleigh-Taylor instabilities on the evolution of

an icy body. Here, I assume that the release of energy due to radiogenic sources, core

formation and accretion have heated the body to the point where some differentiation

has occurred. The heavier rocky material has settled to the center due to Stokes

flow through ice, or outright melting of the ice, leaving a rocky core. This core is

surrounded by a layer of liquid and ice, which is in turn surrounded by a primordial,

undifferentiated layer of well-mixed rock and ice. The outermost layer is denser than

the ice beneath it, and gravitational forces will make it unstable to mixing over

geological time scales. Following closely upon the discussion of R-T instabilities in

chapter 10 of S. Chandrasekhar’s book, Hydrodynamic and Hydromagnetic Stability,

this chapter attempts to model whether a disturbance, once created, can eventually

overturn the undifferentiated crust of the body.

Consider a uniform horizontal layer of ice with density, ρ1, and viscosity, η1, un-

derneath an undifferentiated layer of material with density, ρ2, and viscosity, η2. For

the purpose of this discussion, both layers are considered to be incompressible fluids

with a horizontal interface at z = 0, and are initially static. The only external force

felt by the strata is the gravitational acceleration, g, due to material interior to the

interface. At some time t = 0, the system is slightly disturbed. The resulting distur-

bance will have a wavelength λ parallel to the interface, with some initial amplitude
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∆y perpendicular to the interface. Fig. 2.1 illustrates the initial disturbance, and

Fig. 2.2 shows how this disturbance can grow in time, eventually overturning the

crust. In the sections that follow I determine an exponential growth rate n for the

disturbance which can then be used to model the likelihood for overturn.

Figure 2.1: The initial disturbance between the ice mantle and overlying denser
crust is modeled as a sinusoidal oscillation with wavelength λ, and initial amplitude
∆y.

Figure 2.2: Schematic growth of the instability, eventually resulting in crustal over-
turn. Darker areas enriched in silicate grains.

Once the layer is perturbed, the actual density at any point (x, y, z) will be ρ+δρ,

with a corresponding increase in pressure, δp. We assume zero initial velocities at any

given point, and once perturbed there will be some corresponding increase in local

velocities, (u, v, w) or ui(i = 1, 2, 3) (considered small). The following subsections

derive the evolution of the system, starting with such fundamentals as conservation

of mass and momentum for the system.
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2.1.2 Conservation of Mass

To derive the continuity equation for conservation of mass, consider a closed vol-

ume V , bounded by a surface S. Any increase in the mass interior to S must pass

through the boundary. The mass inside the volume is given by
∫
V
ρ dV , and any

change of the mass inside S is given by

d

dt

∫
V

ρ dV =

∫
V

∂ρ

∂t
dV.

The rate of flow of mass through any surface element is given by ρ~v · d~S. Thus, for

the entire surface S, the rate of flow of material into the volume is given by∫
S

ρ~v · d~S =

∫
V

∇ · (ρ~v)dV

(by Green’s Theorem). We can now set the rate of change in mass inside V equal to

the rate of flow of mass into V . Noting this is equation is valid for any volume V , it

follows that

∂ρ

∂t
= ~∇ · (ρ~v) (2.1)

which is the Continuity Equation for Mass. If we use Cartesian coordinates, and

define ~v = (u, v, w), we get

∂ρ

∂t
= ~∇ · (ρ~v)

= ∂
∂x

(ρu) + ∂
∂y

(ρv) + ∂
∂z

(ρw)

= ρ∂u
∂x

+ u ∂ρ
∂x

+ ρ∂v
∂y

+ v ∂ρ
∂y

+ ρ∂w
∂z

+ w ∂ρ
∂w
.

Under the assumption that the ice layers are incompressible, ρ must be a constant in

time and space within each layer, and our continuity equation becomes

~∇ · ~v =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0.
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This can be expressed using Einstein notation as

∂vi
∂xi

= 0, (2.2)

which corresponds with Eq. 2 of Chandrasekhar.

2.1.3 Conservation of Momentum

If we consider a volume of fluid V bounded by a material surface S that is moving

with the flow, its momentum is given by
∫
V
ρ~v dV . The rate of change in momentum

is then

d

dt

∫
V

ρ~v dV =

∫
V

ρ
D~v

Dt
dV. (2.3)

This must be equal to the net force acting on each element.

Here D/Dt is the total (material) derivative, defined as follows.

If we have a function that is varying both in time and space, f(x(t), y(t), z(t), t), we

need to consider both the rate of change of f at a particular fixed point in space,

∂f/∂t, and the rate of change of f for a given fluid element as it moves along its

trajectory ~x = ~x(t). The spatial part of the derivative is given by

d (f(~x))

dt
= dx

dt
∂f
∂x

+ dy
dt
∂f
∂y

+ dz
dt
∂f
∂z

= u∂f
∂x

+ v ∂f
∂y

+ w ∂f
∂z

= ~v · ~∇f

Combining the spatial and time derivates yields the total derivative:

Df

Dt
=
∂f

∂t
+ ~v · ~∇f.

Alternatively, using operator notation

Df =

(
∂

∂t
+

k∑
i=1

dxi
dt

∂

∂xi

)
f where D ≡ d

dt
.
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The net force acting on each element can be broken down into two components.

The first is composed of long range external forces that act equally on any element

dV . In our case, we are only considering the gravitational force, ρ g dV . The second

component includes short-ranged molecular forces internal to the fluid. For simplic-

ity, we can consider a cubical volume element surrounded by a surface, S. Each of

the 3 sets of surface planes bounding S experiences a 3-component force, giving 9

components in all. Together, these comprise the stress tensor, ~τ . The stress tensor is

defined so that the force exerted per unit area across a surface element ~dS ≡ n̂ dS is

~f = ~τ · n̂ (by the fluid on the side to which n̂ points on the fluid on the other side).

Combining these terms, we find the total force (body + surface) = ~F =
∫
V
ρ g dV +∫

S
~τ · d~S, or

~F =

∫
V

(ρ g + ~∇ · ~τ) dV. (2.4)

Applying Newton’s second law to Eqs. 2.3 and 2.4, and noting that the above is true

for any volume V , we get

ρ
D~v

Dt
= ρ~g + ~∇ · ~τ (2.5)

Now, in Cartesian Coordinates:

~τ ≡


τxxx̂ τxyx̂ τxzx̂

τyxŷ τyyŷ τyzŷ

τzxẑ τzyẑ τzz ẑ


and

~∇ · ~τ =

(
∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ

)
· ~τ ,

so in Cartesian coordinates Eq. (2.5) becomes the following equations:

ρ
Du

Dt
= ρgx +

∂

∂x
(τxx) +

∂

∂y
(τxy) +

∂

∂z
(τxz) (2.6)

ρ
Dv

Dt
= ρgy +

∂

∂x
(τyx) +

∂

∂y
(τyy) +

∂yz

∂z
(τyz) (2.7)
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ρ
Dw

Dt
= ρgz +

∂

∂x
(τzx) +

∂

∂y
(τzy) +

∂

∂z
(τzz). (2.8)

For an incompressible flow (where ~∇ ·~v = 0) it can be shown that the components of

the stress tensor are given by

τ =


−p+ 2µ∂u

∂x
µ
(
∂u
∂y

+ ∂v
∂x

)
µ
(
∂u
∂z

+ ∂w
∂x

)
µ
(
∂u
∂y

+ ∂v
∂x

)
−p+ 2µ∂v

∂y
µ
(
∂v
∂z

+ ∂w
∂y

)
µ
(
∂u
∂z

+ ∂w
∂x

)
µ
(
∂v
∂z

+ ∂w
∂y

)
−p+ 2µ∂w

∂z

 .

Note that the stress tensor is symmetric, with τxy = τyx, τzx = τxz and τyz = τzy.

Componentwise, the stress tensor can be written as

τik = −pδik + µ

(
∂uk
∂xi

+
∂ui
∂xk

)
(2.9)

where ~v = (u1, u2, u3), ~x = (x1, x2, x3) and δik is the Kronecker delta.

We can now combine Eqs. 2.5 and 2.9 to get the equations for momentum. For

the component of momentum in the x direction,

ρ
Du

Dt
= ρgx + ∂

∂x

(
−p+ 2µ∂u

∂x

)
+ ∂

∂y

(
µ
(
∂u
∂y

+ ∂v
∂x

))
+ ∂
∂z

(
µ
(
∂u
∂z

+ ∂w
∂x

))
= ρgx − ∂p

∂x
+ µ

(
∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

)
+µ ∂

∂x

(
∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

)
+∂µ
∂x

(
∂u
∂x

+ ∂u
∂x

)
+ ∂µ

∂y

(
∂u
∂y

+ ∂v
∂x

)
+ ∂µ

∂z

(
∂u
∂z

+ ∂w
∂x

)
By Eq. 2.2 we have that ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0; therefore the equation for the x component

of momentum becomes

ρ
Du

Dt
= ρgx −

∂p

∂x
+ µ∇2u+

∂µ

∂x

(
∂u

∂x
+
∂u

∂x

)
+
∂µ

∂y

(
∂u

∂y
+
∂v

∂x

)
+
∂µ

∂z

(
∂w

∂x
+
∂u

∂z

)
.
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Now, if we make the assumption that both viscosity and gravity are only a function

of z, then gx, gy,
∂µ
∂x

and ∂µ
∂y

all vanish and

ρ
Du

Dt
= −∂p

∂x
+ µ∇2u+

dµ

dz

(
∂w

∂x
+
∂u

∂z

)
.

2.1.4 Linearization

To get to Chandrasekhar’s version of the equation, we need to linearize the mo-

mentum in the x-direction. Let us assume that our system is initially static but allow

for a slight disturbance in the system. Locally, we will see a slight increase in density

so that the density is now ρ+δρ and we have a small velocity u due to the disturbance

as it propagates out. Then in our new state,

ρ
Du

Dt
→ (ρ+ δρ)

Du

Dt

= (ρ+ δρ)

(
∂u

∂t
+
dx

dt

∂u

∂x
+
dy

dt

∂u

∂y
+
dz

dt

∂u

∂z

)
= (ρ+ δρ)

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
.

Now since u and δρ are small, we can ignore higher order terms to get

ρ
Du

Dt
→ ρ

∂u

∂t
.

Finally, if we assume that initially pressure, p, is only a function of z, then

∂(p+ δp)

∂x
=
∂δp

∂x
.

This yields Eq. 8 in Chandrasekhar for the x-component of momentum:

ρ
∂u

∂t
= −∂δp

∂x
+ µ∇2u+

dµ

dz

(
∂w

∂x
+
∂u

∂z

)
(2.10)

Similarly, it can be shown that the equations for the y- and z-components of

momentum are:

ρ
∂v

∂t
= −∂δp

∂y
+ µ∇2v +

dµ

dz

(
∂w

∂y
+
∂v

∂z

)
(2.11)
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ρ
∂w

∂t
= −∂δp

∂z
+ µ∇2w + 2

dµ

dz

∂w

∂z
− gδρ (2.12)

A final condition we need is that the density of every particle remains unchanged as

we follow its motion, a condition expressed as Eq. 12 in Chandrasekhar:

∂

∂t
δρ = −wdρ

dz
(2.13)

These four equations, along with the condition for incompressibility, ∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0,

make up the basic equations that needed to model Rayleigh-Taylor instabilities.

2.1.5 Decomposing the Disturbance into Normal Modes

To summarize, we are considering a flow, initially static, arising at the interface

between two layers of material of differing densities, where there are small pertur-

bations to the velocity, density and pressure. In this 2-D analysis, the density and

pressure are functions of z only, and we are considering disturbances as small peri-

odic waves propagating along the z = 0 plane (the interface between the two material

layers). We seek solutions whose dependence on x, y and t are given by:

exp(ikxx+ ikyy + nt)

where kx, ky, and n are constants. Then

ρ = ρ0(z) + ρ1(z) exp(ikxx+ ikyy + nt)

δρ = ρ1(z) exp(ikxx+ ikyy + nt)

p = p0(z) + p1(z) exp(ikxx+ ikyy + nt)

δp = p1(z) exp(ikxx+ ikyy + nt)

u = u1(z) exp(ikxx+ ikyy + nt)

v = v1(z) exp(ikxx+ ikyy + nt)
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w = w1(z) exp(ikxx+ ikyy + nt).

Here ρ0 � ρ1 and p0 � p1, and n represents the growth with time. Substituting

these solutions into Eq. 2.10 yields

nρu = −ikxδp+ µ
(
−k2u+D2u

)
+Dµ (ikxw +Du)

where D ≡ d
dz

is an operator and k2 = k2
x + k2

y. Rearranging terms yields Eq. 14 of

Chandrasekhar:

ikxδp = −nρu+ µ
(
D2 − k2

)
u+ (Dµ) (ikxw +Du) . (2.14)

Similarly, Eqs. 2.11 - 2.13 become

ikyδp = −nρv + µ
(
D2 − k2

)
v + (Dµ) (ikyw +Dv) (2.15)

Dδp = −nρw + µ
(
D2 − k2

)
w + 2(Dµ)(Dw)− gδρ (2.16)

ikxu+ ikyv = −Dw (2.17)

nδρ = −wDρ. (2.18)

Multiplying Eqs. 2.14 and 2.15 by ikx and iky, respectively, adding, and then using

equation 2.17, yields

k2δp = [−nρ+ µ(D2 − k2)]Dw + (Dµ)(D2 + k2)w. (2.19)

Combining Eqs. 2.16 and 2.18 yields

Dδp = −nρw + µ(D2 − k2)w + 2(Dµ)(Dw) +
g

n
(Dρ)w. (2.20)

Finally, eliminating δp from Eqs. 2.19 and 2.20 allows us to obtain our required

equation of motion (which is Eq. 22 in Chandrasekhar):

D

{[
ρ− µ

n
(D2 − k2)

]
Dw − 1

n
(Dµ)(D2 + k2)w

}
= k2

{
− g

n2
(Dρ)w +

[
ρ− µ

n
(D2 − k2)

]
w − 2

n
(Dµ)Dw

} (2.21)
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2.1.6 The Inviscid Case: µ = 0

The Case of Two Uniform Fluids of Densities ρ1 and ρ2 Separated by a

Horizontal Boundary at z = 0:

As a starting point, consider the limiting case where the fluid is inviscid. Eq. 2.21

then becomes

D(ρDw)− ρk2w = −g k
2

n2
(Dρ)w (2.22)

If we consider the fluid to be contained between two rigid planes then the boundary

conditions are

w = 0 and Dw = 0 (2.23)

on the bounding surfaces.

Within each fluid, Eq. 2.22 reduces to:

ρ(D2 − k2)w = −g k
2

n2
(0)w

or

(D2 − k2)w = 0. (2.24)

This has the general solution

w = Ae+kx +Be−kx. (2.25)

To keep the solutions physical, we need w → 0 as z → +∞ in the upper fluid and as

z → −∞ in the lower fluid. Therefore, for z > 0,

w2 = Ae−kz, (2.26)

and for z < 0,

w1 = Ae+kz. (2.27)
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Note that the same constant A is used in both equations to allow for continuity of

w across the interface. On the boundary, all three components of velocity (u, v and

w) must be continuous to maintain a solution that is physical. Also, the tangential

viscous stresses must be continuous. The continuity of u and v in conjunction with

Eq. 2.17, implies that Dw must be continuous across the boundary.

Having developed a solution within each of the fluid layers, we now need to find

solutions that are consistent along the boundary at z = 0. The condition that tan-

gential viscous stresses must be continuous leads Chandrasekhar to conclude that

µ(D2 + k2)w must be continuous across the interface (Eq. 35 of Chandrasekhar). If

we consider the equation

D(ρDw)− ρk2w = −g k
2

n2
(Dρ)w

and apply it to an infinitesimal region of thickness 4z that includes the boundary,

we find

[ρ(Dw)]2 − [ρ(Dw)]1
4z

− ρk2w = −g k
2

n2

ρ2 − ρ1

4z
w.

