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ABSTRACT

Practical communication systems are subject to errors due to imperfect time

alignment among the communicating nodes. Timing errors can occur in different

forms depending on the underlying communication scenario. This doctoral study

considers two different classes of asynchronous systems; point-to-point (P2P) com-

munication systems with synchronization errors, and asynchronous cooperative sys-

tems. In particular, the focus is on an information theoretic analysis for P2P systems

with synchronization errors and developing new signaling solutions for several asyn-

chronous cooperative communication systems.

The first part of the dissertation presents several bounds on the capacity of the

P2P systems with synchronization errors. First, binary insertion and deletion chan-

nels are considered where lower bounds on the mutual information between the input

and output sequences are computed for independent uniformly distributed (i.u.d.) in-

puts. Then, a channel suffering from both synchronization errors and additive noise

is considered as a serial concatenation of a synchronization error-only channel and

an additive noise channel. It is proved that the capacity of the original channel is

lower bounded in terms of the synchronization error-only channel capacity and the

parameters of both channels. On a different front, to better characterize the deletion

channel capacity, the capacity of three independent deletion channels with different

deletion probabilities are related through an inequality resulting in the tightest upper

bound on the deletion channel capacity for deletion probabilities larger than 0.65.

Furthermore, the first non-trivial upper bound on the 2K-ary input deletion channel

capacity is provided by relating the 2K-ary input deletion channel capacity with the

binary deletion channel capacity through an inequality.

The second part of the dissertation develops two new relaying schemes to al-

leviate asynchronism issues in cooperative communications. The first one is a single
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carrier (SC)-based scheme providing a spectrally efficient Alamouti code structure at

the receiver under flat fading channel conditions by reducing the overhead needed

to overcome the asynchronism and obtain spatial diversity. The second one is an

orthogonal frequency division multiplexing (OFDM)-based approach useful for asyn-

chronous cooperative systems experiencing excessive relative delays among the relays

under frequency-selective channel conditions to achieve a delay diversity structure at

the receiver and extract spatial diversity.
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Chapter 1

Introduction

Time synchronization is a basic challenge in design and implementation of digital com-

munication systems whether they are point-to-point (P2P) or cooperative systems. In

fact, achieving a perfect time synchronization is not possible in many communication

systems and synchronization issues are unavoidable. The synchronization problems

may degrade the performance of communication systems in different ways depend-

ing on the underlying communication scenario. In this dissertation, we focus on two

different cases: P2P communications with synchronization errors and asynchronous

cooperative communications. More precisely, our focus is on information theoretic

analysis for P2P channels suffering from synchronization errors and physical layer

solutions for cooperative communication systems suffering from asynchronism among

the cooperating nodes.

Different types of impairments may lead to synchronization errors in P2P

communication systems. For example, imperfect knowledge of the receiver about

the transmitter clock rate [7] or time-varying transmission rate [8] result in insertion

and deletion errors at the receiver which degrade the system performance. Hard

disk systems also suffer from synchronization errors in which varying rotation speed

of the platter results in a varying bit rate, therefore, insertion and deletion errors

become unavoidable [7]. Insertion errors may also occur in digital audio tape (DAT)

systems due to the stretching of the tape [7]. Furthermore, bit-patterned media

(BPM) recording [9] is known as a new technology that suffers from synchronization

errors. The main difficulty in this new technology is the write synchronization issue

that is not a problem in the conventional recording systems. In BPM recording

systems, there are arrays of magnetic cells over the recording medium where each cell

is magnetized by the write head to represent a bit, therefore, the imperfect alignment

1



between the write head and the position of the magnetic cells result in synchronization

errors.

A useful channel model for P2P systems with synchronization errors assumes

that the number of received symbols may be more or less than the number of trans-

mitted symbols. In other words, channels with synchronization errors can be well

modeled using bit drop outs and/or bit insertions as well as random errors. By chan-

nels with synchronization errors, mathematically, we refer to the binary memoryless

channels with synchronization errors as described by Dobrushin in [10] where every

transmitted bit is independently replaced with a random number of symbols (possi-

bly the empty string, i.e., a deletion event is also allowed), and the transmitter and

receiver have no information about the position and/or the pattern of the synchro-

nization errors. As proved in the same paper, for such channels, information stability

holds and Shannon capacity exists. Digital communication systems under perfect

synchronization assumption are well modeled and widely studied in the literature

from different aspects including computation of channel capacity and development

of coding principles. However, information theoretic analysis performed under the

perfect synchronization assumption does not easily extend to channels with synchro-

nization errors. That is, due to the memory introduced into the received sequence by

the synchronization errors, an information theoretic study of these channels proves

to be very challenging.

In the existing literature, several specific instances of the Dobrushin’s model

are more widely studied. For instance, by a proper selection of the stochastic chan-

nel transition matrix, one obtains the independent and identically distributed (i.i.d.)

deletion channel which represents one of the simplest models allowing for bit drop-

outs. In an i.i.d. deletion channel, the transmitted symbols are either received cor-

rectly and in the right order or deleted from the transmitted sequence altogether

2
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Figure 1.1: The received signal at the destination of an asynchronous relay system
with three relays.

with a certain probability d independent of each other. Neither the receiver nor the

transmitter knows the positions of the deleted symbols. Despite the simplicity of

the model, the capacity for this channel is still unknown, and only a few upper and

lower bounds are available [5, 11–13]. Other special cases of the general model by

Dobrushin are the Gallager model allowing for insertion, deletion and substitution

errors in which every transmitted bit is either deleted with probability of d, replaced

with two random bits with probability of i, flipped with probability of f or received

correctly with probability of 1− d − i − f . There are also some capacity upper and

lower bounds for the Gallager’s insertion/deletion channel model in the literature,

e.g., [14].

Another communication scenario in which timing issues may degrade the sys-

tem performance is the case of cooperative communication systems. In cooperative

communications, a group of nodes, known as relays, help a source node deliver its data

to the destination [15]. Due to the distributed nature of the wireless cooperative com-

munication systems, achieving a perfect time alignment among signals received from

different nodes is not always possible. For instance, Fig. 1.1 shows the received signal

at the destination of an asynchronous cooperative system with three relays which is

a superposition of three unaligned signals, where τi represents the beginning of the

arrival of the signal transmitted by the i-th relay (Ri), indicating a relative delay of

τi − τj between the signals received from the i-th and j-th relays (i, j ∈ {1, 2, 3}).

3



As a specific scenario in which relative time delays among the relay nodes

can be significant, we focus on asynchronous underwater acoustic (UWA) coopera-

tive communication systems. In a UWA cooperative communication system, the time

differences among signals received from geographically separated nodes can be exces-

sive due to the low speed of sound in water. For instance, if the relative distance

between two nodes with respect to another is 500 m, then their transmissions expe-

rience a relative delay of 333 ms. Considering, for instance, that in an orthogonal

frequency division multiplexing (OFDM)-UWA cooperative communication scheme

with 512 sub-carriers over a total bandwidth of 8 kHz, the OFDM block duration is

only 64 ms, the excessive delay of 333 ms becomes very problematic. Furthermore,

UWA channels are highly time varying due to the large Doppler spreads and Doppler

shift effects (or, Doppler scaling effects) [16].

The existing signaling solutions for asynchronous terrestrial radio cooperative

communications rely on quasi-static fading assumptions with limited delays among

signals received from different relays at the destination, e.g., see [17] and references

therein. Therefore, conventional physical layer solutions designed specifically for ter-

restrial radio cooperative communications cannot be directly applied for the cooper-

ative UWA scenarios which are asynchronous with large relative delays among the

nodes under highly time-varying frequency selective channel conditions. For instance,

in systems employing OFDM, e.g., [3, 18], the existing solutions are effective when

the maximum length of the relative delays among signals received from various nodes

are less than the length of an OFDM block which is not a practical assumption for

the case of UWA communications. A trivial generalization of existing OFDM-based

results to compensate for large relative delays may be to increase the OFDM block

lengths. The main drawback is that inter carrier interference (ICI) is increased due to

time variations of the UWA channels. Another trivial solution is to increase the length

4



of the cyclic prefix (CP). This is not an efficient solution either, since it dramatically

decreases the spectral efficiency of the system.

1.1 Outline of Dissertation

In Chapter 2, we first give the general model for memoryless channels with syn-

chronization errors, by illustrating several specific models such as binary input in-

sertion/deletion/substitution channel, 2K-ary input deletion channel, binary input

symmetric q-ary output channels (BSQC) with synchronization errors and binary in-

put additive white Gaussian noise (BI-AWGN) channels with synchronization errors,

and provide a review of existing capacity bounds on channels with synchronization

errors. Then, we present the system model for asynchronous cooperative commu-

nication systems and review some existing works on asynchronous terrestrial radio

cooperative communication systems.

In Chapter 3, we consider achievable rates over binary input insertion and

deletion channels for small values of insertion and deletion probabilities by comput-

ing bounds on the mutual information rate of the insertion and deletion channels

for independent uniformly distributed (i.u.d.) input sequences. We consider three

different deletion channel models: the usual i.i.d. deletion channel, i.i.d. deletion-

substitution channel and i.i.d. deletion channel with additive white Gaussian noise

(AWGN). For the insertion channel case we assume that the transmitted bits are

replaced with two bits with a certain probability independently of any other inser-

tion events. We consider two specific cases: Gallager’s model where the pair of bits

are random and uniform over the four possibilities, and the sticky channel where

transmitted bits are simply duplicated.

In Chapter 4, we consider binary input symmetric output channels with syn-

chronization errors which also suffer from other type of impairments such as substitu-

tions, erasures, additive white Gaussian noise (AWGN) etc. We present several lower
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bounds on the capacity of such a channel, where we show that if the channel with

synchronization errors can be decomposed into a cascade of two channels where only

the first one suffers from synchronization errors and the second one is a memoryless

channel, a lower bound on the capacity of the original channel in terms of the syn-

chronization error-only channel capacity and the parameters of the original channel

can be derived. We illustrate that, with our approach, it is possible to derive tighter

bounds compared to the currently available bounds in the literature for certain classes

of channels, e.g., deletion-substitution channels and deletion-AWGN channels for a

range of signal to noise ratio (SNR) values.

In Chapter 5, we first prove a simple result that the parallel concatenation of

two different independent deletion channels with deletion probabilities d1 and d2, in

which every input bit is either transmitted over the first channel with probability of

λ or over the second one with probability of 1 − λ, is nothing but another deletion

channel with deletion probability of d = λd1 + (1 − λ)d2. We then provide an upper

bound on the concatenated deletion channel capacity C(d) in terms of the weighted

average of C(d1), C(d2) and the parameters of the three channels. An interesting

consequence of this bound is that C(λd1 + (1 − λ)) ≤ λC(d1) which enables us to

provide an improved upper bound on the capacity of the i.i.d. deletion channels,

i.e., C(d) ≤ 0.4143(1 − d) for d ≥ 0.65. Using the same approach we are also able

to improve upon existing upper bounds on the capacity of the deletion-substitution

channel.

In Chapter 6, we derive the first non-trivial upper bound on the non-binary

deletion channel capacity and reduce the gap between the existing achievable rates

and upper bounds. To derive the new upper bounds we first prove an inequality

between the capacity of a 2K-ary deletion channel with deletion probability d, denoted

by C2K(d), and the capacity of the binary deletion channel with the same deletion
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probability, C2(d), that is, C2K(d) ≤ C2(d) + (1− d) log(K). Then by employing the

existing upper bounds on the capacity of the binary deletion channel, we obtain upper

bounds on the capacity of the 2K-ary deletion channel. We illustrate via examples

the use of the new bounds and discuss their asymptotic behavior as d→ 0.

In Chapters 7 and 8, we turn our attention to a physical layer study of co-

operative communication systems which suffer from time asynchronism among the

signals received from different relays at the destination node. Our main motivation

to consider asynchronous cooperative communication systems is their application in

cooperative UWA communications in which due to the low speed of the sound in

water, relative delays among relay nodes become extremely large.

In Chapter 7, a relay communication system with two amplify and forward

(AF) relays under fading channel conditions is considered in which the signals re-

ceived from the relay nodes are not necessarily time aligned and both relays share the

same time and frequency bands to communicate with the destination. We propose a

new time-reversal (TR)-space time block coding (STBC) scheme for the considered

cooperative system for which in comparison with the existing STBC solutions with

the same data block lengths, a smaller time guard needs to be added to guarantee ro-

bustness against asynchronism among the cooperating nodes. Assuming full channel

state information (CSI) at the receiver, we obtain the optimal maximum likelihood

(ML) detector structure for the proposed scheme. We also propose a sub-optimal

lower complexity detector. Through numerical examples, we verify that the new

scheme extracts full spatial diversity out of the system.

In Chapter 8, we develop a new OFDM based scheme to combat the asynchro-

nism problem in cooperative UWA communication systems without adding a long

CP (in the order of the long relative delays) at the transmitter. More precisely, we

show that by adding a much more manageable (short) CP at the source, utilizing
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full-duplex AF relaying at the relays, and appropriate CP removal at the destination,

we can obtain a delay diversity structure out of the received signal at the destination

node for effective processing and exploitation of the spatial diversity. We provide

a pairwise error probability (PEP) analysis of the system for both time invariant

and block fading channel scenarios and show that the system achieves full spatial

diversity. By full CSI at the destination node, a Viterbi decoder can be employed

to recover the original data which is observed through an equivalent delay diversity

scheme. Through numerical examples, we evaluate the performance of the proposed

scheme for time-varying multipath channels with Rayleigh fading channel taps, mod-

eling UWA channels. We compare our results with those of the existing schemes

and find that while for time invariant channels, the performance is similar, for time

varying cases (typical in UWA communications) the proposed scheme is significantly

superior.

Finally, we provide a summary of the accomplishments and conclusions in

Chapter 9.
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Chapter 2

Preliminaries

In this chapter, we first focus on memoryless P2P channels with synchronization er-

rors. We review the general model for such channels [10], give some specific channel

models which are used in the dissertation and review existing results on the capacity

of synchronization error channels by focusing on insertion/deletion channel models.

Then, we turn our attention to the asynchronous cooperative communication systems

by providing the general system model and reviewing existing results on asynchronous

cooperative radio terrestrial communication systems under both flat fading and fre-

quency selective channel conditions. Throughout the dissertation, by channels with

synchronization errors, we mean P2P channels with synchronization errors.

The chapter is organized as follows. In Section 2.1, we first present the channel

models for P2P memoryless channels with synchronization errors focusing on the

specific models considered in this thesis, then review the existing capacity upper

and lower bounds for the considered channel models. In Section 2.2, we focus on

asynchronous cooperative communication systems where we first review the general

asynchronous cooperative system model, then provide a review on existing signaling

solution for asynchronous cooperative systems. Finally, we summarize the chapter in

Section 2.3.

2.1 Memoryless Channels with Synchronization Errors

2.1.1 Channel Models

A general memoryless channel with synchronization errors [10] is defined via a stochas-

tic matrix {p(yi|xi), yi ∈ Y , xi ∈ X} where X is the input alphabet (e.g., for a binary

input channel X = {0, 1}), and Y is the set of output symbols which may contain the

null strings, 0 ≤ p(yi|xi) ≤ 1, and
∑

yi∈Y p(yi|x) = 1. In the other words, based on
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Dobrushin’s model [10], in a memoryless channel with synchronization errors, every

transmitted bit is independently replaced with a random number of symbols such

that deletion of a symbol is also probable, and the transmitter and receiver have

no information about the position and pattern of the synchronization errors. Dif-

ferent specific models on channels with synchronization errors are considered in the

literature, including insertion/deletion channels, e.g., the Gallager insertion/deletion

channel [4], the sticky channel [19] and the segmented insertion/deletion channel [20].

As another example, the model in [21] considers timing errors modeled as a discrete-

valued Markov process.

The most commonly used version of the general model by Dobrushin is the

Gallager model [4] allowing for insertions, deletions and substitution errors in binary

input channels in which every transmitted bit is either deleted with probability of

d, replaced with two random bits with probability of i or flipped with probability

of f or received correctly with probability of 1 − d − i − f . The Gallager model

can also be considered as the cascade of an insertion/deletion channel with the same

insertion and deletion probabilities and a binary symmetric channel (BSC) with cross

error probability of s where s =
f

1− d− i
. Substituting i = s = 0 in the Gallager

model results into the binary deletion-only channel model in which only bit drop-out

are possible. The binary deletion channel model can be easily generalized to the

non-binary input cases as considered in [22] to model information transmission over a

finite buffer channel in which every transmitted symbol may be independently deleted

with probability of d.

In a sticky channel [19], only duplication errors can occur, so an insertion

channel is obtained in which each symbol is independently duplicated with probability

i. The number of duplications can also be a random variable by following a certain

distribution function on the set of positive integers. An example of the sticky channel
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is typing on a keyboard where instead of pressing a key only once, it is held for a

long time. In [19], two special cases for the number of duplications in a binary input

channel are studied in detail, namely elementary i.i.d. duplication channel where

the number of duplications is not random and it is exactly one, and geometric i.i.d.

duplication channel where the number of duplications follows a geometric distribution.

The received sequence from a sticky channel preserves the block structure of the

transmitted sequence, i.e., in transmitting each contiguous block of zeros (ones) a

contiguous block of zeros (ones) is received which makes the study of the channel easier

than the general insertion/deletion case. For example, considering 11101001101000 as

the input sequence of the sticky channel, 1111110010001100011000 could be a possible

output sequence. If we interpret the input and output sequences to 31122112 and

62132323 as the sequences of block lengths, respectively, then we see that the length

of the block length sequences are the same. This property is exploited for calculating

upper and lower bounds bounds on the capacity of the sticky channel [19].

Segmented insertion/deletion channel is introduced in [20] as another special

case of the insertion/deletion channels to model synchronization errors arising from

small differences between transmitter and receiver clock frequencies. Consecutively

transmitted bits over the segmented deletion or insertion channel are (implicitly) par-

titioned into segments of b bits and each segment is either received correctly without

any synchronization errors with probability of 1− d, or is corrupted by a fixed num-

ber of deletion or insertion errors with probability of d. As an instance, consider

segments consisting of 4 bits and at most one deletion error within each segment,

then in transmitting 110010111010, deletions of the first, sixth and eleventh bits are

probable but deletions of both the first and second bits are not possible.

As another possible model, we can consider a binary input symmetric q-ary

output channel (BSQC) with synchronization errors. As depicted in Fig. 2.1, such a
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Figure 2.1: Binary input symmetric q-ary output channel with synchronization errors.
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Figure 2.2: Input-output relation in the substitution/erasure channel (P (Y
(3)
i |Yi) for

all 1 ≤ i ≤ |y|).

channel can be expressed as a concatenation of two independent channels in which

the first one is a channel with only synchronization errors with input sequence X and

output sequence Y , and the second one is a BSQC with input sequence Y and output

sequence Y (q), and by a symmetric channel we refer to the definition given in [23,

p. 94]. That is, a channel is symmetric if by dividing the columns of the transition

matrix into sub-matrices, in each sub-matrix, each row is a permutation of any other

row and each column is a permutation of any other column. For example, a chan-

nel with independent substitution, erasure and synchronization errors (sub/ers/synch

channel) can be considered as a concatenation of a channel with only synchronization

errors with input sequence X and output sequence Y and a substitution/erasure

channel (binary input ternary output channel) with input sequence Y and output se-

quence Y (3). In a substitution/erasure channel, each bit is independently flipped with

probability s or erased with probability e, as depicted in Fig. 2.2. Another specific

example is a binary input symmetric quaternary output channel with synchronization

errors which can be decomposed into two independent channels such that the first one

is a memoryless synchronization error channel and the second one is a memoryless

binary input symmetric quaternary output channel shown in Fig. 2.3.
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Figure 2.3: Input-output relation in the binary input quaternary output channel
(P (Y

(4)
i |Yi) for all 1 ≤ i ≤ |y|).
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Figure 2.4: AWGN channel with synchronization errors.

We consider the case of a binary synchronization error channel in the presence

of AWGN as well, in which the bits are transmitted using binary phase shift keying

(BPSK) and the received signal contains AWGN in addition to synchronization er-

rors. As illustrated in Fig. 2.4, this channel can be considered as the cascade of two

independent channels where the first channel is a synchronization error channel and

the second one is a binary input AWGN (BI-AWGN) channel. We use X to denote

the input sequence to the first channel which is a BPSK modulated version of the

binary input sequence X, i.e., the i-th symbol satisfiesXi = 1−2Xi, andY to denote

the output sequence of the first channel which input to the second one. Ỹ is the

output sequence of the second channel that is the noisy version of Y , i.e.,

Ỹi = Y i + Zi,

where Zi’s are i.i.d. Gaussian random variables with zero mean and a variance of

σ2, and Ỹi and Y i are the ith received and transmitted bits of the second channel,

respectively.

Note that the binary input symmetric q-ary output channel can be considered

as a q-level quantized output version of the BI-AWGN channel (with a symmetric
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Figure 2.5: Four level quantization.

Table 2.1: Transition probabilities of the quantized AWGN channel.

P (Y
(4)
j |Y j)

Yj Y
(4)
j = 0+ Y

(4)
j = 0− Y

(4)
j = 1− Y

(4)
j = 1+

0 p2 = 1−Q(1−a
σ
) p1 = Q(1−a

σ
)−Q( 1

σ
) p3 = Q( 1

σ
)−Q(1+a

σ
) p4 = Q(1+a

σ
)

1 p4 p3 p1 p2

quantizer). For example the case of 4-level quantizer is illustrated in Fig. 2.5, i.e.,

Y
(4)
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0+ if Ỹj ≥ a

0− if 0 ≤ Ỹj < a

1− if −a ≤ Ỹj < 0

1+ if Ỹj < −a

. (2.1)

Transition probabilities of the binary input symmetric quaternary output channel,

resulting from a 4-level quantization based on (2.1) are reported in Table. 2.1 (where

Q(.) denotes the right tail probability of the standard normal distribution).

2.1.2 Bounds on the Capacity of Insertion and Deletion Channels

Dobrushin [10] proved under very general conditions that for a discrete memoryless

channel with synchronization errors, Shannon’s theorem on transmission rates applies

and the information and transmission capacities are equal. The proof hinges on

showing that information stability holds for the insertion/deletion channels and, as

a result, capacity per bit of an i.i.d. insertion/deletion channel can be obtained by
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lim
N→∞

max
P(X)

1

N
I(X;Y ), where X and Y are the transmitted and received sequences,

respectively, and N is the length of the transmitted sequence. On the other hand,

there is no single-letter or finite-letter formulation which may be amenable for the

capacity computation, and no results are available providing the exact value of the

limit. In [24], authors extend Dobrushin’s result on discrete memoryless channels

with synchronization errors to the case of continuous output memoryless channels

with synchronization errors.

Our main focus in this dissertation is on the insertion/deletion channels as the

most common specific model for memoryless channels with synchronization errors,

therefore, in the following, we review existing upper and lower bounds on the capacity

of such channels.

Gallager [4] considered the use of convolutional codes over channels with syn-

chronization errors, and derived an expression which represents an achievable rate

for channels with insertion, deletion and substitution errors (whose model is speci-

fied earlier). The approach is to consider transmission of i.u.d. binary information

sequences by convolutional coding and modulo-2 addition of a pseudo-random binary

sequence (which could be considered as a watermark used for synchronization pur-

poses), and computation of a rate that guarantees success by sequential decoding.

The achievable rate, or the capacity lower bound, is given by the expression

C ≥ 1 + d log d+ i log i+ c log c+ f log(f), (2.2)

where C is the channel capacity, c = (1 − d − i)(1 − s) is the probability of correct

reception, and f = (1 − d − i)s is the probability that a flipped version of the

transmitted bit is received. The logarithm is taken base 2 resulting in transmission

rates in bits/channel use. Substituting i = 0 in (2.2) gives a lower bound on the
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capacity of the deletion-substitution channel Cds, for d ≤ 0.5, as

Cds ≥ 1−Hb(d)− (1− d)Hb(s), (2.3)

where Hb(d) = −d log(d) − (1 − d) log(1 − d) is the binary entropy function. It is

interesting to note that for i = s = 0 (d = s = 0) and d ≤ 0.5 (i ≤ 0.5), a lower bound

on the capacity of the deletion-only channel (insertion-only channel) with deletion

(insertion) probability of d (i), is equal to the capacity of a binary symmetric channel

with a substitution error probability of d (i).

In an early work, Vvedenskaya and Dobrushin [25] has employed Monte Carlo

methods to compute an achievable rate for the binary deletion channel by generating

input codewords according to anm-th order Markov chain (0 ≤ m ≤ 2). Furthermore,

in [22, 26], authors argue that, since the deletion channel has memory, optimal code-

books for use over deletion channels should have memory. Therefore, in [5, 26, 27],

achievable rates are computed by using a random codebook of rate R with 2n·R code-

words of length n, while each codeword is generated independently according to a

symmetric first-order Markov process. At the receiver side, different decoding algo-

rithms are proposed, e.g., in [26], if the number of codewords in the codebook that

contain the received sequence as a subsequence is only one, the transmission is suc-

cessful, otherwise an error is declared. The proposed decoding algorithms result in

an upper bound for the incorrect decoding probability. Finally, the maximum value

of R that results in success as n → ∞ is an achievable rate, hence a lower bound

on the transmission capacity of the deletion channel. The lower bound (2.2), for

i = s = 0, is also proved in [26] using a different approach compared to the one taken

by Gallager [4], i.e., by using codewords with i.u.d. elements.

In [12], a lower bound on the capacity of the binary deletion channel is obtained

directly by lower bounding the information capacity lim
N→∞

1

N
max
P (X)

I(X;Y ). In [12],
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input sequences are considered as alternating blocks of zeros and ones (runs), where

the length of the runs L are i.i.d. random variables following a particular distribution

over positive integers with a finite expectation and finite entropy (E(L), H(L) < ∞
where E(·) and H(·) denote the expected value and entropy, respectively).

Another interesting lower bound on the binary deletion channel capacity is

presented in [11] as Cd ≥ 1− d

9
for all d. In [11], the binary i.i.d. deletion channel is

considered as a Poisson-repeat channel in which each bit is independently replaced by

a Poisson number copies of itself with mean l. Then, by showing that if L1 is a lower

bound on the capacity of the Poisson-repeat channel then L1(1− d) is a lower bound

on the deletion channel capacity, the lower bound Cd ≥ 1− d

9
is obtained. Obviously,

for low values of d, this is a loose lower bound, e.g., for d = 0 the capacity of the

deletion channel is equal to 1 while the derived lower bound is equal to
1

9
. However,

as d→ 1, the lower bound becomes interesting.

There are also a few results on the capacity of the sticky channel in the litera-

ture [5, 12, 19]. In [5, 12], the authors derive lower bounds by using the same approach

employed for the deletion channel. Whereas in [19], several upper and lower bounds

are obtained by resorting to the Blahut-Arimoto algorithm (BAA) [28, 29] in an

appropriate manner.

In [6, 30], Monte Carlo methods are used for computing lower bounds on the

capacity of the insertion/deletion channels based on reduced-state techniques. In [30],

the input process is assumed to be a stationary Markov process and lower bounds on

the capacity of the deletion and insertion channels are obtained via Monte Carlo sim-

ulations considering both the first and second-order Markov processes as input. In [6],

information rates for i.u.d. input sequences are computed for several channel models

using a similar Monte Carlo approach where in addition to the insertions/deletions,

effects of intersymbol interference (ISI) and AWGN are also investigated.
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As a trivial upper bound on the deletion channel capacity, one can consider

the erasure channel capacity, i.e., Cd ≤ 1− d. This is because, a genie-aided deletion

channel with deletion probability d in which the positions of the deleted bits are

revealed to the decoder is nothing but an erasure channel with erasure probability d.

There are several papers deriving non-trivial upper bounds on the capacity of the

insertion/deletion channels as well. Fertonani and Duman in [13] present several

upper bounds on the capacity of the i.i.d. deletion channel by providing the decoder

(and possibly the encoder) with some genie-aided information about the deletion

process resulting in auxiliary channels whose capacities are certainly upper bounds on

the capacity of the i.i.d. deletion channel. By providing the decoder with appropriate

side information, a memoryless channel is obtained in such a way that BAA can be

used for evaluating the capacity of the auxiliary channels (or, at least for computing a

provable upper bound on their capacities). They also prove that by subtracting some

value from the derived upper bounds, lower bounds on the capacity can be derived.

The intuition is that the subtracted information is more than extra information added

by revealing certain aspects of the deletion process. A nontrivial upper bound on the

deletion channel capacity is also obtained in [31] where a different genie-aided decoder

is considered. Furthermore, Fertonani and Duman in [14] extend their work [13] to

compute several upper and lower bounds on the capacity of channels with insertion,

deletion and substitution errors as well.

In two recent papers [32, 33], asymptotic capacity expressions for the binary

deletion channel for small deletion probabilities are developed. It is proved in [33] that

Cd≤ 1−(1−O(d))Hb(d) (where O(.) represents the standard Landau (big-O) notation)

which clearly shows that for small deletion probabilities, 1 − Hb(d) is a tight lower

bound on the deletion channel capacity. In [32], an expansion of the capacity for small

deletion probabilities is computed with several dominant terms in an explicit form.
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The idea of capacity expansion for d→ 0 employed in [32] is extended to the

sticky and segmented deletion channel cases in [34] and [35], respectively. In [34],

authors provide the sticky channel capacity expansion with several dominant terms

valid for both d → 0 and d → 1. In [35], the capacity expansion is provided for the

segmented deletion channel as d
b
→ 0 where b and d denote the segment length and

the probability of one bit loss from each segment, respectively.

Although binary deletion channels have received significant attention over the

years, and many upper and lower bounds on their capacity have been derived, such

studies for the non-binary case are largely missing. In the following we give a review

of the state of the art.

Non-trivial lower bounds on the capacity of the non-binary deletion channels

are provided in [22] where two different bounds are derived. More precisely, the

achievable rates of the 2K-ary input deletion channel are computed for i.i.d. and

Markovian codebooks by considering a simple decoder which decides in favor of a

sequence if the received sequence is the subsequence of only one transmitted sequence.

The derived achievable rates for a 2K-ary input deletion channel are given by

C2K ≥ log

(
2K

2K − 1

)
+ (1− d) log(2K − 1)−Hb(d), (2.4)

by considering i.i.d. codebooks, and

C2K ≥ sup
γ>0, 0<p<1

[−(1− d) log ((1− q)A+ qB)− γ log(e)] (2.5)

by considering Markovian codebooks, with q =
1

2K

(
1 +

(1− d)(2K − 1)(2Kp− 1)

2K − 1− d(2Kp− 1)

)
,

A =
e−γ(1− p)

(2K − 1)(1− e−γ(1− 1−p
2K−1))

and B = e−γ ((1− p)A+ p).

Non-binary input alphabet channels with synchronization errors are also con-

sidered in [36] where the capacity of memoryless synchronization error channels in

the presence of noise and the capacity of channels with week synchronization errors
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(i.e., the transmitter and receiver are partly synchronized) have been studied. The

main focus of the work in [36] is on asymptotic behavior of the channel capacity for

large values of K.

2.2 Asynchronous Cooperative Communications

In this section, we turn our attention to cooperative communication systems suffer-

ing from time asynchronism among the relay nodes which may degrade the system

performance. We first present the cooperative communication system model under

consideration and then review some existing solutions applicable to radio terrestrial

asynchronous cooperative communication systems.

2.2.1 Cooperative Communications

Multi-input multi-output (MIMO) communication systems have attracted a great

deal of attention in recent years [37–39] as a promising solution to improve the per-

formance of wireless communications systems by providing spatial diversity. Different

signaling solutions are employed to extract the maximum possible enhancement in

comparison with the single input single output (SISO) communication systems out of

the MIMO communication systems, e.g., space-time coding (STC) [40] scheme which

was first introduced by Alamouti in [41] for a two transmit antenna set up. However,

due to the limited size and cost constraints, using more than one transmit and/or

receive antennas may not always be possible. Furthermore, geographically separated

nodes may form virtual transmit elements, known as relays, to provide spatial di-

versity in a distributed manner known as cooperative communication [15]. Due to

the distributed nature of the cooperative communication systems, the signals trav-

eling through various paths may experience different delays. Therefore, the signals

received from different nodes may not be in perfect time alignment, and as a result

the signaling solutions originally designed for MIMO communication and coopera-
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Figure 2.6: Relay channel with J relays.

tive communication systems under perfect synchronization assumptions may not be

directly applicable in asynchronous cooperative communication systems.

In addition to the asynchronism issues, depending on the application and

communication medium, different channel conditions may be experienced by the co-

operating nodes, e.g., multipath or single tap channels, time varying or quasi-static

channels. In this dissertation, we focus on two different scenarios, time varying fre-

quency selective and quasi-static flat fading channel conditions. In the following,

we present the cooperative communication system model for time varying frequency

selective channel conditions by the understanding that the quasi-static flat fading

channel is a special case. A general cooperative relay system with J relay nodes (Rj

and j ∈ {1, · · · , J}) helping a source node S deliver its data to a destination node D

is shown in Fig. 2.6 in which all the channels from the source to the relays, i.e., hi(t, τ)

(j ∈ {1, · · · , J}), and from the relays to the destination, i.e., gj(t, τ) (j ∈ {1, · · · , J}),
are time varying frequency selective fading channels. The signal x(t) is broadcast by

the source and received as yj(t) at the j-th relay. We assume that there is no direct

link between the source and the destination, however, one can model the system such

that the signal broadcast by the source node is received at the destination node as

well. Furthermore, each relay forwards the signal sj(t) to the destination, i.e., per-

forms amplify and forward relaying. We assume that the signal corresponding to the

j-th relay is received Dj seconds later than the signal corresponding to the first relay,
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i.e., D1 = 0. Therefore, the received signal at the destination y(t) can be written as

y(t) =
J∑

j=1

∫ ∞

−∞
gj(t, τ)s(t− τ −Dj)dτ. (2.6)

We adopt the general asynchronous cooperative system model given in this section in

Chapters 7 and 8, and propose new relaying schemes to combat asynchronism issues

at the destination.

Different cooperation protocols and relaying techniques have been considered

in the literature for terrestrial radio communication systems. Time division multiple

access (TDMA) cooperation protocols have been first discussed in [15, 42] in which

the relays are assumed to be half duplex. In half-duplex relaying, transmission from

the source to the destination is done in two phases. In the first phase, the source

is active by broadcasting its signal while the relay nodes are silent. In the second

phase, the relay nodes are active where each relay transmits its interpretation of the

signal received during the first phase to the destination based on the specific signaling

approach. One may increase the spectral efficiency of the cooperative system by

employing full-duplex relay nodes, e.g., [43, 44]. In full-duplex relaying schemes,

no time division is performed through the transmission and the transmission and

reception by each relay is done simultaneously.

A relay can employ different techniques to help the source node deliver its

signal to the destination. Most common techniques considered in the literature are

AF and decode and forward (DF) relaying protocols [44]. A DF relay first decodes the

signal received from the source, then encodes and forwards its decoded sequence to the

destination. In AF relaying, the signal received from the source is simply amplified

and forwarded to the destination without any decoding/encoding procedures at the

relays while different amplifying protocols can be used. In general, for both AF and

DF relaying protocols, different power allocation strategies can be employed.
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2.2.2 Review of Existing Signaling Solutions for Asynchronous Cooperative

Communication Systems

To combat the asynchronism issues in the cooperative communication systems and

obtain the maximum achievable spatial diversity (and possibly multipath diversity in

frequency selective channels), different signaling solutions are provided in the litera-

ture, e.g., OFDM-based distributed space-time block coding (DSTBC) transmission

schemes in [1, 3, 18, 45–47] and single carrier (SC)-DSTBC schemes in [2, 47–53]. In

the following we review the existing signaling solutions under two different channel

conditions, quasi-static flat fading and frequency selective channel conditions. Note

that any flat fading channel (frequency non-selective channel) is in fact a frequency

selective channel (multipath channel) with only one channel tap, therefore, the sig-

naling solutions under frequency selective channel conditions are applicable for flat

fading channel conditions as well.

2.2.2.1 Flat Fading Channel Conditions

Here, we provide a literature review on signaling solutions for asynchronous cooper-

ative communication systems under quasi-static flat fading channel conditions, i.e.,

all the communicating channels under consideration are one-tap channels which are

fixed during a specific transmission block.

In [47], an asynchronous cooperative communication system with DF relaying

is considered. It is first argued that under flat fading channel conditions, the relative

delays among the signals received from different relays make the effective channel at

the destination frequency selective. Then, time reversal space-time coding (TR-STC)

and space-time (ST)-OFDM schemes appropriate for frequency selective channels are

employed to combat the asynchronism issues. For TR-STC scheme, time-reversal and

complex conjugation operations and for the ST-OFDM scheme, OFDM symbol gen-
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Table 2.2: Relaying strategy of the scheme proposed in [1].

First OFDM symbol Second OFDM Symbol
R1 Y 1,1 ζF (Y 1,2)
R2 −Y ∗

2,2 ζF
(
Y ∗

2,1

)
eration and complex conjugation operations are all implemented at the relay nodes.

The main focus of the work is on the case that the relative delay among the relays

are less than the transmitted symbols. However, a discussion on generalization to

larger relative delays is also provided for which a time guard greater than the maxi-

mum possible delay needs to be inserted among every two transmitted blocks, either

SC-based or OFDM-based. The main drawback of the scheme for large relative delay

is the reduction in the spectral efficiency.

In [1], the ST-OFDM scheme proposed in [47] for DF relay nodes is general-

ized to asynchronous cooperative systems with two AF relays to achieve an Alamouti

coding structure at the destination. To reduce the relay node computational com-

plexity, the OFDM symbol generation process is implemented at the source node and

the generated OFDM blocks are separated by adding a CP longer than the maxi-

mum possible delay between the relays. At the relay nodes, only time-reversal and

complex conjugation operations are implemented as shown in Table 2.2 where two

consecutive transmitted OFDM blocks are considered and Y i,j represents the sig-

nal received at the i-th relay corresponding to the j-th transmitted OFDM block.

Furthermore, ζF (.) denotes the time reversal operation over the OFDM block, i.e.,

ζF ([Z0, Z1, . . . , ZN−1]) = [Z0, ZN−1, . . . , Z1], and (.)∗ denotes the complex conjuga-

tion operation. We would like to define another time-reversal operation as ζ(.) on

SC-based transmitted blocks as ζ([z0, . . . , zN−1]) = [zN−1, . . . , z0] which is used in

Chapter 7. The scheme is further extended to the arbitrary number of relay nodes

in [45].
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There are several works in the literature that develop ST code designs achiev-

ing spatial diversity in asynchronous cooperative systems, e.g., [49, 50, 53]. In [49],

the ST coding design approach developed in [54] for MIMO communication systems is

generalized to asynchronous cooperative systems assuming that the possible relative

delays among the relays are multiples of the symbol duration T . The structure of the

optimal detector is derived, and a sub-optimal detector with a reduced complexity is

also presented. The focus is first on the transmission of the binary phase shift keying

(BPSK) modulated symbols and it is shown that the sufficient condition to achieve

full spatial diversity is to have a shift full rank (SFR) binary matrix, i.e., the matrix

is full rank for all possible row shifts. Then, the scheme is generalized to higher mod-

ulation levels following the approach given in [55]. Furthermore, it is shown through

simulations in [49] that with perfect channel state information and perfect knowledge

about the relative delays at the destination, the asynchronous cooperative system

performance is improved in comparison with the perfectly synchronized cooperative

system. In [53], the code structure developed in [49] is extended to the case of frac-

tional relative delays among the relays where the relative delays are considered as

multiples of
p

q
T with

p

q
being a rational number.

