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ABSTRACT  
   

Life Cycle Assessment (LCA) quantifies environmental impacts of products in 

raw material extraction, processing, manufacturing, distribution, use and final disposal. 

The findings of an LCA can be used to improve industry practices, to aid in product 

development, and guide public policy. Unfortunately, existing approaches to LCA are 

unreliable in the cases of emerging technologies, where data is unavailable and rapid 

technological advances outstrip environmental knowledge. Previous studies have 

demonstrated several shortcomings to existing practices, including the masking of 

environmental impacts, the difficulty of selecting appropriate weight sets for multi-

stakeholder problems, and difficulties in exploration of variability and uncertainty. In 

particular, there is an acute need for decision-driven interpretation methods that can 

guide decision makers towards making balanced, environmentally sound decisions in 

instances of high uncertainty. We propose the first major methodological innovation in 

LCA since early establishment of LCA as the analytical perspective of choice in 

problems of environmental management. We propose to couple stochastic multi-criteria 

decision analytic tools with existing approaches to inventory building and 

characterization to create a robust approach to comparative technology assessment in 

the context of high uncertainty, rapid technological change, and evolving stakeholder 

values. Namely, this study introduces a novel method known as Stochastic Multi-

attribute Analysis for Life Cycle Impact Assessment (SMAA-LCIA) that uses internal 

normalization by means of outranking and exploration of feasible weight spaces. 
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Chapter 1 

INTRODUCTION TO BOOK CHAPTER 

Existing interpretation practices for comparative LCAs rely in external normalization 

methods, do not provide sufficient decision support and can have misleading 

recommendations. The following chapter, which corresponds to the material previously 

published in the Handbook of Life Cycle Assessment in 2012, proposes alternative 

interpretation methods that rely in internal normalization methods. The following chapter 

addresses and explains the concerns surrounding internal normalization methods, and 

concludes that internal methods of normalization that derive from stochastic decisions 

analysis tools best fit comparative LCAs. The following chapter can be found under the 

citation: 

 
Prado, V., Rogers, K., and Seager, T.P. 2012. “Integration of MCDA tools in valuation of 

comparative life cycle assessment” in Life Cycle Assessment: A Guide to Sustainable 

Products, Benefits of Life Cycle Thinking (Curran, M.A eds.). Wiley. ISBN: 

9781118099728  

 

Note: All co-authors have granted authorization to include publication as part of this MS 

thesis.  
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Chapter 2 

MULTI-CRITERIA DECISION ANALYSIS FOR LCA 

 

2.1 ABSTRACT 

This chapter reveals how ISO normalization guidelines can have misleading 

recommendations, explains existing objections to descriptive approaches to 

normalization, and suggests a method that draws upon advances in stochastic multi-

attribute analysis (SMAA) to resolve some of the most difficult challenges associated 

with LCA, such as eliciting criteria weights and understanding the uncertainty of those 

weights relative to other data.  External normalization is unsuitable for comparative LCA 

because it derives from normative theories that use an absolute scale and assume 

transitivity.  Impact assessment in comparative LCAs would benefit from the application 

of descriptive approaches extant in Multi Criteria Decision Analysis (MCDA) to help 

structure normalization and weighting stages.  Specifically, outranking MCDA methods 

allow for the comparison of multiple competing alternatives by only allowing partial 

compensation.  It is essential to provide robust methods for comparative LCAs that are 

sensitive to inherent uncertainties and capable of representing multiple viewpoints. 

 

2.2 INTRODUCTION 

Life Cycle Assessment is a powerful tool for comparing multiple products with respect to 

their overall environmental impact.  However, the results from LCA are difficult to 

comprehend because of the vast amount of data, diversity of physical units, value 

judgments, and uncertainty in the parameters (Le Teno, 1999).  LCA creates data, but is 

limited in its capacity to interpret information for decision makers (Canis et al., 2010, 

Boufateh et al., 2011). As a result, most comparative LCA studies do not perform any 
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valuation and are left as a set of characterized data, leaving decision makers to confront 

multi-criteria, multi-stakeholder problems unaided (Rogers et al., 2008, Rowley and 

Peters, 2009).  This can lead to confusion and bias among decision-makers and 

stakeholders since their cognitive ability to process large amounts of data is limited and 

subject to systematic flaws (Hertwich and Hammit, 2001).  Additionally, the LCA studies 

that do complete impact assessment according to the current recommended practices 

typically result in a single overall environmental score that it is also subject to biases and 

fundamental flaws (Rowley and Peters, 2009).  