Multiplying by 4z we find

[ρ(Dw)]2 − [ρ(Dw)]1 − ρk2w4z = −g k
2

n2
(ρ2 − ρ1)w,

and taking the limit as 4z → 0, we get

ρ2(Dw)2 − ρ1(Dw)1 = −g k
2

n2
(ρ2 − ρ1)w0,

where w0 takes on a fixed value at the interface to allow for continuity across the

boundary. This yields Eq. 49 of Chandrasekhar [with T set to zero since we are not

considering surface tension forces]:

4(ρDw) = −g k
2

n2
(ρ2 − ρ1)w0. (2.28)
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For solutions 2.26 and 2.27, we need to consider Dw as z → 0 at the interface.

For the solution corresponding to z > 0 Dw = −kAe−kz → −kA; and for z < 0

Dw = +kAe+kz → +kA. Now using the condition specified in Eq. 2.28 we find

4(ρDw) = ρ2(−kA)− ρ1(+kA)

= −kA(ρ1 + ρ2) = −g k
2

n2
(ρ2 − ρ1)A

⇒ n2 = gk
(ρ2 − ρ1)

(ρ2 + ρ1)
.

If we now define

α1 ≡
ρ1

ρ1 + ρ2

, α2 ≡
ρ2

ρ1 + ρ2

, α1 + α2 = 0,

then:

n2 = gk(α2 − α1) (2.29)

This is the dispersion relation for the inviscid case, with vanishing surface

tension. We can see from Eq. 2.29 that the growth rate in time, n, is largest when

k is large, and therefore λ is small. Also, n2 > 0, and therefore has a solution that

increases with time, when ρ2 > ρ1. This is the case when we have a denser fluid on

top of a lighter fluid. Otherwise, the growth rate is imaginary, and the layers oscillate

with time as a surface wave.

2.1.7 The Viscid Case

Two Viscous Fluids with Densities ρ1 and ρ2 Separated by a Horizontal

Boundary at z = 0

Now we generalize the previous discussion for two layers of material with respective

densities, ρ1 and ρ2, and viscosities, µ1 and µ2, with a horizontal interface at z = 0.

Ignoring surface tension Ts again leads to the equation of motion given by Eq. 2.21.
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Within each region of constant ρ and µ, Eq. 2.21 becomes

D
[
ρ− µ

n
(D2 − k2)

]
Dw = k2

[
ρ− µ

n
(D2 − k2)

]
w (2.30)

Noting that ρ and µ are constants within each layer and defining the coefficient of

kinematic viscosity to be

ν ≡ µ

ρ
(2.31)

we get [
1− ν

n
(D2 − k2)

]
(D2 − k2)w = 0 (2.32)

The general solution to this equation is a linear combination of e±kz and e±qz where

q2 = k2 + n/ν. In order for the equation to remain physical, we need w → 0 as

z → −∞ in the lower fluid, and z → +∞, in the upper fluid. The appropriate

solutions are:

w1 = A1e
+kz +B1e

q1z (z ≤ 0) (2.33)

and

w2 = A2e
−kz +B2e

−q2z (z ≥ 0), (2.34)

where A1, B1, A2 and B2 are constants of integration and

q1 ≡
√
k2 + n/ν1 and q2 ≡

√
k2 + n/ν2. (2.35)

Note that q1 and q2 are defined such that their real part is positive.

We can now perform a similar analysis as that done for the inviscid case. Again

we require u, v, w, Dw and µ(D2 + k2)w are continuous across the boundary at

z = 0. The general solution for this set of equations is given by solving Eq. 113 of

Chandrasekhar:

−
[
gk

n2
(α1 − α2) + 1

]
(α2q1 + α1q2 − k)

−4kα1α2 +
4k2

n
(α1ν1 − α2ν2) {(α2q1 − α1q2) + k(α1 − α2)}
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+
4k3

n2
(α1ν1 − α2ν2)2(q1 − k)(q2 − k) = 0. (2.36)

Eq. 2.36 is the required characteristic equation for n.

Two Viscous Fluids with Densities ρ1 and ρ2 Separated by a Horizontal

Boundary at z = 0 Where ν1 = ν2

If the viscosities of the two layers are equal, then q1 = q2 =
√
k2 + n/ν = q and Eq.

2.36 becomes

−
{
gk

n2
(α1 − α2) + 1

}
(q(α2 + α1)− k)− 4kα1α2

+
4k2ν

n
(α1 − α2) {q(α2 − α1)− k(α2 − α1)}

+
4k3ν2

n2
(α1 − α2)2(q − k)2 = 0. (2.37)

Simplifying, and noting that (α1 + α2) = 1, we get:

−
{
gk

n2
(α1 − α2) + 1

}
(q − k)− 4kα1α2

−4k2ν

n
(α1 − α2)2(q − k)

+
4k3ν2

n2
(α1 − α2)2(q − k)2 = 0. (2.38)

If we now define

Q =
g

k3ν2
and y =

q

k
=
(√

1 + n/k2ν
)
, (2.39)

then

k =

(
g

Qν2

) 1
3

(2.40)

and

n = k2ν(y2 − 1) =

(
g2

ν

)1/3
y2 − 1

Q2/3
. (2.41)
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Then Eq. 2.38 reduces to

y4 + 4α1α2y
3 + 2(1− 6α1α2)y2 − 4(1− 3α1α2)y

+(1− 4α1α2) +Q(α1 − α2) = 0. (2.42)

Only if α2 > α1 can n be real and positive so that the disturbance will grow expo-

nentially with time. This arrangement is therefore formally unstable, for

disturbances of all wavenumbers, k.

The relationship between n and k, determined through Eq. 2.42 is complicated,

but simplifies in two limits. In the first, as y →∞, Q→ y4/(α2 − α1). By Eqs. 2.40

and 2.41, we get that:

k →
( g
ν2

)1/3

y−4/3(α2 − α1)1/3, (2.43)

and

n→
(
g2

ν

)1/3

y−2/3(α2 − α1)2/3 (2.44)

and finally we get the dispersion relation for n and k as y →∞

n2 → g(α2 − α1)k as (k → 0) (2.45)

Note, that as k → 0 and therefore λ→∞ it is clear that the system acts as if there

were no viscosity. This makes sense as we would expect that viscosity would play

very little role for disturbances of very long wavelengths, over which velocity shear is

minimized.

Next, we consider the case where k →∞ (in the short wavelength limit as λ→ 0).

This case requires y = q/k → 1. In this case it can be shown that Q→ 4(y−1)/(α2−

α1). In this case the dispersion relation becomes

n→ g(α2 − α1)

2kν
as (k →∞) (2.46)
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Note that for both of these solutions n approaches 0 as (k →∞) and (k → 0). Since

n is always real and positive, there must be an intermediate-wavelength mode

of maximum instability for the system.

Using values appropriate for a KBO similar to Charon, the Fig. 2.3 shows the

relationship between the wavelength of the disturbance λ, and the exponential growth

factor n, for the disturbance (where ν1 assumed to be equal to ν2).

Figure 2.3: Growth rate n vs. wavelength of disturbance λ. Note that the wave-
length for the maximum disturbance is on the order of 1012 km. The radius of Charon
is about 6× 102 km. Clearly, RT instabilities on KBOs operate in the regime where
k � kmax, the regime where Eq. 2.46 applies.
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Two Viscous Fluids with Densities ρ1 and ρ2 Separated by a Horizontal

Boundary at z = 0 Where ν1 6= ν2

The most general case I consider is where both the densities and viscosities of the two

layers are unequal. This case is not explicitly considered in Chandrasekhar’s work,

so I’d like to approach the problem in a slightly different way. In the limit as k →∞

(small wavelength regime) n/k2ν1 must be small, allowing one to apply the binomial

approximation to get

q1 =
√
k2 + k/ν1 = k

(
1 +

n

k2ν1

)1/2

≈ k

(
1 +

1

2

n

k2ν1

)
= k +

1

2

n

kν1

.

Plugging this result into Eq. 2.36 we find

−
{
gk

n2
[(α1 − α2)] + 1

}{
α2

(
k +

n

2kν1

)
+ α1

(
k +

n

2kν2

)
− k
}

−4kα1α2 +
4k2

n
(α1ν1 − α2ν2)

{
α2

(
k +

n

2kν1

)
− α1

(
k +

n

2kν2

)
+ k(α1 − α2)

}
+

4k3

n2
(α1ν1 − α2ν2)2

(
k +

n

2kν1

− k
)(

k +
n

2kν2

− k
)

= 0. (2.47)

Simplifying, and noting that (gk/n2)(α1 − α2) + 1 ≈ (gk/n2)(α1 − α2) for large k

yields

−gk
n2

(α1 − α2)
n

2k

(
α2

ν1

+
α1

ν2

)
− 4kα1α2 +

4k2

n
(α1ν1 − α2ν2)

n

2k

(
α2

ν1

− α1

ν2

)
+

4k3

n2
(α1ν1 − α2ν2)2 n

2

4k2

(
1

ν1ν2

)
= 0.

(2.48)

Further simplification yields

n =
g

2k
(α2−α1)

(
α2

ν1

+
α1

ν2

)[
4α1α2 − 2(α1ν1 − α2ν2)

(
α2

ν1

− α1

ν2

)
− (α1ν1 − α2ν2)2

ν1ν2

]−1

,

(2.49)
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and the quantity on the RHS in brackets becomes:

=

[
(α1ν1 + α2ν2)2

ν1ν2

]−1

.

Therefore

n =
g

2k
(α2 − α1)

(
α2

ν1

+
α1

ν2

)
ν1ν2

(α1ν1 + α2ν2)2 , (2.50)

and we finally get the new dispersion relation for the regime where (k →∞):

n→ g(α2 − α1)

2k

1

α1ν1 + α2ν2

as k →∞ . (2.51)

This final equation describes the situation where ν1 6= ν2. If we compare this

with Eq. 2.46 for the case where ν1 = ν2, we find that they are nearly identical except

that ν is replaced by α1ν1 + α2ν2 in Eq. 2.51.

2.1.8 Effective Viscosity of a Mixture of Ice and Rock

The quantity α1ν1 + α2ν2 in Eq. (2.51) can be considered an effective viscosity

replacing the kinematic viscosity, ν, in Eq. (2.46).

α1ν1 + α2ν2 =

(
ρ1

ρ1 + ρ2

)
η1

ρ1

+

(
ρ2

ρ1 + ρ2

)
η2

ρ2

=
η1 + η2

ρ1 + ρ2

(2.52)

Based on the work of Friedson & Stevenson (1983), the viscosity of a mixture of ice

and rock is equal to the viscosity of the ice enhanced by a factor of f(φ) where

f(φ) ≡ 1 + 2.5φ+ 10.06φ2 + 0.00273 exp(16.6φ) (2.53)

and φ is defined to be the volume fraction of rock particles in the ice. To determine

φ we need to first find the mass fraction of the rock particles in the ice, frock, where

frock =

(
ρrock

ρ̄

)
ρ̄− ρice

ρrock − ρice

. (2.54)

and then

φ = frock
ρ̄

ρrock

, (2.55)
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and finally we get

ηice/rock mixture = ηice × f(φ). (2.56)

Combining Eqs. 2.52 and 2.56 results in

α1ν1 + α2ν2 = η1

(
1 + f(φ)

ρ1 + ρ2

)
= ηice

(
1 + f(φ)

ρice + ρ̄

)
(2.57)

This result can be folded into Eq. 2.51 to get

n→ g (α2 − α1)

2 k ηice

(
ρice + ρ̄

1 + f(φ)

)
as k →∞, (2.58)

Noting that

α2 − α1 =
ρ2 − ρ1

ρ1 + ρ2

=
ρ̄− ρice

ρice + ρ̄
,

Eq. 2.57 simplifies to

n→ g (ρ̄− ρice)

2 k ηice (1 + f(φ))
as k →∞ , (2.59)

which replaces Eq. 2.51. Since k ≡ 2π/λ, then Eq. 2.59 can be rewritten in terms of

λ to get

n→ λ g (ρ̄− ρice)

4π ηice (1 + f(φ))
, (2.60)

when λ is small.

2.2 Determination of Critical Viscosities for Overturn

In the previous discussion I determined a relationship between the density and

viscosity of two superposed fluids, and the growth rate of a disturbance as it prop-

agates along the boundary between these two layers. So I am now in a position to

evaluate the original question. We have two layers of material, the outer, a crust

consisting of an undifferentiated mixture of rock and ice, and the inner, a pure water

ice mantle. Since the outer layer has a higher density than the inner one, it is grav-

itationally unstable and may eventually overturn. I would like to determine under

what conditions this will occur.
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Eq. 2.60 clearly shows that the growth rate of a disturbance is inversely propor-

tional to the ice viscosity ηice and the related viscosity of the overlying crust. If the

viscosities are too high, the layers will not overturn on geologically relevant timescales.

To be conservative, I consider a small disturbance such as a pocket of frozen brine or

a diapir, with an initial amplitude of 1− 10 km. For the largest disturbance in that

range of 10 km, if the disturbance is able to grow by a factor of 10 over some relevant

time period τ , I assume that it can overturn a crust with a thickness ≤ 100 km.

The viscosity of the ice/rock mixture is in turn related to its temperature, with

higher temperatures resulting in lower viscosities. Therefore, the time period τ over

which the boundary layer between the ice mantle and crust can overturn must be

comparable to the time it remains at its maximum temperature. With these consid-

erations in mind, I arbitrarily assume that the layers will mix, overturning the crust,

if a disturbance is able to grow by a factor of 10 over this time period τ . Remembering

that the growth rate, n, is an exponential factor, this condition is equivalent to

n > ncrit =
ln 10

τ
. (2.61)

For n > ncrit, it is assumed that the layers will overturn. For comparison, if we

require that the instability must grow by a factor of 100 to overturn the crust, then

ncrit increases by a factor of 2. From Eq. 2.60 we know that for small λ

n ≈ λ g (ρ̄− ρice)

4π ηice (1 + f(φ))
;

therefore, the growth rate n corresponding to overturn is

n =
λ g (ρ̄− ρice)

4π ηice (1 + f(φ))
> ncrit =

ln 10

τ
, (2.62)

and the ice viscosity corresponding with ncrit is

λ g (ρ̄− ρice)

4π ncrit (1 + f(φ))
> ηice ≡ ηcrit. (2.63)
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So the condition for overturn of the crust is that ηice < ηcrit. The most generous

conditions for overturn are those with small n/large τ and large λ. The largest λ

physically possible is the radius of the planet, Rp, and the largest τ depends on

how long we can keep the boundary layer at a temperature high enough to keep the

viscosity below ηcrit.

2.2.1 Application of Equal Viscosity Case to a Charon-like Object

To give a concrete example of how one can apply the previous discussion on

Rayleigh-Taylor instabilities, consider the case of Pluto’s moon, Charon. Assuming

a radius Rp = 600 km, and a mean density ρ̄Charon = 1.65 g cm−3, it can serve as

a typical example of the type of icy body found in the Kuiper belt. Applying the

models of Desch et al. (2009) (which will be discussed more fully in Chapter 4) to

the case of Charon, we find that a given shell of material near the ice/crust boundary

will generally stay within 10 K of its maximum temperature for 1.5 Gyr. This defines

the time period τ over which overturn must occur. Only within this time period are

the temperature high enough and the viscosities low enough too support conditions

for overturn. Thus ncrit = ln(10)/1.5 Gyr = 4.86× 10−17 s−1.

For the case of Charon, the ice mantle has a density of ρ1 = ρice = 0.935 g cm−3,

and the superposed undifferentiated crust has a density on the order of the mean

density of Charon, ρ̄Charon = 1.65 g cm−3. The surface gravity for a body the size of

Charon is of g = 0.277 m s−2. If we assume a mean density for the rocky component

of ρrock = 3.25 g cm−3, then Eq. 2.54 implies that frock = 0.608, Eq. 2.55 implies

that φ = 0.309, and Eq. 2.53 implies that f(φ) = 3.19. Finally, as discussed in 2.2,

the most generous condition for overturn is if λ = Rp = 600 km. Thus the critical
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viscosity will be

ηcrit =
λ g (ρ̄− ρice)

4π ncrit (1 + f(φ))
= 4.63× 1022 Pa s. (2.64)

If ηice > ηcrit then the crust will not be able to overturn over the time period τ .

