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ABSTRACT

 

A proposed visible spectrum nanoscale imaging method requires material with 

permittivity values much larger than those available in real world materials to shrink the 

visible wavelength to attain the desired resolution. It has been proposed that the 

extraordinarily slow propagation experienced by light guided along plasmon resonant 

structures is a viable approach to obtaining these short wavelengths. To assess the 

feasibility of such a system, an effective medium model of a chain of Noble metal 

plasmonic nanospheres is developed, leading to a straightforward calculation of the 

waveguiding properties. 

                Evaluation of other models for such structures that have appeared in the 

literature, including an eigenvalue problem nearest neighbor approximation, a multi-

neighbor approximation with retardation, and a method-of-moments method for a finite 

chain, show conflicting expectations of such a structure.  In particular, recent publications 

suggest the possibility of regions of invalidity for eigenvalue problem solutions that are 

considered far below the onset of guidance, and for solutions that assume the loss is low 

enough to justify perturbation approximations. Even the published method-of-moments 

approach suffers from an unjustified assumption in the original interpretation, leading to 

overly optimistic estimations of the attenuation of the plasmon guided wave.

                In this work it is shown that the method of moments approach solution was 

dominated by the radiation from the source dipole, and not the waveguiding behavior 

claimed.  If this dipolar radiation is removed the remaining fields ought to contain the 

desired guided wave information.  Using a Prony's-method-based algorithm the 
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dispersion properties of the chain of spheres are assessed at two frequencies, and shown 

to be dramatically different from the optimistic expectations in much of the literature.

                A reliable alternative to these models is to replace the chain of spheres with an 

effective medium model, thus mapping the chain problem into the well-known problem 

of the dielectric rod.  The solution of the Green function problem for excitation of the 

symmetric longitudinal mode (TM01) is performed by numerical integration. Using this 

method the frequency ranges over which the rod guides and the associated attenuation are 

clearly seen. The effective medium model readily allows for variation of the sphere size 

and separation, and can be taken to the limit where instead of a chain of spheres we have 

a solid Noble metal rod. This latter case turns out to be the optimal for minimizing the 

attenuation of the guided wave.

               Future work is proposed to simulate the chain of photonic nanospheres and the 

nanowire using finite-difference time-domain to verify observed guided behavior in the 

Green's function method devised in this thesis and to simulate the proposed nanosensing 

devices.
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Chapter 1

INTRODUCTION

Nanoscale imaging and detection methods are becoming ever more important as 

industry and research focus attention to the use, application, and characteristics of 

nanoscale devices and structures.  

Semiconductor and medical research areas are particularly hindered by the 

limitations of current nanoscale imaging and detection capabilities, which fail to offer the 

combination of high resolution (small scale), low cost, and high speed.  Efforts in these 

areas could be significantly assisted by an imaging and detection method which combines 

all three of these capabilities. 

Current nanoscale imaging and detection is performed by scanning probe 

instruments, which utilize a near-field detection system.  Differing methods detect 

differing fields; such as Atomic Force Microscopy detecting electrostatic force, Magnetic 

Force Microscopy detecting a magnetic force,  Scanning Tunneling Microscopy detecting 

current from quantum tunneling, or Near-field Optical Microscopy detecting an 

evanescent electromagnetic field.  All of these methods function under the same 

principle, which is to employ a probe to detect a given field, and scan it closely over an 

object to detect its features.

A very high resolution may be achieved using such methods, on the order of 0.1 

nm in the lateral direction and 0.01 nm in depth for the most sensitive method (STM) [1]. 
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However, even at lower resolutions, the linear scanning speed of such devices are on the 

order of 1 mm/s [2].  Assuming step sizes between scanned lines are on the order of 

10 nm, scanning time would be on the order of days for a square centimeter of material.  

While near field microscopy is well suited for atomic level imaging, it is much too slow 

for macro level imaging with atomic level detail.

Conversely, current optical imaging methods are relatively inexpensive and fast 

for small scale imaging and defect detection, however the resolution is limited by the 

diffraction limit of light, which is on the order of the wavelength of the light used [3].   

As the sizes of small scale structures and devices continues to shrink beyond the 

wavelength of visible light, this limit is proving problematic, and the well developed 

methods of defect detection are becoming unable to resolve features of objects under test.

To leverage existing optical methods, it is desirable to break past the diffraction 

limit.  Past and present work to achieve this has been devised at ASU, including Wave 

Interrogated Near Field Array (WINFA) methods [4].  WINFA allows defects smaller 

than the diffraction limit of the probing light to be detected by observing the changes the 

small defect has on the scattering properties of a larger nearby antenna.  

Another method suggested at ASU, which has been a central theme in multiple 

proposals yet still largely undeveloped, is an Optical Real-Time Imaging Of 

Nanostructures (ORION) system.  In general, an ORION system would apply a coherent 

evanescent wave imaging method, which depends on the contraction of wavelength in a 
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high dielectric constant material and radar-like evaluation of scattering to produce an 

image.

The originally proposed coherent evanescent wave imaging system consists of: (a) 

a coherent light source, (b) transducer that converts coherent light source into an 

evanescent wave, (c) an engineering detector surface that supports slow surface waves 

(20 to 100 times slower than the free-space speed of light), (d) an interaction region 

spanning thousands of square wavelengths, (e) a positioning mechanism to bring the 

sensor surface proximate to the nanostructure to be imaged, and (f) a transducer boundary 

to out-couple the scattered wave into a coherent signal for the imaging by a detector array 

(g). [5]

Fig. 1-1 Coherent Wave Imaging Sensor [5]

This originally proposed system calls for a generic "engineered waveguiding surface", 

which would support plane wave propagation.  Wave propagation would be slowed to 

shrink the wavelength to nanometric scale.  
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At radio frequencies this may be easily achieved by using a waveguiding surface 

made from translucent material with appropriately high enough dielectric constant to 

slow the wave sufficiently for the desired behavior.  However, there exists no real world 

homogeneous translucent low loss material of sufficiently large dielectric constant for the 

same purpose at optical frequencies.  

Overcoming this lack of appropriate material for the desired behavior at the 

frequencies of interest might be achieved by engineering a waveguiding structure which 

behaves like a homogeneous structure of desired permittivity.  There are a variety of 

methods and models for creating an effective permittivity in a medium.  Alternatively 

there have been reported waveguiding structures that slow down the wave enough to 

attain the desired wavelength shortening effect.  Invariably, these proposed structures 

exploit the surface plasmon resonance in noble metal materials, and particularly in arrays 

of nanoparticles.  

Given that the latter structures guide slow waves the same way that very large 

index of refraction medium would, it should be possible to construct a formal effective 

medium model connection between the heterogeneous waveguiding structure and a 

homogeneous equivalent.  However, verification of the characteristics of the expected 

behavior of such structures as described in the literature must be made.

Given the novelty of the imaging approach, the overall utility, and potential vast 

application in industry, ASU was granted a patent to the general ORION approach [6].  

ORION was also the subject of a proposal to the NSF for the establishment of a nano-
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engineering research center comprising four interconnected multi-disciplinary core 

activities, collaboration by six universities, two national labs, a dozen professors with 

complimentary skill sets, and a proportional number of graduate students and researchers 

to complete the project. Despite encouraging reviews of the proposal, due to some of the 

more radical components of the proposal, the initiative was deemed too high risk by the 

NSF to fund.

To reduce the perceived risk and enable further research into the ORION 

approach, a study into a part of the initiative has been undertaken, namely, the design of a 

waveguiding surface.  In performing this study the question is asked, are current models 

of these plasmon nanosphere waveguides found in the literature valid?  If so, is the 

resultant structure equivalent to other classical homogeneous structures with better 

known electromagnetic wave behavior properties?

After evaluating the properties and validity of some of the models found in the 

literature, an application of effective medium theory used in conjunction with a Green 

function numerical method is proposed as an alternative method to model these 

waveguides.

Finally, the results are summarized and future work laid out based on the 

discoveries contained.
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Chapter 2

PLASMONIC WAVEGUIDING STRUCTURES 

2.1 Original Proposal and Suggested Proof of Concept

The original ORION proposal called for an evanescent imaging sensor, as 

described in Figure 1-1 of the introduction.  The original simplified sensor called for a 

waveguiding homogeneous low loss dielectric slab. The unavailability of appropriate low 

loss very high permittivity material at optical frequencies motivated an initial design of a 

waveguiding surface based on colloidal gold nanoparticles.  Such surfaces had been 

constructed by the Colloidal Chemistry group of the University of Vigo under the 

direction of Professor Luis Liz-Marzan.  The goal was to slow the guided wave by a 

factors of 50 to 500 to obtain wavelengths of the order of single nanometers [7]. 

 

Fig. 2-1 Proposed Waveguiding Material Comprised of Colloidal Spheres [7]
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The effective permittivity of such a medium composed of spheres has been 

successfully modeled using effective medium theory over the frequencies of interest. 

Effective medium theory is valid in the quasi-static limit, that is to say that the unit cell of 

the effective material is small compared to wavelength.   Work on tailoring the surface 

plasmon resonance of colloidal spheres [8] has shown that at optical frequencies such an 

assumption is satisfied for such objects by noting their single resonance and a 3dB 

extinction cross section bandwidth consistent with excitation of only the surface plasmon 

dipole mode. Figure 2-2 for colloidal spheres with gold cores, and Figure 2-3 show the 

resonance peak sharpening as expected when the radius of the Drude metal core shrinks.  

Figure 2-3 also shows that the frequency of resonance may be shifted by increasing the 

thickness of the glass coating of the colloidal spheres (because this reduces the coupling 

between the metal cores), which thus allows for resonance to be dialed in at a desired 

frequency.

Fig. 2-2 Normalized UV-visible spectra of Drude metal (gold) Spheres Coated with Five 
 

Monolayers of Nanoparticles, with Silica Shell Thickness Indicated in Graph [8]

7



Fig. 2-3 Calculated Extinction Cross Section (top) of Drude Metal Spheres, with Varying 

Diameters, and Measured Absorbance (bottom) [8]

While consideration of a surface comprised of these spheres is appropriate for the 

original ORION imaging device, a proof of concept by reduction of complexity was 

suggested by Professor E. Dan Hirleman of Purdue University, in which only a rod of this 

material would be considered, instead of an entire plane of material used as a waveguide 

for the imaging device. The cylindrical rod would guide waves and be scanned across a 

surface, enabling the same capability, with a simpler model of reduced complexity.
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If this reduction of complexity and proof of concept is to be pursued, the question 

becomes, what is this rod made of?  Three options are most evident, as shown in figures 

2-4, 2-5, and 2-6.  One, a single chain of spheres periodically placed, behaving in a 

similar manner to a homogeneous dielectric rod.  Two, an actual nano-wire of conducting 

material.  Or three, a rod made of a larger bulk collection of the colloidal spheres.

Fig. 2-4 First Suggested Option for Waveguiding Structure, Chain of Spheres

Fig. 2-5 Second Suggested Option for Waveguiding Structure, Nanowire

Fig. 2-6 Third Suggested Option for Waveguiding Structure, Cylinder of Effective Media

Constructed from Colloidal Spheres
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Suitability of such structures must by determined by defining figures of merit.  

The first obvious figure of merit, is that the structure must guide a wave.  Second, it 

should be “low” loss.  The latter is obviously a relative consideration depending on the 

required length of the device.  However, it is reasonable to expect that a device will 

require a minimum length to obtain a clear separation between the excitation region 

where the wave is fed, the interaction region where the wave interacts with the surface to 

be imaged, and the collection region where the signal is received to measure S21.

Third, the propagating wave must suffer minimal dispersion.  Again, this is a 

relative consideration, depending on the shortness of the pulse required for desired 

imaging modality (e.g. radar versus tomography).  The fact that narrow bandwidths are 

generally sufficient at optical frequencies for most applications, suggests that this would 

not be a problem except for the most extreme occurrences of dispersion.  However, any 

time we propose to use a resonant phenomenon (like the plasmon resonance) as the 

anchor of an instrument, dispersion problems cannot be ignored.

The above considerations combine into a fourth figure of merit, that the waves 

guided by the structure need to be able to achieve the desired resolution.  This may be 

achieved in a few ways.  First, if the wave is slowed sufficiently, the wavelength in the 

direction of propagation may be small enough to interact with objects of the dimension of 

interest.  Second, if the phase of the wave can be accurately measured, then changes in 

the phase due to small objects may be used for imaging, even if the wavelength of the 

illuminating light is too long to be scattered by the small objects.  Finally, concentration 

10



of the electromagnetic fields in the direction transverse to the direction of propagation 

may be utilized to obtain “cross range” resolution.

This thesis will mainly focus on the first type of structure, the chain of spheres 

structure of Figure 2-4; and examine whether the models found in the literature for such 

structures are valid.  Given the pitfalls and uncertainty in those previous methods, a 

Green function numerical solution to the problem is proposed here.  Using established 

effective medium model methods, the problem is reduced to the problem of a dispersive 

dielectric rod.  This approach unambiguously identifies the frequencies of guidance and 

the dispersive properties of the waveguide over those frequencies.  The same method is 

applied to the second structure (Figure 2-5), the silver nanowire, and the results evaluated 

and compared to the chain of spheres.

2.2 Synopsis of Waveguiding Chain Results as Presented In Literature

Within the literature, there have been many groups modeling the waveguiding 

properties of periodically spaced plasmonic spheres, with varying predictions and results. 

Some groups only consider longitudinal modes, while others consider both longitudinal 

and transverse.  Some consider silver, others gold, and even those considering the same 

material use a different model for the material.  For instance Quinten et al [10] considered 

silver nanoparticles with silver material data that had three times as much loss as the 

measured values by Johnson and Christy [30].  While the measured data by Johnson and 
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Christy has the imaginary component of the permittivity on the order of one tenth those 

measured by Palik [26].  Given a group chooses a material, say silver, and picks a set of 

measured material parameters, whether it be measured data by Johnson and Christy, 

Palik, or other; they typically neglect to incorporate the effects of the small size of the 

particle and its diminished mean free path [31].  This means the silver data used for the 

model implies less loss than should be expected.  Even when using the same material 

parameters data, the model used to fit to the data often differs as well.  For instance 

Weber and Ford [13] use a Drude model for silver with ϵ∞= 1 , while Udagedara et al 

also used a Drude model, but assumed a more accurate ϵ∞= 5 .  

Maeir et al [11] calculated longitudinal mode energy decay lengths of

αL = 1.386×107 m−1 ( 30 dB/500 nm )  and group velocity v gL = 1.6×107m / s for 

gold nanospheres, but in the same paper came to a finite-difference time-domain 

simulation conclusion of αL = 4.95×106 m−1 ( 10.7dB /500nm ).  It is questionable if 

the manner in which they simulated the system resulted in an accurate measurement of 

the attenuation of only the guided wave.  Chau et al [43] use a “method” of stimulating a 

chain of nanoparticles with a plane wave traveling in the direction of the axis of the 

chain, then assumed any field along this axis past the third sphere must be from a guided 

wave because the other spheres in the chain are in the “shadow” of the first few spheres, 

completely ignoring diffraction and surface waves on the first and subsequent spheres.  

Weber and Ford also appear to neglect taking into account the non-guided field, resulting 

in a calculated attenuation of the order of 3.13 dB/500nm .
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Beyond the different assumptions of materials, and well established physical 

behavior, different groups have used different mathematical approaches to solving the 

problem, leading to differences in results.  Many groups [10-12] use an eigenvalue 

problem approach, while others a method-of-moments like approach [13], and even 

others exotic approaches such as application of polylogarithms to avoid complex poles 

during integration [14].

 All claim very good representation of physical phenomena, even though the 

dispersion diagram between the models can vary greatly, and results even varying within 

a single paper depending on whether performing an analytic derivation or measuring 

results from finite-difference time-domain simulation.

For the desired application for a nanophotonic imaging device, the attenuation of 

waves guided by the structure is needed to evaluate whether it is sufficiently low loss; 

and the propagation constant to determine if the wavelength is sufficiently small in the

z direction for scattering with the objects of interest, and to determine how sensitive 

the structure is to dispersion.

The main question is, do these models agree?  And if so, when and how; and if 

not, why?  To decide, three of the models will be evaluated from two of the groups.  A 

model which applies a nearest neighbor approximation, a second which applies a multi-

neighbor approximation including retardation, and a third which applies a method-of-

moments solution.  Beyond whether the models agree, it must be determined if they are
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even modeling a guided wave, and if the models are being applied in a region of validity 

for an eigenvalue solution.

2.3 Nearest Neighbor Approximation

The nearest neighbor approximation is an application of Förster Theory [16] and 

is based on the idea of near-field energy transfer between nearest neighbor particles.  This 

method may be applied to model a string of identical equidistant particles in a host 

medium.  

To apply the approximation, one must first express the fields of each particle.  

This is achieved by considering the multipole expansion of the electric field of a particle 

given its charge distribution, and by noting that at the frequencies and distances of 

interest (visible light and distances on the order of 1 nm), and that the total charge of the 

particles of interest are 0, that the most significant term of the expansion is the dipole 

term [15].

With an expression for the field of a given particle, one may temporarily restrict 

their view of the chain of particles to two neighboring particles.  The first particle will be 

considered to be energized and labeled the "donor" particle, while the second particle will 

be the next in the chain to receive the energy of the a traveling wave and labeled the 

"acceptor" [16].
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Given the dipole representation of each particle is Hertzian, a simple equation of 

motion for the charge of each particle may be obtained, where the “restoring force” on 

any given induced dipole is composed of the electric fields of its two nearest neighbors 

[12].   This equation of motion may be solved by a propagating wave solution, which 

leads to a dispersion relation. 

If the material that the particles are composed of has a negative permittivity in the 

visible range (such as silver or gold), the spherical shape of the particle will lead to a 

surface plasmon resonance in which the surface plasmon resonance is the dominant term. 

The dispersion relation may be simplified with an approximation which leads to a simple 

expression for the group velocity of the propagating wave.

The electric field of a dipole is Edip =−
γ i p

4π ϵr3
where γtransverse = γ t = 1 for 

transverse polarization, γlongitudinal = γL =−2 for longitudinal, p is the dipole moment.

Consider a chain of spheres represented by dipoles.  The total electric field at a dipole m 

may be determined by superposition of the fields created by each dipole in the chain.  

To justify the nearest neighbor approximation, note that the energy transfer rate 

from donor to acceptor is a function of the square of the electric field, that is to say it is 

function of d−6 [12].   Let the energy at the mth dipole be given by Enm and consider 

an infinite chain, and given the energy level of each dipole is the same, observe the ratio 

of the energy transfer from the nearest neighbors versus the rest of all the dipoles:
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2 Σ
m=2

∞
Enm

2 En1

=
Σ

m=2

∞
( m⋅d )

−6

d−6 = Σ
m=2

∞
(m )

−6

which is a Riemann Zeta function.  Since 6>1 the function is convergent and solvable 

numerically.  Using MathCAD 14 to numerically solve gives Σ
m=2

∞
(m )

−6
= 0.017  .  The 

nearest neighbor effect is almost 50 times stronger than the sum of all the other terms.  So 

given the energy level of each dipole is of the same order, the nearest neighbor 

approximation is valid.  If the energy levels are not of the same order (which can be 

expected if a wave is traveling down the chain), then the nearest neighbor approximation 

may need to be refined, and is likely missing relevant interactions between particles 

farther down the chain than the simple nearest neighbor model would suggest.  We will 

not consider this at the moment. 

The mth dipole produces the following field at the location of the m+1 and m-1 

dipoles:

E i , m =−
γi pi ,m ( t )

4πϵ d3

The equation of motion for the dipole moment of the Hertzian dipole on a given particle 

is derived as follows: Assuming no radiation and perfect conductors there would be no 

damping and we would have:

m⋅
d2 x
d t2 =−k⋅x

Where now k is the spring constant that models the restoring force responsible for the 
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plasmon resonance of the particle (this is the force that tends to bring the charges in the 

resonating dipole back together again).  In reality we are not using a lossless perfect 

conductor, so the equation of motion must account for damping of the motion:

m
d2 x
d t 2 +mΓI

dx
dt
+k x = 0

Our particles have charge, and are undergoing acceleration (moving back and forth 

between the poles).  Charge undergoing acceleration radiates, hence our equation should 

have a radiation driving function:

m
d2 x
d t 2 +mΓ I

dx
dt
+k x = F

This radiation damping by an accelerated charge is assumed to be governed by the Lamor 

formula [17]:

Enrad∝
2e2 a2 T

3 c2

Where Enrad is the energy radiated, e is the charge of the particle being accelerated 

(in our case we would replace e with q ), a is the magnitude of the acceleration, 

and T the period of acceleration.

The Larmor power formula may be used to determine the power radiated by such 

an accelerated particle:

P(t) =
2
3

e2

c3
( ẍ )2
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Which gives radiation reaction force on the charge of the dipole as:

Frad =
2
3

e2

c3 x⃛

This can be seen by noting that a particle of mass m and charge e acted on by 

external force F moves according to Newton's equation of motion, Fext = m v̇ .