In [50], the threaded algebraic space-time codes originally developed for per-

fectly synchronized MIMO communication systems in [56] are extended to the case

of asynchronous cooperative systems with reasonably complex near-optimal lattice

decoders for arbitrary number of relay nodes. The developed code design structure

gives flexibility to obtain different transmission rates and can easily employ different

signaling constellations.

2.2.2.2 Frequency Selective Channel Conditions

Flat fading channel assumption is not valid for certain wireless communication sys-

tems, e.g., UWA communication systems [16]. In the following, we review several
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Table 2.3: Transmission scheme of the relays proposed in [2].

Frame 0 Frame 1 · · · Frame pi,j · · · Frame P
Relay 1 s1 -ζ(s∗2) · · · · · ·
Relay 2 s2 ζ(s∗1) · · · · · ·

...
...

...
...

...
...

...
Relay i si · · · −ζ(s∗j ) · · ·

...
...

...
...

...
...

...
Relay j sj · · · ζ(s∗i ) · · ·

...
...

...
...

...
...

...
Relay J sJ · · · · · · ζ(s∗J−1)

existing works on asynchronous cooperative communication systems under frequency

selective channel conditions.

In [2], a DSTBC transmission approach is proposed which achieves both full

spatial and full multipath diversities. The main drawback is that by increasing the

number of relay nodes, the spectral efficiency is dramatically reduced. In a cooperative

communication system with J relays each symbol block of length J(N +1) is divided

into J symbol sub-blocks of lengthN+1 as sj = {sj(0), · · · , sj(N)} for j = {1, · · · , J}
and is cooperatively transmitted in P + 1 =

(
J

2

)
+ 1 time frames. The transmission

scheme of the relays is reported in Table 2.3, where in the frame pi,j =
(i−1)(2J−i)

2
+j−i

only nodes i and j (i < j) are active while the other nodes are silent. Furthermore,

by linearly combining the received frames at the destination, the transmitted symbol

sub-block is obtained as

yj(n) = gTsj(n− dj) + wj(n), (2.7)

where dj denotes the delay associated with the j-th relay (assuming Dj = djT with

T denoting the symbol time duration), sj(n) = [sj(n), sj(n − 1), · · · , sj(n − 2L)]T ,
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gT =

J∑
j=1

[g∗j (L), · · · , g∗j (0)]Gj, wj(n) are i.i.d. zero mean Gaussian noise samples and

Gj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gj(0) · · · · · · gj(L) 0 · · · · · · 0

0 gj(0) · · · · · · gj(L) 0 · · · 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 gj(0) · · · · · · gj(L) 0

0 · · · · · · 0 gj(0) · · · · · · gj(L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.8)

In fact g represents a maximal ratio combiner at the destination, therefore, the scheme

proposed in [2] achieves the diversity order of J(L+ 1). Furthermore, for the system

with two relay nodes, the scheme gives an Alamouti coding structure at the receiver.

In [51], authors propose a distributed space-time trellis coding (DSTTC) scheme

which under certain conditions can achieve both full cooperative and multipath di-

versities in asynchronous cooperative communication systems. It is assumed that in

each time frame only the relays which correctly decoded the transmitted data se-

quence will participate in communication and forward convolutionally encoded data

sequences to the destination. At the destination, Viterbi decoding is employed as the

optimal ML decoding algorithm. Furthermore, it is shown that a generator matrix

can achieve full spatial and multipath diversities if and only if the generator matrix

has a full rank in the binary field for arbitrary relative delays among the relays. The

authors only provide the exact code construction for the asynchronous cooperative

network with at most three relays, and use computer search for cases with more than

three relays, e.g., they give a code for J = 4 and L = 2.

The authors in [51] use the same idea as in [52] to develop distributed linear

convolutional space-time coding (DLCSTC) schemes. Instead of Viterbi decoding,

i.e., the optimal ML decoding, they utilize several sub-optimal equalizers and show

that zero forcing (ZF), minimum mean square error (MMSE) and MMSE decision
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feedback equalizer (MMSE-DFE) achieve full diversity for frequency selective chan-

nels. A construction scheme for arbitrary values of J and L is provided along with a

few specific codes for different values of J and L.

The power of OFDM transmission schemes to combat the multipath effects un-

der frequency selective channels is widely studied in the literature, e.g., see [57] and

references therein. In some recent literature, e.g., [3, 18, 46], OFDM-based schemes

are employed to overcome both asynchronism among the relay nodes and the multi-

path effects over frequency selective channels.

In [18], a space-frequency coding approach is proposed which achieves both

full spatial and full multipath diversities. In a given time frame, it is assumed that J

relays correctly decode the transmitted data sequence of length Ns and cooperate in

transmitting the data sequence to the destination while there is no direct link between

the source and destination. First, the data sequence of length Ns is encoded by an

Ns×J code matrix, then the j-th relay takes anN point inverse fast Fourier transform

(IFFT) of the j-th column of the matrix code and forwards the resulting block along

with its CP which forms the desired OFDM block. To combat both asynchronism

among the relays and inter-frame interference, the length of the CP has to be at

least Dmax +maxj,l{τj(l)} with Dmax denoting the maximum possible relative delay

among the relays and τj(l) denoting the delay of the l-th path from the j-th relay to

the destination. At the destination, the CP is removed and an N point FFT of the

remaining noisy block is computed. Since the relays are not perfectly synchronized,

the CP removal can be only aligned with one of the relays and it would be unaligned

for the others. Due to the properties of the OFDM technique the only effect of this

misalignment is a phase shift in the time domain version of the received signal that

can be covered in the channel coefficients. In addition, the authors provide high rate

space-frequency code construction techniques to achieve full diversity.
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The OFDM-based scheme designed under flat fading channel assumption in [1]

is extended to the frequency selective channel conditions in [3] in which OFDM mod-

ulation is implemented at the source node by adding a CP to resolve both multipath

and asynchronism issues and relays only perform time reversal and complex conju-

gation operations. The main difference with the scheme in [1] is in the CP removal

for which after conventional CP removal, an appropriate cyclic shifted version of the

received signal is fed to the FFT block.

A STC cooperative system using OFDM transmission is proposed in [46],

where a complete OFDM frame structure aimed at timing and frequency synchro-

nization and channel estimation at the receiver side is proposed. A cooperative sys-

tem with only one relay and two phase transmission is considered where in the first

phase (silent phase) only the source transmits its signals and in the second phase

(cooperation phase) if the relay decodes the received signal during the silent phase

correctly, then both the source and relay transmit, otherwise only source transmits in

the cooperation phase as well. In the cooperation phase, the source node transmits

half of the space-time coded version of the original transmitted signal (during the

silent phase) and relay (if participating in cooperation) transmits the other half. By

choosing the length of the CP greater than the maximum value of the delay between

the source and the relay, asynchronism between the source and the relay is taken

care of.

2.3 Chapter Summary

In this chapter, we gave the general system models and provided brief reviews of

the related existing literature for both P2P systems with synchronization errors and

asynchronous cooperative communication systems. We presented the general channel

models for memoryless P2P systems with synchronization errors and gave some spe-

cific models which are considered in the remainder of the thesis. We reviewed existing
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results on upper and lower bounds on the capacity of the insertion/deletion channels

as the specific models considered in the rest of the thesis. We then turned our atten-

tion to asynchronous cooperative communication systems, and presented the general

cooperative communication systems model. We also provided a review on existing

signaling solutions to combat the asynchronism issues in cooperative communication

systems.
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Chapter 3

Analytical Lower Bounds on the Capacity of Insertion and Deletion Channels

In this chapter, we develop several analytical lower bounds on the capacity of binary

insertion and deletion channels by considering i.u.d. inputs and computing lower

bounds on the mutual information between the input and output sequences. For

the deletion channel, we consider three different models: usual i.i.d. deletion channel,

i.i.d. deletion-substitution channel and i.i.d. deletion channel with AWGN. The latter

two models are introduced to incorporate effects of the channel noise along with the

synchronization errors. For the insertion channel case we assume that the transmitted

bits are replaced with two bits with a certain probability independently of any other

insertion events. We consider two specific cases: Gallager’s model where the pair

of bits are random and uniform over the four possibilities, and the sticky channel

where transmitted bits are duplicated. The general approach taken is similar in all

cases, however the specific computations differ. Furthermore, the approach yields a

useful lower bound on the capacity for a wide range of deletion probabilities for the

deletion channels, while it provides a beneficial bound only for very low insertion

probabilities for the insertion models adopted. We emphasize the importance of

these results by noting that 1) our results are the first analytical bounds on the

capacity of deletion-AWGN channels, 2) the results developed are the best available

analytical lower bounds on the deletion-substitution case, 3) for the deletion only

channel, our results competes well with the best available lower bounds for small

deletion probabilities and they explicitly obtain the first order terms in the recently

proved capacity expansions, 4) for both sticky and Gallager insertion channel models,

the new lower bounds improve the existing results for small insertion probabilities.

We first give an introduction on insertion and deletion channels and state the

main contributions of this chapter in Section 3.1. In Section 3.2, we introduce our
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general approach for lower bounding the mutual information of the input and output

sequences for insertion/deletion channels. In Section 3.3, we apply the introduced

approach to the i.i.d. deletion, deletion-substitution and deletion-AWGN channels

and present analytical lower bounds on their capacities, and compare the resulting

expressions with earlier results. In Section 3.4, we provide lower bounds on the

capacity of the sticky and random insertion channels and comment on our results

with respect to the existing literature. In Section 3.5, we compute the lower bounds

for a number of insertion/deletion channels, and finally, we provide a summary of the

chapter in Section 3.6.

3.1 Introduction

In modeling digital communication systems, we often assume that the transmitter and

the receiver are completely synchronized; however, achieving a perfect time-alignment

between the transmitter and receiver clocks is not possible in all communication sys-

tems and synchronization errors are unavoidable. A useful model for synchronization

errors assumes that the number of received bits may be less or more than the num-

ber of transmitted bits. In other words, insertion/deletion channels may be used

as appropriate models for communication channels that suffer from synchronization

errors. Due to the memory introduced by the synchronization errors, an information

theoretic study of these channels proves to be very challenging. For instance, even

for seemingly simple models such as an i.i.d. deletion channel, an exact calculation

of the capacity is not possible and only upper/lower bounds (which are often loose)

are available.

In this chapter, we compute analytical lower bounds on the capacity of the

i.i.d. deletion channel: without substitution errors, with substitution errors and in

the presence of additive white Gaussian noise (AWGN), and random insertion channel

with random insertions or duplications, by lower bounding the mutual information
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rate between the transmitted and received sequences for i.u.d. inputs. We particularly

focus on the small insertion/deletion probabilities with the premise that such small

values are more practical from an application point of view. Specific models adopted

are as follows. For random insertion and deletion channels, we use the general inser-

tion/deletion channel model proposed in [4], where every bit is independently deleted

with probability d or replaced with two randomly chosen bits with probability i, while

neither the transmitter nor the receiver have any information about the positions of

deletions and insertions, and undeleted bits are flipped with probability s and bits

are received in the correct order. By a deletion-only channel we refer to an inser-

tion/deletion channel with i = s = 0; by a deletion-substitution channel we refer to

an insertion/deletion channel with i = 0; by a deletion-AWGN channel we refer to a

deletion channel in which undeleted bits are received in the presence of AWGN, that

can be modeled by a combination of a deletion-only channel with an AWGN channel

such that every bit first goes through a deletion-only channel and then through an

AWGN channel. By a sticky channel we refer to a binary insertion channel that only

duplication errors are possible such that every bit is duplicated with probability of

i [19]; and, by a random insertion channel we refer to an insertion/deletion channel

with d = s = 0.

We note that our idea is somewhat similar to the idea of directly lower bound-

ing the information capacity instead of lower bounding the transmission capacity as

employed in [12]. However, there are fundamental differences in the main methodol-

ogy as will become apparent later. For instance, our approach provides a procedure

that can easily be employed for many different channel models with synchroniza-

tion errors as such we are able to consider deletion-substitution, deletion-AWGN

and random insertion channels, in addition to the deletion-only and sticky channel

formulations as studied in [12]. Other differences include adopting a finite-length
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transmission which is proved to yield a lower bound on the capacity after subtract-

ing some appropriate term, and the complexity in computing numerically the final

expression is much lower in many versions of our results.

Finally, we emphasize that the new approach and the obtained results in the

existing literature are improved in several different aspects. In particular, the contri-

butions of the chapter include

• development of a new approach for deriving achievable information rates for

insertion/deletion channels that can be applied to the other channel models

and possibly other input distributions as well,

• the first analytical lower bound on the capacity of the deletion-AWGN channel,

• tighter analytical lower bounds on the capacity of the deletion-substitution

channel for all values of deletion and substitution probabilities compared to

the existing analytical results,

• tighter analytical lower bounds on the capacity of the random insertion and

sticky channels for small values of insertion probabilities compared to the ex-

isting lower bounds,

• very simple lower bounds on the capacity of insertion/deletion channels.

Regarding the final point, we note that our results for the i.i.d. deletion channel are

in agreement with the asymptotic results of [32, 33] in the sense of capturing the

dominant capacity expansion terms. Our results, however, are provable lower bounds

on the capacity, while the existing asymptotic results are not amenable for numerical

calculation (as they contain big-O terms).
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3.2 Main Approach

We rely on lower bounding the information capacity of insertion/deletion channels

directly as justified by [10], where it is shown that, for a memoryless channel with

synchronization errors, the Shannon’s theorem on transmission rates applies and the

information and transmission capacities are equal, and thus every lower bound on the

information capacity of an insertion/deletion channel is a lower bound on the trans-

mission capacity of the channel. Our approach is different than most existing work on

finding lower bounds on the capacity of the insertion/deletion channels where typically

the transmission capacity is lower bounded using a certain codebook and particular

decoding algorithms. The idea we employ is similar to the work in [12] which also

considers the information capacity lim
N→∞

1

N
max
P (X)

I(X;Y ) and directly lower bounds

it using a particular input distribution to arrive at an achievable rate result.

Our primary focus is on the small deletion and insertion probabilities. As

also noted in [32], for such probabilities it is natural to consider binary i.u.d. input

distribution. This is justified by noting that when d = i = 0, i.e., for a binary

symmetric channel, the capacity is achieved with independent and symmetric binary

inputs, and hence we expect that for small deletion/insertion probabilities, binary

i.u.d. inputs are not far from the optimal input distribution.

Our methodology is to consider a finite length transmission of i.u.d. bits over

the insertion/deletion channel, and to compute (more precisely, lower bound) the

mutual information between the input and the resulting output sequences. As proved

in [13] for a deletion-only channel, such a finite length transmission in fact results

in an upper bound on the mutual information supported by the insertion/deletion

channels; however, as also shown in [13], if a suitable term is subtracted from the

mutual information, a provable lower bound on the achievable rate, hence the channel
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capacity, results. The following theorem provides this result in a slightly generalized

form compared to [13].

Theorem 1. For binary input random insertion and i.i.d. deletion channels, for any

input distribution and any n > 0, the channel capacity C can be lower bounded by

C ≥ 1

n
I(X;Y )− 1

n
H(T ), (3.1)

where H(T ) = −∑n

j=0

[(
n

j

)
pj(1− p)n−j log

((
n

j

)
pj(1− p)n−j

)]
with the understand-

ing that p = d for the deletion channel case and p = i in the insertion channel case,

and n is the length of the input sequence X.

Proof. This is a slight generalization of a result in [13] which shows that Eqn. (3.1) is

valid for the i.i.d. deletion channel. It is easy to see that [13], for any random process

TN , and for any input distribution P (XN ), we have

C ≥ lim
N→∞

1

N
I(XN ;Y N ,TN)− lim

N→∞
1

N
H(TN), (3.2)

where C is the capacity of the channel and N is the length of the input sequence XN .

We assume that the input bits in both insertion and deletion channels are divided

into Q blocks of length n (XN = {Xj}Qj=1). We define the random process TN in the

following manner. For an random insertion channel, TN,i is formed as the sequence

TN,i = {T i
j}Qj=1 which denotes the number of insertions that occur in each block of

length n transmission. For a deletion channel, TN,d = {T d
j }Qj=1 represents the number

of deletions occurring in transmission of each block. Since insertions (deletions) for

different blocks are independent, the random variables Tj = TN,i
j (TN,d

j ) j = 1, ..., Q

are i.i.d., and transmission of different blocks are independent. Therefore, we can

rewrite Eqn. (3.2) as

C ≥ 1

n
I(Xj ;Y j)− 1

n
H(T j)

=
1

n
I(X;Y )− 1

n
H(T ). (3.3)
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Noting that the random variable denoting the number of deletions or insertions as

a result of n bit transmission is binomial with parameters n and d (or, i) the proof

follows.

Several comments on the specific calculations involved are in order. Theorem 1 shows

that for any input distribution and any transmission length, Eqn. (3.1) results in a

lower bound on the capacity of the deletion channel (or insertion channel). Therefore,

employing any lower bound on the mutual information rate 1
n
I(X;Y ) in Eqn. (3.1)

also results in a lower bound on the capacity of the insertion/deletion channel. Due

to the fact that obtaining the exact value of the mutual information rate for any n

is infeasible, we first derive a lower bound on the mutual information rate for i.u.d.

input sequences and then employ it in Eqn. (3.1). Based on the formulation of the

mutual information, obviously

I(X;Y ) = H(Y )−H(Y |X), (3.4)

thus by calculating the exact value of the output entropy or lower bounding it and

obtaining the exact value of the conditional output entropy or upper bounding it, the

mutual information is lower bounded. For deletion and random insertion channels, we

are able to obtain the exact value of output sequence probability distribution when

i.u.d. input sequences are used, hence the exact value of the output entropy (the

differential output entropy for the deletion-AWGN channel) is available. However, for

the sticky channel obtaining the exact probability of all output sequences resulting

from i.u.d. input sequences of length n is infeasible and we are only able to obtain the

exact probability of output sequences with at most 2 insertions. Therefore, we are

able to obtain a lower bound on the output entropy (by also deriving a manageable

lower bound on the remaining terms of the entropy expression). For small insertion

probabilities, by focusing on the outputs with at most two insertions and by choosing
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a reasonable n, we do not lose too much information, because the probability of more

than two insertions is much lower than the dominant events.

In deriving the conditional output entropy for the deletion-only, deletion-

substitution and random insertion channels and also deriving the conditional dif-

ferential entropy of the output sequence for the deletion-AWGN channel, we cannot

obtain the exact probability of all the possible output sequences conditioned on a

given input sequence. For deletion channels, we compute the probability of all pos-

sible deletion patterns for a given input sequence, and treat the resulting sequences

as if they are all distinct to find a provable upper bound on the conditional entropy

term. Clearly, we are losing some tightness, as different deletion patterns may result

in the same sequence at the channel output. For the random insertion channel, we

calculate the conditional probability of the output sequences resulting from at most

one insertion, and derive an upper bound on the part of the conditional output en-

tropy expression that results from the output sequences with multiple insertions. For

the sticky channel, we are able to compute the conditional probabilities of all possible

output sequences for all possible inputs and as a result obtain the exact value of the

conditional output entropy.

3.2.1 Notation

We denote a finite binary sequence of length n with K runs by (b;n1, n2, ..., nK),

where b ∈ {0, 1} denotes the first run type and
∑K

k=1 nk = n. For example, the

sequence 001111011000 can be represented as (0;2,4,1,2,3). We use four different ways

to denote different sequences; x(b;nx;Kx) represents every sequence belonging to the

set of sequences of length nx with Kx runs and by the first run of type b, x(b;nx;Kx; l)

represents a sequence x(b;nx;Kx) which has l runs of length one (l =
∑Kx

k=1 δ(n
x
k−1)

where δ(.) denotes the Kronecker delta function), x(nx) represents every sequence

of length nx, and x shows every possible sequence. The set of all input sequences
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is shown by X , and the set of output sequences of the deletion, sticky and random

insertion channels are shown by Yd, Ys and Y i, respectively. Yd
−a, Ys

+b and Y i
+c

denote the set of output sequences resulting from a deletions, b duplications and c

random insertions, respectively, and Yd(x−a), Ys(x+b) and Y i(x+c) denote the set

of output sequences resulting from a deletions from, b duplications into, and c random

insertions into, the input sequence x, respectively. We denote the deletion pattern

of length J in a sequence of length n with K runs by D(n;K; J) = (j1, j2, ..., jK),

where jk denotes the number of deletions in the k-th run and
∑K

k=1 jk = J , and

also we denote the duplication pattern of length L in a sequence of length n with

K runs by I(n;K;L) = (l1, l2, ..., lK), where lk denotes the number of duplications

in the k-th run and
∑K

k=1 lk = L. The outputs resulting from a given deletion

pattern D(n;K; J) = (j1, j2, ..., jK) and a given duplication pattern I(n;K;L) =

(l1, l2, ..., lK), are denoted by D(n;K; J) ∗ x(n;K) = (n1 − j1, n2 − j2, ..., nK − jK)

and I(n;K;L)∗x(n;K) = (n1+ l1, n2+ l2, ..., nK + lK), respectively. The sets Dn
K(J)

and In
K(L) represent the set of all deletion patterns of length J and the duplication

patterns of length L into a sequence of length n and with K runs, respectively.

3.3 Lower Bounds on the Capacity of Deletion Channels

As mentioned earlier, we consider three different variations of the binary deletion

channel: i.i.d. deletion-only channel, i.i.d. deletion and substitution channel (deletion-

substitution channel), and i.i.d. deletion channel in the presence of AWGN (deletion-

AWGN channel). The results utilize the idea and approach of the previous section.

For ease of exposition, we start with the deletion-only channel even though the other

two are generalizations of this model, and the results boil down to the one on the

deletion-only channel if s = 0 (or σ2 = 0 for the deletion-AWGN channel). We then

consider the extensions to the latter two channel models.
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3.3.1 I.I.D. Deletion Channel

A binary input i.i.d. deletion channel is a channel in which each bit is independently

deleted with a probability d and the receiver and the transmitter do not have any

information about the position of deletions, and non-deleted bits are received correctly

and in the correct order.

Lemma 1. For any n > 0, the capacity of an i.i.d. deletion channel Cd, with a

deletion probability of d is lower bounded by

Cd ≥ 1− d−Hb(d) +
1

n

n∑
j=1

Wj(n)

(
n

j

)
dj(1− d)n−j, (3.5)

where

Wj(n) =
1(
n

j

) n−1∑
l=1

2−l−1(n− l + 3)

j∑
j′=1

(
l

j′

)(
n− l

j − j′

)
log

(
l

j′

)
+ 2−n+1 log

(
n

j

)
. (3.6)

�

Before proving the lemma, we would like to make a few comments. First of all, the

new lower bound is tighter than the one proved in [4] (Eqn. (2.2) with i = s = 0)

which is the simplest analytical lower bound on the capacity of the deletion channel.

The amount of improvement in (3.5) over the one in (2.2) is 1
n

∑n

j=1Wj(n)
(
n

j

)
dj(1−

d)n−j − d, which is guaranteed to be positive.

In [32], it is shown that

Cd = 1 + d log(d)− A1d+O(d1.4), (3.7)

where A1 = log(2e) −∑∞
l=1 2

−l−1l log(l), and O(pα) represents the standard Landau

(big O) notation. A similar result in [33] is provided, that is

Cd ≤ 1− (1− O(d))Hb(d), (3.8)
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which shows that 1−Hb(d) is a tight lower bound for small deletion probabilities. If

we consider the new capacity lower bound in (3.5), and represent (1 − d) log(1 − d)

by its Taylor series expansion, we can readily write

Cd ≥ 1 + d log(d)− (log(2e)−W1(n))d+ d2f(n, d), (3.9)

where f(n, d) is a polynomial function. On the other hand for W1(n), if we let n go

to infinity, we have

lim
n→∞

W1(n) = lim
n→∞

[
1

n

n−1∑
l=1

2−l−1(n− l + 3)l log(l) +
log(n)

2n−1

]

=
∞∑
l=1

2−l−1l log(l). (3.10)

Therefore, we observe that the derived lower bound on the capacity captures the

first order term of the capacity expansion (3.7). This is an important result as the

the capacity expansions in [32, 33] are asymptotic and do not lend themselves for a

numerical calculation of the transmission rates for any non-zero value of the deletion

probability.

A final comment is on a simplified form of the lower bound for small values of

deletion probability. By invoking the inequalities (1−d)m ≥ [1−md+
(
m

2

)
d2−(m

3

)
d3]

and (1 − d)m ≥ 1 −md, and ignoring some positive terms (dj(1 − d)n−j for j ≥ 3),

we can write

Cd ≥ 1−Hb(d) + d(W1(n)− 1) + d2
n− 1

2
(W2(n)− 2W1(n))

+d3
(
n− 1

2

)
(W1(n)−W2(n))− d4

(
n− 1

3

)
W1(n). (3.11)

We now turn our attention to the proof of Lemma 1. We need the following

two propositions. The first one gives the exact value of the output entropy for an i.i.d.

deletion channel with i.u.d. inputs of length n. The second one provides an upper

bound on the conditional output entropy for i.u.d. inputs of length n as obtaining

the exact value of the mutual information rate seems infeasible.
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Proposition 1. For an i.i.d. deletion channel with i.u.d. input sequences of length

n, the output entropy is given by

H(Y ) = n(1− d) +H(T ), (3.12)

where Y denotes the output sequence and H(T ) is as defined in Eqn. (3.1).

Proof. By using the fact that with i.u.d. input sequences, all the elements of the set

of outputs with j deletions Yd
−j are identically distributed, we have

P (y(n− j)) =
1

2n−j

(
n

j

)
dj(1− d)n−j, (3.13)

where
(
n

j

)
dj(1 − d)n−j is the probability of exactly j deletions occurring in n use of

the channel. Therefore, we obtain

H(Y ) =
∑
y

−P (y) log(P (y))

=
n∑

j=0

(
n

j

)
dj(1− d)n−j log

(
2n−j(

n

j

)
dj(1− d)n−j

)
= n(1 − d) +H(T ). (3.14)

Proposition 2. For an i.i.d. deletion channel, with i.u.d. input sequences of length

n, the entropy of the output sequence Y conditioned on the given input X, is upper

bounded by

H(Y |X) ≤ nHb(d)−
n∑

j=1

Wj(n)

(
n

j

)
dj(1− d)n−j, (3.15)

where Wj(n) is given in Eqn. (3.5).

Proof. To obtain the conditional output entropy, we need to compute the proba-

bility of all possible output sequences resulting from every possible input sequence

x (P (Y |x)). For a given x = (b;n1, n2, ..., nk) and for a specific deletion pattern
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D(n;K; j) = (j1, ..., jK), such that jk denotes the number of deletions in the k-th

run, we can write

P

(
D(n;K; j) = (j1, ..., jK)

∣∣∣∣x(b;n1, ..., nK)

)
=

(
n1

j1

)
...

(
nK

jK

)
dj(1− d)n−j. (3.16)

However, there is a difficulty as two different possible deletion patterns, D(n;K; j) =

(j1, ..., jK) and D′(n;K; j) = (j′1, ..., j
′
K), may convert a given input sequence x(n;K)

into the same output sequence, i.e., D(n;K; j) ∗ x(n;K) = D′(n;K; j) ∗ x(n,K).

This occurs when successive runs are completely deleted, for example, in trans-

mitting (1; 2, 1, 2, 3, 2) = 1101100011, if the second, third and fourth runs are com-

pletely deleted, by deleting one bit from the first run, (1, 1, 2, 3, 0) ∗ (1; 2, 1, 2, 3, 2) =
(1; 1, 0, 0, 0, 2) = 111, or the last run, (0, 1, 2, 3, 1) ∗ (1; 2, 1, 2, 3, 2) = (1; 2, 0, 0, 0, 1) =

111, the same output sequences are obtained. This difficulty can be addressed using

∑
t

−pt
(
log
∑
t

pt

)
≤
∑
t

−pt log(pt), (3.17)

which is trivially valid for any set of probabilities (p1, ..., pt, ...). Applying this result

in Eqn. (3.16), an upper on the conditional output entropy is obtained. Hence, for

x(b;n;Kx) = (b;nx
1 , ..., n

x
Kx), we can write (for more details see Appendix A)

H

(
Y

∣∣∣∣x(b;n;Kx)

)
≤ nHb(d)−

n∑
j=0

dj(1− d)n−j
Kx∑
k=1

j∑
jk=0

(
nx
k

jk

)(
n− nx

k

j − jk

)
log

(
nx
k

jk

)
.

(3.18)

Therefore, by considering i.u.d. input sequences, we have

H(Y |X) =
∑
x∈X

1

2n
H(Y |x)

≤ nHb(d)−
n∑

j=0

dj(1− d)n−j

2n

∑
x∈X

Kx∑
k=1

j∑
jk=0

(
nx
k

jk

)(
n− nx

k

j − jk

)
log

(
nx
k

jk

)
.

(3.19)
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On the other hand, we can write

∑
x∈X

Kx∑
k=1

j∑
jk=0

(
nx
k

jk

)(
n− nx

k

j − jk

)
log

(
nx
k

jk

)
=

j∑
j′=0

n∑
l=1

#R(l, n)

(
l

j′

)(
n− l

j − j′

)
log

(
l

j′

)
,

(3.20)

where #R(l, n) is the number of runs of length of l among all 2n input sequences with

a length of n. It is obvious that #R(n, n) = 2, and for 1 ≤ l ≤ n− 1, we have

#R(l, n) = 2
n−l+1∑
K=2

(
n− l − 1

K − 2

)
K = 2n−l−1(n− l + 3). (3.21)

Finally, by substituting Eqns. (3.20) and (3.21) in Eqn. (3.19), Eqn. (3.15) results,

completing the proof.

We can now complete the proof of the main lemma of the section.

Proof of Lemma 1: In Theorem 1, we showed that for any input distribution

and any transmission length, Eqn. (3.1) results in a lower bound on the capacity of the

i.i.d. deletion channel. On the other hand, any lower bound on the information rate

can also be used to derive lower bound on the capacity. Due to the definition of the

mutual information, Eqn. (3.4), by obtaining the exact value of the output entropy

(Proposition 1) and upper bounding the conditional output entropy (Proposition 2)

the mutual information is lower bounded. Finally, by substituting Eqns. (3.12) and

(3.15) into Eqn. (3.1), Lemma 1 is proved. �

3.3.2 Deletion-Substitution Channel

In this section, we consider a binary deletion channel with substitution errors in

which each bit is independently deleted with probability d, and transmitted bits are

independently flipped with probability s. The receiver and the transmitter do not

have any information about the position of deletions or the transmission errors. As

shown in Fig. 3.1, this channel can be considered as a cascade of an i.i.d. deletion

channel with a deletion probability d and output sequence Y , and a binary symmetric
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Figure 3.1: Deletion-substitution channel.

channel (BSC) with a cross-over error probability s and output sequence Y ′. For such

a channel model the following lemma is a lower bound on the capacity.

Lemma 2. For any n > 0, the capacity of the i.i.d. deletion-substitution channel

Cds, with a substitution probability s and a deletion probability d, is lower bounded by

Cds ≥ 1− d−Hb(d) +
1

n

n∑
j=1

Wj(n)

(
n

j

)
dj(1− d)n−j − (1− d)Hb(s), (3.22)

where Wj(n) is as given in Eqn. (3.5). �

Before proving the lemma, we would like to emphasize that the only existing

analytical lower bound on the capacity of deletion-substitution channels is derived

in [4] (Eqn. (2.3)). In comparing the lower bound in Eqn. (2.3) with the lower bound

in Eqn. (3.22), we observe that the new lower bound improves the previous one by

1
n

∑n

j=1Wj(n)
(
n

j

)
dj(1− d)n−j − d, which is guaranteed to be positive.

In comparing the lower bounds in Eqns. (3.5) and (3.22), we observe that the

lower bound on the capacity of the i.i.d. deletion channel and the one for the i.i.d.

deletion-substitution channel differs by (1 − d)Hb(s). This gap between the lower

bounds is intuitive, since due to the data processing inequality, the capacity of the

deletion-substitution channel is a lower bound on the capacity of the deletion-only

channel. Also, for a BSC the capacity is reduced compared to the noiseless case

by Hb(s) per received bits; for the deletion-substitution channel case, the number of

received bits is (1− d)n, hence this difference is reasonable.

We need the following two propositions in the proof of Lemma 2. In Proposi-

tion 3, we obtain the exact value of the output entropy in the deletion-substitution
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channel with i.u.d. input sequences, while Proposition 4 gives an upper bound on

the conditional output entropy with i.u.d. bits transmitted through the deletion-

substitution channel.

Proposition 3. For an i.i.d. deletion-substitution channel with i.u.d. input sequences

of length n, we have

H(Y ′) = n(1− d) +H(T ), (3.23)

where Y ′ denotes the output sequence of the deletion-substitution channel and H(T )

is as defined in Eqn. (3.1).

Proof. By using the facts that all the elements of the set Yd
−j are identically dis-

tributed, which are inputs into the BSC channel, and a fixed length i.u.d. input

sequence into a BSC result in i.u.d. output sequences, all elements of the set Y ′d−j
are also identically distributed. Hence,

P (y′(n− j)) =
1

2n−j

(
n

j

)
dj(1− d)n−j, (3.24)

and clearly, the output entropy of the deletion-substitution channel is equal to the

output entropy of the deletion channel H(Y ′) = H(Y ), where H(Y ) is given in

Eqn. (3.12), completing the proof of the proposition.

Proposition 4. For a deletion-substitution channel with i.u.d. input sequences, the

entropy of the output sequence Y ′ conditioned on the input X of length n bits, is

upper bounded by

H(Y ′|X) ≤ nHb(d)−
n∑

j=1

Wj(n)

(
n

j

)
dj(1− d)n−j + n(1− d)Hb(s), (3.25)

where Wj(n) is given in Eqn. (3.5). �
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Figure 3.2: Deletion-AWGN channel.

The main idea in the proof of Proposition 4 is same as the proof of Proposi-

tion 2 whose details are provided in Appendix B. We can now complete the proof of

the main lemma of the section.

Proof of Lemma 2: By substituting the exact value of the output entropy,

Eqn. (3.23), and an upper bound on the conditional output entropy, Eqn. (3.25), into

Eqn. (3.1), Lemma 2 is proved. �

3.3.3 Deletion-AWGN Channel

In this section, a binary deletion channel in the presence of AWGN is considered,

where the bits are transmitted using binary phase shift keying (BPSK) and the re-

ceived signal contains AWGN in addition to the deletion errors. As illustrated in

Fig. 3.2, this channel can be considered as a coscade of two independent channels

where the first channel is an i.i.d. deletion channel and the second one is a binary

input AWGN (BI-AWGN) channel. We use X̄ to denote the input sequence to the

first channel which is a BPSK modulated version of the binary input sequence X,

i.e., x̄i = 1 − 2xi and Ȳ to denote the output sequence of the first channel input to

the second one. Ỹ is the output sequence of the second channel that is the noisy

version of Ȳ , i.e.,

ỹi = ȳi + zi, (3.26)

where zi’s are i.i.d. Gaussian random variables with zero mean and a variance of

σ2, and ỹdi and ȳi are the ith received and transmitted bits of the second channel,

respectively. Therefore, for the probability density function of the ith channel output,
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we have

fỹi(η) = fỹi(η|ȳi = 1)P (ȳi = 1) + fỹi(η|ȳi = −1)P (ȳi = −1)

=
1√
2πσ

[
P (ȳi = 1)e−

(η−1)2

2σ2 + P (ȳi = −1)e−
(η+1)2

2σ2

]
. (3.27)

In the following lemma, an achievable rate is provided over this channel.

Lemma 3. For any n > 0, the capacity of the deletion-AWGN channel with a deletion

probability of d and a noise variance of σ2 is lower bounded by

Cd,AWGN ≥ 1−d−Hb(d)+
1

n

n∑
j=1

Wj(n)

(
n

j

)
dj(1−d)n−j− (1−d)E

[
log(1 + e

−2z
σ2 )
]
,

(3.28)

where Wj(n) is as given in Eqn. (3.5), E[.] is statistical expectation and z∼N (0, σ2).�

Before giving the proof of the above lemma, we provide several comments

about the result. First, the desired lower bound in Eqn. (3.28) is the only analytical

lower bound on the capacity of the deletion-AWGN channel. In the current literature,

there are only simulation based lower bounds, e.g., [6] which employs Monte-Carlo

simulation techniques. Furthermore, the procedure employed in [6] is only useful for

deriving lower bounds for small values of deletion probability, e.g., d ≤ 0.1, while the

lower bound in Eqn. (3.28) is useful for a much wider range.

For d = 0, the lower bound in Eqn. (3.28) is equal to 1 − E
[
log(1 + e

−2z
σ2 )
]

which is the capacity of the BI-AWGN channel. Similar to the deletion-substitution

channel case, the bound on the capacity of the deletion-AWGN channel differs from the

one on the capacity of the deletion channel by some amount (1−d)E
[
log(1 + e

−2z
σ2 )
]
.

Also, by substituting σ2 = 0, we obtain the lower for the deletion-only channel. Fi-

nally, we note that the term in Eqn. (3.28) which contains E
[
log(1 + e

−2z
σ2 )
]
can be

easily computed by numerical integration with an arbitrarily accuracy (it involves

only an one-dimensional integral).
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We need the following two propositions in the proof of Lemma 3. In the

following proposition, the exact value of the differential output entropy in the deletion-

AWGN channel with i.u.d. input bits is calculated.

Proposition 5. For an i.i.d. deletion-AWGN channel with i.u.d. input sequences of

length n, we have

h(Ỹ ) = n(1 − d)
(
log(2σ

√
2πe)−E

[
log(1 + e−

2z
σ2 )
])

+H(T ), (3.29)

where h(.) denotes the differential entropy function, Ỹ denotes the output of the

deletion-AWGN channel, z ∼ N (0, σ2), and H(T ) is as defined in Eqn. (3.1).