Comparative LCA studies are multi-criteria decision type problems that involve decision 

makers (policy makers, public, and stakeholders), multiple criteria (e.g., global warming, 

eutrophication, human toxics, and acidification) and multiple competing alternatives (i.e., 

different products, policies or services).  Therefore, comparative LCAs can benefit from 

borrowing tools from decision analysis methods such as Multi-criteria Decision Analysis 

(MCDA) to help structure the valuation phase (Rogers et al., 2008, Rogers and Seager, 

2009, Jeswani et al., 2010, Hanandeh and El Zein, 2010, Le Teno and Mareschal , 

1998, Basson and Petrie 2004, Seager et al., 2008, Benoit and Rousseaux, 2003, 

Elghali et al., 2008, Rowley and Shiels, 2011, Rowley and Peters, 2009, Dorini et al., 

2011).  MCDA refers to a variety of methods developed to help decision makers 

organize and synthesize information to select an alternative among competing options 

(Loken, 2007).  The methods are not intended to make actual decisions, instead they are 

intended to guide the decision making process in a dynamic and iterative manner 

(Hersh, 1999, Seager et al., 2006).  MCDA methods are capable of handling complex 

decision problems with multiple, conflicting criteria with incommensurate units 

(Hanandeh and El-Zein, 2010, Wang et al., 2009).  Furthermore, MCDA methods are 
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adequate to sustainability problems because they can integrate environmental, 

economic and social values (Jeswani et al., 2010). 

There are two main types of MCDA methods that apply to comparative LCAs (Rowley 

and Peters, 2009, Boufateh et al., 2011).  There are normative methods based on the 

Multi Attribute Utility Theory (MAUT), and descriptive methods such as outranking.  

MAUT methods are used the most, despite their highly compensatory nature, 

mathematical complexity, and resource intensity (Seager et al., 2006).  Compensability 

is a fundamental characteristic of MCDA methods and it refers to the possibility of 

offsetting poor performance in one aspect of a problem with good performance in 

another (e.g., clean air makes up for contaminated water, or large profits make up for the 

loss of ecosystem habitat).  Fully compensatory methods are undesirable for 

environmental problems because they represent an exclusively weak sustainability 

perspective where different forms of capital (financial, human, and ecological) are 

considered substitutable (Rowley and Peters, 2009). By contrast, outranking methods 

avoid full compensation and are easier for decision makers to understand (Loken, 2007, 

Benoit and Rousseaux, 2003).  

Unfortunately, descriptive approaches to valuation in LCA have been for the most part 

rejected by the LCA community due to claims of theoretical issues (Basson and Petrie, 

2004, Hertwich and Hammit, 2001, Giove and Brancia, 2009, Seppala et al., 2002).  As 

a result, recommended normalization and weighting practices consist of fully 

compensatory external normalization, and single weights that yield a single score for 

each alternative. The following sections in this chapter go into further detail about the 

current practices, fundamental weaknesses in these, and ways to create a more robust 

framework for interpreting results from comparative LCAs. 
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2.3 CURRENT PRACTICES IN LIFE CYCLE IMPACT ASSESSEMT 