Since the particle is accelerated, it emits radiation at a rate given by the Larmor power

 formula, P(t) =
2
3

e2

c3 ( v̇ )
2 .  To account for radiative energy loss and the effect this 

loss will have on the mechanical motion of the particle, modify Newton's equation by 

adding a radiative reaction force Frad , m v̇ = Fext+F rad .  To determine Frad , 

demand that the work done by this force on the particle in a given time interval

t1<t<t 2 be equal to the negative of the energy radiated in that time span:

∫
t 1

t 2

Frad⋅v dt =−∫
t 1

t 2

2
3

e2

c3
v̇⋅v̇ d t

Integration by parts of the right side:

∫
t 1

t 2

Frad⋅v dt =−
2
3

e2

c3
v̇⋅v ∣

t1

t2

+
2
3

e2

c3∫
t 1

t 2

v̈⋅vdt

The motion is periodic, so with judicious choice of t1 and t2 v̇⋅v = 0 and

∫
t 1

t 2

Frad⋅v dt =
2
3

e2

c3∫
t 1

t 2

v̈⋅v dt so:

Frad =
2
3

e2

c3 v̈ [17]
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Define the characteristic time as τ =
2
3

e2

m c3 , the relaxation frequency due to

 radiation into the far field as ΓR =ω0
2
τ then Frad =

2
3

e2

c3 x⃛ = m τ x⃛ = m
ΓR

ω0
2 x⃛ and the 

equation of motion for the charge of the dipole including damping from finite 

conductivity and radiation reaction is:

m
d2 x
d t 2 +mΓI

dx
dt
+k x = m

ΓR

ω0
2

d3 x
d x3

Then accounting for the force placed on the mth dipole from its nearest neighbors we 

have:

m
d2 x
d t 2 +mΓ I

dx
dt
+k x = m

ΓR

ω0
2

d3 x
d x3−q⋅

γ i pm−1

4πϵ d3−q⋅
γi pm+ 1

4 πϵ d3

We're interested in the effect on the mth dipole moment which is defined by q⋅x so 

multiplying and dividing the left side by q gives:

m⋅
d2 x
d t2 =

m
q
⋅

d 2 q⋅x
d t 2

And back substitution and simplification:

d2 q⋅x

d t 2
=−

k
m
⋅q⋅x−q⋅

q
m
⋅
γi pm−1

4 πϵ d3
−q⋅

q
m
⋅
γ i pm+ 1

4πϵ d3

d2q⋅x
d t2 +ΓI

d q⋅x
dt

+
k
m

q⋅x =
ΓR

ω0
2

d3q⋅x
d x3 −

q2

m
⋅
γ i pm−1

4πϵ d3−
q2

m
⋅
γi pm+ 1

4 πϵd3

Recognizing that q⋅x = pm and
q
m
=

e⋅N e

me⋅N e

=
e
me

then:
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p̈i ,m =−
k
m
⋅pi ,m−Γ I ṗ i ,m+

ΓR

ω0
2

p⃛i , m−γi⋅
qe

4πmeϵ d3
⋅( pm−1+ pm+1 )

=−ω0
2
⋅p i ,m−Γ I ṗi , m+

ΓR

ω0
2 p⃛i ,m−γi⋅ω1

2
⋅(pm−1+ pm+1 )

Where ω0 is the circular resonance frequency of the dipole, and ω1 is the circular 

resonance frequency between nearest neighbor dipoles.  The total field at the mth dipole 

is given by the superposition of all the fields at the location of the mth dipole.  Restricting 

our view to the nearest neighbor's, then the approximate field is given by:

Em =−
γ i p i , m (t )

4π ϵd3

Given the motion of the charge is sinusoidal, then pi ,m (t ) has a propagating wave 

solution:

pi ,m = Pi ,0 e−αm d+ j (ω t±βmd )

Where Pi ,0 is the maximum of the dipole moment for the m = 0 dipole in the i 

direction. (ω t−βm d) is appropriate when the phase and group velocity are parallel, 

and (ω+βmd ) when anti-parallel.  The damping of the plasmon wave per is given by

α , while the angular frequency and wave vector of the plasmon wave are given by

ω and β . 

Back substitution gives:

p̈i ,m =
¨

(P i e
−α md+ j (ωt±βm d ) )
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=−ω0
2 Pi ,0 e−αmd+ j (ωt±βmd )

−Γ I
˙(Pi , 0e−αm d+ j (ω t±βmd ) )+

ΓR

ω0
2

⃛( Pi ,0 e−αmd+ j(ω t±βmd ) )

−γ iω1
2 [Pi , 0e−α(m+1)d+ j (ω t±β ( m+1 )d )

+Pi , 0e−α(m−1)d+ j (ωt±β (m−1 )d ) ]

=−ω0
2 Pi ,0 e−αmd+ j (ωt±βmd )

− jωΓI Pi ,0 e−αmd+ j (ωt±βmd )
− jω3 ΓR

ω0
2 Pi ,0 e−αmd+ j(ω t±βmd )

−γiω1
2 [Pi ,0 e−α(m+1)d+ j(ω t±β ( m+1 )d )

+Pi ,0 e−α(m−1)d+ j (ω t±β (m−1) d ) ]

separation of real and imaginary parts gives:

ω
2
=ω0

2
+2 γiω1

2 cos(βd)cosh(α d) (dispersion relation)

0 =ωΓ I+
ω

3
ΓR

ω0
2 +2γ iω1

2sin(βd)sinh(αd )

We essentially may have two cases. The first, small damping, allows for a simple 

approximation (i.e. αd≪1 ); and the second, large damping, which does not permit 

such a simplification.  We will assume small damping, and verify our assumption was 

correct.  Note that given spacing d may be on the order of tens to hundreds of 

nanometers, α might be quite large by traditional standards, and yet still fall under the 

regime of "small damping".  For small damping we have dispersion relation:

ω
2
=ω0

2
+2 γ iω1

2 cos (βd )
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Which gives dispersion diagram:

Fig. 2-7 Brongersma and Atwater Dispersion Diagram for Nearest Neighbor Model

This was achieved by assuming that for surface-plasmon resonance in the visible 

spectrum, ω0 ≈ 5×1015 s−1 [12].  For a given nanoparticle, the magnitude of the 

oscillating charge q is given by q = eρel V , where e is the charge of an electron,

ρel is the charge concentration, and V is the volume of the given particle.  Given the 

nanoparticles are silver then ρel = 5.85×1022 cm−3 [12][37].  
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Given the particle radius is assumed to be r = 25nm , suspended in vacuum 

(refractive index n = 1 ), and spaced a distance d = 75nm apart;  charge

q = 6.1×10−13C [12], effective electron mass of an electron in silver at optical 

frequencies me = 8.7×10−31 kg then:

ω1 = √ q e
4π meϵ0 n2 d3 = √ e2

ρel r
3

3 meϵ0 n2 d3 = 1.4×1015s−1

The group velocity:

v g =
dω
dβ

=

dω2

dβ

dω2

dω

And for small damping:
dω
dβ

=

d
d β

(ω0
2
+2 γiω1

2 cos (βd ))

d (ω2 )

dω

=
d γ iω1

2sin (βd )
ω .

Also note, since dω2

dβ
is the slope of the dispersion diagram of Fig. 2-7, according to 

this model it appears that the longitudinal modes propagate faster than transverse modes.  

Within the bounds of this model this understanding will be accepted, but improved 

models will contradict this.  So within the bounds of this model, transverse modes are 

better at slowing the wave, as may be desired in some applications, but the question 

remains as to which modes undergo the greatest attenuation; as a slow mode that 

attenuates too quickly would be useless.  The slope also implies the transverse modes are 

backwards traveling waves.
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Again, considering the regime of small damping αd≪1 , we can simplify:

0 =ωΓI+
ω

3
ΓR

ω0
2 +2γ iω1

2sin(βd)sinh(αd ) ⇒ 0 = ωΓI+
ω

3
ΓR

ω0
2 −2 vg

ω
d

sinh(αd)

≈ ωΓI+
ω

3
ΓR

ω0
2 −2vg

ω
d
α d ⇒ α =

Γ I+
ω

2

ω0
2 ΓR

2v g

ΓR is already known, Γ I must be determined.  There are two possible approaches.  

First, as was done in the literature that defined this model, an application of Matthiessen's 

rule can be made, as well as various semiconductor theory parameters cited, and without 

much proof, given various assumptions about mean free path etc., the approximation

Γ I = 7.9×1013 s−1 is stated.  For ΓR , ΓR =ω0
2
τ where

τ =
2e2

3me c3 = 6.26×10−24 s−1
which gives ΓR = 1.6×108 s−1 .  Since

Γ I

ΓR
∝105

ΓR may be neglected.  Hence α = 7.9×1013 s−1

2 vg
.  At resonance, 

v g , L = 5.8×107m / s and v g ,T = 2.9×107 m /s for the given distance and radius

 parameters.  This means for a longitudinal wave α =
7.9×1013 s−1

2⋅5.8×107 m/ s
= 6.8×105m−1

, 

or α = 3 dB /500 nm .  Recall this was assuming small damping, so to verify that we 

truly are in the small damping regime, αd = 6.8×105
⋅75×10−9

= 5.1×10−2 ,which 

reasonably satisfies αd≪1 and confirms that small damping is a fair assumption. 

Finally, attenuation for the transverse mode is twice that for the longitudinal mode, 

αT = 3dB/250 nm .
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So for the application of imaging, attenuation may be a serious concern if the 

distance in which the wave must be guided is significant.   While we want smaller 

velocity to shrink the wavelength, we also desire a lager velocity since, at least according 

to this model, the attenuation is proportional to the inverse of velocity.

These results were arrived at using a bit of a blind assumption for Γ I . The 

second, and more preferred method of calculating ΓI , is to diverge from what was 

used in the literature, and use a Drude model for silver (see Appendix A and B), and 

recognize that ΓI is nothing more than the fitting parameter γ of a Drude model.  

Assuming a particle radius of 25 nm, then a Drude model we fit for Γ1 (i.e. γ in the 

typical Drude notation) is Γ1 = 4.9942×1013 s−1 .  We still have the same calculation 

for the parameter ΓR =ω0
2
τ , which gives ΓR = 1.6×108 s−1 .  So again we have case

Γ I

ΓR
∝105

and ΓR may be neglected.  Finally:

α =
4.99×1013 s−1

2 v g

v g ,T =
d γiω1

2 sin (βd )
ω =

dω1
2sin (βd )
ω

v g , L = 2vg , T

As already determined, ω1 = 1.4×1015 s−1 .  At resonance, ω =ω0 so

ω
2
=ω0

2
+2 γiω1

2 cos (βd ) ⇒ ω0
2
=ω0

2
+2 γiω1

2 cos (βd ) ⇒ cos(βd) = 0 so βd = π
2

and

at resonance sin(βd) = 1 and at resonance:

25



v g ,T =
d γiω1

2 sin (βd )
ω =

dω1
2sin (βd )
ω0

=
75×10−9 m⋅(1.4×1015 s−1)

2

ω0
=

1.470×1023

ω0
m /s

The original model of Brongersma and Atwater[12] used an assumed plasmon 

resonance frequency for silver which was given by ω0 ≈ 5×1015 s−1 .  Note that this is 

where confusion by the term plasmon resonance comes into play.  We are interested in 

the circular resonance of the dipole which is the resonance of the silver sphere, not just 

the resonance of material the sphere is made out of.  Approximate values for ω0 work 

reasonably well for either a sphere or bulk material, because the resonance in either case 

are of the same order, but a lack of precision is presented by assuming they are in fact the 

same. 

We, on the other hand, are using a Drude model fit to measured data and adjusted 

for our exact sphere dimensions, which means we have an exact value for the sphere 

resonance frequency, given our model.  As determined in Appendix A, the resonance 

occurs at our parameter ωpole ≈ 5.192×1015 .  Note this is the fit parameter ωp offset

 by
1

√8
to account for ϵ∞= 6 of the Drude model, and the fact that resonance for a

sphere occurs at ϵr =−2 instead of ϵr = 0 , as in the case for an infinite distribution 

of material, as described in the appendix.  So from our Drude model:

v g ,T =
1.470×1023

ω0
m /s =

1.470×1023

5.192×1015 m /s = 2.831×107 m /s

v g , L = 2vg , T = 5.663×107m / s
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This permits the attenuation to be determined from α =
4.99×1013 s−1

2v g
which gives:

αL = 4.406×105 or in terms of intensity αLintensity = 2αL

αT = 8.812×105 or in terms of intensity αT intensity = 2αT

For comparison to Brongersma and Atwater [12], in dB the attenuation per 500 nm is

αLintensity = 1.914dB /500nm , and αT intensity = 3.828 dB/500nm (i.e. 

αLintensity = 3 dB /784 nm , whereas Brongersma and Atwater [12] give result

αL Bron At = 3dB/500nm .   So we are somewhat lower with our more precise silver 

model. 

2.4 Multi-Neighbor Approximation with Retardation

In a similar approach to the Nearest Neighbor Approximation by Brongersma et 

al, as described in the previous section, a multi-neighbor approach which takes into 

account dipolar retardation may be utilized, as detailed by Weber and Ford [13].  In the 

appropriate limit it may be reduced to a nearest neighbor approximation with retardation 

and compared to the previous model. 

The fundamental excitations that support propagation are the dipolar resonances 

of the particles, which are often also referred to as Mie resonances (Appendix C) or 

plasma resonances.   As selected before, the noble metal silver will be used, with a Drude 
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model like the one given in (Appendix A), with the exception that ϵ∞= 1 to match the 

work in the literature.  

Again consider the infinite chain of equidistant identical particles, and assume the 

fields that define the interaction are the fields of an infinitesimal dipole.  This is adequate 

so long as the center-to-center separation between the particles d is greater than three 

radii.  Then the fields of an infinitesimal dipole (that now contains higher order dynamic 

terms not considered in the case given in the previous section)

E r =η
I 0 L cosθ

2 π r2 [1+ 1
j k r ]e− jkr

Eθ= j η
k I 0 L sinθ

4 πr [1+ 1
j k r

−
1

(k r )
2 ]e− j k r

Eϕ= 0

Given jω p= I L then η I L = √μϵ jω p=
j k p
ϵ

and:

E r =
cosθ
2π ϵ [ 1

r 3
+

jk

r 2 ]e− jkr p

Eθ=
sinθ
4 πϵ [−k2

r
+

jk

r2
+

1

(r )
3 ]e− j k r p

Eϕ= 0

Then for longitudinal modes, θ=0 in the z-direction, so z-directed E:

E z _ L =
1

2πϵ [ 1

r3
+

jk

r 2 ] e− jkr p

And for transverse modes:
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E z _ T =
1

4πϵ [−k2

r
+

jk
r2 +

1
(r )3 ]e− j k r p

Unfortunately, to follow the convention in the literature and textbooks, the symbol 

used for the polarizability is α , the same symbol used for the attenuation constant. In 

the following derivations I will be careful to indicate when we are done using the 

polarizability and revert back to that symbol for attenuation.  Also, note that the 

convention in the literature is to label the wave number k for this multi-neighbor 

approach, and later in continuation for the finite chain approach.  In this process, the 

wave number k is initially considered completely real,  then later converted to a 

complex wave number through a perturbation assumption.  It is important to recognize 

that during the analysis, a completely real k is equivalent to β of the previous section 

when comparisons are made, before k is converted to a complex quantity.  There are 

concerns about the validity of the conversion presented in the literature, which will be 

discussed, but it is important to clarify why a change in notation for real wave number is 

occuring.  It is to keep in line with the literature and in preparation for conversion to a 

complex quantity. 

For a linear chain of point dipoles spaced a distance d, in the absence of any 

externally applied field, the induced dipole moment for any given dipole is its 

polarizability times the total field at the location of the dipole.  Then the total field is the 

contribution from all other dipoles in the chain:

pn = α (ω ) ∑
m ,m≠n

E z (r = ∣n−m∣d )
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So for longitudinal modes:

pn = α (ω ) ∑
m ,m≠n

1
2πϵ [ 1

∣n−m∣
3
d3
+

jk

∣n−m∣
2
d2 ]e− j k∣n−m∣d pm

and for transverse modes:

pn = α (ω ) ∑
m ,m≠n

1
4 πϵ [ −k2

∣n−m∣d
+

jk
∣n−m∣

2
d2
+

1
∣n−m∣

3
d3 ]e− j k∣n−m∣d pm

For a periodic structure, the supported modes are Floquet modes, hence

pm = pn e− jk ( m−n) d and for longitudinal modes:

pn = α (ω ) ∑
m ,m≠n

1
2πϵ [ 1

∣n−m∣
3
d3
+

jk

∣n−m∣
2
d2 ]e− j k∣n−m∣d pn e− jk (m−n )d

let L = n−m then:

1= α (ω ) ∑
L, L≠0

1
πϵ [ 1

∣L∣
3
d3
+

jk

∣L∣
2
d2 ]e− j k∣L∣d e jk ( L ) d

=α (ω )∑
L=1

∞ 1
πϵ [ 1

L3d3
+

jk

L2 d2 ]cos (k Ld ) e− j k Ld

or:

1−α (ω )∑
L=1

∞ 1
πϵ [ 1

L3 d3
+

jk

L2 d2 ]cos ( k L d ) e− j k Ld
= 0

Similarly for transverse modes:

pn = α (ω ) ∑
m ,m≠n

1
4 πϵ [ −k2

∣n−m∣d
+

jk
∣n−m∣

2
d2
+

1
∣n−m∣

3
d3 ]e− j k∣n−m∣d pn e− jk (m−n) d

let L = n−m then:
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1= α (ω ) ∑
L, L≠0

1
4 πϵ [−k 2

∣L∣d
+

jk
∣L∣

2
d2
+

1
∣L∣

3
d3 ]e− j k∣L∣d e jk ( L )d

=

α (ω )∑
L=1

∞ 1
2πϵ [−k2

L d
+

jk
L2 d2+

1
L3 d3 ]cos (k L d )e− j k Ld

hence 1−α (ω )∑
L=1

∞ 1
2πϵ [−k2

L d
+

jk
L2 d2+

1
L3 d3 ]cos (k L d ) e− j k Ld

= 0

L is a natural number, so for clarity lets just redefine n such that n = L then the 

dispersion relations are:

Longitudinal: 1−α (ω )∑
n=1

∞ 1
πϵ [ 1

n3 d3
+

jk

n2 d2 ]cos (k nd ) e− j k nd = 0

Transverse: 1−α (ω )∑
n=1

∞ 1
2πϵ [−k 2

n d
+

jk
n2 d2+

1
n3 d3 ]cos ( k n d )e− j k nd

= 0

For completely real k, these dispersion relations can be solved for complex frequencies

ω =ω(k ) .  The modes must be decaying in time, hence for our time convention

e jω t , ℑ (ω )≥0 , but factor e− j k d
= e− jω√μϵ d implies the sums expressed in the 

dispersion relations only converge for ℑ (ω )≤0 .  This may be addressed by casting the 

sums into the complex plane, evaluating them in the upper half-plane, then analytically 

continue them into the lower-half plane.  This method is applied by other groups, namely 

Alu and Engheta [14].

Although this complex frequency method has been used by other authors for 

waveguide problems it should be used with caution. Conforti and Guasoni [40] state 

categorically that “In view of these aspects we can assert that above the light line, 

calculating the dispersion curve by fixing real wavevector leads to totally wrong results.” 
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This means that below the onset of guided waves the results cannot be trusted. But since 

we are trying to solve the problem to determine among other things the onset of guided 

waves, this leaves us in a precarious position if we rely on this complex frequency 

approach.

Conforti and Guasoni also point out that: “when a real metal is considered, the 

losses are so high that the effects on the dispersion curves cannot be treated by first order 

perturbation, as it is evident from the big influence of absorption also in the real part of 

propagation constant.” This brings into question any derivation that assumes from the 

outset low attenuation, therefore derives the propagation constant under this assumption 

and then attempts to force the attenuation to fit in as a perturbation.

The issues with the complex frequency approach, and with infinities in the infinite 

chain model, may be avoided by considering the finite chain, as done in Section 2.5.  

However it is important to show that the more “physically correct” model of multi-

neighbor interactions reduces to the nearest neighbor interaction of Section 2.3 in the 

appropriate limit. 

For a dielectric sphere in vacuum, the quasi-static dipole polarizability is given by

α (ω ) =
ϵ (ω )−1
ϵ (ω )+2

4πϵ0 a3 (Appendix D) where a is the radius of the sphere and ϵ (ω ) is 

the relative permittivity of the sphere.  This polarizability for the moment ignores the 

effect of radiation reaction.  For metal spheres, and keeping in line with what is presented 

in the literature, use the simple Drude model for dielectric response, i.e.
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ϵ (ω ) = 1−
ωp

2

ω (ω+ j ν )
[18] (as noted earlier, there is a difference in ϵ∞ from our more 

precise Drude model in Appendix A – we will use the literatures less precise model and 

update only after affirming if the method is valid), where ωp is the plasma frequency of 

the metal, and ν is the electron scattering rate, a damping term corresponding to the the 

collision of free electrons with the crystal lattice of the metal or impurities within.

Then α (ω ) =
−ω p

2

−ωp
2
+3ω (ω+ j ν )

4 πϵ0 a3
=

ω0
2

ω0
2
−ω (ω+ j ν )

4 πϵ0 a3 , where

ω0 =ωp /√3 is the plasma resonance frequency of the sphere.

The quasi-static dipole polarizability given only includes absorption loss (due to 

ϵ ' ' ) since the radiation reaction has been neglected [19].  The extinction cross section

 of a particle is given by C ext =
1

ϵ0k 2
ℜ (S (0 ) ) , where S (0 ) is the amplitude function 

(scattering matrix), which describes the amplitude and phase of a scattered wave.  In our 

case S (0 ) is the forward directed amplitude function, which is given by S (0 ) = ik 3
α . 

For our quasi-static polarizability ℜ (S (0 ) ) = 0 for real α .  We can include the 

radiation reaction as follows:

The electric field of a scattered wave is E =
1

4 πϵ0

k2 p sinϕ
r

e− j k r , where ϕ is 

the angle between the scattered wave and p.  The corresponding intensities of the incident

 and scattered radiation are given by the Poynting vector as I 0 =
c ϵ0

2
∣E0∣

2 and
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I =
c ϵ0

2
∣E∣

2 , and integrating I over a large sphere gives total scattered power

W =
c

3 (4 πϵ0 )
k4∣p∣2 .  Dividing by incident intensity gives scattering cross section

C scat =
k4

6 πϵ0
2
∣α∣

2 .

The amplitude function due to absorption is S (0 ) = j k3
α , hence

Ca b s = 4 π kℜ ( jα ) , Cext = Ca b s+C scat , so S total (0 )= j k3
α+

1

(24 π2
ϵ0 )

k6
α

2 , or 

transforming to account for radiation reaction and scattering ,
1
α→

1
α− j

1

(6 πϵ0 )
k3 [35]. 

With this more general polarizability expression, given

α (ω ) =
ω0

2

ω0
2
−ω (ω+ j ν )

4 πϵ0 a3 , then
1

α (ω )
=

ω0
2
−ω (ω+ j ν )

ω0
2 4πϵ0 a3 and,  transforming to 

account for radiation reaction and scattering:

1
α→

1
α− j

1

(6 πϵ0 )
k3 =

ω0
2
−(ω2

+ j νω)

ω0
24 πϵ0 a3 − j

2
3⋅4πϵ0

k3

=−
a−3

4πϵ0 [ω
2

ω0
2 (1+ 2

3
jω

ω0
2

c3 a3)+ jω ν

ω0
2 ]+ a−3

4 πϵ0

So finally for the two mode polarizabilities we have,

Longitudinal:

1
α =−

a−3

4 πϵ0 [ ω
2

ω0
2 (1+2

3
jω

ω0
2

c3 a3)+ jων
ω0

2 ]+ a−3

4π ϵ0
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=∑
n=1

∞ 1
πϵ [ 1

n3 d3
+

jk

n2 d2 ]cos (k n d ) e− j kn d

ω
2

ω0
2 (1+ 2

3
jω

ω0
2

c3
a3)+ jων

ω0
2

= 1−∑
n=1

∞

4 a3[ 1

n3d3
+

jk

n2d2 ]cos (k nd ) e− j k n d

Transverse:

1
α =

−a−3

4 πϵ0 [ ω
2

ω0
2 (1+ 2

3
jω

ω0
2

c3 a3)+ jω ν

ω0
2 ]+ a−3

4 πϵ0

=∑
n=1

∞ 1
2πϵ [−k 2

n d
+

jk
n2 d2 +

1
n3 d3 ]cos ( kn d )e− j k nd

ω
2

ω0
2 (1+ 2

3
jω

ω0
2

c3
a3)+ jων

ω0
2

= 1−∑
n=1

∞

2 a3[−k2

n d
+

jk

n2d2
+

1

n3 d3 ]cos (k nd ) e− j k n d

Before continuing, lets evaluate these relations by comparing their quasi-static limit to 

the relation derived using the nearest neighbor approximation in the previous section.  