Proof. For the differential entropy of the output sequence, we can write

h(Ỹ ) = h(Ỹ ) +H(T |Ỹ )

= h(Ỹ ,T )

= h(Ỹ |T ) +H(T ), (3.30)

where the first equality results by using the fact that by knowing the received se-

quence, the number of deletions is known and T is determined, i.e., H(T |Ỹ ) = 0,

and the last equality is obtained by using a different expansion of h(Ỹ ,T ). On the

other hand, we can write

h(Ỹ |T ) =

n∑
j=0

h(Ỹ |T = j)P (T = j)

=

n∑
j=0

h(Ỹ |T = j)

(
n

j

)
dj(1− d)n−j. (3.31)

We know that all the elements of the set Ȳd
−j are i.i.d., the same as Yd

−j , and as given

in Eqn. (3.13), P (ȳ(n− j)) = P (ȳ,T = j) = 1
2n−j

(
n

j

)
dj(1− d)n−j. So we can write

P (ȳ|T = j) =
P (ȳ,T = j)

P (T = j)

=
1

2n−j
, (3.32)
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and as a result P (ȳi = 1|T = j) = P (ȳi = −1|T = j) = 1
2
(for 1 ≤ i ≤ n − j). By

employing this result in Eqn. (3.27), we have

fỹi(η) =
1

2
√
2πσ

[
e−

(η−1)2

2σ2 + e−
(η+1)2

2σ2

]
. (3.33)

where fỹi(η) denotes the probability density function (PDF) of the continuous random

variable ỹi. Noting also that the deletions happen independently, ỹi’s are i.i.d. and

we can write

h(Ỹ |T = j) = (n− j)h(ỹi)

= (n− j)

∫ ∞

−∞
−fỹi(η) log (fỹi(η)) dη

= (n− j)
(
log(2σ

√
2πe)− E

[
log(1 + e−

2z
σ2 )
])

, (3.34)

where z ∼ N (0, σ2). By substituting Eqn. (3.34) into Eqn. (3.31), we obtain

h(Ỹ |T ) =
n∑

j=0

(n− j)

(
n

j

)
dj(1− d)n−j

(
log(2σ

√
2πe)−E

[
log(1 + e−

2z
σ2 )
])

= n(1− d)
(
log(2σ

√
2πe)−E

[
log(1 + e−

2z
σ2 )
])

, (3.35)

and by using Eqns. (3.35) and (3.30), Eqn. (3.29) is obtained.

In the following proposition, we derive an upper bound on the differential

entropy of the output conditioned on the input for deletion-AWGN channel.

Proposition 6. For a deletion-AWGN channel with i.u.d. input bits, the differential

entropy of the output sequence Ỹ conditioned on the input X of length n, is upper

bounded by

h(Ỹ |X) ≤ nHb(d)−
n∑

j=1

Wj(n)

(
n

j

)
dj(1− d)n−j + n(1− d) log(2σ

√
2πe), (3.36)

where Wj(n) is given in Eqn. (3.5).
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Proof. For the conditional differential entropy of the output sequence given the length

n input X, we can write

h(Ỹ |X) = h(Ỹ |X) +H(T |Ỹ ,X)

= H(T ) + h(Ỹ |T ,X), (3.37)

where in the first equality we used the fact that by knowing X and Ỹ , the number

of deletions is known, i.e., H(T |Ỹ ,X) = 0. The second equality is obtained by using

a different expansion of h(Ỹ ,T |X) and also using the fact that the deletion process

is independent of the input X, i.e., H(T |X) = H(T ). On the other hand, we also

have

h(Ỹ |T ,X) =

n∑
j=0

h(Ỹ |X,T = j)P (T = j)

=
n∑

j=0

h(Ỹ |X,T = j)

(
n

j

)
dj(1− d)n−j. (3.38)

To obtain h(Ỹ |X,T = j), we need to compute fỹ|x,j(η) for any given input sequence

x = (b;n1, n2, ..., nK) and different values of j. As in the proofs of Propositions 2 and

4, if we consider the outputs of the deletion channel resulting from different deletion

patterns of length j from a given x, as if they are distinct and also use the result in

Eqn. (3.17), an upper bound on the differential output entropy conditioned on the

input sequence X results. We relegate the details of this computation and completion

of the proof of the proposition to Appendix C.

We can now state the proof of the main lemma of the section.

Proof of Lemma 3: By substituting the exact value of the differential out-

put entropy in Eqn. (3.29), and the upper bound on the differential output entropy

conditioned on the input in Eqn. (3.36), in Eqn. (3.4) a lower bound on the mu-

tual information rate of a deletion-AWGN channel is obtained, hence the lemma is

proved. �
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3.4 Lower Bounds on the Capacity of Insertion Channels

We now turn our attention to the insertion channels and derive lower bounds on the

capacity of the sticky and random insertion channels by employing the approach pro-

posed in Section 3.2. We start with the sticky channel model for which the derivations

have more similarity with those in Section 3.3 (for the i.i.d. deletion channel). We

then consider the case of random insertions in Section 3.4.2.

3.4.1 Sticky Channel

Another useful model for channels suffering from synchronization errors is sticky

channel in which only duplication errors are allowed and every bit is independently

duplicated with a probability i. The number of duplications can also be modeled as a

random variable by following a particular distribution on the set of positive integers.

In [19], two special cases for the number of duplications are studied in detail, namely

elementary i.i.d. duplication channel where the number of duplications is exactly one,

and geometric i.i.d. duplication channel where the number of duplications follows a

geometric distribution. In the following, by a sticky channel we refer to an elementary

i.i.d. duplication channel. The following is a lower bound on the capacity of such

channels.

Lemma 4. For any n > 0, the capacity of the sticky channel Cs with a duplication

probability of i is lower bounded by

Cs ≥ (1− i)n −Hb(i) + i(1− i)n−1
(
log(n)− S1(n) + n

)
+
n− 1

2
i2(1− i)n−2

(
n + 1 + log

(
n

2

)
− S2(n)

)
+
1

n

n∑
j=1

Wj(n)

(
n

j

)
ij(1− i)n−j, (3.39)
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where

S1(n) =
1

2n−1

n∑
k=1

(
n− 1

k − 1

)
log (k) ,

S2(n) =
n−2∑
l=0

�n+l
2
�+1∑

K=l+1

(
n+1−K
K−l−1

)(
K

l

)
2n−1n(n− 1)

A(n,K, l) log (A(n,K, l)) ,

A(n,K, l) = (n−K)2 + n +K − 2− 2l and Wj(n) is as given in Eqn. (3.5). �

To best of our knowledge, no simple expressions exists in the literature bound-

ing the capacity of the sticky channel. There are several analytical lower bounds

with time consuming numerical calculations [5, 12], and lower bounds employing the

BAA [19] in the literature.

The result in (3.39), can be further lower bounded by a simpler expression

that only contains some powers of i, that is,

Cs ≥1−Hb(i) + i

(
log(n)− S1(n) +W1(n)

)
+ i2

n− 1

2

(
2S1(n) + log

n− 1

n
− S2(n)− 2W1(n) +W2(n)

)
+ i3
(
n− 1

2

)(
W1(n) + S2(n)− S1(n)−W2(n)− log(n− 1)− n

3

)
− i4
(
n− 1

3

)(
log(n) + n− S1(n) +W1(n)

)
, (3.40)

where the inequalities (1 − p)m ≥ [1 −mp +
(
m

2

)
p2 − (m

3

)
p3] and (1 − p)m ≥ 1 −mp

are employed. Finally we note that the lower bound in Eqn. (3.39) is only useful for

small values of duplication probability.

We utilize the same approach as in the case of a deletion channel by consid-

ering i.u.d. input sequences. However, contrary to the deletion channel proofs, we

can obtain the conditional output entropy precisely but we cannot obtain the exact

value of the output entropy, hence we only lower bound it. Before giving the proof of
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Lemma 4, we present two propositions needed in the proof. In the following propo-

sition, the output entropy of the sticky channel with i.u.d. input sequences is lower

bounded.

Proposition 7. For a sticky channel with i.u.d. input sequences of length n, we have

H(Y ) ≥ n(1− i)n + ni(1 − i)n−1
(
log(n)− S1(n) + n

)
+

(
n

2

)
i2(1− i)n−2

(
n+ 1 + log

(
n

2

)
− S2(n)

)
+H(T ), (3.41)

where Y denotes the output sequence, S1(n) and S2(n) are as given in Eqn. (3.39),

and H(T ) is as given in Eqn. (3.1).

Proof. To compute H(Y ), we need to determine the probabilities of all possible out-

put sequences, which is clearly infeasible for large values of n. For the output entropy,

we have

H(Y ) =

2n∑
m=n

n∑
K=1

∑
y(0;m;K)

2P (y(0;m;K)) log

(
1

P (y(0;m;K))

)
, (3.42)

hence, we first obtain the exact probability distribution of the output sequences re-

sulting from at most two duplications, see Appendix D for details, and calculate
n+2∑
m=n

n∑
K=1

∑
y(0;m;K)

2P (y(0;m;K)) log

(
1

P (y(0;m;K))

)
,

precisely; then we derive a lower bound by considering the contribution to the output

entropy of sequences with more than two duplications. We can write

H(Y ) ≥
n+2∑
m=n

n∑
K=1

∑
y(0;m;K)

2P (y(0;m;K)) log

(
1

P (y(0;m;K))

)

+
2n∑

m=n+3

P (|y| = m) log

(
1

P (|y| = m)

)

=
n+2∑
m=n

n∑
K=1

∑
y(0;m;K)

2P (y(0;m;K)) log

(
1

P (y(0;m;K))

)

+
n∑

j=3

(
n

j

)
ij(1− i)n−j log

(
1(

n

j

)
ij(1− i)n−j

)
, (3.43)
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where in deriving the inequality, we used the concavity of the function −∑t pt log(pt)

(pt > 0 and
∑

t pt ≤ 1) and the last equality is obtained noting that with probability(
n

j

)
ij(1 − i)n−j , the length of the output sequence is n + j, i.e., P (|y| = n + j) =(

n

j

)
ij(1− i)n−j . We can then rewrite (3.43) as

H(Y ) ≥ 2n

(
P (y(n)) log

(
1

P (y(n))

))

+
n∑

K=1

[
2

(
n

k − 1

)
P (y(0;n+ 1;K)) log

(
1

P (y(0;n+ 1;K))

)]

+

n−2∑
l=0

�n+l
2
�+1∑

K=l+1

[
2

(
n+ 1−K

K − l − 1

)(
K

l

)
P (y(0;n+ 2;K; l)) log

(
1

P (y(0;n+ 2;K; l))

)]
+n(1− i)n log(1− i) + ni(1 − i)n−1 log

(
ni(1 − i)n−1

)
+

(
n

2

)
i2(1− i)n−2 log

((
n

2

)
i2(1− i)n−2

)
+H(T ), (3.44)

where we used the facts that there are 2n output sequences of length n (|Y0| = 2n);(
n

K−1
)
output sequences beginning by 0, with length n + 1 and K runs (|y(0;n +

1;K)| = ( n

K−1
)
);
(
n+1−K
K−l−1

)(
K

l

)
output sequences beginning by 0, with length n + 2,

K runs and l runs with length 1
(|y(0;n+ 2;K; l)| = (n+1−K

K−l−1
)(

K

l

))
; and P (y(0;n +

j;K)) = P (y(1;n + j;K)). For the output sequences resulting from at most two

duplications, we have (for more details see Appendix D)

P (y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1−i)n

2n
|y| = n

(n+1−K)i(1−i)n−1

2n
y = y(b;n + 1;K)

i2(1−i)n−2

2n+1

(
(n−K)2 + n +K − 2− 2l

)
y = y(b;n+ 2;K; l)

, (3.45)

so by substituting Eqn. (3.45) into Eqn. (3.44), Eqn. (3.41) is obtained.

The conditional output entropy of the sticky channel with i.u.d. inputs is

calculated in the following proposition.
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Proposition 8. For a sticky channel with the output sequence denoted by Y , using

i.u.d. input sequences and for any n > 0, we have

H(Y |X) = nHb(i)−
n∑

j=1

Wj(n)

(
n

j

)
ij(1− i)n−j , (3.46)

where Wj(n) is given in Eqn. (3.5).

Proof. To obtain H(Y |X), we first need to obtain H(Y |x) for different (fixed) input
sequences x. Contrary to the deletion channel, in a sticky channel and for a given

x, distinct I(n;K; j)’s, which determine the number of duplications in different runs,

result in different output sequences, i.e., I 
= I ′ guarantees that I ∗ x 
= I ′ ∗ x. On

the other hand, for
∑K

k=1 jk = j, 0 ≤ jk ≤ min(j, nk) and 0 ≤ j ≤ n, we have

P

(
y = (b;n1 + j1, ..., nK + jK)

∣∣∣∣x(b;n,K)

)
= P (I(j1, j2, ..., jK))

=

(
n1

j1

)
...

(
nK

jK

)
ij(1− i)n−j. (3.47)

Clearly, P

(
y = (b;n1 + j1, ..., nK + jK)

∣∣∣∣x(b;n,K)

)
in Eqn. (3.47) is similar

to P (D(j1, j2, ..., jK)) in Eqn. (3.16) which is used in deriving the upper bound on

the conditional output entropy of the deletion channel. But Eqn. (3.47) is the exact

output probability conditioned on a given input for the sticky channel which gives

the exact conditional output entropy. The rest of the proof follows identical steps

used in deriving the conditional output entropy of the deletion channel, provided in

the proof of Proposition 2.

Proof of Lemma 4: By utilizing the results of Propositions 7 and 8 in

Theorem 1, Lemma 4 is proved. �

3.4.2 Random Insertion Channel

In this section, we consider the Gallager model [4] for insertion channels in which

every transmitted bit is independently replaced by two random bits with probability
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of i while neither the receiver nor the transmitter have information about the position

of the insertions. The following lemma provides the main results of this section.

Lemma 5. For any n> 0, the random insertion channel capacity is bounded by

Ci ≥ (1− i)n −Hb(i) +

(
S3(n)− 3n+ 1

4n
+ n

)
i(1− i)n−1 + in−1(1− i) log(n)

+
1

n

(
1− (1− i)n − ni(1 − i)n−1 − in − nin−1(1− i)

)
log

(
n

2

)
, (3.48)

where S3(n) =
1

4n

n−1∑
l=1

2−l [(n+ 1− l)(l + 2) log(l + 2) + 2(l + 1) log(l + 1)] +
log(n)

2n+1
. �

To the best of our knowledge, the only analytical lower bound on the capacity

of the random insertion channel is derived in [4] (Eqn. (2.2) for d = s = 0). Our

result improves upon this result for small values of insertion probabilities as will be

apparent with numerical examples.

Similar to the deletion and sticky channel cases, we can write a simpler lower

bound as

Ci ≥ 1−Hb(i) +

(
S3(n)− 3n+ 1

4n

)
i− n− 1

2

(
2S3(n)− 3n + 1

2n
+ n− log

(
n

2

))
i2

−
(
n− 1

2

)(
log

(
n

2

)
−S3(n)−2n

3
+

3n+1

4n

)
i3−
(
n− 1

3

)(
S3(n) + n− 3n+1

4n

)
i4.

To prove the above lemma, we need the following two propositions. The output

entropy of the random insertion channel with i.u.d. input sequences is calculated in

the first one.

Proposition 9. For a random insertion channel with i.u.d. input sequences of length

n, we have

H(Y ) = n(1 + i) +H(T ). (3.49)

where Y denotes the output sequence and H(T ) is as defined in Eqn. (3.1).
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Proof. Similar to the proof of Proposition 1, we use the fact that

P (y(n + j)) =
1

2n+j

(
n

j

)
ij(1− i)n−j. (3.50)

Therefore, by employing Eqn. (3.50) in computing the output entropy, we obtain

H(Y ) = −
n∑

j=0

(
n

j

)
ij(1− i)n−j log

(
1

2n+j

(
n

j

)
ij(1− i)n−j

)
= n(1 + i) +H(T ),

which concludes the proof.

In the following proposition, we present an upper bound on the conditional

output entropy of the random insertion channel with i.u.d. input sequences for a

given input of length n.

Proposition 10. For a random insertion channel with input and output sequences

denoted by X and Y , respectively, with i.u.d. input sequences of length n, we have

H(Y |X) ≤ n(1 + i)− n(1− i)n + nHb(i)− n

(
S3(n)− 3n+ 1

4n
+ n

)
i(1− i)n−1

− (1−(1−i)n−ni(1−i)n−1−in−nin−1(1−i)) log(n
2

)
− nin−1(1−i) log(n). (3.51)

Proof. For the conditional output sequence distribution for a given input sequence,

we can write

p(y|x(b;n;K)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− i)n y = x(b;n;K)

n1+1
4

i(1− i)n−1 y = (b;n1 + 1, ..., nK)

nK+1
4

i(1 − i)n−1 y = (b;n1, ..., nK + 1)

nk+2
4

i(1− i)n−1 y = (b;n1, ..., nk + 1, ..., nK)(1 < k < K)

1
4
i(1− i)n−1 y = (b;n1, ..., n

′
k,1, 2, n

′
k,2, ..., nK)

2
4
i(1− i)n−1 y = (b;n1, ..., n

′′
k,1, 1, n

′′
k,2, ..., nK)

1
4
i(1− i)n−1 y = (b̄; 1, n1, ..., nk, ..., nK)

1
4
i(1− i)n−1 y = (b;n1, ..., nk, ..., nK , 1)

εy,x |y| ≥ n+ 2

,

(3.52)
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where n′k,1 + n′k,2 = nk − 1 (n′k,1, n
′
k,2 ≥ 0), n′′k,1 + n′′k,2 = nk (n′′k,1, n

′′
k,2 ≥ 1), and εy,x

represents p(y|x(b;n;K)) for given y with |y| ≥ 2. Hence, we obtain

H(Y |x(b;n;Kx)) = −(1 − i)n log(1− i)n

−i(1 − i)n−1
(
n log(i(1− i)n−1)− 1.5n− 0.5Kx

)
−1

4
i(1 − i)n−1

(
(nx

1 + 1) log(nx
1 + 1) + (nx

Kx + 1) log(nx
Kx + 1)

+
Kx−1∑
k=2

(nx
k + 2) log(nx

k + 2)

)
+Hε(x), (3.53)

where Hε(x) is the term related to the outputs resulting from more than one insertion.

Therefore, by considering i.u.d. input sequences, we have

H(Y |X) =− (1− i)n log(1− i)n − ni(1− i)n−1
(
log(i(1− i)n−1)− 7n+ 1

4n
+ S3(n)

)
+Hε(X), (3.54)

where Hε(X) =
∑

x∈X
Hε(x)
2n

and

S3(n) =
1

2n+2n

∑
x,Kx 	=1

[
(nx

1 + 1) log(nx
1 + 1) + (nx

Kx + 1) log(nx
Kx + 1)

+

Kx−1∑
k=2

(nx
k + 2) log(nx

k + 2)

]
+

log(n)

2n+1
,

which can be written as

S3(n) =
1

2n+2n

[
2
∑

x,Kx 	=1

[(nx
1 + 1) log(nx

1 + 1)− (nx
1 + 2) log(nx

1 + 2)]

+
∑
x

Kx∑
k=1

(nx
k + 2) log(nx

k + 2)

]
+

log(n)

2n+1

=
1

4n

n−1∑
l=1

2−l [(n+ 1− l)(l + 2) log(l + 2) + 2(l + 1) log(l + 1)] +
log(n)

2n+1
.

(3.55)

Here we have used the same approach used in the proof of Proposition 4, and consid-

ered the fact that there are 2n−l sequences of length n with n1 = l or nK = l.
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If we assume that all the possible outputs resulting from k insertions (k ≥ 2)

for a given x are equiprobable, since

−
J∑

j=1

pj log(pj) ≤ −
(

J∑
j=1

pj

)
log

(∑J
j=1 pj

J

)
, (3.56)

we can upper bound Hε(x). That is,

Hε(x) =

n∑
k=2

∑
y∈(x,k)

−Q(y|x) log
(
Q(y|x)

)
≤

n∑
k=2

−εk log
(

εk
|(x, k)|

)

≤
n∑

k=2

−εk log
(

εk
2n+k

)
, (3.57)

where εk =
∑

y∈(x,k)Q(y|x) =
(
n

k

)
ik(1 − i)n−k is the probability of k insertions

for transmission of n bits, and the last inequality results by using the fact that

|Y i(x+k)| ≤ 2n+k, where |Y i(x+k)| denotes the number of output sequences resulting

from k insertions into a given input sequence x. After some algebra, we arrive at

Hε(X) ≤n(1 + i) + nHb(i)− n(1− i)n − (n+ 1)ni(1− i)n−1

+ (1− i)n log(1− i)n + ni(1− i)n−1 log i(1− i)n−1

− nin−1(1− i) log(n)− (1− in − (1− i)n − ni(1− i)n−1

− nin−1(1− i)) log

(
n

2

)
. (3.58)

Finally, by substituting Eqn. (3.58) into Eqn. (3.54), the upper bound (3.51) is ob-

tained.

Proof of Lemma 5: By substituting the exact value of the output entropy

(Eqn. (3.49)) and the upper bound on the conditional output entropy (Eqn. (3.51))

of the random insertion channel with i.u.d. input sequences into Eqn. (3.4), a lower

bound on the achievable information rate is obtained, hence the lemma is proved. �
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3.5 Numerical Examples

We now present several examples of the lower bounds on the insertion/deletion chan-

nel capacity for different values of n and compare them with the existing ones in the

literature.

3.5.1 I.I.D. Deletion Channel

Here, we numerically evaluate the lower bounds derived on the capacity of the i.i.d.

deletion channel and compare them with existing results in the literature. The lower

bounds on the capacity of the i.i.d. deletion channel in Eqns. (3.5) and (3.11) are

functions of n, so for different values of n, different lower bounds result. For example,

for n = 10000, n = 1000, n = 100 and n = 10, the Eqn. (3.11) evaluates to

Cd ≥ 1−Hb(d) + 0.2884d− 1.4355d2 − 6.4384× 107d3 − 2.146× 1011d4, (3.59)

Cd ≥ 1−Hb(d) + 0.2868d− 1.4334d2 − 6.4003× 105d3 − 2.1318× 108d4, (3.60)

Cd ≥ 1−Hb(d) + 0.2711d− 1.4121d2 − 6027.7d3 − 1.9937× 105d4, (3.61)

and

Cd ≥ 1−Hb(d) + 0.1094d− 1.2027d2 − 30.3160d3 − 93.1881d4, (3.62)

respectively. We observe that by increasing n, these lower bounds effectively capture

the first order term expression of the capacity expansion.

In Table 3.1 the effect of changing n is numerically evaluated where the lower

bounds in Eqns. (3.5) and (3.11), for n = 100 and n = 1000, along with several

existing results are presented which show that the new lower bounds on the capacity

are in the range of the tightest existing lower bounds. On the other hand, they do

not improve the best known results. In comparing the lower bounds in Eqns. (3.5)

and (3.11), we observe that for small values of deletion probability (nd < 0.1), the
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Table 3.1: Lower bounds on the capacity of the deletion channel1.

d 1−LB from [4] 1−LB from [5] 1−LB (3.5) 1−LB (3.60) 1−LB (3.5) 1−LB (3.61)
n = 1000 n = 100

10−5 1.81× 10−4 1.7763× 10−4 1.7765× 10−4 1.7770× 10−4 1.7781242× 10−4 1.7781243× 10−4

10−4 1.4739× 10−3 1.4442× 10−3 1.4444× 10−3 1.5399× 10−3 1.44593× 10−3 1.44595× 10−3

10−3 0.01141 0.011120 0.011122 0.2902 0.11139 0.11145
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Figure 3.3: Lower bounds on the deletion channel capacity resulting from different
values of block length n.

simplified lower bound is very close to the original lower bound while it is a simple

expression lower bound.

In Fig. 3.3, we compare lower bounds on the capacity of the deletion channel

resulting from different values of n. We observe that by increasing n from 10 to 100, a

tighter lower bound is obtained but from 100 to 1000, the resulting improvement is not

significant. In Fig. 3.4, the lower bound in Eqn. (3.5) for n = 1000 is compared with

the lower bounds in [4] and [5]. We observe that the new lower bound in Eqn. (3.5) is

1Note that in Tables 3.1-3.4, we depict ′′1−lower bound′′ if the lower bound is close to 1.
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Figure 3.4: Comparison of the lower bound (3.5) for n = 1000 with lower bounds
presented in [4] and [5].

tighter than one in [4] and for small values of d, as we observe in Table 3.1, it is very

close to the lower bound of [5], which is the tightest lower bound for small values of

d available.

3.5.2 Deletion-Substitution Channel

In Table 3.2, we compare the lower bound (3.22) for n = 100 and n = 1000 with the

one in [4]. We observe that the bound improves the result of [4] for the entire range

of d and s, and also as we expected, by increasing n from 100 to 1000, a tighter lower

bound for all values of d and s is obtained.

3.5.3 Deletion-AWGN Channel

We now compare the derived analytical lower bound on the capacity of the deletion-

AWGN channel with the simulation based bound of [6] which is the achievable in-

formation rate of the deletion-AWGN channel for i.u.d. input sequences obtained by

Monte-Carlo simulations. As we observe in Fig. 3.5, the lower bound (3.28) is very
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Table 3.2: Lower bounds on the capacity of the deletion-substitution channel.

d s 1−LB (2.3) 1−LB (3.22) 1−LB (3.22)
n = 1000 n = 100

10−5 10−5 3.6104× 10−4 3.5817× 10−4 3.5834× 10−4

10−5 10−4 1.6535× 10−3 1.6506× 10−3 1.6508× 10−3

10−5 10−3 1.15881× 10−2 1.15853× 10−2 1.15854× 10−2

10−4 10−5 1.6535× 10−3 1.6248× 10−3 1.6264× 10−3

10−4 10−4 2.9459× 10−3 2.9172× 10−3 2.9188× 10−3

10−4 10−3 1.2879× 10−2 1.2850× 10−2 1.2852× 10−2

10−3 10−5 1.1588× 10−2 1.1302× 10−2 1.1319× 10−2

10−3 10−4 1.2879× 10−2 1.2593× 10−2 1.261× 10−2

10−3 10−3 2.2804× 10−2 2.2518× 10−2 2.2535× 10−2

d s LB (2.3) LB (3.22) LB (3.22)
n = 1000 n = 100

0.01 0.01 0.8392 0.8419 0.8418
0.01 0.03 0.7268 0.7373 0.7293
0.01 0.10 0.4549 0.4576 0.4575
0.05 0.01 0.6368 0.6476 0.6469
0.05 0.03 0.5289 0.5397 0.5390
0.05 0.10 0.2681 0.2789 0.2781
0.10 0.01 0.4583 0.4729 0.4716
0.10 0.03 0.3561 0.3707 0.3693
0.10 0.10 0.1089 0.1236 0.1222

close to the simulation results of [6] for small values of deletion probability but it

does not improve them. This is not unexpected, because we further lower bounded

the achievable information rate for i.u.d. input sequences while in [6], the achievable

information rate for i.u.d. input sequences is obtained by Monte-Carlo simulations

without any further lower bounding. The new bound is analytical and very easy

to compute while the result in [6] requires lengthly simulations. Furthermore, the

procedure employed in [6] is only useful for deriving lower bounds for small values

of deletion probability, e.g., d ≤ 0.1, while the lower bound (3.28) holds for a much

wider range of deletion probabilities.

3.5.4 Sticky Channel

Similar to the deletion channel cases, the lower bounds on the capacity of the sticky

channel in Eqns. (3.39) and (3.40) are functions of n, therefore, for different values

of n, different lower bounds result. For example, for n = 10, n = 100 and n = 1000,

the Eqn. 3.40 evaluates to

Cs ≥ 1−Hb(i) + 2.0329i− 1.7784i2 − 178.9562i3 − 1.0108× 103i4, (3.63)

Cs ≥ 1−Hb(i) + 2.2639i− 2.1157i2 − 1.7247× 105i3 − 1.6040× 107i4, (3.64)

and

Cs ≥ 1−Hb(i) + 2.2861i− 2.1529i2 − 8.3722× 107i3 − 8.3047e× 1010i4, (3.65)
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Figure 3.5: Comparison between the lower bound (3.28) for n = 1000 with the lower
bound in [6] versus SNR for different deletion probabilities.

Table 3.3: Lower bounds on the capacity of the sticky channel.

i 1−LB from [19] 1−LB from [5] 1−LB (3.39) 1−LB (3.65) 1−LB (3.64) 1−LB (3.63)
n = 1000

10−6 2.9999× 10−5 1.9085× 10−5 1.9079× 10−5 1.9089× 10−5 1.9110× 10−5 1.94× 10−5

10−5 1.6863× 10−4 1.5770× 10−4 1.5695× 10−4 1.5783× 10−4 1.5787× 10−4 1.6099× 10−4

10−4 1.26× 10−3 1.2442× 10−3 1.3199× 10−3 1.43× 10−3 1.2499× 10−3 1.2699× 10−3

10−3 9.09× 10−3 9.129× 10−3 86.311× 10−3 3.425× 10−3 9.342× 10−3 9.381× 10−3

respectively. In Table 3.3, we compare the lower bounds (3.39) and (3.40), with lower

bounds presented in [5, 19] for small values of i. We observe that for small values of

the duplication probability our lower bound improves the existing ones.

In Fig. 3.6, we compare different lower bounds for different values of n. We

observe that for different ranges of duplication probability different values of n result

in the tightest lower bound. This is because we derived a lower bound on the part of

the output entropy resulting from outputs with more than two duplications which is

tight for np� 1 and by increasing np becomes a loose lower bound.
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Figure 3.6: Comparison of the lower bounds on the capacity of the sticky channel
resulting from different values of block length n.

3.5.5 Random Insertion Channel

We now numerically evaluate the lower bounds derived on the capacity of the random

insertion channel. Similar to the previous cases, different values of n result in different

lower bounds. In Table 3.4 and Fig. 3.7, we compare the lower bound in Eqn. (3.48)

with the Gallager lower bound (1 − Hb(i)), where the reported values are obtained

for the optimal value of n.

We observe that for larger i, smaller values of n give the tightest lower bounds.

This is not unexpected since in upper bounding H(Y |X), we computed the exact

value of p(y|x) for at most one insertion, i.e., |y| = |x| or |y| = |x| + 1, and upper

bounded the part of the conditional entropy resulting form more than one insertion.

Therefore, for a fixed i by increasing n, the probability of having more than one
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Table 3.4: Lower bounds on the capacity of the random insertion channel.

i 1−LB from [4] 1−LB (3.48) optimal
value of n

10−6 2.14× 10−5 2.007× 10−5 121
10−5 1.81× 10−4 1.68× 10−4 57
10−4 1.47× 10−3 1.35× 10−3 27
10−3 1.14× 10−2 1.02× 10−2 13
10−2 8.07× 10−1 7.14× 10−2 7

i LB from [4] LB (3.48) optimal
value of n

0.03 0.8056 0.8276 5
0.05 0.7136 0.7442 5
0.10 0.5310 0.5702 4
0.15 0.3901 0.4230 4
0.20 0.2781 0.2962 3
0.23 0.2220 0.2283 3
0.25 0.1887 0.1853 3
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Figure 3.7: Comparison of the lower bound (3.48) with lower bound presented in [4].

insertion increases and as a result the upper bound becomes loose. We also observe

that the lower bound (3.48) improves upon the Gallager’s lower bound [4] for i < 0.25,

e.g., for i = 0.1, we achieve an improvement of 0.0392 bits/channel use.

3.6 Chapter Summary

We have presented several analytical lower bounds on the capacity of the inser-

tion/deletion channels by lower bounding the mutual information rate for i.u.d. input

sequences. We have derived the first analytical lower bound on the capacity of the
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deletion-AWGN channel which for small values of deletion probability is very close

to the existing simulation based lower bounds. The lower bound presented on the

capacity of the deletion-substitution channel improves the existing analytical lower

bound for all values of deletion and substitution probabilities. For random insertion

and sticky channels, the presented lower bounds improve the existing ones for small

values of insertion probability. The lower bound on the capacity of the i.i.d. deletion

channel, for small values of deletion probability, is very close to the tightest avail-

able lower bounds, and is in agreement with the first order expansion of the channel

capacity for d → 0, while our result is a strict lower bound for all range of d. Our

approach for lower bounding the mutual information rate for small probabilities of

synchronization errors is general an may be applicable to other channel models and

other input distributions as well.
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Chapter 4

Achievable Rates for Noisy Channels with Synchronization Errors

Several lower bounds on the capacity of binary input symmetric output channels

with synchronization errors in addition to substitution and erasure errors and in the

presence of white Gaussian noise (WGN) are derived in this chapter. More precisely,

we show that if the channel with synchronization errors can be decomposed into a

cascade of two channels where only the first one suffers from synchronization errors,

a lower bound on the capacity of the original channel related to the capacity of

the one with only synchronization errors can be derived. We derive lower bounds

on the mutual information rate between the transmitted and received sequences for

input sequence distribution which achieves the capacity of the channel with only

synchronization errors. To derive the lower bounds, we do not need to know the exact

capacity achieving input distributions, in fact, we only upper bound the performance

degradation of the system due to the effect of the substitution and erasure errors or

AWGN. The main advantage of the presented lower bounds is that we can employ

any lower bound derived on the capacity of the channels with synchronization errors

in lower bounding the capacity of the noisy channels with synchronization errors.

The result on channel with synchronization errors in addition to erasure errors is the

first result on lower bounding the capacity of such a channel. On the other hand, the

derived lower bound on the capacity of channels with synchronization errors in the

presence of WGN improves the existing lower bounds on the capacity of the AWGN

channel with deletion errors for high SNR values.

The chapter is organized as follows. We start with an introduction in Sec-

tion 4.1. In Section 4.2, we give two lemmas and one proposition which will be

useful in the proof of the result on binary input symmetric q-ary output channels

(BSQC) with synchronization errors. In Section 4.3, we derive lower bounds on the
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capacity of the BSQC channels with synchronization errors where we first focus on

sub/ers/synch channel (binary input symmetric ternary output channel) and binary

input symmetric quaternary output channel, then give the results for arbitrary values

of q. We directly lower bound the capacity of the AWGN/synch channel, again with

respect to the capacity of the synchronization error channel, in Section 4.4. We give

some numerical examples of the results and compare them with the existing results

in Section 4.5. We summarize the result of the chapter in Section 4.6.

4.1 Introduction

In different communication systems, depending on the transmitting medium and the

system design, different limiting factors degrade the performance of the system. Im-

perfect alignment between transmitter and receiver clocks in a digital communication

system can be one of the limiting factors of the system performance which can be

modeled by synchronization errors. On the other hand, additive noises are unavoid-

able in digital communication systems including systems with synchronization errors.

The main object of this chapter is to include additive noises in analyzing the digital

communication systems with synchronization errors to obtain more realistic results.

Here, we focus on finding achievable rates for the channels which can be con-

sidered as concatenation of two independent channels where the first one is a binary

channel with only synchronization errors and the second one is either a memoryless

binary input symmetric q-ary output channel (BSQC) or an AWGN channel. For

instance, the first channel can be a binary insertion/deletion channel and the sec-

ond one can be a binary symmetric channel (BSC) or a substitution/erasure channel

(ternary output channel q = 3). We first consider the ternary (q = 3) and quaternary

(q = 4) output cases, respectively, then generalize the results for arbitrary values of q.

We obtain achievable rates of the concatenated channel with respect to the capacity

of the synchronization error channel by lower bounding the information rate of the
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concatenated channel for input distributions which achieve the capacity of the syn-

chronization error channel. In fact, we derive the lower bounds without knowing the

exact capacity achieving input distribution of the synchronization error channel. We

only derive an upper bound on the system performance degeneration by considering

the effect the second channel. Therefore, we can employ every lower bounds derived

on the capacity of the synchronization error channel in lower bounding the capacity

of the concatenated channel, where the results can be employed on any model on

memoryless channels with synchronization errors.

Dobrushin [10] proves that Shannon’s theorem holds in a memoryless channel

with synchronization errors where he shows information stability holds for memoryless

channels with synchronization errors such that we can write lim
N→∞

max
P(X)

1

N
I(X;Y ),

where X and Y are the transmitted and received sequences, respectively, and N is

the length of the transmitted sequence. Therefore, the information and transmission

capacities of the memoryless channels with synchronization errors are equal and we

can employ any lower bound on the information capacity as a lower bound on the

transmission capacity of a channel with synchronization errors.

4.1.1 Example of a Synchronization Error Channel Decomposition into Two

Independent Channels

The procedure used in this chapter can be employed for any channel which can be

decomposed into two independent channels such that the first one is a memoryless

synchronization error channel and the second one is a symmetric memoryless channel

with no effect on the length of the input sequence. Therefore, if we can also de-

compose a synchronization error channel into two channels with described properties,

we can derive lower bounds on the capacity of the synchronization error channel by

employing this approach. The advantage of this decomposition is in decomposing the

original synchronization error channel into a well characterized synchronization error

71



Table 4.1: Transition probabilities of the hypothetical synchronization error channel.

P (Yj|Xj)
Xj Yj = 0 Yj = 1 Yj = 00 Yj = 01 Yj = 10 Yj = 11

0
(
1
2
− (α+ β)

) (
1 +
√

α−β
α+β

) (
1
2
− (α + β)

) (
1−
√

α−β
α+β

)
α β β α

1
(
1
2
− (α+ β)

) (
1−
√

α−β
α+β

) (
1
2
− (α + β)

) (
1 +
√

α−β
α+β

)
α β β α

Table 4.2: Transition probabilities of two independent channels giving rise to the
synchronization error channel given in Table 4.1.

P (Zj|Xj)
Xj Zj = 0 Zj = 1 Zj = 00 Zj = 11
0 1− 2(α + β) 0 α + β α + β
1 0 1− 2(α+ β) α + β α + β

P (Yj|Zj)
Zj Yj = 0 Yj = 1

0 0.5 + 0.5
√

α−β
α+β

0.5− 0.5
√

α−β
α+β

1 0.5− 0.5
√

α−β
α+β

0.5 + 0.5
√

α−β
α+β

channel and a memoryless channel such that lower bounding the capacity of the new

synchronization error channel could be simpler than lower bounding the capacity of

the original synchronization error channel. In the following, we provide an example

of a hypothetical synchronization error channel that can be decomposed into another

hypothetical synchronization channel and a memoryless BSC.

In Table 4.1, the transition probabilities of a hypothetical synchronization error

channel are given. It can be shown that this channel can be decomposed into two

independent channels given in Table 4.2 such that the first one is a synchronization

error channel and the second one is a BSC channel.

4.2 Entropy Bounds for Binary Input q-ary Output Channels with Synchronization

Errors

In the following two lemmas, we provide a lower bound on the output entropy and

an upper bound on the conditional output entropy of the binary input q-ary output

channel in terms of the the corresponding output entropies of the synchronization

error channel, respectively. We then give a proposition that will be useful in the proof

of the result on BSQC channels with synchronization errors (note that the following
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two lemmas hold for any binary input q-ary output channels with synchronization

errors regardless of any symmetry).

Lemma 6. In any binary input q-ary output channel with synchronization errors and

for all non-negative integer values of q, we have

H(Y (q)) ≥ H(Y )− EM

⎧⎨⎩log

⎛⎝∑
y(q)

∑
y,p(y)	=0

p(y(q)|y,M)p(y(q)|M)

⎞⎠⎫⎬⎭ , (4.1)

where M is the random variable denoting the length of the received sequence, Y de-

notes the output sequence of the synchronization error channel and the input sequence

of the binary input q-ary output channel, and Y (q) denotes the output sequence of the

binary input q-ary output channel.

