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ABSTRACT

Ionizing radiation used in the patient diagnosis or therapy has negative effects on

the patient body in short term and long term depending on the amount of exposure. More

than 700,000 examinations are everyday performed on Interventional Radiology modalities

[1], however; there is no patient-centric information available to the patient or the Quality

Assurance for the amount of organ dose received. In this study, we are exploring the

methodologies to systematically reduce the absorbed radiation dose in the Fluoroscopically

Guided Interventional Radiology procedures.

In the first part of this study, we developed a mathematical model which determines

a set of geometry settings for the equipment and a level for the energy during a patient

exam. The goal is to minimize the amount of absorbed dose in the critical organs while

maintaining image quality required for the diagnosis. The model is a large-scale mixed-

integer program. We performed polyhedral analysis and derived several sets of strong

inequalities to improve the computational speed and quality of the solution. Results present

the amount of absorbed dose in the critical organ can be reduced up to 99% for a specific

set of angles.

In the second part, we apply an approximate gradient method to simultaneously op-

timize angle and table location while minimizing dose in the critical organs with respect to

the image quality. In each iteration, we solve a sub-problem as a MIP to determine the ra-

diation field size and corresponding X-ray tube energy. In the computational experiments,

results show further reduction (up to 80%) of the absorbed dose in compare with previous

method.

Last, there are uncertainties in the medical procedures resulting imprecision of the

absorbed dose. We propose a robust formulation to hedge from the worst case absorbed
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dose while ensuring feasibility. In this part, we investigate a robust approach for the organ

motions within a radialogy procedure. We minimize the absorbed dose for the critical

organs across all input data scenarios which are corresponding to the positioning and size

of the organs. The computational results indicate up to 26% increase in the absorbed dose

calculated for the robust approach which ensures the feasibility across scenarios.
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Chapter 1

INTRODUCTION

1.1 X-ray Modalities in Radiology

Radiation operative modalities are classified into two categories of the imaging and

therapy modalities. Interventional Radiology (IR) is recognized as an image-guided

specialty for diagnosis ([5]) and radiation therapy (radiation oncology) is usually used for

the cancer treatment. Computed Tomography (CT) and Fluoroscopically Guided

Interventional (FGI) modalities are instances of imaging modalities. Intensity Modulated

Radiation Therapy (IMRT) is one of the most common forms of the radiation therapy.

These instances use ionizing radiation which is composed of the particles, and the energy

of individual particles determines the ionization degree. Ionizing radiation has dangerous

effects for the patient and the interventional radiologist depending upon the amount of

radiation. In this study, we focus on the radiation dose resulted from X-ray exposures and

consider only modalities emitting X-ray, however, this study can be extended to gamma

rays as well.

FGI and CT are fast in capturing the images of the inside of the human body using

X-rays. They are composed of an X-ray tube producing the X-ray, an image receptor, and

a table for the patient. The X-ray passes through the patient while attenuating by varying

amounts as they interact with the different internal structures of the body, and a shadow of

the structures on the image screen constructs the digital image. In the current digital

radiology, a matrix represents an image which is a square or rectangular area divided into

rows and columns. The smallest element of this matrix is called “pixel”. Each pixel of the

matrix represents the individual grey level of an image, and the value depends upon the

amount of absorbed dose in the image receptor [6].
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IMRT utilizes computer-controlled linear accelerators to precisely deliver radiation

doses to the tumor. By controlling and modulating the intensity of the radiation beam, it

allows conforming to the three-dimensional (3D) shape of the tumor. It allows exposing

higher radiation doses to the tumor while minimizing the dose to surrounding normal and

critical structures. It is used extensively for a variety of cancer disease treatments [7].

1.2 Radiation Effects and Risks

Ionizing radiation interacts with atoms of the cells. From the lowest level it may affect the

atoms, molecules, and cells to the higher levels of tissues and organs[8]. Radiation effects

of X-ray exposure to the body are in two major types of deterministic and stochastic

effects which may lead to skin injuries or cancer induction respectively.

Here we define some terminologies which are widely used in the organ dose

studies [9, 10],

• Absorbed dose: radiation energy imparted per unit mass of an irradiated body. It is

measured in joule per kilogram, and this unit is also called Gray (Gy).

D =
dE(J)

dm(kg)
(1.1)

where dE denotes the energy absorbed in the mass and dm is the mass of the organ.

• Equivalent dose: multiplying the absorbed dose by appropriate weighting factors

depending on the type of radiation creates the equivalent dose in the relevant organ

or tissue.

HT =WR DT,R (1.2)

where WR is the radiation weighting factor for the radiation type R and DT,R denotes

the absorbed dose received by radiation type R in the organ or tissue T . The unit for

HT is Sivert (Sv).
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• Effective dose: sum of the equivalent doses in the principal tissues and organs in the

body, each weighted by a tissue weighting factor. This weighting factor takes

account of the probability of fatal cancer, the probability of nonfatal cancer,

weighted for severity, and the average length of life lost due to an induced cancer.

E ′ = ∑WT HT (1.3)

where WT is tissue weighting factor based on the sensitivity to stochastic radiation

damage (risk factor). Table 1.1 represents Tissue Weighting Factors WT based on

ICRP [11]. E ′ is measured in Sv units. a The value 0.30 is applied to the average

dose to the five remaining tissues receiving the highest dose, excluding the skin,

lens of the eye, and the extremities. b Remainder is composed of the following

tissues: adrenals, brain, extrathoracic airways, small intestine, kidneys, muscle,

pancreas, spleen, thymus, and uterus. c The value 0.05 is applied to the

mass-weighted average dose to the Remainder tissue group, except when the

following splitting rule applies: If a tissue of Remainder receives a dose in excess of

that received by any of the 12 tissues for which weighting factors are specified, a

weighting factor of 0.025 (half of Remainder) is applied to that tissue and 0.025 to

the mass-averaged committed equivalent dose in the rest of the Remainder tissues.

• Effective risk: Weighted organ doses with cancer risks estimates would perform the

same comparative role as effective dose.

R = ∑
T

rT HT (1.4)

where HT is the equivalent dose to the organ/tissue T and rT is the sex-, age-, and

tissue-specific risk coefficient (cases per 100000 exposed to 0.1 Gy) for lifetime

attributable risk of cancer incidence. Table 1.2 presents the rT coefficients for

children and adults. Another source for indicating the risk factors is [4].
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Tissue weighting factor WT
Organ or Tissue ICRP Pub. 26 ICRP Pub. 60

Gonads 0.25 0.20
Bone marrow 0.12 0.12

Colon – 0.12
Lung 0.12 0.12

Stomach – 0.12
Bladder – 0.05
Breast 0.15 0.05
Liver – 0.05

Esophagus – 0.05
Thyroid 0.03 0.05

Skin – 0.01
Bone surface 0.03 0.01
Remainder 0.30a 0.05b,c

Table 1.1: Tissue weighting factors WT given in ICRP Publication 26 (1977) [2] and ICRP
Publication 60 (1991) [3].

In this study, our focus is on the minimization of the absorbed dose in the critical

organs of the body which may result in cancer induction. Since we only focus on a single

organ, the cancer risk is proportional to the absorbed dose.

1.2.1 Deterministic Risks

Deterministic risk is pertinent to the dose at the irradiated area of skin. Skin effects

include erythema (reddening like sunburn), dry desquamation (peeling), and moist

desquamation (blistering). Skin effects usually occur in the relatively low exposures of

X-ray. Erythema may occur when skin dose exceeds 3 Gy (unit of dose, J/kg), and

blistering requires a skin dose exceeding 12 Gy. Hair loss (epilation) is another skin effect

which can occur after receiving a skin dose higher than 5 Gy [8].

Several episodes of severe skin damage and harm to patients have occurred due to

high X-ray exposures during FGI procedures [12, 13]. Since 1994 the FDA and more

recently (2006) the Joint Commission has specified that skin exposures from fluoroscopy
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rT
Children Adults All ages

Lung 373 166 208
Stomach 66 30 37

Colon 203 96 118
Liver 32 14 18

Bladder 153 75 91
Uterus 37 14 19
Ovary 76 28 37

Prostate 67 34 41
Breast 865 160 299

Thyroid 200 18 54
Leukemia 133 68 82

Table 1.2: Tissue weighting factors WT given in ICRP Publication 26 (1977) [2] and ICRP
Publication 60 (1991) [3].

be routinely monitored as a Quality Assurance (QA) metric. High skin doses that cause

erythema must be identified and the patient informed. Appropriate medical care must be

provided should this occur. An X-ray exposure to a localized region of the skin (i.e. peak

skin dose) that exceeds 15 Gy is now included as a sentinel event and it is mandated to be

reported to the Joint Commission [14].

Maximum entrance skin dose (ESD) for CT is estimated by a theoretical method

within 0.1-0.42 Gy for one procedure [15]. However, skin dose may reach 1.2 Gy in some

CT procedures [16]. IMRT avoids the high skin doses by modulating the intensity through

various angles.

1.2.2 Stochastic Risks

Stochastic risk belongs to the mean organ dose which correlates with a risk of cancer

induction by affecting on the cell growing and dividing mechanisms [17]. Total organ

dose is indicated by total absorbed dose which is total energy absorbed in the organ/tissue

per unit mass of the organ/tissue [9]. When X-ray beam passes through the patient body,
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depending on the attenuation coefficient of the tissue, energy is attenuated and absorbed at

each volume unit along the path of the beam.

Not all the living cells have the same sensitivity to radiation. They can be

classified based on their rate of reproduction indicating their relative sensitivity to

radiation. Cells producing blood are continuously regenerating, so are the most sensitive

type, bone marrow cells. Reproductive and gastrointestinal cells are not regenerating as

quickly as the blood forming cells, so they are less sensitive. The least sensitive cells are

nerve and muscle cells which are the slowest to regenerate [8]. Therefore, radiation

biological effects on living cells may have three consequences: (1) no residual damage

when injured or damaged cells repair themselves; (2) cells being replaced through normal

biological processes after they die; or (3) cells overproduce to repair themselves leading to

a biophysical change [18].

High radiation doses in a short period of the time may kill cells following in tissue

and organ damage, while low doses may damage or alter the DNA of the irradiated cells.

Effects of the high radiation appears early after exposure and may result in death; however,

effects of the low doses may not appear for several years. A study on women patients

undergone fluoroscopic procedures determine the rate of breast cancer after 10 years [19].

People do not show the same reaction for the same amount of radiation dose, so it

is not possible to indicate the exact exposure that may result in death. However, statistics

show that 50% of a population may die within 30 days by receiving a dose in the range of

3.5-5 Gy to the whole body. It also depends on each individual health. The whole body

receives the exposure in a short period of time (minutes to hours). Exposures more than

0.5 Gy are recognized as decision doses and over 1.5 Gy cause severe blood changes and

affect many cells resulting in tissue or organ damage [8].
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Low doses do not lead to the immediate problems in the organs. The effect may

occur in the cell level and changes may not be recognized for many years after the

exposure. However, currently there is no data to indicate the occurrence of cancer

following exposure to low doses less than 0.10 Gy in the long time [18].

The correlations between radiation exposure and cancer induction are mostly

according to populations exposed to relatively high levels of ionizing radiation (e.g.,

patients who undergone selected diagnostic or therapeutic medical procedures). A study

determines the risk factors based on Japanese atomic bomb survivors [4]. Figure 1.1

presents the lifetime attributable risk of cancer incidence in terms of number of cases per

100,000 persons exposed to a single dose of 0.1 Gy for different ages and genders. The

lifetime attributable risk is defined in [4] as: “The estimated rate of a disease (such as lung

cancer) that could, in theory, be prevented if all exposures to a particular causative agent

(such as radon) were eliminated.”

Figure 1.2 presents the lifetime attributable risk of cancer mortality in terms of

number of cases per 100,000 persons exposed to a single dose of 0.1 Gy for different ages

and genders. Cancers induced from high dose exposure (greater than 0.5 Gy) include

leukemia, breast, bladder, colon, liver, lung, esophagus, ovarian, multiple myeloma,

stomach, and possibly prostate, nasal cavity/sinuses, pharyngeal and laryngeal, and

pancreatic cancer [18]. Figure 1.3 shows the estimated lifetime attributable risk for the

patient exposure to 1 mGy per year throughout his/her life and to 10 mGy per year from

ages 18 to 65. Figures 1.1, 1.2, and 1.3 show the highest lifetime attributable risk factors

belong to the female lungs and breasts in the young ages.

The radiation protection community conservatively considers some risk associated

with the amount of radiation causing cancer and hereditary effect. A linear, no-threshold

(LNT) model illustrates the dose and cancer risk relationship 1.4. This figure depicts a
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Figure 1.1: Lifetime Attributable Risk of Cancer Incidence [4], (Table 12D-1)

risk value even when there is no dose and that is associated with the risk of cancer even

without receiving any radiation. Although this LNT model may overestimate the radiation

dose, it is accepted by the Nuclear Regulatory Commission (NRC) as a conservative

model for determining radiation dose standards [8].
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Figure 1.2: Lifetime Attributable Risk of Cancer Mortality [4], (Table 12D-2)

“The likelihood of cancer occurring after radiation exposure is about five times

greater than a genetic effect (e.g., increased still births, congenital abnormalities, infant

mortality, childhood mortality, and decreased birth weight).” A mutation created in the

reproducible cells of the patient after exposure may result in genetic effects. These effects

may appear in the offspring of the exposed person or several generations later.
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Figure 1.3: Lifetime Attributable Risk of Solid Cancer Incidence and Mortality [4], (Table
12D-3)

In this study, we pick female breasts which is a vulnerable organ for young

females when exposed to the X-ray radiation.
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Figure 1.4: Linear No-Threshold Risk Model

1.3 Interventional Radiology

Interventional Radiology is an invasive diagnostic subspecialty that comprises a wide

range of image-guided therapeutic procedures[5]. Fluoroscopic-Guided Interventional

Radiology (FGI) modalities use ionizing radiation which produces X-rays. Number of

radiology procedures is increasing due to having less cost and pain in compare with

surgeries [20, 21]. Certain procedures can be potentially harmful because of high X-ray

penetration and require to be accurately monitored to avoid exposing critical organs of the

body. Among them, cardiac imaging frequently exposes patients to ionizing radiation, but

its contribution to the breast cancer is unknown. A study [19] on the 31,710 records of

female patients having fluoroscopic procedures after 10 years shows the mortality rates

resulted from breast cancer while there is an accumulated dose of 0.1 Gy absorbed in the

breasts.

International Commission on Radiological Protection (ICRP) report of “Avoidance

of Radiation Injuries from Medical Procedures” addresses lack of radiologists training

regarding possible radiation induced injuries resulted in FGI procedures [22]. A study on
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women who received chest X-ray shows that young women who receive repeated X-rays

with breast tissue included in the beam interception region with body have a higher

potential risk of breast cancer (about 9 times more for the ages less than 40 in compare

with ages more than 40) [23]. Nonetheless, patients are not aware of the radiation risks

nor are followed up when radiation doses from these sophisticated procedures may cause

any harm [24]. ICRP expect that all patients be informed of the radiation risks and effects

as part of the process of informed consent and that an appropriate process for patient

follow-up should be established [24]. Thus, monitoring organ doses is required for the

quality assurance purposes.

In this regard, each procedure should be setup in terms of geometry to avoid

exposing X-ray to the critical tissue as low as reasonably achievable (ALARA) while

providing adequate image quality for the diagnosis. Geometry of each procedure includes

patient position, table position, gantry angles, and collimator size. Energy of the x-ray

source is determined by the potential, current and time of exposure. Equipment

parameters and patient data should be investigated in order to identify the best setup for

each procedure. Currently in FGI procedures, there is some instruction for each protocol

which determines the setting of the equipment. However, this setting does not take into

account the patient size and geometry. There is not sufficient data for the geometry setting

to avoid a specific organ of the patient. An automatic control system adjusts the amount of

the exposure in the further radiations. This system measures the number of the photons

hitting the image receptor and energy of each individual photon. Based on this

information, it adjusts tube potential and current by itself. Real time optimization of the

dose for the critical organs may not be practical; however, a set of suggestions for the

geometry and energy setup can result in smaller amount of absorbed dose in a critical

organ. Although the current equipment has the automatic exposure control during the
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procedure, changing the geometry setting would reduce the absorbed radiation in the body.

This study has been encouraged by the report of cardiovascular examinations in

Mayo Clinic in Arizona where a 19 years old girl had more than 8 examinations. Such

examinations for young females might increase the risk of cancer induction for the critical

organs which are breasts for young females in such irradiation procedures.

One factor to quantify the image quality is Signal-to-Noise (SNR) ratio [25]. It

can be defined in terms of the ratio of the average intensity of the Region of Interest(ROI)

to the standard deviation of the background of the image [26]. Therefore, there is a

tradeoff between energy required for the reasonable image quality and absorbed dose in

the organ. By specifying a range for reasonable SNR values a constraint for image quality

is added to the model. Another factor for image quality is defined as contrast. Contrast

means how much distinguishable objects are from each other and in the other word, what

is the smallest size of the objects distinguishable in the image. Methods to improve the

image contrast are discussed in chapter 3.

We discretized the phantom volume into small volumes called voxels. We use

Computed Tomography (CT) images which are usually available prior to FGI procedures

to calculate linear attenuation coefficients based on the CT numbers captured from the

image.

The purpose of this paper is to present an optimization model to minimize total

absorbed dose in patient by determining required geometry setup of the FGI equipment

subject to image quality. A mixed integer programming (MIP) model is presented to

decide on the amount of energy to be generated at the X-ray tube, table position and

coverage of collimator jaws.
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1.3.1 Solution Approach

Mathematical programming is a method to systematically model the problems and

determine the best decisions based on the problem objective and constraints. A well

studied group of mathematical models are called Linear programming (LP) where there

exist known polynomial algorithms to solve these problems. Variables are continues and

objective function and constraints are a linear function of variables. A general linear

program formulation is stated as follows.