The quasi-static response of a lossless metal sphere corresponds to ν = 0 and

c = ∞ , then the dispersion relations become:

Longitudinal: 

ω
2

ω0
2 = 1−∑

n=1

∞

4
a3

n3 d3 cos (k n d ) e− j kn d

Transverse:

ω
2

ω0
2 = 1+∑

n=1

∞

2
a3

n3 d3 cos (k n d ) e− j k n d
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Which results in the following plot:

Fig. 2-8 Weber and Ford Multi-Neighbor Model Dispersion Diagram in Terms of 

ω/ω0 vs. βd

A comparison to the previous nearest neighbor model can be made if it is 

recognized that reducing the quasi-static limit of the multi-neighbor model to only its two 

nearest neighbors makes the models functionally identical, except for differences in 

assumptions of material parameters used by each group.  These different assumptions can 

be removed by adjusting ω1 of the nearest neighbor approximation by a factor of 1.2.  

This is valid, as we aren't evaluating the material parameter assumptions of each group at 
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the moment, just the behavior of the models.  In fact, note both groups are wrong in their 

material assumptions, as Brongersma and Atwater assume a frequency independent 

constant effective mass of the free electron in the silver, and as previously mentioned, 

Weber and Ford assume a Drude model with ϵ∞= 1 instead of a more accurate

ϵ= 6 , amongst other choices.  These assumptions can be factored away by 

normalizing the previous nearest neighbor model to match the nearest neighbor limit of 

the multi-neighbor model by multiplying ω1 by the mentioned factor. Doing so and 

comparing to the multi-neighbor model we have:
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Fig. 2-9 Dispersion Relation ω/ω0 vs. βd for NNA and MNA

What this shows is that in the limit of nearest neighbor approximation and same 

material parameter assumptions, the two methods match, while the new method permits 

more terms (farther apart neighbor's) to be included, and also takes into account 

additional dynamic effects.
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2.5 Finite Chain with Full Coupling

As mentioned in the previous section, the derived dispersion relations do not 

converge for ℑ (ω )<0 , where normal mode frequencies occur.  One way this may be 

accounted for is by applying analytic continuition into the complex plane as shown by 

Engheta and Alu [14], which requires recasting the relations in terms of polylogarithms.  

A second and easier method is to just acknowledge that any real world structure would be 

finite in extent, permitting evaluation using more traditional methods and functions, and 

ignoring some of these concerns exhibited in the infinite structure.  This also allows us to 

avoid the pitfalls pointed out by Conforti and Guasoni.

For a finite chain of N spheres, we have N coupled equations in the N unknown 

moments of the spheres conforming to the original equations:

Longitudinal:

pn =−α (ω ) ∑
m, m≠n

1
2πϵ [ 1

∣n−m∣
3
d3
+

jk

∣n−m∣
2
d2 ]e− j k∣n−m∣d pm n , m ∈ [1, N ]

Transverse:

pn = α (ω ) ∑
m ,m≠n

1
4 πϵ [ k2

∣n−m∣d
+

jk
∣n−m∣

2
d2
−

1
∣n−m∣

3
d3 ]e− j k∣n−m∣d pm n , m ∈ [1, N ]

These N equations can be represented in matrix form M p = 0 where p is an N-

rowed column vector representing the pm terms in the given equations, and M is 

given by:
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M n ,n =−
4πϵ a3

α (ω )
n∈[1,N ]

M n ,m≠n =−2
a3

d3 (1+ jk∣n−m∣d )
e− j k∣n−m∣d

∣n−m∣
3

Longitudinal

M n ,n≠m =
a3

d3
(1+ j k∣n−m∣d−k2∣n−m∣

2 ) e− j k∣n−m∣d

∣n−m∣
3 Transverse

Solutions to which may be solved numerically by stimulating one of the spheres 

in the chain, and observing how the other spheres are polarized by inversion of the matrix 

M.  That is to say p = M n ,m
−l
⋅v , where v is just a vector of all zeros except for the first 

term, which is 1, to excite the first sphere.   For comparison with the previously derived 

quasi-static limit results, we choose radius a = 25nm , separation d = 75nm , and 

per the method prescribed in the literature, fix ωp and ν to give the optical constants 

of Ag at resonance frequency ℏω0 = 3.5eV , or h̄ωp = h̄√3ω0 = 6.19eV and

h̄ ν = 0.7eV .  Also for the first case we consider ideal metal (lossless) with

h̄ ν = 0eV [30].

We make the finite chain reasonably long to give enough distance for it to behave 

like the infinitely long chain.  A chain of 20 spheres is considered long enough, assuming 

a wave is actually coupled to the chain. The literature assumes this, and we will evaluate 

based on this assumption, and in later sections evaluate whether such assumptions are 

valid.

The relation is evaluated by inserting values of kd into the relation and optimizing 

to find the zeros of the determinant of the matrix M.  When det [M ]→0 , 
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p = M n ,m
−l
⋅v→∞ , implying the frequency is the one best supported by the chain.  The

 values of kd used are defined by: (kd )n =
(N−2)n+1

N (N−1)
π , where N is the number of 

spheres in the chain.

Given a 20 sphere chain, and following the recipe as outlined in the literature, we 

have the following dispersion diagrams for longitudinal and transverse modes, for both 

the lossless metal case and silver (at resonance and according to Weber and Fords Drude 

model), compared to the multi neighbor approximation with retardation from the previous 

section.
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Fig. 2-10 Real Part of Complex Angular Frequency vs. βd for Transverse Modes, for 

the Quasi-static Case (black), Lossy Silver (Green), and Lossless Ideal Metal (Red)
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Fig. 2-11 Real Part of Complex Angular Frequency vs. βd for Longitudinal Modes, for 

the Quasi-static Case (black), Lossy Silver (Green), and Lossless Ideal Metal (Red)
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Fig 2-12  Imaginary Part of Complex Angular Frequency vs. βd for Lossy 

Longitudinal and Transverse Modes

Note that if we heed Conforti and Guasoni’s admonition regarding this complex 

frequency method, the data to the left of the lightline (dot dash line) in the above figures 

is meaningless.  To the right, it appears Weber and Ford are trying to demonstrate with 

this graph that the imaginary part of the complex frequency is very small, implying that 

the real part of the complex frequency is very close to what the completely real frequency 

would be given the problem was solved with a completely real frequency and complex 

propagation constant k = β− jα . 
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To determine the completely real frequency vs. complex propagation constant, 

(instead of a complex frequency), the model calls for application of the relation

p = M n ,m
−l
⋅v , and solving for p at various real test frequencies.  Note this is in 

contrast to the method just previously described which lead to a relation between a 

complex frequency and propagation constant by inserting values of kd and finding the 

complex frequencies that maximize p .  For real frequency vs. propagation, p is 

numerically solved for at a given test frequency, and its intensity plotted in a semi-log 

scale, since on such a scale a decay of the form e−αz appears as a straight line.  Now we 

have returned to the notation of using α to represent attenuation.  Then the assumption 

by Weber and Ford is that given enough distance of propagation, only the dominant mode 

will remain supported, and the intensity will then become linear, with a line of slope 

equal to the attenuation constant.  

To do this, a 50-sphere chain was stimulated, and the polarization intensity 

observed.  For the two orientations we have the following:
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Fig. 2-13 Intensity of Sphere Polarization vs. Distance For Longitudinal  and Transverse 

Modes

Note the rapid drop off towards the start of the chain, near where the initial 

stimulated dipole is located. Weber and Ford assume that this is the “non linear” region 

of the plot. Then towards the end of the line the data appears to be close to linear (on a 

log scale) shape.  Also note the end of chain effects in the last few spheres.  These effects 

must be avoided when determining parameters applicable to the infinite chain.  The slope 

of the curves in their linear regions is assumed to be the attenuation.  As is admitted in 

the literature, picking what area of the curve to fit the attenuation constant to is somewhat 

arbitrary. 
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With an attenuation constant, we are now prepared to find the propagation 

constant by fitting the calculated dipole moment to the expected form

p (z ) = A e
− j k z−α

2
z+ϕ

along a region toward the end of the chain, to determine the 

parameters of what the literature believes is a guided mode. α is known from our 

intensity line fit, A and ϕ are arbitrary, leaving k to be determined by appropriate fit.   

In the literature, it appears a hand-fit was performed.  Using Weber and Ford's fit 

parameters, we see in Figure 2-14 a reasonable fit to our own calculated sphere 

polarization results.

Fig. 2-14 Fit of p(z) = A e
− j k z−α

2
z+ϕ

to Polarization of Spheres for both Longitudinal 

(Red) and Transverse Modes (Blue) Near the Plasma Frequency
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In their paper, Weber and Ford only solve for this single frequency to obtain a 

“real frequency” solution that yields alpha and beta (k). It appears that after checking this 

result as a point in the graphs of Figures 2-11 and 2-12, and finding a close fit for this one 

point, the assumption was made by Weber and Ford that the rest of the points so derived 

would agree with the rest of the dispersion relation determined from the complex 

frequency argument. This assumption will be evaluated in the next chapter. 
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Chapter 3

EVALUATION OF MODELS AND INHERENT PROBLEMS

3.1 Are the models in the literature consistent?

Examples in the literature, including but not limited to those outlined in Chapter 

2,  generally conclude that their models are accurate within a reasonable degree, subject 

perhaps to the accuracy of their Drude metal model.   However, as shown in section 2.2, 

the results from the different models in the literature do not necessarily agree, either in 

the magnitude of the attenuation, or in the shape of the dispersion diagrams.  

One would assume the method-of-moments-like solution of Weber and Ford 

would be the most accurate, within the assumption that only the dipole moment is 

relevant (ignore higher order multipoles), as it takes into account more known effects, 

such as retardation per Mie theory analysis.  In fact, their approach is indistinguishable 

from the Discrete Dipole Approximation, a method that has been used extensively in 

optical scattering and that can be shown to be equivalent to the Volume Integral Equation 

version of MoM [41]. The only approximation made in this case by Weber and Ford is 

that each sphere can be adequately modeled by a single dipole.

However, if we compare Weber and Ford’s method of moment solution to their 

own eigenvalue solution of exactly the same particle interaction model we reach a 

disturbing conclusion, they do not agree with each other.
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3.2 Is a Guided Wave Really Being Stimulated?

Recall the dispersion diagram for the longitudinal mode (Fig 2-12).  If we follow 

the method prescribed in fitting for the wave number to the equation 

p(z) = A e
− j k z−α

2
z+ϕ

as previously described in the preceding section, at the single 

frequency given, and plot the single data point (brown cross) onto the dispersion diagram 

showing the real part of complex frequency vs. normalized wave number, we see the 

point is somewhat close to the implied expected value in the literature.

Fig. 3-1 Real Part of Complex Angular Frequency vs. βd for Longitudinal Modes, for 

the Quasi-static Case (black), Lossy Silver (Green), and Lossless Ideal Metal (Red), 

Compared to the Single Completely Real Frequency Data Point (Brown Cross)

50



This is where Weber and Ford stopped.  If we continue using an automatic solver, 

under the assumption that solutions are near the ℜ( ωω0
) vs. βd curve, as is implied in 

the paper, we fail miserably, as is shown in Fig 3-2.

Fig. 3-2 Failed Optimizer Results in Search for Completely Real Frequency Dispersion 

Relation

Output from the optimizer reports no solutions found for most points.  Multiple runs with 

adjustment of search parameters also fail in different fashions, but it was observed that 

the solution search kept leading to a possible solution with a much steeper slope than 

expected.
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Instead of using an automatic least-squares optimizer, to get a handle on what is 

really happening, it should be possible to assume the determined attenuation constant was 

correct, and then attempt to fit the dipole moment versus position decaying sinusoid “by 

hand”.  Such an attempt actually succeeds as shown in Figs 3-3 and 3-4.

Fig 3-3 One of Twenty Hand Fit Equations for Sphere Polarizability
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Fig 3-4 Full Dispersion Diagram Using Hand Fit Equations (red) for Completely Real 

Frequency vs. βd , Compared to Real Part of Complex Frequency vs. βd (black)

Note the location of the single point calculated by Weber and Ford, and how it lies 

exactly on our plot.  Then, plotting the fit results on the original dispersion diagram in Fig 

3-4 shows why the optimizer was failing; the search area was nowhere near the expected 

location.

But there has to be a bigger problem. Why would an optimizer that in principle 

“weighs” all the data be less accurate than the human eye? One hypothesis has to be that 

the information given the optimizer was wrong. The optimizer was asked to fit the data to
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an exponentially decaying sinusoid. Is it possible that the results of the Method-of-

Moments simulation do not fit such a function?

To check this hypothesis, and avoid the subjective bias of hand fits, instead of 

fitting to the expected equation in a least-squares sense as was previously tried and failed, 

we choose to apply a Prony-based method [21] for instantaneous frequency estimation, to 

examine the local wavelength of the propagation phenomenon along the line as a function 

of position. The resulting propagation constant then leads to the dispersion diagram of 

Figure 3-5.

Fig. 3-5 Frequency Estimator (Prony-like method) Fit
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The hand fit was accurate over most of the band.  Now that the real frequency 

dispersion diagram has been determined,  it looks very familiar.  Calculating the slope 

from the 5th through 15th point of the new diagram, we find a velocity

v = 2.992×108m / s .  The dispersion diagram is just the light line! It appears the result 

being measured in the method of moments solution is not that of a wave being guided by 

the chain, but a wave traveling in free space and polarizing the spheres of the chain as it 

passes by.   All the other steps are just measuring how this free space wave stimulates the 

other spheres, not an example of a wave being guided by the spheres coupling together.  

Adding the light line to the plot confirms.

Fig. 3-6 Light Line Superimposed on Dispersion Diagram
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3.3 Is There a Guided Wave Inside this MOM Solution?

This interpretation of largely only seeing the dipolar radiation of the first sphere in 

the chain needs to be verified.  To do so, the first and eleventh frequencies of the 

dispersion diagram were plotted and laid over the fields along the z-axis of a dipole at the 

origin, scaled to the polarization of the spheres towards the end of the chain, as shown in 

Figs. 3-6 and 3-7.

Fig. 3-7 Fields Along z-axis of Dipole at Origin Compared to Polarization of Spheres for 

Frequency #1 of the Dispersion Diagram
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Fig. 3-8 Fields Along z-axis of Dipole at Origin Compared to Polarization of Spheres for 

Frequency #11 of the Dispersion Diagram

The results being so close, it is apparent that it is the direct wave from the dipole 

radiation of the driven first sphere scattering off the spheres towards the end of the chain 

that we are seeing, and not polarization due to a wave being guided by the chain and 

inter-sphere interactions going all the way down the chain.  It must be emphasized that 

the assumed exponential decay is nothing else than the 1/r2  and 1/r3 dependence of 

the source field. 
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If this is all we are observing towards the end of the line, where is the guided 

wave? It must be overshadowed by this direct radiation. And, probably it must be so 

strongly attenuated that it essentially vanishes below the numerical noise over most of the 

line.  To test this hypothesis we can attempt to subtract the radiated field we have just 

observed near the end of the line, and see if there is anything remaining near the 

beginning of the line that in some way could be interpreted as a guided mode.

Because we expect to be running up against numerical noise we model the source 

dipole field as seen along the line using three scaling parameters: a total strength, phase 

factor, and slight variations of the Prony-estimated propagation constant.  These 

parameters may be “tweaked” and the expression subtracted from the sphere polarization 

data until we reduce the results near the end of the line as low as possible. (Smallest 

answer means we've removed most of the dipole wave).  We hope then that the result 

remaining near the start of the chain begins to resemble a straight line on a semi-log plot, 

for then it would imply a truly exponentially decaying (guided) wave.

As Figures 3.9 and 3.10  show this procedure succeeds in reducing the data at the 

end of the line by an order of magnitude and in revealing a linear slope region near the 

front of the line. For the frequency in Figure 3-9, we obtain an intensity attenuation of 

0.82 per sphere unit cell, and for the frequency in Figure 3-10, an intensity attenuation of 

0.47 per sphere unit cell.  For comparison to previously stated values, for frequency #1, 

that's an intensity attenuation of 23.74 dB/500nm, or 3dB/63.2nm.
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Fig. 3-9 Adjustment and Fitting to Remove Dipole Radiation from Data for Frequency #1
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Fig. 3-10 Adjustment and Fitting to Remove Dipole Radiation from Data for

Frequency #11

For frequency #11, we see an attenuation of 13.6 dB/500nm, or 3dB/110 nm.

Compare to reported attenuation constants in section 2.2, and we see the expected 

attenuation, when removing the fields of non-guided waves, is much greater than often 

predicted in the literature. 

Given our removal of the free space dipole wave, we should be able to take the 

new data and once again apply Prony's method to rigorously find the propagation 
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constant for such a wave.  To do so we remove the effects of attenuation from the data, 

by multiplying by e+αdetermined z , a “dicey” proposition given that this function “blows up” 

at infinity.  But all we want to see is if it recovers a sinusoid recognizable by Prony's 

method.

In the application of Prony's method to frequency identification, only 4 neighbors 

are used, meaning the result is only good from about sphere 6 to 18, as can be seen in 

Figures 3-11 and 3-12.  The resulting propagation constants suggest that at frequency #1, 

the true propagation constant is below that of free space, meaning a fast wave. For 

frequency #11, we see a significantly higher propagation constant, hence a slow wave.  

The new results after removal of the dipole wave are compared to the previous results 

with the dipole effects still included in Fig 3-13.

Fig. 3-11 k-Finder for Frequency #1 and Region of Solution Convergence
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Fig. 3-12 k-Finder for Frequency #11 and Region of Solution Convergence

Fig. 3-13 k Estimates Using k-finder Based on Prony's Method Before and After 

Adjustment to Remove Free Space Dipole Wave
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The method applied by Weber and Ford in and of itself is not flawed, as it does 

give the fields of the system, but the interpretation of what the results mean is flawed.  

The method of solution confounds guided wave (if there is one) with the free space wave 

due to the first dipole radiating; the latter severely over shadows the guided wave.  We 

can adjust the results to try to remove the super imposed dipole wave, but increasing 

elements of uncertainty in the results are a concern as the data is manipulated.  

Furthermore if the “guided wave” only exists within the first few spheres and its 

attenuation is of the order of -8dB per sphere, do we really know we have a true guided 

mode? After all, we can expect electromagnetic “turbulence” near the excited sphere. In a 

conventional closed (metal) waveguide we say this turbulence can extend up to a quarter 

wave down the line (the reason coax to waveguide transitions have a standard length).  

For open waveguides where higher order modes are not cutoff the “turbulence” distance 

may be longer. For this chain of spheres, with a highly inhomogeneous spatial 

distribution of material that encourages scattering effects, the distance may be even 

longer. This means that the field within the first two spheres and possibly within the first 

three may be an unreliable gauge of the actual waveguiding properties of this structure.

Realizing this, we may then wonder if we are better off using an eigenvalue 

solution of the infinite chain. However, Conforti and Guasoni’s objection still stands 

unchallenged. We have just seen that the attenuation along the line is in no way a 

perturbation on the propagation constant, it is of the order of the propagation constant. 

Therefore not even Engehta and Alu’s polylogarithm method can come to our rescue. 
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But more importantly we do not know yet at which frequency there is guided 

wave onset. Without knowing that, we do not know a priori when our results are to the 

left or the right of the light line. Under these conditions the validity of an eigenvalue 

solution is open to question. First of all, the fundamental assumption in the eigenvalue 

solution is that the wave is guided. If it is not, and we encounter leaky waves, it turns out 

that there is no physical parameter guideline to tell us when these leaky waves first 

become unphysical. 

For instance, in Kim et al [20], the leaky dispersion characteristics in cylindrical 

dielectric rods are considered. Figure 3-14 below shows a plot from their paper including 

both the propagation constant and the attenuation constant. Notice the smoothness of the 

curves below onset.  There is no clue in those curves when the results become invalid, yet 

by the time we calculate a β>k0 with a positive real attenuation constant, we are 

claiming to have a slow leaky wave in a lossless waveguide. This is impossible. If the 

waveguide is lossless the only loss mechanism is radiation; but slow waves cannot radiate 

from a uniform infinite open waveguide.
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Figure 3-14 (a) Normalized Phase Constants and (b) Normalized Attenuation Constants 

when Dielectric Constant and Radius of Dielectric Rod are 5.0 and 5.0 mm, 

Respectively [20]

We need an alternate robust method that will allow us to unambiguously examine 

the surface wave spectrum of the chain of Noble metal spheres. Such an approach is the 

subject of the next chapter.
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Chapter 4

EFFECTIVE MEDIUM APPROACH

4.1 Effective Medium Models

In the analysis of plasmonic nanosphere waveguides by the various models in the 

literature, a straight forward possibility has been overlooked.  After all is said and done, 

with the Floquet mode formulation of the structure, the modes of practical interest are the 

low order modes, the first longitudinal and first transverse modes. If the guided 

wavelength of these modes is greater than several unit cells, it stands to reason that we 

are expecting the waveguide to act in some sense like an equivalent homogeneous 

waveguide. If this is true, then why don’t we homogenize the waveguide before 

performing the analysis?

For the lowest order modes, a chain of waveguiding spheres should be equivalent 

to a lossy dielectric cylindrical waveguide of material with physical parameters 

determinable by an effective medium model of the unit cell. This is provided that the 

quasi-static assumption is satisfied in the unit cell.  As has already been discussed in 

Chapter 2 and shown in Figures 2-2 and 2-3, this quasi-static assumption is justified, 

hence the approach should be valid.  

In a recent paper about to be published [38], Panaretos et al show that a sub-

wavelength plasmonic nanosphere smaller than the unit cell in a uniform FDTD space 
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can be accurately modeled by filling that unit cell with an effective medium that 

rigorously accounts for the presence of the sphere within the unit cell volume. The filled 

unit cell not only correctly scatters like the isolated sphere, a chain of three such 

“spheres” separated by intervening single cells of free space scatter the same way as a 

finely discretized model of the three sphere chain. Therefore we proceed with replacing 

the unit cell of the chain with an effective medium model, focusing on the longitudinal 

mode case.