Proof. By using two different expansions of H(Y (q),M), we have

H(Y (q),M) = H(Y (q)) +H(M |Y (q))

= H(Y (q)|M) +H(M). (4.2)

Hence, we can write

H(Y (q)) = H(Y (q)|M) +H(M), (4.3)

where we used the fact that by knowing Y (q), random variable M is also known, i.e.,

H(M |Y (q)) = 0. By using the same approach for H(Y ), we have

H(Y ) = H(Y |M) +H(M). (4.4)

Finally, we can write

H(Y (q))−H(Y ) = H(Y (q)|M)−H(Y |M)

=
∑
m

p(m)
[
H(Y (q)|M = m)−H(Y |M = m)

]
, (4.5)
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where p(m) = P (M = m). On the other hand, due to the definition of the entropy,

we can write

H(Y (q)|M = m)−H(Y |M = m)

= E
Y

(q){− log(p(Y (q)))|M = m} − EY {− log(p(Y ))|M = m}

= E
(Y ,Y

(q)
)

{
− log

(
p(Y (q))

p(Y )

)∣∣∣∣M = m

}

= −
∑
y(q)

∑
y,p(y)	=0

p(y(q)|y,M = m)p(y|M = m) log

(
p(y(q)|M = m)

p(y|M = m)

)
,

where EZ{.} denotes the expected value with respect to the random variable Z. Now

due to the fact that − log(x) is a convex function of x, we apply Jensen’s inequality

to write

H(Y (q)|M = m)−H(Y |M = m)

≥ − log

⎛⎝∑
y(q)

∑
y,p(y)	=0

p(y(q)|y,M = m)p(y|M = m)
p(y(q)|M = m)

p(y|M = m)

⎞⎠
= − log

⎛⎝∑
y(q)

∑
y,p(y)	=0

p(y(q)|y,M = m)p(y(q)|M = m)

⎞⎠ . (4.6)

By substituting this result into (4.5), the proof follows.

Lemma 7. In any binary input q-ary output channel with synchronization errors and

for any input distribution, we have

H(Y (q)|X) ≤ H(Y |X) + E{M}H(Y
(q)
j |Yj), (4.7)

where Yj denotes the j-th output bit of the synchronization error channel and j-th

input bit of the binary input q-ary output channel and Y
(q)
j denotes the output symbol

of the binary input q-ary output channel corresponding to the input bit Yj.
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Proof. For the conditional output entropy, we can write

H(Y (q),Y |X) = H(Y (q)|X) +H(Y |Y (q),X)

= H(Y |X) +H(Y (q)|Y ,X)

= H(Y |X) +H(Y (q)|Y ), (4.8)

where the last equality follows since X → Y → Y (q) form a Markov chain. Therefore,

H(Y (q)|X) = H(Y |X) +H(Y (q)|Y )−H(Y |X,Y (q))

≤ H(Y |X) +H(Y (q)|Y ). (4.9)

On the other hand, by using the fact that by knowing Y , M is also known, we have

H(Y (q)|Y ) = H(Y (q)|M ,Y ). (4.10)

Furthermore, since the second channel is memoryless, we obtain

H(Y (q)|Y ,M) =
∑
m

p(m)H(Y (q)|Y ,M = m)

=
∑
m

p(m)mH(Y
(q)
j |Yj)

= EM {M}H(Y
(q)
j |Yj), (4.11)

which concludes the proof.

By combining the results of Lemmas 6 and 7, we obtain

I(X;Y q) ≥ I(X;Y )− EM

⎧⎨⎩log

⎛⎝∑
y(q)

∑
y,p(y)	=0

p(y(q)|y,M)p(y(q)|M)

⎞⎠⎫⎬⎭
−E{M}H(Y

(q)
j |Yj), (4.12)

which gives a lower bound on the mutual information between the transmitted and

received sequences of the concatenated channel I(X;Y q) in terms of the mutual

information between the transmitted and received sequences of the synchronization

error channel I(X;Y ).
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Proposition 11. For any X, Y and Y (q) forming a Markov chain X → Y → Y (q),

if

I(X;Y (q)) ≥ I(X;Y ) + A,

where A is a constant, then the capacity of the channels X → Y (q) (C
X→Y (q)) and

X → Y (CX→Y ) satisfy

C
X→Y (q) ≥ CX→Y + A. (4.13)

Proof. Using the input distribution which achieves the capacity of the channel X →
Y , P (X), we can write

lim
n→∞

1

n
I(X;Y (q)(X)) ≥ lim

n→∞
1

n
I(X;Y (X)) + A

= CX→Y + A. (4.14)

Hence, for the capacity of the channel X → Y (q), we have

C
X→Y (q) = lim

n→∞
1

n
max
P (X)

I(X;Y (q))

≥ lim
n→∞

1

n
I(X;Y (q)(X))

≥ CX→Y + A, (4.15)

which concludes the proof.

Due to the result in (4.12) and the result of Proposition 11, the capacity

of the concatenated channel can be lower bounded in terms of the capacity of the

synchronization error channel and the parameters of the second (memoryless) channel.

4.3 Achievable Rates over Binary Input Symmetric q-ary Output Channels with

Synchronization Errors

In this section, we focus on the BSQC channels with synchronization errors (as in-

troduced in Section 2.1.1) and provide lower bounds on the capacity of the channel.
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We first develop the results for sub/ers/synch channel and binary input symmetric

quaternary output channel, respectively. Then give the results for general (odd and

even) q, respectively.

4.3.1 Substitution/Erasure Channels with Synchronization Errors

The following theorem gives a lower bound on the capacity of the sub/ers/synch

channel with respect to the capacity of the synchronization error channel. In a sub/ers

channel, every transmitted bit is either flipped with probability of s, or erased with

probability of e or received correctly with probability of 1−s− e independent of each

other.

Theorem 2. The capacity of the sub/ers/synch channel Cses can be lower bounded

by

Cses ≥ Cs − r
[
H(s, e, 1− s− e) + log

(
(1− e)2 + 2e2

)]
, (4.16)

where Cs denotes the capacity of the synchronization error channel, r = limn→∞
E{M}

n
,

n and m denote the length of the transmitted and received sequences, respectively.

Before giving the proof of Theorem 2, we consider some special cases of this

result. Since we have considered the general synchronization error channel model of

Dobrushin [10], the lower bound (4.16) holds for many different models on channels

with synchronization errors. A popular model for channels with synchronization

errors is the Gallager’s ins/del model1 in which every transmitted bit is either deleted

with probability of d or replaced with two random bits with probability of i or received

correctly with probability of 1 − d − i independent of each other while neither the

transmitter nor the receiver have any information about the insertion and/or deletion

errors. If we employ the Gallager’s model in deriving the lower bounds, for the

1In fact, Gallager’s model in general refers to a channel with insertion, deletion and substitution
errors, but with Gallager’s ins/del model we refer to the case with s = 0 (i.e., substitution error
probability being zero).
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parameter r, we have

r = lim
n→∞

E{M}
n

= lim
n→∞

1

n
nE{|sj|}

= 1− d+ i, (4.17)

where |sj| denotes the length of the output sequence in one use of the ins/del channel,

and the equality results since the channel is memoryless. By utilizing the result

of (4.17) in (4.16), we obtain the following two corollaries.

Corollary 1. The capacity of the sub/ers/ins/del channel Cseid is lower bounded by

Cseid ≥ Cid − (1− d+ i)
[
H(s, e, 1− s− e) + log

(
(1 + e)2 + 2e2

)]
, (4.18)

where Cid denotes the capacity of an insertion/deletion channel with parameters d

and i.

Taking e = 0 in this channel model gives the ins/del/sub channel, hence we

have the following corollary.

Corollary 2. The capacity of the ins/del/sub channel Cids can be lower bounded by

Cids ≥ Cid − (1− d+ i)Hb(s), (4.19)

To prove Theorem 2, we need the following two lemmas. In the first one we

give a lower bound on the output entropy of the sub/ers/synch channel related to the

output entropy of the insertion/deletion channel, while in the second one we give an

upper bound on the conditional output entropy of the sub/ers/synch channel, related

to the conditional output entropy of the insertion/deletion channel.

Lemma 8. For a sub/ers/synch channel, for any input distribution, we have

H(Y (3)) ≥ H(Y )− E{M} log ((1− e)2 + 2e2
)
, (4.20)
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where Y denotes the output sequence of the synchronization error channel and input

sequence of the substitution/erasure channel, and Y (3) denotes the output sequence of

the substitution/erasure channel.

Proof. Using the result of Lemma 6, we only need to obtain an upper bound on

∑
y(3)

∑
y,p(y)	=0

p(y(3)|y,M = m)p(y(3)|M = m)

for all values of m. On the other hand for p(y(3)|y,M = m), we have

p(y(3)|y,M = m) =
m∏
i=1

p(Y
(3)
i |Yi)

= ej1sj2(1− s− e)m−j1−j2, (4.21)

where j1 denotes the number of transitions 0→ − or 1→ − and j2 denotes the num-

ber of transitions 0→ 1 or 1→ 0. E.g., p(011− |0000) = p(0|0)p(1|0)p(1|0)p(−|0) =
es2(1− e− s). On the other hand, for a fixed output sequence y(3) of length m with

j1 erased symbols “−”, there are 2j1
(
m−j1
j2

)
possibilities among all m-tuples such that

d(y(3))e = j1, i.e., the number of erased symbols in y(3), and d(y,y(3))s = j2, i.e.,

the number of positions in y and y(3) in which Y
(3)
j ’s are the flipped versions of Yj,

therefore we can write

∑
y,p(y)	=0

p(y(3)|y,M = m) ≤
m−j1∑
j2=0

2j1
(
m− j1

j2

)
ej1sj2(1− s− e)m−j1−j2

= 2j1ej1(1− e)m−j1 . (4.22)

Note that in deriving the inequality in (4.6), the summation is taken over the values

of y with p(y) 
= 0. However, in (4.22) the summation is taken over all possible values

of y of length m (over all m-tuples), i.e., p(y) = 0 or p(y) 
= 0, which results in the

lower bound in (4.22). Furthermore, by using the fact that the probability of having
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j1 erasures in a sequence of length m is equal to
(
m

j1

)
ej1(1− e)m−j1 , we obtain∑

y(3)

p(y(3)|M = m)
∑

y,p(y)	=0

p(y(3)|y,M = m)

≤
∑
y(3)

P (d(y(3))e = j1|M = m)2j1ej1(1− e)m−j1

=
m∑

j1=0

(
m

j1

)
ej1(1− e)m−j1(2e)j1(1− e)m−j1 =

(
(1− e)2 + 2e2

)m
. (4.23)

By substituting this result into (4.1), we arrive at

H(Y (3))−H(Y ) ≥ −E{M} log ((1 + e)2 + 2e2
)
, (4.24)

concluding the proof.

It is also worth noting that any capacity achieving input distribution over a dis-

crete memoryless channel results in strictly positive output probabilities for possible

output sequences of the channel ([23, p. 95]). Therefore, for special synchronization

error channel models in which for any possible length of the output sequence m,

all the m-tuple output sequences are probable, e.g., i.i.d. deletion channel or i.i.d.

random insertion channel, capacity achieving input distributions (p(x)) would result

in strictly positive output probability distributions for all m-tuple output sequences,

i.e., p(yq) > 0 for all yq of length m and all possible m. Hence, the bounds in (4.22)

and (4.23) can be thought as equalities for these cases.

Lemma 9. In any sub/ers/synch channel and for any input distribution, we have

H(Y (3)|X) ≤ H(Y |X) + E {M}H(e, s, 1− e− s). (4.25)

Proof. Due to the result of Lemma 7 and the fact that in a substitution/erasure

channel, regardless of the distribution of Y j , we can write

H(Y
(3)
j |Yj) = H(e, s, 1− e− s), (4.26)

hence the proof follows.
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We can now complete the proof of the main theorem.

Proof of Theorem 2: By substituting the results of Lemmas 8 and 9 into

the definition of mutual information, for the same input distribution given to both

synchronization error and sub/ers/synch channels, we obtain

I(X;Y (3)) ≥ I(X;Y )−E{M} [H(s, e, 1− s− e) + log
(
(1 + e)2 + 2e2

)]
. (4.27)

By using the result of Proposition 11, the proof is completed. �

4.3.2 Binary Input Symmetric Quaternary Output Channels with Synchronization

Errors

In this subsection, we consider a binary input symmetric quaternary output channel

with synchronization errors as described in Section 2.1.1.

Theorem 3. The capacity of the binary input symmetric quaternary output channel

with synchronization errors Csq can be lower bounded by

Csq ≥ Cs − r
[
H(p1, p2, p3, p4) + log

(
(p1 + p3)

2 + (p2 + p4)
2
)]

, (4.28)

where Cs denotes the capacity of the synchronization error only channel, and r is as

defined in (4.16).

Note that, the presented lower bound is true for all memoryless synchroniza-

tion error channel models. Therefore, similar to the sub/ers/synch channel we can

specialize the results to the Gallager insertion/deletion channel as given in the fol-

lowing corollary.

Corollary 3. The capacity of binary input symmetric quaternary output channel with

insertion/deletion errors (following Gallager’s model) Cqid is lower bounded by

Cqid ≥ Cid − (1− d+ i)
[
H(p1, p2, p3, p4) + log

(
(p1 + p3)

2 + (p2 + p4)
2
)]

. (4.29)
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To prove Theorem 3, we need the two lemmas below where the first one gives

a lower bound on the output entropy of the binary input quaternary output channel

with synchronization errors related to the output entropy of the synchronization error

channel, and the second one gives an upper bound on the conditional output entropy

of the binary input quaternary output channel with synchronization errors, related

to the conditional output entropy of the synchronization error channel.

Lemma 10. In any binary input quaternary output channel with synchronization

errors and for any input distribution, we have

H(Y (4)) ≥ H(Y )−E {M} log ((p1 + p3)
2 + (p2 + p4)

2
)
, (4.30)

where Y denotes the output sequence of the synchronization error channel and input

sequence of the binary input quaternary output channel, and Y (4) denotes the output

sequence of the binary input quaternary output channel corresponding to the input

sequence Y .

Proof. Similar to the proof of Lemma 8, we use the result of Lemma 6 by taking

the summation over all possible sequences of length m, i.e., regardless of p(y) =

0 or p(y) 
= 0, which results into a looser lower bound. On the other hand, for

p(y(4)|y,M = m), we have

p(y(4)|y,M = m) =
m∏
i=1

p(Y
(4)
i |Yi)

= pj11 p
j2
2 p

j3
3 p

m−j1−j2−j3
4 , (4.31)

where j1 denotes the number of transitions 0→ 0− or 1→ 1−, j2 denotes the number

of transitions 0 → 0+ or 1 → 1+, and j3 denotes the number of transitions 0 → 1−

or 1 → 0−. E.g., p(0−1+0+1−|0000) = p(0−|0)p(1+|0)p(0+|0)p(1−|0) = p1p2p3p4.

Furthermore, for a fixed output sequence y(4) of length m with j 0− symbols, k 0+

82



symbols, l 1− symbols andm−j−k−l 1+ symbols, there are
(
j

i1

)(
k

i2

)(
l

i3

)(
m−j−k−l

i4

)
pos-

sibilities among all m-tuples (for y) such that d(y,y(4))0→0− = i1, d(y,y
(4))0→0+ = i2,

d(y,y(4))0→1− = i3 and d(y,y(4))0→1+ = i4. By defining m−(y(4)) = #{t ≤ m|y(4)t ∈
{0−, 1−}}, i.e., the number of the times y

(4)
t = 0− or y

(4)
t = 1−, and m+(y(4)) = #{t ≤

m|y(4)t ∈ {0+, 1+}}, i.e., the number of the times y
(4)
t = 0+ or y

(4)
t = 1+, we can write

∑
y,p(y)	=0

p(y(4)|y,M = m)

≤
j∑

i1=0

(
j

i1

)
pi11 p

j−i1
3

k∑
i2=0

(
k

i2

)
pi22 p

k−i2
4

l∑
i3=0

(
l

i3

)
pi33 p

l−i3
1

m−j−k−l∑
i4=0

(
m−j −k−l

i4

)
pi44 p

m−j−k−l−i4
2

= (p1 + p3)
j+l(p2 + p4)

m−j−l

= (p1 + p3)
m−(y(4))(p2 + p4)

m+(y(4)). (4.32)

By taking the summation over all possible output sequences of length m, and using

the fact that the probability of having the output y(4) with length m containing m−

0− or 1− is
(

m

m−

)
(p1 + p3)

m−
(p2 + p4)

m−m−
, we obtain

∑
y(4)

p(y(4)|M = m)
∑
y

p(y(4)|y,M = m)

=
∑
y(4)

p(y(4)|M = m)(p1 + p3)
m−(y(4))(p2 + p4)

m+(y(4))

=

m∑
m−=0

(
m

m−

)
(p1 + p3)

m−

(p2 + p4)
m−m−

(p1 + p3)
m−

(p2 + p4)
m−m−

=
(
(p1 + p3)

2 + (p2 + p4)
2
)m

, (4.33)

By substituting the result of (4.33) into the result of Lemma 6, we obtain

H(Y (4)) ≥ H(Y )− EM {M} log ((p1 + p3)
2 + (p2 + p4)

2
)
, (4.34)

which concludes the proof.
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Table 4.3: Transition probabilities for a binary input 5-ary output channel.

P (Y
(q)
j |Ȳj)

Yj Y
(q)
j = −2 Y

(q)
j = −1 Y

(q)
j = 0 Y

(q)
j = 1 Y

(q)
j = 2

−1 p2 p1 p0 p−1 p−2
1 p−2 p−1 p0 p1 p2

Lemma 11. For a binary input quaternary output channel with synchronization er-

rors, for any input distribution, we have

H(Y (4)|X) ≤ H(Y |X) + EM {M}H(p1, p2, p3, p4). (4.35)

Proof. Substituting the straightforward result H(Y
(4)
j |Yj) = H(p1, p2, p3, p4) in the

result of Lemma 7 concludes the proof.

We can now complete the proof of Theorem 3.

Proof of Theorem 3: Using the results of Lemmas 10 and 11, we obtain

I(X;Y (4)) ≥ I(X;Y )−nr
[
H(p1, p2, p3, p4) + log

(
(p1 + p3)

2 + (p2 + p4)
2
)]

. (4.36)

Hence, due the result in Proposition 11, the proof is complete. �

4.3.3 Binary Input Symmetric q-ary Output Channel with Synchronization Errors

(Odd q Case)

In this subsection, we consider a binary input symmetric q-ary output channel with

synchronization errors for an arbitrary odd value of q, where we represent the tran-

sition probability values P
(
Y

(q)
j = k|Ȳj = b

)
for different values of b ∈ {−1, 1} and

k = {− q−1
2
, · · · ,−1, 0, 1, · · · , q−1

2
} by P

(
Y

(q)
j = k|Ȳj = b

)
= pk×b. For instance, Ta-

ble 4.3 shows transition probabilities for a binary input 5-ary output channel.

The main result on the BSQC channel with synchronization errors with odd

q is a generalized version of the result in Theorem 2.
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Table 4.4: Transition probabilities for a binary input symmetric 6-ary output channel.

P (Y
(q)
j |Ȳj)

Yj Y
(q)
j = −3 Y

(q)
j = −2 Y

(q)
j = −1 Y

(q)
j = 1 Y

(q)
j = 2 Y

(q)
j = 3

−1 p3 p2 p1 p−1 p−2 p−3
1 p−3 p−2 p−1 p1 p2 p3

Theorem 4. The capacity of the BSQC channel with synchronization errors CQs for

an odd q can be lower bounded by

CQs ≥ Cs − r

⎛⎝H(p− q−1
2
, · · · , p q−1

2
) + log

⎛⎝2p20 +

q−1
2∑

k=1

(pk + p−k)2

⎞⎠⎞⎠ , (4.37)

where Cs denotes the capacity of the binary input synchronization error channel.

Proof. The proof of the theorem is given in Appendix E.

4.3.4 Binary Input Symmetric q-ary Output Channel with Synchronization Errors

(Even q Case)

We now consider the generalization of the result of Theorem 3 for even q. For the

transition probabilities of the binary input q-ary output channel with b ∈ {−1, 1}
and k = {− q

2
, · · · ,−1, 1, · · · , q

2
}, we define P

(
Y

(q)
j = k|Ȳj = b

)
= pk×b. For instance,

Table 4.4 shows transition probabilities for a binary input 6-ary output channel.

The main result on the BSQC channel with synchronization errors for any q

is given in the following theorem.

Theorem 5. Capacity of the BSQC channel with synchronization errors CQs, for any

even q can be lower bounded by

CQs ≥ Cs − r

⎡⎣H(p− q
2
, · · · , p−1, p1, · · · , p q

2
) + log

⎛⎝ q
2∑

k=1

(pk + p−k)
2

⎞⎠⎤⎦ , (4.38)

where Cs denotes the capacity of the binary input synchronization error channel.

Proof. The proof of Theorem 5 is given in Appendix F.
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4.4 Achievable Rates over BI-AWGN Channels with Synchronization Errors

In this section, a binary synchronization error channel in the presence of AWGN is

considered as defined in Section 2.1.1

Before giving the main results on AWGN channels with synchronization errors,

we would like to make some comments on the information stability of such a channel.

4.4.1 Information Stability of Memoryless Discrete Input Continuous Output

Channels with Synchronization Errors

It is shown in [58] that the Shannon’s theorem holds in any information stable chan-

nel. In [10], the information stability of the memoryless discrete input discrete output

channels with synchronization errors is proved which shows that the Shannon’s the-

orem holds in such a channel. It can be observed that the proofs used in [10] can be

also generalized to the continuous output case as discussed in this section.

To prove the information stability, it is sufficient to prove the existence of the

limit

C = lim
N→∞

1

N
CN = lim

N→∞
1

N
max
P (X)

I(X; Ỹ ), (4.39)

which is the information capacity of the channel, and the existence of an information

stable sequence of two random variables
(
X, Ỹ

)
, which achieves the capacity of the

channel.

The only difference between the channel considered here with the channel

considered by Dobrushin in [10], is that in the continuous output case the output

symbols belong to an infinite set. This difference does not have any effect on the

steps of proofs however. The existence of the limit in [10, Section IV] is proved based

on the memoryless property of the channel which also holds in the continuous output

case.
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In the case of the existence of an information stable sequence achieving the

capacity ([10, Section V]), there is no need to condition on discrete output symbol

values, and all the reasoning hold for the continuous output case as well. The key

point in the proof is that the channel is stationary which also holds for the continuous

output case, such that the same genie-aided channel as the one considered for the

discrete output channel can also be considered for the continuous output channel.

The genie-aided channel is obtained by inserting markers through the transmission

after transmitting each block of length k, where the entire length of transmission is

K = gk + l (l < k).

The other point in the proof is the number of possibilities in converting the

output of the original channel Ỹ into the output of the genie-aided channel Ỹ
′
,

i.e., |f−1(Ỹ )| where Ỹ = f(Ỹ ′). Since for the continuous output case we still have

lim
g→∞

maxỸ |f−1(Ỹ )|
g

→ 0, the proof holds.

Since, both capacity convergence and existence of an information stable se-

quence which achieves the capacity remain valid in the continuous output case as

well, we can conclude that the memoryless discrete input continuous output channels

with synchronization errors are also information stable and, as a result, the Shannon’s

theorem applies in such a channel considered in this section as well.

4.4.2 Capacity Lower bounds for AWGN Channels with Synchronization Errors

Here, we present two results on the capacity of an AWGN/synch channel. Both

results are generalizations of results for discrete output cases when the number of

quantization levels goes to infinity and the quantization level goes to zero. The first

result is obtained by employing a uniform quantizer while in deriving the second

result a non-uniform quantizer is employed. The second result is the main result in

this section since provides a tighter lower bound compared to the first result.
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In the following theorem, we present the first result on lower bounding the

capacity of the AWGN/synch channel.

Theorem 6. The capacity of the AWGN/synch channel CAs can be lower bounded by

CAs ≥ Cs − r log

(√
e

2
(1 + e−

1
σ2 )

)
, (4.40)

where Cs denotes the capacity of the synchronization error channel, and signal to

noise ratio (SNR) of the BI-AWGN channel is equal to 1
2σ2 .

Here, we give an outline of the proof and defer the details of the proof to Ap-

pendix G. To prove Theorem 6, we consider a quantized version of the output symbols

where a uniform quantizer is used with the number of quantization levels going to

infinity. I.e., by quantizing the output symbols into 2M-levels and considering uni-

form quantization levels of Δ, for pm (m = {−M, · · · ,−1, 1, · · · ,M}) which denotes

the probability that the continuous output symbol, Ỹj, being quantized to the bm-th

quantization level (b ∈ {−1, 1}) conditioned on X̄j = b being transmitted, we obtain

pm =

⎧⎪⎨⎪⎩ Q(1−mΔ
σ

)−Q(1−(m−1)Δ
σ

) , m > 0

Q(1+(|m|−1)Δ
σ

)−Q(1+|m|Δ
σ

) , m < 0
, (4.41)

where Q(.) is the tail probability of the standard normal distribution. By substitut-

ing (4.41) in the result of Theorem 5, we can write

CAs ≥ Cs − r lim
M→∞,Δ→0

[
H(p−M , · · · , p−1, p1, · · · , pM) + log

(
M∑

m=1

(pm + p−m)
2

)]
.

(4.42)

Finally, by using the fact that when M →∞ and Δ→ 0, we have pm = f(1−mΔ)Δ,

whit f(x) = 1√
2πσ

e−
x2

2σ2 , after some algebra (given in Appendix G), Theorem 6 is

proved.

We obtain this result as a straightforward generalization of the discrete output

channel results by employing a symmetric uniform quantizer, but the result may not
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be tight. For instance, for σ = 0, i.e., the noiseless scenario, the result does not

match with the trivial result which is CAs = Cs for σ = 0. We expect that if we apply

an appropriate non-uniform quantizer on the output symbols of the AWGN/synch

channel, we can achieve a tighter lower bound on its capacity (which also agrees with

the trivial result for CAs = Cs for σ = 0). By using this idea, we present our main

result on the capacity of an AWGN/synch channel in the following theorem by using

a symmetric non-uniform quantizer.

Theorem 7. Let Cs denote the capacity of the synchronization error channel, then

for the capacity of the AWGN/synch channel CAs, we obtain

CAs ≥ Cs−r
[
log(e)

(
2√
2πσ

e−
1

2σ2 − 2

σ2
Q

(
1

σ

))
+ log

(
1 +Q

(
1

σ

)
+ e

4
σ2Q

(
3

σ

))]
.

(4.43)

Proof. To prove the theorem, we first define an appropriate symmetric non-uniform

quantizer with 2M quantization levels. Then, by letting M go to infinity and em-

ploying the result of Theorem 5, we complete the proof.

In general, by utilizing any symmetric quantizer with 2M quantization levels

on the output symbols Ỹj , for the transition probabilities of the resulting binary input

symmetric 2M-ary output channel, we have

pm = P (Y (2M) = bm|X̄j = b) =

⎧⎪⎨⎪⎩ P (tm−1 < Ỹj < tm) , 0 < m ≤M

P (−tm < Ỹj < −tm−1) , −M ≤ m < 0
,

where t−m = −tm, t0 = 0 and tm−1 < tm for m = {1, · · · ,M}. We choose the

quantization step sizes, i.e., Δm = tm − tm−1 for m = {1, · · · ,M}, to satisfy p1 =

p2 = · · · = pM . Note that due to symmetry of the quantizer Δ−m = Δm (as illustrated

in Fig. 4.1). On the other hand, by defining P = Q( 1
σ
), we have

M∑
m=1

p−m = P and

M∑
m=1

pm = 1− P which results in pm = 1−P
M

for m = {1, · · · ,M}.
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Figure 4.1: Symmetric non-uniform quantizer step sizes.

Using the result of Theorem 5, to derive a lower bound on the capacity of

the channel with 2M-level quantized outputs, we need to obtain H(p−M , · · · , pM) +

log
(∑M

m=1(pm + p−m)2
)
. In the following, we first compute the exact values of HM =

H(p−M , · · · , p−1, p1, · · · , pM) − log(M) and log
(∑M

m=1(pm + p−m)2
)
+ log(M). For

HM , we have

HM = −
M∑

m=1

pm log(pm)−
M∑

m=1

p−m log(p−m)− log(M)

= −(1− P ) log(1− P )−
M∑

m=1

p−m log(Mp−m). (4.44)

To calculate −∑M
m=1 p−m log(Mp−m), we first derive a relation between pm and p−m

by using the fact that Δm = Δ−m. For large M and m = {1, · · · ,M}, we have

pm ∼= f(1− tm)Δm and p−m ∼= f(1 + tm)Δm, where f(x) = 1√
2πσ

e−
x2

2σ2 . Furthermore,

since pm = 1−P
M

for m = {1, · · · ,M} and f(1+tm)
f(1−tm)

∼= e−
2tm
σ2 , we can write

p−m ∼= f(1 + tm)

f(1− tm)
pm

=
1− P

M
e−

2tm
σ2 , (4.45)

with the understanding that the approximation becomes exact as M →∞. By using

this result and the fact that
∑M

m=1 p−m = P , we obtain

lim
M→∞

−
M∑

m=1

p−m log(Mp−m) = lim
M→∞

−
M∑

m=1

p−m log (1− P )− lim
M→∞

M∑
m=1

p−m log
(
e−

2tm
σ2

)
= −P log (1− P )− lim

M→∞

M∑
m=1

p−m log
(
e−

2tm
σ2

)
. (4.46)
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Furthermore, for lim
M→∞

−
M∑

m=1

p−m log
(
e−

2tm
σ2

)
, we can write

lim
M→∞

−
M∑

m=1

p−m log
(
e−

2tm
σ2

)
= lim

M→∞
log(e)

M∑
m=1

f(1 + tm)Δm

2tm
σ2

= log(e)

∫ ∞

0

f(1 + t)
2t

σ2
dt

= log(e)
2

σ2

∫ ∞

0

t√
2πσ

e−
(t+1)2

2σ2 dt

= log(e)

(
2√
2πσ

e−
1

2σ2 − 2

σ2
P

)
. (4.47)

By substituting (4.47) and (4.46) into (4.44), we obtain

lim
M→∞

HM = − log(1− P ) + log(e)

(
2√
2πσ

e−
1

2σ2 − 2

σ2
P

)
. (4.48)

At this point, we only need to obtain the exact value of
∑M

m=1(pm + p−m)2, where we

have

M∑
m=1

M(pm + p−m)2 =
M∑

m=1

M(p2m + 2pmp−m + p2−m)

= (1− P )2 + 2P (1− P ) +
M∑

m=1

Mp2−m. (4.49)

Furthermore, if we let M go to infinity, for
∑M

m=1Mp2−m, we can write

lim
M→∞

M∑
m=1

Mp2−m = lim
M→∞

M∑
m=1

Mf(1 + tm)Δm

f(1 + tm)

f(1− tm)
pm

= lim
M→∞

(1− P )

M∑
m=1

1√
2πσ

e−
(tm+1)2

2σ2 e−
2tm
σ2 Δm

= (1− P )

∫ ∞

0

1√
2πσ

e−
(t+1)2

2σ2 e−
2t
σ2 dt

= (1− P )

∫ ∞

0

1√
2πσ

e−
(t+3)2−8

2σ2 dt

= (1− P )e
4
σ2Q

(
3

σ

)
. (4.50)
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Using the results of (4.50) and (4.48), we obtain

lim
M→∞

(
H(p−M , · · · , p−1,p1, · · · , pM) + log

(
M∑

m=1

(pm + p−m)2
))

= lim
M→∞

(
HM + log

(
M∑

m=1

M(pm + p−m)2
))

= log(e)

(
2e−

1
2σ2

√
2πσ

− 2

σ2
P

)
+ log

(
1 + P + e

4
σ2Q

(
3

σ

))
.

(4.51)

Finally, by substituting this result into (4.38), the proof follows.

By employing a symmetric non-uniform quantizer, we achieve a tighter lower

bound on the capacity of the AWGN/synch channel compared to the lower bound in

Theorem 6. The result is also in agreement with the trivial result CAs = Cs (σ = 0).

A primary advantage of the derived lower bound in (4.43) is that we can use any lower

bound on the capacity of the synchronization error only channel to lower bound the

capacity of the AWGN/synch channel.

4.5 Numerical Examples

In this section, we give several numerical examples of the lower bounds on the capacity

of the ins/del/sub and del/AWGN channel and compare them with the existing ones

in the literature. As we are aware of there are no result on lower bounding the

capacity of the ins/del/sub/ers and ins/del/AWGN channels to compare them with

our results.

4.5.1 Insertion/Deletion/Substitution Channel

In Table 4.5, we compare the lower bound (4.19) with existing lower bounds in [4, 14].

We employ the lower bound derived in [12] as the lower bound on the capacity of the

deletion channel and the lower bound in [14] as the lower bound on the capacity of

the ins/del channel in lower bound (4.19). Note that the Gallager’s model in [4] by
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Table 4.5: Comparison between the lower bound derived on the capacity of the
ins/del/sub channel with existing lower and upper bounds.

d i s LB from [4] LB (4.19) LB from [14] UB from [14]

0.001 0.00 0.001 0.9772 0.9775 0.9773 0.9856
0.001 0.00 0.010 0.9079 0.9082 0.9081 0.9163
0.001 0.00 0.100 0.5201 0.5204 0.5210 0.5292
0.010 0.00 0.001 0.9079 0.9107 0.9091 0.9586
0.010 0.00 0.010 0.839 0.842 0.842 0.886
0.010 0.00 0.100 0.454 0.458 0.466 0.510
0.100 0.00 0.001 0.5207 0.5514 0.5346 0.7300
0.100 0.00 0.010 0.458 0.489 0.492 0.644
0.100 0.00 0.100 0.108 0.140 0.211 0.363
0.100 0.10 0.001 0.0689 0.1678 0.1761 0.4504
0.100 0.10 0.010 0.013 0.0984 0.139 0.438

parameters d, i and pc can be considered as concatenation of an ins/del channel with

parameters d and i, and a BSC channel with cross error probability of s such that

pc = (1 − s)(1 − d − i). The advantage of the lower bound (4.19) is in using the

tightest lower bound on the capacity of the ins/del channel in lower bounding the

capacity of the overall channel, i.e., the information rate of the overall channel is

lower bounded for the input distribution which resulted in the tightest lower bound

on the capacity of the ins/del channel. We observe that for i = 0, a fixed d and

small values of s, the lower bound (4.19) improves the lower bound given in [14].

This is not unexpected, because for small values of s the input distribution achieving

the capacity of the deletion channel is not far from the optimal input distribution of

the del/sub channel. We also observe that the lower bound (4.19) outperforms the

lower bound given in [4], but for the case i 
= 0 does not improve the lower bound

given in [14], since as the lower bound on the capacity of ins/del channel we used the

result in [14] and lower bounded further to achieve lower bound on the capacity of

the overall channel.
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4.5.2 Insertion/Deletion/AWGN Channel

Here, we give some numerical examples of the lower bound (4.43) on the capacity of

the ins/del/AWGN channel and compare them with the existing results. As we are

aware of, no upper or lower bounds are derived on the capacity of the ins/del/AWGN

channel. There are only a few results on the capacity of the deletion/AWGN channel,

e.g., the simulation based bound of [6] which is the achievable information rate of

the deletion/AWGN channel for i.u.d. input sequences obtained by Monte-Carlo

simulations and the analytical result given in Chapter 3 which is a lower bound on

the information rate for i.u.d. input sequences.

As we observe in Fig. 4.2, the lower bound (4.43) is far away from the simu-

lation results of [6] for small SNR values and small deletion probability values. This

is not unexpected, because in [6], the achievable information rate for i.u.d. input se-

quences is obtained by Monte-Carlo simulations which requires lengthly simulations.

Furthermore, the procedure employed in [6] is only useful for deriving lower bounds

for small values of deletion probability, e.g., d ≤ 0.1, while the lower bound (4.28)

holds for the entire range of deletion probabilities by employing any lower bound

on the capacity of the deletion channel in lower bounding the capacity of the dele-

tion/AWGN channel. We also observe that, since in deriving the lower bound (4.43)

on the capacity of the deletion/AWGN channel, we employ the tightest lower bound

presented on the capacity of the deletion channel, for large values of SNR, the lower

bound (4.43) improves the lower bound given in [6].

4.6 Chapter Summary

In this chapter, we presented several lower bounds on the capacity of binary input

symmetric output channels with synchronization errors in addition to substitutions,

erasures or AWGN. We showed that the capacity of any channel with synchronization
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Figure 4.2: Comparison between the lower bound (4.43) with the lower bound in [6]
versus SNR for different deletion probabilities.

errors which can be considered as a cascade of two channels (where only the first one

suffers from synchronization errors and the second one is a memoryless channel) can

be lower bounded in terms of the capacity of the first channel and the parameters of

the second channel. We considered two classes of channels: binary input symmetric

q-ary output channels (e.g., for q = 3 a binary input channel with substitutions and

erasures) with synchronization errors and BI-AWGN channels with synchronization

errors. We gave the first lower bound on the capacity of substitution/erasure channel

with synchronization errors and the first analytical result on the capacity of BI-AWGN

channel with synchronization errors. We also demonstrated that the lower bounds

developed on the capacity of the del/AWGN channel for small σ2 values and the

del/sub channel for small values of s improve the existing results.
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Chapter 5

Improvement of the Deletion Channel Capacity Upper Bound

Memoryless channels with deletion errors as defined by a stochastic channel matrix

allowing for bit drop outs are considered in which transmitted bits are either indepen-

dently deleted with probability d or unchanged with probability 1−d. Such channels

are information stable, hence their Shannon capacity exists. However, computation

of the channel capacity is formidable, and only some upper and lower bounds on the

capacity exist (see Chapter 2 as a review on the existing upper and lower bounds on

the deletion channel capacity). In this chapter, we first define a new channel as a

parallel concatenation of two independent deletion channels with deletion probabili-

ties d1 and d2 such that any input bit is either transmitted the first deletion channel

with probability λ or the second one with probability 1 − λ. Then by showing that

the new defined channel is in fact another deletion channel with deletion probability

d = λd1 + (1 − λ)d2, we are able to provide an upper bound on the concatenated

deletion channel capacity C(d) in terms of the weighted average of C(d1), C(d2) and

the parameters of the three channels. An interesting consequence of this bound is

that C(λd1 + (1 − λ)) ≤ λC(d1) which enables us to provide an improved upper

bound on the capacity of the i.i.d. deletion channels, i.e., C(d) ≤ 0.4143(1 − d) for

d ≥ 0.65. This generalizes the asymptotic result by Dalai [59] as it remains valid for

all d ≥ 0.65. Using the same approach we are also able to improve upon existing

upper bounds on the capacity of the deletion/substitution channel.

The chapter is organized as follows. In Section 5.1, we give a brief introduction

on memoryless channels with synchronization errors and an outline of our results.

In Section 5.2, we prove the main result of the chapter which relates the capacity

of the three different deletion channels through an inequality. In Section 5.3, we

generalize the result to the case of deletion/substitution channels and the parallel
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concatenation of more than two channels. In Section 5.4, we present tighter upper

bounds on the capacity of the deletion and deletion/substitution channels based on

previously known best upper bounds, and comment on the limit of the capacity as

the deletion probability approaches unity. We conclude the chapter in Section 5.5.