Alternatively, if we assume that the density of the rocky component ρrock =

2.35 g cm−3, then frock = 0.719, φ = 0.505, and f(φ) = 16.82. This results in a

new critical viscosity of 1.089× 1022 Pa s.
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Chapter 3

NON-NEWTONIAN ICE RHEOLOGY

3.1 Overview

Icy bodies are ubiqitous in the outer solar system, including many of the moons

of Jupiter and Saturn, Pluto and Charon, and most of the Kuiper belt objects. They

are commonly composed of greater than 50 percent water and water ice by mass

(Durham and Stern 2001). When modeling the thermal evolution and differentiation

of these objects, it is therefore critical to understand the rheology of ice (Ellsworth and

Schubert 1983; Kirk and Stevenson 1987; McKinnon 1998; Mueller and McKinnon

1988; Reynolds and Cassen 1979; Schubert et al. 1981, 1986). In particular, the effect

of Rayleigh-Taylor instabilities on the differentiation of icy bodies ultimately depends

on how the ice deforms under stress, and therefore on its rheology.

Viscosity (η) is a measure of the ability of a material to flow under stress, and

is modeled as the ratio of the strain (ε̇) produced for a given amount of stress (σ):

η ∝ σ/ε̇. If stress is applied to a solid body, it will initially respond via an elastic

deformation, and then via a viscous deformation or strain. The viscous strain has

a viscoelastic component, which can be recovered when the strain is released, and

an inelastic component which results in permanent deformations. In the outer shells

of icy bodies, large strains are produced under conditions of relatively low stress,

acting on geological timescales. Under these conditions, elastic strains are fairly

insignificant (Durham and Stern 2001). Additionally, the strains considered in this

paper are ductile in nature, which implies that they are volume conservative and

allow materials to retain their strength (as opposed to brittle strains).
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3.2 The Relationship between Stress and Strain

The relationship between stress and strain in ductile materials is usually modeled

by the Levy-Mises equations (Hill 1950) wherein each component of the strain rate

tensor, ε̇ij, is proportional to a corresponding component of the the stress tensor, σ′ij

ε̇ij = λσ′ij. (3.1)

Here σ′ij is a measure of the deviatoric stress, the non-hydrostatic portion of the

stress which causes changes to the shape of a material but not its volume. A scalar

representation of this flow law is given by

ε̇ = A′f(σ), (3.2)

where σ is an appropriate scalar representation of the state of deviatoric stress and

is a function of the geometry of the system. Here, A′ represents all of the relevant

environmental conditions in the relationship between ε̇ and σ. The steady-state flow

of planetary ices can be modeled by a power-law form of the flow law given by

ε̇ = A
σn

dp
exp

(
−Q

∗ + PV ∗

RT

)
, (3.3)

where A is a material parameter, σ is the differential stress, n is the stress exponent,

d is the grain size, p is the grain size exponent, Q∗ is the activation energy for the

creep, P is the hydrostatic pressure, V ∗ is the activation volume for the creep, R is

the gas constant, and T is the absolute temperature (Goldsby and Kohlstedt 2001).

Note that this functional relationship is indicative of a thermally activated process.

3.2.1 Laboratory Measurements of Rheological Properties of Ice

In 2001 Golsdby and Kohlstedt reported the rheology results of their laboratory

experiments on the deformation of ice I. From these experiments they determined a
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composite flow law for ice I which is far more comprehensive than previous works in

the field. In particular, using extremely small grain sizes allowed them to measure

the effects of the grain boundary slip mechanism under laboratory conditions, which

had not been possible before.

The experiments involve placing a sample of ice into a cylinder confined under

high hydrostatic pressure. The purpose of the confinement is to minimize the effects

of brittle fracturing, which are not typical of the more ductile deformation found

in planetary environments. A load is applied to the sample via a moving piston at

the end of the cylinder. The strain rate is the measured rate of shortening of the

cylinder. When measured this way, the stress is referred to as a differential stress.

It is experimentally determined as the difference between the maximum stress, σ1,

applied at the ends of the cylinder, and the gas pressure applied to the outside of

the sample (Durham et al. 2010). Under this geometry, the relationship of strain to

stress is represented by an axisymmetric flow law.

There are two common approaches to experimentally determining the flow law.

The first is the “constant displacement rate” experiment in which a strain rate is

imposed by the deforming piston, and the dependent variable is the stress required

to maintain that rate. The stress is defined as the load divided by the cross-sectional

area of the sample. The results of this measurement are typically portrayed in either

an Arrhenius plot of log σ vs. inverse temperature, or a plot of log ε̇ vs. log σ.

The second approach is the constant stress or“creep” experiment in which the load

is prescribed, and the displacement rate required to maintain the load is measured

(Durham et al. 2010).

What made the experiments of Goldsby and Kohldstedt unique was their ability

to synthesize samples composed of ice crystals with exceedingly small crystal grain

sizes (down to ∼ 3µm). Since the strain rate in the grain size sensitive flow regime
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increases with decreasing grain size, Goldsby and Kohlstedt focused their investigation

of grain size sensitive creep mechanisms on fine-grained samples. Thus they were able

to observe and quantify the effects of the grain boundary sliding mechanism on ice

at the low stresses typical of planetary environments.

3.2.2 Mechanisms of Deformation

On a molecular level, deformation is accomplished through the coordinated motion

of crystal defects. Defects can include point defects, such as vacancies and intersti-

tials; line defects such as dislocations; and planar defects along grain or subgrain

boundaries. Each of these defects has a unique dependence on the external environ-

mental variables (σ, P and T ), and intrinsic variables such as grain size and activation

energy for a given process. For a given combination of temperature and stress, all

potential mechanisms for deformation are available, and multiple mechanisms can

occur simultaneously. Each mode can be represented by its own flow law in the form

of Eq. 3.3. However, it is likely that a single mode will dominate the rheology of the

ice, and contribute the majority of the strain rate.

Two deformation mechanisms are considered independent if they operate simul-

taneously such that

ε̇tot = ε̇a + ε̇b. (3.4)

At a given temperature, the mechanism with the higher stress exponent, n, will

dominate at higher levels of stress. In contrast, two mechanisms are considered de-

pendent if mechanisms a and b cannot operate independently. Under these conditions,

(ε̇tot)
−1 = (ε̇a)−1 + (ε̇b)−1, and nb > na requires that ε̇b < ε̇a for higher stresses.

According to the experimental work of Goldsby and Kohlstedt (2001), “the con-

stitutive equation for the flow of ice is composed of at least 4 individual flow laws of

the form of Eq. 3.3, one each for dislocation creep, GBS-accommodated basal slip
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(i.e., “superplastic flow”), basal slip-accommodated GBS, and diffusional flow.” In

total, the composite strain rate accommodated by all four mechanisms is given by

the semi-empirical constitutive equation

ε̇ = ε̇diff +

(
1

ε̇basal

+
1

ε̇gbs

)−1

+ ε̇disl . (3.5)

It is clear in this composite flow law that the grain boundary sliding (GBS) and

basal slip (BS) creep regimes must operate dependently, whereas the mechanisms of

diffusion and dislocation creep operate independently.

Dislocation creep is a grain size insensitive (GSI) mechanism that occurs through

the motion of lattice dislocations. “When a stress of sufficient magnitude is applied

to a polycrystalline sample, grains within the sample that are well-oriented for slip

deform via dislocation glide.” (Durham et al. 2010) These lattice glide dislocations

may encounter an obstacle that they need to ‘climb’ over before the glide can resume.

In practical terms, this means that the rate of dislocation creep may be either glide-

or climb-limited depending on which process is the slower of the two.

The other three creep mechanisms referenced in Eq. 3.5 are collectively considered

grain size sensitive (GSS) as their flow laws have a dependence on grain size, d. In

particular, at the lower stresses typical of icy planetary bodies, grain boundary sliding

(GBS) mechanisms can dominate the rate of creep in ice. Here, sliding can occur

along grain boundaries. This sliding will continue until pressure builds up at the

triple junctions. This stress is initially accommodated by elastic deformation. But

to maintain a steady state flow, material must be moved away from these junctions

via a diffusional or dislocation flow of the material. Therefore, GBS creep cannot

occur in isolation, but must act in coordination with other creep mechanisms. Grain

boundary slip and basal slip creep must occur together in order to allow deformation

to occur. They are dependent mechanisms and their rate is limited by the slower of
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the two processes.

Diffusional flow is accomplished by the motion of atoms through vacancies interior

to the crystal grain in response to stress applied. In Nabarro-Herring creep, stress

drives bulk diffusion within grains in a manner to accommodate the stress. Thus if

a vertical compression stress is applied to the grain, atoms will diffuse horizontally

and flatten the crystal. Coble creep is a similar diffusional process whereby diffusion

occurs along the grain boundaries as opposed to the interior of the grain. Nabarro-

Herring creep is also known volume diffusion creep, and Coble creep as grain boundary

diffusion creep. For both of these mechanisms there is a linear dependence of stress

on strain.

Goldsby and Kohlstedt (2001) experimentally determined the flow laws for all

of the mechanisms described in Eq. 3.5, except for diffusional flow, which was out

of the range of their experimental techniques; however, they were able to use their

experimental data to constrain the parameters for this mechanism. The creep rate

due to diffusional flow (Nabarro, 1948; Herring, 1950; Coble, 1963) is given by

ε̇ =
42σVm
3RTd2

(
Dv +

πδ

d
Db

)
, (3.6)

where Dv = D0,v exp(−Q/RT ) and Db = D0,b exp(−Q/RT ) are the coefficients for

volume and grain boundary diffusion, respectively. The parameters that Goldsby and

Kohlstedt (2001) used are reproduced in Table 3.1. Note that the very small value for

δ implies that the second term relating to Db can be ignored for all practical purposes.

39



Table 3.1: Diffusion Creep Parameters

Parameter Value

Molar volume, Vm 1.97× 10−5 m3 mol−1

Preexponential, volume diffusion, D0,v 9.10× 10−4 m2 s−1

Preexponential, grain boundary diffusion, D0,b ≤ 8.4× 10−4 m2 s−1

Activation energy, volume diffusion, Qv 59.4 kJ mol−1

Grain boundary width, δ 9.04× 10−10 m

Activation energy, boundary diffusion, Qb 49 kJ mol−1

Constitutive Equation

The flow laws for each of the remaining deformation mechanisms are of the following

form

ε̇ = A
σn

dp
exp

(
−Q+ PV

RT

)
.

The parameters that Goldsby and Kohlstedt (2001) experimentally determined for

each mechanism are reproduced in Table 3.2.

Table 3.2: Constitutive Equation Parameters

Creep regime A, units n p Q

(kJ/mol)

Dislocation creepa 4.0× 105 MPa−4.0 s−1 4.0 0 60

GBS - accomm. basal slipb, c 3.9× 10−3 MPa−1.8 m1.4 s−1 1.8 1.4 49

BS - accomm. GBSd 5.5× 107 MPa−2.4 s−1 2.4 0 60

Volume Diffusion 3.02× 10−14 MPa−1 m2 s−1 1 2 59.4

a T < 258 K

b T < 255 K

c GBS = Grain Boundary Sliding

d BS = Basal Slip
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Note that these parameters were derived from experiments performed with limited

grain sizes, d (.003 mm ≤ d ≤ 0.175 mm), differential pressures, σ (0.1 MPa ≤ σ <

7 MPa), and temperatures, T (170 K ≤ T ≤ 273 K). The empirical fits represented

by this flow law must be extrapolated to the conditions of low temperature and larger

grain sizes appropriate for our models.

3.2.3 Application of the Flow Law

Having developed a flow law that can be applied to the stresses and strains appro-

priate to our planetary models, we now need to determine what conditions will allow

the boundary of the ice mantle to achieve the critical viscosity, ηcrit, necessary for

overturn determined in Chapter 2. As described above, the rheology of ice is highly

dependent on the temperature, stress and grain sizes found within the ice shell. In

general, the stresses found for planetary ices can vary over many orders of magnitude,

and no direct measurements of grain size are possible for icy bodies in the outer solar

system. To model the viscosity the ice mantle for a typical icy body, I choose a stress

of 1 MPa, with grains sizes on the order of 1 mm. Later in this chapter I consider

the case where the stress applied is not known a priori.

Given an average grain size and stress applied, the ice viscosity is critically de-

pendent on temperature and can vary over more than 10 orders of magnitude. In

Fig. 3.1 below, I applied the composite flow law of Goldsby and Kohlstedt (2001) to

find the relationship between stress and strain over a range of temperatures from 50

to 250 K. The plot assumes a grain size d = 1 mm. As can be seen in the figure, the

lowest temperatures correspond with the largest amount of stress required to produce

a given amount of strain. Since η ≈ σ/ε̇ this means that the lowest temperatures

correspond with the highest viscosities. A stress of 1 MPa is plotted with a horizontal

red line, and the strain rate ε̇ = 2.11 × 10−17 s−1 (corresponding to movement over
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Figure 3.1: The relationship between stress and strain as a function of temperature.
This plot shows the relationship between stress and strain for temperatures ranging
from T = 250 K to T = 50 K, in 20 degree increments. Two of the temperatures
have been highlighted for reference. Note that for a given stress, the strain rate can
vary by over 10 orders of magnitude depending on temperature. The horizontal red
line demarcates a stress level of 1 MPa and the vertical line shows the strain rate
corresponding to movement over 1.5 Gyr.

1.5 Gyr) is plotted with a vertical red line. The temperature contour at which these

lines intersect is the temperature at which a stress of 1 MPa can produce a strain rate

corresponding to 1.5 Gyr. This temperature is unique and occurs at ∼ 135 K. As

discussed in section 2.2, this is the strain rate used to determine the critical growth

rate ncrit required for overturn, and thereby the critical viscosity ηcrit of the ice man-

tle. For this set of parameters, when the temperature is at least 135 K, the viscosity

of the ice mantle will be ≤ ηcrit = 4.63 × 1022 Pa s, yielding conditions favorable for

overturn of the crust. I define this temperature at the ice mantle/undifferentiated
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crust boundary as the differentiation temperature, or more simply just Tdiff .

Note that the exact functional relationship between stress, strain and viscosity

depends on the geometry of the system, and how the stress is applied. For the

purposes of this research, I have adopted the definition of effective viscosity given in

Barr and Pappalardo (2005)

ηeff =
σ

2ε̇II
. (3.7)

Here σ is the effective shear stress, and ε̇II is the second invariant of the strain rate

tensor.

One final note, the viscosity calculations above specifically apply to pure water ice.

This is appropriate when considering the conditions of the ice mantle where volatiles

such as ammonia and ADH have been removed from solution as the ice layer differ-

entiates, forming the pure water ice layer. However, as described in subsection 2.1.8,

the viscosity of the ice/rock matrix found in the undifferentiated crust can be directly

related to the viscosity of the pure water ice by the factor of f(φ), which is in turn

dependent on the mass fraction of rock particle found in the ice matrix (Friedson &

Stevenson 1983).

3.2.4 Sensitivity of Viscosity on Grain Size and Stress

Next, I consider the effect of grain size, d, on the viscosity of the system. In

Fig. 3.2, I explore the relationship of viscosity to temperature as a function of grain

size. For a fixed stress of σ = 1 MPa, the temperature required to yield a viscosity

of 4.63× 1022 Pa s is about 140 K for grain sizes of 1 mm and 10 cm. For a grain size

of d = 10−2 mm, the temperature needs to drop to about 128 K to maintain the same

viscosity.

Finally, I consider the effect of stress on the viscosity/temperature relationship for

a given grain size. In Fig. 3.3, the grain size is fixed at d = 1 mm while the applied
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Figure 3.2: The relationship between viscosity and temperature as a function of
grain size. In this plot, three different grain sizes have been chosen, ranging from
10−2 mm to 102 mm, while maintaining a fixed value for stress of 1 MPa. Although
the grain sizes have been allowed to vary over 4 orders of magnitude, their effect on
viscosity is limited. The horizontal line corresponds to our critical viscosity, ηcrit =
4.63× 1022 Pa s.

stress is allowed to vary from 0.1 MPa to 10 MPa. In this plot it can be seen that the

minimum temperature required to yield a viscosity of ηcrit = 4.63 × 1022 Pa s varies

from about 123 K at a stress of 10 MPa to about 143 K at a stress of 0.1 MPa.