The valuation or interpretation stage in LCIA is composed of normalization and 

weighting, and it helps convey the results of an LCIA study to stakeholders and decision-

makers.  The results of an LCIA study prior to valuation show the different performances 

of the alternatives in several impact categories.  For example, the performances of a set 

of products in categories like carbon emissions, water use, and energy requirements.  It 

is difficult to judge the overall environmental performance of alternatives based on 

multiple criteria with incommensurate units (e.g., tons of CO2, gallons of water, and 

kWh).  In practice, when comparing the environmental impacts associated with 

alternatives, it is rare to find an alternative that outperforms the rest in all impact 

categories.  In fact, most of the time products perform differently in all impact categories, 

which make normalization and weighting instrumental steps in comparative LCAs.  The 

purpose of normalization is to convert the different units of the impact categories into 

one dimensionless unit for easier comparison (Bare, 2010, De Benedetto and Klemes, 

2009, Bare, et al., 2006 and, Pennington, 2004).  Normalization provides context and 

adds significance to the results.  However, deciding on appropriate normalization 

methods is still an area of controversy (Bare, 2010).  

After normalization, weighting reflects the relative importance of environmental impacts 

according to the stakeholders and the decision maker’s preferences and values 

(Seppala et al., 2002).  The weighting process helps to simplify tradeoffs when dealing 

with competing alternatives and opposing values within the panel of decision makers.  

For example, a stakeholder might value global warming over ozone depletion.  

Weighting allows for impacts to be aggregated into a single score for easier evaluation, 

according to appropriate preferences.  However, weights are inherently subjective and 
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can vary depending on culture, political views, gender, demographics, and professional 

opinion of stakeholders.  Consequently, single-score results are criticized by some 

practitioners.  While it is true that other aspects of LCA are also subjective, like the 

selection of impact categories, Schmidt and Sullivan (2002) make a distinction between 

choices based on values and choices based on technical assumptions.  Therefore, 

weighting and normalization are categorized as optional steps by the ISO standards. 

Current research in LCIA deals primarily with impact categories and characterization 

factors, and pays little attention to normalization practices.  Reap et al. (2008) perform a 

survey of major problems in LCA which highlights issues in impact categories and 

characterization factors, such as spatial variation, local uniqueness, environmental 

dynamics, and decision time horizon.  Bare (2010) mentions termination points 

(inventory, midpoint, and endpoint) as one of the main research needs in LCIA, and 

mentions normalization only with respect to the need for more comprehensive external 

normalization reference databases that report the total amount of emissions in a specific 

reference system (e.g., total carbon emissions in the US, or total NOx in the state of 

California – e.g., Finnveden et al., 2009). 

 

2.4 PRINCIPLES OF EXTERNAL NORMALIZATION 

External normalization relates the results of an LCIA study to an external database or 

normalization reference, thus the results are in terms of a fraction of a broader 

reference, like total regional or national emissions. External normalization relies on 

information outside the study and is intended to show the significance of a result relative 

to a chosen region or reference system (Norris, 2001).  By contrast, internal 

normalization utilizes values within the study and shows the relative significance of an 

impact with regards to the other competing alternatives.  For example, external 
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normalization relates the carbon emissions of products to the region’s total carbon 

emissions, and internal normalization provides the significance of the product’s carbon 

emission relative to the amount of emissions of the other competing alternatives.  Thus, 

external normalization uses an absolute scale, and internal normalization uses a relative 

scale (although it can be argued that the “absolute scale” is also relative because it 

comes from an ideal which is relative by nature -- Saaty, 2006).  

External normalization is a normative concept based in utility theory which assumes 

transitivity (Seppala et al., 2002).  Utility theory assigns a number value (or utility) to 

each alternative with the implicit goal of utility maximization (Fishburn, 1970).  Thus, an 

alternative with the greater utility is preferred to lesser.  Transitivity requires that when 

alternative A is preferred over B, and B is preferred over C, then A must be preferred 

over C (Edwards, 1954). Utility theory rates alternatives with respect to an absolute 

scale (Saaty, 2006).  In the case of external normalization in LCIA, the absolute scale is 

the database of total regional, national or global impacts.  Mathematically external 

normalization is done by dividing the characterized result of each impact category by the 

value of the normalization reference system (Equation 1): 

          

Where N is the normalized value for impact category i, S is the characterized impact and 

A is the normalization reference value from an external database (Bare et al., 2006).  