5.1 Introduction

Channels with synchronization errors can be well modeled using bit drop outs and/or

bit insertions as well as random errors. There are many different models adopted in

the literature to describe these errors. Among them, a relatively general model is

employed by Dobrushin [10] where memoryless channels with synchronization errors

are described by a channel matrix allowing for the channel outputs to be of different

lengths for different uses of the channel. As proved in the same paper, for such

channels, information stability holds and Shannon capacity exists. However, the

determination of the capacity remains elusive as the mutual information term to be

maximized does not admit a single letter or finite letter form.

In this chapter, we prove that the capacity of an i.i.d. deletion channel with

deletion probability of d as an arithmetic mean of two different deletion probabilities

d1 and d2, i.e., d = λd1+(1−λ)d2 for λ ∈ [0, 1], can be upper bounded in terms of the

capacity and the parameters of the two newly considered deletion channels. The proof

relies on the simple observation that the deletion channel with deletion probability d

can be considered as the parallel concatenation of two independent deletion channels

with deletion probabilities d1 and d2 where each bit is either transmitted over the

first channel with probability λ or the second channel with probability 1− λ.

Thanks to the presented inequality relation among the deletion channels ca-

pacity, we are able to improve upon the existing upper bounds on the capacity of the

deletion channel for d ≥ 0.65 [13]. The improvement is the result of the fact that

the currently known best upper bounds are not convex for some range of deletion
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probabilities. More precisely, our result allows us to convexify the existing deletion

channel capacity upper bound for d ≥ 0.65, leading to a significant improvement

of the upper bound. In other words, we are able to prove that for 0 ≤ λ ≤ 1,

C(λd + 1 − λ) ≤ λC(d), resulting in C(d) ≤ 0.4143(1 − d) for d ≥ 0.65 which is

tighter than the result in [13]. The same result for the asymptotic scenario d → 1

was also obtained in [59] using a different approach; however our result is valid for

d ≥ 0.65 hence more general. We also note that the best known limiting lower bound

(as d→ 1) is 0.1185(1− d) [11]. We also demonstrate that a similar improvement is

possible for the case of deletion/substitution channels. As an example, we can prove

that for s = 0.03, an improved capacity upper bound is obtained for d ≥ 0.6 over the

best existing result given in [14].

5.2 Main Theorem

In this section, we provide the main result of the chapter on the capacity of the

deletion channel and its proof. Furthermore, we present a simple proof for the special

case with d2 = 0, i.e., C(λd1 + 1− λ) ≤ λC(d1).

The theorem below states our basic result whose proof hinges on a simple

observation.

Theorem 8. Let C(d) denotes the capacity of the i.i.d. deletion channel with deletion

probability d, λ ∈ [0, 1] and d = λd1 + (1− λ)d2, then we have

C(d) ≤ λC(d1) + (1− λ)C(d2) + (1− d) log(1− d)

−λ(1− d1) log(λ(1− d1))− (1− λ)(1− d2) log((1− λ)(1− d2)).(5.1)

Proof. Let us consider two different deletion channels, C1 and C2, with deletion prob-

abilities d1 and d2, input sequences of bits X1 and X2, and output sequences of

bits Y 1 and Y 2, respectively. Denote their Shannon capacities by C(d1) and C(d2),

respectively. Given a specific λ ∈ (0, 1), define a new binary input channel C′ (shown
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Figure 5.1: Channel Model C′.

in Fig. 5.1) with input sequence of bits X and output sequence of bits Y as follows:

each channel input symbol is transmitted through C1 with probability λ, and through

C2 with probability 1 − λ, independently of each other. Neither the transmitter nor

the receiver knows the specific realization of the “individual channel selection events,”

i.e., they do not know which specific subchannel a symbol is transmitted through, and

which specific subchannel each output symbol is received from. The following two

lemmas demonstrate that 1) the new channel is a new i.i.d. deletion channel with

deletion probability d = λd1+(1−λ)d2, 2) if appropriate side information be provided

for the transmitter and the receiver then the capacity of the genie-aided channel is

upper bounded by λC(d1) + (1 − λ)C(d2) + (1 − d) log(1 − d)− λ(1 − d1) log(λ(1 −
d1))− (1− λ)(1− d2) log((1− λ)(1− d2)). Combining these two results, the proof of

the theorem follows easily by noting that the capacity of the new channel C′ cannot
decrease with side information.

The following two lemmas are employed in the proof of the theorem.

Lemma 12. C′ as defined in the proof of the theorem above is nothing but a deletion

channel with deletion probability d = λd1 + (1− λ)d2.

Proof. For each use of the channel C′, for any input symbol x ∈ X and channel output

y ∈ Y , the transition probability is given by P{C1 is used}d1 + P{C2 is used}d2 =

λd1+(1−λ)d2. Noting that the subchannels are memoryless and the channel selection
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events are independent of each other, this transition matrix precisely defines a deletion

channel with deletion probability d = λd1 + (1− λ)d2.

Lemma 13. The capacity of the channel C′ as defined in the proof of the theorem

above is upper bounded by

C ′ ≤λC(d1) + (1− λ)C(d2) + (1− d) log(1− d)− λ(1− d1) log(λ(1− d1))

− (1− λ)(1− d2) log((1− λ)(1− d2)).

Proof. We first define a new genie-aided channel which is obtained by providing the

transmitter and the receiver of the channel C′ with appropriate side information,

then derive an upper bound on the capacity of the genie-aided channel which is also

an upper bound on the capacity of the channel C′. More precisely, we provide the

transmitter with side information on which channel is being used for each transmitted

symbol (X = X1X2), and the receiver with side information on which channel

the received symbol comes from (Y = Y 1Y 2), and reveal the side information on

the fragmentation information, i.e., random process F y, to the receiver such that

by knowing F y, Y 1 and Y 2, one can retrieve Y . F y is defined as an M-tuple

F y = (fy[1], · · · , fy[M ]), where M denotes the length of the received sequence Y ,

i.e., M = |Y |, and fy[i] ∈ {1, 2} denotes the index of the channel the i-th received bit

is coming from. We also define F x which determines the fragmentation process from

the random process X to X1 and X2 as an N -tuple F x = (fx[1], · · · , fx[N ]), where

fx[i] ∈ {1, 2} denotes the index of the channel the i-th bits is going through.

Since X → (X1,X2,F x)→ (Y 1,Y 2,F y)→ Y form a Markov chain, we can

write

I(X;Y ) ≤ I(X1,X2,F x;Y 1,Y 2,F y)

= I1 + I2 + I3, (5.2)
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where I1 = I(X1,X2,F x;Y 1), I2 = I(X1,X2,F x;Y 2|Y 1) and

I3 = I(X1,X2,F x;F y|Y 1,Y 2). For I1, we have

I1 = I(X1;Y 1) + I(X2,F x;Y 1|X1)

= I(X1;Y 1), (5.3)

where we used the fact that P (Y 1|X1,X2,F x) = P (Y 1|X1), i.e., Y 1 is inde-

pendent of X2 and F x conditioned on X1. Furthermore, by using the facts that

P (Y 2|X2,Y 1) = P (Y 2|X2) and P (Y 2|X1,X2,F x,Y 1) = P (Y 2|X2), we obtain

I2 = I(X2;Y 2|Y 1) + I(X1,F x;Y 2|Y 1,X2)

= H(Y 2|Y 1)−H(Y 2|X2)

≤ I(X2;Y 2). (5.4)

We are not able to derive the exact value of I3, therefore we derive an upper

bound on I3 which results in an upper bound on I(X,Y ). For I3, if we define

Ni = |Xi| and Mi = |Yi| as the length of the transmitted and received sequences form

the i-th channel, respectively, then we can write

I3 = H(F y|Y 1,Y 2)−H(F y|Y 1,Y 2,X1,X2,F x)

≤ H(F y|Y 1,Y 2)

= H(F y|M 1,M2). (5.5)

For fixed M1 and M2, there are
(
M1+M2

M2

)
possibilities for F y = (fy[0], · · · , fy[M1]).

Therefore, we obtain

H(F y|M 1 = M1,M 2 = M2) ≤ log

((
M1 +M2

M2

))
≤ (M1+M2) log (M1+M2)−M1 log(M1)−M2 log(M2),

(5.6)
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where we have used the inequality log
(
n

k

) ≤ nHb(
k
n
) provided in [60, p. 353]. Due

to the fact that (x + a) log(x + a) − x log(x) is a concave function of x for a > 0,

and E{M 1|M 2 = M2} = (N −M2)
λ(1−d1)

λ+(1−λ)d2 (see Appendix H), by applying Jensen’s

inequality, we can write

I3 ≤ EM 1,M 2
{H(F y|M1,M 2)}

≤ EM 2

{
(E{M 1|M 2}+M 2) log(E{M 1|M 2}+M 2)

−E{M 1|M 2} log(E{M 1|M2})−M 2 log(M 2)

}
= E

{(
λ(N −M 2)(1− d1)

λ+ (1− λ)d2
+M 2

)
log

(
λ(N −M 2)(1− d1)

λ+ (1− λ)d2
+M 2

)
−λ(N −M 2)(1− d1)

λ+ (1− λ)d2
log

(
λ(N −M 2)(1− d1)

λ+ (1−λ)d2

)
−M 2 log(M 2)

}
. (5.7)

Furthermore since (a(b− x) + x) log(a(b− x) + x)− a(b− x) log(a(b− x))− x log(x)

is a concave function of x for a > 0 and 0 < x ≤ b, and E{M 2} = N(1 − λ)(1− d2)

(see Appendix H), by applying Jensen’s inequality, we obtain

I3 ≤ N(λ(1− d1) + (1− λ)(1− d2)) log(N(λ(1− d1) + (1− λ)(1− d2)))

−Nλ(1− d1) log(Nλ(1− d1))−N(1 − λ)(1− d2) log(N(1− λ)(1− d2))

= N(λ(1− d1) + (1− λ)(1− d2)) log(λ(1− d1) + (1− λ)(1− d2))

−Nλ(1− d1) log(λ(1− d1))−N(1− λ)(1− d2) log((1− λ)(1− d2)). (5.8)

On the other hand, for I(X i;Y i) (i ∈ {1, 2}), we can write

I(X i;Y i) = I(X i;Y i,N i)− I(X i;N i|Y i)

= I(X i;Y i|N i) + I(X i;N i)− I(Xi;N i|Y i)

≤ I(X i;Y i|N i) +H(N i)

≤ I(X i;Y i|N i) + log(N + 1)

=

N∑
Ni=0

P (N i = Ni)I(X i;Y i|N i = Ni) + log(N + 1), (5.9)
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where in deriving the first inequality we have used the facts that H(N i|X i) = 0 and

I(X i;N i|Y i) ≥ 0, and in deriving the second equality the fact that

H(N i) = −
N∑

n=0

(
N

n

)
λn(1− λ)N−n log

((
N

n

)
λn(1− λ)N−n

)
≤ log(N + 1). (5.10)

Furthermore, as it is shown in [13], for a finite length transmission over the deletion

channel, the mutual information rate between the transmitted and received sequences

can be upper bounded in terms of the capacity of the channel after adding some

appropriate term, which can be spelled out as [13, Eqn. (39)]

I(X i;Y i|N i = Ni) ≤ NiC(di) +H(Di|N i = Ni), (5.11)

where Di denotes the number of deletion through the transmission of Ni bits over

the i-th channel and

H(Di|N i = Ni)=−
Ni∑
n=0

(
Ni

n

)
dni (1−di)Ni−n log

((
Ni

n

)
dni (1− di)

Ni−n
)
≤ log (Ni + 1).

Substituting (5.11) into (5.9), we have

I(X i;Y i) ≤
N∑

Ni=0

P (N i = Ni) (NiC(di) + log(Ni + 1)) + log(N + 1)

≤ λiNC(di) + log(λiN + 1) + log(N + 1), (5.12)

where the last inequality results since log(x) is a concave function of x, and λ1 = λ

and λ2 = 1 − λ. Finally, by substituting (5.12), (5.8), (5.4) and (5.3) in (5.2), we

obtain

I(X;Y ) ≤ NλC(d1) + log(λN + 1) +N(1 − λ)C(d2) + log((1− λ)N + 1)

+ 2 log(N + 1) +N(1− d) log(1− d)−Nλ(1− d1) log(λ(1− d1))

−N(1 − λ)(1− d2) log((1− λ)(1− d2)).

By dividing both sides of the above inequality by N , letting N go to infinity, and

noting that the inequality is valid for any input distribution P (X), the proof follows.
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Note that for the special case of C2 being a pure deletion channel, i.e., d2 = 1,

the presented upper bound (5.15) results into C(λd1 + 1 − λ) ≤ λC(d1). One can

observe that to prove the relation C(λd1 + 1− λ) ≤ λC(d1), there is no need for the

entire proof given in Lemma 13. More precisely, when C2 is a pure deletion channel,

X →X1 → Y 1 → Y form a Markov chain (Y = Y 1), therefore we can write

I(X;Y ) ≤ I(X1;Y 1)

≤ λNC(d1) + log(λ1N + 1) + log(N + 1), (5.13)

where the last inequality holds due to (5.12). Furthermore, by dividing both sides of

the above inequality by N , letting N go to infinity, and the fact that the inequality

is valid for any input distribution P (X), we arrive at C(λd1 + 1− λ) ≤ λC(d1).

Another observation from the result C(λd1+(1−λ)) ≤ λC(d1) is that by series

concatenation of two independent deletion channels with deletion probabilities d1 and

1−λ, we also arrive at a deletion channel with deletion probability of d = λd1+1−λ.

Therefore we can say that the capacity of the series concatenation of two independent

deletion channels can be upper bounded in terms of the capacity of one of them and

the parameters of the other.

5.3 Some Generalizations and Implications

5.3.1 Generalization to the Case of Deletion/Substitution Channel

In a deletion/substitution channel (special case of the Gallager channel model without

any insertions) with parameters (d,f), any transmitted bit is either deleted with

probability of d or flipped with probability of f or received correctly with probability

of 1 − d − f , where neither the transmitter nor the receiver have any information

about the position of the deleted and flipped bits. It is easy to show that the result

of Theorem 8 can also be generalized to the deletion/substitution channel as given in

the following corollary.
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Corollary 4. Let C(d, f) denotes the capacity of the deletion/substitution channel

with deletion probability d and flip probability f , λ ∈ [0, 1], d = λd1 + (1 − λ)d2 and

f = λf1 + (1− λ)f2, then we have

C(d, f) ≤ λC(d1, f1) + (1− λ)C(d2, f2) + (1− d) log(1− d)

− λ(1− d1) log(λ(1− d1))− (1− λ)(1− d2) log((1− λ)(1− d2)). (5.14)

Proof. The proof of Lemma 12 simply holds if we consider C1 in Fig. 5.1 as a dele-

tion/substitution channel with parameters (d1,f1) and C2 as another one with param-

eters (d2,f2), then C becomes also a deletion/substitution channel with parameters

(λd1+(1−λ)d2, λf1+(1−λ)f2). Furthermore, replacing the deletion channel Ci with
deletion probability di with a deletion/substitution channel with parameters (di,fi)

does not change the distribution of N i and M i. Therefore, the proof of Lemma 13

holds for the deletion/substitution channel as well.

Note that a deletion/substitution channel with parameters (d, f) can be con-

sidered as a series concatenation of two independent channels where the first one is

a deletion only channel with deletion probability of d and the second one is a binary

symmetric channel (BSC) with cross error probability s = f

1−d (1 − d− f ≤ 1 and if

d = 1 then s = 0). If we define Cs(d, s) = C(d, (1− d)s), then for d2 = 1 and f2 = 0,

we obtain

Cs(λd1 + 1− λ, s) ≤λCs(d1, s). (5.15)

5.3.2 Parallel Concatenation of More Than Two Channels

So far, we considered the parallel concatenation of two independent deletion channels

which is useful in improving upon the existing upper bounds. However, we can

also consider the parallel concatenation of more than two deletion channels. If we

define the deletion channel C as a parallel concatenation of P independent deletion

105



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d

D
el
et
io
n
C
h
a
n
n
el

C
a
p
a
ci
ty

U
p
p
er

B
o
u
n
d
d
u
e
to

[1
3]

Figure 5.2: Previously best known upper bound on the i.i.d. deletion channel capacity.

channels Cp with deletion probability dp (p = {1, · · · , P}) where each input bit is

transmitted with probability λp over Cp, and modify the definition of F y such that

fy[i] ∈ {1, · · · , P} denotes the index of the channel the i-th bit is coming from, then

for d =
∑P

p=1 λpdp, we have

C(d) ≤
P∑

p=1

λpC(dp) + (1− d) log(1− d)−
P∑

p=1

λp(1− dp) log(λp(1− dp)), (5.16)

where
∑P

p=1 λp = 1. Note, however, that this result does not give any tighter upper

bounds on the deletion channel capacity than the one obtained by considering the

parallel concatenation of only two independent deletion channels.

5.4 Improved Upper Bounds on the Deletion Channel Capacity

An interesting application of the result (5.1) on the capacity of the deletion and

deletion/substitution channels is in obtaining improved capacity upper bounds. For

instance, the best known upper bound on the deletion channel capacity is not convex

for d ≥ 0.65 as shown in Fig. 5.2 (with values taken from the boldfaced values in

Table IV of [13]). As clarified in the table, the best known values for small d are due
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Figure 5.3: Improved upper bound on the deletion channel capacity employing C(λd+
1− λ) ≤ λC(d).

to [31], for a wide range (up to d ∼ .8) are due to the “fourth version” of the upper

bound (named C4 in [13]), and for large values of d are due to the “second version”

named C∗2 in the same paper. Therefore, the deletion channel capacity upper bound

can be improved for d ∈ (0.65, 1) as C(1 − 0.35λ) ≤ λC(0.65) ≤ λC4(0.65) with

0 ≤ λ ≤ 1. That is, we have C(d) ≤ 0.4143(1−d) for d ∈ (0.65, 1). This is illustrated

in Fig. 5.3.

We note that our result is a generalization of the one in [59] where it was

shown that C(d) ≤ 0.4143(1− d) as d→ 1. We also note an earlier asymptotic result

on a lower bound derived in [11] which states that C(d) ≥ 0.1185(1− d) as d→ 1.

As another application of the inequality derived in this chapter, we can con-

sider the capacity of the deletion/substitution channel. The best known capacity up-

per bound for this case is given in [14], e.g., Fig. 1 of [14] presents several upper bounds

for fixed s = 0.03 (see Fig. 5.4). It is clear that this bound is not a convex function

of the deletion probability for d ≥ 0.6, hence it can be improved. That is, applying
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Figure 5.4: Previously best known upper bound on the deletion/substitution channel
capacity for s = 0.03.
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Figure 5.5: Improved upper bound on the deletion/substitution channel capacity for
s = 0.03.
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the result in (5.14), we obtain, for instance for s = 0.03, Cs(d, 0.03) ≤ 0.3621(1− d)

for d ≥ 0.6 which is a tighter bound as illustrated in Fig. 5.5.

5.5 Chapter Summary

In this chapter, an inequality relating the capacity of a deletion channel to two other

deletion channels is found. The main idea is to consider parallel concatenation of

two different independent deletion channels and relate the capacity of the resulting

deletion channel with the capacity of the first two. An immediate application of this

result is in obtaining improved upper bounds on the capacity of the deletion channel

as the best available upper bounds are not convex in the deletion probability, and the

derived inequality results in a tighter capacity characterization. For an i.i.d. deletion

channel, we proved that C(d) ≥ 0.4143(1−d) for all d ≥ 0.65. This is a stronger result

than the earlier characterization in [59] which is valid only asymptotically as d→ 1.

We also noted a generalization of the result to the case of a deletion/substitution

channel and provided a tighter capacity upper bound for this case as well.
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Chapter 6

An Upper Bound on the Capacity of the Non-Binary Deletion Channels

A simple upper bound on the capacity of non-binary deletion channels is derived in

this chapter. Although binary deletion channels have received significant attention

over the years, and many upper and lower bounds on their capacity have been derived,

such studies for the non-binary case are largely missing. The state of the art is the

following: as a trivial upper bound, capacity of an erasure channel with the same input

alphabet as the deletion channel can be used, and as a lower bound the results of [22]

are available. In this chapter, the fist non-trivial upper bound on the 2K-ary deletion

channel capacity is derived. We first show that any 2K-ary input deletion channel can

be considered as a parallel concatenation of K independent binary deletion channels

which enables us to prove that C2K(d) ≤ C2(d) + (1− d) log(K). Then by employing

the existing upper bounds on the capacity of the binary deletion channel, we obtain

upper bounds on the capacity of the 2K-ary deletion channel. We illustrate via

examples the use of the new bounds and discuss their asymptotic behavior as d→ 0.

The chapter is organized as follows. In Section 6.1, we give a brief introduction.

In Section 6.2, we consider the 2K-ary input deletion channel introduced in Chapter 2

as a parallel concatenation of K independent deletion channels (where each input is

binary). In Section 6.3, we discuss the possible generalization of the existing Blahut-

Arimoto algorithm (BAA) based upper bounding approaches (useful for the binary

deletion channels) to the case of 2K-ary deletion channels. In Section 6.4, we prove

the main result of the chapter providing an upper bound on C2K(d) in terms of C2(d).

In Section 6.5, several implications of the result are given: we compare the resulting

capacity upper bounds with the existing capacity upper and lower bounds, and we

provide a discussion of the channel capacity behavior as the deletion probability

approaches zero. Finally, we conclude the chapter in Section 6.6.
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6.1 Introduction

Non-binary independent and identically distributed (i.i.d.) deletion channels can

be used to model information transmission over a finite buffer channel [22], where

a packet (non-binary symbol) loss occurs whenever a packet arrives at a full buffer.

Dobrushin [10] proved the existence of the Shannon’s theorem for discrete memoryless

channels with synchronization errors. As a result, Shannon’s theorem holds in non-

binary deletion channels and information and transmission capacities are equal.

In this chapter, we focus on a 2K-ary deletion channel C in which every trans-

mitted symbol is either lost through the transmission with probability of d or received

correctly with probability of 1− d. There is no information about the position of the

lost symbols at either the transmitter or receiver. We present a non-trivial upper

bound on the capacity of this channel. Clearly the capacity of a 2K-ary erasure

channel with erasure probability d is an upper bound on the capacity of the 2K-ary

deletion channel since by revealing information about the position of the lost sym-

bols to the receiver, the corresponding genie-aided deletion channel is nothing but

an erasure channel. Therefore, for the capacity of the 2K-ary input deletion chan-

nel C2K(d), the relation C2K(d) ≤ (1 − d) log(2K) holds. Besides this trivial upper

bound, to the best of our knowledge, there are no other (tighter) upper bounds on

the capacity of non-binary deletion channels.

To the best of our knowledge, the only non-trivial lower bounds on the capacity

of the non-binary deletion channels are provided in [22] where two different bounds

are derived. More precisely, the achievable rates of the 2K-ary input deletion channel

are computed for i.i.d. and Markovian codebooks by considering a simple decoder

which decides in favor of a sequence if the received sequence is the subsequence of

only one transmitted sequence. Considering i.i.d. codebooks, the derived achievable
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rates are given by

C2K ≥ log

(
2K

2K − 1

)
+ (1− d) log(2K − 1)−Hb(d), (6.1)

and considering Markovian codebooks are given by

C2K ≥ sup
γ>0, 0<p<1

[−(1− d) log ((1− q)A+ qB)− γ log(e)] (6.2)

with q =
1

2K

(
1 +

(1− d)(2K − 1)(2Kp− 1)

2K − 1− d(2Kp− 1)

)
, A =

e−γ(1− p)

(2K − 1)(1− e−γ(1− 1−p
2K−1))

and B = e−γ ((1− p)A+ p). Non-binary input alphabet channels with synchroniza-

tion errors are also considered in [36] where the capacity of memoryless synchroniza-

tion error channels in the presence of noise and the capacity of channels with week

synchronization errors (i.e., the transmitter and receiver are partly synchronized) have

been studied. The main focus of the work in [36] is on asymptotic behavior of the

channel capacity for large values of K.

Our main result is to relate the capacity of a 2K-ary deletion channel with

deletion probability d to the capacity of the binary deletion channel with deletion

probability d by the inequality C2K ≤ C2(d) + (1− d) log(K). As a result, any upper

bound on the binary deletion channel capacity can be used to derive an upper bound

on the 2K-ary deletion channel capacity. For example, by using the result from

Chapter 5, we obtain C2K(d) ≤ (log(K) + 0.4143)(1− d) for d ≥ 0.65.

6.2 A Different Look at the 2K-ary Deletion Channel

Any 2K-ary input deletion channel with deletion probability d can be considered as a

parallel concatenation of K independent binary deletion channels Ck (k ∈ {1, . . . , K})
all with the same deletion probability d, as shown in Figure 6.1, in which the input

symbols 2k−1 and 2k travel through Ck and the surviving output symbols of the sub-

channels are combined based on the order in which they go through the subchannels.

Xk and Y k denote the input and output sequences of the k-th channel, respectively,

and Nk and Mk denote the length of Xk and Y k, respectively.
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Figure 6.1: 2K-ary deletion channel as a parallel concatenation of K independent
binary input deletion channels.

To be able to relate the mutual information between the input and output

sequences of the 2K-ary deletion channel, I(X;Y ), with the mutual information

between the input and output sequences of the considered binary deletion chan-

nels, I(Xk;Y k), we define two new random vectors F x and F y. More precisely,

F x = (fx[1], . . . , fx[N ]) and F y = (fy[1], . . . , fy[M ]) such that fx[n] ∈ {1, . . . , K}
and fy[m] ∈ {1, . . . , K} denote the label of the subchannel the n-th input symbol

and m-th output symbol belong to, respectively. Clearly, by knowing X, one can

determine (X1, . . . ,XK ,F x) and by knowing (X1, . . . ,XK ,F x) can determine X.

The same situation holds for Y and (Y 1, . . . ,Y K ,F y). Therefore, we have

I(X;Y ) = I(X1, . . . ,XK ,F x;Y 1, . . . ,Y K ,F y)

=

K∑
k=1

Ik + IF , (6.3)

where Ik = I(X1, . . . ,XK ,F x;Y k|Y 1, . . . ,Y k−1) and

IF = I(X1, . . . ,XK ,F x;F y|Y 1, . . . ,Y K). (6.4)

In Section 6.4, we will derive upper bounds on Ik and IF which will enable us to relate

the non-binary and binary deletion channels capacities, and lead to the main result

of the chapter.
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6.3 Discussion on the BAA Based Upper Bounds

The best known upper bounds on the capacity of the binary deletion channel for

d ≤ 0.65 are computed numerically in [13, 31]. In [31] a genie-aided channel is

considered in which the receiver is provided by side information about the completely

deleted runs, e.g., in transmitting ′110001′ over the original channel by deleting the

entire run of zeros, the sequence ′111′ is received while in the considered genie-aided

channel ′11−1′ represents the possible reception. Then an upper bound on the capacity

per unit cost of the genie-aided channel is computed by running the BAA algorithm.

Fertonani and Duman [13], by considering several different genie-aided channels, are

able to derive tighter upper bounds on the binary deletion channel capacity compared

to the results in [31] for d > 0.05.

One approach to derive upper bounds on the capacity of the 2K-ary dele-

tion channel is to modify the numerical approaches in [13, 31] in which the decoder

(and possibly the encoder) of the binary deletion channel is provided with some

side information about the deletion process and the capacity (or an upper bound on

the capacity) of the resulted genie-aided channel is numerically evaluated by run-

ning the BAA algorithm. Although this approach is useful for the binary channels

(even when other type of impairments such as insertions and substitutions are con-

sidered [14]), for the non-binary case, running the BAA for large values of K is not

computationally feasible. For example, one of the upper bounds in [13] is obtained by

computing the capacity of the binary deletion channel with finite length of transmis-

sion L = 17. Obviously, by increasing the alphabet size, 2K, the maximum possible

value of L in running the BAA algorithm decreases. Therefore, to achieve reason-

able upper bounds, L needs to be increased which makes the numerical computations

infeasible.
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The main contribution of this chapter is that we are able to relate the capacity

of the 2K-ary deletion channel to the binary deletion channel capacity through an

inequality relation which enables us to upper bound the 2K-ary deletion channel

capacity avoiding computationally formidable BAA directly for the 2K-ary deletion

channel.

6.4 A Novel Upper Bound on C2K(d)

As introduced in Section 6.2, a 2K-ary deletion channel can be considered as a parallel

concatenation of K independent binary deletion channels. This new look at a 2K-

ary deletion channel enables us to relate the 2K-ary deletion channel capacity to the

binary deletion channel capacity with the same deletion error probability which is

given in the following theorem.

Theorem 9. Let C2K(d) denote the capacity of a 2K-ary deletion channel with dele-

tion probability d, then

C2K(d) ≤ C2(d) + (1− d) log(K). (6.5)

As given in (6.3), the mutual information I(X;Y ) can be expanded in terms

of several other mutual information terms, Ik for k ∈ {1, . . . , K} and IF . To prove

Theorem 9, we first derive upper bounds on Ik and IF in the following two lemmas

which enable us to complete the proof of Theorem 9.

Lemma 14. For all the possible input distributions P (X1, . . . ,XK ,F x), the mutual

information Ik given in (6.3) can be upper bounded by

Ik ≤ E{Nk}C2(d) + 2 log(N + 1),

where E{.} denotes the expected value.

Proof. For Ik, since P (Y k|Y 1, . . . ,Y k−1,Xk) = P (Y k|Xk) and

P (Y k|X1, . . . ,XK ,F x,Y 1, . . . ,Y k−1) = P (Y k|Xk),
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we can write

Ik = I(Xk;Y k|Y 1, . . . ,Y k−1)

+I(X1, ...,Xk−1,Xk+1, ...,XK ,F x;Y k|Y 1, ...,Y k−1,Xk)

= I(Xk;Y k|Y 1, . . . ,Y k−1)

= H(Y k|Y 1, . . . ,Y k−1)−H(Y k|Y 1, . . . ,Y k−1,Xk)

= H(Y k)− I(Y 1, . . . ,Y k−1;Y k)−H(Y k|Xk)

≤ I(Xk;Y k). (6.6)

Furthermore, I(Xk;Y k) can be written as

I(Xk;Y k) = I(Xk;Y k, Nk)− I(Xk;Nk|Y k)

= I(Xk;Y k|Nk) + I(Xk;Nk)− I(Xk;Nk|Y k).

Since H(Nk|Xk) = 0 and I(Xk;Nk|Y k) ≥ 0, we arrive at

I(Xk;Y k) ≤ I(Xk;Y k|Nk) +H(Nk)

≤ I(Xk;Y k|Nk) + log(N + 1)

=

N∑
nk=0

P (Nk = nk)I(Xk;Y k|nk) + log(N + 1), (6.7)

where the second inequality results since there are N + 1 possibilities for Nk and

as a result H(Nk) ≤ log(N + 1). Furthermore, as it is shown in [13], for a finite

length transmission over the deletion channel, the mutual information rate between

the transmitted and received sequences can be upper bounded in terms of the capacity

of the channel after adding some appropriate term, which can be spelled out as [13,

Eqn. (39)]

I(Xk;Y k|Nk = nk) ≤ nkC2(d) +H(Dk|Nk = nk), (6.8)
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where Dk denotes the number of deletions through the transmission of Nk bits over

the k-th channel and

H(Dk|Nk = nk) = −
nk∑
n=0

P (nk, n, d) log (P (nk, n, d))

≤ log (nk + 1) ≤ log (N + 1), (6.9)

with P (nk, n, d) =
(
nk

n

)
dn(1 − d)nk−n. Substituting (6.9) and (6.8) into (6.7), we

obtain

I(Xk;Y k) ≤
N∑

nk=0

P (Nk = nk) (nkC2(d)) + 2 log(N + 1)

= E{Nk}C2(d) + 2 log (N + 1).

Finally, by substituting the above inequality in (6.6), the proof follows.

Lemma 15. For all the possible input distributions, the mutual information IF given

in (6.4) can be upper bounded by

IF ≤ N(1− d) log(K).

Proof. Using the definition of the mutual information, we can write

IF = H(F y|Y 1, . . . ,Y K)−H(F y|Y 1, . . . ,Y K ,X1, . . . ,XK ,F x)

≤ H(F y|Y 1, . . . ,Y K)

≤ H(F y|M1, . . . ,MK), (6.10)

where the last inequality follows since (M1, . . . ,MK) is a function of (Y 1, . . . ,Y K),

i.e., H(M1, . . . ,MK |Y 1, . . . ,Y K) = 0. For fixed mk such that
∑K

k=1mk = m, there

are
(

m

m1,...,mK

)
possibilities for F y leading to H(F y|m1, . . . , mK) ≤ log

(
m

m1,...,mK

)
. It

follows from the inequality

log

(
m

m1

)
≤ m log(m)−m1 log(m1)− (m−m1) log(m−m1)
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given in [60, p. 353] that

log

(
m

m1, . . . , mK

)
=

K−1∑
j=1

log

(
m−∑j−1

k=1mk

mj

)

≤
K−1∑
j=1

(
m−

j−1∑
k=1

mk

)
log

(
m−

j−1∑
k=1

mk

)
−mj logmj

−
K−1∑
j=1

(
m−

j∑
k=1

mk

)
log

(
m−

j∑
k=1

mk

)

= m log(m)−
K∑
k=1

mk log(mk).

Therefore, we obtain H(F y|m1, . . . , mK) ≤ m log(m)−∑K
k=1mk log(mk). Since

g([m1, . . . , mk]) =

(
K∑
k=1

mk

)
log

(
K∑
k=1

mk

)
−

K∑
k=1

mk log(mk)

is a concave function of [m1, . . . , mK ] (see Appendix I), employing the Jensen’s in-

equality yields

IF ≤
(

K∑
k=1

E{Mk}
)
log

(
K∑
k=1

E{Mk}
)
−

K∑
k=1

E{Mk} log(E{Mk}).

On the other hand, due to the fact that Ck are i.i.d. binary input deletion channels,

we have E{Mk} = N(1− d)αk where αk depend on the input distribution P (X) and∑K
k=1 αk = 1. Hence, we obtain

IF ≤ N(1− d)

(
log (N(1− d))−

K∑
k=1

αk log (N(1 − d)αk)

)

= −N(1 − d)

K∑
k=1

αk logαk

= N(1− d)H(α1, . . . , αK)

≤ N(1− d) log(K), (6.11)

which concludes the proof.
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6.4.1 Proof of Theorem 9

Substituting the results of Lemmas 14 and 15 in (6.3), we obtain

I(X;Y ) ≤ EN1,...,NK

{
K∑
k=1

Nk

}
C2(d) + 2K log(N + 1) +N(1 − d) log(K)

= NC2(d) + 2K log(N + 1) +N(1 − d) log(K),

where we have used the fact that
∑K

k=1Nk = N independent of the input distribution

P (X). Since the above inequality holds for any input distribution P (X) and any

value of N , we can write

C2K(d) = lim
N→∞

max
P (X)

1

N
I(X;Y )

≤ C2(d) + (1− d) log(K),

which concludes the proof of Theorem 9. �

6.5 Some Implications

The trivial upper bound on the capacity of the 2K-ary deletion channel is given by

(1 − d) log(2K) which is the capacity of the 2K-ary erasure channel. In fact, if we

reveal the side information about the position of the dropped symbols to the receiver

of a 2K-ary deletion channel, the resulting genie-aided channel is nothing but a 2K-

ary erasure channel.

We have shown in the previous section that by substituting any upper bound

on the capacity of the binary deletion channel into (6.5), an upper bound on the

2K-ary deletion channel capacity results. Obviously, by employing C2(d) ≤ 1 − d

which is the trivial upper bound on the binary deletion channel capacity, the erasure

channel upper bound on the 2K-ary deletion channel capacity is obtained. Therefore,

any upper bound tighter than 1− d on the binary deletion channel capacity gives an

upper bound tighter than log(2K)(1 − d) on the 2K-ary deletion channel capacity.
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The amount of improvement is 1− d−CUB
2 (d), where CUB

2 denotes the upper bound

on the binary deletion channel capacity.

As it is shown in [36] that (1 − d) log(2K) − 1 ≤ C2K(d) ≤ (1 − d) log(2K),

the existing trivial upper and lower bounds are tight enough for asymptotically large

values of K, and i.i.d. distributed input sequences are sufficient to achieve the capac-

ity. However, the importance of the result in Theorem 9 is for moderate values of K,

where the amount of improvement in closing the gap between the existing upper and

lower bounds is significant.

To demonstrate the improvement over the trivial erasure channel upper bound,

we compare the upper bound C2K(d) ≤ CUB
2 (d) + (1 − d) log(K) with the erasure

channel upper bound log(2K)(1−d) and the tightest existing lower bound (6.2) (pro-

vided in [22]) in Figures 6.2 and 6.3 for 4-ary and 8-ary deletion channels, respectively.

Here we utilize the binary deletion channel capacity upper bounds CUB
2 (d) in [13] and

Chapter 5, where for d ≤ 0.65 we use the results in [13, Table III] and for d ≥ 0.65

we use the upper bound C2(d) ≤ 0.4143(1− d) given in Chapter 5.

Another implication of the result in Theorem 9 is in studying the asymptotic

behavior of the 2K-ary deletion channel capacity for d→ 0. It is shown in [61] that

C2(d) = 1 + d log(d)− A1d+ A2d
2 +O(d3−ε), (6.12)

for small d and any ε > 0 with A1 ≈ 1.15416377, A2 ≈ 1.78628364 and O(.) denoting

the standard Landau (big-O) notation. Employing this result into (6.5), leads to an

upper bound expansion for small values of d as

C2K(d) ≤1 + d log(d)− (A1 + log(K)) d+ A2d
2 + log(K) +O(d3−ε). (6.13)

In Figure 6.4, we compare the above upper bound (by ignoring the O(d3−ε) term)

with the lower bound (6.2) for d ≤ 0.1 and for 4-ary and 8-ary input deletion chan-

nels. We observe that by employing the capacity expansion (6.12) in (6.5), a better
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Figure 6.2: Comparison among the new upper bound (6.5), the lower bound (6.2)
and the trivial erasure channel upper bound for the 4-ary deletion channel.
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Figure 6.3: Comparison among the new upper bound (6.5), the lower bound (6.2)
and the trivial erasure channel upper bound for the 8-ary deletion channel.
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Figure 6.4: Comparison between the upper bound (6.13) (ignoring the O(d3ε) term)
and the lower bound (6.2) for 4-ary and 8-ary deletion channels.

characterization for the asymptotic behavior of the 2K-ary deletion channel capacity

is obtained as d→ 0.

6.6 Chapter Summary

We have derived the first non-trivial upper bound on the 2K-ary deletion channel

capacity. We first considered the 2K-ary deletion channel as a parallel concatenation

of K independent binary deletion channels, all with the same deletion probability.