In [38] it is shown that the classic Clausius Mossotti effective medium model of a 

spherical inclusion within a cubical unit cell of space is equivalent to a partially filled 

capacitor model. As a consequence we have two potentially valid models of the chain and 

we expect them to behave similarly. In the first model the equivalent rod is supposed to 

have exactly the same radius as the spheres a , and therefore the partially filled 

capacitor model is a cylindrical capacitor of length equal to the unit cell d , where the 

lower portion is filled with the correct volume of Noble metal to the depth:

x =
4 πa3

3
⋅

1
πa2

(See Figure 4-1) The balance of the capacitor d−x is filled with air. The relative 

effective permittivity of the rod of radius a=25nm is then given by the series sum of 

these capacitances:

ϵeff = ( x
ϵmetal

+
d−x

1 )
−1

⋅d
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Fig. 4-1 PFC Model [38]

The second possible model uses the Clausius Mossotti expression where the

 sphere of volume V s =
4 πa3

3
is placed inside the unit cell volume V cell=d3.  Such

 that the volume fraction of material is vf =
V s

V cell

 and this is used in the CM expression 

for the effective permittivity.  Then the volume of the cylinder of air with sphere in the 

center that makes up a unit cell is the same as the cube:

V cyl = πa2
2 d = V cell

So the equivalent radius of the cylinder for our example of 25nm radius spheres at 75nm 

separation is:
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aCM = √V cell

πd
= 42.3 nm

And the volume fraction fill ratio:

p= 0.155

Then:

ϵCM =

1+2 p ( ϵmetal−1

ϵmetal+2 )
1−p( ϵmetal−1

ϵmetal+2 )
To make a one to one comparison with our analysis of Weber and Ford’s model, 

we must use the same Drude model for the metal, remembering that this is not necessarily 

the most accurate representation of Silver, and remembering that even the published data 

on Silver properties varies significantly (e.g. compare Palik [26] to Johnson and Christy [ 

30]).

The two effective medium models above then yield the relative permittivity plots 

of Figure 4-2. As a sanity check, since the onset frequency of the conventional modes of 

a dielectric rod depend on the quantity a(ϵr−1) we expect these two models to give a 

similar result. Looking at the low frequency real dielectric constant, the partially filled 

capacitor model gives (2.4−1)⋅25=35 while the CM model gives

(1.8−1)⋅42.3=34  for this quantity. A similar calculation using the peak ϵ ' '  

(without subtracting 1 since this is pure imaginary) gives for both approximately 93. So 
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indeed to first order these two dielectric rod models should be equivalent. But we may 

expect differences in the precise frequency at which maximum loss shows up given that 

the spectra in Figure 4-2 are different.

Figure 4-2 Permittivity from Effective Media Models

Since we have called into question an eigenvalue problem solution of these highly 

lossy dielectric rods, we turn to the solution of the Green function problem. Since this 

solution involves only numerical integration of the k-space spectrum and no matrix 

inversion, it is possible to compute the fields in an arbitrarily long region of the rod and 

examine their propagation as a result of a “current band” excitation at the origin.

4.2 Green Function Solution

The conventional guided mode eigenvalue solution for a lossless rod assumes 

purely guided waves inside the dielectric associated with evanescent waves outside. 
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When the rod is lossy we are faced with the question of what we should assume for the 

complex propagation constants that have to arise in both regions. Inside the rod there 

must be attenuation to account for the loss in the medium. Thus the propagation constant 

of the phenomenon at the boundary of the rod in the z direction must be complex. 

Since by the assumptions of the eigenvalue problem this propagation constant tangent to 

the surface must be the same in both media, the constraint equation in free space forces 

the external field to not only have attenuation in the radial direction, it must also have a 

phase constant. But a phase constant in the radial direction implies a wave is traveling 

either away or towards the rod. We are then left with the ambiguous question, do we 

assume leaky waves or do we assume energy is traveling from outside above the surface 

and being “sucked” into the rod?

The answer to this question eventually becomes truly puzzling when we consider 

the results of Kim already cited in Section 3.2, which show that even for the lossless rod 

we can have leaky slow solutions that are clearly unphysical. The problem then becomes, 

when do we know our eigenvalue solution has crossed the line into unphysicality since 

there is no obvious discontinuity in Kim’s solution?

The Green function approach avoids all these questions. We make no assumption 

about the properties of the propagation constant on each space, we allow them to be 

whatever they need to be as long as they represent properly traveling waves (that is k is 

always of the form β− jα in the direction of propagation) inside and outside that must 

satisfy the source condition at the surface of the rod. The source is then assumed to be a 
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spectrum of surface magnetic current waves propagating along the z axis with purely real 

propagation constant ranging in value from –infinity to infinity. This is the plane wave 

spectrum approach, an approach that we know to be valid and that provides us a with a 

complete basis to represent any current flowing on the surface of the rod. 

The source current in physical space is assumed to be a uniform (in ϕ ) current 

band of small width at the origin. Its spectrum is calculated by a Fourier Transform and 

for every current wave in the spectrum the source condition and boundary conditions at 

the surface of the rod are satisfied. Once all the field components for every current wave 

are determined, the fields in spatial domain are reconstructed by taking the inverse 

Fourier transform. This Transform is really an integration along the real axis of k-space. 

As is well known, we can expect to have poles near that axis, but because this is a lossy 

cylinder, those poles are not on the axis. We avoid them by either integrating very finely 

along the axis to make sure the rapid variation of the function in their neighborhood is 

correctly accounted for, or if necessary by deforming the integration path at those poles. 

(We can determine their position a priori.) 

The details of the derivation are given in Appendix E. To illustrate the kinds of 

results that are obtained with this approach, consider a lossless rod of 25 nm radius with a 

nearly purely real permittivity of 4, of the order of the largest value we saw in Figure 4-2. 

Figure 4-3 shows the amplitude versus position plot of the total current (displacement in 

this case) inside the rod in a semi log plot for excitation frequencies  1016, 1723, 2385, 

and 3048 THz, labeled (a), (b), (c), and (d) respectively. These were chosen on purpose to 
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show an example of a mode significantly below onset, curve (a), a mode beginning to 

approach onset (b), a mode very close to onset (c) and finally a well guided mode(d). 

Figure 4-4 shows the phase versus position plots including a light line in free space. We 

see (a) has a fast wave phase with noise, (b) is clearly a fast wave, (c) fast wave 

approaching the speed of light (d) guided slow wave.

Figure 4-3 Amplitude of Current Wave vs. Distance in Wavelengths for Four Frequencies 

of 25nm Radius Dielectric Rod With Relative Permittivity ϵr = 4− j⋅0.001
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Figure 4-4 Phase vs. Distance in Wavelengths for Four Frequencies of 25nm radius 

Dielectric Rod With Relative Permittivity ϵr = 4− j⋅0.001

Note that to stimulate guidance of the dielectric rod with the given permittivity, the 

stimulating light was well into the ultraviolet, much higher in frequency than desired.  

What has been demonstrated is how the software works, and how results may be 

interpreted. 

Now we proceed to apply this approach to model the effective medium rod that 

should be the equivalent to Weber and Ford’s case by using the same Drude model as
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 they did, that is to say ϵ(ω)= 1−
ωp

2

ω(ω+ j ν)
, where ωp = 6.18 eV /ℏ ,

ν = 0.7 eV ,  and inserting this Drude material into a Claussius-Mossotti effective 

medium for the dielectric rod, then varying ω over the same range as their dispersion 

diagram at 24 test points.  The results are shown below:

Figure 4-5 Weber and Ford Drude Model Applied to Effective Media Over First Third of 

Dispersion Diagram Frequency Band
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Figure 4-6 Weber and Ford Drude Model Applied to Effective Media Over Second Third 

of Dispersion Diagram Frequency Band

Figure 4-7 Weber and Ford Drude Model Applied to Effective Media Over Final Third of 

Dispersion Diagram Frequency Band

Note that these results show the effective medium rod, which is equivalent to 

Weber and Ford's chain of nanospheres is not guiding.  Recall the adjustments and fitting 
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shown in Figures 3-9 and 3-10 to remove the dipole radiation from the data.  If we take 

those data, and overlay the results from the effective dielectric rod at the two same 

frequencies (called Frequency #1 and #11 in section 3.3), we see the slope of the 

attenuation predicted by the adjusted data more closely matches the slope of the 

amplitude of the current wave of the effective rod near the point of stimulation.  Note that 

because the material is lossy, the attenuation is high and the noise floor is raised.  The 

initial magnitude of each data set is arbitrary, so they are offset to be spaced in the 

vertical for ease of viewing (no overlaping).

Figure 4-8 Unadjusted and Adjusted Weber and Ford Polarization Data Compared to 

Effective Dielectric Rod Guided Current Wave Amplitude for Freq #1
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The effective dielectric rod (red) shows initial turbulence from the stimulating 

current source, high attenuation, then the noise floor is reached after a little over a 

wavelength. Vertical red markers show the region considered where the wave is 

attenuated, and beyond is noise.  The attenuation of the current wave was 0.64/2=0.32 per 

unit cell (75 nm), which is 18.53dB /500nm , or 3dB /162nm .  Note that our method 

of adjusting the results of Weber and Ford's method as outlined in section 3.3 led to a 

perceived attenuation constant of 0.82/2= 41 per unit cell near the start of the chain, 

which is 23.74dB /500nm , or 3dB /126nm .  On the other hand, if one tries to fit a 

straight line attenuation to the original Weber and Ford data near the start of the chain, 

they would be lead to believe the attenuation was 0.44/2=21 per unit cell, which is

12.16dB /500nm or 3dB /247nm .  The actual attenuation is nearly in the middle.  

This is overlooking the fact that according to Weber and Ford's paper, the polarization 

well down the line is believed to show the guided wave's ture attenuation, when in fact 

the attenuation for the guided wave occurs at the start of the line, and all that is seen well 

down the chain of spheres is the dipolar radiation into free-space of the initially 

stimulated sphere.  Measuring the dipolar radiation 1/r2 and 1/r3 fall off as 

attenuation resulted in their belief that the intensity attenuation was much lower than 

reality.  This can be better seen at frequency #11, which is the same as their test 

frequency, and is shown in Figure 4-9.
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Figure 4-9 Unadjusted and Adjusted Weber and Ford Polarization Data Compared to 

Effective Dielectric Rod Guided Current Wave Amplitude for Freq #11

Again, we must select a region slightly past the start of the chain to avoid 

turbulence from the stimulating current source of the rod, and ignore the region affected 

by noise.  These regions are marked by vertical red lines.  The attenuation originally 

determined for the adjusted polarizability data in section 3.3 considered spheres well 

along the chain.  It is evident we were capturing effects from the dipolar radiation which 
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we had tried to remove, as the attenuation determined (orange line) is not nearly steep 

enough in the region close to the start of the chain.  The effective dielectric rod shows the 

attenuation is 0.88/2 = .44 per unit cell, which is 25.5dB /500nm , or 3dB /118nm .  

This enables us to compare to Weber and Ford, who calculated a power attenuation of

1.44×106 per meter at the same frequency, which is 3.127dB /500nm or

3dB /480nm .  The actual attenuation is more than 22 dB greater.

For additional comparison, the original polarization intensity data from Weber 

and Ford's method, implies a loss of 0.64/2 = 0.32 per unit cell near the start of the line, 

which is 18.5dB/500nm , and the first attempt at adjusting this data was in error, as we 

see the slope of the old attenuation line (orange) was trying to fit to too many spheres 

down the line.  The flawed measurement was 0.47/2 = 0.235 per unit cell, which is

13.6dB /500nm .  Clearly the accurate line is the black dashed line, with 0.8/2 = 0.4 

per unit cell, which is 23.2dB /500nm .

There is no guided wave over the entire band given in the dispersion diagram in 

Weber and Ford's paper. The question now becomes, if the chain is not guiding, what will 

guide?  Is the lack of guidance due to their Drude model?  What can make the chain 

work?
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Chapter 5

GUIDING STRUCTURES

5.1 Unrealistically Low Loss Silver 

Part of the reason the wave is not guided given Weber and Ford's model, is the 

Drude metal representation used.  As previously noted, they chose a Drude represented

 by ϵ(ω)= 1−
ωp

2

ω(ω+ j ν)
, where ωp = 6.18 eV /ℏ , ν = 0.7eV , and apparently

ϵ∞= 1 .  It is known that a material may be completely modeled by a sum of Lorentz 

and Debye terms [29], and in the visible spectrum, for a Drude metal, aside from the

Drude (Lorentz) pole
ω p

2

ω(ω+ jν)
, these additional terms are nearly constant, adding 

together to give ϵ∞>1 .  Fitting to measured data as described in Appendix A shows

ϵ∞≈ 6 for silver.  We may also fit to measured data for ωp (which gets significantly 

shifted by the new ϵ∞ ) and ν , also denoted γ in the appendix.  Making this 

adjustment, which increases the permittivity, may help the object being modeled achieve 

guidance.  Beyond adjusting the parameters of the model being used to fit to measured 

data, the actual measured data being fit may be selected to be of lower loss.  It is believed 

that the measured silver data by Palik [26] is accurate, while older measurements by 

Johnson and Christy [30] cite unrealistically low values for ϵ ' ' , which are on the order 
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of one tenth the values reported in Palik.  In the interest of exploring what will guide a 

wave, we are free to use the Johnson and Christy data, and see if it is sufficient for 

guidance, and to give us an idea as to by what mechanism guidance may be achieved.

Figure 5-1 shows a Drude fit, which is also adjusted for mean free path effects, to 

Johnson and Christy's silver data.  From these data 24 points are selected to use in 24 test 

frequencies to cover the same band as shown in previous dispersion diagrams.

Figure 5-1 Drude Model from Fit to Johnson and Christy's Silver Data and Points 

Selected for Evaluation
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To create an effective medium for the dielectric rod, the Drude model for silver is 

used for the inclusion in the previously described Claussius-Mossotti model, resulting in 

the Lorentz material in Figure 5-2.  In particular note how “peaky” this material is at 

resonance, especially when compared to the same model of Figure 4-2, which used 

Palik's silver data.  

Figure 5-2 Unrealistically Low Loss CM Drude Silver Model
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The simulation of the effective cylinder composed of this effective material results in 

Figures 5-3 through 5-5. 

Figure 5-3 Low Loss Claussius-Mossotti 592.4 - 721.3 THz

Figure 5-4 Low Loss Claussius-Mossotti 739.7 – 868.7 THz
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Figure 5-5 Low Loss Claussius-Mossotti 887.1 – 1016 THz

We have guidance with this structure.  Onset occurs near 702.9 THz, and we have 

guidance support through 758.2  THz.  At 776.6 THz, the next highest order mode starts 

interfering, causing the rippling observed in the amplitude, which is worse at 795.0 THz.  

Once past this frequency we enter a band of non propagation.
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Observe which points on the Lorentz material permitted guidance:

Figure 5-6 Permittivity Values of Effective Media Dielectric Rod that Support Guidance 

in the Band of Interest

Given low enough loss in the model of silver, or high enough real part of permittivity, the 

chain of spheres can guide in the region of interest.   From the slope of the amplitude 

plots, we may determine the attenuation  of the guided modes at the simulated 

frequencies, and from the slope of the phase plots, the propagation constant.
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Figure 5-7 First Two Guided Frequencies and Slopes Leading to Attenuation and 

Propagation Constants

In a similar manner, we may find the attenuation and propagation constant for the next 

two frequencies, resulting in a dispersion diagram and attenuation vs. frequency plot.

Figure 5-8 Attenuation vs. Frequency and Wave Number vs. Frequency
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For comparison to previous groups results, the attenuation may be determined in 

dB/500nm.  Also, the phase velocity may be determined from the dispersion diagram.: 

Figure 5-9 Attenuation in dB/500nm and Phase Velocity in units of the Speed of Light c 

vs. Frequency

We see an attenuation of 2.10, 3.57, 3.89, and 5.57dB per 500nm, and phase velocity of 

0.996, 0.967, 0.826, and 0.655 times the free space speed of light, at the frequencies 

702.9, 721.3, 739.7, and 758.2 THz.  The group velocity could be determined by applying 

the Green function approach in smaller increments of frequency across the band to 

approximate a continuum, or estimated from the material parameters of the effective 

medium.  

If the dielectric rod equivalent to a chain of spheres with Johnson and Christy 

silver spheres will guide in the region of interest, what about more realistic data from 

Palik?
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5.2 Realistic Loss Silver

In a similar manner to section 5.1, a Claussius-Mossotti effective medium using 

Palik's silver data, with mean free path effect offset, was made.

Figure 5-10 Realistic Loss Silver CM Effective Material

Note how significantly lower the peak of the resonance is compared to the low loss 

version in Figure 5-5.  Given where there was guidance, and where there was not, in 

section 5.1, it can be predicted that there will be no guidance over the band of interest 

with this effective material, which was confirmed by simulation.
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Figure 5-11 Realistic Claussius-Mossotti 592.4 - 721.3 THz

Figure 5-12 Realistic Claussius-Mossotti 739.7 – 868.7 THz
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Figure 5-13 Realistic Claussius-Mossotti 887.1 – 1016 THz

Information can still be gathered from the results, for instance the envelope of the 

amplitude peaks in the region near the start of the chain, before the noise floor, can be 

considered, giving an attenuation constant as described in section 4.2 and shown in 

figures 4-8 and 4-9.  But the consideration at hand is simply if such a structure will guide 

in the band of interest given realistic material parameters, and it clearly will not.  It is 

apparent that the sharp resonance of the unit cell of the effective medium is necessary to 

guide.

5.3 Realistic Silver Nano-wire

What if we simply filled our equivalent lossy dielectric cylinder with silver 

instead of an effective permittivity as made by a spherical inclusion?  24 data points from 
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the permittivity function from a Drude fit to Palik's silver data, with mean free path 

adjustment, were used to fill a 25 nm radius cylinder.

Fig 5-14 Sample Points from Palik Silver Drude Model with Mean Free Path Adjustment

Figure 5-15 Realistic Silver Cylinder 592.4 - 721.3 THz
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Figure 5-16 Realistic Silver Cylinder 739.7 – 868.7 THz

Figure 5-17 Realistic Silver Cylinder 887.1 – 1016 THz

The realistic silver wire does guide, but much like a plane wave traveling over a 

lossy Earth, the wave on the surface of the rod appears to be drawn into the wire and 

damped.  The lowest frequency tested, 592.4 THz, has the lowest attenuation, which is

9.10dB /500nm , with wave number βd = 1.585 , and phase velocity 0.587c.       

After 721.3 THz, the wave does not appear to be guided much past a wavelength.  At this 
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frequency the attenuation is 22.3dB/500nm , wave number βd = 2.362 , and phase 

velocity 0.480c .

5.4 Unrealistically Low Loss Silver Nano-wire

In section 5.3 we saw a realistic structure that does guide, the silver nano-wire.  In 

section 5.1 we saw that a chain of spheres with unrealistically low loss silver guides as 

well.  To compare the structures, consider a nano-wire similar to that of section 5.3, 

except now composed of the same Drude model fit to Johnson and Christy mean free 

path adjusted low loss silver, such as was used for the material of the chain of spheres in 

section 5.1.  Doing so, and we see better guidance than the realistic nano-wire of section 

5.3, as can be expected due to the lower loss, yet similar damping behavior as the 

frequency increases.  We also see a lower onset frequency than the chain of spheres of 

the same material as was shown in section 5.1, with higher cutoff, and less attenuation. 
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Figure 5-18 Low Loss Silver Cylinder 592.4 - 721.3 THz

 

Figure 5-19 Low Loss Silver Cylinder 739.7 – 868.7 THz
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Figure 5-20 Low Loss Silver Cylinder 887.1 – 1016 THz

Again, from the slope of the amplitude plots, we may determine the attenuation  

of the guided modes at the simulated frequencies, and from the slope of the phase plots, 

the propagation constant.

Figure 5-21 Attenuation vs. Frequency and Wave Number vs. Frequency
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Figure 5-22 Attenuation in dB/500nm and Phase Velocity in units of the Speed of Light c 

vs. Frequency

So from 592.4 to 758.2 THz, the attenuation varies from 0.93 to 7.58 dB/500nm, and the 

phase velocity from 0.558 to 0.369 c.  

In both low loss and realistic cases, we see the nanowire  has lower onset, wider 

band, slower wave, and less attenuation.
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Chapter 6

CONCLUSION

A method for small scale imaging using visible wavelength light was proposed, 

which called for a material or structure to slow the wave sufficiently for high resolution.  

Recent models in the waveguiding potential of plasmonic nanospheres implied their 

usability in this application, but evaluation introduced uncertainty in their validity.  A 

method in evaluating the waveguiding properties of an equivalent cylinder conforming to 

effective media theory was proposed utilizing a Green function approach, which 

confirmed the concerns in the original models, and introduced an improved method of 

modeling such structures.

The results in the literature, though not necessarily unanimous, claimed 

attenuation constants as low as 3.13dB /500nm .  The results in the literature have been 

shown here to be in all likelihood spurious either because of misinterpretation of 

measured total fields on a line of spheres as being due only to a guided wave, or violation 

of validity conditions for the eigenvalue solution methods used.

The Green function solution with an effective medium model is shown to 

unambiguously demonstrate whether or not there is guidance by considering not only the 

amplitude, but also the phase of the guided phenomenon.  Slow waves can be excited on 

a silver chain of spheres of the usual construction assumed in the literature if and only if 

the loss of the silver is assumed to be extraordinarily low.  In this case the lowest 
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attenuation observed in the same band as evaluated in the literature for a wave which 

could even be considered guided was 9.10 dB /500nm , with attenuation of the order 

22.3 dB /500nm observed near the region in which the literature believed the 

attenuation was of the order 3.13 dB/500nm .

More realistic material properties preclude guidance with these chain parameters 

(25nm radius spheres and 75nm center-to-center separation).  Other chain configurations 

can readily be modeled.

It is also shown that a pure silver rod of the same diameter does guide under both 

realistic or idealized silver parameters with attenuation of 9.10 to 22.3 dB /500nm for 

the realized and 0.93 to 7.58 dB /500nm for the idealized. 
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Chapter 7

FUTURE WORK

• Finite-Difference Time-Domain Simulation to verify results seen with Green 

function solution for both chain of spheres and nanowire.

• Evaluation of plasmonic chain of spheres model by Alu and Engheta [14] and 

comparison to Green function solution.

• Evaluation of adjustment of particle geometry (radius and separation) for effect 

on guidance

• Evaluation of the third type of waveguiding media, the cylinder made from bulk 

colloidal sphere effective media (Fig. 2-6)

• Evaluation of attenuation and dispersion for all waveguiding devices with respect 

to radar-like imaging applications

• Exploration and evaluation of other high resolution methods, such as transverse 

resolution achieved by twin transmission line with small line separation, instead 

of by slow longitudinal wave 
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APPENDIX A 

DRUDE MODEL
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The Drude Model for the permittivity function of a material is based on the 

Lorentz model (harmonic oscillator) without restorative force (IE free electrons not 

bound to a particular nucleus) [28].  Perturbation of the electron modeled as a harmonic 

oscillator (Lorentz):

me− ae− = FE−Local+FDamping+FSpring ⇒ me−
d2 r⃗
d t 2 +me− γ

d r⃗
dt

+C r⃗ =−e E⃗L

For motion of free electron, which is not bound to a particular nucleus, C = 0 and the 

Lorentz model becomes the Drude model.

me−
d2 r⃗
d t 2 +me− γ

d r⃗
dt

+C r⃗ =−e E⃗L ⇒ me−
d v⃗
d t

+me−γ v⃗ ⇒
d v⃗
d t

+γ v⃗ =−
e

me−
E⃗L

Note γ =
1
τ where τ is  the relaxation time, typically on the order of 10−14 s.