Max cx

subject to Ax≤ b

x≥ 0

Another class of mathematical programming models is integer programming (IP) models

where all the variables are integer. No polynomial time algorithm is known to solve these

problems. Mixed-integer linear and mixed-integer nonlinear models are another group

where some of the variables are integer and some are continuous. There is no polynomial

algorithm known to solve the mixed-integer problems in polynomial time and they are

usually harder than pure integer programs. A class of problems which there is no known

algorithm better than pure enumeration is called NP-Hard (non-deterministic

polynomial-time hard) problems. Mixed-integer nonlinear programs have nonlinear

objective function and/or constraints. It is more complicated to analyze the nonlinear

region for the mixed-integer problems. Thus, we have defined some variables to linearize

the nonlinear functions. We formulate radiation dose optimization model in terms of 0-1

mixed integer program. The set of variables include continuous variables and binary

variables. We explain the theoretical approach for solving this problem. Due to the large

size of the problem in terms of number of binary variables and constraints, we decompose
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the region of the problem into smaller substructures called polyhedrons and analyze each

polyhedron. A definition for the polyhedron is stated in [27], “A subset of Rn described by

a finite set of linear constraints P = x ∈ Rn : Ax≤ b is a polyhedron.” Figure 1.5

represents the feasible region corresponding to the polyhedron

P = {(x1,x2) ∈ R2 :−18x1 +25x2 ≤ 55,40x1 +17x2 ≤ 168,x1,x2 ≥ 0} where O, A, B,

and C are corresponding vertices of this polyhedron. If variables x1 and x2 only take

integer values, then we define a set of S = P∩Z2 which is depicted by the solid black

points in this figure. The convex hull of S denoted by conv(S) is defined as:

Figure 1.5: Demonstration of a convex hull of a pure IP and corresponding LP relaxation
problem; Polyhedron restricted to vertices O, A, B, and C is called LP relaxation and O,
A’, B’, B”, C’ is corresponding to the convex hull of IP

conv(S) = {x ∈ R2 : x = ∑
2
i=1 λixi, ∑

2
i=1 = 1, λi ≥ 0 for i = 1,2} [27] where x = (x1,x2)

and vertices O, A’, B’, B”, and C’ determine the corners (extreme points) of the feasible

region. conv(S) is a polyhedron as well. The boundary of this convex hull is shown by

dotted lines and axes x1 and x2. All the vertices and edges of this convex hull are called a

face for this convex hull. Any of these edges is called facet defining inequality for the

conv(S) since they are not redundant. Facet has one dimension less than the original

polyhedron dimension.
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A branch and cut algorithm is applied to solve the problem. Branch and bound

algorithm is a common deterministic method for solving mixed-integer models. First, it

solves the problem assuming all the variables are continues (LP relaxation) and then if

that solution satisfies the integrality for the integer variables, it is optimal solution and the

branch and bound algorithm will stop. Otherwise, it starts branching on the integer

variables having fractional value in the solution and each branch fixes corresponding

integer value to an integer number and solves the problem. This continues until all the

integer variables get integer value or problem is infeasible. In the branch and cut

algorithm, at each step of branching a set of cuts are added to the problem to tighten the

space of relaxed problem.

A cut applied to the IP or MIP for cutting off a fractional solution from the LP

relaxation is depicted in figure 1.6. Two cuts are depicted by dashed lines. Cut1 separates

Figure 1.6: Cut1 and cut2 separates the point of B which has a fractional solution from the
LP relaxation. Cut2 is a facet defining inequality.

the point B of the polyhedron restricted to O, A, B, and C which is LP relaxation, but this

cut is not intersecting with convex hull of IP. Thus, it is neither called a facet defining

inequality nor a strong valid inequality. However, cut2 is intersecting with B” which is a

face of the convex hull, so this cut is a strong valid inequality. A cut passing B’ and B” is

called facet defining inequality. Mathematical methods are applied to find the cuts for the
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problem. We derived strong valid inequalities, and added them in the pool of cuts in the

branch and cut algorithm. These cuts are developed for the MIP problem of radiation dose

reduction based on the structure of the problem and existing mathematical methods for

deriving cuts.

An example of a MIP problem is given in figure 1.7 where X is an integer and Y is

a continuous variables. Dash lines indicate the feasible region of the mixed-integer

program. The solid lines show the feasible region of the relaxation problem. It depicts a

line cutting off point ’A’ from the polyhedron. This line is a strong valid inequality.

Deriving facets of a MIP problem improves the quality of the solution and computational

Figure 1.7: Mixed integer programming polyhedron

time.

Two sets of cuts can be added to the algorithm built in current commercial solvers.

One is called lazy cuts and the other is user defined cuts. Lazy cuts are used via the

methodology the commercial solver uses to pick a cut or a set of cuts from a pool of cuts.

The set of user defined cuts are a set of cuts that are applied based on a methodology the

user defines for the branch and cut algorithm. In the current study the method used for

adding the cuts is based on the lazy cuts; however, developing efficient algorithm to

customize the application of the cuts can improve the efficiency of the algorithm.
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Results compare the quality of the solution before and after adding these cuts to

the problem. Results show how much dose is absorbed in the critical organ for each

geometry setting.

In the second part of our study, we apply an approximate gradient method to

provide a method to search the continuous geometry and angles while minimizing the

absorbed dose in the critical organs and remaining a reasonable image quality. This

method reduces the absorbed dose by slight change in the geometry. It can be used to

solve the model with a refined size of the voxels where voxels are smaller and we have

more variables and constraints. The original model is very large and refining the size of

the voxels cannot be handled by commercial solvers for the branch-and-cut method.

The third part of this research, investigates a robust optimization methodology to

handle the uncertainty of the patient motion within a procedure. This motion can be

resulted from breathing processes and other sources and changes the relative position and

size of the organs. We introduce scenarios based on the breathing motion and compare the

results for the absorbed dose using the robust model with each scenario solution.

As a future research this model can be applied in IMRT and a small modification

of the formulation is required. However, the computation complexity needs to be

investigated and compared with current methods and studies.
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Chapter 2

BACKGROUND

2.1 Monte Carlo Simulation

Many studies employ Monte Carlo techniques to simulate particle tracks and interactions

with matter with respect to energy spectra to estimate absorbed dose in different organs of

the body. We address some of the organ dose studies using Monte Carlo in interventional

radiology.

A Monte Carlo code developed by [28], simulates X-ray photon interactions in

diagnostic X-ray procedures. This simulation includes the image receptor and estimates

image quality in terms of contrast and signal-to-noise ratio.

Results given by Monte Carlo method for lens of the eyes in diagnostic X-ray

procedures are compared with converted thermoluminescence dosimetry (TLD) ([29])

measurements [30].

A Monte Carlo code GEANT4 is an object oriented code developed in C++ which

requires user code to identify the geometry, particles, physical process to execute the

simulation [31]. Although, GEANT4 provides simulation of the particles, it is not

specifically designed for the medical modalities. Some modifications to this code and

existing algorithms enables CT simulation. A Linux cluster including 38 CPUs is used to

run several pieces of the simulation program [32].

A Monte Carlo simulation of CT using GEANT4 toolkit has been implemented

which includes random generation of the photons based on the spectra distribution and

detection of the photons at the image receptor [33]. The energy absorbed in each pixel of

the image is used for image reconstruction. An interface is designed to import data from

the Digital Imaging and Communications in Medicine (DICOM) into simulation package
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GEANT4 [34]. CT data are captured from DICOM and geometry parameters are fed into

the simulation as geometry.

Monte Carlo code MCNP [35] used in [36] typically takes about six hours with 20

million starting particles to attain less than 0.5% uncertainty in the calculated effective

dose. To compute the effective dose resulted from scattered radiation for the cardiologist,

it takes four times as much processing time as required for the patient. MCNP uses

mathematical phantoms to calculate the organ doses, however, authors in [36] discuss in

fact that PCXMC ([37]) code may have considerably different results than MCNP for the

organ doses, but it is much faster and provide relatively acceptable results in pediatric

patients from catheterizations in cases of (suspected) congenital heart defects.

The Monte Carlo code MCNP has been used for dosimetry in medical irradiations

within user defined 3-dimensional geometry. The image simulation has been added from

the version MCNPX ([38]). Study [39] uses MCNPX code and a FAX model of the

patient ([40]) to achieve the tube potential value in the computed radiography of the chest

which results in the low patient dose and reasonable image quality.

Authors in [41] study pediatric patient effective doses undergone interventional

cardiac procedures. Effective doses are calculated using Monte Carlo simulation and the

exact radiation geometry of the X-ray tube and energy settings are used for a particular

projection in a patient. An anthropomorphic phantom is used for the simulation of the

patient anatomy based on the gender and length of the patient.

Bozkurt and Bor [42] employ Monte Carlo code MCNP to report the organ

equivalent doses and compute the effective doses for the patient and primary physician

during interventional cardiological procedures. Two voxel-based VIP-Man models are

used for the patient and physician. Five most common projections with equal field sizes
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were tested and seven tube potentials were studied for each projection. They indicated

that effective doses for the patient determined in their study was lower than literature data

and effective dose for the physician agreed with the literature data.

Organ doses for different ages and genders are indicated using simulation results

by a software called CALDose [43]. The inputs include gender, potential (kV), Focus to

skin distance (FSD) in cm, charge (mA), time (s), filtration Al (mm), and type of the

procedure which specifies body part. The output is the total absorbed dose for each organ

in addition to the effective dose and cancer risk.

Monte Carlo method is time consuming and needs to be patient-specific to have

more accurate results, so it is not reasonable to run simulation for every procedure. The

total time required depends upon the projection and is varies based on the phantom and

codes.

2.2 Optimization in Computed Tomography (CT)

International Electrotechnical Commission [44] requires every CT system displays the

average absorbed dose regarding the exposure parameters. A definition for the image

quality takes into account noise and special resolution. Having a constant special

resolution, image noise is proportional to the inverse of the square root of radiation dose

[45]. Some dosimetry studies in CT address the current modulation of X-ray tube

[45, 46, 47, 48, 49, 50] using methods other than Monte Carlo.

Authors in [45] develop a method to determine each scan parameters regarding

radiation dose reduction and obtaining the same level of the image noise in different sizes

of the patients. Using the exponential attenuation results in unscattered photons on the

image receptor and variance of the linear attenuation, determined by Poisson statistics at

the center of the homogeneous circular cylinder, establishes the relationship between
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standard deviation of the pixel value, image noise, special resolution, attenuation

coefficient and radiation dose. However, this method is valid for the center of the rotation

and central region of the image. This derivation assumes parallel beam while the real CT

emits beams more like fan shape beams.

The value of Computed Tomography Dose Index (CTDI) is based on measuring

the absorbed dose in a cylindrical acrylic phantom and used to estimate the absorbed dose

resulted from CT radiation. The dependence of this value on the size of the phantom, the

selected kV and the scan mode are addressed in [46]. Current acrylic phantoms are in two

sizes which does not represent real size of the patients. The relationship for the various

scan parameters is formulated, and enables calculating CTDI for a continuous range of

selectable scan variables (e.g., kVp, mmAs, scanner type, scan mode, patient size).

Automatic Tube Current Modulation is addressed as an embedded feature of the

recent CT technologies [47]. This technique includes angular (x-y) modulation and z-axis

modulation which maintains constant image quality. Measurements are performed for

X-ray beam absorption in 100 central channels from lateral and anteroposterior views.

Sinusoidal modulation for the tube current is achieved by preprogramming of 360 degrees

of rotation. In z-axis modulation, a localizer radiograph is used accompanied by a scanner

which computes the required tube current to attain the images within a selected noise

level.

Traditional methods for dose calculation are based on the parametrizing dose

distributions measured using water phantoms and employing correction factors to the

beam for the nonuniform contour of the patient and tissue heterogeneities. However,

convolution kernels are most often achieved by using Monte Carlo methods for

transporting charged particles [48].
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A developed program captures scan protocols from DICOM standard and

performs the automatic computation for the CT patient doses [49]. This study use organ

conversion factors for the average size and weight of adults, a 7-year-old child and

8-year-old babies for the both sexes.

CT dose metrics including CTDI, organ dose, and effective dose are evaluated

based on different tube voltages and contrast-to-noise ratio for a Rando phantom [50].

Two criteria mentioned as optimization criteria are: having a constant contrast-to noise

ratio at each tube voltage to specify the one minimizing the patient dose, having a constant

dose for each tube voltage and determine the value maximizing the contrast-to-noise ratio.

The result of the experiments indicates that the CT optimization with respect to tube

voltage needs to consider patient effective dose rather than CTDI in the air or body.

2.3 Optimization in Intensity-Modulated Radiation Therapy (IMRT)

An advance method in radiation therapy called intensity-modulated radiation therapy

(IMRT) delivers precise radiation to a tumor utilizing computer-controlled linear

accelerators. It has the capability to be conformed to a three-dimensional (3D) shape of

the tumor by modulating the intensity of radiation beams. It is desired to radiate tumor

required dose and avoid surrounding organs spatially organs at risk [7]. Pencil beams used

for treating cancer tumor are referred as beamlets. A fluence map is a matrix of beamlet

weights [51]. Major problems discussed in IMRT are beam angle optimization, fluence

map optimization and beam segmentation.

A number of linear, quadratic and integer programming models have been

proposed for finding the optimal set of beam angles and corresponding fluence maps. A

review of formulations can be found in [51, 52, 53]. Ehrgott et al [52] survey the use of

optimization models discussed in IMRT for the selection of the beam angles, intensity

map optimization, and sequence of the multileaf collimator reconfigurations including
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linear and nonlinear models. The linear model minimizes the average dose on the critical

structures while maximizing target dose[51, 54, 55]. A greedy search technique can be

used to determine the parameters of coverage and conformity as well as beam angle

selection [54]. Two sets of full-volume constraints and partial-volume constraints

determine the limits that have to be satisfied by all voxels of a structure or by a specified

fraction of the voxels respectively. The proportion of the voxels receiving a dose greater

or equal than prescribed dose is called coverage of target structure and the ratio of the

number of voxels in the structure and surrounding tissue to the number of the voxels only

in the structure receiving a dose greater than or equal to the prescribed dose is called

conformity of the structure[51, 54].

The nonlinear quadratic formulations are in terms of weighted least square

deviation from prescribed dose and received dose in tumor, and the least square deviation

from the received dose and threshold dose in critical organs and normal tissues

[56, 57, 58]. Carlsson [57] reduces the problem dimension of a fluence map optimization

by decomposition of the Hessian matrix corresponding to the objective function. Using a

column generation approach and optimization of the segment shapes and weights,

dynamically generates the multileaf collimator segments. Also using the same approach,

the author finds the near optimal solutions with fewer columns comparing to the original

problem dimension. A primal-dual interior point algorithm guarantees to find the optimal

solution to the convex formulation of the fluence map optimization problem for a given set

of beams in a clinical viable period of the time. This formulation is a quadratic

programming with linear constraints [56].

Mixed integer programming is applied in relaxing dose-volume constraints

[59, 60, 61], beam angle and intensity selection [51, 62, 63, 64, 65, 66]. The objective

function is either minimizing doses to critical organs or maximizing doses to the targets.
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If the problem is infeasible, the dose-volume constraints for each voxel are relaxed by

converting to the fractional constraints. Beam angle selection can be implemented by

having an indicator variable to decide selection of a known angle [51] or optimizing over

several set of angles [63]. A mixed integer model optimizes beamlet weights by using an

indicator variable to decide whether a beam is selected or not. An iterative method

eliminates insignificant beam angles with less contribution to a better treatment plan and

reduces the search space[51].

The optimality of the IMRT plans can be studied as a function of beam angles with

an exhaustive search approach. Computational speed is improved by parallelizing the

beam angle optimization problem [67]. Decomposition of an integral fluence map into

rectangular apertures and corresponding intensities has been studied through mixed

integer models as well as minimization of the total treatment time. In a bi-level

optimization problem, Bender’s decomposition generates columns and rows necessary

within a branch-and-price-and-cut algorithm which is not computationally efficient. Thus,

several valid inequalities are generated based on the structure of the problem which

improve the gap between lower bound and upper bound and are able to provide the

optimal solution in some instances. A partitioning strategy on input matrix also improves

the gap.

Other studies minimize the total treatment time which is the amount of time

required to switch from one jaw setup to another and duration of the radiation. Total set

up time is assumed to be proportional to the total number of apertures in one study [62].

Some solution techniques to a large-scale problem are also discussed in [64], such as;

branching on a set of binary variables rather than one variable at a time, using a heuristic

which forces some of the binary variables to one, having a master problem with smaller

number of body voxels and adding columns.
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Chapter 3

RADIATION DOSE REDUCTION IN FGI

In this chapter, we formulate the problem of radiation dose reduction for critical organs in

Fluoroscopically Guided Interventional Radiology (FGI). We consider a cardiovascular

procedure where the patient breast is a critical organ and heart of the patient is the region

of the interest.

3.1 FGI System Features

FGI modalities are comprised of an X-ray tube where X-ray is generated, a receptor

where image is constructed, and a C-arm to connect these two. A table is located close to

the equipment for patient positioning. The table can be moved in any three directions of

the space. Moving collimator jaws above the X-ray tube, changes the size of the irradiated

region on the patient. The goal of this study is covering the radiation field in a way that

Region of Interest (ROI) retains with an acceptable resolution in the image and avoids

over exposing critical organs. ROI is referred to the organ of the body which is of interest

to physician.

The amount of energy produced in X-ray tube depends on the tube potential (kV),

current (mA) and time (s). Lowering energy leads to smaller values of absorbed dose;

however the amount of energy passing through the body and hitting the receptor will be

smaller and may not have acceptable image quality for diagnosis. This system is equipped

with an automatic exposure control which adjusts the exposure based on the number of

photons and energy of the photon received at the image receptor. This system starts with

an initial setup independent of the patient size and geometry. It does not minimize dose

for the critical organs.
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3.2 Assumptions

Before each procedure, there is data available prior to FGI procedure such as number of

CT slices, thickness of each slice, size of field of view (at the image receptor), and source

to image receptor distance, which can be used for constructing mathematical models by

applying preliminary calculations. Usually a CT scan is provided to physicians prior to

FGI procedures. A series of CT images can be used to construct a real patient phantom.

We can discretize each CT image into equal squares, and build up a patient phantom from

small volumes called voxels. We combine a set of image pixels and refer to each set as

one pseudo pixel. Each voxel has a width and height equal to the size of the image pixel

and length of CT slice thickness. Combined set of voxels is used to overcome the large

number of variables in the model. However, when the computational capability is

improved, the pseudo voxel size can be further refined. The CT number for each pixel of

the CT image can be converted to the linear attenuation coefficient corresponding to the

tissue [9, 68]. CT number in Hounsfield units is defined as follows,

CT number =
µ−µwater

µwater
(3.1)

where µ is the linear attenuation coefficient of the matter corresponding to a pixel of the

CT image where CT number is measured. µwater denotes the linear attenuation coefficient

of the water. Here, we assume that for each pseudo voxel there is one attenuation

coefficient µ . CT numbers also depend upon the values of the kV.

We use the same discrete size of the pseudo pixel for the image at the receptor.

The energy generated by the X-ray tube is assumed to be uniformly distributed into a

number of pencil beams equal to the number of the pseudo pixels considered for the

image. We assign one single beam going from source to each pseudo pixel of the image at

the receptor. Figure 3.1 presents a schematic view of the discretized phantom, image and
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Figure 3.1: Beams going from X-ray source to image receptor through phantom pseudo
voxels and are attenuated based on attenuation coefficients computed from CT slices

corresponding CT slice. The phantom for a real patient is built using the CT slices and the

FGI image is constructed after each pencil beam traverses the phantom and strikes the

image receptor.