The rating of each alternative is independent of each other and it is not subject to 

change if other alternatives are added or removed (Vargas, 1994, Saaty, 2006).  

Therefore, rating in external normalization is transitive.  However, not all rational 

decisions follow a transitive pattern (Vargas, 1986).  For example, consider the 

intransitive order of the rock-paper-scissors game: rock beats scissors, scissors beats 

paper, and paper beats rock.  In this case, there is no dominant winning strategy.  In fact 
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May (1954) mentions multiple examples that violate the principle of transitivity and 

shows how intransitivity arises when choosing alternatives with conflicting criteria. 

 

2.5 ISSUES WITH EXTERNAL NORMALIZATION 

External normalization gives context to the characterized results and places different 

criteria in common terms. However, there are severe disadvantages and fundamental 

issues that come with applying external normalization to comparative LCAs. 

2.5.1 Inherent data gaps  

Utilizing external normalization references introduces additional uncertainty to the study 

because of the lack of consensus in data (Bare et al., 2006).  Any overestimation or 

underestimation in the external normalization references can have a significant impact in 

the results (Heijungs et al., 2007).  For instance, a lack of emission data in the NR yields 

a normalized result that is too high.  Such bias is especially problematic when comparing 

alternatives (White and Clark, 2010).  Studies dedicated to the reduction of bias in 

normalization are often concerned with methods for filling data gaps (Bare, 2010, White 

and Carty, 2010, Finnveden, 2009, Heijungs et al., 2007).  Addressing data gaps is 

resource intensive and time consuming (White and Carty, 2010), and such efforts can 

prove to be impractical for comparative LCIA studies.  Even a comprehensive database 

can lead to biased results because of fundamental issues such as: risk of masking 

salient aspects, compensation, boundary issues and discrepancy between different 

databases.  

2.5.2 Masking salient aspects  

In external normalization, impact categories with large annual per capita values (e.g., 

eutrophication) yield small normalized results, as opposed to impact categories with 

relatively small annual per capita values (e.g., ozone depletion), which yield large 
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normalized values. According to White and Carty (2010) this phenomenon is referred to 

as “inverse proportionality” and can lead to confusion and counterproductive actions.  

The bias introduced by external normalization can be so high as to completely exceed 

the effects of weighting (Rogers and Seager, 2009).  For example, Figure 1 shows this 

bias by applying six different weight sets to a normalized data, but obtaining the same 

rank ordering of alternatives in each case.  The overall environmental scores change in 

magnitude, but their ranking remains the same.  This shows that the outcome of a 

comparative LCA study can be independent of stakeholder values’ and completely 

driven by normalization.  In Figure 1, the weights for HHCR range from zero in long term 

users, to 61% in short term LCA experts.  Similarly, other impact categories like GW the 

weights range from 9% to 92%, and FFD ranges from 2% to 28%.  
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Figure 1. Weighted Scores for various transportation fuels: 100% Biodiesel (BD100), 

Electrical Vehicle (EV), Low Sulfur Diesel (LSD), Ethanol (EtOH), and Gasoline (GAS). 

The scores are according to a weight set given by Producers, Users and Experts for 

Short and Long Term impacts. The criteria evaluated were Fossil Fuel depletion (FF), 

Global Warming (GW), Smog (SMOG), Acidification (ACID), Eutrophication (EUT), and 

human health criteria air pollutants (HHCR). (Adapted from Rogers and Seager, 2009). 
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2.5.3 Compensation 

External normalization uses utility functions to aggregate values into a single number 

(Seppala et al., 2002) and allows for a product’s poor performance in one category to be 

compensated by a good performance in another category.  Thus, external normalization 

is fully compensatory (Rogers, 2008).  However, compensation is problematic when 

dealing with environmental decisions because it represents a weak sustainability 

perspective, to the exclusion of strong sustainability (Rowley and Peters, 2009).  For 

example, given a product’s outstanding performance in a single category, it is possible 

that it can offset its poor performance in several others.  However, the strong 

sustainability view rejects such unlimited substitution for pragmatic as well as ideological 

reasons (Ayers et al., 1998) 