We then related the capacity of the original channel to that of the binary deletion

channel. By doing so we obtained an upper bound on the capacity of the 2K-ary

deletion channel in terms of the capacity of the binary deletion channel and as a

result any upper bound on the capacity of the binary deletion channel. The provided

upper bound results into tighter upper bounds than the trivial erasure channel upper

bound for the entire range of the deletion probability d and all K > 0.
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Chapter 7

Spectrally Efficient Alamouti Code Structure in Asynchronous Cooperative Systems

A cooperative communication system with two amplify and forward (AF) relays under

flat fading channel conditions is considered in which the signals received from the

relay nodes are not necessarily time aligned and both relays share the same time

and frequency bands to communicate with the destination. We propose a new time-

reversal (TR) based scheme providing Alamouti code structure with the objective

of reducing the overhead needed to overcome the aynchronism and to obtain spatial

diversity. The scheme is particularly useful when the delay between the two relay

signals is large, e.g., in typical underwater acoustic (UWA) channels.

The chapter is organized as follows. In Section 7.1, we give an introduction

on the problem addressed in the chapter. In Section 7.2, we present the considered

asynchronous cooperative communication system model. In Section 7.3, we introduce

the proposed relaying scheme. In Section 7.4, we first obtain the optimal detector

structure, then present a simpler sub-optimal detector which results into the Alam-

outi fast ML detector for all the symbols. In Section 7.5, we numerically evaluate

the performance of both optimal and sub-optimal detectors. Finally, the chapter is

concluded in Section 7.6.

7.1 Introduction

As it is well known, the Alamouti coding [41] is a two transmit diversity scheme for

multi-input multi-output (MIMO) communication systems. Although originally it

was proposed for centralized MIMO systems, the idea was later extended to coopera-

tive communications [62] where geographically separated nodes form virtual transmit

antennas to provide spatial diversity. In most existing works, the actively cooperating

nodes are assumed perfectly time aligned. However, due to the distributed nature of

123



a cooperative system, achieving perfect time alignment among the signals received

from geographically separated nodes may not always be possible. Therefore, conven-

tional MIMO transmission schemes designed for synchronized transmitting antennas

may not be directly applicable.

There are several results in the literature to achieve diversity in asynchronous

cooperative systems with decode and forward (DF) relaying, e.g., [2, 48]. In [2], time

reversal space-time block coding (TR-STBC) is proposed where each transmitted

block is preceded by a time guard greater than the maximum possible relative delay

Dmax among the relays. For the system with two relay nodes, the scheme in [2]

gives an Alamouti coding structure at the receiver. There are also a few works

on AF relaying, e.g., [3, 63]. In [3], an Alamouti space time transmission scheme

employing orthogonal frequency division multiplexing (OFDM) is proposed in which

the transmitted OFDM blocks are separated by adding a cyclic prefix (CP) longer

than Dmax and at the AF relays, time reversal and complex conjugation operations

are implemented. However, Dmax becomes large (as in a typical UWA channel), the

effective transmission rate is diminished. That is, in transmitting binary phase shift

keying (BPSK) modulated data blocks of length M , the maximum achievable data

rate is M
M+Dmax

.

In this chapter, we consider an asynchronous cooperative system with two

AF relays where only the receiver is aware of the relative time delay between the

relays. We propose a new single carrier (SC)-TR-STBC scheme with the objective of

adding a smaller overhead to combat the asynchronism issues and increase the effective

transmission rate. We focus on the case of a single tap (frequency flat) channel,

and utilize superposition of two suffixes generated for the first and second blocks in

between the two blocks transmitted. This results in a more efficient way of obtaining

the Alamouti structure at the receiver than the existing schemes (e.g. [2]), however
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Figure 7.1: Relay channel with two relays.

some symbols get corrupted by intersymbol interference (ISI). The good news is that

the interfering symbols are the ones with the Alamouti coding structure without ISI,

therefore we can first detect these symbols then use the detected symbols to mitigate

ISI and detect the rest of the symbols. To accomplish this goal, at the transmitter,

both blocks are transmitted prefix-free and suffix-free, and they are separated by a

time guard not less than Dmax. The relay nodes produce the cyclic suffix for the

first and CP for the second block and forward the superposition of the noisy CP

and cyclic suffix to the destination while at the same time they perform appropriate

time reversal and complex conjugation. The overhead is only Dmax and as a result

in transmitting BPSK modulated data blocks of length M the maximum receivable

rate is 2M
2M+Dmax

.

7.2 System Model

A cooperative relay system with two AF relays, shown in Fig. 7.1 is considered in

which the channels from the source to the relays, i.e., hi, and the relays to the

destination, i.e., gi, are all independent quasi-static Rayleigh fading (constant over

two transmitted data blocks), and there is no direct link between the source and the

destination. We assume that the relative time delay at the destination between the

signals received from R1 and R2 is a multiple of the sampling time, and s2 is received

D sampling times later than s1. We further assume that the maximum possible length
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of the delay is Dmax sampling times, i.e., D ∈ {−Dmax, . . . , 0, . . . , Dmax}, and Dmax

is known at the transmitter side.

7.3 Proposed Signaling Scheme

In this section, we first introduce the signaling approach at the source node, then the

relaying strategy employed by the relay nodes.

7.3.1 Source Node Signaling Approach

Let us consider transmission of 2B blocks of lengthM over a channel with 2Dmax ≤M .

At the transmitter, a single carrier (SC) transmission is performed for which two con-

secutive blocks, x2b+1 and x2b+2 (b = {0, · · · , B− 1}), are separated by a time guard

of length Mp (Mp ≥ Dmax). Without loss of generality we focus on transmission of

two blocks x1 = [x1,0, · · · , x1,M−1]T and x2 = [x2,0, · · · , x2,M−1]T , therefore the ob-

jective is transmission of x = [xT
1 ,x

T
2 ]

T . However, the block x̄ = [xT
1 , 01×Mp

,xT
2 ]

T is

transmitted over the channel, where 0n×m denotes the n by m all zero matrix (In-

stead of zero padding between the blocks, one can transmit the CP of the first block

or cyclic suffix of the second block as a time guard, however we focus on zero padding

approach in this chapter). The transmitted block x̄ can also be written as x̄ = Qx

with

Q =

⎡⎢⎢⎢⎢⎣
IM 0M×M

0Mp×M 0Mp×M

0M×M IM

⎤⎥⎥⎥⎥⎦ , (7.1)

and IM denoting the M by M identity matrix. For notational simplicity, we drop

the size index of the matrices when there is no confusion.

7.3.2 Relaying Strategy

At the i-th relay, yi = [yT
i,1,y

T
i,g,y

T
i,2]

T = hix̄ + ni is received in which ni are in-

dependent complex white Gaussian random vectors with zero mean and autocorre-

lation matrices σ2
i I(2M+Mp), yi,j = hixj + ni,j, yi,g = ni,g and hi are independent
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Table 7.1: Relaying strategy of the relay nodes.

First block si,1 Infix block si,g Second block si,2
R1 y1,1 y1,1[0 : Mp − 1] + y1,2[M −Mp : M − 1] y1,2

R2 ζ
(
y∗2,2
) −ζ (y∗2,1[0 : Mp − 1]

)
+ ζ
(
y∗2,2[M −Mp : M ]

) −ζ (y∗2,1)
circularly symmetric complex Gaussian random variables with zero mean and vari-

ance 0.5 per dimension. Then, based on the relaying strategy given in Table 7.1,

si = [sTi,1, s
T
i,g, s

T
i,2]

T of length 2M +Mp is forwarded to the destination in which ζ(.)

denotes the time reversal operation, i.e., ζ([z0, . . . , zN−1]) = [zN−1, . . . , z0], and (.)∗

denotes the complex conjugation operation. si,1 and si,2 are of length M and s1,g is

of length Mp. Note that, the infix block forwarded by the relay nodes corresponds to

the noisy CP of the second block and noisy cyclic suffix of the first block.

We can also represent the forwarded signals from the relay nodes by s1 = R1y1

and s2 = R2y
∗
2, where

R1=

⎡⎢⎢⎢⎢⎣
IM 0M×Mp

0

IMp
0 0Mp×Mp 0 IMp

0 0M×Mp
IM

⎤⎥⎥⎥⎥⎦ , (7.2)

and

R2=

⎡⎢⎢⎢⎢⎣
0 0M×Mp

JM

−JMp
0 0Mp×Mp 0 JMp

−JM 0M×Mp
0

⎤⎥⎥⎥⎥⎦, (7.3)

with JM denoting anM byM anti-diagonal identity matrix, i.e., Ji,j = δ(i+j−M−1)
(i, j ∈ {1, . . . ,M} and δ(.) denoting the Kronecker delta function).

7.4 Signal Detection Techniques

In this section, we first provide the signaling structure at the destination of the

considered cooperative system then present the optimal ML and sub-optimal detectors

for the proposed signaling schemes.
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7.4.1 Received Signal at the Destination

Without loss of generality, we focus on D ≥ 0. At the destination node, for the

received signal, we have

y = g1s1 + g2s
D
2 + n3

= g1R1(h1x̄+ n1) + g2 (R2(h
∗
2x̄
∗ + n∗2))

D + n3

= g1h1R1Qx+ g2h
∗
2(R2Q)Dx∗ + n, (7.4)

in which sD2 = [01×D, s2,0, · · · , s2,2M+Mp−D−1]
T , n3 is white Gaussian random vector

with zero mean and autocorrelation matrix σ2
3I(2M+Mp), n = g1R1n1+g2R

D
2 n

∗
2+n3,

R1Q=

⎡⎢⎢⎢⎢⎣
IM 0M

IMp
0Mp×(M−Mp) 0Mp×(M−Mp) IMp

0M IM

⎤⎥⎥⎥⎥⎦,

and

(R2Q)D=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0D×2M

0M JM

−JMp
0Mp×(M−Mp) 0Mp×(M−Mp) JMp

0(M−D)×D −JM−D 0(M−D)×M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The first D samples in y are corrupted by inter block interference (IBI) and yj for

j = {M +D, . . . ,M +Mp − 1} are the overhead symbols, therefore we truncate the

first D samples and yM+D to yM+Mp−1, and define a new vector as y′=[y′T1,y
′T
2 ]

T with

y′1=[yD, . . . , yM−1, y∗M , . . . , y∗M+D−1]
T and

y′2 = [yM+Mp
, . . . , yM+Mp+D−1, y∗M+Mp+D, . . . , y

∗
2M+Mp−1]

T .

Note that after truncation some information may be lost which can be extracted out

by employing a more complex joint detector, however joint detection over more than
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two successive blocks is out of the focus of this work. To simplify the derivations, we

assume Mp = D from now on by understanding that for Mp > D, after truncating

yj for j = {M +D, . . . ,M +Mp − 1}, the performance analysis would be the same.

Furthermore, by defining C1 = g1h1, C2 = g2h
∗
2 and

H ′=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 C1I(M−D) 0 C2JM−D

C∗1ID 0 C∗2JD 0 C∗1ID

−C2JD 0 C1ID 0 C2JD

0 −C∗2JM−D 0 C∗1IM−D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7.5)

we can write y′ = H ′

⎡⎢⎣ x′1

(x′2)
∗

⎤⎥⎦ + n′, where x′i = [x∗i,0, . . . , x
∗
i,D−1, xi,D, . . . , xi,M−1]T ,

and n′ is the colored Gaussian noise with the autocorrelation matrix Kn given as

Kn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2ID 0 0 σ2

2 |g2|2ID 0 0

0 σ2IM−2D 0 0 0 0

0 0
(
σ2+σ2

1
|g1|2

)
ID 0 0 σ2

1
|g1|2ID

σ2

2
|g2|2ID 0 0

(
σ2+σ2

2
|g2|2

)
ID 0 0

0 0 0 0 σ2IM−2D 0

0 0 σ2
1 |g1|2ID 0 0 σ2ID

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
in which σ2 = |g1|2σ2

1 + |g2|2σ2
2 + σ2

3.

7.4.2 Optimal ML Detector

Since n′ is colored Gaussian noise, in order to obtain the optimal ML detector, we

first need to whiten the noise. To do so, we use the whitening filter K
− 1

2
n , where

K−1
n =

1

σ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(α2
2 + β2

2)ID 0 0 −α2
2ID 0 0

0 IM−2D 0 0 0 0

0 0 β2
1ID 0 0 −α2

1ID

−α2
2ID 0 0 β2

2ID 0 0

0 0 0 0 IM−2D 0

0 0 −α2
1ID 0 0 (α2

1 + β2
1)ID

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7.6)
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in which α2
i =

σ2|gi|2σ2
i

σ4+σ2σ2
i |gi|2−σ4

i |gi|4
and β2

i =
σ4

σ4+σ2σ2
i |gi|2−σ4

i |gi|4
. Employing the whitening

filter K
− 1

2
n yields r = K

− 1
2

n y′ = K
− 1

2
n H ′x′ +w, with w denoting a white Gaussian

noise vector with zero mean and autocorrelation matrix I2M . Therefore, the ML

detector is given by

x̂′ = argmax
x′

Re
{
rHK

− 1
2

n H ′x′
}
− 1

2
ηx′

≡ argmax
x′

Re
{
(Hy′)Hx′

}− σ2

2
ηx′, (7.7)

with ηx′ = x′HH ′HK−1
n H ′x′ and

H = σ2H ′HK−1

n

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C∗

2α
2
2JD 0 C1β

2
1ID −C∗

2β
2
2JD 0 −C1α

2
1ID

C∗

1
(α2

2
+ β2

2
)ID 0 C2α

2

1
JD −C∗

1
α2

2
ID 0 −C2(α

2

1
+ β2

1
)JD

0 C∗

1
IM−2D 0 0 −C2JM−2D 0

−C∗

1
α2

2
ID 0 C2β

2

1
JD C∗

1
β2

2
ID 0 −C2α

2

1
JD

0 C∗

2JM−2D 0 0 C1IM−2D 0

C∗

2β
2
2JD 0 C1(β

2
1 − α2

1)ID C∗

2 (β
2
2 − α2

2)JD 0 C1β
2
1ID

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Due to the structure of H , defining yk = [y2D−k−1, y∗M+k, yM+2D−k−1, y∗2M+k]
T

and xk = [x∗1,k, x1,2D−k−1, x2,D−k−1, x∗2,M−D+k]
T leads to

x̂′ = argmax
x′

Re

{
M−2D−1∑

j=0

⎛⎜⎝H1

⎡⎢⎣ y2D+j

y2M−j−1

⎤⎥⎦
⎞⎟⎠

H ⎡⎢⎣ x1,j+2D

x∗2,M−j−D−1

⎤⎥⎦
+

D−1∑
k=0

(H2yk)
H
xk

}
− σ2

2
ηx′, (7.8)

where H1 =

⎡⎢⎣ C∗1 −C2

C∗2 C1

⎤⎥⎦ and

H2=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C∗2α
2
2 C1β

2
1 −C∗2β2

2 −C1α
2
1

C∗1(α
2
2 + β2

2) C2α
2
1 −C∗1α2

2 −C2(α
2
1 + β2

1)

−C∗1α2
2 C2β

2
1 C∗1β

2
2 −C2α

2
1

C∗2β
2
2 C1(β

2
1 − α2

1) C∗2 (β
2
2 − α2

2) C1β
2
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.
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The above ML detection criterion can be split in several independent detection cri-

teria. More precisely [x1,j+2D, x2,M−j−D−1]T for j ∈ {0, . . . ,M − 2D − 1} and xk for

k ∈ {0, · · · , D − 1}, can be detected separately. For j ∈ {0, . . . ,M − 2D − 1}, the
optimal ML detector yields to⎡⎢⎣ x̂1,j+2D

x̂2,M−j−D−1

⎤⎥⎦ =argmax
[x1,x2]T

Re

⎧⎪⎨⎪⎩
⎛⎜⎝H1

⎡⎢⎣ y2D+j

y2M−j−1

⎤⎥⎦
⎞⎟⎠

H ⎡⎢⎣ x1

x∗2

⎤⎥⎦
⎫⎪⎬⎪⎭

− σ2

2
(|C1|2 + |C2|2)(|x1|2 + |x2|2), (7.9)

which represents the Alamouti structure and as a result the system achieves full

transmit diversity in detecting [x1,j+2D, x2,M−j−D−1]T (j ∈ {0, . . . ,M − 2D − 1})
independent of the delay value D. Furthermore, for k ∈ {0, . . . , D − 1}, the optimal

detector is obtained as

x̂k =argmax
xk

Re
{
(H2yk)

H
xk

}
− σ2

2
xH
k H3xk, (7.10)

where H3 = [H3,1,H3,2] with

H3,1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

β2
1 |C1|2 + β2

2 |C2|2 C1C
∗
2 (α

2
1 + α2

2)

(α2
1 + α2

2)C
∗
1C2 |C1|2(α2

2+β2
2)+ |C2|2(α2

1+β2
1)

C∗1C2 (β
2
1 − β2

2) −α2
2|C1|2 + α2

1|C2|2

(β2
1−α2

1)|C1|2−(β2
2−α2

2)|C2|2 C1C
∗
2 (β

2
2 − β2

1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

and

H3,2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C1C
∗
2(β

2
1 − β2

2) (β2
1 − α2

1)|C1|2 − (β2
2 − α2

2)|C2|2

α2
1|C2|2 − α2

2|C1|2 C∗1C2 (β
2
2 − β2

1)

|C1|2β2
2 + |C2|2β2

1 C∗1C2 (β
2
1 − α2

1 + β2
2 − α2

2)

C1C
∗
2 (β

2
1 − α2

1 + β2
2 − α2

2) |C1|2(2β2
1 − α2

1)+ |C2|2(2β2
2 − α2

2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Through numerical examples, in Section 7.5, we show that the optimal detector

achieves full diversity in detection of all the symbols.
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7.4.3 Sub-Optimal Detector

As explained in Section 7.4.2, to obtain the optimal detector we first need to whiten

the noise which results in (7.9) and (7.10). In this section, we propose a sub-optimal

detector with a smaller computational complexity in comparison with the optimal

detector. We verify the performance of the proposed sub-optimal detector in achieving

full diversity by numerical examples in Section 7.5. By considering only the first and

last M −D samples of y′, we obtain (j ∈ {0, . . . ,M −D − 1})⎡⎢⎣ yD+j

y∗2M+D−j−1

⎤⎥⎦ = HH
1

⎡⎢⎣ x1,j+D

x∗2,M−j−1

⎤⎥⎦+

⎡⎢⎣ nD+j

n2M+D−j−1

⎤⎥⎦,
where nD+j and n2M+D−j−1 are i.i.d. complex Gaussian noise with zero mean and vari-

ance of σ2. The above expression shows the Alamouti structure for [x1,j+D, x2,M−j−1]T

(j ∈ {0, . . . ,M −D − 1}), therefore we can employ fast ML detection to obtain the

estimate [x̂1,j+D, x̂2,M−j−1]T for j ∈ {0, . . . ,M − D − 1}. Note that by employ-

ing the optimal detector we arrive at the fast ML detection for [x1,j+D, x2,M−j−1]T

(j ∈ {D, . . . ,M − 2D − 1}). Furthermore, for the remaining 2D symbols, we have

(k ∈ {0, . . . , D − 1})⎡⎢⎣ y∗M+k

yM+2D−k−1

⎤⎥⎦ = HT
1

⎡⎢⎣ x∗1,k

x2,D−k−1

⎤⎥⎦+

⎡⎢⎣ C∗1

C2

⎤⎥⎦ x∗2,M−D+k +

⎡⎢⎣ n∗M+k

nM+2D−k−1

⎤⎥⎦
where nM+k and nM+2D−k−1 are independent complex Gaussian noise with zero mean

and variances of σ2+σ2
1 |g1|2 and σ2+σ2

2|g2|2, respectively. If we employ the detected

symbol x̂2,M−D+k to mitigate the ISI effect of x2,M−D+k, we obtain⎡⎢⎣ y∗M+k

yM+2D−k−1

⎤⎥⎦−
⎡⎢⎣ C∗1

C∗2

⎤⎥⎦ x̂∗2,M−D+k

= HT
1

⎡⎢⎣ x∗1,k

x2,D−k−1

⎤⎥⎦+

⎡⎢⎣C∗1
C2

⎤⎥⎦ (x2,M−D+k − x̂2,M−D+k)
∗ +

⎡⎢⎣ n∗M+k

nM+2D−k−1

⎤⎥⎦ ,
132



which shows the Alamouti coding structure. Obviously, if x2,M−D+k is detected cor-

rectly, ISI is perfectly removed, otherwise decision signal is more corrupted. There-

fore we expect that by increasing SNR the sub-optimal detector performance becomes

closer to the optimal detector performance.

7.4.4 Comments on Implementation

Let us assume that the source node transmits waveforms of length T seconds. At the

first relay, to generate the affix block, the first MpT seconds and last MpT seconds of

the received signal need to be added together which can be implemented in the analog

domain. To do so, R1 suffers a latency ofMT seconds. At the second relay, adding the

sign changed version of the first MpT seconds of the received signal to the last MpT

seconds of the received signal generates the affix block in analog domain, however

we still need to do time reversal and complex conjugation. Time reversal introduces

a time latency of 2MT seconds for which we first need to store the received signal

corresponding to the two consecutive blocks along with the generated affix block,

then forward the time reversed version of the signal. Complex conjugation may also

be implemented in analog domain by first separating the in-phase and quadrature

components of the signal then combining them by changing the sign of the quadrature

component.

7.5 Simulation Results

In this section, we provide numerical examples to study the proposed scheme perfor-

mance in combating asynchronism issues in cooperative communication systems. We

consider BPSK modulated transmission of the data blocks of length M = 128 with an

affix of length Mp = 64 where D is uniformly distributed over {0, . . . , 64} and hi and

gi are i.i.d. complex Gaussian random variables with zero mean and unit variance.

We also assume that σ2
1 = σ2

2 = σ2
3 = N0

2
and define the average signal to noise ratio

at the receiver as E{2(|g1|2|h1|2+|g2|2|h2|2)
N0(|g1|2+|g2|2+1)

} ≈ 1.192694
N0

.
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Figure 7.2: BER performance of the proposed scheme for both optimal and sub-
optimal detectors and the scheme from [1].

In Fig. 7.2, we compare the BER performance of the proposed scheme for

both optimal and sub-optimal detectors with the BER performance of the scheme

proposed in [1] in which all the received symbols achieve perfect Alamouti structure

similar to (7.9). We observe that the difference between the performance of the

optimal detector and the scheme from [1] is less than 0.05 dB. Furthermore, the sub-

optimal detector performs very close to the optimal detector and the scheme from [1]

with a performance loss around 0.2 dB with respect to the scheme in [1] while the

proposed scheme improves the transmission rate by 20%.

7.6 Chapter Summary

We proposed a new TR-STBC scheme useful in achieving asynchronous cooperative

diversity under flat fading channel conditions which achieves a higher spectral effi-

ciency than the existing STBC schemes in the literature. More precisely, to combat

the asynchronism issues arising from relative delays among the signals received from
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different relays, less overhead needs to be added in transmitting every two data blocks

in comparison with the existing schemes. We obtained the optimal detector struc-

ture and proposed a sub-optimal detector with smaller computational complexity.

Numerical examples show that the proposed scheme achieves full diversity for both

optimal and sub-optimal detectors. In comparison with the scheme achieving per-

fect Alamouti structure for all the transmitted symbols, we experience a very small

performance loss while providing higher transmission rate.
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Chapter 8

Delay Diversity Relaying for Asynchronous Cooperative Communications with

Large Relative Delays

In cooperative UWA systems, due to the low speed of sound, a node can experi-

ence significant time delays among the signals received from geographically separated

nodes. One way to combat the asynchronism issues is to employ OFDM-based trans-

missions at the source node by preceding every OFDM block with an extremely long

CP which reduces the transmission rates dramatically. One may increase the OFDM

block length accordingly to compensate for the rate loss which also degrades the per-

formance due to the significantly time-varying nature of the UWA channels. In this

paper, we develop a new OFDM-based scheme to combat the asynchronism problem

in cooperative UWA systems without adding a long CP (in the order of the long rel-

ative delays) at the transmitter in which by adding a much more manageable (short)

CP at the source, we obtain a delay diversity structure at the destination for effective

processing and exploitation of the spatial diversity by utilizing Viterbi decoder at the

destination. We provide pairwise error probability (PEP) analysis of the system for

both time-invariant and block fading channels showing that the system achieves full

spatial diversity. We find through extensive simulations that the proposed scheme of-

fers a significantly improved error rate performance for time-varying channels (typical

in UWA communications) compared to the existing approaches.

The chapter is organized as follows. In Section 8.1, we start with an introduc-

tion on asynchronous cooperative UWA systems, motivation behind the work and our

proposed OFDM-based signaling solution. In Section 8.2, the system model and the

structure of the OFDM signals at the source, relays and destination are presented.

The proposed signaling scheme which includes appropriate CP addition at the source

and CP removal at the destination is explained in Section 8.3. It is shown that the
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proposed scheme gives a delay diversity structure at the destination for large rela-

tive delays among the relays. In Section 8.4, the PEP analysis of the system under

both quasi-static and block fading channel models is provided. In Section 8.5, the

performance of the proposed scheme is evaluated through some numerical examples.

Finally, we summarize the chapter in Section 8.6.

8.1 Introduction

Cooperative UWA communications which refers to a group of nodes, known as relays,

helping the source to deliver its data to the destination is a promising physical layer

solution to improve the performance of UWA systems [63–65]. In a UWA cooperative

communication system, the time differences among signals received from geographi-

cally separated nodes can be excessive due to the low speed of sound in water. For

instance, if the relative distance between two nodes with respect to another one is

500 m, then their transmissions experience a relative delay of 333 ms. Considering,

for instance, that in an OFDM-UWA cooperative communication scheme with 512

sub-carriers over a total bandwidth of 8 kHz, the OFDM block duration is only 64 ms,

the excessive delay of 333 ms becomes problematic. Furthermore, UWA channels are

highly time varying due to the large Doppler spreads and Doppler shift effects (or

Doppler scaling) [16]. Therefore, a practical non-centralized UWA cooperative com-

munication system is asynchronous with large relative delays among the nodes under

highly time-varying frequency selective channel conditions.

Our focus in this chapter is on asynchronous cooperative UWA communica-

tions where only the destination node is aware of the relative delays among the nodes.

Existing signaling solutions for asynchronous radio terrestrial cooperative communi-

cations rely on quasi-static fading channels with limited delays among signals received

from different relays at the destination, e.g., see [17] and references therein, in which

every transmitted block (either OFDM transmission or single carrier transmission) is
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preceded by a time guard not less than the maximum possible delay among the relays.

Therefore, we cannot directly apply them for cooperative UWA communications. Our

main objective is to develop new OFDM based signaling solutions to combat asyn-

chronism issues arising from excessive large relative delays without preceding each

OFDM block by a large CP in the order of the maximum possible relative delay.

In systems employing OFDM, e.g., [3, 18], the existing solutions are effective

when the maximum length of the relative delays among signals received from various

nodes are less than the length of an OFDM block which is not a practical assumption

for the case of UWA communications. In [18], a space-frequency coding approach is

proposed which is proved to achieve both full spatial and full multipath diversities. In

[3], OFDM transmission is implemented at the source node and relays only perform

time reversal and complex conjugation. A trivial generalization of existing OFDM-

based results to compensate for large relative delays may be to increase the OFDM

block lengths. The main drawback is that inter carrier interference (ICI) is increased

due to the time variations of the UWA channels. Another trivial solution is to increase

the length of the CP. This is not an efficient solution either, since it dramatically

decreases the spectral efficiency of the system.

There are several single carrier transmission based solutions reported in the

literature as well, e.g., [2, 51, 52, 63]. In [63] a time reversal distributed space time

block code (DSTBC) is proposed for UWA cooperative communication systems un-

der quasi-static multipath fading channel conditions. In [2], a DSTBC transmission

scheme by decode and forward (DF) relaying is proposed which achieves both full

spatial and multipath diversities. A distributed space time trellis code with DF re-

laying is proposed in [51, 52] which under sufficient conditions can achieve full spatial

and multipath diversities.
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Figure 8.1: The structure of the received OFDM blocks from two different relays of
the proposed delay diversity scheme for a relative delay of D seconds.

In this chapter, we focus on OFDM based cooperative UWA communication

systems with full-duplex AF relays where all the nodes employ the same frequency

band to communicate with the destination. We assume an asynchronous operation

and potentially very large delays among different nodes (known only at the desti-

nation). We present a new scheme which can compensate for the effect of the long

delays among the signals received from different nodes without adding an excessively

long CP. We demonstrate that we can extract delay diversity out of the asynchronism

among the cooperating nodes. The main idea is to add an appropriate (short) CP

(much less than the long relative delays among the relays) to each OFDM block at

the transmitter side to combat multipath effects of the channels and obtain a delay

diversity structure at the destination. As an illustration, Fig. 8.1 shows the received

OFDM block structure of the proposed delay diversity scheme from two different

relays with a relative delay of D seconds. In Fig. 8.1, D is in a range that each

block relayed through the relay R1 is overlapped with its preceding block relayed

through the relay R2. E.g., under quasi-static fading scenario, each subcarrier of a

received block is a summation of the corresponding subcarriers from two successively

transmitted blocks which results into a delay diversity structure [66].

8.2 System and Signal Models

We consider a full-duplex AF relay system with two relays, shown in Fig. 8.2, in which

there is no direct link between source (S) and destination (D), and the relays help the

source deliver its data to the destination by using the AF method. No power allocation

strategy is employed at the relay nodes and they use fixed power amplification factors.
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Figure 8.2: Relay channel with two relays.

Note that the model can be generalized to a system with arbitrary number of relays

and a direct link between source and the destination, and optimal power allocation

can be used in a straightforward manner. We assume that the channels from the

source to the relays and the relays to the destination are time-varying multipath

channels where hi(t, τ) and gi(t, τ) represent the source to the i-th relay and the i-th

relay to the destination channel responses at time t to an impulse applied at time

t− τ , respectively.

At the transmitter, we employ a conventional OFDM transmission technique

with N subcarriers over a total bandwidth of B Hz. We consider successive transmis-

sion of M data blocks of length N symbols. In discrete baseband signaling form, the

m-th (m ∈ {1, . . . ,M}) data vector (in time) is denoted by Xm = [Xm
0 , . . . , Xm

N−1]
T

and the samples of the m-th transmitted OFDM block are represented by xm =

IFFT(Xm) = [xm
0 , . . . , x

m
N−1]

T , where (.)T denotes the transpose operation. There-

fore, we have

xm
n =

1√
N

N−1∑
k=0

Xm
k ej

2πk
N

n. (8.1)

After adding a CP of length NCP to xm, the CP-assisted transmission block x̄m

results. By digital to analog (D/A) conversion of x̄m with sampling period of Ts =
1

B

seconds, we obtain the continuous time signal x̄m(t) with time duration of T =

140



(N +NCP )Ts seconds which can be written as

x̄m(t) =
1√
N

N−1∑
k=0

Xm
k ej

2πk
NTs

tR(t), (8.2)

where xm
n = x̄m(nTs), R(t) = u(t + NCPTs) − u(t− NTs) and u(t) denotes the unit

step function. Furthermore, for the continuous time transmitted signal x̄(t), we can

write x̄(t) =
∑M

m=1 x̄
m(t− (m− 1)T ).

At the i-th relay (i ∈ {1, 2}), the signal ȳi(t) is received, hence the part of

ȳi(t) corresponding to the m-th transmitted block, i.e., ȳmi (t) = ȳi(t+(m−1)T )R(t),

can be written as

ȳmi (t) =

∫ ∞

−∞
x̄m(t−τ)hm

i (t, τ)dτ+
∑
m′ 	=m

∫ ∞

−∞
x̄m′

(t− (m′−m)T − τ)hm
i (t, τ)dτ︸ ︷︷ ︸

ISI

+zm1,i(t),

(8.3)

where zm1,i(t) = z1,i(t + (m− 1)T )R(t), hm
i (t, τ) = hi(t + (m− 1)T, τ)R(t) and zm1,i(t)

are independent complex Gaussian random processes with zero mean and power spec-

tral density (PSD) of σ2
1,i. By taking only the resolvable paths into account, we

can write hi(t, τ) =
∑Lhi

l=1 hi,l(t)δ(τ − τhi,l), where Lhi
denotes the number of resolv-

able paths from the source to the i-th relay, hi,l(t) are independent zero-mean (for

different i and l) complex Gaussian wide-sense stationary (WSS) processes with a

total envelope power of σ2
hi,l

(i.e., independent time-varying Rayleigh fading chan-

nel tap gains) assuming that
∑Lhi

l=1 σ
2
hi,l

= 1, and τhi,l ≥ 0 denotes the delay of the

l-th resolvable path from the source to the i-th relay. Assuming τhi,Lhi
≤ NCPTs,

i.e., the length of the CP overhead is greater than the delay spread of the channel

(the main job of the CP to guarantee robustness against multipath), and defining

Im1,i(t) =
∑Lhi

l=1 h
m
i,l(t)x̄

m−1(t+ T − τhi,l), we can rewrite (8.3) as

ȳmi (t) =

Lhi∑
l=1

hm
i,l(t)x̄

m(t− τhi,l) + Im1,i(t) + zm1,i(t). (8.4)
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We assume that the signal passing through the second relay is received D

seconds later than the signal passing through the first relay and we also assume

τhi,1 = τgi,1 = 0 for i ∈ {1, 2}, i.e., the delay spread of the channel hi (gi) is τhi,Lhi

(τgi,Lgi
). Therefore, by denoting the amplification factor of the i-th relay by

√
Pi, for

the received signal at the destination ȳ(t), we have

ȳ(t) =

∫ ∞

−∞

√
P1ȳ1(t− τ)g1(t, τ)dτ +

∫ ∞

−∞

√
P2ȳ2(t−D − τ)g2(t, τ)dτ + z2(t),

(8.5)

where z2(t) is a Gaussian random processes with zero mean and PSD of σ2
2. By

employing gi(t, τ) =
∑Lgi

l=1 gi,l(t)δ(τ − τgi,l) in (8.5), we obtain

ȳ(t) =

Lg1∑
l=1

√
P1g1,l(t)ȳ1(t− τg1,l) +

Lg2∑
l=1

√
P2g2,l(t)ȳ2(t− τg2,l −D) + z2(t).

Defining z(t) = z2(t) +
∑Lg1

l=1

√
P1g1,l(t)z1,1(t − τg1,l) +

∑Lg2

l=1

√
P2g2,l(t)z1,2(t − τg2,l)

which represents a Guassian random process conditioned on known gi,l(t) for all i

and l, we can write

ȳ(t) =

Lg1∑
l=1

√
P1g1,l(t)

Lh1∑
q=1

h1,q(t− τg1,l)x̄(t− τg1,l − τh1,q)

+

Lg2∑
l=1

√
P2g2,l(t)

Lh2∑
q=1

h2,q(t−D − τg2,l)x̄(t−D − τg2,l − τh2,q) + z(t).

Note that without conditioning on gi,l(t), z(t) represents a complex random process

with zero mean and PSD of σ2 = P1σ
2
1,1+P2σ

2
1,2+σ2

2. Therefore, we define the received

signal to noise ratio (SNR) as P1+P2

σ2 . We also define L =

⌈
maxi(τhi,Lhi

+τgi,Lgi
)

Ts

⌉
, where

τhi,Lhi
+τgi,Lgi

is the delay spread of the overall channel experienced at the destination

through Ri.

8.3 Delay Diversity Structure

To achieve a delay diversity structure and overcome ISI at the destination, we need

to add an appropriate CP at the source and perform CP removal at the destination.
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Figure 8.3: The structure of the received signal.
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Figure 8.4: The structure of the receiver.

8.3.1 Appropriate CP Length

In a conventional OFDM system, if we have a window of length (N + L)Ts seconds

corresponding to one OFDM block, then by removing the first L samples of the

considered window and feeding the remaining N samples to the FFT block, the ISI

is completely removed. Therefore, in our scheme, to guarantee robustness of the

system against ISI, we need to have an overlap of length (N+L)Ts seconds between

two blocks received from two different relays at the destination. Fig. 8.3 shows the

structure of the received signal at the destination for the case that the blocks relayed

by R2 are received D seconds later than the blocks relayed by R1, where T < D < 2T

and d = mod(D, T ) with d = mod(D, T ) denoting the remainder of division of D by

T . To obtain the appropriate overlap structure, we need to have T − d ≥ (N + L)Ts

or d ≥ (N + L)Ts or both which results into T ≥ 2(N + L)Ts, i.e., NCP ≥ N + 2L.

8.3.2 Received Signal at the Destination

The baseband signalling structure of the receiver is shown in Fig. 8.4, where ȳm =

[ȳm0 , . . . , ȳ
m
N+NCP−1] denotes the sampled vector of the received signal in the m-th

signaling interval and b is the starting point of the m-th FFT window which is decided
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Figure 8.5: Example of different situations for BD and dr.

by the destination based on the delay value D. Since NCP ≥ N + 2L, by defining

ȳm(t) = ȳ(t+ (m− 1)T )R(t), we can write

ȳm(t) =

Lg1∑
l=1

√
P1g

m
1,l(t)

Lh1∑
q=1

hm
1,q(t− τg1,l)x̄

m(t− τg1,l − τh1,q) + Im1 (t) + Im2 (t)

+

Lg2∑
l=1

√
P2g

m
2,l(t)

Lh2∑
q=1

hm−BD
2,q (t− dr − τg2,l)x̄

m−BD(t− dr − τg2,l − τh2,q) + zm(t),

where Im1 (t) =
∑Lg1

l=1

√
P1g

m
1,l(t)

∑Lh1
q=1 h

m
1,q(t− τg1,l)x̄

m−1(t + T − τg1,l − τh1,q) and

Im2 (t) =

Lg2∑
l=1

√
P2g

m
2,l(t)

Lh2∑
q=1

hm−BD
2,q (t− dr − τg2,l)x̄

m−BD−1(t+ T − dr − τg2,l − τh2,q)

+

Lg2∑
l=1

√
P2g

m
2,l(t)

Lh2∑
q=1

hm−BD
2,q (t− dr − τg2,l)x̄

m−BD+1(t− T − dr − τg2,l − τh2,q)

represent the ISI, and BD and dr, as shown in Fig. 8.5, denote the effective OFDM

block delay and effective residual delay observed at the destination, respectively. For

BD and dr, we have

BD =

⎧⎪⎨⎪⎩ 	D
T

 , d ≤ (N + L)Ts

�D
T
� , d > (N + L)Ts

, (8.6)

and

dr =

⎧⎪⎨⎪⎩ d , d ≤ (N + L)TS

d− T , d > (N + L)Ts

, (8.7)
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respectively (note that when m − BD < 0, x̄m−BD(t) = 0 for all values of t). More

precisely, BD represents the number of block delays between two received OFDM

blocks which have at least an overlap of length (N + L)Ts seconds (necessary to

combat the ISI). As discussed in Section 8.3.1, by choosing NCP ≥ N + 2L, achiev-

ing the appropriate overlap between the received OFDM blocks is guaranteed. By

appropriate CP removal (whose details are explained in Section 8.3.3), ym is ob-

tained as ym = [ȳm(bTs), . . . , ȳ
m((b + N − 1)Ts)]. By taking FFT of ym, we have

Y m = [Y m
0 , . . . , Y m

N−1] = FFT(ym), i.e.,

Y m
k =

1√
N

N−1∑
n=0

ymn e
−j 2πn

N
k

=
1√
N

b+N−1∑
n=b

ȳm(nTs)e
−j 2πn

N
k

=
1√
N

b+N−1∑
n=b

[ Lg1∑
l=1

√
P1g

m
1,l(nTs)

Lh1∑
q=1

hm
1,q(nTs − τg1,l)x̄

m(nTs − τh1,q − τg1,l)+zm(nTs)

+

Lg2∑
l=1

√
P2g

m
2,l(nTs)

Lh2∑
q=1

hm−BD
2,q (nTs−dr−τg2,l)x̄

m−BD(nTs−dr−τh2,q−τg2,l)

]
e−j

2πn
N

k.