Current density is defined J⃗ =−N e v⃗ where N is the number of electrons per meter 

squared, -e is the charge of an electron, and v⃗ is the electron velocity.  Back 

substitution into the equation of motion gives:

d J⃗
d t

+γ J⃗ =
N e2

me−

E⃗L

Assume applied electric field and conduction current density are given by:

E⃗ = E⃗0 e jω t J⃗ = J⃗ 0 e jωt

Back substitute into equation of motion:

d ( J⃗ 0 e jωt )
d t

+γ J⃗ 0 e jωt
=

N e2

me−
E⃗0 e jω t

⇒ ( jω+γ ) J⃗ 0 =
N e2

me−

E⃗0

At DC, ω = 0 and : J⃗ = ( N e2

me−γ ) E⃗= σ E⃗ so static conductivity σ =
N e2

me−γ
.
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General case for oscillating applied field:

J⃗ = [
σ

1+ jω/γ ] E⃗ = σω E⃗ where σω is the dynamic conductivity.

Maxwell's equations give us the following wave equation for metals:

∇
2 E⃗ =

1
c2

∂
2 E⃗
∂ t 2 +

1
ϵ0 c2

∂ J⃗
∂ t

because P⃗= 0 J⃗ ≠ 0

As determined, J⃗ = [
σ

1+ jω/γ ] E⃗ , so back substitution:

∇
2 E⃗ =

1
c2

∂
2 E⃗
∂ t 2 +

1
ϵ0 c2

∂
∂ t (

σ
1+ jω/γ

E⃗ )

The wave equation is of course satisfied by electric fields of form E⃗ = E⃗0 e j (ωt−k⃗⋅⃗r ) , 

where k2
= ω

2

c2 + j [
σωμ0

1+ jω/γ ] c2
=

1
ϵ0μ0

.

k2
=ω

2
ϵμ = ω

2

c2 ϵr given μr = 1 , so:

ϵr
ω

2

c2 =
ω

2

c2 + j [
σ ωμ0

1+ jω/ γ ] ⇒ ϵr = 1−
γσμ0 c2

ω
2
− jωγ

This is the effective permittivity of the Drude material.   Define the plasma frequency

ωp
2
= γσμ0c2 so that when ω≫1 the ω

2 term in the denominator dominates, and

ϵr changes sign when ω =ωp .  Then ϵr = 1−
ωp

2

ω
2
− jω γ

.

Given a material is strictly Drude, this model is appropriate.  In reality, all 

materials have other mechanisms which affect their permittivity [29]. Define these other 
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effects F(ω) , then the permittivity function becomes ϵr = 1−
ωp

2

ω
2
− jω γ

+F (ω) .  

Rigorous study of materials has shown that for silver, these other effects are nearly 

constant over the visible spectrum, making F(ω)≈ ϵ∞−1 , a constant.  Then a usable

 model for silver becomes ϵr = ϵ∞−
ωp

2

ω
2
− jω γ

, where ϵ∞ , ωp
2 , and γ are 

parameters to be optimized so that the given equations are accurate over the frequency 

range of interest.

Using the measured data for silver from Johnson and Christy [30] we can use a 

numeric optimizer (lsqnonlin function in MATLAB 2012a) to solve for the best fit Drude 

model parameters over the entire range.  Using an educated “guess” of ϵ∞= 6 and the 

measured data, we determine the best fit shown in Figure B-1 with parameters

ωp = 1.4684×1016 rad /s , and γ = 4.9942×1013rad /s .
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Figure B-1 Drude Model Fit to Measured Data

This Drude model for various particle radii gives the same ωp for all the 

spheres:

ωp = 1.4684×1016

Note that in fitting the data, although ωp remains a constant value to the 4th significant 

figure, the parameter γ varies between 4.99×1013 to 5.77×1013 when the particle 

radius varies from 25nm to 100nm .  Labeling this parameter "plasmon resonance" is 

a misnomer.  Recall the equation for the permittivity using the Drude model:

ϵr(ω)= ϵ∞−
ωp

2

ω
2
− jωγ
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In traditional derivations, we assume no (nearly) constant effects from Lorentz or 

Debye terms in the model, which would make ϵ∞= 1 .  However, in fitting the Drude 

model, we saw that over our band of interest, the effects of other Lorentz or Debye terms 

which are occurring far from the center of our band have the effect of offsetting ϵ∞ in 

our band of interest.  Trial and error in fitting the model showed ϵ∞= 6 is appropriate 

for silver.  This makes the Drude model:

ϵr(ω)= 6(1− ωp
2

6ω2
− j 6ω γ )

For a bulk infinite material resonance occurs when ϵr = 0 , or when ω ≈ω p/√6 .  So

ωpole ≈
1.468×1016

2.45
= 5.992×1015 .  Which implies resonance should occur at the 

wavelength:

λ =
c
ω

2π

=
2π⋅2.998

5.992
×10−7

= 314nm

Note that Brongersma and Atwater's nearest neighbor model [12] uses, without proof,

ωres ≈ 5×1015 .  Using this value in the Drude model, we see resonance should occur 

at the wavelength:

λ Atwater =
c
ω

2 π

=
2π⋅2.998

5
×10−7

= 377nm

For a sphere of silver, in the quasi-static approximation (Appendix D), we expect 

resonance to occur when ϵr =−2 ,  which means:
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−2 = 6 (1− ω p
2

6ω2
− j 6ωγ ) ⇒

ωp
2

6ω2
− j 6ω γ

=
4
3
⇒

ωp
2

ω
2
= 8

That is when:

ω ≈ω p/√8

ωpole ≈
1.468×1016

3.464
= 5.192×1015

λ =
c
ω

2π

=
2π⋅2.998

5.192
×10−7

= 363nm

This means we have a parameter ωp , often called the Drude plasmon resonance, 

which we solve for by fitting a Drude model to measured data.  Although this value is 

called the plasmon resonance, the frequency at which we actually observe plasmon 

resonance is usually this fitted value multiplied by some factor as determined by ϵ∞ and 

the geometry of the system. As noted, for silver, at visible frequencies, we know

ϵ∞= 6 .  The  geometry of the object comes into play by noting that for an infinite 

homogeneous medium, resonance occurs when ϵr = 0 ; for a semi-infinite distribution 

ϵr =−1 ; and for a spherical distribution, the distribution of interest in our case,

ϵr =−2 .  To clarify whether we are discussing a resonance of the material (plasmon 

resonance of bulk silver), or resonance of an object (a nanoscale sphere of silver),

 introduce ωpole , which for a silver sphere is as was determined, ωpole =
ωp

√8
.

The Drude model is a quasi-static approximation.  Using the Drude model, for a

spherical particle we expect resonance at ωpole =
ωp

√8
, but this may be shifted in a 
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dynamic system.  This is where the Mie theory solution to the scattering of a sphere may 

be used to exactly model the resonance of a sphere and find at what frequency it occurs 

for different size spheres.  From the quasi-static approximation, we expect them to be 

near λ ≈ 363nm . 

Also note that the measured silver data from Johnson and Christy has been used, 

but upon further analysis, the data provided by Palik is expected to be more 

representative of reality.  The method remains the same, just the measured data being fit 

to may be interchanged.
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APPENDIX B

ADJUSTMENT FOR MEAN FREE PATH EFFECT
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While the Drude model works reasonably well for bulk material, the effects of the 

mean free path of the electron becomes significant when a dimension of the material used 

approaches the order of the length of the electron's free mean path. [31]

This effect changes the observed resistivity of the material, which of course is 

proportional to the imaginary part of the permittivity.  Hence the Drude model must be 

adjusted for this effect to be sufficiently accurate for our purposes.

Reference [31] shows the adjusted resistivity is given by:

ρ= ρbulk [1− 3
2k

(1−p )∫
1

∞

( 1

t 3−
1

t 5 ) 1−e−kt

1−p e−kt dt ]
−1

Where ρbulk is the bulk resistivity of the material of interest, k =
d
λ

, where

d is the thickness of the film (or diameter of the sphere), and p is the surface 

scattering factor of the material. Since the particular material placement method to be 

used has yet to be determined, an average of the resulting p's from different material 

placement methods will be used.

First, the bulk resistivity may be determined from the imaginary part of the 

measured permittivity.  ϵ = ϵ '− j ϵ ' ' = ϵ '− j σω = ϵ '− j
1
ρω so

ϵ ' ' =
1
ρω ⇒ ρ=

1
ϵ ' 'ω

.

So measured data, such as Johnson and Christy [30], gives us bulk property 

parameters.  When we fit our Drude model to their data, we are creating the Drude model 
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for bulk silver, so no offset is required.  Once we have the bulk model, we need to adjust 

it so that it more closely resembles a material that has dimensions which are effected by 

the electron mean free path.  This may be achieved by offsetting the Johnson and Christy 

resistivity by the appropriate amount, then finding the parameters for the Drude model 

again using this new offset data.  This will give a new Drude model that contains the 

effects from the small dimensions on the mean free  path of the electron.

So  bulk resistivity is given by ρbulk =
1

ϵ ' ' measω
, then for a material with 

electron mean free path effects we have:

ρ = ρbulk [1− 3
2k

(1−p )∫
1

∞

( 1

t 3−
1

t 5 ) 1−e−kt

1−p e−kt dt ]
−1

and:

ϵ ' 'meanFP =
1
ρω

This adjustment is incorporated into the Drude model software built for Appendix A.
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APPENDIX C

MIE THEORY
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As demonstrated by Bohren and Huffman [32], and following established notation 

and time convention, assume a time-harmonic electromagnetic field in a linear, isotropic, 

homogeneous medium.  Then the fields must satisfy the wave equation:

∇
2 E⃗+k2 E⃗ = 0 ∇

2 H⃗+k2 H⃗ = 0

Where k2
=ω

2
μ ϵ and since there are no free charges:

∇⋅E⃗ = 0 ∇⋅H⃗ = 0

By Maxwell's equations, E and H are dependent:

∇×E⃗ = jωμ H⃗ ∇×H⃗ =− jωϵ E⃗

Then in a similar manner to constructing solutions from vector potentials, suppose 

we construct a vector function M⃗ from constant vector c and scalar function ψ such 

that M⃗ = ∇×(cψ ) . So M⃗ is the curl of a scalar function, and vector analysis shows 

that the divergence of the curl of a scalar function is 0:

∇⋅M⃗ = 0

Apply vector identities:

∇×( A⃗×B⃗ ) = A⃗ (∇⋅B⃗ )−B⃗ (∇⋅A⃗ )+( B⃗⋅∇ ) A⃗−( A⃗⋅∇ ) B⃗

∇ ( A⃗⋅B⃗ ) = A⃗× (∇×B⃗ )+ B⃗×(∇× A⃗ )+ (B⃗⋅∇ ) A⃗+( A⃗⋅∇ ) B⃗

to get the vector wave equation:

∇
2 M⃗+k2 M⃗ = ∇×[ c (∇ 2

ψ+k2
ψ ) ]

So the vector wave equation is satisfied by M⃗ if the scalar wave equation is satisfied by

∇
2
ψ+k 2

ψ= 0 .  Writing out M⃗ = ∇×(cψ ) and rearranging terms shows
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M⃗ =−c ∇×ψ which means M⃗ is perpendicular to c.  Construct a second vector 

function N⃗ from M⃗ defined by:

N⃗ =
∇×M⃗

k

Then

∇
2 N⃗ +k2 N⃗ = ∇ (∇⋅N⃗ )−∇×(∇×N⃗ )+k2 N⃗ =−∇×(∇×N⃗ )+k ∇×M⃗

=−∇×(∇×(∇×M⃗
k ))+k ∇×M⃗ =−

1
k
∇×(∇ (∇⋅M⃗ )−∇

2 M⃗ )+k ∇×M⃗

=
1
k
∇×(∇2 M⃗ )+k∇×M⃗ =

1
k
∇×(−k2 M⃗+∇×[c (∇2

ψ+k2
ψ) ] )+k ∇×M⃗

=−k ∇× ( M⃗ )+k ∇×M⃗ = 0

So ∇
2 N⃗+k2 N⃗ = 0 , then −∇×(∇×N⃗ )+k ∇×M⃗ = 0 , so ∇×N⃗ = k M⃗ .  What 

this means is that M⃗ and N⃗ have the same properties of an electromagnetic field; 

they satisfy the vector wave equation, are divergence-free, and the curl of one is 

proportional to the other and vice versa.  So the vector field equations may be determined 

by solving the scalar wave equation. ψ is the scalar generating function of the vector 

harmonics M⃗ and N⃗ , and the guiding or pilot vector is denoted by c.

The choice of appropriate generating function ψ is governed by the symmetry 

of the problem at hand.  For scattering by a sphere (as is the interest in Mie theory), ψ

should be functions that satisfy the wave equation in spherical coordinates.  Choice of 

pilot vector c may not be obvious, but note if the radius vector r is used for c, then M⃗ is 

a solution to the vector wave equation in spherical coordinates.
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So M⃗ = ∇×(r ψ ) , N⃗ =
∇×M⃗

k
=

∇×∇×(rψ )

k
.  Note M⃗ is tangential to 

r, so r⋅M⃗ = 0 , i.e. M⃗ is everywhere tangential to any sphere ∣r∣= constant .

The scalar wave equation in spherical coordinates:

1
r2

∂
∂ r (r

2 ∂ψ

∂ r )+
1

r2 sinθ
∂
∂θ (sinθ

∂ψ
∂θ )+ 1

r2 sinθ
∂

2
ψ

∂ϕ
2 +k2

ψ = 0

In the typical fashion, assume separation of variables ψ (r ,θ ,ϕ ) = R(r )Θ(θ)Φ(ϕ)

which results in:

d2
Φ

d ϕ
+m2

Φ= 0

1
sinθ

d
dθ (sinθ

dΘ
d θ )+[n(n+1)−

m2

sin2
θ ]Θ = 0

d
dr (r

2 d R
d r )+[k 2r2−n (n+1 ) ] R = 0

Then Φ =Φe+Φo , where Φe = cosmϕ , Φ0 = sin mϕ , ψ(ϕ)= ψ(ϕ+2π) and

m∈ℤ .  Solutions to 1
sinθ

d
dθ (sinθ

dΘ
d θ )+[n(n+1)−

m2

sin2
θ ]Θ = 0 which are finite 

at the boundary conditions θ=0,π are associated Legendre polynomials Pn
m (cosθ) .  

Introduce variable ρ = kr and define Z=R √ρ then:

d
dr (r

2 d R
d r )+[k 2r2−n (n+1 ) ] R = 0 becomes ρ

d
d
ρ(ρ2 d Z

dρ )+[ρ2−(n+1/2 )2 ]Z = 0

let n+1/2 = ν then the equation has Bessel function solutions J ν and Y ν , then in 

terms of n we have spherical Bessel functions:
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jn (ρ ) = √
π

2ρ
J n+1 /2 (ρ )

yn (ρ ) = √
π

2ρ
Y n+1 /2 (ρ )

Any linear combination of the solutions are also a solution, particularly spherical Hankel 

functions:

hn
(1 )
(ρ)= jn(ρ)+ j yn(ρ)

hn
(2 )
= jn(ρ)− j yn(ρ)

So the possible even and odd solutions to scalar function are:

ψemn = cosmϕ Pn
m (cosθ ) zn(k r )

ψomn = sin mϕPn
m (cos θ) zn(k r)

where zn stands for one of the four given spherical Bessel functions.  Then the vector 

equations may be given by M⃗ emn = ∇×(rψemn) , M⃗ omn = ∇×(r ψomn) ,

N⃗ emn =
∇×(M⃗ emn)

k
, and N⃗ omn =

∇×(M⃗ omn)

k
.

Then substituting in the scalar wave equation we have:

M⃗ emn =
−m
sinθ

sin mϕ Pn
m
(cosθ)zn(ρ) âθ−cosmϕ

d
dθ

(Pn
m
(cosθ)) zn(ρ) âϕ

M⃗ omn =
m

sinθ
cos mϕ Pn

m
(cosθ)zn(ρ) âθ−sin mϕ

d
d θ

(Pn
m
(cosθ)) zn(ρ) âϕ

N⃗ emn =
zn(ρ)
ρ cosmϕn(n+1)Pn

m
(cosθ) âr+cosmϕ

d
d θ

(Pn
m
(cosθ)) 1

ρ
d

d ρ
[ρ zn(ρ)] âθ

−msin mϕ
Pn

m
(cosθ)

sinθ
1
ρ

d
dρ

[ρ zn(ρ)] âϕ
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N⃗omn =
zn(ρ)
ρ sin mϕn(n+1)Pn

m
(cosθ) âr+sin mϕ

d
d θ

(Pn
m
(cosθ)) 1

ρ
d

d ρ
[ρ zn(ρ)] âθ

+mcos mϕ
Pn

m
(cosθ)

sinθ
1
ρ

d
d ρ

[ρ zn(ρ)] âϕ

Now any solution to the field equations can be expanded in an infinite series of these four 

equations.

We may now expand the incident plane wave for scattering evaluation.  To do so, 

assume there is an x polarized impinging plane wave propagating in the positive z-

direction:

E⃗i = E0 e jkr cosθ âx

(note physicists time convention in this case, to match established analysis as done in the 

physics community, replace j in the results with -j if applying to problems with 

engineering time convention of e− j k z ), where:

âx = sinθcosϕ âr+cosθcosϕ âθ−sinϕ âϕ

and of course r cosθ = z .  Suppose this wave is scattered by a sphere.  For a solution, 

first expand the incident wave into spherical harmonics:

E⃗i =∑
m=0

∞

∑
n=0

∞

(Bemn M⃗ emn+Bomn M⃗ omn+A emn N⃗ emn+Aomn N⃗omn )

Each M⃗ and N⃗ are all mutually orthogonal, so to find each coefficient proceed in the 

typical fashion of application of the inner product:

Bemn =

∫
o

2π

∫
0

π

E⃗i⋅M⃗ emn sinθd θd ϕ

∫
o

2π

∫
0

π

∣M⃗ emn∣
2
sinθd θd ϕ

Bomn =

∫
o

2π

∫
0

π

E⃗ i⋅M⃗ omnsinθd θd ϕ

∫
o

2π

∫
0

π

∣M⃗ omn∣
2
sinθd θd ϕ
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Aemn =

∫
o

2π

∫
0

π

E⃗ i⋅N⃗ emn sinθdθ dϕ

∫
o

2π

∫
0

π

∣N⃗ emn∣
2
sinθdθ dϕ

Aomn =

∫
o

2π

∫
0

π

E⃗i⋅N⃗ omnsinθd θd ϕ

∫
o

2π

∫
0

π

∣N⃗omn∣
2
sinθd θd ϕ

Orthogonality of sin and cosine means Bemn = Aomn = 0 for all m and n.  Similarly all

Bomn = Aemn = 0 for all m ≠ 1 (to match the x directed unit vector in spherical 

coordinates attached to the impinging wave).  We require finite fields at the origin, hence 

solutions with yn are rejected for the incident field.  Let superscript (1) denote vector 

harmonics which are solely dependent on jn , then the expansion of incident field E⃗i

is given by:  

E⃗i =∑
n=1

∞

(Bo1n M⃗ o1n
(1)
+A e1n N⃗ e1n

(1) )

Solving Bo1n =

∫
o

2π

∫
0

π

E⃗ i⋅M⃗ o1n sinθd θd ϕ

∫
o

2π

∫
0

π

∣M⃗ o1n∣
2
sinθd θd ϕ

by application of Pn
1
=−

d Pn

d θ
and 

Gegenbauer's generalization of Poisson's integral jn(ρ) =
j−n

2
∫
0

π

e jρcos θ Pn sinθdθ gives: 

Bo1n = jn E0
2n+1

n(n+1)

Integration by parts and significant rearranging gives:

A e1n =− j E0 jn 2n+1
n(n+1)
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So the impinging incident wave may be represented:

E⃗i = E0∑
n=1

∞

jn 2n+1
n(n+1)

(M⃗ o1n
(1)
− j N⃗ e1n

(1) )

Now the internal and scattered fields may be accounted for.   The dependence of 

the magnetic field on the electric gives:

H⃗ i =−
j

ωμ E0∇×E⃗ i =−
j

ωμ E0∑
n=1

∞ 2n+1
n(n+1)

(∇×M⃗ o1n
(1 )
− j∇×N⃗ e1n

(1) )

=−
j

ωμ E0∑
n=1

∞ 2n+1
n(n+1)

(k N⃗ o1n
(1)
− j k M⃗ e1n

(1) ) = k
ωμ E0∑

n=1

∞

jn 2n+1
n(n+1)

( M⃗ e1n
(1)
+ j N⃗ o1n

(1) )

and we have:

H⃗ i = =−
k
ωμ E0∑

n=1

∞

jn 2n+1
n(n+1)

(M⃗ e1n
(1)
+ j N⃗ o1n

(1) )

The scattered fields ( E⃗ s , H⃗ s ) and the fields inside the sphere ( E⃗1 , H⃗1 ) may also be 

expanded into spherical harmonics of the same form.  At the boundary of the sphere the 

tangential components of the fields must be continuous, so we have boundary conditions:

( E⃗ i+ E⃗ s−E⃗1)×âr = ( H⃗ i+ H⃗ s−H⃗ 1 )× âr = 0

The fields inside the sphere must not be a function of yn , otherwise the fields at the 

origin would not be finite. jn is represented by jn(k1r ) , where k1 is the wave 

number of the sphere.  So the expansion of the interior fields are:

E⃗1 = E0∑
n=1

∞

jn 2n+1
n (n+1)

(cn M⃗ o1n
(1)
− j dn N⃗ e1n

(1) )

H⃗ 1 = =−
k 1
ωμ1

E0∑
n=1

∞

jn 2n+1
n (n+1)

(dn M⃗ e1n
(1)
+ j cn N⃗ o1n

(1) )  

Outside the sphere, jn  and yn are both finite and hence permitted solutions.  It is 
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convenient to combine them into a Hankel function representation.  In physicists time 

convention, a Hankel function of the first kind corresponds to an outgoing traveling 

wave, so the Bessel function portion of the solution will be hn
(1 ) .  Note that if we take 

the complex conjugate to get the engineering time convention, the Hankel function of the 

first kind transforms to a Hankel function of the second time.  Let superscript (3) denote 

the Hankel function outward traveling wave solution as described for physicists time 

convention, then the expansion for the scattered field is given by:

E⃗s = E0∑
n=1

∞

jn 2n+1
n(n+1)

(−bn M⃗ o1n
(3)
+ j an N⃗ e1n

(3) )

H⃗ s ==
k1
ωμ1

E0∑
n=1

∞

jn 2n+1
n(n+1)

(an M⃗ e1n
(1)
+ j bn N⃗o1n

(1 ) )

(note sign in front of constants is chosen for convenience later)

Now we are able to determine scattering coefficients.  To do so,  apply the 

tangential component continuity at the surface boundary condition as done earlier:

Eiθ+E sθ = E1θ Eiϕ+E sϕ= E1ϕ H iθ+H sθ= H1θ H iϕ+H sϕ = H 1ϕ at r = a

which results in four linear equations in the four expansion coefficients:

jn(mχ)cn+hn
(1)
(χ )bn = jn(χ)

μ [mχ jn(mχ)] ' cn+μ1 [χhn
(1)(χ )] ' bn = μ1 [χ jn(χ)] '

μm jn(mχ)dn+μ1 hn
(1)
(χ)an = μ1 jn(χ)

[mχ jn(mχ)] ' dn+m [χhn
(1)(χ)] ' an = m [χ jn(χ )] '

Where prime indicates differentiation with respect to the argument in the parentheses, 

124



χ = k a =
2πN a
λ

is the size parameter, N is the index of refractive index of the 

medium, m =
k 1

k
=

N1

N
is the relative refractive index where N1 is the refractive 

index of the spherical particle.