By moving the collimator jaws, a set of pencil beams going to a row or column of

the image are covered. Type of the procedure indicates the body part undergoing the

radiology procedure. In this study, we consider a cardiovascular procedure for a female

where heart is the organ which should be irradiated and is considered as Region of Interest

(ROI). In this procedure the patient breast is considered as a critical organ based on the

statistics given in the chapter 1 which indicates high risk of cancer for the female range

age of ≤ 40.

For each pencil beam intercepting body pseudo voxels, we calculate absorbed

energy in each pseudo voxel. Since attenuation values depend on the tube potential, we fix

kV so energy varies by changing current (mA) and time(s). Problem can be solved for a

set of kV potentials and the best kV will be determined. Since a setting for the kV alters
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image contrast, it can be evaluated in the methods for improving the image quality.

It is assumed that each beam is attenuated relative to the exponential attenuation of

a patient pseudo voxel. This is an approximation and can be refined in the future studies if

necessary. Energy attenuated by the air before the beam enters patient and after exiting

from the patient to the image receptor is small and negligible because of the small value of

the air attenuation coefficient (1/1000 of µwater).

The distance between the X-ray tube and receptor is assumed to be known.

However, since it has effect on the image contrast, a general framework to address this

problem is to solve a set of problems in different setups and select the best configuration.

The table height, lateral and longitudinal increments, radiation field size and the amount

of the source energy are to be determined for each scan while minimizing the total

absorbed dose in the critical organ. Each axis in the space is discretized by the same size

of the pseudo voxels in the patient for the corresponding direction. We assign a set of

binary variables to each direction. These binary variables are xi, y j, and zl in directions x,

y, and z respectively. We assume that for the default patient location, all pseudo voxels of

the patient are completely matching space pseudo voxels. Any change in the table

position relative to X-ray source can be determined by these three variables which

indicate the location of the patient. The angles of the equipment are relative to the patient

lateral and longitudinal directions and assumed known for each setting. The selection of

the best angle configuration can be achieved by solving the problem for a set of the most

commonly used angles. Changing the angles alters the position of the X-ray tube and

image receptor in a polar system.

Mass of each voxel is determined based on the table of organ or tissue masses

presented in [69]. For a pseudo voxel, mass is determined by mass of one voxel times the

number of voxels combined in a pseudo voxel. The amount of absorbed dose for each
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voxel is defined as the energy (∆E) absorbed by the ionizing radiation per unit mass of

material (∆m) [9] and calculated based on the 1.1.

∆E = Eentrance−Eexit = Ek−Ek e−µkd (3.2)

where Ek is the entrance energy at voxel k th, µk is the linear attenuation coefficient of

voxel k th and d is the length of the voxel the pencil beam traverses which is assumed to

be equal for all the voxels.

Figure 3.2(a) presents the amount of energy exiting a homogenous material.

Human body consists of several different tissues and organs with different attenuations.

Figure 3.2(b) presents the value of the energy when leaving a material. It is assumed that

(a) Homogenous (b) Nonhomogenous

Figure 3.2: Attenuation of the energy, (a) pencil beam traversing a homogenous material
(b) pencil beam traversing a nonhomogenous material

photons after striking the image receptor are stopped and their energy is completely

absorbed in the receptor. µi′ j′ indicates the attenuation of the receptor for each pseudo

pixel i′ j′ and d is the distance traversed in the receptor. The value of µi′ j′ is considered to

be fix for all the pseudo pixels of the image. Field of view is assumed a known parameter

for this problem.
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3.3 Mathematical model

We present a mixed-integer formulation for minimizing radiation dose in the critical

organs in FGI modalities. This formulation is a general formulation in terms of the

procedure type and corresponding critical organ.

3.3.1 Notations

A list of the notations used for the model is provided to facilitate understanding of the

formulation.

Indices

o = Organ index

i ∈ {lx, . . . , ux}: index of increment in x direction

j ∈ {ly, . . . , uy}: index of increment in y direction

l ∈ {lz, . . . , uz}: index of increment in z direction

i′: index of rows of the image on the image receptor

j′: index of columns of the image on the image receptor

n: number of the image rows/columns

lx: min index in x direction

ux: max index in x direction

ly: min index in y direction

uy: max index in y direction

lz: min index in z direction

uz: max index in z direction

lmax: max phantom index in z direction

(î, ĵ, l̂): index of a pseudo voxel in space

(ip, jp, lp): index of a pseudo voxel in the body

31



Sets

V S: set of space pseudo voxels

V P: set of phantom pseudo voxels

Co: set of pseudo voxels belonging to the critical organ, Co ⊆V P

Si′ j′ : set of the space pseudo voxels intercepted with beam i′ j′ for a fix geometry

setting

Parameters

d: distance traversed in each pseudo voxel (mm)

V(ip, jp,lp): phantom pseudo voxel (ip, jp, lp)

doseV(ip, jp,lp)
: Absorbed dose in pseudo voxel (ip, jp, lp) (Gy)

d′: distance traversed in the image receptor (mm)

doseVdetectori′ j′
: dose for a pseudo pixel i′ j′ of the image (Gy)

mV(ip, jp,lp)
: mass of the pseudo voxel (ip, jp, lp) (kg)

µ(ip, jp,lp): linear attenuation coefficient of a pseudo voxel (ip, jp, lp) (1/mm)

µi′ j′: linear attenuation coefficient corresponding to the i′ j′ pseudo pixel of the

image receptor with a known height (1/mm)

Intbg: average intensity of the background of the ROI (J)

IntROI: average intensity over the ROI (J)

mdetector: mass of detector (kg)

ROI: region of interest of the phantom

K1: lower bound of SNR

K2: upper bound of SNR

ξ(ip, jp,lp),(î, ĵ,l̂),i′ j′
=


1 if there exist i, j, l where î = ip + i, ĵ = jp + j, l̂ = lp + l

0 otherwise
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3.3.2 Variables

We introduce notations used for declaring decision variables including continuous and

binary variables,

E0 = Initial energy of each beam at source

ηi′ =


1 if row i′ of the image is not covered by collimator/wedges

0 otherwise

δ j′ =


1 if column j′ of the image is not covered by collimator/wedges

0 otherwise

γi′ j′ =


1 if ηi′ = 1 and δ j′ = 1

0 otherwise

xi =


1 if longitudinal table increment relative to the origin is i units of discrete size

0 otherwise

y j =


1 if lateral table increment is j units of the discrete size

0 otherwise

zl =


1 if table height relative to the origin is l units of the discrete size

0 otherwise

ψ(ip, jp,lp),i′ j′ =



1 if beam i′ j′ intercepts pseudo voxel (ip, jp, lp) of the phantom :

γi′ j′ = 1 and xi = 1, y j = 1, zl = 1

0 otherwise
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β(ip, jp,lp),(î, ĵ,l̂),i′ j′
=



1 if voxel (ip, jp, lp) matches with pseudo voxel î ĵl̂

after increments i, j, l, where i = î− ip, j = ĵ− jp, l = l̂− lp

and beam i′ j′ intercepts with this pseudo voxel

0 otherwise

Elp,i′ j′ = Energy at layer lp of the phantom when beam i′ j′ is passing

ESD,i′ j′ = Energy at the i′ j′ pseudo pixel of the image receptor i′ j′

τi′ j′ =


ESD,i′ j′ if ψ(ip, jp,lp),i′ j′ = 1 ,(ip, jp, lp) ∈ ROI

0 otherwise

αi′ j′ =


1 if ψ(ip, jp,lp),i′ j′ = 1 ,(ip, jp, lp) ∈ ROI

0 otherwise

Γ(ip, jp,lp−1),i′ j′ =


Elp,i′ j′ if ψ(ip, jp,lp−1),i′ j′ = 1

0 otherwise

To determine whether variable ψ(ip, jp,lp),i′ j′ is zero or one, we need to have binary variable

β(ip, jp,lp),(î, ĵ,l̂),i′ j′
be equal to one to specify the destination location in the space which

phantom can be moved to and for corresponding pseudo voxel in that destination, a

specific beam intercepts the pseudo voxel which should exists in the radiation field and

that is γi′ j′ . Since we defined a set of space pseudo voxels which are intercepted by a

specific pencil beam, we have β(ip, jp,lp),(î, ĵ,l̂),i′ j′
equal to one if for corresponding pencil

beam, the coordinate of a phantom pseudo voxel matches with one of the space pseudo

voxels in the set and this location be selected as the destination to move the phantom to.

Parameter ξ(ip, jp,lp),(î, ĵ,l̂),i′ j′
is known for a specific angle configuration and indicates a
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pseudo voxel of the space intercepting with each pencil beam. We set indices of the corner

of the room to be (0, 0, 0). Figure 3.3 demonstrates the geometry of the mathematical

model. This figure depicts two pencil beams going from the X-ray source to the image

Figure 3.3: Demonstration of geometry used in the mathematical model

receptor while traversing through the phantom. Cross symbols on the phantom are the

interception points of the pencil beam with patient pseudo voxels. We assign one binary

variable for every xi location and one for every zl location in the space. This figure depicts

geometry corresponding to binary decision variables x0 . . .x10 and z0, . . . ,z9. This figure is

in two dimensions; however, the problem is in three dimensions. Parameter

ξ(ip, jp,lp),(î, ĵ,l̂),i′ j′
is computed for each geometry setting that angles are known and

determines all sets of Si′ j′ associated with beam i′ j′. This figure is used for the illustration

of the geometry and patient real phantom is constructed using CT slices.
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3.3.3 Optimization Model

We represent the formulation of the mixed-integer program where the objective function

minimizes the dose received in the critical organ with respect to the constraints which

determine the table geometry, location for the collimator jaws, and range of the SNR.

Min ∑
V(ip, jp,lp)∈Co

doseV(ip, jp,lp)
= ∑

(ip, jp,lp):V(ip, jp,lp)∈Co

n

∑
i′=1

n

∑
j′=1

Γ(ip, jp,lp),i′ j′(1− e−µ(ip, jp,lp)d)

mV(ip, jp,lp)

(3.3)

Subject to

• Constraints to identify which pseudo pixels of the detector are in the field.

γi′ j′ ≤ ηi′ i′, j′ = 1, . . . ,n (3.4)

γi′ j′ ≤ δ j′ i′, j′ = 1, . . . ,n (3.5)

γi′ j′ ≥ ηi′+δ j′−1 i′, j′ = 1, . . . ,n (3.6)

δ j′ ≥ δp +δt−1 p≤ j′ ≤ t, p = 1, . . . ,n−2, t = p+2, . . . ,n,

j′ = p+1, . . . , t−1 (3.7)

ηi′ ≥ ηk +ηh−1 k ≤ i′ ≤ h, k = 1, . . . ,n−2, h = k+2, . . . ,n,

i′ = k+1, . . . ,h−1 (3.8)
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• Constraint to relate ψ(ip, jp,lp),i′ j′ to β(ip, jp,lp),(î, ĵ,l̂),i′ j′

ψ(ip, jp,lp),i′ j′ ≥ β(ip, jp,lp),(î, ĵ,l̂),i′ j′
+ γi′ j′−1 ∀ (ip, jp, lp) ∈V P, (î, ĵ, l̂) ∈ Si′ j′,

î = i+ ip, ĵ = j+ jp, l̂ = l + lp,

i′, j′ = 1, ..,n (3.9)

β(ip, jp,lp),(î, ĵ,l̂),i′ j′
≤ γi′ j′ ∀ (ip, jp, lp) ∈V P, i′, j′ = 1, ..,n (3.10)

3 β(ip, jp,lp),(î, ĵ,l̂),i′ j′
≤ xi + y j + zl ∀(ip, jp, lp) ∈V P, î− ip = i, ĵ− jp = j,

l̂− lp = l, i′, j′ = 1, ..,n (3.11)

β(ip, jp,lp),(î, ĵ,l̂),i′ j′
≤ ξ(ip, jp,lp),(î, ĵ,l̂),i′ j′

∀(ip, jp, lp) ∈V P, î− ip = i, ĵ− jp = j,

l̂− lp = l, i′, j′ = 1, ..,n (3.12)

ψ(ip, jp,lp),i′ j′ ≤ ∑
(î, ĵ,l̂)∈Si′ j′

β(ip, jp,lp),(î, ĵ,l̂),i′ j′
∀(ip, jp, lp), ∈V P, ∀i′ j′ = 1, ..,n (3.13)

xi + y j + zl + γi′ j′+ξ(ip, jp,lp),(î, ĵ,l̂),i′ j′
−4≤ β(ip, jp,lp),(î, ĵ,l̂),i′ j′

∀(ip, jp, lp) ∈V P,

î− ip = i, ĵ− jp = j, l̂− lp = l, ∀ i′ j′ (3.14)

• Constraint to linearize objective function

Γ(ip, jp,lp),i′ j′ ≥ Elp,i′ j′−M(1−ψ(ip, jp,lp),i′ j′) ∀ i′ j′, (ip, jp, lp) ∈Co (3.15)

• Constraints to ensure that one variable in each direction determines the location of

the table

ux

∑
i=lx

xi = 1 (3.16)

uy

∑
j=ly

y j = 1 (3.17)

uz

∑
l=lz

zl = 1 (3.18)
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• Constraints to connect different levels of energy of a pencil beam

Elp−1,i′ j′ ≤ Elp,i′ j′+M ∑
ip∈V P

∑
jp∈V P

ψ(ip, jp,lp−1),i′ j′ ∀ i′, j′ = 1, . . . ,n,

(ip, jp, lp) ∈V P (3.19)

Elp,i′ j′ ≥ Elp−1,i′ j′e
−µ(ip, jp,lp−1)d−M(1−ψ(ip, jp,lp−1),i′ j′) ∀ i′, j′ = 1, . . . ,n,

(ip, jp, lp) ∈V P (3.20)

Elp,i′ j′ ≤ Elp−1,i′ j′e
−µ(ip, jp,lp−1)d +M(1−ψ(ip, jp,lp−1),i′ j′) ∀ i′, j′ = 1, . . . ,n,

(ip, jp, lp) ∈V P (3.21)

∑
ip∈V P

∑
jp∈V P

ψ(ip, jp,lp),i′ j′ ≤ 1 ∀ i′, j′ = 1, . . . ,n,

(ip, jp, lp) ∈V P (3.22)

• Constraints to specify the range for energy at each level

Elp,i′ j′ ≤ Elp−1,i′ j′ ∀ i′, j′ = 1, . . . ,n, lp ∈V P (3.23)

n2 E0,i′ j′−E0 = 0 ∀ i′, j′ = 1, . . . ,n (3.24)

ESD,i′ j′ = Elp,i′ j′ ∀ i′, j′ = 1, . . . ,n, lp ∈V P (3.25)

• Constraints to ensure the ROI will not be covered by the collimator jaws

n

∑
i′=1

n

∑
j′=1

ψ(ip, jp,lp),i′ j′ ≥ 1 ∀ (ip, jp, lp) ∈ ROI (3.26)

• Image quality constraint

K′′1
n

∑
i′=1

n

∑
j′=1

αi′ j′ ≤
n

∑
i′=1

n

∑
j′=1

τi′ j′ (3.27)

n

∑
i′=1

n

∑
j′=1

τi′ j′ ≤ K′′2
n

∑
i′=1

n

∑
j′=1

αi′ j′ (3.28)
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• Image quality complementary constraint for linearizing and avoiding division by

zero

τi′ j′ ≤ ESD,i′ j′ ∀ i′, j′ = 1, . . . ,n (3.29)

τi′ j′ ≤Mαi′ j′ ∀i′, j′ = 1, . . . ,n (3.30)

τi′ j′ ≥ ESD,i′ j′−M (1−αi′ j′) ∀i′, j′ = 1, . . . ,n, M = Emax (3.31)

αi′ j′ ≥ ψ(ip, jp,lp),i′ j′ ∀i′, j′ = 1, . . . ,n, (ip, jp, lp) ∈ ROI (3.32)

αi′ j′ ≤ ∑
ip, jp,lp∈ROI

ψ(ip, jp,lp),i′ j′ ∀i′, j′ = 1, . . . ,n (3.33)

• Variable range

ψ(ip, jp,lp),i′ j′ ∈ {0,1} (3.34)

Γlp,i′ j′ ≥ 0 (3.35)

ηi′,δ j′ ∈ {0,1} (3.36)

γi′ j′ ∈ {0,1} (3.37)

αi′ j′ ∈ {0,1} (3.38)

τi′ j′ ≥ 0 (3.39)

The objective function minimizes the accumulative dose which is absorbed in the

pseudo voxels of the critical organ.

Constraints (3.4), (3.5) and (3.6) determines whether a beam from source to a

pseudo pixel i′ j′ of the image exists or not. This is determined by the variable

γi′ j′ = ηi′δ j′ . Variables ηi′ are corresponding to the rows of the image and variables δ j′ are

corresponding to the columns of the image. These three constraints linearizes the variable

γi′ j′ = ηi′δ j′ which indicates the existence of the beam corresponding to pseudo pixel i′ j′.

Two other set of constraints (3.7) and (3.8) ensure the connectivity of the image pseudo
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pixels intercepted by the beams. These two constraints include n(n−1)(n−2)
6 members each,

and enforce the continuity of the image regarding beam existence.

The other set of constraints are corresponding to ψ(ip, jp,lp),i′ j′ which is defined to

indicate interception of a beam with a pseudo voxel of the body. For that, two binary

variables of β(ip, jp,lp),(î, ĵ,l̂),i′ j′
and γi′ j′ should be equal to one. Having β(ip, jp,lp),(î, ĵ,l̂),i′ j′

= 1

means there exists a pseudo voxel of the body matching a pseudo voxel of the space with

applied table increments where beam i′ j′ traverses the patient pseudo voxel. Inequalities

(5.7), (5.8), and (5.11) are defined to lineariz the formula

ψ(ip, jp,lp),i′ j′ = b
β(ip, jp,lp),(î, ĵ,l̂),i′ j′+γi′ j′

2 c. Constraints (5.9) and (5.10) determine the matching

of increments and variable β(ip, jp,lp),(î, ĵ,l̂),i′ j′
. Constraint (5.12) enforces the varaible

ψ(ip, jp,lp),i′ j′ be equal to one if a pencil beam γ[i][ j] = 1 and corrsponding xi, y j, zl , and

ξ(ip, jp,lp),(î, ĵ,l̂),i′ j′
are equal to one.

Constraint (5.13) is defined to linearize the definition of variable Γ(ip, jp,lp),i′ j′

which is equal to ψ(ip, jp,lp),i′ j′ Elp,i′ j′ .

Three constraints (3.16), (3.17), and (3.18) ensure selection of one variable

indicating the increment in one direction of x, y, or z.