44



Figure 3.3: The relationship between viscosity and temperature as a function of
stress (assuming a grain size, d = 1 mm).
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3.2.5 Determination of Differentiation Temperature When Stress is Not Known

It is not possible to know, a priori, what stress (σ) the ice is experiencing at

the boundary layer between the ice mantle and crust, because we do not know what

process is creating the initial disturbance. It could be a general contraction of the

KBO as the body cools and the liquid freezes, or it could be a diapir that forms

along the boundary, or some other process not previously considered. Therefore it

became clear during the research that it is unwise to assume what value of σ to

use in the ice rheology equations. Instead, I decided to focus on a strain rate (ε̇)

favorable for overturn. As will be demonstrated in the model simulations discussed

in Chapter 5, the boundary layer between the ice mantle and the undifferentiated

crust can generally remain within 10 K of the minimum temperature required for

overturn (Tdiff) for a period of τ ∼ 1.5 Gyr. Given the uncertainties in the model and

in particular in the effect of grain size, we allow for the possibility that the process of

overturn can begin as long as the layer remains within 10 K of Tdiff . If we are more

than 10 K below Tdiff , the viscosity of the ice is simply too high to allow any further

differentiation to occur.

Therefore for overturn of the crust to occur, we require that it must complete

within τ = 1.5 Gyr. This corresponds with a minimum strain rate required for

overturn of ε̇ = 1/τ = 2.11×10−17 s−1. This strain rate is the most generous condition

for overturn, as it requires the lowest possible differentiation temperature. Over this

same time period τ , the critical viscosity required for overturn is ηcrit = 4.63×1022 Pa s

for ρrock = 3.25 g cm−3, and ηcrit = 1.089 × 1022 Pa s for ρrock = 2.35 g cm−3 based on

the linear stability analysis of Chapter 2. Combining these two conditions yields the

most generous conditions required for overturn in the model.

Since ηcrit ≡ σ/2 ε̇, combining ηcrit = 4.63 × 1022 Pa s and ε̇ = 2.11 × 10−17 s−1
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requires that σ = 2.97 MPa (for ρrock = 3.25 g cm−3). Similarly, in the case of more

hydrated rocky material where ρrock = 2.35 g cm−3, ηcrit = 1.089 × 1022 Pa s and σ

must be 0.46 MPa. Again, please note that this is the threshold or critical σ required

for overturn. Overturn can occur more quickly for larger values of σ, but this will

require higher temperatures as well.

Finally, once σ and ε̇ are known, I applied the composite flow law of Goldsby and

Kohlstedt (2001) using a bracketing technique to determine the unique temperature

at which this combination of stress and strain can occur. I found that the time

period τ = 1.5 Gyr over which the boundary layer between the ice mantle and the

undifferentiated crust can sustain temperatures high enough to allow for overturn is

fairly consistent across all the model runs. Therefore I chose ε̇ = 2.11× 10−17 s−1 as

my threshold strain rate for all of the models. I also assume a grain size of 1 mm for

all of my calculations. Using the bracketing technique mentioned above, I found that

the Tdiff = 143 K when ηcrit = 1.089× 1022 Pa s.

Fig. 3.4, graphically illustrates the methodology I used to determine Tdiff for the

models. The black contours show isotherms of temperature similar to those found

in Fig. 3.1. Along these contours the temperature remains constant, but the paired

values of σ and ε̇ vary according to the composite flow law of Goldsby and Kohlstedt

(2001). A strain rate of 2.11×10−17 s−1 is highlighted in blue corresponding with our

time period τ . As described above, combining this strain rate with ηcrit = 1.089 ×

1022 Pa s requires that σ = 0.46 MPa (which is plotted as a horizontal red line). The

thermal contour upon which these lines intersect is Tdiff for this set of parameters. It

can be seen to occur at T = 143 K, which is highlighted in red as well.
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Figure 3.4: The relationship between stress and strain based on the models of
Goldsby and Kohlstedt (2001) assuming a fixed grain size d = 1 mm. The contours
of constant temperature are marked in black. As explained in more detail in the
text, combining ηcrit ≡ σ/2 ε̇ = 1.089 × 1022 Pa s, with the threshold strain rate
ε̇ = 2.11 × 10−17 s−1 determines a unique stress σ = 0.46 MPa. The temperature
contour at which these values intersect is the differentiation temperature, Tdiff = 143
K.
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Fig. 3.5, illustrates the relationship between viscosity and temperature for a fixed

strain rate ε̇ = 2.11×10−17. Again we see the correlation between the critical viscosity

ηcrit = 1.089× 1022 Pa s, and the temperature Tdiff = 143 K required to produce this

viscosity.

Figure 3.5: The relationship between viscosity and temperature where ε̇ = 2.11 ×
10−17 s−1 and d = 1 mm, based on the composite flow law of Goldsby and Kohlstedt
(2001). ηcrit = 1.089× 1022 Pa s crosses the curve at Tdiff = 143 K.
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Chapter 4

THERMAL EVOLUTION MODEL OF DESCH ET AL. 2009

4.1 Overview

Here we review the thermal evolution code described by Desch et al. (2009) in

“Thermal evolution of Kuiper belt objects, with implications for cryovolcanism.” This

code was specifically designed to model the thermal evolution of outer solar system

icy bodies whose very low surface temperatures (� 100 K) and high water content

(near 50% by weight) make them unique in the solar system. The code solves the

1-D (spherical) heat conduction equation while addressing a number of concerns that

have not been collectively modeled before. Chief among these is time dependence, as

well as the inclusion of the effects of differentiation and ammonia on their thermal

evolution. Taken together these considerations indicate that KBOs of sufficient radius

can maintain internal liquid water reservoirs to the present day, which is not predicted

by static models.

4.2 Description of Model

The code assumes a spherical geometry, evenly dividing the object into N radial

zones labelled by index i whose outer radii obey ri = Rp(i/N), where Rp is the KBO

radius. At time t, the energy for each zone is calculated to be Ei(t). The model

assumes cold accretion; therefore Ei(0) is initially set to an energy corresponding to

the surface temperature Tsurf for all i. After each increment of time ∆t, the energy of

each zone is updated by considering the heat produced within the zone and the heat
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flux into and out of the zone from neighboring regions

Ei(t+ ∆t)− Ei(t)
∆t

= Qi(t) + 4πr2
i−1Fi−1 − 4π2

i Fi, (4.1)

where Fi−1 is the heat flux into zone i from zone i− 1, Fi is the heat flux out of zone

i into zone i + 1, and Qi(t) is the radiogenic heating produced within zone i during

the time interval ∆t.

An “equation of state” is used to convert the energy Ei(t) into an appropriate

temperature Ti for each zone. By symmetry F = 0 at r = 0. The temperature at

the surface is fixed at TN = Tsurf under the assumption that absorption of sunlight

and emission of radiation far overwhelms the thermal flux. The system is allowed

to evolve so long as the Courant stability condition is met, ∆t < min [(∆r)2/(2κ)],

where κ = k/(ρcp) is the thermal diffusivity. In practice, maintaining a time step of

∆t = 1000 is usually sufficient to meet the Courant stability condition in a reasonable

(CPU) time. The thermal evolution is then completely determined once the rate of

radiogenic heating and the heat fluxes are determined, and once an equation of state

for the matter, T (E), can be established. For each zone these quantities depend on the

amount of rock , ice and liquid present, which are in turn affected by differentiation.

4.3 Radiogenic Heating

The model considers the radiogenic heating due to four radionuclides: 40K, 232Th,

238U, and 235U. The heat energy released per decay of isotope x is modeled to be

(∆E)X(ln 2/t1/2)/mX , where t1/2 is the half-life and mX is the mass of an atom of

isotope x. The heat energy is considered to be due to both α and β particles as

well as γ rays, but the neutrino flux is explicitly excluded as neutrinos generally pass

through matter without depositing any energy. The total mass of each isotope will

decrease exponentially with time in accordance with their half lives. Initially, the rate
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of radiogenic heating is found to be 44.6 pW/kg of rock, dominated by the decay of

40K; whereas the rate at present day is calculated to be 5.6 pW/kg.

4.4 Fluxes

The heat flux is modeled to be carried by conduction, so that F = −k ∂T/∂r, and

is represented by the finite difference formula

Fi = −ki + ki+1

2

Ti+1 − Ti
(ri+1 − ri−1)/2

. (4.2)

In reality, heat flux can also be carried via convection under the right conditions,

particularly within the layer of pure water ice typically predicted to be created by

the model in KBOs between the rocky core and r = Rdiff . Convection is modeled

to occur if the Rayleigh number between the top and bottom of the layer exceed a

critical value Rac ≈ 1100 (Spohn and Schubert, 2003). The Rayleigh number is given

by

Ra =
αρiceg(∆T )(∆r)3

κ η
, (4.3)

where ∆r = Rdiff − Rbase, and ∆T = T (Rbase) − T (Rdiff). The other quantities of

thermal expansivity α, gravitational acceleration g, thermal diffusivity κ, and viscos-

ity η are calculated at the midpoint of the layer. The thermal diffusivity is defined

to be κ = k/(ρicecP) where k is the thermal conductivity and cP is the heat capacity.

According to a number of models of icy satellites, the potentially convecting layer

of ice is capped at the top and bottom by a by a stagnant lid of ice that trans-

ports heat through conductive flux alone (Solomatov, 1995; McKinnon 1998, 1999;

Multhaup and Spohn, 2007). However, for the purposes of the model, we are only

interested in the total drop in temperature across the layer, and not details about

the internal thermal structure of the layer. In the case where stagnant lid convection

is initiated, we assume there is a nearly isothermal layer at (T = Tc), capped at
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the top and bottom by thermally conducting ice layers (e.g. Ellsworth and Shubert,

1983; Multhaup and Spohn, 2007). The thickness of the boundary layers is given by

δ = (∆r)/Nu, where Nu is the Nusselt number of the convecting layer. The temper-

ature difference across the potentially convecting layer is given by the temperature

drop between the stagnant lids ∆T = Fδ/keff = F (∆r)/(k×Nu), where k is the ther-

mal conductivity. The code implements this relationship by increasing the thermal

conductivity of the convecting layer k by the Nusselt number so that,

keff = k × Nu. (4.4)

The Nusselt number is parametrized as Nu = (Ra/Rac)
0.25 for Ra > Rac (Spohn and

Schubert 2003) where the Rayleigh number, Ra, is calculated at the midpoint of the

ice layer.

4.5 Ice Viscosity

Viscosity of ice is a key factor in determining that rate of parametrized convection.

In this thesis I have modified the manner in which the viscosity of pure water ice is

determined from the one used in the model of Desch et al. (2009). The implementation

used in Desch et al. is one in which viscosity is determined by volume diffusion alone.

The strain rate is given by

ε̇ = 9.3
σb3Dv

d2kT
≈ 42σVm
RT d2

Dv, (4.5)

where b = 4.52× 10−10 m is the Burgers vector, Dv = D0v exp(−Q/RT ) is the lattice

diffusion frequency, D0v = 9×10−4 m2 s−1, Q = 59.4 kJ mol−1 is the activation energy

for self-diffusion, and R is the gas constant (Song et al. 2006). Defining ηeff ≡ σ/(3ε̇)

yields

η ≈ 3× 1014

(
d

1 mm

)2
T

Tm
exp

[
26.2

Tm − T
T

]
Pa s, (4.6)
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with Tm = 273 K. For grain sizes on the order of 1 mm, this equation matches well

with the following equation found in Thomas et al. (1987)

η(T ) = η0

[
25×

(
273

T
− 1

)]
, (4.7)

(where η0 = 1.0×1014 Pa s). Therefore, Eq. 4.7 was chosen to parametrize ice viscosity

for the model runs of Desch et al. (2009).

For the model used in this thesis, I parametrize the convection of the pure water

ice mantle based on the composite flow law of Goldsby and Kohlstedt (2001) and the

definition of viscosity used in Barr and Pappalardo (2005) [see subsection 3.2.2 for

more detail]. Here η ≡ σ/2ε̇, and the total strain rate is

ε̇ = ε̇diff +

(
1

ε̇basal

+
1

ε̇gbs

)−1

+ ε̇disl ,

where ε̇ for each deformation mechanism is given by

ε̇ = A
σn

dp
exp

(
−Q+ PV

RT

)
.

I parametrized the relationship of viscosity to temperature assuming a stress σ =

1 MPa, and a grain size d = 1 mm. I then fit a 9th-order polynomial to this relation-

ship between viscosity to temperature, and used this to parametrize ice convection in

the models.

In Fig. 4.1 the functional relationship of viscosity to temperature used in Desch

et al. (2009) is compared with the one used in the current model. The 9th order

polynomial fit used to parametrize convection in the current model is plotted as a

dashed black line, and can be seen to fit well with the curve based on the Goldsby

and Kohlstedt composite flow law. I found the fit to be good to within 1% in the

temperature range being considered. For reference ηcrit is also plotted to demonstrate

the variance in temperature required to produce a given viscosity based on the two

models.
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Figure 4.1: The relationship between viscosity and temperature for pure water ice
based on two different models. The green curve is based on the viscosity characteri-
zation of Thomas et al. (1987), and the blue curve is based on the composite flow law
of Goldsby and Kohlstedt (2001). For a given temperature, the composite flow law
always produces a lower viscosity. For reference, the 9th-order polynomial fit that I
used to parametrize convection in the models is over-plotted with a dashed black line.

In principle, different viscosities could change the thermal evolution of the KBO

models. However in practice, the only implementation of viscosity in the code is to

determe the likelihood of convection within the ice layer through its effect on the

Rayleigh number. Ice convection only happens relatively early on in the evolution

of the model, and basically just acts to change the effective thermal conductivity of

the ice layer. This limited application of viscosity in the code for the ice layer, was

not found to have much impact on the thermal evolution of the model in Desch et al.

(2009).
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One final note, the addition of ADH/ammonia to pure water ice drops the viscosity

of the mixture by five orders of magnitude at the eutectic point of 176 K. This

lowers the overall viscosity of the mixture to < 1012 Pa s when the mass fraction

of ammonia to ammonia plus water > 1% (Arakawa and Maeno, 1994). It is this

lowering of viscosity in the undifferentiated layers that allow Stokes flow to occur

within geologically relevant timescales. However, this should not have any effect on

the viscosity of the ice mantle, since ADH and ammonia have already been removed

from solution when the ice layer formed.

4.6 Thermal Conductivities and Other Relevant Physical Properties

The determination of thermal conductivities is critical to understanding the ther-

mal gradients essential to modeling the differentiation of icy bodies. Chief among

these is the thermal conductivity of rock. In this research, we assume that the com-

position of rock in KBOs is similar to that of ordinary chondrites. Therefore, we

adopt the thermal conductivity of chondrites as measured by Yomogida and Matsui

(1983) to model that of rock. These measurements show little variation between tem-

peratures of 100 to 500 K, and typically have a conductivity of krock = 1.0 W m−1 K−1,

which is the value adopted in Desch et al. (2009).

An alternative hypothesis is that the rocky material that accreted to form the

KBO may have become hydrated through interactions with water prior to its inclu-

sion in the KBO. Under this assumption, the rock in KBOs would likely have a density

and thermal conductivity closer to that of a CM chondrite than an ordinary chon-

drite. Based on the experimental measurements of Opeil et al. (2010) for the thermal

conductivity of CM chondrites at very low temperatures, the thermal conductivity

for the rock in KBOs is expected to be ∼ 0.5 W m−1 K−1. Also, the density of CM

chondritic material is closer to ∼ 2.35 g cm−3 as opposed to the value of 3.25 g cm−3
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adopted in Desch et al. (2009).

In the models that follow, I adopt the values of krock = 0.5 W m−1 K−1 and ρrock =

2.35 g cm−3 for my new canonical model of Charon. Here I assume that the rocky

material that accreted to form Charon was initially hydrated. I also explore the

effect that varying the parameters of krock and ρrock have on the KBO differentiation

process, both individually on collectively.