Furthermore, by substituting the result of (8.1) in the above equation, we obtain

Y m
k = GHm

1 (k)X
m +GHm−BD

2 (k)Xm−BD + Zm
k , (8.8)

where GHm
i (k) = [GHm

i [k, 0], · · · , GHm
i [k,N − 1]] with

GHm
1 [k, k′] =

√
P1

N

b+N−1∑
n=b

Lg1∑
l=1

gm1,l (nTs)

Lh1∑
q=1

hm1,q (nTs − τg1,l) e
j 2πn

N
(k′−k)e−j

2πk′

NTs
(τg1,l+τh1,q),

GHm−BD
2 [k, k′] =

√
P2

N

b+N−1∑
n=b

Lg2∑
l=1

gm2,l (nTs)×

×
Lh2∑
q=1

hm−BD
2,q (nTs − dr − τg2,l) e

j 2π
NTs

[n(k′−k)Ts−k′(dr+τg2,l+τh2,q)],

and Zm
k = 1√

N

∑b+N−1
n=b zm(nTs)e

− j2πn
N

k conditioned on channel state information are

complex Gaussian random variables with zero mean. Hence, by defining Xm = 0N
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for m < 1 and m > M and Xm = [Xm
0 , Xm

1 , · · · , Xm
N−1]

T for 1 ≤ m ≤ M , we can

write

Y m = GHm
1 X

m +GHm−BD
2 Xm−BD +Zm, (8.9)

where GHm
i =

[
GHm

i (0)
T , . . . ,GHm

i (N − 1)T
]T

. In fact, GHm
i represents the

effective S−Ri−D channel seen by the destination which depends on both S−Ri−D

channel and the position of the FFT window.

8.3.3 Appropriate CP Removal at the Destination

To take FFT at the destination, we need to choose the FFT window by appropriate

CP removal. Since the received OFDM blocks are not synchronized, we align the

receiver FFT window with one of the relays. By precise alignment, an overlap of

length (N+L)Ts seconds between the OFDM blocks received through R1 and R2 can

be achieved which is determined with the value of d. Note that an overlap of at least

N+L samples is necessary to guarantee robustness of the transmission against ISI.

As shown in Fig. 8.6, for d ≥ (N + L)Ts, the receiver FFT window is aligned with

R2 and for d < (N + L)Ts it is aligned with R1. The only effect of unaligned FFT

windowing in time at the destination, as long as appropriate CP removal is done, is

phase shift at the frequency domain covered in the definition of GHm
i .

8.3.4 Detection by Viterbi Algorithm

For the time-invariant channel scenario the noise samples Zm
k are independent complex

Gaussian random variables for all m and k and i.i.d. for any specific k. Therefore,

for time-invariant channel conditions, N parallel Viterbi detectors with MBD states

(assuming M-PSK modulation) can be employed for ML detection of the transmitted

symbols, where the k-th Viterbi detector gets Y k as input to detect the transmitted

symbols over the k-th subcarrier. On the other hand, for the time-varying channel

scenarios, the received noise samples at each OFDM block are dependent complex

Gaussian random variables conditioned on known channel state information.
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Figure 8.6: Different possible FFT windowings for different ranges of d (a) d ≥
(N + 2L)Ts, (b) (N + L)Ts ≤ d < (N + 2L)Ts, (c) NTs < d < (N + L)Ts, and
(d) d ≤ NTs.

The complexity of the Viterbi algorithm for the time varying case is prohibitive

due to the ICI effects. On the other hand, the noise samples corresponding to differ-

ent FFT windows at the destination are independent but not necessarily identically

distributed. However, we implement a suboptimal detector in which we ignore the

ICI effects and assume that Zm
k are i.i.d. for any given subcarrier k, and employ the

same structure as in the time-invariant case. Hence, Y ′
k = [Y ′1k , . . . , Y ′Mk ] is given to

the k-th Viterbi decoder where [Y ′m0 , . . . , Y ′mN−1] = diag(Y m) and diag(A), with A

being a square matrix, denotes a vector of diagonal elements of A.

8.4 PEP Analysis

Design of the space-time codes is out of focus of this work; however, we present

the PEP performance analysis of the system under quasi-static frequency selective

and block fading frequency selective channels in this section which can be useful in

diversity order analysis of the proposed scheme and future space-time code designs.

In the following, we present the PEP analysis for the quasi-static and block fading

frequency selective channels, respectively.
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8.4.1 Quasi-Static Frequency-Selective Channels

In this section, we consider the PEP performance analysis for ML detection presented

in Section 8.3.4. We provide the result under the condition that the channels from

the source to the relays have significantly higher SNRs than the channels from the

relays to the destination, i.e., 1
σ2
1,i
 Pi

σ2
2
. We assume that the channels are quasi-static

Rayleigh fading, i.e., the channel gains in time domain are random variables but fixed

for the transmission of M consecutive OFDM blocks. We denote hm
i,l (nTs) = hi,l and

gmi,l (nTs) = gi,l for n = {0, . . . , N − 1} and m = {1, . . . ,M}, where hi,l and gi,l are

zero mean circularly symmetric complex Gaussian random variables with variances

of σ2
hi,l

and σ2
gi,l

, respectively, with
∑Lhi

l=1 σ
2
hi,l

= 1 and
∑Lgi

l=1 σ
2
gi,l

= 1. Therefore, we

can write

GH1[k, k
′] =

√
P1

⎡⎣Lg1∑
l=1

g1,le
−2πj k′τg1,l

NTs

⎤⎦⎡⎣Lh1∑
q=1

h1,qe
−2πj k′τh1,q

NTs

⎤⎦ δ(k − k′), (8.10)

and

GH2[k, k
′] =

√
P2

⎡⎣Lg2∑
l=1

g2,le
−2πj k′τg2,l

NTs

⎤⎦⎡⎣Lh2∑
q=1

h2,qe
−2πj k′τh2,q

NTs

⎤⎦ e−2πj k′

NTs
drδ(k − k′),

(8.11)

where δ(.) denotes the Dirac delta function, and for a fixed k, Gi,k =
∑Lgi

l=1 gi,le
−2πj kτgi,l

NTs

and Hi,k =
∑Lhi

q=1 hi,qe
−2πj kτhi,q

NTs are independent complex Gaussian random variables

with zero mean and unit variance. Hence, for the received signal on the k-th subcar-

rier, we have

Y m
k = GH1[k, k]X

m
k +GH2[k, k]X

m−BD
k + Zm

k , (8.12)

where conditioned on gi,l for all l ∈ {1, . . . , Lgi} and i ∈ {1, 2}, Zm
k are i.i.d. com-

plex Gaussian random variables with zero mean and variance of σ2
2 + P1|G1,k|2σ2

1,1 +

P2|G2,k|2σ2
1,2. The above relation for BD > 0 is a delay diversity structure which
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can be used to extract spatial diversity out of the relay system shown by the PEP

analysis. If we define Y k = [Y 1
k , . . . , Y

M+BD
k ], Zk = [Z1

k , . . . , Z
M+BD
k ], GH(k) =

[GH1[k, k], GH2[k, k]] and

Xk =

⎡⎢⎣ X1
k · · · X1+BD

k · · · XM
k · · · 0

0 · · · X1
k · · · XM−BD

k · · · XM
k

⎤⎥⎦ , (8.13)

we can write Y k = GH(k)Xk + Zk. Note that our focus is on extracting spatial

diversity out of the asynchronous cooperative system which is attained in the form of

the delay diversity. In fact, we assume no explicit channel coding is employed across

different subcarriers and as a result no multipath diversity is attained; however, it

does not mean that the system does not achieve multipath diversity. Now, let us

focus on a given subcarrier, e.g., k-th subcarrier, where conditioned on given gi,l for

l ∈ {1, . . . , Lgi} and i ∈ {1, 2}, Zk is a complex white Gaussian vector with zero

mean and autocorrelation matrix of
(
σ2
2 + P1|G1,k|2σ2

1,1 + P2|G2,k|2σ2
1,2

)
IM+BD with

IM denoting the M by M identity matrix. Therefore, the Viterbi algorithm proposed

in Section 8.3.4 can be used as an ML detection scheme on symbols transmitted over

the k-th subcarrier. Furthermore, by employing ML detection at the destination for

the conditional PEP over the k-th subcarrier, P (Xk → X ′
k|GH(k)) which shows the

probability of deciding in favor ofX ′
k at the receiver whileX is the actual transmitted

symbol conditioned on the channel realizations, we have

P (Xk →X ′
k|GH(k)) ≤ 1

2
e
− d2

k

4(σ2
2+P1|G1,k |2σ2

1,1+P2|G2,k |2σ2
1,2) , (8.14)

where in deriving the last inequality the Chernoff bound is employed [67, p. 58], dk =

||GH(k)(Xk −X ′
k)|| and ||e|| denotes the Euclidean length of vector e. Therefore,

we have

P (Xk →X ′
k) ≤

1

2
Edk{e−

d2
k

4σ2 }, (8.15)

where Edk{.} denotes the expected value with respect to the random variable dk.

Under the assumption that 1
σ2
1,i
 Pi

σ2
2
, we obtain

d2
k

σ2 � d2
k

σ2
2
. Furthermore, due to
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the definition of the Euclidean distance, by defining α2
k =

P1

4σ2
2

M∑
m=1

|Xm
k − X ′m

k |2,

β2
k =

P2

4σ2
2

M∑
m=1

|Xm
k −X ′m

k |2, and

γ2
ke
−jφγ,k =

√
P1P2

4σ2
2

M∑
m=BD+1

(Xm
k −X ′m

k )(Xm−BD
k −X ′m−BD

k )∗,

we can write

d2k
4σ2

2

=
GH(k)(Xk −X ′

k)(Xk −X ′
k)

HGHH(k)

4σ2
2

=α2
k

|GH1[k, k]|2
P1

+ β2
k

|GH2[k, k]|2
P2

+ 2Re

{ |GH1[k, k]|√
P1

e−j2πφ1,k
|GH2[k, k]|√

P2

ej2πφ2,kγ2
ke
−j2πφγ,k

}
. (8.16)

We also have |GHi[k, k]| = Pi|Hi,k||Gi,k|, where |Hi,k| ∼ Rayleigh(
√
2
2
) and |Gi,k| ∼

Rayleigh(
√
2
2
), i.e., |Hi,k| and |Gi,k| are Rayleigh distributed random variables, and φi,k

are uniformly distributed random variables over [0, 2π]. If we define ai = |Hi,k| and
bi = |Gi,k|, then d2

k

4σ2
2
= α2

ka
2
1b

2
1+β2

ka
2
2b

2
2+2a1a2b1b2γ

2
k cos(φ),where φ = ∠e−j(φ1,k−φ2,k+φγ,k)

is uniformly distributed over [0, 2π]. Therefore, we have

Edk{e
− d2

k

4σ2
2 } = Ea1,a2,b1,b2,φ

{
e−(α

2
k
a21b

2
1+β2

k
a22b

2
2+2a1a2b1b2γ2

k
cos(φ))

}
= Ea1,a2,b1,b2

{
1

2π

∫ 2π

0

e−(α
2
k
a21b

2
1+β2

k
a22b

2
2+2a1a2b1b2γ2

k
cos(φ))dφ

}
=a Ea1,a2,b1,b2

{
e−(α

2
k
a21b

2
1+β2

k
a22b

2
2)I0(2a1a2b1b2γ

2
k)
}

= Ea2,b1,b2

{
e−β

2
k
a22b

2
2

∫ ∞

0

e−α
2
k
a21b

2
1I0(2a1a2b1b2γ

2
k)2a1e

−a21da1

}
=b Ea2,b1,b2

{
e−β

2
k
a22b

2
2

α2
kb

2
1 + 1

e
a22b

2
1b

2
2γ

4
k

α2
k
b2
1
+1

}

= Eb1,b2

{∫ ∞

0

e−β
2
k
a22b

2
2

α2
kb

2
1 + 1

e
a22b

2
1b

2
2γ

4
k

α2
k
b21+1 2a2e

−a22da2

}

= Eb1,b2

{
1

1 + α2
kb

2
1 + b21b

2
2α

2
kβ

2
k + β2

kb
2
2 − b21b

2
2γ

4
k

}
, (8.17)
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where the equality a holds due to the definition of the modified Bessel function of

the first kind I0(.) and the equality b results from [68, p. 294. Eq. 2. 15. 1. 2.].

Furthermore it follows from the inequality α2
kβ

2
k ≥ γ4

k that
1

1+α2
k
b21+b21b

2
2α

2
k
β2
k
+β2

k
b22−b21b22γ4

k

≤
1(√

α2
k
β2
k
−γ4

k

α2
k
β2
k

α2
k
b21+1

)(√
α2
k
β2
k
−γ4

k

α2
k
β2
k

β2
k
b22+1

) which leads to (since b1 and b2 are independent)

Edk{e
− d2

k

4σ2
2 } ≤ Eb1

⎧⎨⎩ 1√
α2
k
β2
k
−γ4

k

α2
k
β2
k

α2
kb

2
1 + 1

⎫⎬⎭Eb2

⎧⎨⎩ 1√
α2
k
β2
k
−γ4

k

α2
k
β2
k

β2
kb

2
2 + 1

⎫⎬⎭
=

1

α2
kβ

2
k − γ4

k

e

βk

αk

√
α2
k
β2
k
−γ4

k E1

(
βk

αk

√
α2
kβ

2
k − γ4

k

)
e

αk

βk

√
α2
k
β2
k
−γ4

k E1

(
αk

βk

√
α2
kβ

2
k − γ4

k

)

≤ 1

α2
kβ

2
k − γ4

k

log

(
1 + α2

k

√
α2
kβ

2
k − γ4

k

α2
kβ

2
k

)
log

(
1 + β2

k

√
α2
kβ

2
k − γ4

k

α2
kβ

2
k

)
, (8.18)

where E1(a) denotes the exponential integral function which is given as E1(a) =∫∞
a

e−x

x
dx and the last inequality follows sine eaE1(a) ≤ log(1 + 1

a
). Invoking the

result of (8.18) in (8.15), and defining s2k =
∑M

m=1 |Xm
k −X ′m

k |2 and

f 2
k =

∣∣∣∣∣
M∑

m=BD+1

(Xm
k −X ′m

k )(Xm−BD
k −X ′m−BD

k )∗
∣∣∣∣∣

yields

P (Xk → X ′
k) ≤

8σ4
2

P1P2 (s4k − f 4
k )

log

(
1 +

P1

4σ2
2

√
s4k − f 4

k

)
log

(
1 +

P2

4σ2
2

√
s4k − f 4

k

)
,

(8.19)

under the assumption that the channels from the source to the relays have higher SNR

ratios than the channels from the relays to the destination. We observe from (8.19)

that the system achieves the diversity order of 2. For instance, for P1 = P2, we have

SNR = 2P1

σ2
2
and P (Xk →X ′

k) ≤ 32SNR−2

(s4
k
−f4

k
)
log
(
1 + SNR

8

√
s4k − f 4

k

)2
.

8.4.2 Block Fading Frequency-Selective Channels

In this section, we analyze the PEP performance of the proposed scheme under block

fading frequency selective channels. Similar to the analysis for the quasi-static fading
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scenario, we assume that the channels from the source to the relays have significantly

higher SNR ratios than the channels from the relays to the destination. We first

give the considered block fading channel model. We then provide a discussion on

the discrete noise samples at the destination under the block fading channels and

at the end provide the PEP analysis for which similar to the quasi-static channel

conditions, we assume no coding is employed over the subcarriers and focus on the

spatial diversity analysis of the system.

8.4.2.1 Block Fading Frequency-Selective Channel Model

Here, we follow the same channel model and procedure as taken in [69] in which the

PEP performance analysis of spacetime coded OFDM-MIMO system over correlated

block fading channels has been considered. The main difference between the system

model in [69] and the one in this chapter is in the effective channel model and the

noise experienced at the destination. In fact, we need to use some simplifying approx-

imations to be able to derive a closed form upper bound on the PEP of the system. By

approximating the received noise samples Zm
k as complex Gaussian random variables

(see Section 8.4.2.2), we provide a PEP analysis for the system under block fading

channel scenario in which channel coefficients are fixed during each block transmis-

sion and change block by block based on the following Fourier expansion relation [70]

(for ease of presentation we assume that Lgi = Lhi
= L, τhi,l = τgi,l = τl and all the

channels experiencing the same Doppler frequency shift fd)

hm
i,l(t) = hm

i,l ≈
Lt−1

2∑
n=−Lt−1

2

αi,l[n]e
j
2πn(mT )

MT , (8.20)

and

gmi,l(t) = gmi,l ≈
Lt−1

2∑
n=−Lt−1

2

βi,l[n]e
j
2πn(mT )

MT , (8.21)
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in which αi,l[n] and βi,l[n] are independent circularly symmetric complex Gaussian

random variables with zero mean and variance of
σ2
hi,l

Lt
and

σ2
hi,l

Lt
, respectively, with

Lt = �2fdMT + 1�. hm
i,l and gmi,l can also be represented as hm

i,l = αi(l)
Twt(m)

and gmi,l = βi(l)
Twt(m), where wt(m) = [e−j2πMfdT , . . . , 1, . . . , ej2πMfdT ]T , αi(l) =[

αi,l[−Lt−1
2

], . . . , αi,l[
Lt−1
2

]
]T

and βi(l) =
[
βi,l[−Lt−1

2
], . . . , βi,l[

Lt−1
2

]
]T
.

Since all the channels are block fading, for GHm
1 [k, k′] and GHm

2 [k, k′], we have

GHm
1 [k, k′] =

√
P1

Lg1∑
l=1

gm1,le
−2πj k′τg1,l

NTs

Lh1∑
q=1

hm
1,qe

−2πj k′τh1,q
NTs δ(k − k′),

GH2[k, k
′] =

√
P2e

−2πj k′

NTs
dr

Lg2∑
l=1

gm2,le
−2πj k′τg2,l

NTs

Lh2∑
q=1

hm
2,qe

−2πj k′τh2,q
NTs δ(k − k′).

We can also write GHm
1 [k, k] = Gm

1,kH
m
1,k and GHm

2 [k, k] = Gm
2,kH

m
2,ke

−2πj k′

NTs
dr with

Hm
i,k =

∑L

l=1 hi,le
−j 2πkτl

NTs = hT
i (m)wf(k), G

m
i,k =

∑L

l=1 gi,le
−j 2πkτl

NTs = gT
i (m)wf(k) where

hi(m)= [hm
i,1, · · · , hm

i,L]
T , gi(m)= [gmi,1, · · · , gmi,L]T andwf (k)= [e−j

2πkτ1
NTs , . . . , e−j

2πkτL
NTs ]T .

On the other hand, by defining vi = [αT
i (1), . . . ,α

T
i (L)]

T , q1 = [βT
1 (1), . . . ,β

T
1 (L)]

T ,

q2 = [βT
2 (1), . . . ,β

T
2 (L)]

T e−2πj
k′

NTs
dr and W t(m) = diag{wt(m), . . . ,wt(m)}LLt×L,

we obtain Hm
i,k = vT

i W t(m)wf(k) and Gm
i,k = qT

i W t(m)wf(k).

8.4.2.2 Discussion on the Statistic of the Noise Samples

For the block fading scenario, we have hm
i,l(t) = hm

i,l and gmi,l(t) = gmi,l, hence we can

write

Zm
k =

1√
N

b+N−1∑
n=b

[
zm2 (nTs) +

Lg1∑
l=1

√
P1g

m
1,lz

m
1,1(nTs − τg1,l)

+

Lg2∑
l=1

√
P2g

m
2,lz1,2(nTs − τg2,l)

]
e−

j2πn
N

k.

Since the noise samples from the OFDM block durations m and m′ (m �= m′) are

independent then obviously E{Zm
k Zm′

k } = 0. Furthermore, for E{|Zm
k |2}, we can
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write

E{|Zm
k |2} =

1

N
E

{
b+N−1∑
n=b

b+N−1∑
v=b

⎡⎣zm2 (nTs) +

Lg1∑
l=1

√
P1g

m
1,lz

m
1,1(nTs − τg1,l) +

Lg2∑
l=1

√
P2g

m
2,lz

m
1,2(nTs − τg2,l)

⎤⎦
×
⎡⎣zm2 ∗(vTs)+

Lg1∑
i=0

√
P1g

m∗
1,iz

m
1,1
∗(vTs − τg1,i) +

Lg2∑
i=0

√
P2g

m∗
2,iz

m
1,2
∗(vTs − τg2,i)

⎤⎦ e− j2π(n−v)
N

k

}
.

By using the facts that zj,i(t) are zero mean independent Gaussian random processes

(as a result E{z1,1(t)z1,2(t′)} = 0 for all t and t′) and E {zj,i(t)zj,i(t′)} = σ2
j,iδ(t− t′),

we obtain

E{|Zm
k |2} =

1

N

b+N−1∑
n=b

b+N−1∑
v=b

[
σ2
2δ(n− v)+P1

Lg1∑
l=1

Lg1∑
i=1

gm1,lg
m∗
1,iσ

2
1,1δ(nTs− τg1,l− vTs+ τg1,i)

+ P2

Lg2∑
l=1

Lg2∑
i=1

gm2,lg
m∗
2,iσ

2
1,2δ(nTs − τg2,l − vTs + τg2,i)

]
e−

j2π(n−v)
N

k

which leads to

E{|Zm
k |2} =σ2

2+P1σ
2
1,1

Lg1∑
l=1

|gm1,l|2+P2σ
2
1,2

Lg2∑
l=1

|gm2,l|2+2σ2
1,1Re

⎡⎣ ∑
f1,τg1,l−τg1,i=f1Ts

gm1,lg
m
1,i
∗e−

j2πk
N

f1

⎤⎦
+ 2σ2

1,2Re

⎡⎣ ∑
f2,τg2,l−τg2,i=f2Ts

gm2,lg
m
2,i
∗e−

j2πk
N

f2

⎤⎦ , (8.22)

where f1 and f2 only take positive integer values. Since Zm
k are independent for

a specific k but not identically distributed, the optimal ML detection can be ob-

tained by employing Viterbi detector over the normalized received signals according

to E{|Zm
k |2}. However, in the following, we provide the PEP analysis by approximat-

ing the received noise samples Zm
k as i.i.d. complex Gaussian random variables with

zero mean and variance of σ2 to match with the sub-optimal detector we considered

for the general time-varying channel case in Section 8.3.4.
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8.4.2.3 PEP Analysis

Conditioned on known channel state information at the receiver, for the considered

Viterbi detector1, we have

X ′ = argmin
X

M+BD∑
m=1

N−1∑
k=0

∣∣∣∣Y m
k −Gm

1,kH
m
1,kX

m
k −Gm

2,kH
m
2,ke

−2πj k′

NTs
drXm−Bd

k

∣∣∣∣2, (8.23)

where Xm
k = 0 for m < 1 or m > M . Therefore, similar to (8.14) under the assump-

tion that 1
σ2
1,i

are sufficiently larger than Pi

σ2
2
, we can write

P (Xk →X ′
k|Hi,Gi i ∈ {1, 2}) ≤ 1

2
e
−

d2
(
Xk,X

′

k

)

4σ2
2 , (8.24)

where d2(Xk,X
′
k)=

∑M+BD
m=1

∣∣Gm
1,kH

m
1,kd

m
k +Gm

2,kH
m
2,kd

m−BD
k

∣∣2. By definingWt,f(m, k)=

diag{W t(m)wf(k),W t(m)wf(k)}, dmk = Xm
k −X

′m
k and dk(m) = [dmk , d

m−BD
k ]T , we

can write

d2(Xk,X
′
k) =

M+BD∑
m=1

wT
f (k)W

T
t (m)[v1q

T
1 , v2q

T
2 ]W t,f (m, k)dk(m)×

× dH
k (m)WH

t,f (m, k)[v1q
T
1 , v2q

T
2 ]

HW
∗

t (m)w∗
f(k).

On the other hand, we have

wT
f (k)W

T
t (m)[v1q

T
1 ,v2q

T
2 ]

= wT
f (k)W

T
t (m)

[
[αT

1 (1), . . . ,α
T
1 (L)]

T qT1 , [α
T
2 (1), . . . ,α

T
2 (L)]

T qT2
]

= wT
f (k)

⎡⎢⎢⎢⎢⎣
wT

t (m)α1(1)q
T
1 , wT

t (m)α2(1)q
T
2

...
...

...

wT
t (m)α1(L)q

T
1 , wT

t (m)α2(L)q
T
2

⎤⎥⎥⎥⎥⎦
=

[
qT1

L∑
l=1

e
−j 2πkτl

NTs αT
1 (l)wt(m), qT

2

L∑
l=1

e
−j 2πkτl

NTs αT
2 (l)wt(m)

]
.

1For the considered block fading channels, the optimal ML detection is obtained by normalizing
the received signals over each subcarrier with variance of its corresponding noise, however, we present
the result for the case that there is no normalization to match with the Viterbi detection of the general
time-varying case.
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By defining

Ai(k) = diag

{
L∑
l=1

e−j
2πkτl
NTs αT

i (l), . . . ,
L∑
l=1

e−j
2πkτl
NTs αT

i (l)

}
LLt×LL2

t

,

and W α,t(m) = diag{wt(m), . . . ,wt(m)}LL2
t×LLt

, we obtain

wT
f (k)W

T
t (m)[v1q

T
1 , v2q

T
2 ] =

[
qT
1A1(k)W α,t(m), qT

2A2(k)W α,t(m)
]
, (8.25)

Note that Ai(k)W α,t(m) =
∑L

l=1 e
−j 2πkτl

NTs αT
1,1(l)wt(m)ILtL. Furthermore, by defining

q(k) =
[
qT
1A1(k), q

T
2A2(k)

]H
, and W A,t(m) = diag{W α,t(m),W α,t(m)}, we can

write

wT
f (k)W

T
t (m)[v1q

T
1 , v2q

T
2 ] = q(k)HWA,t(m). (8.26)

Therefore, defining

DA(Xk,X
′
k) =

M+BD∑
m=1

WA,t(m)W t,f (m, k)dk(m)dH
k (m)WH

t,f(m, k)WH
A,t(m),

(8.27)

yields to

d2(Xk,X
′
k) = q(k)HDA(Xk,X

′
k)q(k). (8.28)

Since DA(Xk,X
′
k) is a positive semi-definite matrix, we can write

DA(Xk,X
′
k) = U kΛkU

H
k , (8.29)

where U k is a unitary matrix and Λ = diag{λk,1, . . . , λk,r, 0, . . . , 0} with λk,i being

the positive eigenvalues of DA(Xk,X
′
k). We define D(Xk,X

′
k) as the number of

values of m where either Xm
k �= X ′

k
m or Xm−BD

k �= X ′
k
m−BD, i.e.,

D(Xk,X
′
k) = M +BD −

M+BD∑
m=1

δ(Xm
k −X ′

k
m
)δ(Xm−BD

k −X ′
k
m−BD

). (8.30)

Since dk(m)dH
k (m) is a rank one matrix whenever Xm

k �= X ′
k
m and/or Xm−BD

k �=
X ′

k
m−BD and a zero matrix otherwise, we can write

rk = rank(DA(Xk,X
′
k)) ≤ min(D(Xk,X

′
k), 2LL

2
t ),
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and as a result r = min
Xk,X

′

k

rk ≤ min(Deff (k), 2LL
2
t ) withDeff (k) = min

Xk,X
′

k

D(Xk,X
′
k).

Conditioned on known channel coefficients, it follows from (8.29) that

P (Xk → X ′
k|Hi[k],Gi[k]) ≤ 1

2
e
− 1

4σ2
2

∑rk
c=1 λk,c

∣∣∣UH

k,cq(k)
∣∣∣2
, (8.31)

where U k,c denotes the c-th column of U k. Furthermore, if we define μi(k) =

[μk,i,1, . . . , μk,i,Lt
] =
∑L

l=1 e
−j 2πkτl

NTs αi(l), since αi,l[n] are i.i.d. complex Gaussian ran-

dom variables with zero mean, μk,i,p are also i.i.d. complex Gaussian random variables

with zero mean and variance of σ2
μ,i =

∑L
l=1

σ2
hi,l

Lt
. Furthermore, by denoting q1 as

q1 = [q1, . . . , qLLt
]H and q2 as q2 = [qLLt+1, . . . , q2LLt

]H , we can write

q(k) = [q1μk,1,1, . . . , q1μk,1,Lt
, . . . , qLLt

μk,1,1, . . . , qLLt
μk,1,Lt

, qLLt+1μk,2,1, . . .

. . . , qLLt+1μk,2,Lt
, . . . , q2LLt

μk,2,1, . . . , q2LLt
μk,2,Lt

]. (8.32)

Therefore, UH
k,cq(k) can be written as

UH
k,cq(k) =

LLt∑
p=1

Lt∑
t=1

U∗k,c,(p−1)Lt+tqpμk,1,t +

LLt∑
p=1

Lt∑
t=1

U∗k,c,LL2
t+(p−1)Lt+tqLLt+pμk,2,t

=
2∑

i=1

LLt∑
p=1

q(i−1)LLt+pχk,(i−1)LLt+p, (8.33)

where χk,(i−1)LLt+p =
Lt∑
t=1

U∗k,c,(i−1)LL2
t+(p−1)Lt+tμk,i,t are zero mean complex Gaussian

random variables with variance of σ2
χ,k,(i−1)LLt+p =

∑Lt

t=1 |Uk,c,(i−1)LL2
t+(p−1)Lt+t|2σ2

μ,i.

To calculate the PEP of the system, we make two simplifying assumptions:

• UH
k,iq(k) and UH

k,jq(k) are independent for different values of i and j (i �= j).

(Note that for qk being a complex Gaussian random vector with zero mean,

UH
k,cqk and UH

k,jqk are independent complex Gaussian random variables.)

• χk,p are i.i.d. complex Gaussian random variables with zero mean and variance

of σ2
χ,k,p.
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For a fixed c, by defining Rp =

∣∣∣∣∣
2LLt∑
l=p+1

qlχk,l

∣∣∣∣∣ and θp = arccos

(∑2LLt
l=p+1 |qlχk,l| cos(φl)

Rp

)
in

which φl is the angle between the complex valued random vectors ql and χk,l and

uniformly distributed over [0, 2π], we can write

|UH
k,cq(k)|2 =

∣∣∣∣∣
2LLt∑
p=1

qpχk,p

∣∣∣∣∣
2

=

2LLt∑
p=1

|qpχk,p|2 + 2Re

{
2LLt∑
p=1

2LLt∑
l=p+1

qpχk,pq
∗
l χ
∗
l

}

=
2LLt∑
p=1

|qpχk,p|2 + 2
2LLt∑
p=1

|qpχk,p|Rp cos(φp − θp). (8.34)

Due to the fact that φp are uniformly distributed over [0, 2π], |χp| are Rayleigh dis-

tributed and by following the same procedure as in (8.17), we can write

Eφ1,|χk,1|

{
e
−λk,cR

2
0

4σ2
2

}

= E|χk,1|

⎧⎨⎩e−
λk,c

∑2LLt
p=1

|qpχk,p|
2

4σ2
2 e

−λk,c
∑2LLt

p=2
|qpχk,p|Rp cos(φp−θp)

2σ2
2 I0

(
λk,c|q1χk,1|R1

2σ2
2

)⎫⎬⎭
=

2σ2
2e
−λk,cR

2
1

4σ2
2

λk,cσ2
χ,k,1|q1|2 + 2σ2

2

e

λ2
k,c

σ2
χ,k,1|q1|

2R2
1

4σ2
2
(λk,cσ

2
χ,k,1

|q1|
2+2σ2

2
)

=
2σ2

2

λk,cσ2
χ,k,1|q1|2 + 2σ2

2

e
− λk,cR

2
1

2λk,cσ
2
χ,k,1

|q1|
2+4σ2

2 . (8.35)

Therefore, by taking the expected value with respect to φ1, |χk,1|, . . . , φ2LLt
, |χk,2LLt

|,
we arrive at

Eφ1,|χk,1|,...,φ2LLt
,|χk,2LLt

|

{
e
−λk,cR

2
0

4σ2
2

}
=

2σ2
2

2σ2
2 + λk,cσ

2
χ,k,1|q1|2

2σ2
2 + λk,cσ

2
χ,k,1|q1|2

2σ2
2 + λk,c(σ

2
χ,k,1|q1|2 + σ2

χ,k,2|q2|2)
· · · 2σ

2
2 + λk,c

∑2LLt−1
p=1 σ2

χ,k,p|qp|2
2σ2

2 + λk,c

∑2LLt

p=1 σ2
χ,k,p|qp|2

=
2σ2

2

2σ2
2 + λk,c

∑2LLt

p=1 σ2
χ,k,p|qp|2

(8.36)

To obtain the above expected value, we first define V =
∑2LLt

p=1 σ2
χ,k,p|qp|2 in which

|qp| ∼ Rayliegh(σq,p√
2
) and |qp| are independent for all p, then obtain the expected

value over the new defined random variable. Let us define

S0 =

{
p

∣∣∣∣σ2
χ,k,pσ

2
q,p �= σ2

χ,k,lσ
2
q,l∀l �= p

}
,
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i.e., there are |S0| different values of σ2
χ,k,pσ

2
q,p such that σ2

χ,k,pσ
2
q,p �= σ2

χ,k,lσ
2
q,l and

∀l �= p. Furthermore, assume that there are J distinct values a2j for j ∈ {1, . . . , J}
for which there are p and l (p �= l and p, l ∈ {1, . . . , 2LLt}) such that σ2

χ,k,pσ
2
q,p =

σ2
χ,k,lσ

2
q,l = a2j . We also define Sj =

{
p

∣∣∣∣σ2
χ,k,pσ

2
q,p = a2j

}
for j ∈ {1, . . . , J} and

Nj = |Sj|. It follows from [67, p. 876] and the definition of the Gamma distribution

that

pV (v) =
∑
p∈S0

πp

σ2
χ,k,pσ

2
q,p

e
− v

σ2
χ,k,p

σ2
q,p +

J∑
j=1

∑
p∈Sj

vNj−1

(Nj − 1)!(σ2
χ,k,pσ

2
q,p)

Nj
e
− v

σ2
χ,k,p

σ2
q,p , (8.37)

where πp =
∏

l∈S0,l 	=p

σ2
χ,k,p

σ2
q,p

σ2
χ,k,p

σ2
q,p−σ2

χ,k,l
σ2
q,l

. Therefore, we can write

E|q1|,...,|q2LLt
|

{
2σ2

2

2σ2
2 + λk,c

∑2LLt

p=1 σ2
χ,k,p|qp|2

}
= EV

{
2σ2

2

2σ2
2 + λk,cV

}

=
∑
p∈S0

πp

2σ2
χ,k,pσ

2
q,p

∫ ∞

0

2σ2
2

2σ2
2 + λk,cv

e
− v

2σ2
χ,k,p

σ2
q,p

+
J∑

j=1

∑
p∈Sj

1

(Nj − 1)!(σ2
χ,k,pσ

2
q,p)

Nj

∫ ∞

0

2σ2
2v

Nj−1

2σ2
2 + λk,cv

e
− v

σ2
χ,k,p

σ2
q,p .

By using the integral calculated in [71, p. 325. Eq. 2. 3. 6. 14.] and due to the

definition of the exponential integral function E1(a) =
∫∞
a

e−z

z
dz, we obtain

PEPk,c = EV

{
2σ2

2

2σ2
2 + λk,cV

}

=
∑
p∈S0

πp

σ2
χ,k,pσ

2
q,p

2σ2
2

λk,c
e

2σ2
2

λk,cσ
2
χ,k,p

σ2
q,p E1

(
2σ2

2

λk,cσ
2
χ,k,pσ

2
q,p

)

+

J∑
j=1

∑
p∈Sj

(2σ2
2)

Nj (−1)Nj−1

(Nj − 1)!(λk,cσ
2
χ,k,pσ

2
q,p)

Nj

[
e

2σ2
2

λk,cσ
2
χ,k,p

σ2
q,p E1

(
2σ2

2

λk,cσ
2
χ,k,pσ

2
q,p

)

+

Nj−1∑
k=1

(k − 1)!

(
−λk,cσ

2
χ,k,pσ

2
q,p

2σ2
2

)k ]
(8.38)

Finally, for the PEP of the system under block fading channel conditions, we obtain

P (Xk →X ′
k) ≤

1

2
E

{
e
− 1

4σ2
2

∑rk
c=1 λk,c

∣∣∣UH

k,cq(k)
∣∣∣2} ≤ 1

2

rk∏
c=1

PEPk,c, (8.39)

where PEPk,c are given in (8.38).
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Table 8.1: Parameters of two different scenarios used to compare the proposed scheme
with the scheme in [3].

Scenario Scheme N M D σhi
= σgi (j, i ∈ {1, 2}) NCP T (ms) Data Rate (kb/s)

S1
Proposed Scheme 512 100 1039Ts [1, 0.8, 0.6]/

√
2 522 129.25 7.9226

Scheme from [3] 1024 2 1039Ts [1, 0.8, 0.6]/
√
2 1044 258.5 7.9226

S2
Proposed Scheme 256 100 527Ts [0.8, 0, 0.6] 266 65.25 7.8467
Scheme from [3] 512 2 527Ts [0.8, 0, 0.6] 532 130.5 7.8467

8.5 Simulation Results

For numerical evaluations we assume that the total occupied bandwidth is 8 kHz

(over the frequency band from 12 kHz to 20 kHz). We define fd as the Doppler

frequency shift observed at the destination in Hz, and σhi
= [σhi,0, . . . , σhi,Lhi

]. We

assume Pi = 1, τhi,l = τgi,l = lTs = 125l μs, and σ2
i,1 = 2σ2

2 (i ∈ {1, 2}).

In Figs. 8.7 and 8.8, we compare the performance of the proposed scheme with

the performance of the scheme proposed in [3] for different values of fdTs under two

different scenarios where quadrature phase-shift keying (QPSK) modulated symbols

are transmitted over N subcarriers. The parameters of the two scenarios are reported

in Table 8.1 in which to make a fair comparison, both schemes are set to the same

data transmission rate. We generate time varying Rayleigh fading channel tap gains

following the Jakes’ model [72]. We chose [3] for comparison since it also consid-

ers an OFDM based cooperative transmission with full-duplex AF relays. However,

in [3], the relays perform time reversal and symbol complex conjugation as well. In

Figs. 8.7 and 8.8, we observe that for the time-invariant channel case (fdTs = 0),

the performance of both schemes are identical. However, for time varying scenarios,

the proposed scheme outperforms the scheme proposed in [3]. The reason is that,

for the range of the relative delay considered, to attain the same data rate for both

schemes, the scheme proposed in [3] transmits longer OFDM blocks (larger N) and as

a result more ICI is experienced over the received subcarriers. Obviously, by increas-
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Figure 8.7: Comparison between the performance of the proposed scheme with the
scheme proposed in [3] under the scenario S1.

ing fd, i.e., faster fading conditions, more ICI are experienced over the subcarriers

and the performance becomes worse. We observe that in the SNR range considered,

the bit error rate (BER) of the fast fading scenario (fdTs = 10−3) reaches an error

floor. We expect that for higher SNR values, the slow fading scenario (fdTs = 10−4)

converges to an error floor as well. In both cases, we employ a sub-optimal Viterbi

decoder to detect the transmitted signal, which assumes that the noise samples over

the same subcarrier of different blocks are i.i.d. and ignores the ICI effects to reduce

complexity.