Different layers of the energy have to be determined when a beam is traversing the

organs. Constraint (5.17) enforces the beam interception with one pseudo voxel at each

layer. Two constraints (5.15) and (5.16) enforces the pencil beam energy be attenuated

when passing a pseudo voxel of the body.

Constraint (3.26) activates all the beams passing through the ROI to ensure

corresponding pixels of the image are visible.

Image quality constraints (5.21) and (5.22) determine the range of the values that
∑i′ j′ τi′ j′

∑I′ j′ αi′ j′
can take to have a reasonable image quality. Complementary constraints linearize
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the variable τi′ j′ = αi′ j′ESD,i′ j′ . The variable of αi′ j′ is corresponding to the image pixels

for a beam hitting ROI.

3.3.4 Embedded Computation

Having E0 as initial X-ray source energy, patient entrance energy of beam i′, j′ at the first

level is calculated as follows,

E1,i′ j′ = E0 (3.40)

In the next level, there are two possibilities; intercepting with a pseudo voxel of the

phantom or traversing the air. In case of traversing the air, there is no decay of energy and

the next level of this beam has the same amount of energy E0 (inequalities 5.14 and 5.18).

In case of intercepting with a voxel of the phantom, energy entering in level one is

calculated as follows,

E1,i′ j′ = E0 e−µ(ip, jp,lp)d (3.41)

Thus, for any layer of the space in l direction, we calculate corresponding energy as

follows,

El+1,i′ j′ = El,i′ j′ e−µ(ip, jp,lp)d (3.42)

and by assuming zero attenuation for the air, the amount of energy received at the receptor

is equal to the amount of energy exiting the last layer of the discretized patient. We denote

the amount of intensity received at a image pixel i′ j′ by ESD,i′ j′ .

Here we prove a lemma which will be used in SNR computation and deriving cuts.

Lemma 1. ∑i′ j′ αi′ j′ ≥ 1

Proof. According to definition αi′ j′ , it takes value 1 if ψ(ip, jp,lp),i′ j′ = 1 ,(ip, jp, lp) ∈ ROI.

Constraint (3.26) ensures that ∃ ψ(ip, jp,lp),i′ j′ = 1 and (ip, jp, lp) ∈ ROI, and by constraint

(5.26),it implies corresponding αi′ j′ = 1, therefore ∑i′ j′ αi′ j′ ≥ 1.
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3.3.5 Calculation of the image quality quantifier

To quantify the image quality, there are two factors to exploit the contrast of the image

which is how distinguishable objects are in an image and noise of the image which is

standard deviation of the signal. Signal-to-Noise Ratio (SNR) is a combined factor and

better criteria for evaluation of the image quality in current imaging systems. It can be

defined as the ratio for the average intensity of the ROI to the standard deviation of the

background [25]. However, in a high-contrast scene, many imaging systems including

digital X-ray imaging systems represent the background with a uniform black color

forcing standard deviation to be zero. In this case, a better definition of SNR can be stated

as the ratio for the average intensity of ROI to standard deviation of ROI. Based on this

definition, SNR can be calculated from the following equations,

SNR =
IntROI

σROI
(3.43)

Where IntROI is computed from the following formula,

IntROI =
∑i′ j′ τi′ j′

∑i′ j′ αi′ j′
(3.44)

Since noise of the image is proportional to the square root of the average dose, and

we are only concerned for the ROI, average dose is calculated for the ROI [45]. Without

loss of generality, we assume that all the energy received at the receptor will be absorbed

in the receptor.

σ ∝
1√

doseROI
⇒ σ ∝

1√
∑i′ j′τi′ j′

mdetector∑i′ j′ αi′ j′

(3.45)

Now, SNR can be written in the form of,

SNR =
∑i′ j′ τi′ j′

∑i′ j′ αi′ j′

√
∑i′ j′τi′ j′

mdetector∑i′ j′ αi′ j′
(3.46)
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Range of the acceptable quality is mentioned in [9]. It can be stated as,

K1 ≤ SNR≤ K2 (3.47)

By substituting the value of equation (3.46) in inequality (3.47), we have

K1 ≤
∑i′ j′ τi′ j′

∑i′ j′ αi′ j′

√
∑i′ j′τi′ j′

mdetector∑i′ j′ αi′ j′
≤ K2 (3.48)

and we can write as follows,

K1 ≤ (
∑i′ j′τi′ j′

mdetector∑i′ j′ αi′ j′
)3/2 ≤ K2⇒ K2/3

1 mdetector ≤
∑i′ j′τi′ j′

∑i′ j′ αi′ j′
≤ K2/3

2 mdetector (3.49)

By Lemma 1, we can multiply each side of by ∑i′ j′ αi′ j′ , and following linear is attained

for the image quality.

K′′1 ∑
i′ j′

αi′ j′ ≤∑
i′ j′

τi′ j′ ≤ K′′2 ∑
i′ j′

αi′ j′ (3.50)

where K′′1 = K2/3
1 mdetector and K′′2 = K2/3

2 mdetector.

3.4 Polyhedral Analysis

The problem formulated in section 3.3.3, is a large-scale mixed-integer program with a

large number of binary variables and constraints. The computation using commercial

branch and cut solvers is time-consuming (more than 15 hours) and the quality of the

solution is low in terms of the optimality gap attained by the solver. To increase the speed

of the algorithm, the feasible region of the problem is decomposed to smaller

substructures including a subset of constraints. We investigate each substructure of

problem constraints to derive strong valid inequalities hoping to solve the problem faster

with the minimum optimality gap.

In this problem, the feasible region is not bounded, but it has bounded solution

since it is minimization problem, and there is no negative direction to improve the

objective function. By deriving strong valid inequalities, we try to provide tighter bounds
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closer to the convex hall of the MIP feasible region. We call polyhedron P an integral

polyhedron if all the extreme points are integral.

3.4.1 Beam Inequalities

We first consider the set of inequalities (3.4)-(3.8) and we define polyhedron P1 as follows,

P1 = {(ηηη ,δδδ ,γγγ) ∈ Rn×Rn×Rn2
: γi′ j′ ≤ ηi′,γi′ j′ ≤ δ j′,ηi′+δ j′− γi′ j′ ≤ 1,δp +δt−δ j′ ≤

1,ηk +ηh−ηi′ ≤ 1, p≤ j′ ≤ t, k ≤ i′ ≤ h, 0≤ γi′ j′ ≤ 1, 0≤ ηi′ ≤ 1,0≤ δ j′ ≤ 1, ∀i′, j′ =

1, . . . ,n} and the set of S1 = P1∩B2n+n2
. We will first show that conv(S1) is

full-dimensional. Let denote the unit vector of (0, . . . ,1, . . . ,0) by ei, where the ith

element is equal to one and the rest of the variables are zero. We assign vector

ei, i = 1, . . . ,n to present unit vectors for set of variables ηi′ , vector e j, j′ = 1, . . . ,n for set

of variables δ j′ and vector ei, j, ∀ i = 1, . . . ,n, , j = 1, . . . ,n corresponding to γi′ j′ . We show

that there are n2 +2n+1 affinely independent points for the conv(S1) as follows,

(0,0,0)

(ei,0,0), ∀ i = 1, . . . ,n

(0,e j,0,), ∀ j = 1, . . . ,n

(ei,e j,ei, j), ∀ i = 1, . . . ,n, , j = 1, . . . ,n

We show that P1 is not an integral polyhedron (P1 6= conv(S1)). We find a

fractional point which is an extreme point of P1.

We can find an extreme point of η1 = 1/2, η2 = 0, η3 = 1, ηi′ = 0, ∀ i′ ∈ 4, . . . ,n,

δ1 = 1/2, δ2 = 0, δ3 = 1/2, δ j′ = 0, ∀ j′ ∈ 4, . . . ,n, γ11 = 1/2, γ12 = 0, γ13 = 1/2,

γi′ j′ = 0, ∀ i′, j′ ∈ 4, . . . ,n, γ2 j′ = 0, ∀ j′ ∈ 1, . . . ,n, γ31 = 1/2, γ32 = 0, γ33 = 1/2,

γ3 j′ = 0, ∀ j′ ∈ 1, . . . ,n, γi′ j′ = 0, ∀ i′ ∈ 4, . . . ,n, j′ ∈ 1, . . . ,n which has fractional values

for η , γ and δ . It is extreme point since we can find n2 +2n linearly independent

constraints. Linearly independent constraints for n≥ 4 can be selected from n2−n
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constraints of 3.5 where i′ ∈ 1,3, . . . ,n, j′ ∈ 1, . . . ,n, n−2 constraints of 3.5 where

i′ = 2, j′ ∈ 2,4, . . . ,n, two constraints of 3.6 for the pairs of (i′, j′) = (2,1) and

(i′, j′) = (2,3), 2n constraints from 3.7 and 3.8 with n constraints from each such that

diagonal elements of the n dimensional matrix are nonzeros. For n = 3, linearly

independent constraints are those mentioned above plus four constraints of

η3 +δ j′− γ3 j′ ≤ 1, ∀ j′ ∈ 1,2,3 and γ11 ≤ η1.

Since we presented fractional extreme points for P1, it is not an integral

polyhedron.

Therefore, we will identify a set of strong inequalities for conv(S1).

For any 1≤ i′ ≤ n−2, 1≤ j′ ≤ n−2

γi′ j′+ηi′+2− γi′+1, j′ ≤ 1 (3.51)

γi′, j′+2 +ηi′+2− γi′+1, j′+2 ≤ 1 (3.52)

γi′+2, j′+δ j′+2− γi′+2, j′+1 ≤ 1 (3.53)

γi′ j′+δ j′+2− γi′, j′+1 ≤ 1 (3.54)

γi′, j′+2 +δ j′− γi′, j′+1 ≤ 1 (3.55)

γi′+2, j′+2 +ηi′− γi′+1, j′+2 ≤ 1 (3.56)

γi′+2, j′+2 +δ j′− γi′+2, j′+1 ≤ 1 (3.57)

γi′+2, j′+ηi′− γi′+1, j′ ≤ 1 (3.58)

First, we show how the strong inequality such as γi′ j′+ηi′+2− γi′+1, j′ ≤ 1 is

driven. Consider following inequlities:
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ηi′+1 +δ j′− γi′+1, j′ ≤ 1 (3.59)

γi′ j′−δ j′ ≤ 1 (3.60)

γi′ j′−ηi′ ≤ 1 (3.61)

ηi′+ηi′+2−ηi′+1 ≤ 1 (3.62)

ηi′+2 ≤ 1 (3.63)

We sum up inequalities 3.59, 3.60, 3.61, 3.62, and 3.63,

2γi′ j′+2ηi′+2− γi′+1, j′ ≤ 3 (3.64)

We multiply the inequality (3.64) by 1/2, and we use C-G cut [70] to round down

the coefficients. We get the following facet definfing inequality,

γi′ j′+ηi′+2− γi′+1, j′ ≤ 1 (3.65)

Lemma 2. The set of inequalities (3.51)-(3.58) are facet defining inequalities for

conv(S1).

Proof. First, we will show that inequalities (3.51)-(3.58) are valid inequalities for

conv(S1). For inequality (3.51), if γi′ j′ = 1 and ηi′+2, it follows that ηi′+1 = 1 and δ j′ = 1,

thus γi′+1, j′ = 1. If any of γi′ j′ = 1 or ηi′+2, or both are zero, then the inequality is valid

independent of the value of γi′+1, j′ . Similar argument applies for the rest of inequalities.

We show that there are n2 +2n affinely independent points on the face defined by

each inequality (3.51)-(3.58) which proves the inequality is a facet defining. For a given

i′, j′, we use i, j as common indices. We list n2 +2n affinely independent points in table

3.1.

Thus the total affinely independent points are n2 +2n and it is easy to show they

are affinely independent by subtracting all n2 +2n−1 points from one of the points. The
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Table 3.1: The set of Affinely independent points

Point Range Number of points on the face

(∑i′+2
i=k ei,0,0) k = 1, . . . ,n n

(∑k
i=i′+2 ei,0,0)

(ei,e j,ei, j)
i = i′+2,

n
j = 1, . . . ,n

(ei,∑
j′
j=k e j,∑

j′
j=k ei, j) i = i′,

n
(ei,∑

k
j= j′ e j,∑

k
j= j′ ei, j) k = 1, . . . ,n

(∑i′+2
i=i′ ei,∑

j′
j=k e j,∑

i′+2
i=i′ ∑

j′
j=k ei, j) k = 1, . . . ,n n

(∑i′+2
i=i′ ei,∑

k
j= j′ e j,∑

i′+2
i=i′ ∑

k
j= j′ ei, j)

(∑i′+2
i=i′+1 ei,∑

j′
j=k e j,∑

i′+2
i=i′+1 ∑

j′
j=k ei, j) k = 1, . . . ,n

n(n−2)(∑i′+2
i=i′+1 ei,∑

k
j= j′ e j,∑

i′+2
i=i′+1 ∑

j′
j=k ei, j)

(∑l
i=i′+2 ei,∑

j′
j=k e j,∑

i′+2
i=i′+1 ∑

j′
j=k ei, j) l = i′+3, . . . ,n

(∑l
i=i′+2 ei,∑

k
j= j′ e j,∑

i′+2
i=i′+1 ∑

j′
j=k ei, j)

dimension of the valid inequality is n2 +2n−1 which indicates it is a facet defining

inequality.

We add these inequalities to the lazy cut pool for the computation.
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3.4.2 Linearized ψ Inequalities

The polyhedron restricted to the constraints (5.7 - 5.11) is denoted by Q6.

Q6 = conv{(β ,γ,ψ,x,y,zβ ,γ,ψ,x,y,zβ ,γ,ψ,x,y,z) ∈ Bk×Bn×Bpn2
×Ba1×Ba2×Ba3 : (3.66)

ψ(ip, jp,lp),i′ j′ ≥ β(ip, jp,lp),(î, ĵ,l̂),i′ j′
+ γi′ j′−1, β(ip, jp,lp),(î, ĵ,l̂),i′ j′

≤ γi′ j′,

xi + y j + zl ≥ 3 β(ip, jp,lp),(î, ĵ,l̂),i′ j′
, β(ip, jp,lp),(î, ĵ,l̂),i′ j′

≤ ξ(ip, jp,lp),(î, ĵ,l̂),i′ j′
,

ψ(ip, jp,lp),i′ j′ ≤ ∑
(î, ĵ,l̂)∈Si′ j′

β(ip, jp,lp),(î, ĵ,l̂),i′ j′
,

β(ip, jp,lp),(î, ĵ,l̂),i′ j′
− (xi + y j + zl + γi′ j′)≥ ξ(ip, jp,lp),(î, ĵ,l̂),i′ j′

−4,

(ip, jp, lp) ∈V P, (î, ĵ, l̂) ∈ Si′ j′, î = i+ ip, ĵ = j+ jp, l̂ = l + lp, i′, j′ = 1, ..,n}

We denote number of the phantom pseudo voxels by p and number of pseudo voxels in

ROI by r.

We denote number of indices in directions x, y and z by a1, a2, and a3 respectively.

We define a parameter ξ(ip, jp,lp),(î, ĵ,l̂),i′ j′
which has value one with possible configuration

of i, j and l, otherwise zero. We count the number of ξ(ip, jp,lp),(î, ĵ,l̂),i′ j′
= 1 and denote by

m where m < pn2
∑
i′ j′

ki′ j′ . We list m+n2 + pn2 +a1 +a2 +a3 +1 affinely independent

points for Q6 and thus, dim(Q6) = m+n2 + pn2 +a1 +a2 +a3.

(e fe fe f ,000,000,000,000,000), f = 1, . . . ,m

(000,000,esheshesh,000,000,000), s = 1, . . . ,n2

(e fe fe f ,eseses,esheshesh,000,000,000), f = 1, . . . ,m, s = 1, . . . ,n2, h = 1, . . . , p

(111,000,000,eieiei,000,000), i = 1, . . . ,a1

(000,000,111,000,e je je j,000), j = 1, . . . ,a2

(000,111,000, , ,elelel), l = 1, . . . ,a3

(000,000,000,000,000,000,)
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The set of β(ip, jp,lp),(î, ĵ,l̂),i′ j′
+ γi′ j′−ψ(ip, jp,lp),i′ j′ ≤ 1 inequalities are facet defining

inequalities. Since we can find m+n2 + pn2 +a1 +a2 +a3 affinely independent points

satisfying constraint (5.7), as follows

(e fe fe f ,000,000,000,000,000), f = 1, . . . ,m

(000,000,esheshesh,000,000,000), s = 1, . . . ,n2

(e fe fe f ,eseses,esheshesh,000,000,000), f = 1, . . . ,m, s = 1, . . . ,n2, h = 1, . . . , p

(000,111,000,eieiei,000,000), i = 1, . . . ,a1

(000,111,000,000,e je je j,000), j = 1, . . . ,a2

(000,111,000,000,000,elelel), l = 1, . . . ,a3

where a1, a2 and a3 denote the number of possible increments in directions x, y, and z

respectively.

Lemma 3. The set of inequalities ψ(ip, jp,lp),i′ j′ ≤ γi′ j′ are facet defining inequalities.