Then solving the linear system of equations gives expansion coefficients inside 

the particle:

cn =
μ1 jn(χ)[χhn

(1)
(χ)]'−μ1 hn

(1)
(χ) [χ jn(χ)] '

μ1 jn(mχ)[χhn
(1 )(χ)] '−μ hn

(1 )(χ)[mχ jn(mχ)]'

dn =
μ1 m jn(χ)[χ hn

(1)
(χ)] '−μ1m hn

(1 )
(χ)[ χ jn(χ)]'

μm2 jn(mχ)[χ hn
(1)
(χ)] '−μ1hn

(1)
(χ)[mχ jn(mχ)] '

And outside particle:

an =
μm2 jn(mχ)[χ jn(χ)] '−μ1 jn(χ)[mχ jn(mχ)] '

μm2 jn(mχ)[χhn
(1)
(χ)] '−μ1 hn

(1)
(χ)[mχ jn(mχ)]'

bn =
μ1 jn(mχ)[ χ jn(χ)]'−μ jn(χ)[mχ jn(mχ)] '

μ1 jn(mχ)[χhn
(1)
(χ)]'−μhn

(1)
(χ)[mχ jn(mχ)] '

So now we can express the expansion completely.  These are the most general 

expressions for the coefficients.

Depending on the wavelength of illuminating light, a sphere may be electrically 

small, an approximations based on this assumption may prove useful. Note that if the 

denominator of either an or bn  is small, then the term multiplied by the coefficient is 

large, that is the normal mode associated with a given coefficient is dominant.  We would
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like to see if there is a lowest order mode supported by such a particle.  If an is 

dominant, then its denominator is small and:

[χhn
(1)
(χ)] '

hn
(1)
(χ)

=
μ1 [mχ jn(mχ)] '
μm2 jn(mχ )

Recall the prime means derivative with respect to the argument in parentheses, so 

applying the chain rule we get:

[χhn
(1)(χ)] ' = [χ ] ' hn

(1)(χ)+χ [hn
(1)(χ)] ' = hn

(1)(χ)+χ [hn
(1)(χ)] '

and for spherical Bessel functions we have recurrence relations:

(2n+1)
d
dz

f n(z )= n f n−1(z )−(n+1) f n+1(z )

[ f n(z)] ' =
1

2n+1
(n f n−1(z)−(n+1) f n+1(z))

n
z

f n(z)−
d
dz

f n(z )= f n+ 1(z )

[ f n(z)] ' =
n
z

f n(z)− f n+1(z) [33]

[hn
(1)
(χ )] ' = n

χ hn
(1)
(χ)−hn+1

(1)
(χ )

[χhn
(1)(χ)] ' = hn

(1)(χ)+χ [ n
χ hn

(1 )(χ)−hn+1
(1) (χ)]= hn

(1)(χ)+nhn
(1)(χ)−χhn+1

(1) (χ)

= (n+1 ) hn
(1)(χ)−χhn+1

(1) (χ)

Similarly:

[mχ jn(mχ)] ' = ( n+1 ) jn(mχ)−mχ jn+1(mχ)

also, ultimately we are interested in gold or silver spheres, so
μ1
μ = 1 , and we have:
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[χhn
(1)(χ)] '

hn
(1)(χ)

=
[mχ jn(mχ)] '

m2 jn(mχ)

and substituting our expression for the derivatives:

(n+1 ) hn
(1)
(χ)−χhn+1

(1 )
(χ)

hn
(1)
(χ)

=
(n+1 ) jn(mχ)−mχ jn+1(mχ)

m2 jn(mχ)

(n+1 )−
χhn+1

(1 )
(χ)

hn
(1)
(χ)

=
(n+1 )

m2 −
χ jn+1(mχ )

m jn(mχ)

Similarly, if bn is dominant, then:

[χhn
(1)
(χ)] '

hn
(1)
(χ)

=
μ [mχ jn(mχ) ] '

μ1 jn(mχ)

which is similar to the case for an , except note the missing m−2 term on the right 

side.  Then again assuming nonmagnetic material:

[χhn
(1)
(χ)] '

hn
(1)
(χ)

=
[mχ jn(mχ)] '

jn(mχ)

(n+1 )−
χhn+1

(1 )
(χ)

hn
(1)
(χ)

= (n+1 )−
mχ jn+1(mχ)

jn(mχ)

hn+1
(1)

(χ)

hn
(1)
(χ)

=
m jn+1(mχ)

jn(mχ)

Now consider the case for a very small sphere with respect to the wavelength of the 

impinging field.  Expanding the spherical Bessel functions gives [33]:

jn(z )=
zn

1⋅3⋅5. ..(2n+1) [1−
1
2

z2

1!(2n+3)
+

( 1
2

z2)
2

2!(2n+3)(2n+5)
−...]
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yn(z) =−
1⋅3⋅5. ..(2n−1)

zn+1 [1− 1
2

z2

1!(1−2n )
+

(12 z2)
2

2!(1−2n)(3−2n)
−...]

and recall hn
(1 )
(z) = jn(z )+ j yn(z) . Limiting values as z→0 leads to:

z−n jn(z)→
1

1⋅3⋅5 ...(2n+1)

zn+1 yn(z)→−1⋅3⋅5 ...(2n−1)

so hn
(1 )(z)→ j yn(z )=− j

1⋅3⋅5 ...(2n−1)

zn+1 since ∣yn(z )∣≫∣jn(z)∣ when z→0 .

So for bn

hn+1
(1)

(χ)

hn
(1)
(χ)

= (2n−1)χ−1 and
jn+1(mχ)

jn(mχ)
=

mχ

2n+1
as χ→0 so

hn+1
(1)

(χ)

hn
(1)(χ)

=
m jn+1(mχ)

jn(mχ)
which has no solution for χ→0 .  So for electrically small 

spheres, the supported mode(s) must be completely represented by the an terms.  For 

these:

(n+1 )−
χhn+1

(1 )
(χ)

hn
(1)
(χ)

=
(n+1 )

m2 −
χ jn+1(mχ )

m jn(mχ)

(n+1 )−(2(n+1)−1)χ χ−1
=

(n+1 )

m2
−

χ
2

2(n+1)+1

−n=
(n+1 )

m2
so m2

=−
n+1

n
(for electrically small spheres)

m is the relative index of refraction.  Since the permittivity is a function of frequency, so 

too must the index m=m(ω) .  If we're near the frequency in which the lowest order
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term is dominant, the other terms will be comparatively small and may be ignored.  Also 

in particular note for the lowest order term m2
= ϵr =−2 .

Hence for a sufficiently small sphere, the N e11 mode is dominant.  Recall:

N emn =
zn(ρ)
ρ cosmϕn(n+1)Pn

m
(cosθ) âr+cosmϕ

d
d θ

(Pn
m
(cosθ)) 1

ρ
d

d ρ
[ρ zn(ρ)] âθ

−msin mϕ
Pn

m
(cosθ)

sinθ
1
ρ

d
dρ

[ρ zn(ρ)] âϕ

N e11 =
h1
(1)
(ρ)
ρ 2cosϕP1

1
(cos θ) âr+cosϕ

d
d θ

( P1
1
(cosθ))

1
ρ

d
dρ

[ρh1
(1)
(ρ)] âθ

−sinϕ
P1

1
(cos θ)
sinθ

1
ρ

d
dρ

[ρh1
(1)
(ρ) ]âϕ

Recall: Pn
m
(x )=(−1)m(1−x2

)
m /2 dm

d xm (Pn(x)) [33], so

P1
1
(cosθ)=−(1−cos2

θ)
1 /2 d

dx
(P1(x)) =−(sin2

θ)
1 /2 d

dx
(x ) =−sinθ

and:

N e11 =−
h1
(1)
(ρ)
ρ 2cosϕ sinθ âr−cosϕ

d
d θ

(sinθ )
1
ρ

d
dρ

[ρh1
(1)
(ρ)] âθ

+sinϕ
1
ρ

d
dρ

[ρh1
(1)
(ρ)] âϕ

To evaluate how reasonable our results are, lets consider their limits.  First, in the far-

field, the infinitesimal sphere supporting the N e11 mode should appear as a dipole.  

Note that in the far field [32]:

hn
(1 )(p) ≈

(−i)n+1 eiρ

ρ and
d

dρ
(hn

(1)(ρ))≈
(−i)n eiρ

ρ
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so:

N e1n =−2
(−i)n+1e iρ

ρ
2 cosϕ sinθ âr−cosϕ cosθ

1
ρ [ (−i)n+1 e iρ

ρ +(−i)n eiρ] âθ

+sinϕ
1
ρ [(−i)n+1 eiρ

ρ +(−i)n e iρ ] âϕ

and the first term:

N e11 = 2
e iρ

ρ
2

cosϕ sinθ âr+cosϕcos θ
1
ρ [ eiρ

ρ +i eiρ] âθ−sinϕ
1
ρ [ e

iρ

ρ +i eiρ] âϕ

Then in the far field:

E∝cosϕ cosθ
e i k r

r
âθ−sinϕ

ei k r

r
âϕ which, as expected, is the same field as an 

infinitesimal x-directed dipole. (Recall ρ = kr and that we are using physicists time 

convention here, resulting in the complex conjugate of the usual engineering result for the 

fields of a dipole).  In the near-field ( ρ small so sphere looks like a sphere, not a 

dipole) for an electrically small sphere ( χ small, so the impinging field doesn't vary 

across the sphere) we expect the fields to be that of an electrostatic sphere.

In the near-field for electrically small sphere (quasi-static approximation):

h1
(1 )
(ρ)= jn(ρ)+i yn(ρ)

as ρ→ 0

ρ
−n jn(ρ) →

1
1⋅3⋅5 ...(2n+1)

and:

ρ
n+1 yn(ρ) →−1⋅3⋅5...(2n−1)
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so:

h1
(1 )
(ρ) → i y1(ρ)ρ

−2
→−iρ−2 for small ρ

Then:

N e11 →
j
ρ

3 2cosϕ sinθ âr−cosϕ cosθ
1
ρ

d
dρ [ρ(− j

ρ
2 )] âθ+sinϕ

1
ρ

d
dρ [ρ(− j

ρ
2 )] âϕ

=
j 2cosϕsinθ

ρ
3 âr−

j cosϕ cosθ

ρ
3 âθ+

jsinϕ

ρ
3 âϕ

Which is the exact functional form of the fields of a dielectric sphere.

So our derivation has the right form to properly account for already known limits, 

supporting our confidence in its accuracy.

Now to find the exact expression for the near-field (IE take into account the 

coefficient and make sure it is generating the appropriate scaling factor).  Recall

E⃗s = E0∑
n=1

∞

jn 2n+1
n(n+1)

(−bn M⃗ o1n
(3)
+ j an N⃗ e1n

(3) )

So for the N e11 mode we have E⃗s =−E0
3
2

a1 N⃗ e11 , where:

a1 =
μm2 j1(mχ)[χ j1(χ)] '−μ1 j1(χ)[mχ j1(mχ)] '

μm2 j1(mχ)[χ h1
(1)
(χ)] '−μ1h1

(1)
(χ)[mχ j1(mχ)] '

where m is the relative index of refraction, χ = ka . 

recall the sphere is electrically small for the electrostatic approximation, so for small 

argument ρ
−n jn(ρ) →

1
1⋅3⋅5 ...(2n+1)

, which means j1(ρ)→
ρ
3

, so breaking a1

into four main pieces, we have for the first piece:
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μm2 j1(mχ)[χ j1(χ)] ' ≈ μm3 χ

3 [ χ
2

3 ]
'

=
2
9
μm3

χ
2

then the second piece:

μ1 j1(χ)[mχ j1(mχ)] ' ≈
2
9
μ1mχ

2

recall h1
(1 )
(ρ) → i y1(ρ)ρ

−2
→−iρ−2 for small ρ so the third piece:

μm2 j1(mχ)[χh1
(1)(χ)]' ≈μm3χ [−i χ−1 ] ' = iμm3(3χ)−1

fourth piece:

μ1 h1
(1)
(χ)[mχ j1(mχ)]' ≈ μ1(−iχ−2

)[(mχ)
2
] ' =−i 2μ1m(3 χ)−1

recall for N e11 it must be the case that m2
=−2 so m = i √2 and ϵr =−2

also recall m =
k 1

k
and χ = ka .

So putting all 4 pieces back together and we get:

a1 =
μm2 j1(mχ)[χ j1(χ)] '−μ1 j1(χ)[mχ j1(mχ)] '

μm2 j1(mχ)[χ h1
(1)
(χ)] '−μ1h1

(1)
(χ)[mχ j1(mχ)] '

=

2
9
μm3

χ
2
−

2
9
μ1 mχ

2

iμm3
(3χ)−1

+i2μ1 m(3χ)−1

=−
2
3

iχ3 μm2
−μ1

μm2
+2μ1

Assuming permittivity of the medium is that of free space, then μ = μ1 and

=−
2
3

iχ3 m2
−1

m2
+2

substituting m2
= ϵr (note this is essentially assuming the sphere has relative 
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permittivity ϵr and is suspended in free-space.  If not in free space, we would need to 

replace with the permittivity of the sphere relative to the medium it is suspended in, not 

free space):

=−
2
3

iχ3 ϵr−1

ϵr+2
=−

2
3

i(k a)3
ϵr−1

ϵr+2

so:

a1 =−
2
3

i(k a)3
ϵr−1

ϵr+2

E⃗s =−E0
3
2

a1 N⃗ e11

N⃗ e11 =
j2 cosϕ sinθ

ρ
3 âr−

j cosϕ cosθ

ρ
3 âθ+

j sinϕ

ρ
3 âϕ

ρ= kr

E⃗s =−E0
3
2 (−2

3
i(k a)3

ϵr−1

ϵr+2 ) ⃗N e11

E⃗s =
E0 a3

r 3

ϵr−1
ϵr+2

(2cosϕ sinθ âr−cosϕ cosθ âθ+sinϕ âϕ )

So in the electrostatic limit (as the sphere becomes electrically small), we match the 

fields of an electrostatic polarized sphere.

To sufficiently model radiation damping, the expansion for the coefficient may be 

truncated to just a few terms.  To do so, take the expression for a1

a1 =
μm2 j1(mχ)[χ j1(χ)] '−μ1 j1(χ)[mχ j1(mχ)] '

μm2 j1(mχ)[χ h1
(1)
(χ)] '−μ1h1

(1)
(χ)[mχ j1(mχ)] '
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and recast in terms of Riccati-Bessel functions, where ψn(ρ)= ρ jn(ρ) , and

ξn(ρ)= ρhn
(1)
(ρ) , then:

a1 =
mψ1(mχ)ψ1 ' (χ)−ψ1(χ) ψ1 ' (mχ)

mψ1(mχ)ξ1 ' (χ)−ξ1(χ) ψ1 ' (mχ)

jn(z )=
zn

1⋅3⋅5. ..(2n+1) [1−
1
2

z2

1!(2n+3)
+

( 1
2

z2)
2

2!(2n+3)(2n+5)
−...]

yn(z) =−
1⋅3⋅5. ..(2n−1)

zn+1 [1− 1
2

z2

1!(1−2n )
+

(12 z2)
2

2!(1−2n)(3−2n)
−...] [33]

so expansion of each up to the first two terms:

ψ1(z )= z j1(z )≈
z2

3 [1− z2

10 ]= z2

3
−

z4

30

ξ1(z )= z j1(z )+ iz y1(z )≈
z2

3
−

z4

30
−

i
z [1+ z2

2 ]=−
i
z
−i

z
2
+

z2

3
−

z4

30
≈−

i
z
−i

z
2
+

z2

3

ψ1 '(z )≈
2 z
3
−

2 z3

15
ξ1 '(z )≈

i

z2
−

i
2
+

2 z
3

a1 =

m [ (mχ)
2

3
−
(mχ)

4

30 ] [ 2χ3 −
2χ3

15 ]−[ χ
2

3
−
χ

4

30 ][ (mχ)
2

3
−
(mχ)

4

30 ]
m [(mχ)

2

3
−
(mχ)

4

30 ] [ i

χ
2−

i
2
+

2χ
3 ]−[−i

χ −i
χ

2
+
χ

2

3 ] [(mχ)
2

3
−
(mχ)

4

30 ]
Since we are only interested in the dominant terms of a1 , we can derive a simplified 

expression for them by taking the Taylor expansion of a1 :

a1 =−
i 2χ3

3
m2
−1

m2
+2

−
i2χ5

5
(m2

−2)(m2
−1)

(m2
+2)2

+
4 χ6

9 (m2
−1

m2
+2 )

2

+O(x7
)
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Then the electric field:

E⃗s =−E0
3
2

a1 N⃗ e11

N⃗ e11 =
j2 cosϕ sinθ

ρ
3 âr−

j cosϕ cosθ

ρ
3 âθ+

j sinϕ

ρ
3 âϕ (far-field)

ρ = kr χ = k a

E⃗s =−E0
3
2 (−i2χ3

3
m2
−1

m2
+2

−
i 2χ5

5
(m2

−2)(m2
−1)

(m2
+2)2

+
4χ6

9 (m2
−1

m2
+2 )

2

)
⋅( j 2cosϕ sinθ

ρ
3 âr−

jcosϕ cosθ

ρ
3 âθ+

j sinϕ

ρ
3 âϕ)

= E0
a3

r 3 (i m2
−1

m2
+2

+
i 3k2 a2

5
(m2

−2)(m2
−1)

(m2
+2)2

−
2 k3 a3

3 (m2
−1

m2
+2 )

2

)
⋅( j 2cosϕ sinθ âr− j cosϕ cosθ âθ+ j sinϕ âϕ )

Notice the first term in a1 corresponds to the quasi-static polarizability, the second 

term is a dynamic depolarization term, and the third term is a radiation damping term  

[34].

There are other author's who have done similar calculations as Bohren and 

Huffman, so it would be wise to cross reference results to confirm the derivation.  

Confirming Van de Holst's Approximation [35], it is given: 

an =
1
2

(1 – e2 iαn )

given n = 1 α1 = i s x3 (1+ t x2
−i s x3 ) t =

3
5

m2
−2

m2
+2

u=
1

30
(m2

+2 )

w =
1

10
m2
+2

2m2
+3

e2iα 1 =∑
n=0

∞ ( i2α1)
n

n!
= 1+i2α1+

(i2α1)
2

2
+... , and truncating to the 
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second term gives e2iα 1 = 1+i2α1 , so:

a1 =
1
2
(1−1−i2α1)= iα1

This matches Van de Hulst's use of the angle α1 and his stated relation of it to a1 , 

confirming Bohren and Huffman's approach.

While the electrically small sphere approximation may be valid in some cases, it 

may be too imprecise in other cases.  Additional Terms from the Mie Series may be used 

to generate a better approximation, without having to calculate the entire series.

If we do not assume the a1 term is completely dominant, we may approximate 

other an and bn terms using Taylor expansion in a similar manner.  Doing so gives:

b1 =−
iχ5

45
(m2

−1 )+O(χ
7
)

a2 =−
iχ5

15
m2
−1

2m2
+O(χ

7
)

b2 = O(χ
7
)

So to the 5th order in χ all that is needed are three Mie series coefficients, a1 , a2 , b1 .

The Spherical Harmonics for Three Dominant Mie Series Coefficients may be 

simplified.  To do so, note that as previously mentioned, for the N e11 vector spherical 

harmonic we have h1
(1 )
(ρ)= jn(ρ)+i yn(ρ) and as ρ→ 0 ,

ρ
−n jn(ρ) →

1
1⋅3⋅5 ...(2n+1)

, and ρ
n+1 yn(ρ) →−1⋅3⋅5...(2n−1) , so

h1
(1 )
(ρ) → i y1(ρ)ρ

−2
→−iρ−2 for small ρ . 
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Then:

N e11 →
j
ρ

3 2cosϕ sinθ âr−cosϕ cosθ
1
ρ

d
dρ [ρ(− j

ρ
2 )] âθ+sinϕ

1
ρ

d
dρ [ρ(− j

ρ
2 )] âϕ

=
j 2cosϕsinθ

ρ
3 âr−

j cosϕ cosθ

ρ
3 âθ+

jsinϕ

ρ
3 âϕ

and in a similar manner, for N e12 :

N e12 =
h2
(1)
(ρ)
ρ cosϕ6 P2

1
(cosθ) âr+cosϕ

d
dθ

(P2
1
(cosθ))

1
ρ

d
dρ

[ρh2
(1)
(ρ) ] âθ

−sinϕ
P2

1
(cosθ)
sinθ

1
ρ

d
dρ

[ρh2
(1 )
(ρ)] âϕ

Recall Pn
m
(x )=(−1)m(1−x2

)
m /2 dm

d xm (Pn(x)) [33] so:

P2
1
(cosθ)=−(1−cos2

θ)
1 /2 d

dx
(P2(x)) =−(sin2

θ)
1 /2 d

dx (
1
2

(3 x2
−1 ))

=−sinθ(3cosθ)=−
3
2

sin (2θ)

and as ρ→ 0 , ρ
−n jn(ρ) →

1
1⋅3⋅5 ...(2n+1)

, and ρ
n+1 yn(ρ) →−1⋅3⋅5...(2n−1) , 

so h2
(1 )
(ρ) → i y2(ρ)ρ

−3
→−i3ρ−3 for small ρ . 