The thermal conductivity of water ice adopted for this research is kH2O(s) =

5.67 (T/100 K)−1 W m−1 K−1 (Klinger, 1980); and that adopted for ammonia dihy-

drate is kADH = 1.2 W m−1 K−1 based on the experiments of Lorenz and Shandera

(2001) and Kargel (1992). The thermal conductivity of a water ice-ADH mixture is

taken to be the geometric mean of the two such that

kice = k
gH2O(s)

H2O(s) k
1−gH2O(s)

ADH , (4.8)

where gH2O(s) is defined to be the volume fraction of H2O(s) in the H2O(s)-ADH

mixture. The thermal conductivity of an intimate mixture of rock and ice is found

by solving

2k2
tot −

[
krock(3fVrock − 1) + kice(2− 3fVrock)

]
ktot − krockkice = 0, (4.9)

where fVrock is the volume fraction of ice in the combined ice-rock mixture. This formu-

lation is motivated by the percolation theory of Sirono and Yamamoto (1997). Based

on a comparison with alternate methods of modeling the appropriate conductivities,

Desch et al. (2009) find that “Significant differences in temperature gradient can arise

depending on how the thermal conductivity is modeled. In particular, the inclusion

of rock in an undifferentiated crust is insulating.”

At temperatures appropriate to the interior of KBOs (∼ 100 K) the density of

pure water ice is about 935 kg m−3 (Croft et al. 1988), which is the value adopted
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here. The value adopted for the density of ammonia dihydrate(ADH) is 965 kg m−3

(Croft et al. 1988). Assuming a porosity of ≈ 10%, Yomogida and Matsui (1983) find

an average bulk density for chondritic rock of ρrock = 3250 kg m−3, and an intrinsic

density on the order of 3600 kg m−3, which are the values adopted here.

The heat capacity for water is determined via the approximation

cH2O(s)(T ) = 773.0

(
T

100 K

)
J kg−1 K−1, (4.10)

which matches the exact expression of Shulman (2004) over the range 40 < T < 273

to within a maximum deviation of 15%. The heat capacity for ADH is approximated

by

cADH(s)(T ) = 1120

(
T

100 K

)
J kg−1 K−1, (4.11)

which matches the exact expression of Fortes et al. (2003) over the range 40 < T < 176

to within a maximum deviation of 4%. The heat capacity of rock can be inferred from

the data of Yomogida and Matsui (1983) for ordinary chondrites and is approximated

by

crock(T ) =


770

(
T

275 K

)
J kg−1 K−1, 0 K ≤ T < 275 K

607 + 163
(

T
275 K

)
J kg−1 K−1, 275 K ≤ T < 1000 K

1200 J kg−1 K−1, 1000 K ≤ T.

(4.12)

The expansivity of ice, α, comes into play when determining the Rayleigh Cri-

terion, and is important in determining whether ice will convect. At temperatures

less than 60 K, ice contracts when heated and therefore cannot undergo solid-state

convection, regardless of its viscosity. Desch et al. (2009) model the expansivity of

ice as α /(10−5 K−1) = 1.5(T /50 K) − 2.0 for T > 50 K, and = −0.5(T /50 K) for

T < 50 K.
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4.7 Equation of State

The code tracks the mass of 5 phases within each of the radial zones of the KBO.

These include: rock; water ice, H2O(s); solid ammonia dihydrate, ADH(s); liquid

water, H2O(l); and liquid ammonia, NH3(l). The initial mass of all these constituents,

as well as the total combined internal energy of all the phases, Ei, is tallied at the

beginning of each timestep within each radial zone. Additionally, the mass of rock,

the total mass of H2O (including water ice, liquid water and bound in ADH), and

the total mass of NH3 (in liquid ammonia and bound in ADH) are specified at the

beginning of each timestep in each zone. Also tracked is the non-rock mass that is

in ammonia, Xi, [either as NH3(l) or the ammonia portion of ADH(s)], the fraction

of the total mass contained within the rock (frock i), and the total mass within each

zone Mi.

Once the values for Mi, Xi, frock, i are known for a given timestep, it is assumed

that the temperature can be determined by finding how much energy is required to

raise the mix of chemicals from 0 K to T , including the temperature-dependent heat

capacities and the latent heats of fusion. A phase diagram is used to determine the

mass fraction that is in each of the phases of non-rock constituents [H2O(s), ADH(s),

H2O(l), and NH3(l)] at a given temperature. It is also used to determine the total

specific energy e(T ) required to raise a water-ammonia mixture (characterized by Xi),

from 0 K to a temperature T . The formulas used to approximate the phase diagram

are complicated and can be found in Appendix B of Desch et al. (2009), but won’t

be reproduced here. They provide a way to numerically calculate the phase diagram

for all of the non-rock constituents in each zone.

With this calculated, the total energy required to raise the temperature of all
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constituents from 0 K to a temperature T is given by

E(T ) = frock,iMi

∫ T

0 K

crock(T ′) dT ′ + (1− frock,i)Mie(T ), (4.13)

where Mi is the total mass contained within each zone. However, what we actually

have are the values for frock, X and E for each shell, and from these we must determine

the temperature, Ti, at which E(T ) = Ei. This is accomplished by using a bracketing

techniques (Press et al. 1992). Using the bracketing technique, a temperature T (E),

and an apportionment of non-rock material into ices and liquids can be found that is

consistent with that internal energy and temperature. For this model, volume changes

are explicitly neglected in the calculations.

4.8 Differentiation

The code of Desch et al. (2009) models the evolution of a homogeneous body con-

sisting of a mixture of rock and ice as it responds to the effects of radiogenic heating.

As the body heats up, ices are allowed to melt as described in section 4.7, causing

rock to differentiate from the ice and liquid. This differentiation of the rock, liquid

and ice mixture is treated as a two-step process. First, we consider the separation of

rock from the other components, with the resulting formation of a rocky core. This

may involve melting of the ice, but not necessarily. Second, we consider the sepa-

ration of liquid water, ammonia and ammonia dihydrate from the water ice. Once

the appropriate conditions are met for a given shell of material, the differentiation is

effectively instantaneous, generally occurring within a single timestep of 1000 years.

The separation of rock and ice without melting the ice is assumed to occur by a

process of solid-state creep of ice around the denser rock. This process is described

by Stokes flow, with velocity

V =
1

18

(ρrock − ρice)gD
2
rock

η
. (4.14)
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Here Drock is the diameter of the rocky particules, ρrock is its density, and g is the

gravitational acceleration appropriate for the shell (∼ 0.30 m s−2 for a typical KBO).

For differentiation to occur, we require that the rock must drop one grid zone (∼ 2 km)

on timescales < 106 yr. For viscosities typical of water ice at temperatures less than

176 K, the timescale required for a 1 m - diameter rock to drop is then on the order

of a Gyr. In that case, we would assume that differentiation will not occur until

the ice melts. However, if the ice consists of a mixture of water and ADH with

X ≥ 1%, an entirely different result is possible. Once the ADH beings to melt, it will

produce liquid H2O and NH3, and the viscosity of the mixture will drop to < 1012 Pa s

(Arakawa and Maeno, 1994). This drop in viscosity is sufficient to differentiate the

rock/ice mixture on timescales consistent with the model. Still, we are left with a

number of uncertainties in the model. We do not know, a priori, the size of individual

rock components, and for rocks considerably less than 1 m in size, the rate of Stokes

flow is insufficient to allow differentiation to occur on geological timescales even with

ammonia. Additionally, values of X < 1% are not known with certainty to produce

a sufficient drop in viscosity of the ice/rock mixture, and again Stokes flow alone will

not be sufficient to allow for differentiation.

Once material has reached temperatures sufficient to allow for the differentiation

of rock from the other components, the liquids and ices can separate fairly rapidly via

convection. Convection is expected to occur when the Rayleigh number (see Eq. 4.3)

exceeds a critical value, Rc ∼ 103. Assuming typical parameters of α ∼ 3× 10−5 K−1,

ρice ∼ 1000 kg m−3, g ∼ 0.10 m s−2, κ ∼ 10−6 m2 s−1, ∆T ∼ 100 K, and ∆r ∼ 100 km,

we find Ra ∼ 3 × 1020 Pa s/η. Once the melt of the ADH has begun, we expect

viscosities < 1012 Pa s. This viscosity is more than sufficient to allow rapid convection

to occur. It is expected that within 40 Myr, the remaining phases should separate

according to density, with pure water ice rising to the top and ammonia concentrated
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in the liquid layer at the bottom. The ADH and liquids are expected to be chemically

and energetically well-mixed within the “slush” layer at the base (Desch et al. 2009).

Once a shell at some radius r reaches a temperature of 176 K, the code assumes

that the entire shell differentiates instantaneously. The radius, Rdiff , is defined to

be the maximum radius within a KBO at which the temperature has ever exceeded

176 K. It is expected that all the rock within this radius will settle to form a rocky

core. The remaining phases will settle depending on their densities, with liquid water

and ammonia directly above the rock, and pure water ice above the liquid. At radii

greater than Rdiff , it is assumed that the material remains undifferentiated.

The implementation of differentiation in the code proceeds as follows. At each

timestep, the equation of state is used to determine the effective temperatures of each

shell. From this, Rdiff is determined. Then, working from the innermost zone outward,

all of the mass and internal energy of the rock interior to Rdiff is moved to the core.

After all of the rock has been moved, the slush layer of ammonia and liquid water

is moved above the core, bringing with it the appropriate mass and internal energy

taken from each zone. Finally, the movement of the remaining water ice completes

the process as it is moved above the slush layer until it fills all the shells out to Rdiff .

This is used to create and fill a new grid up to exactly Rdiff . All of the material

is moved in a volume conservative way that is independent of the chemical phases.

Outside of Rdiff , the undifferentiated material remains unchanged.

The final piece to consider at this point is the determination of the gravitational

energy released by the movement of all of the phases of material. This is done by

calculating the gravitational potential energy Ug immediately before and after each

timestep with

Ug = −G
∫ Rp

0

4πξ2ρ(ξ)
M(ξ)

ξ
dξ, (4.15)

where M(ξ) is the mass enclosed within a sphere of radius ξ. Any gravitational
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energy released during the timestep is uniformly distributed as heat throughout all

shells interior to Rdiff . We find that this release of gravitational energy only results in

an increase in temperature of a few degrees K in the core during the differentiation

process (Desch et al. 2009).

4.9 Thermal Evolution of Charon

Having considered the methodology and implementation of the thermal evolution

code, we can now apply it to our canonical case of Pluto’s largest moon, Charon.

Based on some of the most recent observations, Charon’s radius RC = 603.6 ± 1.5

km (Person et al. 2006). Estimates of Charon’s mean density vary from ρ̄ = 1720 ±

150 kg m−3 (Gulbis et al. 2006) assuming a mass of 1.60± 0.12× 1021 kg (Olkin et al.

2003), to ρ̄ = 1630± 70 kg m−3 (Person et al. 2006) assuming a mass 1.52± 0.064×

1021 kg (Buie et al. 2006). Rather than fix particular values of mass and radius,

here we consider the more generic case of a body with radius 600 km, and mean

density ρ̄ = 1700 kg m−3 (yielding a total mass 1.538× 1021 kg). Since the process of

differentiation is accelerated for objects with high ammonia content, we assume a low

value of X = 0.01, to be conservative. With this choice of values, our Charon analog

has a rock mass fraction frock = 0.63, and a total rock mass of 0.97 × 1021 kg. As

explained in section 4.3, the rate of heat production at present day is then determined

to be S ≈ 5.66 pW kg−1. Based on a number of different kinds of observations (Cook

et al. 2007), we adopt a surface temperature of 60 K; although this value is somewhat

uncertain.

4.9.1 Numerical Results

Simulations created using the code of Desch et al. (2009) track a fascinating time

evolution for our canonical Charon. We begin with the cold accretion of homogeneous
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chondritic material, and are left with a partially differentiated body which may, even

now, contain enough liquid water to allow for cryovolcanism. The following describes

the results of the numerical modeling.

It takes roughly 75 Myr of evolution for the temperatures in the core to rise above

176 K, the melting point of ADH. At this point, the viscosity within the ice can drop

by 5 orders of magnitude, and differentiation begins in earnest. As early as 80 Myr,

the core contains all of the rock within a radius of Rdiff = 420 km, consuming half the

rocky mass of the body, with a radial extent of about 292 km. This process continues

at a more gradual rate for another 700 Myr. By t ≈ 0.75 Gyr, Rdiff has reached its

maximum extent of 516 km, with a core radius of 356 km. The slush layer of liquid

water and ammonia now extends from the top of the rocky core to the base of the

pure water ice layer at 368 km. The water ice layer then continues to the outer edge

of the differentiated zone, Rdiff = 516 km, surrounding by a crust of undifferentiated

material.

The thermal evolution of our Charon analog is tracked in Fig. 4.2. As shown in

the Figure, the temperature in the core is initially set to Tsurf , and rises gradually

over the next 2 Gyr. The energy from the decay of long-lived radionuclides is initially

concentrated within the rocky core, primarily serving to heat it, which only allows

for a reduced flux outside the core. At about 2 Gyr, the core reaches its maximum

temperature of 1418 K. From this time onward the heat flux exterior to the core is

enhanced by the release of energy previously stored in the core. The “slush” layer

between 356 and 396 km is partially liquid and highly convective, allowing heat to

pass through efficiently. Convection also carries heat efficiently through the ice layer,

where the Nusselt number is 4.4 at t = 1 Gyr, gradually dropping to 1.0 at t = 4

Gyr, after which convection turns off.

The distribution of the different constituents of the body is shown in Fig. 4.3.
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Figure 4.2: Temperatures within a Charon analog, at times t = 0 (dotted line),
t = 1 Gyr (dotted curve), and (solid curves, from top to bottom) t = 2 Gyr, 3 Gyr,
4 Gyr and the present day, t = 4.56 Gyr (Reproduced with permission from Desch et
al. 2009.)

At 2 Gyr the differentiation is fairly complete, with the values for Rcore and Rdiff

only changing slightly with time; however, the relative extent of the ice and slush

layers evolves over a longer period of time. Rdiff and Rcore do not change after 2 Gyr,

but much of the liquid water in the slush layer evenually freezes to water ice. This

simulation predicts that the liquid layer will extend from 356 to about 362 km at

present day.

Fig. 4.4 depicts the time evolution of the liquids tracked in the Charon analog.

The total mass of ice is 0.57 × 1021 kg, and that of ADH is 0.0177 × 1021 kg. After

80 Gyr all of the ADH within Rdiff = 420 km has melted as the temperature rises

beyond 176 K. The result is the production of 0.0061 × 1021 kg of liquid. Initially,

the liquid has an ammonia content near the eutectic as is displayed in Fig. 4.5. Over
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Figure 4.3: Distribution of phases within a Charon analog at time t = 2 Gyr. The
lines represent rock (solid line), solid or liquid water (dashed lines), and ammonia
dihydrate or liquid ammonia (dash-dot lines). A core of pure rock exists within 355
km. Between 355 km and 362 km there is a layer of water/ammonia liquid, and from
362 km to 515 km there is a layer of pure water ice. From 515 km to the surface at
600 km there is an undifferentiated crust of rock, water ice and ADH. (Reproduced
with permission from Desch et al. 2009.)

the next few 100 Myr the water ice melts, diluting the ammonia. The liquid content

peaks at about 1 Gyr, with a mass of 1.8× 1019 kg (or about 1% of the mass of the

KBO). At this point we have an ammonia fraction of X ≈ 0.2. Thereafter the overall

heat flux out of the core begins to decrease, causing the liquid to refreeze. When the

last of the water ice has frozen out, the ammonia concentration reaches the eutectic.

The current model shows this happening around 4.5 Gyr, or present day.

The final two plots in this chapter demonstrate how pressure is distributed through-

out the Charon analog, and how the heat flux through the surface evolves through

time. Pressure is plotted as a function of depth in Fig. 4.6 at time t = 4.56 Gyr. This

is calculated through a simple integration of mass at different radii from the surface
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Figure 4.4: Total mass of liquids within a Charon analog (solid curve), and that mass
of liquids derived from melting of ADH (dashed curve), as a function of time. The first
liquid arises from ADH suddenly melted at t ≈ 75 Myr during initial differentiation.
Continued heating melts water, but it eventually refreezes. By t = +4.5 Gyr, the
remaining liquid refreezes as ADH, until by t = 4.61 Gyr it is completely frozen.
(Reproduced with permission from Desch et al. 2009.)

inward

dP

dr
= −GM(r)ρ(r)

r2
. (4.16)

Here it can be seen that the pressure at the center is elevated from 135 MPa, which

is the value it would have without differentiation, to its current value of 269 MPa.