Proof. Affinely independent points for the set of inequalities ψ(ip, jp,lp),i′ j′ ≤ γi′ j′ are as

follows,

(000,000,000,eieiei,000,000), i = 1, . . . ,a1

(000,000,000,000,e je je j,000), j = 1, . . . ,a2

(000,000,000,000,000,elelel), l = 1, . . . ,a3

(e fe fe f ,111,111,000,000,000), f = 1, . . . ,m

(000,eseses,esheshesh,000,000,000), s = 1, . . . ,n2, h = 1, . . . , p

Lemma 4. The set of inequalities β(ip, jp,lp),(î, ĵ,l̂),i′ j′
≤ xi, β(ip, jp,lp),(î, ĵ,l̂),i′ j′

≤ y j,

and β(ip, jp,lp),(î, ĵ,l̂),i′ j′
≤ zl are facet defining inequalities for Q6.
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Proof. We show that there exist m+n2 + pn2 +a1 +a2 +a3 affinely independent points

satisfying each of these inequalities, so they are facet defining inequalities. For

β(ip, jp,lp),(î, ĵ,l̂),i′ j′
≤ xi, these affinely independent points are as follows,

(e fe fe f ,000,000,111,111,111), f = 1, . . . ,m

(000,eseses,000,000,000,000), s = 1, . . . ,n2

(000,eseses,esheshesh,000,000,000), s = 1, . . . ,n2, h = 1, . . . , p

(000,000,000,eieiei,000,000), i = 1, . . . ,a1

(000,000,000,000,e je je j,000), j = 1, . . . ,a2

(000,000,000,000,000,elelel), l = 1, . . . ,a3

3.4.3 Energy Level Inequalities

Consider the polyhedron Q8 where

Q8 = conv{(E0, . . . ,Elmax ,ψ1,i′ j′, . . . ,ψp,i′ j′) ∈ Rlmaxn2×Bpn2
:

Elp−1,i′ j′ ≤ Elp,i′ j′+M ∑
ip∈V P

∑
jp∈V P

ψ(ip, jp,lp−1),i′ j′ ,

Elp,i′ j′ ≥ Elp−1,i′ j′e
−µ(ip, jp,lp−1)d−M(1−ψ(ip, jp,lp−1),i′ j′),

Elp,i′ j′ ≤ Elp−1,i′ j′e
−µ(ip, jp,lp−1)d +M(1−ψ(ip, jp,lp−1),i′ j′),

∑
ip∈V P

∑
jp∈V P

ψ(ip, jp,lp),i′ j′ ≤ 1, ∀ i′, j′ = 1, . . . ,n, (ip, jp, lp) ∈V P}

where dim(Q8)≤ lmaxn2 + pn2. We can find a total of pln2 + pn2 +1 affinely

independent points for the vector of variables (E0, . . . ,Elmax ,ψ1,i′ j′, . . . ,ψp,i′ j′) as follows,

(E ′E ′E ′, . . . ,E ′E ′E ′,000),

(E ′E ′E ′, . . . ,E ′e−µ(ip, jp,lp−1)dE ′e−µ(ip, jp,lp−1)dE ′e−µ(ip, jp,lp−1)d, . . . ,E ′e−µ(ip, jp,lp−1)dE ′e−µ(ip, jp,lp−1)dE ′e−µ(ip, jp,lp−1)d,000, . . . ,e j, . . . ,000), j = 1, . . . , p

(000, . . . ,E ′E ′E ′ei, . . . ,000,000, . . . ,000), i = 1, . . . , lmax

where E ′ can be any real value within the range Elmax ≤ E ′ ≤ E0.
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Lemma 5.
Meµ(ip, jp,lp−1)d

eµ(ip, jp,lp−1)d−1
ψ(ip, jp,lp−1),i′ j′ ≤b

Meµ(ip, jp,lp−1)d

eµ(ip, jp,lp−1)d−1
c+

Elp,i′ j′

1− Me
µ(ip, jp,lp−1)d

e
µ(ip, jp,lp−1)d

−1
+ b Me

µ(ip, jp,lp−1)d

e
µ(ip, jp,lp−1)d

−1
c

(3.67)

is a valid cut for Q8.

Proof. A mixed-integer rounding cut suggested by reference [27] derives a cut including

integer and continuous variables as follows,

If X = {(x,y) ∈ R1
+×Z1 : y≤ b+ x}, and f = b−bbc ≥ 0, the

y≤ bbc+ x
1− f

(3.68)

is valid for X .

If we multiply both sides of the inequality (5.15) by eµ(ip, jp,lp−1)d , and sum up the

resulted inequality and inequality (5.18), we have

eµ(ip, jp,lp)dElp−1,i′ j′ ≥ Elp,i′ j′−Meµ(ip, jp,lp)d +Meµ(ip, jp,lp)dψ(ip, jp,lp−1),i′ j′ (3.69)

We divide both sides of the inequality (3.69) by (eµ(ip, jp,lp)d−1), then the value of f for cut

(3.68) is

f = b−bbc= Meµ(ip, jp,lp)d

Meµ(ip, jp,lp)d−1
−b Meµ(ip, jp,lp)d

Meµ(ip, jp,lp)d−1
c (3.70)

Thus the mixed-integer cut is

Meµ(ip, jp,lp)d

Meµ(ip, jp,lp)d−1
ψ(ip, jp,lp−1),i′ j′ ≤ b

Meµ(ip, jp,lp)d

Meµ(ip, jp,lp)d−1
c+

Elp−1,i′ j′

1− f
(3.71)

and f is calculated in (3.70), and the result follows.

3.4.4 Image Quality

We define polyhedron Q9 as follows,

Q9 = conv{(τττ,ααα,ESDESDESD,ψψψ,γγγ) ∈ Rn2×Rn2×Rn2×Bpn2×Bn2
:
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K′′1
n
∑

i′=1

n
∑

j′=1
αi′ j′ ≤

n
∑

i′=1

n
∑

j′=1
τi′ j′,

n
∑

i′=1

n
∑

j′=1
τi′ j′ ≤ K′′2

n
∑

i′=1

n
∑

j′=1
αi′ j′ ,

τi′ j′ ≥ ESD,i′ j′−M (1−αi′ j′), τi′ j′ ≤ ESD,i′ j′, τi′ j′ ≤Mαi′ j′ ,

αi′ j′ ≥ ψ(ip, jp,lp),i′ j′,αi′ j′ ≤ ∑
ip, jp,lp∈ROI

ψ(ip, jp,lp),i′ j′ ,

ψ(ip, jp,lp),i′ j′ ≤ αi′ j′, ∀ i′, j′ = 1, . . . ,n,

(ip, jp, lp) ∈ ROI}.

We consider constraint (5.8) invovled in this polyhedron to use for deriving strong

valid inequalities. dim(Q9) = 4n2 + pn2 and the vector of the variables is (τττ,ααα,ESDESDESD,ψψψ,γγγ).

Lemma 6.
n
∑

i′=1

n
∑

j′=1
αi′ j′ ≤

⌊
Mn2

M−K′′2

⌋
is a valid inequality for Q9.

Proof. Constraint (5.22) ensures ∑
i′

∑
j′

τi′ j′ ≤ K′′2 αi′ j′ , so by substituting in inequality (5.25),

we have,

K′′2 ∑
i′

∑
j′

αi′ j′ ≥∑
i′

∑
j′

ESD,i′ j′−M(n2−∑
i′

∑
j′

αi′ j′) (3.72)

applying C-G cut, results the following ,

∑
i′

∑
j′

αi′ j′ ≤
⌊

Mn2

M−K′′2

⌋
(3.73)

Lemma 7.
n
∑

i′=1

n
∑

j′=1
αi′ j′ ≤

⌊
Mn2

M−K′′2 +K′′1

⌋
is a valid inequality for Q9.

Proof. If we sum up inequalities (5.23) ∀ i′, j′, we have ∑
i′

∑
j′

τi′ j′−∑
i′

∑
j′

ESD,i′ j′ ≤ 0.

Constraints (5.21) and (5.22) ensures K′′1 ∑
i′

∑
j′

αi′ j′−∑
i′

∑
j′

τi′ j′ ≤ 0 and ∑
i′

∑
j′

τi′ j′−K′′2 αi′ j′ ≤ 0

respectively. Also if we sum inequalities (5.25) ∀ i′, j′, we have following ,

∑
i′

∑
j′

τi′ j′ ≥∑
i′

∑
j′

ESD,i′ j′−M(n2−∑
i′

∑
j′

αi′ j′) (3.74)

By summing up all four inequalities mentioned above, and using C-G cut,

∑
i′

∑
j′

αi′ j′ ≤
⌊

Mn2

M−K′′2 +K′′1

⌋
(3.75)
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is attained where by comparing the denominators of (3.75) and (3.73), it is observed that

(3.75) has a larger denominator than (3.73), and therefore (3.75) is stronger.

A tighter lower bound for ∑αi′ j′ can be given by solving the original problem

regarding min{∑αi′ j′}, and similar to that we can achieve a strong upper bound applying

max{∑αi′ j′} as the objective function.

3.4.5 Big M Analysis

The big M used in the MIP formulation presented in section 3.3.3 needs to be determined

since a very large value for the M increases the space between the feasible region of the

MIP and LP relaxation. This will result in the larger optimality gaps and slows down the

algorithm performance.

From inequality (5.13), we know that M is only effective in this formula when

ψ(ip, jp,lp),i′ j′ = 0, and we can write,

M ≥
Elp,i′ j′−Γ(ip, jp,lp),i′ j′

1−ψ(ip, jp,lp),i′ j′
, ∀(ip, jp, lp) ∈Co, i′, j′ = 1, . . . ,n (3.76)

Since inequality (3.76) is only valid when ψ(ip, jp,lp),i′ j′ = 0, we can write it as follows,

M ≥ Elp,i′ j′−Γ(ip, jp,lp),i′ j′, ∀(ip, jp, lp) ∈Co, i′, j′ = 1, . . . ,n (3.77)

having ψ(ip, jp,lp),i′ j′ = 0 implies that Γ(ip, jp,lp),i′ j′ = 0, and we have,

M ≥ Elp,i′ j′, ∀(ip, jp, lp) ∈Co, i′, j′ = 1, . . . ,n (3.78)

From the set of inequalities (3.78), it implies that M ≥ max∀ lp∈V P,i′, j′=1,...,n{Elp,i′ j′}.

Since Elp,i′ j′ ≤ E0, ∀ lp ∈Co, i′, j′ = 1, . . . ,n, therefore, M ≥ E0. By selecting E0

as objective function for the original problem and maximizing the objective function, the

optimal solution is a bound for big M. However, it can be time consuming a comlicated

optimization problem by itself. Thus, we imply a practical bound for the cases that

theoretical bound is a better bound but not an easy problem to solve in a reasonable time.
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3.5 Computational Results

The problem formulation in section 3.3.3 is a large-scale MIP. Even in small instances

with only 3 feasible geometry increments, there are about 80,000 variables and 150,000

constraints. The IBM ILOG CPLEX11.0 and Concert25 library packages are used to

solve the problem. The algorithm is implemented by a desktop computer having Intel(R)

Xeon(R) CPU and 4GB of RAM. We solve instances of this problem to compare the

computational results before and after adding cuts derived in section 3.4. We added these

cuts in terms of lazy cuts to the branch and cut algorithm. Lazy cuts are used by the

methodologies built in the CPLEX and Concert solver.

The CT image and receptor image are discretized into 16 × 16 pseudo pixels.

Each CT slice is 2mm and we merged 7 slices to have the same size of voxels (14mm ×

14.08 × 14.08). Current setup enables handling the large number of binary variables

(89,000) and constraints (187,000). Total number of the lazy cuts is 1878. Simple addition

of the cuts to the original problem cannot be handled by the solver because of the memory

limitation.

Figure 3.4(a) illustrates the absorbed dose (Gy) in the body using the original field

of radiation and optimal field of radiation. It shows that by using our proposed method we

can reduce the absorbed dose in the body significantly. Figure 3.4(b) compares the

computational time (sec) before adding lazy cuts to CPLEX and after adding lazy cuts. It

shows significant reduction of the computational time in all the test problems except one.

3.6 Improving Current Solution

Results after adding strong valid inequalities from lemmas (2)-(7) show the improvement

in the computational time and optimality gap. To speed up the computation, we performed

a preprocessing search algorithm to determine the feasible geometric increments for a
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(a) Absorbed Dose Reduction

(b) Computational Time

Figure 3.4: The percentage of the improvement in the objective function

known set of primary and secondary angles. This method reduces the feasible increments

using the geometry of the ROI. Adding this search algorithm in the preprocessing phase

reduces the number of binary variables and corresponding constraints and speeds up the

computational time. We adopt the set of commonly used C-arm angles as shown in Table

3.2. We solved test problems for different set of angles and present the computational time

to get the optimal solutions after adding this algorithm. We summarize the number of

variables, constraints, and computational times to reach the optimality by comparing with

and without the lazy cuts added in Table 3.3. The last column indicates the percentage of

the computational time improvement. With the cuts added to the algorithm, most of the
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Primary Angle Secondary Angle Number of cine runs Percentage of usage
-20 0 71 8%
-10 0 36 4%
0 0 537 65%

15 0 71 8%
20 0 40 5%
30 0 61 7%
15 10 20 2%
-20 20 12 1%

Table 3.2: Frequently used C-arm angles in vascular interventional procedures (total of 864
cine runs)

Primary Secondary No. of No. of Time (s) Improvement
angle angle variables constraints No cut Added cuts percentage
-20 20 81294 165426 672.4 376.4 44.02%
-20 0 89211 186921 1354.7 571.6 57.81%
-10 0 87764 152552 3514.9 550.1 84.35%
0 0 86019 154609 6514.8 856.7 86.85%

15 0 82179 167220 1241.3 724.1 41.67%
15 10 80080 159597 420.1 681.3 -62.18%
20 0 88725 172384 981.6 498.7 49.20%
30 0 81053 151238 1082.3 640.2 40.85%

Table 3.3: Comparison of computational time with and without lazy cuts for a set of angu-
lations

computational times are reduced signifficantly to be within 15 minutes, which is the

reasonable time frame to be prepared for the preparation of an procedure since multiple

anglulations are to be computed prior to the exam. Note that in the angle (15, 10), the

computational time is increased by adding additional cuts since CPLEX can solve the

problem in about 7 minutes. So the searching and adding additional cuts in this case

increases the computational time. When the voxel size of the phantom is refined to a

smaller size, the size of the resulting formulation increases dramatically. The algorithm is

even hard to load the model due to the memory limits. With additional memory or parallel

computing capability, the solution can be further improve.
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Primary Secondary No Collimator adjustment Collimators adjusted Dose
angle angle Dose Field size Dose Field size reduction

(Gy) (cm2) (Gy) (cm2) percentage
-20 20 0.0885 37.45 0.0036 9.95 95.93%
-20 0 0.2321 37.45 0.0380 15.65 83.63%
-10 0 0.4168 37.45 0.0242 5.27 94.19%
0 0 0.3548 37.45 0.0343 19.75 90.33%

15 0 0.2751 37.45 0.0084 5.85 96.95%
15 10 0.1524 37.45 0.0358 10.97 76.51%
20 0 0.1784 37.45 0.0198 18.29 88.90%
30 0 0.1689 37.45 0.0172 20.92 89.82%

Table 3.4: Comparison of comparison of the absorbed dose using the original radiation
field and after adding the algorithm

To demonstrate the radiation reduction, we demonstrate the reduced absorbed in

the critical organs by 1) not using collimators and 2) not placing the x-ray tube at the

optimal location. In Table 3.4, we compare the absorbed dose in the breasts with the

optimal solution from the model and the dose without using collimators, where the x-ray

tube is located at the same location with the optimal solution. The dose reduction ranges

from 75% to 95%.

It suggests that the use of collimators in such an FGI procedures in most of the

angulation is an efficient tool to reduce the radiation dose in the critical organs. By

examining the solutions, the collimators are positioned to ensure the field of view as small

as possible to include the region of interest, which is not surprising to reduce the absorbed

in the critical organs since it minimizes the radiation emission. In Table 3.5, we

demonstrate the radiation reduction of the optimal X-ray tube location as comparing to

alternative locations. Both sets of experiments test the radiation with and without

collimator. These experiments demonstrate that radiation reduction is largely achieved by

using collimators properly. The x-ray tube location, however, also reduces the absorbed

dose even with collimators. Since our study is a prior exam preparation, with the

57



Primary Secondary X-ray tube Absorbed dose (Gy)
angle angle x y z No collimators adjustment Adjusted collimators

2 7 9 0.2618 0.0106
15 0 2 7 11 0.2751 0.0084

2 7 13 0.2842 0.0093
3 13 4 0.1689 0.0172

30 0 3 15 5 0.2022 0.0215
3 17 9 0.2648 0.0236

Table 3.5: Comparison of the absorbed dose using the different geometry settings. Asterisk
symbol indicates the optimal solution for the particular angulation

optimization model, the physician can be suggested that for each angulation, the best

x-ray tube location and the placement of collimators, which minimize the field of size to

include the region of interests. The optimal energy level will be translated back to mA

level for the equipment setting.
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Chapter 4

APPROXIMATE GRADIENT ALGORITHM

4.1 Introduction

Computational time and the limit of the memory are major challenges when solving

large-scale Mixed Integer Linear Programming (MILP) problems [70]. In the branch and

cut algorithm, the size of the branch and cut tree grows fast and it may even be hard to

find a feasible solution. In section 3.3, we considered a MIP model which determines the

geometry of the table, energy generated at the X-ray tube and size of field of radiation for

every set of known angles (primary and secondary angles). The average number of binary

variables for the problem is about 89,000 and the average number of constraints is

187,000. The size of the problem grows with refining the size of the voxels and increasing

the number of beamlets going to the image. Besides, it is critical to consider the

angulation (orientation) of the c-arm. From the experiments in Table 3.4, we can see the

different angles may result in significant dose reduction. Including the angles as decision

variables will lead to a Mixed Integer Nonlinear Programming (MINLP) model and add

up to the complexity of the problem. Besides, the commercial implementations of

branch-and-cut algorithm can only be applied to MINLP where the nonlinear continuous

part is convex. The scale that can be solved within reasonable time is much smaller in

compare to MILP. Using a fixed set of angles is a limitation for the problem and exploring

continues geometry parameters may provide better solution quality. As mentioned in the

literature, most of the studies consider a set of angles and solve the problem for each set

and find the best angle [51, 52, 53]. Some others start with a subset of the commonly used

angles and apply a greedy method or optimization problem to select the best angle [54].

In this chapter, we would like to explore a systematical way to determine the table

location and angulations together to obtain a global optimal solution. We propose a
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method to lower the complexity of the problem 3.3 by fixing certain decision variables

and explore more angles. To improve the computation time and to be able to find the

optimal set of angles, we use an approximate gradient approach. We partially relax the

MIP formulation in section 3.3 to explore the continuous geometry and relax the

limitation of the discrete geometry movements. In the sub routine, we treat the geometry

of the table and angles as a set of known parameters. The size of the problem which was

about 130,000 binary variables and 220,000 constraints is refined. Thus, number of binary

variables are 77,000 and number of constraints are 4,800. Then the model determines the

required energy and field size for each given set of geometry (angles and table

increments). We specify a time limit to solve this MIP problem for each iteration of the

approximate gradient algorithm.

4.2 Classical Gradient Rules and Literature Review

In gradient methods, if the multivariable function F(x) is differentiable in a neighborhood

of a point a, then F(x) decreases if we move from a in the direction of the negative

gradient of F at a, −OF(a). If and only if

b = a−αOF(a) (4.1)

for α → 0 a small enough number, then F(a)≥ F(b). Thus, we can start with a guess x0

for a local minimum of F , and considers the sequence of x0,x1,x2, . . . such that

xt+1 = xt−αtOF(xt), t ≥ 0. We have F(x0)≥ f (x1)≥ F(x2)≥ . . . so hopefully the

sequence (xt) converges to the desired local minimum. Note that the value of the step size

α is allowed to change at every iteration. The convergence to a local minimum is

guaranteed if the function of F is Lipschitz continuous [71]. If the function is not

differentiable, we use subgradient methods. A step size αt should satisfy the following

conditions to ensure the convergence of the algorithm [72],
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lim
t→∞

αt = 0 (4.2)

∞

∑
t=1

αt = ∞ (4.3)

αt ≥ 0 ∀ t (4.4)

Using a diminishing step size and normalized gradients, ensures the convergence of the

algorithm for the convex functions [73].