Then:

N e12 =
−i 3ρ−3

ρ cosϕ6 (−3
2

sin(2θ)) âr+cosϕ
d

dθ (−
3
2

sin (2θ)) 1
ρ

d
dρ

[ρ (−i 3ρ−3 ) ] âθ

−sinϕ
(−3

2
sin(2θ))
sinθ

1
ρ

d
dρ

[ρ (−i 3ρ−3 ) ] âϕ

=
i 54

ρ
4

cosϕ sinθcosθ âr+i 9 cosϕ cos (2θ)
1
ρ

d
dρ

[ρ−2 ] âθ−i9 sinϕ
sinθcos θ

sinθ
1
ρ

d
d ρ

[ρ−2 ] âϕ
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=
i 54

ρ4
cosϕ sinθcosθ âr+i 9cosϕ cos (2θ)

1
ρ (−2ρ−3 ) âθ−i9 sinϕ cosθ

1
ρ (−2ρ−3 ) âϕ

=
i18

ρ
4 (3cosϕ sinθcosθ âr−cosϕ cos(2θ)âθ+sinϕ cosθ âϕ )

and finally, for M o11 :

M⃗ o11 =
1

sinθ
cosϕP1

1
(cos θ)h1

(1)
(ρ) âθ−sinϕ

d
dθ

(P1
1
(cosθ)) h1

(1)
(ρ) âϕ

again applying P1
1
(cosθ)=−(1−cos2

θ)
1 /2 d

dx
(P1(x)) =−(sin2

θ)
1 /2 d

dx
(x ) =−sinθ , 

and h1
(1 )
(ρ) → i y1(ρ)ρ

−2
→−iρ−2 for small ρ . We then have:

=
1

sinθ
cosϕ (−sinθ) (−iρ−2 ) âθ−sin ϕ

d
d θ

(−sinθ) (−iρ−2) âϕ

= i
cosϕ

ρ
2 âθ−i

sinϕ cosθ

ρ
2 âϕ

We now a variety of interpretations based on Mie theory, usable in each of their realms of 

validity.
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APPENDIX D

POLARIZABILITY OF Z DIRECTED AND X DIRECTED SPHERES
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First, consider the polarizability of a sphere stimulated by a z directed field.  No 

free charge, so Laplace's equation for isolated dielectric sphere ∇
2V = 0 .  We're 

interested in the electrostatic approximation, so −∇ V = E .  In spherical coordinates, 

and for spherical boundary conditions, we know the Laplacian has Legendre polynomial 

solutions.  Since there is no ϕ dependence, we will have normal Legendre polynomials:

V (r ,θ)=∑
n=0

∞

(Anr n
+

Bn

rn+1 )Pn(cosθ)

Boundary conditions include V (r→∞ ,θ)= 0 , V (r→0,θ)<±∞ (finite at origin), 

−∇V (r→∞ ,θ=0)= E0 (E at infinity is just the applied field, sphere effect dies down 

to nothing), V (r=a+ ,θ)= V (r=a− ,θ) (potential is continuous at sphere boundary – 

required if we are to have E∥ continuous),  and D⊥(r=a+ ,θ)= D⊥ (r=a− ,θ) .

Since −∇V (r→∞ ,θ=0)= E0 , and assuming we orient the x-axis along the 

direction of the applied E-field, then V (r→∞ ,θ)=−E0 x =−E0 rsinθcosϕ .

P1
1
(cosθ) = sinθ so to match BCs at infinity:

V (r ,θ)=∑
m=n

∞

∑
n=0

∞

(Anm rn
+

Bnm

r n+1 )Pn
m
(cosθ)cosmϕ = (A11r+

B11

r2 )sinθcosϕ

Then consider interior and exterior of dielectric sphere:

V 1 = (A1 r+
B1

r2 )sinθcosϕ r≤a

V 2 = (A2 r+
B2

r2 )sinθcosϕ r>a
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Then applying BC V (r→∞ ,θ)=−E0 x =−E0 rsinθcosϕ shows A2 =−E0 .  At 

the origin the potential must remain finite, hence B1 = 0 . So:

V 1 = A1r sinθcosϕ r≤a

V 2 = (−E0 r+
B2

r 2 )sinθcosϕ r>a

At the boundary between the interior and exterior of the sphere V 1(a ,θ)= V 2(a ,θ) , 

so :

A1 a =−E0 a+
B2

a2 ⇒ A1 =−E0+
B2

a3

BC D⊥(r=a+ ,θ)= D⊥ (r=a− ,θ) means ϵ1 Er1(r = a) = ϵ2 Er2(r = a) .  Since

E =−∇V =−
∂V
∂ r

âr−
1
r
∂V
∂θ

âθ−
1

r sinθ
∂V
∂ϕ

âϕ then Er =−
∂V
∂r

and

ϵ1

∂V 1

∂ r ∣
r=a

= ϵ2

∂V 2

∂ r ∣
r=a

⇒ A1ϵ1sinθcosϕ = ϵ2(−E0−
2 B2

a3 )sinθ cosϕ ,

A1 ϵ1 =−ϵ2(E0+
2 B2

a3 ) .

Then substitution gives:

−ϵ1(E0−
B2

a3 )=−ϵ2(E0+
2 B2

a3 ) ⇒ ϵ1 a3 E0−ϵ1 B2 = ϵ2 a3 E0+2ϵ2 B2

⇒ B2 (2ϵ2+ϵ1 ) = (ϵ1−ϵ2 ) E0 a3

So:

B2 =
ϵ1−ϵ2

ϵ1+2ϵ2

E0 a3
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And: V 1 =
−3ϵ2 E0

ϵ1+2ϵ2

r sinθcosϕ r≤a V 2 = (−E0 r+
ϵ1−ϵ2

ϵ1+2ϵ2

E0 a3

r2 )sinθcosϕ r>a , 

so the electric fields are:

E⃗1 =−∇V 1 =
3ϵ2 E0

ϵ1+2ϵ2
( sinθ cosϕ âr+cosθcosϕ âθ−sinϕ âϕ ) r≤a

E⃗2 =−∇ V 2 = (E0+
ϵ1−ϵ2

ϵ1+2ϵ2

2 E0a3

r3 )( sinθcosϕ âr+cosθcosϕ âθ−sinϕ âθ ) r>a

Note that if the sphere is just suspended in free space ϵ2 = ϵ0 , then we have the more 

familiar:

E⃗1 =−∇V 1 =
3 E0

ϵr1+2
(sinθcosϕ âr+cos θcosϕ âθ−sinϕ âϕ ) r≤a

E⃗2 =−∇V 2 = (E0+
ϵr1−1
ϵr1+2

2 E0 a3

r 3 ) (sinθcosϕ âr+cosθ cosϕ âθ−sinϕ âθ ) r>a

where ϵr1 is the relative permittivity inside sphere, IE ϵ1 = ϵr1ϵ0 .

This is the electric field of the Laplace equation solution for the isolated sphere.

Note for inside the sphere it might be easier to observe that x = r sinθcosϕ , so in 

Cartesian, V 1 =
−3ϵ2 E0

ϵ1+2ϵ2

x r≤a ,and:

E⃗1 =−∇V 1 =−
∂V 1

∂ x
âz =

3ϵ2 E0

ϵ1+2ϵ2

âx

a constant x directed field.  For outside the sphere, recall the fields for an electrostatic 

dipole with dipole moment p. For the electrostatic case:
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V dip ( r⃗ ) =
1

4 πϵ
r̂⋅p⃗
r2 =

p sinθcosϕ

4 πϵr2 where p= ∣⃗p∣

E =−∇ V =−
∂V
∂ r

âr−
1
r
∂V
∂θ

âθ−
1

r sinθ
∂V
∂ϕ

âϕ

=
2psin θ cosϕ

4πϵr 3 âr−
pcosθcosϕ

4 πϵr3 âθ+
p sinϕ

4 πϵr 3 âϕ

So for the case of the sphere where:

E⃗2 =−∇V 2 = (E0+
ϵr1−1
ϵr1+2

2 E0 a3

r 3 )sinθcosϕ âr+(E0−
ϵr1−1
ϵr1+2

E0a3

r3 )cosθcosϕ âθ

−(E0−
ϵr1−1

ϵr1+2

E0 a3

r3 )sinϕ âθ r>a

Then quite clearly outside the sphere, the field is equal to the applied field E0 plus that 

of a dipole centered on the origin along the z axis with dipole moment p given by:

p= 4 πϵ2(
ϵ1−ϵ2

ϵ2+2ϵ2 )a
3 E0

Now consider the polarizability of a sphere stimulated by an x-directed field.  There is no 

free charge so ∇
2V = 0 and we're considering the electrostatic case, so −∇V = E .  

In spherical coordinates, for spherical boundary conditions, we know the Laplacian has 

Legendre polynomial solutions:

V (r ,θ)=∑
n=0

∞

(Anr n
+

Bn

rn+1 )Pn
m
(cosθ)

Boundary conditions include V (r→∞ ,θ)= 0 , V (r→0,θ)<±∞ (finite at origin),

−∇V (r→∞ ,θ=0)= E0 (E at infinity is just the applied field, sphere effect dies down 

to nothing), V (r=a+ ,θ)= V (r=a− ,θ) (potential is continuous at sphere boundary – 
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required if we are to have E∥ continuous), and D⊥(r=a+ ,θ)= D⊥ (r=a− ,θ) .  Since

−∇V (r→∞ ,θ=0)= E0 , and assuming we orient the x-axis along the direction of the 

applied E-field, then V (r→∞ ,θ)=−E0 x =−E0 rsinθcosϕ .

It must be the case that P1
1
(cosθ) = sinθ to match BCs at infinity, so:

V (r ,θ)=∑
m=n

∞

∑
n=0

∞

(Anm rn
+

Bnm

r n+1 )Pn
m
(cosθ)cosmϕ = (A11r+

B11

r2 )sinθcosϕ

Then consider interior and exterior of dielectric sphere:

V 1 = (A1 r+
B1

r2 )sinθcosϕ r≤a

V 2 = (A2 r+
B2

r2 )sinθcosϕ r>a

Then applying BC V (r→∞ ,θ)=−E0 x =−E0 rsinθcosϕ shows A2 =−E0 . At the 

origin the potential must remain finite, hence B1 = 0 , and:

V 1 = A1r sinθcosϕ r≤a

V 2 = (−E0 r+
B2

r 2 )sinθcosϕ r>a

At the boundary between the interior and exterior of the sphere V 1(a ,θ)= V 2(a ,θ) , 

and:

A1 a =−E0 a+
B2

a2 ⇒ A1 =−E0+
B2

a3

BC D⊥(r=a+ ,θ)= D⊥ (r=a− ,θ) means ϵ1 Er1(r = a) = ϵ2 Er2(r = a) .  Since
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E =−∇ V =−
∂V
∂ r

âr−
1
r
∂V
∂θ

âθ−
1

r sinθ
∂V
∂ϕ

âϕ then Er =−
∂V
∂r

and:

ϵ1

∂V 1

∂ r ∣
r=a

= ϵ2

∂V 2

∂ r ∣
r=a

⇒ A1ϵ1sinθcosϕ = ϵ2(−E0−
2B2

a3 )sinθ cosϕ

A1 ϵ1 =−ϵ2(E0+
2 B2

a3 )
Then substitution gives:

−ϵ1(E0−
B2

a3 )=−ϵ2(E0+
2B2

a3 ) ⇒ ϵ1 a3 E0−ϵ1 B2 = ϵ2 a3 E0+2ϵ2 B2

⇒ B2 (2ϵ2+ϵ1 ) = (ϵ1−ϵ2 ) E0a3

So:

B2 =
ϵ1−ϵ2

ϵ1+2ϵ2

E0 a3

And:

V 1 =
−3ϵ2 E0

ϵ1+2ϵ2

r sinθcosϕ r≤a

V 2 = (−E0 r+
ϵ1−ϵ2

ϵ1+2ϵ2

E0 a3

r2 )sinθcosϕ r>a

So the electric fields are:

E⃗1 =−∇V 1 =
3ϵ2 E0

ϵ1+2ϵ2
( sinθ cosϕ âr+cosθcosϕ âθ−sinϕ âϕ ) r≤a

E⃗2 =−∇V 2 = (E0+
ϵ1−ϵ2

ϵ1+2ϵ2

2 E0 a3

r3 ) (sinθcosϕ âr+cosθ cosϕ âθ−sinϕ âθ ) r>a

Note that if the sphere is just suspended in free space ϵ2 = ϵ0 , then we have the more 
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familiar:

E⃗1 =−∇V 1 =
3 E0

ϵr1+2
(sinθcosϕ âr+cos θcosϕ âθ−sinϕ âϕ ) r≤a

E⃗2 =−∇V 2 = (E0+
ϵr1−1
ϵr1+2

2 E0 a3

r 3 ) (sinθcosϕ âr+cosθ cosϕ âθ−sinϕ âθ ) r>a

where ϵr1 is the relative permittivity inside sphere, IE ϵ1 = ϵr1ϵ0 . This is the electric 

field of the Laplace equation solution for the isolated sphere. Note for inside the sphere it 

might be easier to observe that x = r sinθcosϕ so in Cartesian:

V 1 =
−3ϵ2 E0

ϵ1+2ϵ2

x r≤a

and:

E⃗1 =−∇V 1 =−
∂V 1

∂ x
âz =

3ϵ2 E0

ϵ1+2ϵ2

âx

a constant x directed field.  While for outside the sphere, recall the fields for an 

electrostatic dipole with dipole moment p:

V dip ( r⃗ ) =
1

4 πϵ
r̂⋅p⃗
r2 =

p sinθcosϕ

4 πϵr2 where p= ∣⃗p∣

E =−∇ V =−
∂V
∂ r

âr−
1
r
∂V
∂θ

âθ−
1

r sinθ
∂V
∂ϕ

âϕ

=
2psin θ cosϕ

4πϵr 3 âr−
pcosθcosϕ

4 πϵr3 âθ+
p sinϕ

4 πϵr 3 âϕ

So for the case of the sphere where:

E⃗2 =−∇V 2 = (E0+
ϵr1−1
ϵr1+2

2 E0 a3

r 3 ) (sinθcosϕ âr+cosθ cosϕ âθ−sinϕ âθ ) r>a
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Then quite clearly outside the sphere, the field is equal to the applied field E0 plus that 

of a dipole centered on the origin along the z axis with dipole moment p given by:

p= 4 πϵ2(
ϵ1−ϵ2

ϵ1+2ϵ2 )a
3 E0

That is the dipole moment of the sphere is proportional to the applied electric field by a 

polarizability constant α :

p= α E0 α = 4πϵ2(
ϵ1−ϵ2

ϵ1+2ϵ2 )a
3
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APPENDIX E

GREEN FUNCTION SOLUTION DERIVATION
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In the typical fashion, the supported modes of a dielectric waveguide may be 

determined by solving Helmholtz wave equation and applying appropriate boundary 

conditions.  Given the frequency of interest, it is safe to assume that the structure 

constructed to behave as the effective media will be lossy, hence it is appropriate to solve 

for the modes of a lossy dielectric rod.  As mentioned, this blurs our evaluation of what 

exactly can be considered a mode onset, and cutoff, as instead of a completely real 

propagation constant β , we will have a complex constant k =− j γ = β− jα , with 

significantly large attenuation constant α .  This means the resulting Bessel functions 

of the system describing the behavior of radially dependent fields will be the sum of 

evanescent and propagating waves, making the distinction between "guided" and 

"radiating" modes blurred. 

To evaluate a lossy dielectric rod, and for later comparison to heterogeneous 

structures, an atypical approach at determining the fields of such a structure is 

beneficial [9]. Assume a negligibly permeable lossy dielectric rod ( μr ≈ 1

ϵr = ϵ '− j ϵ ' ' where ϵ ' = ℜ ( ϵϵ0 ) and ϵ ' ' = ℑ ( ϵϵ0 ) ), oriented along the z-axis, of 

radius a, which is electrically thin outside the rod ( k0 a≪1 ) but may be operated at 

frequencies which may result in electrically large waves inside the rod ( km a ≈ 1 ).

For stimulating modes in the rod, assume a small band of circulating current 

around the rod is used, either electric or magnetic depending on the stimulation desired.  

For TEz only modes, we would consider the case in which the cylinder is excited by a 

uniform ( ϕ independent), ϕ directed, current band encircling it at the z=0 plane.  
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This only excites TE modes since the ϕ independent current Iϕ  can only create ϕ

directed vector potential Aϕ and only ϕ directed E-fields (by B = ∇×A there can 

be no Hϕ )

For TMz only modes, we would only consider the case in which the cylinder is 

excited by a uniform ( ϕ independent), ϕ directed magnetic current band encircling 

the rod at the z=0 plane.

For hybrid modes, we would consider a non-uniform ( ϕ dependent) ϕ

directed current band at the z=0 plane.  If the current band is electric, HEz modes would 

be stimulated, and if magnetic, EHz modes.

From the typical application of vector potentials and separating the problem into 

TEz and TMz components, we have the following [22]:
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TEz TMz

E z = 0 E z =− j Bmn

kρ
2

ωμϵ Jm (kρρ )[D cosmϕ

C sin mϕ ]

Eρ =−Amn
m
ϵρ Jm (kρρ )[−C sin mϕ

D cosmϕ ] Eρ =−Bmn

kρk z
ωμ ϵ J m

'
(kρρ ) [ D cos mϕ

+C sin mϕ]

Eϕ = Amn

kρ

ϵ Jm
'
(kρρ )[C cos mϕ

D sin mϕ] Eϕ =−Bmn

m k z
ωμ ϵ

1
ρ J m (kρρ )[−D sin mϕ

+C cos mϕ ]

H z =− j Amn

kρ
2

ωμ ϵ Jm (kρρ )[C cos mϕ

D sin mϕ] H z = 0

Hρ=−Amn

kρk z
ωμ ϵ J m

'
(kρρ) [C cosmϕ

D sin mϕ ] Hρ= Bmn
m
μρ Jm (kρρ )[−Dsin mϕ

+C cosmϕ]

Hϕ=−Amn

mk z
ωμ ϵ

1
ρ Jm (kρρ )[−C sin mϕ

Dcos mϕ ] Hϕ=−Bmn

kρ

μ Jm
'
(k ρρ )[ D cosmϕ

+C sin mϕ]

Where J m is a placeholder standing for the appropriate Bessel function depending on 

boundary conditions (1st kind, 2nd, Hankel, etc.), and prime on the Bessel function 

implies derivative with respect to the argument of the function. 

Observe that if there is no ϕ dependence, m = 0 , and either C = 0 or

D = 0 ,  depending on whether the boundary/initial conditions are such that either a

TE z or TM z wave is excited.  So for instance, if an exciting magnetic current source 

is ϕ independent and ϕ directed, then a TM z mode will be excited, and

C ,m = 0 .
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If a ϕ - directed, ϕ  independent, magnetic current band Cm = C 0 âϕ

Volts/m is assumed, in a band between z=−s /2 and z=s/2 at radius ρ = a .  

Then the current in the band is I 0 = C0 s .  The surface current may be decomposed 

using the Fourier integral pair:

Kϕ (k z )=
1

2π
∫
−∞

+∞

{C0(−s
2

+s
2 )}e j k z z

dz

C0(−s
2

+s
2 )=∫

−∞

+∞

Kϕ (k z )e
− j k z z d k z

This is an infinite sum (integral) of magnetic current waves, each carrying

Kϕ(kz)dk z V/m traveling along the z-axis with propagation constant k z .  Its 

spectrum is a sinc function in k z :

Kφ (kz )=
1

2π
∫
−s
2

+s
2

C0 e j k z z dz=
C0 s

2 π [ sin(kz
s
2 )

(k z
s
2 ) ]

The fields may be expanded inside and outside the rod in cylindrical harmonic solutions 

of the wave equation, then the boundary conditions and source conditions may be 

satisfied with:

k ρ 0
2
+k z

2
=k0

2
=ω2 μ0 ε0 inside the medium outside the cylinder, IE ρ>a

k ρ 1
2
+k z

2
=k 1

2
=ω2 μ1 ε1 inside the medium inside the cylinder, IE ρ<a
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Then for ρ<a :

E z =− j A0n

kρ1
2

ωμ1 ϵ1
J0(kρ1ρ)e

− j k z z

Eρ =−A0n

kρ1 k z
ωμ1ϵ1

J 1(kρ1ρ)e
− j k z z

Eϕ = 0

H z = 0

Hρ= 0

Hϕ=−A0n

kρ 1
μ1

J 1(kρ1ρ)e
− j k z z

and for ρ>a :

E z =− j B0n

kρ0
2

ωμ0ϵ0
H 0

(2)
(kρ 0ρ)e

− j k z z

Eρ =−B0n

kρ0 k z
ωμ0 ϵ0

H 1
(2)
(kρ0ρ)e

− j k z z

Eϕ = 0

H z = 0

Hρ= 0

Hϕ=−B0n

kρ0
μ0

H 1
(2)
(kρ 0ρ)e

− j k z z
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Applying boundary conditions gives:

A0n =

kρ0μ1 H1
(2)
(kρ0 a)

kρ1μ0 J 1(kρ1 a)
j Kϕ(k z)e

j k z z

kρ 0
2

ωμ0ϵ0
H0

(2)
(kρ0 a)(1− kρ 1ϵ0

kρ 0ϵ1

H 1
(2)
(kρ0 a)

H 0
(2)
(kρ0 a)

J0(kρ1 a)

J1(kρ1 a))
B0n =

j K ϕ(k z)e
j k z z

kρ0
2

ωμ0ϵ0
H 0

(2)
(kρ 0 a)(1− kρ1 ϵ0

kρ0 ϵ1

H1
(2)
(kρ0 a)

H0
(2)
(kρ0 a)

J 0(kρ 1a)

J 1(kρ 1a))
Now examine the role of surface wave poles:

For ρ<a :

E z =
kρ 1

kρ 0 ϵr

J0(kρ1ρ)

J1(k ρ1a)

H 1
(2)
(kρ 0a)

H 0
(2)(kρ 0a)

K ϕ(k z)

(1− kρ1

kρ0ϵr

H 1
(2)
(kρ0 a)

H 0
(2)
(kρ0 a)

J 0(kρ1 a)

J 1(kρ1 a))

Hϕ= j
ω ϵ0

kρ0

J 1(kρ1ρ)

J 1(kρ1 a)

H1
(2)
(kρ 0a)

H0
(2)
(kρ 0a)

K ϕ(k z)

(1− kρ1

kρ0ϵr

H1
(2)
(kρ 0a)J 0(kρ 1a)

H 0
(2)
(kρ 0 a)J 1(kρ 1a))

Eρ =
k z
ωϵ1

H ϕ
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and for ρ>a :

E z =
H0

(2 )
(kρ0ρ)

H0
(2 )
(kρ0 a)

Kϕ(k z)

(1− kρ1

kρ0ϵr

H1
(2)
(kρ 0a)

H 0
(2)
(kρ 0a)

J0(kρ1 a)

J1(kρ1a) )

Hϕ= j
ω ϵ0

kρ0

H1
(2)
(kρ1ρ)

H0
(2)(kρ0 a)

Kϕ(kz)

(1− kρ 1

kρ 0ϵr

H1
(2)(kρ0 a)J 0(kρ1 a)

H0
(2)
(kρ 0a)J 1(kρ1 a))

Eρ =
k z
ωϵ0

H ϕ

Where, Kϕ(kz)=
I 0

2π [ sin(kz
s
2 )

(k z
s
2 ) ] v/m.