The pressure in the liquid layers is around 78 MPa, and the pressure in the ice layer

varies from 78 MPa to about 38 MPa. The undifferentiated crust has lower pressures

still, on the order of 20 MPa. Noting that the transition from Ice I to Ice II doesn’t

occur until pressures of at least 100 MPa (Durham and Stern 2001), it is clear that

the ice within this body will all have the structure and density of Ice I. For larger icy

bodies (such as those found in the Jovian system or even Pluto where RP ≥ 1000km),
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Figure 4.5: Mass fraction X of ammonia in the liquid inside a Charon analog, as
a function of time. The eutectic concentration, 0.321, is plotted for comparison.
(Reproduced with permission from Desch et al. 2009.)

higher pressures in the ice layer are possible, and are beyond the scope of this work.

Additionally, the ammonia-phase diagram used in the paper is not valid beyond 200

MPa; therefore other considerations need to be taken into account for icy bodies with

pressures that high.

Finally, Fig. 4.7 plots the surface flux for our KBO simulation as a function of

time. As shown in the plot, the amount of heat flux through the surface is less than

the total heat produced in the core. This is because much of the radiogenic heat

initially produced within the core is retained there as it heats up. After the core

reaches a maximum temperature at 2 Gyr, the core begins to release its stored heat,

and the heat flux through the surface is increased relative to the total amount of

radiogenic heat produced in the core. This process continues to present day, with the

result that the current heat flux through the surface is enhanced by a factor of 1.42, or
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ε = 0.42, over the instant radiogenic heat flux. This shows the critical importance of

considering the prior thermal evolution of a KBO when trying to ascertain its current

thermal structure. Without considering this effect, the current temperature at Rdiff

would only be 81 K, and the temperature at the base of the ice layer would only be

120 K. Thus, there would be no liquid present in our simulated present-day Charon.

69



Figure 4.6: Pressures inside a Charon analog, as a function of radius within the
body, at a time t = +2 Gyr, when differentiation is complete. The vertical dotted
lines represent (from left to right) the boundaries between the rocky core, the liquid
layer, the water ice layer, and the undifferentiated ice/rock crust. Reproduced with
permission from Desch et al. 2009.)
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Figure 4.7: Heat flux at the surface of a Charon analog, as a function of time (solid
curve). For comparison we plot the flux that would arise from the instantaneous rate
of radioactive decay (dashed line). During the first 1.6 Gyr, the rocky core absorbs
more heat than it emits, but thereafter the core releases heat and enhances the heat
flux. Reproduced with permission from Desch et al. 2009.)
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Chapter 5

RESULTS AND DISCUSSION

5.1 Overview

The numerical models of Desch et al. (2009) assume a body that accretes cold,

heats up through radiogenic heating, and then partially differentiates via Stokes flow,

leaving an undifferentiated crust. In the models that follow, I assume that the body

has already partially differentiated due to the action of Stokes flow, or an actual

melting of the ice at 273 K. Differentiation can then be expected to proceed via

Rayleigh-Taylor instabilities. The question addressed in this thesis is whether the ad-

ditional consideration of Rayleigh-Taylor instabilities in the boundary layer between

the ice mantle and the overlying crust will allow further differentiation, perhaps even

full differentiation. As described in Chapters 2 and 3, the extent of Rayleigh-Taylor

instabilities is dependent on both the temperature of the boundary layer and how long

that layer sees an elevated temperature. The purpose of this chapter is to present nu-

merical models to calculate the temperatures and duration of heating of these layers

within a small icy body.

5.2 Change in Model Parameters

The results following are based on the numerical code found within Desch et al.

(2009). However, I have added a few refinements to the code to better reflect the

material parameters and physics of our Charon analog. The first change regards

the parametrization of ice convection within the code. As described in section 4.4,

the modeling of convection within the ice layer depends on its Rayleigh number.

72



The Rayleigh number in turn depends on the ice viscosity, which must be modeled

properly. The original model of Desch et al. (2009) determines the value for ice

viscosity based solely on the mechanism of volume diffusion found in Thomas et al.

(1987). A more accurate model for the viscosity of ice requires the inclusion of all

of the four deformation mechanisms described in section 3.2.2. Based on the model

parameters of Goldsby and Kohlstedt (2001), I developed a ninth-order polynomial

fit for the relationship of viscosity to temperature that includes all four mechanisms.

This new model for ice viscosity replaces that of Thomas et al. (1987) used in the

original code.

Second, I have attempted better model the composition of the original undiffer-

entiated material which accreted to form our Charon analog. The model of Desch et

al. (2009) assumes a rocky material similar in composition to olivine, with a density

of 3.25 g cm−3, and a thermal conductivity k = 1 W m−1 K−1. In our new models, we

consider the possibility that the rocky material originally accreted to form Charon was

closer in composition to that of a CM chondrite, and had been substantially thermal

aqueously altered prior to Charon’s formation. Therefore we consider rocky material

with a density of 2.35 g cm−3 and a thermal conductivity k = 0.5 W m−1 K−1 (Opeil

et al. 2010). Finally, to more accurately reflect observations of the size and mass of

Charon, we now adopt a mean density ρ̄ = 1.65 g cm−3 for Charon, as opposed to

that used in Desch et al. of ρ̄ = 1.70 g cm−3.

5.3 Reproduction of Prior Results

The first task I completed before initiating any of the new model runs was to

replicate the results from the previous work. I converted the code used in Desch et

al. (2009) from Fortran 77 to Fortran 90, and made some other modifications to the

code to allow for modeling of additional parameters, if desired. To determine whether
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any of the changes in the code might impact the final results, I re-ran the simulation

of Desch et al., using the same parameters as were originally included in that model.

In particular, I used a value of ρ̄ = 1.70 g cm−3 for the mean density of Charon along

with ρrock = 3.25 g cm−3, and krock = 1 W m−1 K−1. What I found was that my results

varied by less than a percent from those of the prior model outlined in section 4.9.1.

The new core radius remains unchanged at 356 km, and Rdiff nominally changed from

515 km in the old model, to 514 km. The maximum temperature reached in the core

of 1414 K was achieved at 2.03 Gyr in my new model run, as opposed to 1418 K at

2.07 Gyr in the previous model. The thermal history remains virtually unchanged,

as does the mass of the core, the total mass of the crust, and the peak amount of

liquid found in the body. Additionally, the time at which the final remaining liquid

freezes remains unchanged. The new Fortran 90 code therefore matched the previous

Fortran 77 code.

5.4 Effect of Change in Mean Density of Charon analog

Changing the density of the Charon analog from ρ̄ = 1.70 to 1.65 g cm−3 has a

significant effect on the results of the model. Having fixed the density of the rocky

material and the ice, a decreased overall mean density requires a greater ratio of ice to

rock. Additionally, the model assumes that all of the radioactive material is bound to

the rocky material within the body; therefore, an increased ratio of ice to rock implies

that there is a corresponding decrease in the amount of radiogenic material available

to heat the body. This results in a proportional decrease in the rate of heating in the

body.

The two effects combined result in a decrease in the final radius of the core from

356 to 342 km, and the differentiation radius Rdiff decreases from 514 to 504 km. The

maximum temperature of the core decreases slightly from 1414 K to 1364 K, and the
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time at which the last liquid freezes decreases from 4.67 to 4.55 Gyr. This implies

that the last of the liquid may have just finished freezing at the current epoch. The

decrease in Rdiff results in an increase in the total mass of the undifferentiated crust

from 38.26% to 40.73% of the total mass.

5.5 Effect of Changing Model Parameters in our Base Model

Before attempting to model the effect of lowering the differentiation temperature

from one reflecting Stokes flow to one considering the additional effect of Rayleigh-

Taylor instabilities, I needed to ascertain how changing each of the physical parame-

ters listed above affected the simulations. My starting point was the previous simula-

tion with ρ̄ = 1.65 g cm−3, and Tdiff = 176 K. To determine the effects, I ran a unique

simulation for each of the following parameters: the parametrization of ice convection,

the density of the rocky component in the mixture, and the thermal conductivity of

the rocky component.

5.5.1 Parametrization of Convection

Changing the parametrization of convection from one in which viscosity is solely

modeled through volume diffusion, to one which includes all four deformation mech-

anisms, has a limited effect on the results of the model. The final radius of the

core remains unchanged at 342 km, and the radius of differentiation for the body

marginally increases from 504 to 506 km. The maximum temperature in the core

decreases slightly from 1364 to 1357 K, and occurs at 1.91 Gyr as opposed to 1.93

Gyr in the previous model.

One noticeable change was the the time at which the last liquid freezes, which

occurs at 4.26 Gyr in the current simulation, as opposed to 4.55 Gyr in the base

model. This result is not particularly surprising, for the following reason. The net
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effect of changing the flow law used to determine ice viscosity from volume diffusion

to one including all four mechanisms, is to lower the overall viscosity of the ice.

This is because volume diffusion is the slowest of the four deformation mechanisms

considered here. Therefore, adding in the other three ice flow mechanisms results in

a higher strain rate for a given stress and a lower viscosity. A lower viscosity, in turn,

results in a higher rate of convection in the ice layer. Therefore, heat can be released

from the ice mantle more efficiently allowing the underlying liquid layer to cool more

rapidly. In general, the model is fairly insensitive to changes in viscosity because the

convecting ice layer is already almost isothermal.

5.5.2 Density of Rocky Component

Next, I evaluated the effect of changing the density of the rocky component of

our Charon analog from ρrock = 3.25 to 2.35 g cm−3. This change is to better reflect

the density of the hydrated rocky material found in CM chondrites, which may have

originally accreted to form Charon. The immediate effect of this change is to require

an increase in the proportion of rocky material to ice in our model to maintain a fixed

mean density for the KBO. Additionally, since the chemical composition of the rocky

component has changed, we needed to reflect this in our modeling of the radioactive

decay rate. What we found was that the overall instantaneous rate of radiogenic

heating needed to decrease to be consistent with the composition of the hydrated rock.

Therefore, although the overall amount of rocky material containing radionuclides

increases in this model, the net expected increase in the rate of radiogenic heating is

decreased.

The results of the simulation using a decreased ρrock = 2.35 g cm−3 are as follows.

There is a marked increase in the size of the core from 342 to 420 km, which reflects

the higher overall ratio of rocky material to ice. The final differentiation radius also
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increases from 504 to 526 km. The increase in the size results in an increase in its

mass decreases from 5.38×1020 to 7.23×1020 kg. The increased differentiation radius

results in a decrease in the total mass of the undifferentiated crust from 6.08×1020 to

4.87× 1020 kg, with a corresponding decrease in the percent of the mass of the crust

from 40.73% to 32.82%.

The maximum temperature of the core decreases from 1364 to 1192 K and occurs

at 1.99 Gyr as opposed to 1.93 Gyr in our base model. Since the gross amount of

ice/liquid in the body has decreased, we find that the highest amount of liquid ever

present in the body decreases from 1.76× 1019 kg to 1.33× 1019 kg. This may be also

be due to a decrease in the overall rate of heating in the body. Also, the time at

which the last liquid freezes now occurs much sooner, at 3.75 Gyr as opposed to 4.55

Gyr in the base model.

5.5.3 Thermal Conductivity of Rocky Component

The final parameter change considered in the new models is a change in the pre-

sumed thermal conductivity of the rocky material. We now consider a new thermal

conductivity krock = 0.5 W m−1 K−1 as measured for CM chondrites at low temper-

atures (Opeil et al. 2010). The simulation results with this value for krock display

relatively minor changes to the final core and differentiation radii, but a significant

effect in the overall thermal history of the body. The radius of the core decreases

from 342 to 338 km, resulting in a concurrent decrease in the mass of the core from

5.38 × 1020 to 5.19 × 1020 kg. The radius of maximum differentiation also decreases

slightly from 504 to 498 km, resulting in a concurrent increase in the mass of the

crust from 6.08× 1020 to 6.39× 1020 kg. Finally, the percent of the total mass of the

body found in the crust increases from 40.73% to 42.82%.

The relatively low thermal conductivity of the rocky material implies that it is
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more difficult for heat to escape from the developing core. Heat is therefore retained

longer in the core, which is reflected in a higher maximum temperature for the core

of 1770 K. This maximum temperature now occurs at 2.92 Gyr, a full billion years

later than in the base model. The thermal evolution of our Charon analog with

krock = 0.5 W m−1 K−1 and ρrock = 3.25 g cm−3 is displayed in Fig. 5.1. The maximum

Figure 5.1: Temperatures within a Charon analog with krock = 0.5 W m−1 K−1 and
ρrock = 3.25 g cm−3, at times t = 0 (dotted line), t = 1 Gyr and 2 Gyr (dotted curves),
and (solid curves, from top to bottom) t = 3 Gyr, 4 Gyr and the present day, t =
4.56 Gyr

instantaneous amount of liquid found in the body decreases somewhat from 1.76 ×

1019 kg to 1.60× 1019 kg. However, the liquid does not fully freeze in this model until

4.99 Gyr, which reflects both the higher temperatures in the core, and the delayed
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release of this energy from the core.

5.5.4 New Base Stokes Flow Model Including all Parameter Changes

The final simulation for this group of models combines all of the parameter changes

listed above at a temperature Tdiff = 171 K consistent with differentiation via Stokes

flow. Specifically, krock = 0.5 W m−1 K−1, ρrock = 2.35 g cm−3, ρ̄ = 1.65 g cm−3, and

the new parametrization for ice convection follows from the viscosity flow laws of

Goldsby and Kohlstedt (2001). In the results of this simulation, the radius of the

core increases from 342 to 422 km, with a concurrent increase in the mass of the

core from 5.38 × 1020 to 7.4 × 1020 kg. The radius of maximum differentiation also

increases from 504 to 530 km, resulting in a concurrent decrease in the mass of the

crust from 6.08 × 1020 to 4.64 × 1020 kg. Finally, the percent of the total mass of

the body found in the crust decreases from 40.73% to 31.08%. Fig. 5.2 graphically

displays the structure of this model at 2 Gyr. At this point differentiation is complete;

however, the liquid layer has not completely frozen yet.

Due to the lowered thermal conductivity of the rocky material, the core does not

reach its peak temperature of 1541 K until 3.08 Gyr. In comparison, the maximum

temperature of 1364 K is achieved at 1.93 Gyr in the prior base model. The maximum

instantaneous amount of liquid found in the body decreases from 1.76 × 1019 kg to

1.07×1019 kg. In this simulation the liquid freezes fairly early on at 3.89 Gyr. Fig. 5.3

portrays the thermal history for the new Stokes flow base model and Fig. 5.4 shows

the amount of liquid present in the model over time.

The final plot for this model (Fig. 5.5) graphically illustrates the temperature

evolution for individual shells experiencing differentiation via Stokes flow. For clarity,

only the outermost shells are displayed in this plot, beginning with one at a radius of

420 km. The interior shells are the hottest, and as we move outwards from the core,
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Figure 5.2: Distribution of phases for the new Stokes flow base model at t = 2 Gyr.
The lines represent rock (orange), solid or liquid water (dashed lines), and ammonia
dihydrate or liquid ammonia (dash-dot lines). A core of pure rock exists within 422
km. Between 422 and 428 km there is a layer of water/ammonia liquid, and from 428
to 530 km there is a layer of pure water ice. From 530 km to the surface at 600 km
there is an undifferentiated crust of rock, water ice and ADH.

we reach a shell that just barely crosses the threshold temperature for differentiation

of Tdiff = 171 K. Our model assumes that the differentiation process for this shell will

be initiated once it is within 10 K of Tdiff (green line) and will continue until the shell

is fully differentiated. This shell (shown in red) has an outer radius of 530 km, which

is the maximum radius for differentiation, Rdiff , of this model. Any shell outside of

this radius will never rise above Tdiff , and will therefore never differentiate. Note that

the time period, τ , for which the shell remains within 10 K of Tdiff is ≈ 1.5 Gyr.
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Figure 5.3: Temperatures within a combined Stokes flow model, at times t = 0 (red
line), t = 1 Gyr and 2 Gyr (dotted curves), and (solid curves, from top to bottom)
t = 3 Gyr, 4 Gyr and the present day, t = 4.56 Gyr

5.6 The New Canonical Model for Charon Including Rayleigh-Taylor Instabilities

Having reviewed the effects of parameter changes with respect to the models of

Desch et al. (2009), it is now time to consider the effect of the inclusion of Rayleigh-

Taylor instabilities in the new model. Rayleigh-Taylor instabilities are incorporated

in the simulations by lowering the differentiation temperature used in the model runs.