In this study, the objective function of the MIP problem introduced in section 3.3

is used to compute the gradient direction. It is comprised of binary variables, and it is

neither a convex function nor a differentiable function. Thus, we cannot use any of

gradient or subgradient methods directly. We use an approximate gradient method to

approximately calculate the gradient vector. The vector used for the iteration t +1 of the

approximate gradient method is defined as

~ωt+1 = ~ωt−αt ~gt (4.5)

Since we do not have the convexity/differentiable function for the MIP problem, we

approximate the gradient vector using the objective function of the MIP problem. The

gradient vector is

~g′t = (g′t
1
, . . . ,g′t

5
) (4.6)

where

g′t
i
= ( f (~ωt +∆i~ei)− f (~ωt))/∆i (4.7)

and

~gt = ~g′t/||~g′t ||2 (4.8)

The value of ∆i is determined based on the corresponding increment for the vector of ~ωt at

iteration t and~ei is the eigenvector.
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Since the objective function of the MIP problem is not a convex function, we stop

the algorithm when we have,

limt→∞ | f (~ωt)− f (~ωt−1)|< ε .

4.2.1 Gradient and Subgradient Methods in IMRT

Some studies use a modified subgradient algorithm for the nonconvex functions

[74, 75, 76, 77].

There are studies which apply gradient and subgradient methods for the Intensity

Modulated Radiation Therapy (IMRT) [78, 79, 80, 81, 82]. Gradient algorithms are the

most commonly employed search methods in the routine optimization of IMRT plans

[78]. Michalski et al. [79] present a novel formulation of a dose volume constraint

satisfaction search for the discretized radiation therapy model. Problem is solved using

the simultaneous version of the cyclic subgradient projection algorithm which is a

deterministic iterative method designed for solving the convex feasibility problems.

Censor et al. [80] propose an optimization algorithm which minimizes a weighted

proximity function that measures the sum of the squares of the distances to the dose

constraint sets. In most IMRT inverse problems, it is not possible to satisfy all of the

constraints. Thus, a method is find plans that satisfy the constraints as much as possible.

To do this, they introduce proximity functions that measure the distance of a point to the

set. The goal is to minimize a weighted sum of the proximity functions. A projected

gradient method is used to optimize the problem. Projection algorithms are frequently

used to find a point that belongs to the intersection of closed convex sets. A projection

onto a set is the point within that set that is closest to the current point. In projection

algorithms, a point is repeatedly projected onto each set, according to some algorithmic

rules, until a point in all of the sets is found.
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Zhang et al. [78] compare the relative speed of different gradient algorithms, to

investigate the strategies for accelerating the optimization process, to assess the validity of

these strategies, and to study the convergence properties of these algorithms for

dose-volume and biological objective functions. They implement Newton’s, conjugate

gradient (CG), and the steepest decent (SD) algorithms for dose-volume- and equivalent

uniform dose-based objective functions. They approximate the second derivative matrix

(Hessian) by its diagonal. They also implement the standard SD algorithm and the CG

algorithm with “line minimization”. A variation of the CG algorithm which is called

“scaled conjugate gradient” (SCG) is investigated. A hybrid optimization strategy is

evaluated in which approximations to calculated dose distributions are used during most of

the iterations. Newton’s method outperforms other algorithms in terms of computational

time. The SCG algorithm can speed up the standard CG algorithm by at least a factor of 2.

Having the same initial conditions, all algorithms converge essentially to the same plan.

A technical note introduces a local search technique for the beam angle

optimization [81]. For a set of know angles, f (θ) indicates the objective cost of the

optimized IMRT plan for the set of θ . Gradient of the function with respect to θ is used

for the local search. A combination of the gradient method and duality theory is used to

proceed.

Another study uses a hybrid approach for the beam angle optimization problem

which automatically selects the beam angles and computes the beam intensities [82]. This

method applies a Simulated Annealing procedure (SA) with a Gradient Descent method

(GD). It consists of an iterative approach which alternates few steps of GD for quickly

finding a local minimum, with few steps of SA for jumping out of the local minima then it

starts to search in a different part of the solution space.
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We discussed different studies in IMRT which use gradient or subgradient methods

to solve the different problems in IMRT. Most of these studies take the angles as the input

vector for the subgradient method and solve a sub problem which is either MIP or LP. We

use an approximate gradient method for the MIP problem discussed in chapter 3 and solve

a subroutine which treats the geometry parameters and angles as continues parameters.

4.3 Mathematical Model

The model developed in chapter 3, included the geometry of the table as discrete decision

variables. Since the image originally is discretized to the pixels, we used a discretized

geometry which is also practical in clinical use. Also we used a set of commonly used

angles to run the problem. In this chapter, we would like to investigate continues geometry

of the table and angles to further improve the computational time and solution quality. We

propose a partially relaxed formulation of the MIP problem given in section 3.3.3 where

the constraints corresponding to the discrete geometry are relaxed. The approximate

gradient algorithm allows taking continuous positions and using fixed geometry in the

formulation. The model is solved at each iteration of the approximate gradient algorithm

as a subroutine within a specified time limit. We refer to the constraints which are the

same as constraints in model 3.3.3 by the reference number to those constraints.

We define parameter β(ip, jp,lp),i′ j′ as follows,

β(ip, jp,lp),i′ j′ =


1 if beam i′ j′ hits the body voxel of (ip, jp, lp)

0 otherwise

Other parameters and variables are not mentioned in this section, are defined in

chapter 3.
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f (ωt) = Min ∑
V(ip, jp,lp)∈Co

doseV(ip, jp,lp)
=

∑
(ip, jp,lp):V(ip, jp,lp)∈Co

n

∑
i′=1

n

∑
j′=1

Γ(ip, jp,lp),i′ j′(1− e−µ(ip, jp,lp)d)

mV(ip, jp,lp)

(4.9)

Subject to

• Constraints (3.4), (3.5), (3.6), (3.7), (3.8), (5.13), (5.14), (5.15), (5.16), (5.17),

(5.18), (5.19), (5.20), (3.26), (5.21), (5.22), (5.23), (5.24), (5.25), (5.26), (5.27)

• Constraint to linearize ψ(ip, jp,lp),i′ j′ equation :b
β(ip, jp,lp),i′ j′+γi′ j′

2 c

ψ(ip, jp,lp),i′ j′ ≥ β(ip, jp,lp),i′ j′+ γi′ j′−1 ∀ (ip, jp, lp) ∈V P, i′, j′ = 1, ..,n (4.10)

ψ(ip, jp,lp),i′ j′ ≤ γi′ j′ ∀ (ip, jp, lp) ∈V P, i′, j′ = 1, ..,n (4.11)

ψ(ip, jp,lp),i′ j′ ≤ β(ip, jp,lp),i′ j′ ∀(ip, jp, lp), ∈V P, i′, j′ = 1, ..,n (4.12)

• Variable range

ψ(ip, jp,lp),i′ j′ ∈ {0,1} (4.13)

Γlp,i′ j′ ≥ 0 (4.14)

γi′ j′ ∈ {0,1} (4.15)

This model presents a formulation for a set of known geometry parameters and angles. It

minimizes the dose deposited in the critical organs and determines the required energy

and field size with respect to the image quality. Constraint 4.10 ensures that if a beam

exists and hits the body voxel, the binary variable of ψ(ip, jp,lp),i′ j′ is taking a value of one.

Constraints 4.11 and 4.12 enforce the value of ψ(ip, jp,lp),i′ j′ be zero when beam i′ j′ does

not intercept with voxel (ip, jp, lp).
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4.4 Algorithm

Here we first explain some common rules of the gradient method and modifications made

in our approximate gradient algorithm.

We start with a feasible solution which is selected randomly from a set of known

feasible solutions. We run the approximate gradient algorithm for each of the feasible

solutions in the set for a few runs (3-5) and whichever achieved the lowest value in terms

of the objective function is the one we pick as start point. Then, we use the best given

feasible solution in each iteration to proceed to the next iteration of the gradient

algorithm. A vector ~ωt is updated at each iteration of the gradient algorithm which

consists of the primary and secondary angles and table increments in x, y and z directions.

We use norm-2 for normalizing the gradient direction. For any vector x, the

norm-2 is defined as follows,

||x||2 :=
√

∑i(x2
i )

4.4.1 Notations

t: iteration index

T : maximum number of iterations

f (~ωt): objective function iteration t for the MIP problem 4.3 by using the input

vector of ~ωt

~ωbest : the best local optimal point achieved in the iterations

f (~ωbest): the best objective function achieved within iterations

~ω0 = (θ1,0,θ2,0,x0,y0,z0): starting point, where θ1,0 and θ2,0 indicate the primary

and secondary angles and x0, y0 and z0 indicate the table increments respectively

~ωt : vector of geometry in iteration t

M: large value, comparable to the maximum energy
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ξ[v][i][ j]: indicates the intercepted voxel v of body with beam i and j

~gt : gradient vector

α: multiplier

h: number of infeasible consequitive iterations

ξ[v][i][ j]: indicator for the voxel v of the body intercepted with beam i and j

h: number of infeasible consecutive iterations

ht : number of infeasible consecutive iterations at iteration t

p: indicated number of iterations to average the objective function value

ν : the lower bound set for the objective function which is acceptable in practice

4.4.2 Procedural Rules of the Algorithm

We use an approximate gradient direction~gt which is calculated as equation 4.8 using g′t
i

values calculated by equation 4.7. We set αt =
1
t .

We update the value of ~ωt+1 based on the formula given in equation 4.5 and

approximate gradient calculated in equation 4.8.

In some steps of the approximate gradient method, the step size may result in

infeasible problem. In order to jump out of the infeasible solutions, we use a Fibonacci

search to reduce the step size and go back to a feasible solution (step 5.1.). We compute

norm and gradient for the two consequitive iterations. Then we update the vector of ωt

where the multiplier of αt starts with 1
1 ,

1
2 ,

1
3 ,

1
5 , . . . based on the Fibonacci series to find a

feasible solution.

We also use another method to reject feasible solutions with a large gap from the

best feasible solution. In this method, after a specified number of iterations (p iterations),

we use the average objective function to reject the feasible solutions larger than this value.

We continue using this method at every (i+1)p iterations of the problem, where p is the
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interval and i is the indicator of the corresponding interval. We continue using this method

until we meet the stoping conditions as follows,

4.4.3 Stopping rules

• Number of iterations ≥ T (here we used T = 1000 iterations)

• Achieving two consecutive objective functions with a | f (ωt)− f (ωt−1)|< ε

• Achieving a value for the objective function which is sufficiently small in practice

(here we set ∆ for as an acceptable lower bound for this objective function

comparison)

4.4.4 Gradient Approximation Algorithm

A.1 : Steps of Gradient Approximation Algorithm

————————————————————————————–

1. Initialize function f (~ω0) with a large value of M. Set t = 0, f (ωbest) = ∞,

f ( ~ω−1) =−M. We also set k = 0 which indicates the frequency of lowering the

bound for the objective function. Read initial vector of ~ω0 = (θ1,0,θ2,0,x0,y0,z0) as

input.

2. Prepare the input data to compute matrices of intersection of beams with body

voxels, indices of the body voxels, indices of ROI and indices of the critical region

with respect to the first voxel of the body using the vector of ~ωt . Compute the

values for the ξ[v][i][ j], ∀ v ∈Voxels o f Body, i, j = 1 . . .n which indicates the voxel

v of the body intercepted with beam i and j.

3. If t ≤ T , go to step 3, otherwise stop.
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4. Solve MIP model of formulation 4.3 and calculate f (~ωt) for a time limit of 500

seconds.

5. If MIP is feasible and has found a feasible solution within 500 seconds, go to step

5.2., otherwise go to step 5.1..

5.1. Modify the step size αt by Fibonacci search. Calculate the vector of ~g′t , ~ωt+1

using equations 4.6, 4.7, and 4.5, and set ~ωt = ~ωt+1. Go to step 4.

5.2. Solve MIP for f (~ωt +∆i~ei), ∀ i = 1, . . . ,5.

5.3. If the MIP problem ∀ i is feasible, go to step 5.4., otherwise go to step 5.5..

5.4. If number of iterations t is equal to kp+ p+1, then go to step 5.6., otherwise

go to step 5.8..

5.5. Modify the value of the ∆i, ∀ i where f (~ωt +∆i~ei) is infeasible. Go to step 5.2..

5.6. Set δ = ∑
(k+1)p
t=1 f (~ωt)/((k+1)p). Set k = k+1.

5.7. If f (~ωt)≤ δ , go to step 5.8., otherwise go to step 5.11.3..

5.8. Calculate αt = 1/t.

5.9. Calculate ~g′t and ~ωt+1 using equations 4.6, 4.7, and 4.5.

5.10. If f (~ωt)− f (~ωt−1)≤ ε , stop, otherwise go to step 5.11..

5.11. If f (~ωt)≤ f (~ωbest), then go to step 5.11.1., otherwise go to step 5.11.3..

5.11.1. Set f (~ωbest) = f (~ωt), and t = t +1.

5.11.2. If f (~ωbest)≤ ν , stop, otherwise go to step 4.

5.11.3. Set ~ωt = ~ωbest . Go to step 5.2..

————————————————————————————–
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Figure 4.1 demonstrates the flow chart for the approximate gradient algorithm. To

ensure the image quality, all the voxels of the ROI should intercept with pencil beams. We

check this condition in step 2 of the algorithm. If it is not feasible, we modify the step

size. We make the step size smaller by using a Fibonacci search 5.1.. After each change,

we calculate the updated ωt and check if the problem is feasible or not. Anytime that we

set f (ωt) to M, we calculate the norm and gradient using the best ( fbest) objective function

achieved up to the current iteration 5.11.1..

4.5 Computation Results

We solve testing problems presented in section 3, Table 3.4 and compare the results from

the computational aspects with results for the test problems solved using the

branch-and-cut algorithm in section 3.5. The IBM ILOG CPLEX11.0 and Concert25

library packages are used to solve the MIP problem in 4.3. The runs are implemented by a

desktop computer having Intel(R) Xeon(R) CPU and 4GB of RAM. We pick a feasible

solution as a start point by randomly selecting from a set of known feasible solutions. We

run the gradient algorithm for each of the available feasible solutions in the set for a few

runs (3-5) and we pick the one achieving the lowest objective function. We set a time limit

of 200 seconds and an optimality gap of the ε < 0.0001 to stop running the MIP model

4.3. Whichever of these condition is achieved first, the algorithm stops running the MIP

model, updates the gradient, ωt and continues. The approximate gradient algorithm stops

using the rules given in section 4.4. The setting of the rules are: i) f (ωt)− f (ωt−1)≤ ε

where ε is set to 0.0001 for our experiments, ii) fbest ≤ ∆, where ∆ is set to 0.005, and iii)

maximum number of iterations T which is set to 1000 for this study.

We compared the values for the absorbed dose in the critical organs, using the

approximate gradient algorithm and branch-and-cut in Table 4.1. Most of the test

problems show a comparable objective value. The computational times (s) are compared
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for using two algorithms in each test problem. The two last columns represent the

computational results corresponding to each setting. The first one is the absorbed dose in

the critical organ (Gy) and the next one is the computational time in seconds. We

Test Algorithm Primary Secondary Increment Units Computation
Problem angle angle x y z (Gy) (s)

1
B&C -20 20 -4 -8 1 0.0036 376.4

gradient -20 20.3 -5.8 -8.8 -2.7 0.0041 264.1

2
B&C 15 0 2 7 11 0.0084 724.1

gradient 14.9 -0.3 2.1 8 12.6 0.0069 328.7

3
B&C 15 10 -2 10 15 0.0358 681.3

gradient 14.9 10.4 -2.4 12 21.1 0.0037 174.6

4
B&C 30 0 3 13 4 0.0172 640.2

gradient 29.7 -0.3 3.2 14.6 0.1 0.0164 279.5

5
B&C -10 0 1 -6 15 0.0242 550.1

gradient -9.8 -0.3 2.1 -5.7 21.3 0.0086 308.7

6
B&C 20 0 -1 8 3 0.0198 498.7

gradient 19.5 -0.6 3 8 -2 0.0023 643.8

7
B&C 0 0 0 1 28 0.0343 856.7

gradient 0 -0.6 -0.1 -1 35 0.0277 218.3

8
B&C -20 0 3 -11 7 0.0380 571.6

gradient -19.9 -0.5 0 -9.8 7.5 0.0213 221.4

Table 4.1: Comparison of the geometry parameters given by branch-and-cut (B&C) and
updated by approximate gradient algorithm

compared the geometry parameters for the best objective function given by the

approximate gradient algorithm with the best objective function given by the

branch-and-cut algorithm in Table 4.1. The values for the gradient algorithm are continues

but the results show that continues geometry parameters have close values to the discrete

geometry. This indicates that approximate gradient algorithm provides comparable results

to the branch-and-cut algorithm. Therefore, it can be useful if we refine the size of the

problem for the smaller voxels that the commercial solvers have limitation for handling a

large number of variables and constraints when the size of the branch-and-cut tree may

become very large and the solver runs out of the memory.
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Using approximate gradient algorithm with some modifications such as

approximate gradient calculation in different iterations and applying rejection rules for the

infeasible solutions and feasible solutions with large optimality gap provides comparable

results in terms of the objective function value with previous modified branch-and-cut

method. This method proceeds faster since there are fewer number of binary variables.

Approximate gradient algorithm provides a better objective function in most of the

settings and for one setting it shows a higher value which is still small enough for the

objective function. It also provides the computational time for each algorithms which is

smaller for most of the cases when an approximate gradient algorithm is used.

4.6 Summary

In chapter 3, we proposed a model which minimizes the absorbed dose in the critical

organs with respect to the geometry in a discretized space using a set of known angles.

The discretized geometry enables us to model problem as a MILP model and use

branch-and-cut to find solutions. However; it also limits us to certain discrete locations

which may bypass some opportunities to improve the objective function and explore the

region. In this chapter, we investigated the use of an approximate gradient approach to

have the capability of finding a set of angle and table geometry simultaneously which

minimizes the absorbed dose in the critical organs with respect to the image quality. This

approach uses a continuous setting for the geometry parameters and solves a sub routine

MIP model which determines the energy and field of radiation. Using approximate

gradient algorithm presents a combined method which is capable of searching in a

continuous space and updates angles and locations simultaneously. Our results show that

we can improve the computational time and solution quality using approximate gradient

method although the global optimum is not guaranteed. By refining the grid size of the

original MIP model presented in 3, the branch-and-cut method cannot handle the number
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of variables and constraints. However, the approximate gradient method uses a refined

MIP model which can be handled by branch-and-cut method for smaller grid size.
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Figure 4.1: Flow chart for the approximate gradient algorithm

74



Chapter 5

ROBUST SOLUTION WITH INTRAFRACTIONAL MOTION

5.1 Introduction

In section 3, we discussed a deterministic model which minimizes the absorbed dose in

the critical organs of the body with respect to the image quality. In this formulation, we

assumed that patient position and relative position of the organs are deterministic.