2.5.4 Spatial boundaries and Time Frames 

Because environmental data is often reported by federal agencies, normalization 

reference data is typically compiled on a national basis.  However, not all environmental 

impacts have national effects (Bare and Gloria, 2006).  For instance, smog has a more 

localized effect than global warming.  Thus, it is possible that impacts outside the 

reference area will not be accounted for (Heijungs et al., 2007).  Similar to the spatial 

boundary issues, different processes and products generate emissions over different 

time periods.  Since most normalization references exist on an annual basis, external 

normalization becomes problematic when dealing with emissions outside this time frame 

(Finnveden et al., 2009).  For example, landfilling continues to generate emissions even 

after decades of storage.  

2.5.5 Divergence in data bases.  

All of the issues combined lead to a great deal of discrepancy between normalization 

databases.  This is clear when different data bases yield significantly different results.  
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White and Clark (2010) offer an example of biases in external normalization.  Here, the 

authors select 800 random materials and processes in the Ecoinvent life cycle inventory 

and utilize two methods of characterization and normalization.  The first one uses TRACI 

characterization factors normalized according to 2000 US per capita values.  The 

second one uses CML baseline 2001 for characterization factors normalized with CML 

1995 database.  The results show that the first approach focuses exclusively on human 

toxicity, human cancer and ecotoxity categories, whereas, the second approach focuses 

on completely different categories like marine toxicity, freshwater toxicity and fossil fuel 

depletion.  

 

2.6 PRINCIPLES OF INTERNAL NORMALIZATION 

Normalization can also be performed internally in a variety of ways, either by division 

(division by maximum, division by minimum, division by baseline, division by sum), by 

applying methods from MCDA like the Analytic Hierarchy Process (AHP -- Saaty, 1980), 

or outranking (Behzadian et al., 2010, Figueira et al., 2005).  Internal normalization is 

descriptive rather than normative approach, and gives a ranking to alternatives that is 

dependent on other alternatives, rather than a rating.  The ranking is based on a relative 

scale, and it can change when the number of alternatives changes.  Relative scales can 

result in rank reversal (Saaty, 2004), but only when relevant alternatives are introduced 

or removed from the analysis (Harker and Vargas, 1990). Rank reversal occurs when 

the addition or removal of one alternative causes the rank of other alternatives to 

change.  For example, consider that alternative A is ranked higher than Alternative B, 

but once alternative C is introduced, B becomes the highest ranked alternative followed 

by A, then C.  As opposed to normative approaches, descriptive approaches allow and 

accept intransitive preferences, thus rank is not always preserved.  In fact, the notion of 
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rank preservation or rank invariance principle (Vargas, 1994), is a normative concept 

stating that the ranking of alternatives should remain the same regardless of the number 

of alternatives introduced or deleted.  According to this theory, rank is to be preserved 

even if there is new information added to the problem.  The fact that rank reversal is a 

real life occurrence is not addressed by the ideal of rank preservation.  Rank reversal 

remains a highly controversial subject within the normative and descriptive communities 

(Harker and Vargas, 1987, Harker and Vargas, 1990, Vargas, 1994, Erdogmus et al., 

2006, Dyer, 1990, Schenkerman, 1994), also referred to as classical and naturalistic 

approaches respectively (Hersh, 1999).  In LCIA, rank reversal from internal 

normalization is not well analyzed and understood.  Instead, it has been automatically 

discarded as inappropriate without any further consideration.  Initially, LCIA studies 

applied internal normalization but because of criticisms due to the rank reversal 

phenomenon, and to ensure congruency in the valuation stage, external normalization 

became the common practice (Bare, 2010, Wang and Elhag, 2006, Norris, 2001).  

Nevertheless, deciding on appropriate normalization guidelines is still an area of 

controversy (Bare, 2010). 