As described previously, this new differentiation temperature, Tdiff = 143 K, is the

critical temperature at which a disturbance in the boundary layer between the ice

mantle and the overlying crust can be expected to grow by at least a factor of 10 over
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Figure 5.4: Total mass of liquids within the combined Stokes flow model as a function
of time.

a time period τ = 1.5 Gyr. τ is determined by measuring how long the boundary

layer is able to stay within 10 K of Tdiff in our simulations. As implemented in the

code, any layer which ever sees a temperature above Tdiff is expected to differentiate

due the effect of Rayleigh-Taylor instabilities.

The simulation which represents our new canonical model for Rayleigh-Taylor

instabiltiies is one in which Tdiff = 145 K with krock = 0.5 W m−1 K−1, ρrock =

2.35 g cm−3, ρ̄ = 1.65 g cm−3, and using the new parametrization for ice convection.

In the discussion that follows, I will be comparing this model to the base model which

only considers differentiation via Stokes flow.

82



Figure 5.5: Temperature evolution for specific shells found within the new base
model for Stokes flow. The innermost shells are the hottest, and the shells decrease
in temperature as we move outward from the core. The blue line represents the
threshold temperature for differentiation of Tdiff = 171 K. The outermost shell which
is expected to differentiate just barely crosses this threshold temperature. This shell,
Rdiff , is at 530 km, and is depicted in red. As explained in the text, this shell remains
within 10 K of Tdiff for about 1.5 Gyr.

In the results of the new canonical simulation for Rayleigh-Taylor instabilities, the

radius of the core increase from 422 to 432 km, with a concurrent increase in the mass

of the core from 7.4× 1020 to 7.91× 1020 kg. The radius of maximum differentiation

also increases from 530 to 542 km, with a resulting concurrent decrease in the mass of

the crust from 4.64× 1020 to 3.92× 1020 kg. Finally, the percent of the total mass of

the body found in the crust decreases from 31.08% to 26.29%. For comparison with

the Stokes flow model, Fig. 5.6 displays the compositional structure of this model at
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2 Gyr, before the liquid has had a chance to fully freeze.

Figure 5.6: Distribution of phases for the new canonical model representing the
effects of Rayleigh-Taylor instabilities at t = 2 Gyr. The lines represent rock (orange),
solid or liquid water (dashed lines), and ammonia dihydrate or liquid ammonia (dash-
dot lines). A core of pure rock exists within 432 km. Between 432 and 438 km there
is a layer of water/ammonia liquid, and from 438 to 542 km there is a layer of pure
water ice. From 542 km to the surface at 600 km there is an undifferentiated crust of
rock, water ice and ADH.

In comparison with the base model for differentiation due to Stokes flow alone,

the inclusion of Rayleigh-Taylor instabilities raises the maximum temperature of the

core from 1541 to 1566 K. Additionally, the core now reaches its peak temperature

a little later at 3.14 versus 3.08 Gyr. These two effects are probably the result of

the lowered differentiation temperature at which Rayleigh-Taylor instabilities can

take effect. Differentiation now takes place at greater radii than is possible in a
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model which includes the effects of Stokes flow alone. This increase in the outermost

differentiation radius, Rdiff , allows more bulk rocky material to sink to the core. Since

this rocky material contains the radioactive nuclei, then not only does the size of the

core increase, but its overall production of radiogenic heating increases as well. In

Fig. 5.7, we see the thermal history for the new canonical model which now includes

the effect of Rayleigh-Taylor instabilities.

Figure 5.7: Temperatures within the new canonical model showing the effect of the
inclusion of Rayleigh-instabiltiies, at times t = 0 (red line), t = 1 Gyr and 2 Gyr
(dotted curves), and (solid curves, from top to bottom) t = 3 Gyr, 4 Gyr and the
present day, t = 4.56 Gyr

There is no change in the instantaneous maximum amount of liquid found in the

body as compared with a model including the effects of Stokes flow alone. However,
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the last of the liquid now freezes at 3.52 Gyr as opposed to 3.89 Gyr. For comparison,

Fig. 5.8 shows the amount of liquid present in the model over time.

Figure 5.8: Total mass of liquids within the new canonical model as a function of
time, showing the inclusion of the effects of Rayleigh-Taylor instabilities.

The final plot for this model (Fig. 5.9) graphically illustrates the temperature

evolution for individual shells experiencing differentiation through the combined ef-

fects of Stokes flow and Rayleigh-Taylor instabilities. As in the plot for Stokes flow

alone, only the outermost shells are displayed in this plot, beginning with one at a

radius of 420 km. The innermost shells are the hottest, and as we move outwards

from the core, we reach a shell that just barely crosses the threshold temperature for

differentiation via Rayleigh-Taylor instabilities of Tdiff = 145 K. Our model assumes
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that this shell at the boundary layer between the ice mantle and the undifferentiated

crust will begin to experience Rayleigh-Taylor instabilities once it is within 10 K of

Tdiff (green line), and these will continue until the shell is fully differentiated. This

shell (shown in red) has an outer radius of 542 km, which is the maximum radius of

differentiation, Rdiff , for this model. Any shell outside of this radius never rises above

Tdiff , and will therefore never differentiate. Note that the time period, τ , for which

the shell remains within 10 K of Tdiff is again on the order of 1.5 Gyr.

Figure 5.9: Temperature evolution for specific shells found within the new canonical
model including the effects of Rayleigh-Taylor instabilities. The innermost shells are
the hottest, and the shells decrease in temperature as we move outward from the core.
The blue line represents the threshold temperature for differentiation of Tdiff = 145
K. The outermost shell which is expected to differentiate just barely crosses this
threshold temperature. This shell, Rdiff , is at 542 km, and is depicted in red. As
explained in the text, this shell remains within 10 K of Tdiff for about 1.5 Gyr.
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5.6.1 Effect of Varying the Differentiation Temperature for the New Canonical

Model

For completeness, we reviewed the new canonical model which includes Rayleigh-

Taylor instabilities for two other differentiation temperatures close to Tdiff = 143 K.

This is to take into account the fact that the differentiation temperature depends on

parameters such as ice grain size, which cannot presently be fixed via observation.

For Tdiff = 140 K as opposed to 145 K, the maximum radius of the core increases by

4 km, to 436 km, with a concurrent increase in the mass of the core from 7.91× 1020

to 8.09 × 1020 kg. The differentiation radius increases from 542 to 546 km, with a

resulting concurrent decrease in the mass of the crust from 3.92×1020 to 3.68×1020 kg.

The percent of the total mass of the body found in the crust decreases from 26.29%

to 25.47%.

For a Tdiff = 135 K, the maximum radius of the core increases by 6 km to 438 km,

with a concurrent increase in the mass of the core from 7.91× 1020 to 8.18× 1020 kg.

The differentiation radius increases from 542 to 548 km, with a resulting concurrent

decrease in the mass of the crust from 3.92 × 1020 to 3.55 × 1020 kg. The percent

of the total mass of the body found in the crust decreases from 26.29% to 23.81%.

There is relatively little change in the other results, except that the time at which the

final liquid freezes steadily decreases with decreasing Tdiff from 3.52 to 3.35 to 3.26

Gyr, for Tdiff = 145, 140 and 135 K, respectively. Therefore it is clear that the models

are not too sensitive to Tdiff over this 10 K range of differentiation temperatures.

5.7 Parameter Study for the New Canonical Model

For models with differentiation temperatures appropriate for the inclusion of the

effects of Rayleigh-Taylor instabilities, we explored varying two of the model param-
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eters.

5.7.1 Change in Thermal Conductivity

The first parameter varied was the thermal conductivity of rock changing it from

krock = 0.5 to 1.0 W m−1 K−1, while maintaining the density of that rock at ρrock =

2.35 gm cm−3. This change has little effect on the maximum extent of the core as

compared with the model where krock = 0.5 W m−1 K−1. For Tdiff = 135 K and 145

K there is no change; and for Tdiff = 140 K, the radius decreases slightly from 436 to

434 km. Similarly, the radius of differentiation remains unchanged for Tdiff = 135 K

and 145 K, and again decreases slightly from 546 to 544 km for Tdiff = 140 K.

The increased value for the thermal conductivity does lower the maximum temper-

ature achieved by the core from about 1570 K to 1220 K, and causes this temperature

change to occur about 1 billion years earlier in these models. This again reflects the

increased ability for heat to escape from the core as a result of the increased value of

thermal conductivity. Finally, the time at which the liquid freezes for these models

decreases somewhat from the prior values of 3.26, 3.35 and 3.52 Gyr, to 3.19, 3.28

and 3.34 Gyr; respectively, for Tdiff = 135, 140 and 145 K.

5.7.2 Change in Density of Rock

The second is to change the value for the density of the rocky material from

ρrock = 2.35 to 3.25 g cm−3 in conjunction with changing the thermal conductivity

from krock = 0.5 to 1.0 W m−1 K−1. These two changes combined return our values

for the density and thermal conductivity of the rocky material back to values similar

to that of the olivine-type rock found in the models of Desch et al. (2009). This change

has the overall effect of increasing the proportion of ice to rock in the simulations,

thereby decreasing the size of both the rocky core and the differentiation radius. For
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Tdiff = 135, 140 and 145 K, the sizes of the core decrease from 438, 436 and 432

km to 360, 358 and 356 km, respectively. Similarly, for Tdiff = 135, 140 and 145 K,

the differentiation radii decrease from 548, 546 and 542 km to 530, 528 and 524 km,

respectively.

The maximum temperature achieved by the core for each of these models decreases

by about 150 K, and again occurrs about 1 billion years earlier in these models as

compared with our new canonical model. Finally, the time at which the liquid freezes

for these models increases significantly from the prior values of 3.26, 3.35 and 3.52

Gyr, to 4.08, 4.08 and 4.14 Gyr; respectively, for Tdiff = 135, 140 and 145 K.

5.8 Summary

In summary, we found that for all of the models with differentiation temperatures

appropriate to Rayleigh-Taylor instabilities, there remains a significant undifferenti-

ated crust with a thickness of at least 52 km. This is despite the consideration of the

effect of the inclusion of Rayleigh-Taylor instabilities on the differentiation process.

We have been conservative in our approach, allowing R-T instabilities to overturn

the crust if they are able to grow by only a factor of 10 in 1.5 Gyr. This result is

significant and implies that many Kuiper belt objects in the size range of Charon

may only partially differentiate, leaving a sizable undifferentiated crust. Table 5.8

summarizes the differentiation extent for all of the models considered above.

90



Table 5.1: Summary of differentiation radii for all models

Model Rdiff

Tdiff ρrock krock Visc Param

174a 3.25 1.0 Th 514 km

174b 3.25 1.0 Th 504 km

176 3.25 1.0 GK 506 km

174 2.35 1.0 Th 526 km

176 3.25 0.5 Th 498 km

171c 2.35 0.5 GK 530 km

135 2.35 0.5 GK 548 km

140 2.35 0.5 GK 546 km

145d 2.35 0.5 GK 542 km

135 2.35 1.0 GK 548 km

140 2.35 1.0 GK 544 km

145 2.35 1.0 GK 542 km

135 3.25 1.0 GK 530 km

140 3.25 1.0 GK 528 km

145 3.25 1.0 GK 524 km

a ρ̄ = 1.70 g cm−3

b ρ̄ = 1.65 g cm−3

c Combined Stokes Flow Model

d New Canonical Model
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Chapter 6

CONCLUSIONS

6.1 Background

Since their discovery more than twenty years ago, Kuiper Belt Objects and other

outer solar system icy bodies have emerged as exciting worlds with interesting ge-

ologies. With frigid surface temperatures of less than 60 K, and volume fractions of

water and other ices on the order of 50%, their thermal evolution and differentiation

processes are unique in the solar system. Here liquid water can take on the role of ter-

restrial magmas, and volcanic plumes of water and dissolved ammonia can erupt from

their surface in cryovolcanic outflows. My current research extends the KBO thermal

evolution models of Desch et al. (2009) to include the effect of Rayleigh-Taylor insta-

bilities in their evolution. In particular, I model the ability of a Charon-like body to

maintain a substantial undifferentiated crust on top of its pure ice mantle.

The thermal evolution models of Desch et al. begin with an undifferentiated body

that accretes cold as a mixture of rocky material (ρrock = 3.25 g cm−3) and ices

(ρice ∼ 1 g cm−3). Long-lived radioactive isotopes accreted within the rocky mate-

rial gradually heat the body. The inclusion of ammonia in the model with mass

fraction ≥ 1% relative to water causes the viscosity of the ice to drop by 5 orders of

magnitude when the first melt is produced at 176 K. This facilitates Stokes flow, al-

lowing meter-sized rocks to begin fall towards the core on geological timescales. Over

time, layer upon layer of material differentiates, eventually forming a hot rocky core

(ρ ∼ 3 g cm−3), surrounded by a liquid layer containing water and ammonia, which

is in turn surrounded by a pure water ice mantle (ρ ∼ 1 g cm−3). The model predicts
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that for a Charon-sized body with ρ̄ = 1.70 g cm−3, the outer crust will never rise

above T = 176 K and will therefore never differentiate. This undifferentiated crust

was predicted to have a thickness of 85 km up to the present day.

In this thesis I address two significant objections to the model. The first is that

the rock that initially accreted with ice and other volatiles to form the KBO may not

have existed as meter-sized rock, but rather as particles centimeter-sized or smaller.

Stokes flow is inadequate to separate these particles from the ice except at much

higher temperatures. Also, Stokes flow will not operate on geological timescales if

there is insufficient ammonia contained within the KBO. The second objection is

that the existence of an undifferentiated crust with ρ̄ ∼ 1.70 g cm−3 atop a lower-

density ice mantle is gravitationally unstable and therefore prone to Rayleigh-Taylor

instabilities. These instabilities could completely overturn the crust if given sufficient

time. Any unstable density stratification will eventually succumb to Rayleigh-Taylor

instabilities, but the rate of growth depends on the viscosity, which can slow the

growth rate to Gyr or more. The models in this thesis quantify the ability of Rayleigh-

Taylor instabilities to overturn the undifferentiated crust of a Charon-like body.

Please note that the models in this thesis assume that some differentiation has

already occurred, either via Stokes flow or through a melting of the ice at 273 K. It is at

this point that Rayleigh-Taylor instabilities can take hold within the boundary layer

between the ice mantle and crust. It is this second possible stage of differentiation

that the thesis focuses on. The differentiation temperatures and critical viscosities

calculated pertain specifically to this boundary layer in an attempt to see if Rayleigh-

Taylor instabilities will continue the differentiation process, perhaps all the way out

to the surface.

Chapter 2 describes a linear stability analysis I performed on the boundary layer

between the ice mantle and the overlying crust based on the work of Chandrasekhar
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(1961). The results of this analysis show that the growth rate for a Rayleigh-Taylor

instability on this boundary layer is

n ≈ λ

2π

g(ρ̄− ρice)

2ηice (1 + f(φ))
, (6.1)

where λ is the wavelength of the disturbance (parallel to the interface) and ηice is the

viscosity of the ice. Long wavelengths grow fastest but λ is limited to the planetary

radius, so there is a limit to how fast Rayleigh-Taylor instabilities can operate. For

the case of Charon in particular, amplitudes increase by less than a factor of 10

in 1.5 Gyr (roughly the time the interface will be at its maximum temperature) if

η > ηcrit ≈ 1.09 × 1022 Pa s. Theoretically, Rayleigh-Taylor instabilities can always

operate, but if the viscosity of the ice mantle exceeds ηcrit, they are insufficient to

effect an overturn of the crust on geological timescales. Since η generally increases

with decreasing temperature, I found that the exceedingly cold temperatures on the

surface of KBOs are sufficient to suppress Rayleigh-Taylor instability-driven overturn.