However, several sources of uncertainty exist in the radiation therapy and radiology. For

example, when a patient is breathing, changes occur in the position of the internal organs

relative to the beams; it results in uncertainty for the treatment planning. Other sources of

uncertainty are imaging errors, physician error, intrafraction patient motion, registration

errors, organ shrinkage and possible microscopic extensions of the tumor [83].

A major challenge in radiology and radiation therapy treatment planning is

managing uncertainty, including uncertainty induced by intrafraction motion [84].

Breathing causes the change in the relative size and positions of some organs. There are

some studies which address some possible uncertainties in IMRT [81, 83, 84, 85, 86].

Since the sources of uncertainties are not considered in our deterministic

formulation, the absorbed dose calculated may be comprised of the errors caused by

uncertainties. A deterministic model is solved for one setting of the input data scenarios

and the solution is corresponding to one scenario. Such approaches that only evaluate

decisions using one data scenario may fail. For other decision makers especially the

medical decision makers would like to avoid the risk and are interested in having the

information of any possible outcome. Thus a decision maker is not just looking for an

optimal solution for a specific data scenario not even the most likely to occur scenario, but

a decision which performs best across all scenarios. Robust decision is an approach to

determine a solution that performs well across all scenarios. We aim to produce decisions
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with reasonable objective values under any input data scenario to our optimization model

over a pre-specified planning horizon. One possible criteria is minimax which minimizes

the largest possible loss across the scenarios [87].

Here, we define two terms of “solution robust” and “model robust”. “Solution

robust” is used when a solution of the optimization model is robust with respect to the

optimality and remains close to optimal for any input data scenario. If a solution remains

almost feasible for the input data scenarios, it is called “model robust” [88].

A scenario based approach is usually used to represent the input data uncertainty

to the decision models. In robust optimization, we do not need to have the probability

distribution and since the distribution function may not be known we can not use

stochastic programming. If we have the probability distribution, we can use stochastic

programming to address uncertainty in the problems.

The mathematical model presented in chapter 3 is a deterministic model and does

not address the uncertainties. In this chapter, we consider breathing as a source of

uncertainty for the organ relative positions and size of the organs. We consider input data

scenarios based on this source of uncertainties. Within the process of breathing the organs

change continuously. Here, we only consider discrete scenarios which are like snap shots

of this process. By adding up the number of scenarios, we are able to simulate this process

closer to reality. We refine the mathematical model 3.3 so that it minimizes the maximum

absorbed dose for the critical organs with respect to the image quality across all input data

scenarios.

5.2 Literature Review

In this section, we introduce some definitions of a robust approach, and then we discuss

studies in radiation therapy where some sources of uncertainty exist in the problem.
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5.2.1 Definition of the Robust Approach

The robustness approach determines appropriate input data instances for the situation

without assigning probabilities, and then attempts to find the decision which performs

well in the worst case. A scenario based method can be used to represent the uncertainty

of the input data in our decision model. Each scenario indicates a potential realization of

the parameters in the decision model that we do not know the probability of occurrence.

By using a scenario based approach, the decision maker can accommodate the effects of

different factors on input data simultaneously [87].

We explain some notations and decision used in robust optimization and what we

use in our problem. Let S be a set of input data scenarios over a specified horizon. Let X

be the set of decision variables and D be the set of input data. The notation Ds denotes the

instance of the input data corresponding to scenario s. Fs denotes the set of all feasible

decisions for scenario s, and assume function f (X ,Ds) is used for the quality evaluation of

decision X ∈ Fs. The optimal scenario X∗s corresponding to input data Ds is the solution of

the following deterministic optimization problem [87],

zs = f (X∗s ,D
s) = minX∈Fs f (X ,Ds) (5.1)

The decision XA which minimizes the maximum total cost among all feasible

solutions is called the absolute robust decision.

zA = max
s∈S

f (X ,Ds) = min
X∈∩s∈SFs

max
s∈S

f (X ,Ds) (5.2)

These decisions are conservative and they are based on the worst case occurrence.

Another robust criterion is Robust Deviation where the performance of the decision in

each scenario is evaluated against the best possible decision for that scenario. The

deviation of the performance of a scenario from the best performance is recorded for all
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the scenarios. Relative Robustness is another criterion which is the percentage deviation

from the optimal performance in a scenario and the robustness indicator is the worst

observed percentage deviation from the optimal for the evaluated decision across all

scenarios. The absolute robust criterion is more related to the decisions which are

conservative and the major concern is to hedge against the worst possible happening.

The problem we are considering minimizes the absorbed dose for the critical

organs with respect to the image quality. If we consider breathing as a source of

uncertainty which results in the change of the relative positions of the organs, then we

need to ensure that the absorbed dose in the critical organs is minimized in any of the

known positions for the organs. Therefore, we use the absolute robust decision for our

problem to analyze the worst case scenario [87].

5.2.2 Uncertainty in the Radiology and Radiation Therapy Problems

There are several uncertain parameters involved in radiology and radiation therapy. In this

section, we introduce studies which discuss uncertainties involved in these procedures and

reformulate the problem to address the uncertainties. Chan et al. [84] analyze the

uncertainty in the probability mass function (pmf) which describes breathing motion in

radiation therapy, and show how to incorporate it into the inverse planning optimization to

produce a robust treatment plan. The focus of the analysis is on the case where there is no

uncertainty in the objective function. A model of data uncertainty is introduced which

describes the possible variations in the breathing pmf derived from breathing motion data.

This study demonstrates the potential of using a robust optimization method in IMRT

treatment planning to avoid overdosing healthy tissues while maintaining tumor coverage

in the presence of uncertainty. It provides flexibility for the treatment planner to make

suitable decisions regarding trade-offs of conflicting objectives.
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Uncertainty resulted from the organ motions in IMRT is also discussed by study

[85]. They propose a second-order cone programming model which is a probabilistic

model for the IMRT inverse problem and show that under certain assumptions it is

identical to a robust optimization model.

Robust optimization techniques are used to formulate an IMRT treatment planning

problem with uncertainty in the dose matrices. This uncertainty is due to both dose

calculation errors and interfraction positional uncertainty of tumor and organs. The

original linear programming formulation becomes a second-order cone program after

uncertainty is taken into the formulation. Dose matrices are composed of elements which

describe the amount of radiation deposited by a unit weight (intensity) from a particular

beamlet into a particular voxel in the treatment region. The dose matrix is calculated by

techniques such as convolution/superposition and Monte Carlo simulation, given the

properties of the treatment region and the beamlet source and orientation. These

techniques provide approximate results, and hence are one source of uncertainty in the

problem. Another source of uncertainty is change of the position in the internal tissues

between treatment fractions. The probability distributions for both types of uncertainties

are assumed to be known. The formulation is a second-order cone programming and is

solved using sequential linear programming (interfractional motion) [83].

Bortfeld et al. [86] study the presence of the breathing motion for lung and liver

tumors. They formulate a model of motion uncertainty using probability density functions

that describe breathing motion which provides a robust formulation for IMRT. The model

uses real patient data and the robustness of the resulting solutions is measured on a

clinical lung example. The model minimizes the total dose delivered with respect to the

adequate dose be received at the tumor.
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We discussed studies which address uncertainty in dose computation resulted from

intrafraction motion. They use probability functions to address the intrafraction motion.

5.3 Mathematical Model

Three critical elements of the robustness approach for decision making are as follows [87],

1. Using a Scenario Planning Approach to data uncertainty for the decision situation

2. Choice of appropriate Robustness Criteria

3. Development of a Decision Model (Robust Optimization)

A decision maker is required to identify predetermined elements of the environment, and

formalize the perceived connection among events and factors that raises the uncertainty in

the decision making environment. Scenario generation and robust decision making

require the intuition of the environment.

5.3.1 Scenario Design

We construct our scenarios based on the intrafraction motion of the organs within

breathing process. We use CT slices to indicate the positions of the organs and comparing

a set of CT images when a patient is breathing, we determine the interval for the entire

motion. We apply a discrete scenario approach that indicates relative position of the

critical organs and ROI for specific points within the interval. This method facilitated

incorporating scenarios into a mathematical model. Figure 5.1 depicts the relative position

of the organs and the motion considered for constructing the scenarios. An interval is

specified for the intrafraction motion in z direction. However, other possibilities to include

the motion can be addressed in future studies.
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Figure 5.1: Demonstration of the relative positions of the heart and breasts. The scenarios
are planned based on the intrafraction motions possible in the breasts and heart.

As an alternative to the deterministic model, we incorporate the scenario

information into a robust model 5.3.4, so that the constraints reflect voxel location

uncertainty.

In this section, we formulate the robust model which consists of indicated

scenarios for the relative positions of the ROI and critical organs. The goal is minimizing

the absorbed dose in the critical organs such as all the constraints corresponding to all

scenarios are satisfied. Since there are parts of the formulation which are similar to the

model in section 3.3, we refer to those constraints using the equation number. Set of

constraints corresponding to the pencil beams remain the same as there is no effect by

different scenarios on them. Variables and constraints corresponding to the body voxels

and energy at each level are affected and for each scenario, there is one set of these

variables and constraints.
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5.3.2 Notations

We introduce the notations used in this section. However, we do not repeat those

previously mentioned in section 3.

U : the set of all possible scenarios

k: index corresponding to the scenario

C̄o: the union of Ck
o for all k

ξk,(ip, jp,lp),(î, ĵ,l̂),i′ j′
=


1 if there exist increments i, j, l where

î = ip + i, ĵ = jp + j, l̂ = lp + l, for scenario k

0 otherwise

5.3.3 Variables

We introduce notations used for declaring decision variables including continuous and

binary variables which are refined from the model in section 3.3,

Ek,0 = Initial energy of each beam at source for scenario k

ψk,(ip, jp,lp),i′ j′ =



1 if beam i′ j′ intercepts pseudo voxel (ip, jp, lp) of phantom :

γi′ j′ = 1 and xi = 1, y j = 1, zl = 1, for scenario k

0 otherwise
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βk,(ip, jp,lp),(î, ĵ,l̂),i′ j′
=



1 if voxel (ip, jp, lp) is matching with pseudo voxel î ĵl̂

after increments i, j, l in scenario k

where i = î− ip, j = ĵ− jp, l = l̂− lp

and beam i′ j′ intercepts with this pseudo voxel

0 otherwise

Ek,lp,i′ j′ = Energy at layer lp of the phantom when beam i′ j′ is passing in scenario k

Ek,SD,i′ j′ = Energy at the i′ j′ pseudo pixel of the image receptor for scenario k

τk,i′ j′ =


Ek,SD,i′ j′ if ψk,(ip, jp,lp),i′ j′ = 1 ,(ip, jp, lp) ∈ ROI

0 otherwise

Γk,(ip, jp,lp−1),i′ j′ =


Ek,lp,i′ j′ if ψk,(ip, jp,lp−1),i′ j′ = 1

0 otherwise

5.3.4 Optimization Model

The objective function for our robust approach is minimizing the absorbed dose in the

critical organs across all scenarios. We can write it as follows,

Min{max
k∈U

∑
Vk,(ip, jp,lp)∈Ck

o

doseVk,(ip, jp,lp)
} (5.3)

Since the function of 5.3.4 is a nonlinear function, we turn it to a linear function by

introducing ν and define it as follows,

ν = {max
k∈U

∑
Vk,(ip, jp,lp)∈Ck

o

doseVk,(ip, jp,lp)
} (5.4)

Now the robust optimization model can be written as a MILP as follows,
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Min ν (5.5)

Subject to

• Constraints (3.4), (3.5), (3.6), (3.7), (3.8),(3.16), (3.17), (3.18), (3.26)

ν ≥ ∑
Vk,(ip, jp,lp)∈Ck

o

doseVk,(ip, jp,lp)
∀ k ∈U (5.6)

• Constraint to linearize ψk,(ip, jp,lp),i′ j′ equation :b
βk,(ip, jp,lp),(î, ĵ,l̂),i′ j′+γi′ j′

2 c

ψk,(ip, jp,lp),i′ j′ ≥ βk,(ip, jp,lp),(î, ĵ,l̂),i′ j′
+ γi′ j′−1 ∀ (ip, jp, lp) ∈V P,

(î, ĵ, l̂) ∈ Si′ j′, s.t. î = i+ ip, ĵ = j+ jp, l̂ = l + lp,

i′, j′ = 1, ..,n, k ∈U (5.7)

ψk,(ip, jp,lp),i′ j′ ≤ γi′ j′ ∀ (ip, jp, lp) ∈V P,

i′, j′ = 1, ..,n, k ∈U (5.8)

xi + y j + zl ≥ 3 βk,(ip, jp,lp),(î, ĵ,l̂),i′ j′
∀(ip, jp, lp) ∈V P,

î− ip = i, ĵ− jp = j, l̂− lp = l, i′, j′ = 1, . . . ,n, k ∈U (5.9)

βk,(ip, jp,lp),(î, ĵ,l̂),i′ j′
≤ ξk,(ip, jp,lp),(î, ĵ,l̂),i′ j′

∀(ip, jp, lp) ∈V P,

î− ip = i, ĵ− jp = j, l̂− lp = l, i′, j′ = 1, . . . ,n, k ∈U (5.10)

ψk,(ip, jp,lp),i′ j′ ≤ ∑
(î, ĵ,l̂)∈Si′ j′

βk,(ip, jp,lp),(î, ĵ,l̂),i′ j′
∀(ip, jp, lp), ∈V P,

∀i′ j′ = 1, . . . ,n, ∀ k ∈U (5.11)

βk,(ip, jp,lp),(î, ĵ,l̂),i′ j′
− (xi + y j + zl + γi′ j′)≥ ξk,(ip, jp,lp),(î, ĵ,l̂),i′ j′

−4

∀(ip, jp, lp) ∈V P, î− ip = i, ĵ− jp = j, l̂− lp = l, ∀ i′ j′ = 1, . . . ,n (5.12)
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• Constraint to linearize objective function

Γk,(ip, jp,lp),i′ j′ ≥ Ek,lp,i′ j′−M(1−ψk,(ip, jp,lp),i′ j′) ∀ i′ j′, (ip, jp, lp) ∈ C̄o (5.13)

• Constraints to connect different levels of energy of a pencil beam

Ek,lp−1,i′ j′ ≤ Ek,lp,i′ j′+M ∑
ip∈V P

∑
jp∈V P

ψk,(ip, jp,lp−1),i′ j′

∀ i′, j′ = 1, . . . ,n, (ip, jp, lp) ∈V P, k ∈U (5.14)

Ek,lp,i′ j′ ≥ Ek,lp−1,i′ j′e
−µk,(ip, jp,lp−1)d−M(1−ψk,(ip, jp,lp−1),i′ j′)

∀ i′, j′ = 1, . . . ,n, (ip, jp, lp) ∈V P (5.15)

Ek,lp,i′ j′ ≤ Ek,lp−1,i′ j′e
−µk,(ip, jp,lp−1)d +M(1−ψk,(ip, jp,lp−1),i′ j′)

∀ i′, j′ = 1, . . . ,n, (ip, jp, lp) ∈V P (5.16)

∑
ip∈V P

∑
jp∈V P

ψk,(ip, jp,lp),i′ j′ ≤ 1

∀ i′, j′ = 1, . . . ,n, (ip, jp, lp) ∈V P (5.17)

• Constraints to specify the range for energy at each level

Ek,lp,i′ j′ ≤ Ek,lp−1,i′ j′ ∀ i′, j′ = 1, . . . ,n, lp ∈V P (5.18)

n2 Ek,0,i′ j′−E0 = 0 ∀ i′, j′ = 1, . . . ,n (5.19)

Ek,SD,i′ j′ = Ek,lp,i′ j′ ∀ i′, j′ = 1, . . . ,n, lp ∈V P (5.20)

• Image quality constraint

K′′1
n

∑
i′=1

n

∑
j′=1

αi′ j′ ≤
n

∑
i′=1

n

∑
j′=1

τk,i′ j′ (5.21)

n

∑
i′=1

n

∑
j′=1

τk,i′ j′ ≤ K′′2
n

∑
i′=1

n

∑
j′=1

αi′ j′ (5.22)
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• Image quality complementary constraint for linearizing and avoiding division by

zero

τk,i′ j′ ≤ Ek,SD,i′ j′ ∀ i′, j′ = 1, . . . ,n (5.23)

τk,i′ j′ ≤Mαi′ j′ ∀i′, j′ = 1, . . . ,n (5.24)

τk,i′ j′ ≥ Ek,SD,i′ j′−M (1−αi′ j′) ∀i′, j′ = 1, . . . ,n, M = Emax (5.25)

αi′ j′ ≥ ψk,(ip, jp,lp),i′ j′ ∀i′, j′ = 1, . . . ,n, (ip, jp, lp) ∈ ROI (5.26)

αi′ j′ ≤ ∑
ip, jp,lp∈ROI

ψk,(ip, jp,lp),i′ j′ ∀i′, j′ = 1, . . . ,n (5.27)

• Variable range

ψk,(ip, jp,lp),i′ j′ ∈ {0,1} (5.28)

Γk,lp,i′ j′ ≥ 0 (5.29)

τk,i′ j′ ≥ 0 (5.30)

Here we minimize the maximum dose absorbed in the critical organs across all the

input data scenarios which indicate different positions of the ROI and critical organs and

also different sizes of the organs. The index of k in each constraint indicates the variable

corresponding to input scenario k.

The formulation of the absorbed dose for each input scenario k is computed as

follows,

∑
Vk,(ip, jp,lp)∈Ck

o

doseVk,(ip, jp,lp)
= ∑

(ip, jp,lp):Vk,(ip, jp,lp)∈Ck
o

n

∑
i′=1

n

∑
j′=1

Γk,(ip, jp,lp),i′ j′(1− e−µk,(ip, jp,lp)d)

mVk,(ip, jp,lp)

(5.31)

5.4 Methodology

The size of the mathematical model presented in section 5.3.4 increases by adding

scenarios. For three scenarios, the problem has 242,000 variables and 468,000 constraints.
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The commercial solvers (CPLEX and Concert) cannot handle the size of the problem.

Thus, we outline the Bender’s decomposition method which is used to solve the robust

model. Then we present computational results for the robust model.

5.4.1 Decomposition Method

Bender’s decomposition is a common method for solving large-scale MIP problems [89].