2.6.1 Compensatory methods: 

Internal normalization by maximum is a method in which the values of all alternatives in 

each category are divided by the maximum value in that category prior to weighting.  For 

example, if three alternatives having lead emissions of 2, 4, and 10 mg each were to be 

normalized, the values will be normalized with respect to the alternative with the highest 

lead emissions (10 mg of Pb).  Thus, it yields dimensionless normalized results of 0.2, 

0.4, and 1 respectively. Likewise, internal normalization by minimum would yield 1, 2 and 

5.  Internal normalization by a baseline, divides the values in the category by the 

selected baseline alternative.  An issue with this method is that it may lead to a division 
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by zero for nonexistent flows (Norris, 2001).  Division by sum normalization divides the 

attributes in each category by the sum of the category (Norris and Marshal, 1995).  A 

drawback from this method is that it can yield biased results when most values are 

closer to the top or bottom of the range (Norris, 2001).  Although these methods do not 

have the some of the issues of external normalization, internal normalization by means 

of division still allows for full compensation between categories. This feature leads to an 

unsatisfactory framework for environmental type decisions where tradeoffs between 

criteria (e.g., water quality and air quality) are undesirable. 

The AHP method was developed by Saaty (1980) with the realization that humans are 

more capable of making relative judgments over absolute judgments (Linkov et al., 

2007).  The AHP uses pair wise comparisons between attributes of two alternatives at a 

time, and asks questions such as “How much more important is one attribute over the 

other?”  For example, “How much more important is water quality over air quality?”  

Decision makers are then asked to assign a value from a 0 to 9 scale, where 0 means 

equally important and 9 means extremely more important.  The verbal mediation in the 

0-9 scale helps decision makers translate fuzzy judgment into number values (Norris 

and Marshall, 1995).  After the pair wise comparisons, an eigenvector analysis yields 

weights.  Once the decision makers assign a value to their preferences and their 

respective weights calculated, the alternative with the highest overall ranking is said to 

be the preferred alternative.  Although AHP is also a complete method of aggregation 

that allows for full compensation, it is an intuitive and flexible tool that can deal with 

tangible and intangible criteria (Ramanathan, 2001, Erdogmus et al., 2006).  

Nevertheless, AHP is limited in some respects (Macharis et al., 2004). 
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2.6.2 Partially compensatory methods. 

Alternate methods of internal normalization performing outranking such as 

PROMETHEE (Preference Ranking Organization Method of Enrichment Evaluation) and 

ELECTRE (ELimination and Et Choice Translating REality), specifically ELECTRE III 

and PROMETHEE I, II, are advantageous for environmental problems. These methods 

are partially compensatory, allow for easier value elicitation, and can work with partially 

quantitative data (Geldermann and Schobel, 2011).  Outranking judges alternatives with 

regard to each other on each criterion, provided there is enough evidence to judge one 

alternative to outrank another (Loken, 2007).  

There are two main steps to these methods: one involves the normalization process by 

means of pair wise comparisons, and the second is the process of producing the ranking 

of alternatives.  Both, ELECTRE III and PROMETHEE I and II require a preference 

function (Figure 2) with preference (p) and indifference (q) thresholds.  The preference 

threshold (p) is the smallest deviation between two alternatives considered significant, or 

enough to be preferred, and the indifference threshold (q) is the largest deviation 

considered negligible (Brans and Mareschal, 2005).  Thresholds can be selected 

arbitrarily (Linkov et al., 2007) or based on the uncertainty of a given criteria (Rogers and 

Bruen, 1998).  Preference values are real numbers between 0 and 1, where 1 is strict 

preference and 0 is indifference.  A weak preference of one alternative over another 

alternative results in an interpolated preference value between 0 and 1.  
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Figure 2. Linear preference function 

After gathering the preference indices for each pair wise comparison, the preference 

indices for each alternative are aggregated along with the weights.  The weights are 

specific of each impact category, and they reflect the importance of the category as 

assigned by decision makers.  Finally, alternatives are ranked depending on their overall 

score.  The decision making process is an iterative process, and it is not meant to 

provide an absolute single answer.  Instead, it is intended to help decision makers better 

understand the problem and organize their judgment (Seager et al., 2006).  