In Fig. 8.9, we compare the PEP performance of the proposed scheme with the

derived upper bounds for the quasi-static frequency selective channel. We consider

transmission ofM = 10 OFDM blocks with N = 64 binary phase-shift keying (BPSK)

modulated subcarriers over multipath channels with σhi
= σgi =

[1,0.8,0.6]√
2

where there

is a relative delay of 145 Ts seconds between the signals received from the two relay
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Figure 8.8: Comparison between the performance of the proposed scheme with the
scheme proposed in [3] under the scenario S2.

nodes, i.e., BD = 1. Furthermore, we assume that P1 = P2 = 1, σ2
1,1 = σ2

1,2 =
σ2
2

10
.

Therefore, the SNR of the system at the receiver is 5
3σ2

2
. We consider Xk = 1M ,

where 1M represents an all one vector, and X ′
k = [1T

M
2
−1,−1, 1T

M
2

]T . Note that the

considered case is the worst case scenario, i.e., gives the maximum PEP among all

the possible pairwise error events (s4k − f 4
k is minimized). We observe in Fig. 8.9 that

by increasing SNR we achieve a tighter upper bound on PEP. Furthermore, as we

expect for high SNR values, the diversity order of the system is 2 which is due to the

delay diversity structure of the system.

In Fig. 8.10, we compare the derived upper bound on P (Xk → X ′
k), for

Xk = 110 and several different X ′
k as given in Table 8.2 under the block fading

channel conditions considered in Section 8.4.2.1 with fdTs = 0.01. We consider the

same transmission specs as considered in the study given in Fig. 8.9. As we expected,

larger D(Xk,X
′
k) (as defined in (8.30)) results in a higher diversity order and a better
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M−2,−1]T under quasi-static frequency selective channels.
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Figure 8.10: Comparison between the upper bound (8.39) for Xk = 110 and X ′
k as

given in Table 8.2.
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Table 8.2: Different cases considered in Fig. 8.10 with Xk = 110.

Case I Case II Case III Case IV

X ′
k [−1,1T

9 ]
T [−1,1T

8 ,−1]T [−1T5 ,1T
5 ] [−1, 1,−1, 1,−1, 1,−1, 1,−1, 1]T

D(Xk,X
′
k) 2 4 6 10

performance which shows the importance of designing appropriate codes to extract

the maximum possible diversity out of the system.

8.6 Chapter Summary

We developed a new OFDM transmission scheme for UWA cooperative communica-

tion systems suffering from asynchronism among the relays by considering possibly

large relative delays among the relays (typical in UWA systems) and time-varying fre-

quency selective channels among the cooperating nodes. The main advantage of the

proposed scheme is in managing asynchronism issues arising from excessively large

delays among the relays without adding time guards (CP in OFDM-based trans-

missions) in the order of the maximum possible delay, which increases the spectral

efficiency of the system and improves the performance in time-varying channel con-

ditions compared with the existing solutions in the literature. In fact, we showed

that independent of the maximum possible delay between the relays, by adding an

appropriate CP at the transmitter and appropriate CP removal at the receiver, a de-

lay diversity structure can be obtained at the receiver, where full-duplex AF scheme

is applied at the relays. Through numerical examples, we evaluated the performance

of the proposed scheme for time-varying multipath channels with Rayleigh fading

channel taps, modeling UWA channels. We compared our results with those of the

existing schemes and found that while for time invariant channels, the performance is

similar, for time varying cases (typical in UWA communications) the proposed scheme

is significantly superior.
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Chapter 9

Summary and Conclusions

In this work, we studied two different classes of communication systems suffering

from synchronization issues namely point-to-point links and cooperative communica-

tion scenarios. We first focused on an information theoretic study of P2P channels

with synchronization errors. We then turned our attention to design physical layer

solutions for asynchronous cooperative communication systems. Our motivation to

consider asynchronous cooperative communication systems is derived from coopera-

tive UWA communications applications in which the relative delays among the relays

can be excessive.

We developed several analytical lower bounds on the capacity of the inser-

tion/deletion channels by lower bounding the mutual information rate for i.u.d. in-

put sequences. We derived the first analytical lower bound on the capacity of the

deletion-AWGN channel and improved the existing analytical lower bound. The pre-

sented lower bound on the capacity of the deletion-AWGN channel is very close to the

existing simulation based lower bounds for small values of deletion probability. We

also improved the existing lower bounds on the random insertion and sticky channel

capacities for small values of insertion probability. The lower bound on the capacity

of the i.i.d. deletion channel, for small values of deletion probability, is very close to

the tightest presented lower bounds, and is in agreement with the first order expan-

sion of the channel capacity for d→ 0, while our result is a strict lower bound for all

range of d. The derived analytical lower bound results were presented in [73, 74] and

a full version is accepted for publication in [75].

We provided several lower bounds on the capacity of binary input symmetric

output channels with synchronization errors suffering from other types of impairments
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such as substitutions, erasures errors or AWGN. We showed that the capacity of any

channel with synchronization errors which can be considered as a cascade of two

independent channels (where only the first one suffers from synchronization errors

and the second one is a memoryless channel) can be lower bounded in terms of the

capacity of the first channel and the parameters of both channels. We considered two

classes of channels: binary input symmetric q-ary output channels (e.g., for q = 3

a binary input channel with substitutions and erasures) with synchronization errors

and BI-AWGN channels with synchronization errors. We gave the first lower bound

on the capacity of substitution/erasure channel with synchronization errors and the

first analytical result on the capacity of BI-AWGN channel with synchronization

errors. We also demonstrated that the lower bounds developed on the capacity of the

deletion-AWGN channel for small σ2 values and the deletion-substitution channel for

small values of s improve the existing results. Part of the results was presented in [76]

and a full version is submitted for possible publication in [77].

As another contribution in characterizing the binary deletion channel capac-

ity, we provided tighter upper bounds on the binary deletion channel capacity for

d ≥ 0.65. To do so, we first considered a deletion channel with deletion probability

d = λd1 + (1− λ)d2 (0 ≤ λ ≤ 1) as a parallel concatenation of two different deletion

channels with deletion probabilities d1 and d2, then derived an upper bound on C2(d)

in terms of C2(d1), C2(d2) and the parameters of the three considered channels. The

presented upper bound for d2 = 1 simplifies to C2(λd + (1 − λ)) ≤ λC2(d) where by

considering d = 0.65 and employing the best existing upper bound in the literature

for d = 0.65 results into a tighter upper bound for d ≥ 0.65 compared with the best

existing results. The results are submitted for possible publication in [78].

To better characterize the non-binary deletion channel capacity, we presented

the first non-trivial upper bound on the 2K-ary deletion channel capacity. We showed
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that for the input symbol set {1, . . . , 2K}, a parallel concatenation of K binary dele-

tion channels (C1, . . . , CK) all with the deletion probability d, in a way that input

symbols 2k − 1 and 2k travel only through Ck, is nothing but a 2K-ary deletion

channel with deletion probability d. This new consideration enables us to prove

C2K(d) ≤ C2(d) + (1 − d) log(K) in which substituting any upper bound on the bi-

nary deletion channel capacity gives an upper bound on the 2K-ary deletion channel

capacity as well. We showed that the new derived upper bounds improve upon the

existing trivial upper bound for the entire range of d. The new derived upper bound

result on the 2K-ary input deletion channel capacity is accepted for presentation

in [79].

In this thesis, we also considered asynchronous UWA cooperative systems as

another class of communication systems suffering from synchronization issues in which

the relative delay among the signals received from geographically separated nodes may

be excessive. To increase the spectral efficiency of the asynchronous cooperative com-

munication systems with two relays, we proposed a new TR-STBC scheme which

needs a smaller overhead to be added in transmitting every two data blocks in com-

parison with the existing schemes. We obtained the optimal detector structure and

proposed a sub-optimal detector with a reduced computational complexity. Through

numerical examples, we showed that the proposed scheme achieves full spatial di-

versity for both optimal and sub-optimal detectors. We observed that our scheme

increases the transmission rate significantly in comparison with the scheme achieving

perfect Alamouti code structure for all the transmitted symbols in exchange of a small

performance loss.

As another signaling solution to combat the timing errors in asynchronous

UWA cooperative systems, we developed a new OFDM transmission scheme by con-

sidering possibly large relative delays among the relays. The main advantage of
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the new proposed scheme is in managing asynchronism issues arising from excessively

large delays among the relays without adding time guards (CP in OFDM-based trans-

missions) in the order of the maximum possible delay. In fact, we showed that inde-

pendent of the maximum possible delay between the relays, by adding an appropriate

CP at the transmitter and performing an appropriate CP removal at the receiver, a de-

lay diversity structure can be obtained at the receiver, where full-duplex AF scheme

is applied at the relays. We provided the PEP analysis of the system under both

quasi-static frequency selective and time varying (block fading) frequency selective

channels showing that the system achieves full spatial diversity under both channel

conditions. Furthermore, the PEP analysis for the time varying block fading case

shows the ability of the system in providing time diversity by employing appropriate

space-time coding structure. We evaluated the performance of the scheme by numer-

ical evaluations for both time varying and static frequency selective fading channels.

By comparing our scheme with the existing ones, we observed that for time varying

channels our scheme is significantly superior and its performance is similar to that of

the existing approaches for the time invariant cases. The manuscript on the results

for the proposed delay diversity scheme is submitted for possible publication in [80].

There are several directions of research which can be pursued following the

investigation provided in this thesis.

In providing analytical lower bounds on the capacity of the insertion and dele-

tion channels, we focused on i.u.d. input distributions. It appears that, the approach

taken to derive the capacity lower bounds can be modified to obtain tighter lower

bounds by considering other types of input distributions. For example, we expect

that by considering input sequences with geometrically distributed run lengths one

can improve upon the existing lower bounds on the capacity of the insertion/deletion

channels.
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Another possible line of research is the information theoretic study of the

MIMO communication systems suffering from synchronization errors. As a starting

point, one needs to prove that the Shannon’s theorem applies in such a channel. To

do so, the first step is to prove the information stability of the channel for which

two results needs to be established: existence of the information capacity of MIMO

channels with synchronization errors and existence of an information stable sequence

which achieves the information capacity of the channel. For the case of the MIMO

systems with deletion errors, i.e., the channels from each transmit antenna to each

receive antenna experience independent deletion processes, we are able to prove the

former statement (not included in the thesis); however, the proof of the latter is

not easy and requires development of some new tools. After proving that Shannon’s

theorem applies in the MIMO channels with synchronization errors, one can extend

some existing upper and lower bounds on the capacity of the single input single output

channels with synchronization errors to the MIMO case.

In the case of the proposed spectrally efficient Alamouti scheme, one possible

extension is to modify the scheme for frequency selective channels in which to combat

the multipath effects of the channel along with the asynchronism issues, one needs

to add longer overhead to cover both the maximum possible relative delay and delay

spread of the channels. Then, the proposed optimal and sub-optimal detectors for

flat fading channels need to be modified to the case of the multipath channels along

with considering different equalization algorithms.

Another possible extension of our work in this thesis is in the design of space-

time codes for the proposed OFDM-based delay diversity scheme for the case of

asynchronous cooperative systems. The provided pairwise error probability analysis

under time-varying block fading frequency selective channel conditions can be used

as the main code design criteria. In Chapter 8, we provided several examples of the
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upper bound on the pairwise error probability of the system for different pairs of

codewords which show the importance of the appropriate code design for the con-

sidered time-varying channel conditions. Based on these initial thoughts, we expect

that by designing specific space-time codes, the maximum possible diversity can be

extracted out of the asynchronous systems for the considered OFDM-based delay

diversity scheme.

A second line of research following the OFDM-based delay diversity scheme is

to extend the proposed scheme to the case of asynchronous two way relaying systems

in which asynchronism among the signals occurs both at the relay nodes and source

nodes. That is, the signals transmitted by the source nodes are received unaligned

at the relay nodes and the signals broadcast by relay nodes are received unaligned

at the source nodes. One possible extension in the case with two full-duplex amplify

and forward relays and two active users is to consider the same transmission strategy

as introduced in Chapter 8 for both users. Then, each each by knowing the relative

delays among the signals can remove the effect of its own signal which leads to a delay

diversity structure.
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For an i.i.d. deletion channel, for a given input sequence x(b;n1, ..., nK), we

have
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where, we have used the generalized Vandermonde’s identity, that is,
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In the proof of Proposition 2, we considered outputs of the deletion channel

resulting from different deletion patterns D(n;K; j) for a given x(b;n;K) as if they

are distinct output sequences which results in an upper bound on the conditional

output entropy of the deletion channel. Here, the output bits of the deletion channel

are input to the BSC, thus we use a similar approach, that is, for a given x(b;n;K), we

consider outputs of the deletion channel from different deletion patterns (D(n;K; j)∗
x(b;n;K)) as distinct input sequences into the BSC and also consider the sequences

resulting from such sequences at the output of the BSC as distinct output sequences.

Employing the result given in Eqn. (3.17), an upper bound on the conditional output

entropy is found. For a given x = (b;n1, n2, . . . , nk), we have

P

(
D(n;K; j) = (j1, . . . , jK)

∣∣∣∣x(b;n1, . . . , nK)
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=
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)
dj(1−d)n−j, (B.1)

and for every D(n;K; j), we can write

P (y′|D(n;K; j) ∗ x(n;K)) =

⎧⎪⎨⎪⎩ se(1− s)n−j−e if |y′| = n− j

0 otherwise
, (B.2)

where e = dH (y′;D(n;K; j) ∗ x(n;K)), and dH = (a; b) is the Hamming distance

between two sequences a and b. On the other hand, for every output sequence of

length n− j, conditioned on a given input x(n;K), we have

P

(
y′(n− j)

∣∣∣∣x(n;K)

)
=

∑
D∈Dn

K
(j)

P

(
y′(n− j)

∣∣∣∣D,x(n;K)

)
P

(
D

∣∣∣∣x(n;K)

)
(B.3)

and we can write

−P (y′|x) log (P (y′|x))

= −
∑

D∈Dn
K
(j)

P (y′|D ∗ x)P (D|x) log
⎛⎝ ∑

D′∈Dn
K
(j)

P (y′|D′ ∗ x)P (D′|x)
⎞⎠

≤−
∑

D∈Dn
K
(j)

P (y′|D ∗ x)P (D|x) log (P (y′|D ∗ x)P (D|x)) , (B.4)
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where the inequality follows from the result in Eqn. (3.17). Hence, for x(b;n;Kx) =

(b;nx
1 , . . . , n

x
Kx), we can write

H

(
Y ′
∣∣∣∣x(b;n;Kx)

)
= −

n∑
j=0

∑
y′∈Yd

−j

P (y′(n− j)|x) log (P (y′(n− j)|x))

≤−
n∑

j=0

∑
y′∈Yd

−j

∑
D∈Dn

K
(j)

P (y′|D ∗ x)P (D|x) log (P (y′|D ∗ x)P (D|x)) , (B.5)

where the inequality is obtained from the expression in (B.4). From Eqns. (B.1) and

(B.2), we have

H

(
Y ′
∣∣∣∣x(b;n;Kx)

)
≤−

n∑
j=0

n−j∑
e=0

(
n− j

e

) ∑
j1+...+jK=j

se(1− s)n−j−e
(
n1

j1

)
. . .

(
nK

jK

)
× dj(1− d)n−j log

((
n1

j1

)
. . .

(
nK

jK

)
dj(1− d)n−jse(1− s)n−j−e

)
,

(B.6)

where we used the fact that there are
(
n−j
e

)
, distinct output sequences of length n− j

resulting from e substitution errors into a given input x, i.e.,

e = dH (y′(n− j);D(n;K; j) ∗ x(n;K)) .

We then obtain

H

(
Y ′
∣∣∣∣x(b;n;Kx)

)
≤ −

n∑
j=0

∑
j1+···+jK=j

(
n1

j1

)
· · ·
(
nK

jK

)
dj(1− d)n−j

[
− (n− j)Hb(s)

+ log

((
n1

j1

)
· · ·
(
nK

jK

)
dj(1− d)n−j

)]
=nHb(d)−

n∑
j=0

∑
j1+···+jK=j

(
n1

j1

)
· · ·
(
nK

jK

)
dj(1− d)n−j

[
− n(1− d)Hb(s)

+ log

((
n1

j1

)
· · ·
(
nK

jK

))]
=nHb(d) + n(1− d)Hb(s)

−
n∑

j=0

dj(1− d)n−j
K∑
k=1

j∑
jk=0

(
nk

jk

)(
n− nk

j − jK

)
log

(
nk

jk

)
, (B.7)
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where the details are similar to the steps leading to Eqn. (A.1). By considering i.u.d.

input sequences and due to the fact that the last term in Eqn. (B.6) is same as the

last term of Eqn. (A.1), we obtain

H(Y ′|X) ≤ nHb(d)−
n∑

j=1

Wj(n)

(
n

j

)
dj(1− d)n−j + n(1− d)Hb(s), (B.8)

which concludes the proof.
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For an i.i.d. deletion-AWGN channel, for a given x(b;n;K) and a fixed j, we

have

fỹ(η|x(b;n;K), j) =
∑

D∈Dn
K
(j)

fỹ(η|x(b;n;K), D)P (D|x(b;n;K))

=
∑

D∈Dn
K
(j)

fỹ(η|α(D,x))P (D|x(b;n;K))

=
∑

D∈Dn
K
(j)

fỹ1...ỹj(η1 . . . ηj |α1 . . . αj)P (D|x(b;n;K))

=
∑

D∈Dn
K
(j)

fỹ1(η1|α1) . . . fỹj (ηj |αj)P (D|x(b;n;K)), (C.1)

where α(D,x) = 1−2(D∗x), i.e., αi(D,x) ∈ {1,−1}, and the last equality follows the

fact that the noise samples zi’s are independent and αi(D,x)’s are also independent.

By employing

fỹi(ηi|αi(D,x)) =
1√
2πσ

exp

(−(ηi − αi(D,x))2

2σ2

)
,

and

P

(
D(n;K; j)

∣∣∣∣x(b;n;K), j

)
=

(
n1

j1

)
. . .
(
nK

jK

)(
n

j

) ,

we can write

fỹ(η|x(b;n;K), j) =
1

(
√
2πσ)j

∑
D∈Dn

K
(j)

j∏
i=1

exp

(−(ηi − αi(D,x))2

2σ2

)
P (D|x(b;n;K), j)

=
1

(
√
2πσ)j

∑
j1+...+jK=j

(
n1

j1

)
. . .
(
nK

jK

)(
n

j

) j∏
i=1

exp

(−(ηi − αi(D,x))2

2σ2

)
,

(C.2)
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Therefore, we obtain

h(Ỹ |x, j)

=−
∫ ∞

−∞
. . .

∫ ∞

−∞

1

(
√
2πσ)j

∑
j1+...+jK=j

(
n1

j1

)
. . .
(
nK

jK

)(
n

j

) j∏
i=1

exp

(−(ηi − αi(D,x))2

2σ2

)
×

× log

⎛⎝ 1

(
√
2πσ)j

∑
j′1+...+j′

K
=j

(
n1

j′1

)
. . .
(
nK

j′
K

)(
n

j

) j∏
i=1

exp

(−(ηi − αi(j
′,x))2

2σ2

)⎞⎠ dη1 . . . dηj

=j log(
√
2πσ) + log

(
n

j

)
−
∫ ∞

−∞
. . .

∫ ∞

−∞

1

(
√
2πσ)j

∑
j1+...+jK=j

(
n1

j1

)
. . .
(
nK

jK

)(
n

j

) j∏
i=1

exp

(−(ηi − αi(D,x))2

2σ2

)
×

×
⎡⎣log

⎛⎝ ∑
j′1+...+j′

K
=j

(
n1

j′1

)
. . .

(
nK

j′K

) j∏
i=1

exp

(−(ηi − αi(j
′,x))2

2σ2

)⎞⎠⎤⎦ dη1 . . . dηj,
(C.3)

where we used the result of the generalized Vandermonde’s identity and also the fact

that
∫∞
−∞ fỹi(ηi|ȳi)dηi = 1. By using the inequality

∑
j′1+...+j′

K
=j

(
n1

j′1

)
. . .

(
nK

j′K

) j∏
i=1

exp

(−(ηi − αi(j
′,x))2

2σ2

)

≥
(
n1

j1

)
. . .

(
nK

jK

) j∏
i=1

exp

(−(ηi − αi(D,x))2

2σ2

)
,

which holds for every j1 + . . .+ jK = j, we can write

h(Ỹ |x, j) ≤ j log(
√
2πσ) + log

(
n

j

)
−
∫ ∞

−∞
. . .

∫ ∞

−∞

1

(
√
2πσ)j

∑
j1+...+jK=j

(
n1

j1

)
. . .
(
nK

jK

)(
n

j

) j∏
i=1

exp

(−(ηi − αi(D,x))2

2σ2

)
×

×
[
log

((
n1

j1

)
. . .

(
nK

jK

) j∏
i=1

exp

(−(ηi − αi(D,x))2

2σ2

))]
dη1 . . . dηj

=(j) log(
√
2πeσ) + log

(
n

j

)
−

∑
j1+...+jK=j

(
n1

j1

)
. . .
(
nK

jK

)(
n

j

) log

((
n1

j1

)
. . .

(
nK

jK

))
. (C.4)
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By considering i.u.d. input sequences, we have

h(Ỹ |X, T ) ≤
n∑

j=0

(
n

j

)
dj(1− d)j

∑
x∈X

1

2n
h(Ỹ |x, d)

=n(1− d) log(
√
2πeσ) +

n∑
j=0

(
n

j

)
dj(1− d)j

[
log

(
n

j

)
−Wj(n)

]
, (C.5)

where Wj(n) is given in Eqn. (3.5), and the result is obtained by following the same

steps as in the computation leading to (3.19). Therefore, by substituting Eqn. (C.5)

into Eqn. (3.37), Eqn. (3.36) is obtained which concludes the proof.
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Here, we obtain the exact probability of output sequences resulting from at

most two duplications in transmitting i.u.d. input sequences. Obviously, any out-

put sequence of length n results only from the same transmitted sequence with no

duplications, and with probability of (1− i)n. We can write

Q (y(n)|x) =

⎧⎪⎨⎪⎩ (1− i)n y(n) = x

0 y(n) �= x

, (D.1)

hence, we have

P (y(n)) =
∑
x∈X

Q(y(n)|x)P (x) =
(1− i)n

2n
. (D.2)

Now, we consider the output sequences of length n+ 1. For output sequences

of length n+1 and with K runs (y(b;n+1, K) = (b;m1, m2, . . . , mK) and
∑K

k=1mk =

n+ 1), we have

Q (y(b;n+ 1;K)|x) =

⎧⎪⎨⎪⎩ (mk − 1)i(1− i)n−1 x = (b;m1, . . . , mk − 1, . . . , mK)

0 otherwise
.

(D.3)

We then have

P (y(b;n+ 1;K)) =
∑
x∈X

Q(y(b;n+ 1;K)|x)P (x)

=

K∑
k=1

(mk − 1)i(1− i)n−1

2n

=
(n+ 1−K)i(1 − i)n−1

2n
, (D.4)

hence, all the output sequences of length n + 1 and with K runs are equiprobable

which simplifies output entropy calculation.

By a similar argument, for output sequences with length n+ 2, we can write

Q (y(b;n + 2;K)|x)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(mk− 1)(mr− 1)i2(1− i)n−2 x = (b; · · · ,mk − 1, · · · ,mr− 1, · · · )(
mk−2

2

)
i2(1− i)n−2 x = (b; · · · ,mk − 2, · · · ),mk ≥ 4

0 otherwise

(D.5)
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hence, we obtain

P (y(b;n+ 2;K; l)) =
∑
x∈X

Q(y(b;n+ 2;K)|x)P (x)

=
i2(1− i)n−2

2n

( K∑
k=1,mk≥4

(
mk − 2

2

)
+

K−1∑
k=1

K∑
r=k+1

(mk − 1)(mr − 1)

)

=
i2(1− i)n−2

2n

( K∑
k=1

(
(mk − 2)(mk − 3)

2

)
− l +

K−1∑
k=1

K∑
r=k+1

(mk − 1)(mr − 1)

)

=
i2(1− i)n−2

2n

( K∑
k=1

(
(mk − 1)2 − 3mk + 5

2

)
− l +

K−1∑
k=1

K∑
r=k+1

(mk − 1)(mr − 1)

)
=
i2(1− i)n−2

2n+1

(
(n−K)2 + n +K − 2− 2l

)
. (D.6)

where l is the number of runs in y with length of one (l =
∑K

k=1 δ(mk−1)), and the last

equality is obtained by using the fact that
∑

k=1K(mk− 1)2+2
∑K−1

k=1

∑K
r=k+1(mk −

1)(mr−1) =
(∑K

k=1(mk − 1)
)2

= (n−K+2)2. Based on the above calculation, all the

output sequences with length n+2, K runs and l runs of length 1 are equiprobable.
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We first give a lower bound on the output entropy of the binary input q-ary

output channel with synchronization errors related to the output entropy of the binary

synchronization error channel, then give an upper bound on the conditional output

entropy of the binary input q-ary output channel with synchronization errors related

to the conditional output entropy of the binary synchronization error channel.

Lemma 16. For a binary input q-ary output channel with synchronization errors,

for any input distribution and any odd q, we have

H(Y (q)) ≥ H(Y )−E{M} log
⎛⎝2p20 +

q−1
2∑

k=1

(pk + p−k)2

⎞⎠ , (E.1)

where Y denotes the output sequence of the synchronization error channel and input

sequence of the binary input symmetric q-ary output channel, and Y (q) denotes the

output sequence of the binary input symmetric q-ary output channel.

Proof. For p(y(q)|y,M = m), we have p(y(q)|y,M = m) =
∏ q−1

2

k=− q−1
2

pjkk , where jk

denotes the number of transitions b→ k
b
. E.g., in a binary input 5-ary output channel

we have p(−1102|1111) = p−1p1p0p2. Therefore, for a fixed output sequence y(q) of

length m with jk symbols of k, since there are 2j0
∏ q−1

2
k=1

(
jk
ik

)(
j−k

i−k

)
possibilities for y

such that d(y,y(q))b→0 = j0 and d(y,y(q))b→ k
b
= ik, we can write

∑
y,p(y 	=0)

p(y(q)|y,M = m) ≤ 2j0pj00

q−1
2∏

q=1

jk∑
ik=0

(
jk
ik

)
pikk p

jk−ik
−k

j−k∑
i−k=0

(
j−k
i−k

)
p
i−k

−k p
j−k−i−k

k

= 2j0pj00

q−1
2∏

k=1

(pk + p−k)jk+j−k

= 2m0pm0
0

q−1
2∏

k=1

(pk + p−k)mk(y(q)), (E.2)

where mk(y
(q)) = #{t ≤ m|y(q)t ∈ {k,−k}}, i.e., the number of the times Y

(q)
t = k or
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Y
(q)
t = −k. Hence,∑
y(q)

p(y(q)|M = m)
∑

y,p()	=0

p(y(q)|y,M = m)

≤
∑
y(q)

p(y(q)|M = m)(2p0)
m0

q−1
2∏

k=1

(pk + p−k)mk(y(q))

=
∑

m0+···+m q−1
2

=m

(
m

m0, · · · , m q−1
2

)
pm0
0

q−1
2∏

l=1

(pl + p−l)ml

⎛⎝(2p0)
m0

q−1
2∏

k=1

(pk + p−k)mk

⎞⎠
=

⎛⎝2p20 +

q−1
2∑

k=1

(pk + p−k)2

⎞⎠m

. (E.3)

By substituting the result of (E.3) in the result of Lemma 6, we obtain

H(Y (q)) ≥ H(Y )−E{M} log
⎛⎝2p20 +

q−1
2∑

k=1

(pk + p−k)2

⎞⎠
= −E{M} log

⎛⎝2p20 +

q−1
2∑

k=1

(pk + p−k)2

⎞⎠ , (E.4)

which concludes the proof.

Lemma 17. For a binary input q-ary output channel with synchronization errors,

for any odd q and any input distribution, we have

H(Y (q)|X) ≤ H(Y |X) + E{M}H(p− q−1
2
, · · · , p q−1

2
). (E.5)

Proof. By using the result of Lemma 7, we can write

H(Y (q)|X) ≤ E{M}H(Y
(q)
j |Yj) +H(Y |X)

= E{M}H(p− q−1
2
, · · · , p q−1

2
) +H(Y |X). (E.6)

Obviously, by employing the results of Lemmas 16 and 17 and using the same

approach as in the proof of Theorem 2, the proof of Theorem 4 is complete.
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We need the following two lemmas to proof Theorem 5. In the first one, a lower

bound on the output entropy of the binary input q-ary output channel with synchro-

nization errors is derived relating with the output entropy of the binary synchroniza-

tion error channel. In the second one, we give an upper bound on the conditional

output entropy of the binary input q-ary output channel with synchronization errors

related to the conditional output entropy of the binary synchronization error channel.

By employing the result of two following lemmas and using the same approach as in

the proof of Theorem 3, Theorem 5 is proved.

Lemma 18. For a binary input q-ary output channel with synchronization errors,

for any input distribution and any even q, we have

H(Y (q)) ≥ H(Y )− E{M} log
⎛⎝ q

2∑
k=1

(pk + p−k)
2

⎞⎠ , (F.1)

where Y denotes the output sequence of the synchronization error channel and input

sequence of the binary input symmetric q-ary output channel, and Y (q) denotes the

output sequence of the binary input q-ary output channel.

Proof. Due to the result of Lemma 6, we have

H(Y (q))−H(Y ) ≥ −EM

⎧⎨⎩log

⎛⎝∑
y(q)

∑
y,p(y 	=0)

p(y(q)|y,M = m)p(y(q)|M = m)

⎞⎠⎫⎬⎭ .

(F.2)

On the other hand for p(y(q)|y,M = m), we have p(y(q)|y,M = m) =
∏ q

2
1 pjkk p

j−k

−k ,

where jk denotes the number of transitions b → k
b
. For instance, in a binary in-

put 6-ary output channel we have p(−11 − 32|1111) = p−1p1p−3p2. On the other

hand, for a fixed output sequence y(q) of length m with jk symbols of k, there

are
∏ q

2

k=1

(
jk
ik

)(
j−k

i−k

)
possibilities for y such that d(y,y(q))b→ k

b
= ik. By defining

mk(y
(q)) = #{t ≤ m|y(q)t ∈ {k,−k}}, i.e., the number of the times Y

(q)
t = −k or
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Y
(q)
t = k, we can write

∑
y,p(y 	=0)

p(y(q)|y,M = m) ≤
q
2∏

k=1

jk∑
ik=0

(
jk
ik

)
pikk p

jk−ik
−k

j−k∑
i−k=0

(
j−k
i−k

)
p
i−k

−k p
j−k−i−k

−k

=

q
2∏

k=1

(pk + p−k)jk+j−k =

q
2∏

k=1

(pk + p−k)mk(y(q)), (F.3)

Furthermore, by taking the summation over all the possibilities of y(q) in (F.3), we

obtain

∑
y(q)

p(y(q)|M = m)
∑

y,p(y)	=0

p(y(q)|y,M = m)

≤
∑
y(q)

p(y(q)|M = m)

q
2∏

k=1

(pk + p−k)mk

=
∑

m1+···+m q
2
=m

(
m

m1, . . . , m q
2

) q
2∏

l=1

(pl + p−l)ml

q
2∏

k=1

(pk + p−k)mk

=

⎛⎝ q
2∑

k=1

(pk + p−k)2

⎞⎠m

. (F.4)

By substituting the result of (F.4) in (F.2), we obtain

H(Y (q))−H(Y ) ≥ − log

⎛⎝ q
2∑

k=1

(pk + p−k)2

⎞⎠∑
m

mp(m)

= −E{M} log
⎛⎝ q

2∑
k=1

(pk + p−k)2

⎞⎠ , (F.5)

which concludes the proof.

Lemma 19. In any binary input q-ary output channel with synchronization errors,

for any input distribution and any even q, we have

H(Y (q)|X) ≤ H(Y |X) + E{M}H(p− q
1
, · · · , p−1, p1, · · · , p q

2
). (F.6)

Proof. The proof is similar to the proof of Lemma 17.
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It follows from the results in Lemmas 18 and 19 that

I(X;Y (q))≥I(X;Y )−E{M}
⎡⎣log

⎛⎝ q
2∑

k=1

(pk + p−k)
2

⎞⎠+H(p− q
1
, · · · , p−1, p1, · · · , p q

2
)

⎤⎦.
Furthermore, following the same approach as in the proof of Theorem 3 concludes

the proof of Theorem 5.
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We first compute HΔ = H(p−M , . . . , pM) + log(Δ) and

M∑
m=1

1

Δ
(pm + p−m)

2 for

M → ∞ and Δ → 0. Then by employing the result of Theorem 5, we prove the

theorem.

For large M , we have pm ∼= f(1 − mΔ)Δ with the understanding that the

approximation becomes exact as Δ → 0 where f(x) = 1√
2πσ

e−
x2

2σ2 . Therefore, for

HΔ = H(p−M , . . . , p−1, p1, . . . , pM) + log(Δ), we can write

lim
M→∞,Δ→0

HΔ

= lim
M→∞,Δ→0

−
M∑

m=1

[
f(1−mΔ) log(f(1−mΔ)) + f(1 +mΔ) log(f(1 +mΔ))

]
Δ

=

∫ ∞

0

[
f(1− x)

(
log(

√
2πσ) +

(1− x)2

2σ2
log(e)

)
+ f(1 + x)

(
log(

√
2πσ) +

(1 + x)2

2σ2
log(e)

)]
dx

=

∫ ∞

−∞
f(1− x)

(
log(

√
2πσ) +

(1− x)2

2σ2
log(e)

)
dx

= log(
√
2πσ) +

log(e)

2
. (G.1)

On the other hand, for
∑M

m=1
1
Δ
(pm + p−m)

2, by letting M →∞ and Δ→ 0,

we obtain

lim
M→∞,Δ→0

M∑
m=1

1

Δ
(pm + p−m)

2

= lim
M→∞,Δ→0

M∑
m=1

(f(1−mΔ) + f(1 +mΔ))2Δ

=

∫ ∞

0

(f(1− x) + f(1 + x))2 dx

=
1√
2πσ

∫ ∞

0

(
f(
√
2(1− x)) + f(

√
2(1 + x)) + e−

1
σ2 f(

√
2x)
)
dx

=
1

2
√
πσ

(1 + e−
1
σ2 ). (G.2)
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Using the results of (G.1) and (G.2), we can write

lim
M→∞,Δ→0

(
H(p−M , . . . , p−1, p1, . . . , pM) + log

(
M∑

m=1

(pm + p−m)2
))

= lim
M→∞,Δ→0

(
HΔ + log

(
M∑

m=1

1

Δ
(pm + p−m)2

))

= log

(√
e

2
(1 + e−

1
σ2 )

)
. (G.3)

Finally, by substituting this result into (4.38), the proof follows.
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For P (M1,M 2), we can write

P (M 1 = M1,M 2 = M2)

=

N−M2∑
N1=M1

P (M 1 = M1,M 2 = M2|N 1 = N1)P (N 1 = N1)

=

N−M2∑
N1=M1

P (M 1 = M1|N 1 = N1)P (M2 = M2|N 1 = N1)P (N1 = N1)

=

N−M2∑
N1=M1

(
N1

M1

)
dN1−M1
1 (1−d1)

M1

(
N−N1

M2

)
dN−N1−M2
2 (1−d2)

M2

(
N

N1

)
λN1(1− λ)N−N1

=

(
N −M2

M1

)(
N

M2

)
(λ(1− d1))

M1((1− λ)(1− d2))
M2×

×
N−M2∑
N1=M1

(
N − (M1 +M2)

N1 −M1

)
(λd1)

N1−M1((1− λ)d2)
N−N1−M2

=

(
N −M2

M1

)(
N

M2

)
(λ(1− d1))

M1((1− λ)(1− d2))
M2(λd1 + (1− λ)d2)

N−M1−M2.

Furthermore, due to the structure of the channel C′, M 2 is binomially distributed,

i.e., P (M 2 = M2) =
(
N

M2

)
((1 − λ)(1 − d2))

M2(λ + (1 − λ)d2)
N−M2, and as a result

E{M 2} = N(1− λ)(1− d2). On the other hand, to obtain EM 1
{M 1|M 2}, we first

need to obtain P (M 1|M 2), for which we can write

P (M 1 = M1|M 2 = M2)

=
P (M 1,M 2)

P (M2)

=

(
N −M2

M1

)
(λ(1− d1))

M1(λd1 + (1− λ)d2)
N−M1−M2(λ+ (1− λ)d2)

M2−N .

Therefore, we obtain

EM 1
{M 1|M 2}

=

N−M2∑
M1=0

M1

(
N −M2

M1

)
(λ(1− d1))

M1(λd1 + (1− λ)d2)
N−M1−M2(λ+ (1− λ)d2)

M2−N

= (N −M2)
λ(1− d1)

λ+ (1− λ)d2
.
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For the Hessian of the the function g([M1, . . . ,Mk]), we have

∇2g([M1, . . . ,Mk]) =
1∑K

k=1Mk

11T − diag([
1

M1

, . . . ,
1

MK

]),

where 1 is an all one vector of length K, i.e., 1 = [1, . . . , 1]T , and diag([ 1
M1

, . . . , 1
MK

])

denotes a diagonal matrix whose k-th diagonal element is 1
Mk

. Furthermore, by defin-

ing a = [a1, . . . , aK ]
T , we can write

a∇2gaT =
(
∑K

k=1 ak)
2∑K

k=1Mk

−
K∑
k=1

a2k
Mk

=
1∑K

k=1Mk

( K∑
k=1

a2k + 2

K−1∑
k=1

K∑
j=k+1

akaj −
K∑
k=1

a2k −
K∑
k=1

∑
j 	=k Mj

Mk

a2k

)

=
1∑K

k=1Mk

K−1∑
k=1

K∑
j=k+1

(
2akaj − Mj

Mk

a2k −
Mk

Mj

a2j

)

=
−1∑K

k=1Mk

K−1∑
k=1

K∑
j=k+1

Mj

Mk

(ak − Mk

Mj

aj)
2,

which is negative for all Mk, Mj > 0. Therefore, ∇2g([M1, . . . ,Mk]) is a nega-

tive semi-definite matrix and as a result g([M1, . . . ,Mk]) is a concave function of

[M1, . . . ,Mk].
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