The general MIP is defined as follows,

z = min cx+hy (5.32)

s.t. Ax+Gy≥ b (5.33)

x ∈ X ⊆ Zn
+, y ∈ Rp

+ (5.34)

The integer variables x can be viewed as complicating variables and by fixing x, we have a

linear program. If x̄ ∈ X denotes the fix values for the integer variables, we can write the

original problem as follows,

zLP(x) = min hy (5.35)

s.t. Gy≥ b−Ax (5.36)

y ∈ Rp
+ (5.37)

The dual of the LP problem is written as follows (sub problem),

wDP(u) = max u(b−Ax) (5.38)

uG≤ h (5.39)

u ∈ Rm
+ (5.40)

By the dual polyhedron, we can characterize whether LP(x)is infeasible, unbounded or

bounded. Let {uk ∈ Rm
+ : k ∈ K} be the set of extreme points of Q = {u ∈ Rm

+ : uG≥ h}

and let {ν j ∈ Rm
+ : j ∈ J} be the set of extreme rays of {u ∈ Rm

+ : uG≥ 0}. If Q 6= /0, then
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{ν j ∈ Rm
+ : j ∈ J} is also the set of extreme rays of Q. The zLP(x) can be characterized as

follows [70],

• If Q = /0, then zLP(x) =−∞ if ν j(b−Ax)< 0, ∀ j ∈ J and zLP(x) = ∞ otherwise.

• If Q 6= /0, then zLP(x) = min
k∈K

uk(b−Ax)< ∞ if ν j(b−Ax)≥ 0, ∀ j ∈ J and

zLP(x) = ∞ otherwise.

Thus, when Q 6= /0, MIP can be written as follows,

z = min
x
(cx+min

k∈K
uk(b−Ax)) (5.41)

s.t. ν
j(b−Ax)≤ 0 ∀ j ∈ J (5.42)

x ∈ X (5.43)

and it can be reformulated as follows (Master problem),

z = min η (5.44)

s.t. η ≥ cx+uk(b−Ax) ∀ k ∈ K (5.45)

ν
j(b−Ax)≤ 0 ∀ j ∈ J (5.46)

x ∈ X , η ∈ R1 (5.47)

Since we have a large number of constraints, using Bender’s algorithm, we only add

constraints correspoding to the extreme points of the dual problem which is solved as a

sub problem.
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5.4.2 Steps of Bender’s Decomposition

A.2: Steps of the Bender’s decomposition algorithm

———————————————————————————————

Initialize the problem by setting iteration t = 1 and choosing x̄ ∈ X . Set LB =−∞ and

UB = ∞.

while UB−LB > ε do

solve sub problem: wDP(u) = max{u(b−Ax)|uG≤ h, u ∈ Rm
+}

if unbounded

get unbounded ray ν and add cut ν j(b−Ax)< 0 to master problem

else

get extreme point u and add cut η ≤ cx+uk(b−Ax) to master problem if

violated

set UB = min{UB,cx+uk(b−Ax)}

end if

solve master problem: minx{η |cuts,x ∈ X}

set LB = η̄

end while

———————————————————————————————

5.4.3 Bender’s Reformulation

We present the dual subproblem and master problem of the mathematical model 5.3.4

which are used in Bender’s algorithm. We consider the set of binary variables

x = (γi′ j′, ψk,(ip, jp,lp),i′ j′, βk,(ip, jp,lp),(î, ĵ,l̂),i′ j′
, xi, y j, zl, αi′ j′) where x ∈ B to be set for the

initial feasible solution for problem 5.3.4. We denote these values by
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γ̄i′ j′ , ψ̄k,(ip, jp,lp),i′ j′, β̄k,(ip, jp,lp),(î, ĵ,l̂),i′ j′
, x̄i, ȳ j, z̄l, ᾱi′ j′ to represent a feasible solution to

the problem. We denote continuous variables by y = (τi′ j′,Γk,lp,i′ j′,Ek,SD,i′ j′,Ek,lp,i′ j′)

where y ∈ Rp
+.

The formulation for the relaxation LP problem is as follows,

Min ννν (5.48)

Subject to

ν− ∑
Vk,(ip, jp,lp)∈Ck

o

doseVk,(ip, jp,lp)
≥ 0 ∀ k ∈U (5.49)

• Constraint to linearize objective function

Γk,(ip, jp,lp),i′ j′ ≥ Ek,lp,i′ j′−M(1− ψ̄k,(ip, jp,lp),i′ j′) ∀ i′ j′, (ip, jp, lp) ∈ C̄o (5.50)

• Constraints to connect different levels of energy of a pencil beam

Ek,lp−1,i′ j′−Ek,lp,i′ j′ ≤M ∑
ip∈V P

∑
jp∈V P

ψ̄k,(ip, jp,lp−1),i′ j′

∀ i′, j′ = 1, . . . ,n, (ip, jp, lp) ∈V P, k ∈U (5.51)

Ek,lp,i′ j′−Ek,lp−1,i′ j′e
−µk,(ip, jp,lp−1)d ≥−M(1− ψ̄k,(ip, jp,lp−1),i′ j′)

∀ i′, j′ = 1, . . . ,n, (ip, jp, lp) ∈V P (5.52)

Ek,lp,i′ j′−Ek,lp−1,i′ j′e
−µk,(ip, jp,lp−1)d ≤M(1− ψ̄k,(ip, jp,lp−1),i′ j′)

∀ i′, j′ = 1, . . . ,n, (ip, jp, lp) ∈V P (5.53)
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• Constraints to specify the range for energy at each level

Ek,lp,i′ j′−Ek,lp−1,i′ j′ ≤ 0 ∀ i′, j′ = 1, . . . ,n, lp ∈V P (5.54)

n2 Ek,0,i′ j′−E0 = 0 ∀ i′, j′ = 1, . . . ,n (5.55)

Ek,SD,i′ j′−Ek,lp,i′ j′ = 0 ∀ i′, j′ = 1, . . . ,n, lp ∈V P (5.56)

• Image quality constraint

n

∑
i′=1

n

∑
j′=1

τk,i′ j′ ≥ K′′1
n

∑
i′=1

n

∑
j′=1

ᾱi′ j′ (5.57)

n

∑
i′=1

n

∑
j′=1

τk,i′ j′ ≤ K′′2
n

∑
i′=1

n

∑
j′=1

ᾱi′ j′ (5.58)

• Image quality complementary constraint for linearizing and avoiding division by

zero

τk,i′ j′−Ek,SD,i′ j′ ≤ 0 ∀ i′, j′ = 1, . . . ,n (5.59)

τk,i′ j′ ≤Mᾱi′ j′ ∀i′, j′ = 1, . . . ,n (5.60)

τk,i′ j′−Ek,SD,i′ j′ ≥−M (1− ᾱi′ j′) ∀i′, j′ = 1, . . . ,n, M = Emax (5.61)

• Variable range

Ek,SD,i′ j′ ≥ 0 (5.62)

Ek,lp,i′ j′ ≥ 0 (5.63)

Γk,lp,i′ j′ ≥ 0 (5.64)

τk,i′ j′ ≥ 0 (5.65)

The problem is bounded since the constraints for the image quality have lower and upper

bounds which indicates the feasible region of the problem is restricted. We define dual
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variables corresponding to each constraint of sub problem 5.4.3 and let u denote set of

dual variables and ūk be solution to the dual of sub problem 5.4.3 in kth iteration. We

denote the right hand side of the constraints in sub problem 5.4.3 by b. If the coefficient of

these constraints are denoted by A, then, a restricted master problem is formulated as

follows,

Min ζζζ

Subject to

ζ ≥ (b−Ax)ūk, ∀ k ∈ K

x ∈ B

Now using the algorithm given in section 5.4.2, we can solve the problem and add

cuts to the master problem when corresponding constraint 5.4.3 is violated.

5.4.4 Computational Results

The mathematical model presented for the robust optimization in section 5.3.4 is larger in

terms of number of variables and constraints in compare with model presented in chapter

3. Even for small number of scenarios, the desktop computer having Intel(R) Xeon(R)

CPU and 4GB of RAM cannot handle the variables and constraints to build the model in

CPLEX. We use decomposition methods to overcome the memory limitations. We use the

Bender’s decomposition approach which is in general a row generation method and adds

constraints to the problem whenever they are violated as described in section 5.4.

We use a margin for the ROI which is an expanded region around the nominal

position of the ROI in which we are confident ROI will be irradiated. A treatment plan

will be said to be robust if all of the constraints in the subsequent formulation are satisfied

[86]. A set of scenarios is constructed using CT images and the intrafraction motion

considered for the organs. These scenarios alter the input data used to construct the model

and calculate the absorbed dose in the voxels. An interval of 2cm is considered for the
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motion in z direction. We study the problem for three scenarios which indicate the position

of the critical organ within the specified interval. The robust approach indicates a larger

absorbed dose in the critical organs in compare with deterministic method for each set of

predefined angulations. However, the robust approach is a worst case study which ensures

the minimum dose across all scenarios. Table 5.1 shows the results for comparison of the

objective function obtained from the robust optimization approach and objective function

of each individual scenario. The values of each scenario is the optimal solution for that

scenario. We also compute the deviation of the robust objective function from the

maximum value of the scenarios. These results indicate that robust optimization may

increase the maximum objective function scenario by 26% to ensure the feasibility for all

the scenarios. We also present the computational results where we feed the robust solution

Scenario 1 Scenario 2 Scenario 3 Robust Max Dev.
(-20,20) 0.0024 0.0067 0.0054 0.0078 69.23%
(-20,0) 0.0397 0.0284 0.0214 0.0418 48.80%
(-10,0) 0.0251 0.0165 0.0178 0.0282 41.49%
(0,0) 0.0363 0.0314 0.0296 0.0440 32.73%

(15,0) 0.0045 0.0104 0.0097 0.0131 65.65%
(15,10) 0.0069 0.0086 0.0109 0.0127 45.67%
(20,0) 0.0271 0.0188 0.0116 0.0321 63.86%
(30,0) 0.0220 0.0148 0.0193 0.0266 44.36%

Table 5.1: Comparison of the absorbed dose (Gy) for each individual scenario and the
robust model (Max Dev. indicates the deviation percentage of the robust objective function
from the max objective function across the scenarios)

in each scenario and compare the objective function of each scenario using robust solution

with its optimal solution. Using this comparison, we can show how much robust solution

is away from the best solution for each scenario. Table 5.2 depicts the computational

results where the value presented for each scenario is the subtraction of the optimal

objective function of the scenario from the objective function calculated using robust

solution. We compute maximum deviation from optimal for each set of angles. Table 5.2
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Angles Scenario 1 Scenario 2 Scenario 3 Max Dev.
(-20,20) 0.0018 0.0008 0.0017 23.08%
(-20,0) 0.0006 0.0028 0.0142 33.97%
(-10,0) 0.0016 0.0050 0.0016 17.73%
(0,0) 0.0017 0.0090 0.0019 20.45%

(15,0) 0.0062 0.0011 0.0028 47.33%
(15,10) 0.0047 0.0017 0.0012 37.01%
(20,0) 0.0023 0.0041 0.0161 50.16%
(30,0) 0.0031 0.0043 0.0043 16.17%

Table 5.2: Deviation of the optimal objective function (Gy) from the robust solution using
the setting of the robust solution for each individual scenario

indicates a maximum deviation of 0.0161 Gy for the difference of the robust solution from

the optimal absorbed dose in each scenario. We also use the optimal solution of scenario 1

and plug it in corresponding problems of scenario 2 and 3. Then we report feasibility of

the problem, absorbed dose (Gy) and percentage of the image area which is missed by

using the field of radiation given in scenario 1. These results are reported in Table 5.3.

Angles Test Scenario 1 Scenario 2 Scenario 3

(0,0)

Feasibility test Optimal Infeasible Infeasible
Dose-Scen1 (Gy) 0.0363 0.0395 0.0357

Missed area of the image 0% 12.5% 18.75%
Dose-Robust (Gy) 0.0380 0.0404 0.0315

(20,0)

Feasibility test Optimal Infeasible Infeasible
Dose-Scen1 (Gy) 0.0271 0.0249 0.0307

Missed area of the image 0% 18.75% 31.25%
Dose-Robust (Gy) 0.0294 0.0229 0.0277

(15,10)

Feasibility test Optimal Feasible Infeasible
Dose-Scen1 (Gy) 0.0069 0.0112 0.0138

Missed area of the image 0% 6.25% 12.5%
Dose-Robust (Gy) 0.0116 0.0103 0.0121

Table 5.3: Deviation of using the optimal objective function from the scenario 1 in the
other scenarios

We optimize the MIP problem for scenario 1 and using the expanded ROI which is

feasibility condition in robust model. Then we plug in the solution of that in problems
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Angle Computed Scenario Scenario Scenario
item 1 2 3

(0,0)
Dose-Scen1 (Gy) 0.0369 0.0427 0.0368
Dose-Robust (Gy) 0.0380 0.0404 0.0315

Deviation -2.98% 5.39% 14.40%

(20,0)
Dose-Scen1 (Gy) 0.0288 0.0273 0.0315
Dose-Robust (Gy) 0.0294 0.0229 0.0277

Deviation -2.08% 16.12% 12.06%

Table 5.4: Solving problem for scenario 1 with expanded ROI and plugging in the solution
in problems solve for the scenario 2 and 3

with scenario 2 and 3. The results are reported in Table 5.4. Presented results for two set

of angles show that the optimal absorbed dose for scenario 1 is smaller than robust

solution and the optimal absorbed dose given by scenario 2 and 3 are higher than robust

solution and the deviation is up to 16% in these examples. The deviation shows that using

a robust model can be beneficial and reduce the absorbed dose. We present computational

results for using Bender’s decomposition method to solve the robust model in Table 5.5.

We set a time limit of 2000 seconds to run the algorithm. The optimality gap varied from

5% to 69% in different settings we run the algorithm. However, the solution to the robust

model provides the minimum absorbed dose with respect to the image quality satisfaction

for all the scenarios. To improve the optimality gap and solution quality, we can apply

Primary Secondary Aborbed dose Number of Optimality
angle angle (Gy) iterations gap

0 0 0.0440 15 17.5%
-10 0 0.0282 21 10.99%
20 0 0.0321 19 15.58%
-20 0 0.0418 14 5.02%
15 0 0.0131 23 65.65%
30 0 0.0266 13 17.29%
15 10 0.0127 19 45.67%
-20 20 0.0078 14 69.23%

Table 5.5: Computational results for the Bender’s decomposition method used for the ro-
bust model 5.3.4
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other decomposition methods and implementations to use the structure of the problem

more efficiently.

5.5 Summary

We presented a robust mathematical model to minimize the maximum absorbed dose in

the critical organs with respect to the image quality in all the input data scenarios. We

constructed our input data scenarios by considering the uncertainty of the relative position

of the organs resulted from breathing. Our method addresses the uncertainty for the

motion of the organs and change in the size of the organs. Results show an increase of the

absorbed dose in the critical organs against each scenario up to 26%. However, the robust

formulation hedges against motion uncertainty as determined by the scenarios.

There are other sources of the uncertainty which are involved in the radiology

procedures and we did not consider in our robust optimization model because of the

computation limitations. However, it is worth to find more efficient computational

methods so that we can consider other sources of variability and include more possible

scenarios. Hybrid decomposition methods which combine two or more algorithms may

work more efficiently if sub problems are run simultaneously using parallel processors.

We can also use subgradient methods which are based on partial relaxations of the

mathematical model but have the advantage of exploring continuous variables. We can

run each scenario in a subroutine independent of the other scenarios and then proceed

with feasibility search using subgradient algorithm.
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Chapter 6

CONCLUSION

we formulate the radiation reduction problem for an FGI procedure as a mixed integer

linear program. Derived and implemented cutting planes show the efficiency

improvements of the computational time. The radiation reduction can be achieved to over

70% in the computational experiments. The current results are based on theoretical

computations. The dose reduction performance can be validated by using body phantom

in the lab or Monte Carlo simulation. Even though the computational time is reduced

significantly by adopting lazy cuts, the size of the problem may result in computational

difiiculties when the size of the ROI or critical organ is large. It is also possible that some

of the cuts which are more efficient are not captured from the pool by the algorithm.

The mathematical model presented in chapter 3 optimizes the problem for each

given set of angles. Including angles in the model, results in a MINLP which enhances the

complexity of the computation. To optimize the angulation and table locations

simultaneously, we proposed a modified subgradient algorithm which treats angles and

table locations as a vector and updates this vector at each iteration of the algorithm by

using an estimate of subgradient. Each iteration of the subgradient method solves a

partially relaxed MIP model which determines the field of radiation and energy and

explores the continuous geometry. The results of this method demonstrates that this

algorithm can reduce the absorbed dose in the critical organs by slightly change in the

geometry. This method has the capability of exploring continuous geometry which might

not be explored using the proposed discrete method. The computational results indicate

further reduction (up to 80%) of the absorbed dose in compare with previous method.
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We provided a robust optimization model to handle motion uncertainties within a

breathing process. We applied scenario based method and minimax function for the

optimization.

6.1 Future Research

The mathematical model presented in chapter 3 is a large-scale MIP and computation

arises when size of the problem increases. We proposed some facet defining inequalities

and preprocessing algorithm to speed up the computation and enhance the solution

quality. However, more polyhedral analysis and investigating more heuristics is valuable

and will be in our future steps.

Validation of the mathematical models provided in this dissertation can be

achieved through a complete measurement of the absorbed dose and image processing.

This will enable the capabilities for vendors adoption of real-time automatic dose

reduction.

We proposed a modified subgradient method which shows some improvement on

the computational complexities of the problem. This method can be improved more to

provide a bound for the objective function. We can also analyze the convergence of the

method using different step sizes and projection methods. This method can be used if we

refine the size of the voxels and use smaller voxels which cannot be handled by the

original model when using a branch-and-cut method.

A robust optimization problem is presented to indicate how we can handle

uncertainties in the model. More sources of the uncertainty can be accounted into the

model. More investigation is required to find more efficient algorithms and decomposition

methods. A parallel processing approach can be used if we decompose problem to

independent sub problems which can be solved simultaneously. Applying a modified
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subgradient method to the robust model is another method which can improve the

computational time by customizing the subgradient algorithm to the robust model.
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GLOSSARY

Abbreviation Description Page

CT Computed Tomography page 1
FGI Fluoroscopy Guided Interventional Radiology page 1
IMRT Intensity Modulated Radiation Therapy page 1
Gy Gray page 2
FDA Food and Drug Administration page 4
ICRP International Commission on Radiological Protection page 11
SNR Signal-to-Noise Ratio page 13
MIP Mixed-integer Programming page 13
DICOM Digital Imaging and Communications in Medicine page 19
GEANT GEometry ANd Tracking page 19
MCNP Monte Carlo N-Particle page 20
mA mili Amperage: Charge/Current page 21
kV kilo voltage page 21
CTDI Computed Tomography Dose Index page 22
C-G Chvatal-Gomory page 46
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