All terms have the following pole:

(1− kρ1

kρ 0ϵr

H 1
(2)
(kρ0 a)J 0(kρ1 a)

H 0
(2 )(kρ0 a)J 1(kρ1 a))

When setting equal to 0 for the pole condition, and rearranging terms, we see the 

transcendental equation for the propagation constant of the TM01 mode in the dielectric 

rod as has been seen before in the literature and textbooks [25]:

kρ0ϵr H 0
(2)
(kρ0 a)J1(kρ1a) = kρ 1 H 1

(2)
(kρ0 a)J 0(kρ1 a)  

 Temporarily assuming completely real k , we see these poles may only arise in the 

range k0<kz<k1 , because in this range kρ0 = √k0
2
−k z

2
=− j k0√kz

2
−k 0

2 ; kρ0 a is 

a negative imaginary number while kρ1 = √k1
2
−kz

2 is a positive number.  Since
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K 0(χ)=− j π
2

H 0
(2)
(− jχ) K 1(χ )=−π

2
H 1

(2)
(− jχ) the quantity

H 1
(2)
(− jχ)

H 0
(2)(− jχ)

=− j
K1(χ)

K0(χ)
is known as the logarithmic derivative of K0(χ) and is

 well behaved.  The quantity
1

(− jχ)

H1
(2)
(− jχ)

H0
(2)
(− jχ)

is purely real and negative, while in

 the same range
(kρ1 a)J 0(kρ1 a)

J 1(kρ1 a)
is purely real.  So only in this range can the 

denominator vanish, giving us a pole.

What this shows is that the guided waves travel slower than free space, but no 

slower than the rod medium.  Hence it is only in this range between k0 and k1 that 

the k z spectrum waves can match in speed the slow wave modes, and it is then that 

they can strongly couple to them.

However, that is assuming completely real k, lossy material removes this 

distinction between “guidance” and “non-guidance”, and requires a different method of 

evaluation which will be considered shortly.

The fields in the spatial domain may be expressed by applying the inverse Fourier 

transform.  For ρ<a :

E z = ∫
−∞

∞ kρ1

kρ0 ϵr

J 0(kρ1ρ)

J 1(kρ1 a)

H1
(2)
(kρ0 a)

H0
(2)
(kρ0 a)

Kϕ(kz)e
− j k z z

dk z

(1− kρ 1

kρ 0 ϵr

H 1
(2)
(kρ0 a)

H 0
(2)
(kρ0 a)

J 0(kρ 1a)

J 1(kρ 1a))
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Hϕ= ∫
−∞

∞

j
ωϵ0

kρ0

J1(kρ1ρ)

J1(kρ1 a)

H 1
(2)
(kρ0 a)

H 0
(2)(kρ0 a)

Kϕ(kz)e
− j k z z

dk z

(1− kρ1

kρ0 ϵr

H1
(2)
(kρ0 a)J0(kρ1 a)

H0
(2)
(kρ0 a)J1(kρ1 a))

Eρ =∫
−∞

∞

j
k z

ϵr kρ0

J 1(kρ 1ρ)

J 1(kρ1 a)

H1
(2)
(kρ 0a)

H 0
(2)
(kρ 0a)

K ϕ(k z)e
− j k z z

dkz

(1− kρ1

kρ0 ϵr

H1
(2)
(kρ 0a)J 0(kρ 1a)

H 0
(2)
(kρ 0 a) J1(kρ 1a))

for ρ>a :

E z = ∫
−∞

∞ H 0
(2)
(kρ 0ρ)

H 0
(2)
(kρ 0 a)

Kϕ(k z)e
− j k z z dk z

(1− kρ1

kρ0ϵr

H1
(2)
(kρ0 a)

H0
(2)
(kρ0 a)

J 0(kρ1 a)

J 1(kρ1 a))

Hϕ= ∫
−∞

∞

j
ωϵ0

kρ0

H 1
(2)
(kρ 0ρ)

H 0
(2)
(kρ 0a)

K ϕ(k z)e
− j k z zdk z

(1− kρ1

kρ0ϵr

H 1
(2)
(kρ0 a)J0(kρ1 a)

H 0
(2)
(kρ0 a)J1(kρ1a) )

Eρ =∫
−∞

∞

j
k z

kρ 0

H1
(2)
(kρ 0ρ)

H0
(2)
(kρ 0a)

K ϕ(k z)e
− j k z zdk z

(1− kρ1

kρ0 ϵr

H 1
(2)
(k ρ0 a)J0(kρ1 a)

H0
(2)
(kρ0 a)J1(kρ1a) )

Observe the poles common to each term:

Pole(k z) =
1

(1− kρ 1

kρ 0ϵr

H1
(2)
(kρ0 a)J 0(kρ1 a)

H0
(2)
(kρ 0a)J 1(kρ1 a))

And for simplification later, we may also define a common factor function of k z term 

in each each expression:
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1
kρ0 a

H1
(2)
(kρ0 a)

H0
(2)(kρ0 a)

so the total common expression in each term is:

Common(k z)=
kρ0 a

1
J 1(kρ1 a)

( 1
kρ0 a

H1
(2 )
(kρ0 a)

H0
(2 )
(kρ0 a))

(J 1(kρ1 a)−
kρ1

kρ0ϵr

H 1
(2)(kρ0 a)J0(kρ1 a)

H0
(2)
(kρ0 a) )

and also recall in the spectrum of the current band:

Kϕ(kz)=
I 0

2π

sin (k z
s
2
)

kz
s
2

, where I 0 is the magnetic current source in Volts exciting 

the rod.  Also recall:

kρ0
2
+kz

2
= k0

2
= ω

2
μ0ϵ0

kρ1
2
+k z

2
= k 1

2
=ω

2
μ1ϵ1

Then the total fields for ρ<a

E z(ρ , z) =
1
ϵr

I 0

2 π∫−∞

∞

Common(kz)(kρ1 a)J 0(kρ1ρ)(
sin (k z

s
2
)

k z
s
2

)e− j k z z
dkz

Hϕ= jωϵ0a
I 0

2π ∫−∞
∞

Common(k z)J1(kρ1ρ)(
sin (k z

s
2
)

k z
s
2

)e− j k z z
dk z
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Eρ =
j
ϵr

I0

2π ∫−∞

∞

Common(kz) (k z a )J 1(kρ 1ρ)(
sin(kz

s
2
)

k z
s
2

)e− j k z z
dk z

For electrically small current source, IE a delta function source, s→0 and:

(
sin(k z

s
2
)

k z
s
2

)→1

then for ρ<a

E z(ρ , z) =
1
ϵr

I 0

2 π
∫
−∞

∞

Common(kz)(kρ1 a)J 0(kρ1ρ)e
− j k z z dk z

Hϕ= jωϵ0a
I 0

2π
∫
−∞

∞

Common(k z)J1(kρ1ρ)e
− j k z z dk z

Eρ =
j
ϵr

I0

2π
∫
−∞

∞

Common(kz) (k z a )J 1(kρ 1ρ)e
− j k z z dk z

similarly, for ρ>a

E z(ρ , z) =
I 0

2π
∫
−∞

∞

Common(k z)(kρ0 a)
H 0

(2)
(kρ0ρ)

H 1
(2)(kρ0 a)

J1(kρ 1a)e
− j k z z

dk z

Hϕ= jωϵ0a
I 0

2π
∫
−∞

∞

Common(k z)
H 1

(2)
(kρ0ρ)

H 1
(2)
(kρ0 a)

J 1(kρ1 a)e
− j k z z

dk z

Eρ =
jI 0

2π
∫
−∞

∞

Common(k z) (k z a )
H1

(2)
(kρ0ρ)

H1
(2)
(kρ0 a)

J 1(kρ1 a)e
− j k z z

dk z

The first quantity of interest is the current wave carried by the rod.  If the current 

was electric current, we could integrate d B z /dt inside the rod over the cross sectional 
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area from ρ= 0 to ρ = a and call that the total magnetic current. Conversely, for our 

case, where we have a magnetic current source, we can integrate −d D z/dt across the 

same cross sectional area and call that the total electric current.  Or we could think of it 

from the point of view of an outside observer unaware of the electrical thickness of the 

rod.  Since kr0 a is small the observer would assume the circulating H-field at the 

surface obeys Ampere's Law.  Both methods give the same answer:

∮ H⃗⋅d⃗l =∫ ∂ D⃗
∂ t

⋅d S⃗ = I e

The first integral requires the magnetic field be known at the surface of the rod, 

something we determined earlier.  The second integral requires the electric flux density 

through the cross section of the rod , information not available to us.  Hence using the 

first integral,

I e(z )=∮ H⃗⋅d⃗l =∫
0

2π

( jωϵ0a
I 0

2π
∫
−∞

∞

Common(k z)
H 1

(2)
(kρ0ρ)

H 1
(2)
(kρ0 a)

J 1(kρ1 a)e− j k z z dk z)d ϕ
and since there is no ϕ  dependence in the expression we can integrate immediately to 

see:

I e(z )= jωϵ0 a I 0∫
−∞

∞

Common(k z)
H 1

(2)
(kρ0ρ)

H 1
(2)
(kρ0 a)

J 1(kρ1 a)e
− j k z z

dk z

This is the electric current along the rod in amperes.  Recall the k z integral will give a 

result with the units m−1 .  Actual determination of the integral may be achieved 

numerically, with the application of residue theory.  
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The TMz modes of the dielectric rod will be comparable to the longitudinal 

modes of the chain of spheres.  One might assume TEz modes may be equally important, 

however, TEz modes of the rod are not analogous to the transverse modes of the chain of 

spheres, as one may at first assume.  Due to the angular dependence of the transverse 

polarization of the sphere of chains supporting a transverse mode, the appropriate analog 

are HEz modes of the rod.  Future considerations may make the TEz modes relevant, in 

which cause the previously derived TMz expressions may be readily used by a slight 

alteration using duality to determine the TEz components of such a structure (i.e. replace 

the stimulating magnetic current with an electric, swap μ and ϵ , and care for signs 

appropriately, etc.)  Then these terms from the TEz modes may be coupled with the TMz 

terms to determine the HEz hybrid modes. 

We have derived the TMz modes completely, and will simulate them shortly.  For 

the HEz modes we will now derive the closed form expression, but due to their current 

unimportance in our efforts, they will not be simulated unless needed at a later date.

HEz modes of a lossy dielectric cylinder should be analogous to the transverse 

modes of a chain of spheres.  To analyze such modes, assume ϕ - directed, ϕ

dependent, electric current band C e = C0cosϕ âϕ Amps/m, in a band between 

z=−s /2 and z=s/2 at radius ρ= a .  The current in the band is

I e = C0cosϕ s .  Decompose the surface current using the Fourier integral pair:

Kϕ (k z ,ϕ )=
1

2 π
∫
−∞

+∞

{C0 cosϕ (−s
2

+s
2 )}e j k z z

dz
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C0cosϕ(−s
2

+s
2 )=∫

−∞

+∞

Kϕ (k z )cosϕ e− j k z z d k z

The band has been decomposed into an infinite sum (integral) of electric current 

waves, each carrying Kϕ(kz)dk z A/m traveling along the z-axis with propagation 

constant k z .  The spectrum is a sinc function in k z , with an amplitude dependence 

of cosϕ with respect to ϕ :

Kφ (kz ,ϕ )=
1

2 π
∫
−s
2

+s
2

C0 cosϕ e j k z zdz=
C0 cosϕ s

2π [ sin(k z
s
2 )

(k z
s
2 ) ]

Expanding the fields inside and outside the rod in cylindrical harmonic solutions 

of the wave equation, we then satisfy the boundary conditions and source conditions 

with:

k ρ 0
2
+k z

2
=k0

2
=ω2 μ0 ε0 inside the medium outside the cylinder, IE ρ>a

k ρ 1
2
+k z

2
=k 1

2
=ω2 μ1 ε1 inside the medium inside the cylinder, IE ρ<a

From the expressions of the fields of an HEz mode, for ρ<a , we have a D2 = 0 ,

m = 1 dependence, resulting in an HE11 modes.  Note that some of the Bessel 

functions for the expressions of the fields are derivatives of Bessel functions of the first 

kind.  That is to say, before for the TMz0n modes in the previous section we applied

J 0(z )=−J 1
'
(z) , for J 1

'
(z) , we need the more general expression:

( 1
z

d
dz )

k

( zv J v (z))= zv−k J v−k (z )
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or:

( 1
z

d
dz )( z J1(z)) = J 0( z)

J 1(z)+z
d
dz

J 1( z)= z J0(z )

d
dz

J 1(z) = J 0(z )−
J 1(z )

z

Applying the recurrence relation:

J v−1(z)+J v+1(z) =
2v
z

J v (z )

we see

 J 0(z )+J 2(z )=
2
z

J 1(z ) or 
J1(z )

z
=

1
2

(J0(z )+J 2(z))

then:

d
dz

J 1(z) = J 0(z )−
J 1(z )

z
=

J 0(z)−J 2(z)
2

so for any J 1
'
(z) or H 1

(2) '
(z )  for the HE modes, replace it with

J 0(z)−J 2(z )
2

or 

H 0
(2)
(z)−H2

(2)
(z )

2
respectively.  Then for ρ<a :

E z =− j B1n

kρ 1
2

ωμ1ϵ1
J 1(kρ1ρ)cosϕ e− j k z z

Eρ = (−A1n
1
ϵ1ρ

J 1(kρ1ρ)−B1n

kρ1 k z
ωμ1ϵ1

J1
'
(kρ1ρ))cosϕ e− j k z z

Eϕ = (A1n

kρ 1
ϵ1

J 1
'
(kρ1ρ)+B1n

k z
ωϵ1μ1ρ

J1(kρ1ρ))sinϕ e− j k z z
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H z =− j A1n

kρ1
2

ωϵ1μ1
J 1(kρ1ρ)sinϕ e− j k z z

Hρ= (−A1n

kρ 1k z
ωϵ1μ1

J 1
'
(kρ1ρ)−B1n

1
μ1ρ

J 1(kρ1ρ))sinϕ e− j k z z

Hϕ= (−A1n

k z
ωϵ1μ1ρ

J1(kρ 1ρ)−B1n

kρ1
μ1

J 1
'
(kρ 1ρ))cosϕ e− j k z z

and for ρ>a :

E z =− j D1n

kρ0
2

ωμ0 ϵ0
H 1

(2)
(kρ 0ρ)cosϕ e− j k z z

Eρ = (−C1n
1
ϵ0ρ

H1
(2 )
(kρ0ρ)−D1n

kρ0 kz
ωμ0ϵ0

H 1
(2)'
(kρ 0ρ))cosϕ e− j k z z

Eϕ = (C1n

kρ0
ϵ0

H 1
(2 )'
(kρ0ρ)+D1n

k z
ωϵ0μ0ρ

H 1
(2)
(kρ0ρ))sin ϕe− j k z z

H z =− j C1n

kρ0
2

ωϵ0μ0
H 1

(2)
(kρ0ρ)sinϕ e− j k z z

Hρ= (−C1n

kρ0 k z
ωϵ0μ0

H1
(2) '
(kρ0ρ)−D1n

1
μ0ρ

H1
(2)
(kρ0ρ))sinϕ e− j k z z

Hϕ= (−C1n

k z
ωϵ0μ0ρ

H 1
(2)
(kρ0ρ)−D1n

kρ0
μ0

H 1
(2 )'
(kρ0ρ))cosϕ e− j k z z

Since the stimulating current source is completely electric, E tangential to the surface of 

the rod is continuous, so E z
II
(ρ=a) = E z

I
(ρ=a) shows:

− j B1n

kρ1
2

ωμ1ϵ1
J 1(k ρ1 a)cosϕ e− j k z z

+ j D1n

kρ0
2

ωμ0 ϵ0
H 1

(2)
(kρ 0a)cosϕ e− j k z z

= 0

and Eϕ
II
(ρ=a) = Eϕ

I
(ρ=a) shows:
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−A1n

kρ1
ϵ1

J1
'
(kρ1 a)−B1n

k z

ωϵ1μ1 a
J 1(kρ1 a)+C1n

kρ0
ϵ0

H 1
(2 )'
(kρ0 a)

+D1n

k z

ωϵ0μ0 a
H 1

(2)
(kρ 0 a) = 0

Since K⃗ = Kϕ âϕ , A⃗ must be completely âϕ directed, which means

Hϕ
II ( a ) = H ϕ

I ( a ) , which shows:

−A1n

k z

ωϵ1μ1 a
J 1(kρ1 a)−B1n

kρ1
μ1

J 1
'
(kρ1 a)+C1n

k z

ω ϵ0μ0 a
H1

(2)
(kρ 0a)

+D1n

kρ0
μ0

H 1
(2)'
(kρ 0 a) = 0

apply H z
II
(ρ=a)−H z

I
(ρ=a) = Kϕ to see:

− j A1n

kρ1
2

ωϵ1μ1
J1(kρ1 a)+ jC1n

kρ0
2

ωϵ0μ0
H 1

(2)
(kρ0 a)=

K ϕ

cosϕ
e+ j k z z

=
C0

2π [ sin(k z
s
2 )

(k z
s
2 ) ]e+ j k z z

So we have four equations in four unknowns:

− j B1n

kρ1
2

ωμ1ϵ1
J 1(kρ1 a)+ j D1n

kρ 0
2

ωμ0ϵ0
H1

(2 )
(kρ0 a)= 0

−A1n

kρ1
ϵ1

J1
'
(kρ1 a)−B1n

k z

ωϵ1μ1 a
J 1(kρ1 a)+C1n

kρ0
ϵ0

H1
(2 )'
(kρ0 a)+D1n

k z

ωϵ0μ0 a
H1

(2)
(kρ0 a) = 0

−A1n

k z

ωϵ1μ1 a
J 1(kρ1 a)−B1n

kρ1
μ1

J 1
'
(kρ1 a)+C1n

k z

ω ϵ0μ0 a
H 1

(2)
(kρ 0a)+D1n

kρ0
μ0

H 1
(2)'
(kρ0 a) = 0

− j A1n

kρ1
2

ωϵ1μ1
J1(kρ1 a)+ jC1n

kρ0
2

ωϵ0μ0
H 1

(2)
(kρ0 a)=

K ϕ

cosϕ
e+ j k z z
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which can be put into matrix form:

[
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44
]⋅[

A1n

B1n

C1n

D1n
]= [

0
0
0

K soln
]

where

a11 = 0 a12 =− j
kρ1

2

ωμ1 ϵ1
J1(kρ1 a) a13 = 0 a14 = j

kρ0
2

ωμ0 ϵ0
H 1

(2)(kρ 0 a)

a21 =−
kρ 1
ϵ1

J 1
'
(kρ1 a) a22 =−

k z

ωϵ1μ1 a
J 1(kρ1 a) a23 =

kρ0
ϵ0

H 1
(2)'
(kρ0 a)

a24 =
k z

ωϵ0μ0 a
H1

(2)(kρ0 a) a31 =−
k z

ωϵ1μ1 a
J 1(kρ1 a) a32 =−

kρ 1
μ1

J 1
'
(kρ1 a)

a33 =
k z

ωϵ0μ0 a
H 1

(2)
(kρ 0 a) a34 =

kρ0
μ0

H 1
(2)'
(kρ 0a) a41 =− j

kρ1
2

ω ϵ1μ1
J 1(kρ1ρ)

a42 = 0 a43 = j
kρ0

2

ωϵ0μ0
H 1

(2)
(kρ 0ρ) a44 = 0

and:

K soln =
Kϕ

cosϕ
e
+ j k z z

Notice a12 = a41 a14 = a43 a22 = a31 a24 = a33 , and let η1
2
=
μ1
ϵ1

η0
2
=
μ0
ϵ0

then a23 =η0
2a34 a21 = η1

2 a32 .  Putting the zeros back into the matrix, and 

substituting like terms to help with simplification:
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[
0 a12 0 a14

η1
2 a32 a22 η0

2 a34 a24

a22 a32 a24 a34

a12 0 a14 0
]⋅[

A1n

B1n

C1n

D1n
]= [

0
0
0

K soln
]

so we have form [ M 4x4 ]⋅V⃗ 1 = K⃗ 1

so V⃗ 1 = [M 4x 4 ]
−1
⋅K⃗1

[ M 4 x4 ]
−1
=

1
Det (M 4x4) [

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44
]

Where the “b” terms in the new matrix are related to the “a” terms in the usual linear 

algebra fashion when calculating matrix inverses.  However the key point is we have a 

closed form expression that can be used to numerically solve for the coefficients of the 

HEz modes.  Also notice we again have a constant pole term when the determinate is 0.  

This is as before for the TMz case, except the previous derivation wasn't in terms of 

linear algebra, hiding this identity of the pole.

Whatever our numeric expression for the fields are in the spectral domain, we 

may numerically find the spatial fields by inverse Fourier transform:

E z = ∫
−∞

∞

Ez e
− j k z z dk

Eρ =∫
−∞

∞

Eρe− j k z z dk

Eϕ =∫
−∞

∞

Eϕ e− j k z z dk
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H z = ∫
−∞

∞

H z e− j k z z dk

Hρ= ∫
−∞

∞

Hρe− j k z z dk

Hϕ= ∫
−∞

∞

Hϕ e− j k z z dk

Then:

Kϕ(kz)=
I 0 cosϕ

2 π [ sin(k z
s
2 )

(kz
s
2 ) ]

Where I 0 = C0 s is the electric current source in Amps exciting the rod, and the spectral 

fields are functions of:

K soln =
Kϕ

cos
ϕ=

I 0

2 π [ sin(kz
s
2 )

(k z
s
2 ) ]

also recall:

kρ0
2
+kz

2
= k0

2
= ω

2
μ0ϵ0

kρ1
2
+k z

2
= k 1

2
=ω

2
μ1ϵ1

For electrically small current source, IE a delta function source, s→0 and

(
sin(k z

s
2
)

k z
s
2

)→1

Again, we are concerned with the current wave carried by the rod.  The current was 
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electric current, so for this case we can integrate d B z /dt inside the rod over the cross 

sectional area from ρ= 0 to ρ = a and call that the total magnetic current. Or we 

could think of it from the point of view of an outside observer unaware of the electrical 

thickness of the road.  Since kr0 a is small the observer would assume the circulating 

Efield at the surface obeys Faraday's Law.  The fact is that both methods give the same 

answer:

∮ E⃗⋅d⃗l =∫−∂ B⃗
∂ t

⋅d S⃗ = I m

The first integral requires the electric field be known at the surface of the rod, something 

we may determine with the derived expressions for the electric field.  The second integral 

requires the magnetic flux density through the cross section of the rod to be known, 

information which we do not have.  Hence:

I m(z) =∮ E⃗⋅d⃗l

This expression may be used to determine the amplitude and phase of the supported 

current wave of the structure, which in turn shows us when the structure guides, and the 

parameters of its guidance (attenuation and propagation constant through the current 

wave intensity and phase).
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