Compared to ELECTRE, the calculation procedure in PROMETHEE is more transparent 

and easier for decision makers to understand (Seager et al., 2006).  It is important for 

decision makers to understand the methodology so they feel comfortable and trust the 

recommendations otherwise the decision analysis is meaningless.  For example, 

sometimes the ELECTRE method seems as a “black box” and it is unsatisfactory for 

decision makers (Loken, 2007).  PROMETHEE avoids full compensation between 

criteria, deals with partial quantitative data, and it is easily understood by decision 

makers.  However, PROMETHEE still relies upon point estimates for inputs with no 

uncertainty.  In environmental decisions, uncertainty must be considered because the 
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precise information is not always available within analytic time frames (Hersh, 1999).  

Specifically, there is a need for methods that can investigate the effects of changing 

input parameters and weights (Hersh, 1999).  Recently, there have been modified 

versions of PROMETHEE that allow for uncertainty in the inputs and weights (Rogers, 

2008, Canis et al., 2010, Tylock et al., 2011).  These methods utilize Monte Carlo 

analysis to explore a range of inputs, and allow uncertainty in the input parameters 

(Lahdelma et al., 1998).  Thus, it is possible to perform an analysis with basic 

information at an early stage of alternative development or where quantitative 

performance is difficult to obtain (Seager et al., 2006).  

 

2.7 WEIGHTING 

Weights can be obtained a number of ways (Wang et al., 2009), but typically are 

represented as a single vector for easier evaluation. Single-score results are problematic 

because they lead to an extreme simplification of problem, and lose important 

information (Brans and Mareschal, 2005). Appropriate methods should include sensitivity 

to weighting analysis (Brans and Mareschal, 2005, Hersh, 1999, Rogers and Bruen, 

1998).  In fact, there are studies that explore the entire weight set by means of Monte 

Carlo simulations, resulting in a probabilistic instead of absolute ranking of alternatives 

(Lahdelma and Salminen, 2001, Rogers et al., 2008). 

Norris (2001) exemplifies the dominant views of normalization in LCA, which prefer 

external normalization and weighting.  To prove the point, Norris (2001) presents a multi-

alternative, multicriteria problem normalized internally by division-by-maximum and 

weighted with single weights.  There are two instances in which, according to the paper, 

the results are debatable. The first example shows that the results are insensitive to 

changes in magnitude, and the second example shows a case of rank reversal.  While 
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Norris (2001) rejects these results as “absurd” without any further analysis, the following 

sections discuss both examples from a descriptive, rather than normative perspective.  

Figure 3 presents the example from Norris (2001) in which two alternatives, A and B, are 

evaluated in three weighted categories: Global Warming, Acidification, and Human 

Toxics. Alternative B has a higher performance assessment in Acidification and Human 

Toxics, and Alternative A performs better in the most significant category, Global 

Warming. After division-by-maximum normalization and external weighting in Figure 4, 

Alternative A has a lower overall score which means A is preferred to B.  (In this case, 

the score is associated with environmental impact, thus a lower score is better). Figure 4 

shows the contribution of each category in the overall score.  Alternative A has an 

overall score of 8.5 and Alternative B has a score of 13.1. Although A has a higher score 

in Human Toxics and Acidification, its score in Global Warming is significantly lower.  
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2.8 CASE STUDY 1: MAGNITUDE SENSITIVITY 

 
 

 
Figure 3 (Above): Performance Assessment of Alternatives A and B in 
three categories, note that each category is measured in different units. 

(Below): Assigned criteria weights. (Adapted from Norris, 2001). 
 