Chapter 3 explores the distinctly non-Newtonian rheology of water ice at the

very low temperatures found in KBOs. Based on the work of Goldsby and Kohlstedt

(2001), I computed the strain rate ε̇ as a function of stress σ, for each of four processes

(volume diffusion, basal slip, grain boundary sliding, and dislocation creep). For each

process the flow law ε̇ = Aσnd−p exp(−Q∗/RT ) holds, with different parameters

A, n, p and Q∗ for each process, and different dependencies on ice grain size d. The

total strain rate is then found to be ε̇total = ε̇diff + ε̇disl + (ε̇−1
bs + ε̇−1

GBS)−1. Knowing

the relationship between stress and strain allows us to determine the viscosity as

η = σ/(2ε̇) × f(φ), where f(φ) represents an enhancement to the viscosity due to

the presence of rock with a volume fraction φ. Based on the formulas of Friedson &

Stevenson (1983) for Charon, φ ≈ 0.51 and f(φ) ≈ 16.83.

For the purpose of our models, it is not possible to know the value for σ, a priori,
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as it depends on the process initially creating the disturbance. Since the Rayleigh-

Taylor instabilities must operate within τ = 1.5 Gyr to be effective in overturning

the crust, we fix the strain rate to ε̇ = 1/τ = 2.11 × 10−17 s−1 which corresponds

with the time period τ used to determine ηcrit above. Combining this strain rate with

the critical viscosity determined in Chapter 2 fixes σ. Once we know σ and ε̇ and

fix the grain size d, the flow laws of Goldsby and Kohlstedt uniquely determine the

temperature Tdiff at which this will occur. For the case of our Charon analog with d

fixed at 1 mm, ρ̄ = 1.65 g cm−3, ρrock = 2.35 g cm−3 and ρice = 0.935 g cm−3, we find

Tdiff = 143 K.

Based on these results, I ran the thermal evolution code of Desch et al. (2009)

for the case of Charon, assuming that zones that reach T > Tdiff = 135, 140 or 145

K differentiate, but zones that always remain below Tdiff do not. I found that shells

whose maximum temperature is near Tdiff tend to remain at those temperatures for

only 1.5 Gyr or so. This justifies our assumption that Rayleigh-Taylor instabilities

have to operate in this time frame to be effective.

6.2 Summary of Findings

I ran the first set of model simulations at Tdiff ≈ 176 K, the temperature at

which the first melt of ammonia allows Stokes flow to become a viable mechanism

for differentiation. The initial run with ρ̄ = 1.70 g cm−3, ρrock = 3.25 g cm−3, ρice =

0.935 g cm−3 and krock = 1 W m−1 K−1 successfully replicated the results of Desch

et al. (2009), resulting in a crustal thickness of 86 km at the present time. All

of the remaining models were run with ρ̄ = 1.65 g cm−3 to more accurately reflect

current observations for the size and mass of Charon. This decrease in mean density

required an increase the amount of ice relative to rock (with its embedded radioactive

isotopes). This yielded a decrease in the maximum temperature of the core, and a
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resultant decrease in the radius of maximum differentiation from 514 to 504 km.

Before proceeding with our Rayleigh-Taylor simulations, I decided to address the

likelihood that the rocky material that accreted to form Charon was closer in compo-

sition to that of substantially aqueously altered CM chondrites than the olivine-type

rock considered in previous models. To this end, we considered models where ρrock

was changed from 3.25 to 2.35 g cm−3, and krock from 1.0 to 0.5 W m−1 K−1. Chang-

ing ρrock to 2.35 g cm−3 requires a substantial increase in the ratio of rock to ice and

results in an increase in Rdiff to 526 km. Changing the thermal conductivity of the

rock to 0.5 W m−1 K−1 slightly decreases Rdiff to 498 km, although it does have a sub-

stantial effect on the thermal history of the body, delaying the onset of the maximum

temperatures in the core by about 1 Gyr. Finally, I implemented a change in the

parametrization for ice convection in the model where the underlying viscosity of the

ice is more accurately modeled through the use of Goldsby and Kohlstedt’s ice flow

laws. This change had minimal impact, increasing Rdiff by 2 km to 506 km.

The final run in this set of simulations included the effect of changing all three pa-

rameters simultaneously for the Stokes flow model. This model becomes the new base

model for Stokes flow, with ρ̄ = 1.65 g cm−3, ρrock = 2.35 g cm−3, ρice = 0.935 g cm−3,

krock = 0.5 W m−1 K−1, and ice convection modeled using the flow laws of Goldsby

and Kohlstedt. The resulting Rdiff for this model increases to 530 km, still leaving a

substantial crust of 70 km thickness.

The inclusion of Rayleigh-Taylor instabilities in the model substantially lowers the

temperature at which shells of material can differentiate, lowering Tdiff from about

176 to 143 K. This new canonical model for Charon includes all of the parameter

changes listed above for the base Stokes flow model with Tdiff = 145 K. This model

results with Rdiff increasing to 542 km, but still leaving a substantial crust of 58 km.

In this range, Rdiff is relatively insensitive to Tdiff , only increasing by 6 km when
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Tdiff is lowered by 10 K. Changing the thermal conductivity of the rock from krock

from 0.5 back to 1.0 W m−1 K−1 had almost no impact on the resulting thickness of

the crust in the range where Tdiff is between 135 and 145 K. Changing both krock to

1.0 W m−1 K−1 and ρrock = 3.25 g cm−3 reduces Rdiff by exactly 18 km for Tdiff = 135,

140 and 145 K.

The final result is that the inclusion of the effects of Rayleigh-Taylor instabilities

in our models for the thermal evolution of our Charon analog still results in the

production of a substantial crust with a thickness of at least 52 km. This result is quite

robust, only changing by 6 km when varying Tdiff by 10 K, and actually increasing in

thickness by 18 km when we return to our models with krock = 1.0 W m−1 K−1 and

ρrock = 3.25 g cm−3. This result can be extended to other KBOs whose typical surface

temperatures are closer to 40 K. In all of our models we found that the temperature

gradient from the surface of the crust to the top of the ice mantle was ∼ 2 K per km.

Thus, the change in temperature of 100 K required for Rayleigh-Taylor instabilities

to overturn the crust aren’t typically reached until the crust has a thickness of at

least 50 km.

6.3 Final Speculations and Future Research

Through the results of the model simulations, I found that a body like Charon

will sustain a substantial crust on the order of 50 km or more, even in the face

of Rayleigh-Taylor instabilities. This result is quite robust, and it would probably

require an impactor on the order of 50 km to overturn the crust of a body like Charon.

Additionally, KBOs whose surface temperatures are even lower than that of Charon

will have even higher viscosities in the ice mantle and be therefore be less likely to

have their crust overturn through the action of Rayleigh-Taylor instabilities.

The implications of having a substantially undifferentiated crust can be quite far
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reaching. In particular, since this crust is thermally insulating, it can support the ex-

istence of subsurface liquid long after it could exist within a completely differentiated

body. This subsurface liquid is a likely source for cryovolcanism as the liquid begins to

freeze. Cryovolcanism can have spectacular results on KBOs similar to those already

observed on the surface of the icy moons of the giant planets. Cryovolcanism can

also have a significant impact on the resurfacing of KBOs, and emplacing crystalline

water ice and ammonia on the surface which might otherwise be destroyed. This

could alter the surface chemistry of the KBO as well as any spectroscopy observed

from space. A final, possibly spectacular result, might be the creation of conditions

conducive to the formation of life at the boundary between the hot, rocky core and

the subsurface ocean above it. Although this would be a very surprising result, the

discovery of chemosynthetic life at the bottom of Earth’s oceans at “black smokers”

was also unpredicted.

Future work will include a much broader parameter study considering a wide

range of radii and densities. In particular, I would like to consider the model for

other icy bodies such as Quaoar, Orcus and Rhea to model their ability to retain

an undifferentiated crust. With some modifications, other solar system objects such

as the the moons of Uranus could also be modeled. An exciting application of this

model is the simulation of the thermal evolution of Rhea to determine its current

structure. From this modeled structure its moment of inertia can be predicted and

then compared with the moment of inertia observationally determined during the

Cassini probe’s most recent flyby. A final exciting prospect is the New Horizons

mission to Pluto and Charon. Direct observations of the surface of Charon can help

to provide evidence as to whether it has been resurfaced by cryovolcanism over the last

100 Myr. This could help to prove the existence of subsurface liquid up to the present

epoch, thereby verifying one of the predictions of the thermal evolution models.
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A final important consideration for future work is the inclusion of methanol in the

model. Methanol has been frequently observed in comets at levels relative to water

up to 6%, and typically around 2% (Bockelee-Morovan et al. 2004). Like ammonia,

methanol is an effective antifreeze, and a ternary composition of water, ammonia and

methanol (in the ratio 47:23:30) will freeze at an even lower temperature (153 K) than

a water-ammonia mixture will (Kargel 1994). For most of the models presented in

this thesis, the last liquid is found to freeze between 3 and 4 Gyr after the accretion of

the KBO. This result suggests that cryovolcanism may not be occurring today on our

Charon-like analog. However, the inclusion of methane in the model and its ability to

further lower the melting point of the ice will probably result in differentiation out to

a larger radii. This would result in the formation of a larger rocky core which could

retain heat longer. The lowered melting point of the ice from 176 to 153 K would

probably delay the onset of the final freezing of the liquid for an additional 0.6 - 2

Gyr (Desch et al. 2009). Thus, the inclusion of methanol in the model might allow

cryovolcanism to occur up to the present epoch.
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and equation of state of ammonia dihydrate (nh3 . 2h2o). Icarus 162, 59-73.

Goldsby, D. L., Kohlstedt, D. L. 2001. Superplastic deformation of ice: Experimental
observations. Journal of Geophysical Research 106, 11017.

Gulbis, A. A. S., and 12 colleagues 2006. Charon’s radius and atmospheric constraints
from observations of a stellar occultation. Nature 439, 48-51.

Hansen, C. J., Esposito, L., Stewart, A. I. F., Colwell, J., Hendrix, A., Pryor, W.,
Shemansky, D., West, R. 2006. Enceladus’ Water Vapor Plume. Science 311, 1422-
1425.

Hill, R. H. 1950. The Mathematical Theory of Plasticity. Oxford: University Press.
355.

Hussmann, H., Sohl, F., Spohn, T. 2006. Subsurface oceans and deep interiors of
medium-sized outer planet satellites and large trans-neptunian objects. Icarus 185,
258-273.

Jewitt, D., Luu, J. 1993. Discovery of the candidate Kuiper belt object 1992 QB1.
Nature 362, 730-732.

Kargel, J. S. 1992. Ammonia-water volcanism on icy satellites - Phase relations at 1
atmosphere. Icarus 100, 556-574.

Kargel, J. S. 1994. Cryovolcanism on the icy satellites. Earth Moon and Planets 67,
101-113.

Kargel, J. S., Pozio, S. 1996. The Volcanic and Tectonic History of Enceladus. Icarus
119, 385-404.

Kirk, R. L., Stevenson, D. J. 1987. Thermal evolution of a differentiated Ganymede
and implications for surface features. Icarus 69, 91-134.

101



Kivelson, M. G., Khurana, K. K., Russell, C. T., Volwerk, M., Walker, R. J., Zimmer,
C. 2000. Galileo Magnetometer Measurements: A Stronger Case for a Subsurface
Ocean at Europa. Science 289, 1340-1343.

Kuiper, G. P. 1951. On the origin of the solar system. In Astrophysics - A topical
Symposium, ed. J. A. Hynek (New York: McGraw-Hill), 357-424.

Leonard, F. C. 1930. The new planet Pluto. Leaflet Astron. Soc. Pacific No. 30,
August, 121-124.

Lorenz, R. D., Shandera, S. E. 2001. Physical properties of ammonia-rich ice: Appli-
cation to Titan. Geophysical Research Letters 28, 215-218.

Mastrapa, R. M. E., Brown, R. H. 2006. Ion irradiation of crystalline H2O ice: Effect
on the 1.65-µm band. Icarus 183, 207-214.

McKinnon, W. 1998. Geodynamics of Icy Satellites. Solar System Ices 227, 525.

McKinnon, W. B. 1999. Convective instability in Europa’s floating ice shell. Geophys-
ical Research Letters 26, 951-954.

McKinnon, W. B. 2002. On the initial thermal evolution of Kuiper Belt objects.
Asteroids, Comets, and Meteors: ACM 2002 500, 29-38.

Mueller, S., McKinnon, W. B. 1988. Three-layered models of Ganymede and Callisto
- Compositions, structures, and aspects of evolution. Icarus 76, 437-464.

Multhaup, K., Spohn, T. 2007. Stagnant lid convection in the mid-sized icy satellites
of Saturn. Icarus 186, 420-435.

Nimmo, F., Pappalardo, R. T., Giese, B. 2002. Effective elastic thickness and heat
flux estimates on Ganymede. Geophysical Research Letters 29, 1158.

Nimmo, F., Pappalardo, R. T. 2004. Furrow flexure and ancient heat flux on
Ganymede. Geophysical Research Letters 31, 19701.

Olkin, C. B., Wasserman, L. H., Franz, O. G. 2003. The mass ratio of Charon to Pluto
from Hubble Space Telescope astrometry with the fine guidance sensors. Icarus 164,
254-259.

Opeil, C. P., Consolmagno, G. J., Britt, D. T. 2010. The thermal conductivity of
meteorites: New measurements and analysis. Icarus 208, 449-454.

Person, M. J., Elliot, J. L., Gulbis, A. A. S., Pasachoff, J. M., Babcock, B. A., Souza,
S. P., Gangestad, J. 2006. Charon’s Radius and Density from the Combined Data
Sets of the 2005 July 11 Occultation. The Astronomical Journal 132, 1575-1580.

Porco, C. C., and 24 colleagues 2006. Cassini Observes the Active South Pole of
Enceladus. Science 311, 1393-1401.

Prialnik, D., Bar-Nun, A. 1990. Heating and melting of small icy satellites by the
decay of Al-26. The Astrophysical Journal 355, 281-286.

102



Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. 1992. Numeri-
cal recipes in FORTRAN. The art of scientific computing. Cambridge: University
Press, —c1992, 2nd ed. .

Reynolds, R. T., Cassen, P. M. 1979. On the internal structure of the major satellites
of the outer planets. Geophysical Research Letters 6, 121-124.

Ruiz, J. 2003. Heat flow and depth to a possible internal ocean on Triton. Icarus 166,
436-439.

Schubert, G., Stevenson, D. J., Ellsworth, K. 1981. Internal structures of the Galilean
satellites. Icarus 47, 46-59.

Schubert, G., Spohn, T., Reynolds, R. T. 1986. Thermal histories, compositions and
internal structures of the moons of the solar system. IAU Colloq. 77: Some Back-
ground about Satellites 224-292.

Schubert, G., Anderson, J. D., Travis, B. J., Palguta, J. 2007. Enceladus: Present
internal structure and differentiation by early and long-term radiogenic heating.
Icarus 188, 345-355.

Shchuko, O. B., Coradini, A., Orosei, R., Shchuko, S. D. 2006. Varuna: Thermal
evolution. Advances in Space Research 38, 1946-1951.

Showman, A. P., Mosqueira, I., Head, J. W. 2004. On the resurfacing of Ganymede
by liquid water volcanism. Icarus 172, 625-640.

Shulman, L. M. 2004. The heat capacity of water ice in interstellar or interplanetary
conditions. Astronomy and Astrophysics 416, 187-190.

Sirono, S.-I., Yamamoto, T. 1997. Thermal conductivity of granular materials relevant
to the thermal evolution of cometary nuclei. Planetary and Space Science 45, 827-
834.

Smith, B. A., and 10 colleagues 1979. The Galilean satellites and Jupiter - Voyager 2
imaging science results. Science 206, 927-950.

Solomatov, V. S. 1995. Scaling of temperature- and stress-dependent viscosity con-
vection. Physics of Fluids 7, 266-274.

Song, M., Cole, D. M., Baker, I. 2006. Investigation of Newtonian creep in polycrys-
talline ice. Philosophical Magazine Letters 86, 763-771.

Stern, S. A. 2008. The New Horizons Pluto Kuiper Belt Mission: An Overview with
Historical Context. Space Science Reviews 140, 3-21.

Thomas, P. J., Reynolds, R. T., Squyres, S. W., Cassen, P. M. 1987. The Viscosity
of Miranda. Lunar and Planetary Institute Science Conference Abstracts 18, 1016.
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