To illustrate the effect of changes in magnitudes, now suppose alternative A emits 10 

micrograms instead of 10 kilograms of CO2, and alternative B emits 40 micrograms 

instead of 40 kilograms of CO2.  Furthermore, alternative A now releases 20 tons of Pb 

and alternative B releases 10 tons of Pb- instead of kg.  Clearly, the minuscule 

difference between alternative A and B with respect to Global Warming is 

inconsequential. However, alternative A still results in a lower score despite the fact that 

the advantages of A over B are now comparatively inconsequential.  In fact, by using the 
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internal division-by-maximum approach, the overall scores remain the same for both 

alternatives despite the obvious differences in the character of the environmental 

inventories. Norris (2001) argues that: 

“If the results are blind to information about significance, are unchanged by 

dramatic shifts in magnitude, and thus can clearly lead to absurd results on 

simple examples where we are able to 'know better', what meaning or reliability 

can they have on any problem?” 

While the fact that relative rank of A and B stay the same despite the change in 

magnitude between them is absurd, the fault doesn’t lay in the normalization approach, 

but in the lack of judgment.  When the performance assessments in Global Warming for 

both alternatives are practically identical (with only 30 micrograms of difference), then 

such criteria should be excluded from the analysis.  

 

 
Figure 4. Overall weighted score after internal normalization of division by 

maximum and external single-value weighting for Alternatives A and B. 
(Adapted from Norris, 2001). 
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It is crucial to apply judgment in the valuation stage to make the distinction between 

significant and negligible values, and Norris’ example fails to do so.  By contrast, in 

outranking, preference and indifference thresholds set the difference at which a 

magnitude becomes significant or remains insignificant.  Applying outranking 

normalization with preference thresholds as shown in Figure 5, results in B as the 

preferred alternative under conditions when the difference between B and A in global 

warming is insignificant.  Results in Figure 5 are obtained by performing pair wise 

comparisons between alternatives A and B for all criteria.  First, alternatives A and B are 

compared on each criterion and whichever is preferred beyond the preference threshold, 

earns one point.  Then the points from each category are multiplied by the 

corresponding weights.  Lastly, the weighted scores for all alternatives are added to form 

a total score. In this case the score is associated with environmental preference, thus 

the greater the score, the better.  Figure 5 shows the outranking matrix for alternatives A 

and B, and unlike internal division-by-maximum, the rankings are sensitive to changes in 

magnitude.  

There are several methods of internal normalization, each with different capabilities and 

applications.  In the case of comparative LCAs, it is necessary to be able to input 

preference and indifference thresholds in order to avoid making selections based on 

negligible values.  The fact that the rankings stayed the same after the change in 

magnitude shows that division-by-maximum may not be an appropriate method to use.  

Furthermore, the Norris example does not admit uncertainty in any parameters.  Without 

uncertainty, what is the meaning of 15kg over 25kg?  Because there is inherent 

uncertainty in every LCA stage, it must be considered in the interpretation stage.  

Weights are also uncertain.  Single values for weights are not representative of the 

decision maker’s preferences or values. 
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Global Warming Category (p= 1kg, q=1g) 

 
 

Performance Assessment A B Pair-wise Comparison Score Weights Weighted Score 
 

 
A (10μm) 

 
0 0 10 0 

 

 
B (40μm) 0 

 
0 10 0 

         

 
Acidification Category (p=1kg, q=1g) 

 
 

Performance Assessment A B Pair-wise Comparison Score Weights Weighted Score 
 

 
A (25kg) 

 
0 0 1 0 

 

 
B (15kg) 1 

 
1 1 1 

         

 
Human Toxics Category (p=1kg, q=1g) 

 
 

Performance Assessment A B Pair-wise Comparison Score Weights Weighted Score 
 

 
A (20 ton) 

 
0 0 5 0 

 

 
B (10 ton) 1 

 
1 5 5 

         

 
     

Total Score 
 

 
    

A 0 
 

 
    

B 6 
                 Figure 5. Outranking matrix with preference and indifference thresholds. Both 

alternatives have nearly the same performance in the most significant category, 
Global Warming, thus they both get a score of 0. However, in Human Toxics and 
Acidification categories, Alternative B outperforms Alternative A, yielding a higher 

rank for B. 
 
 
2.9 CASE 2: RANK REVERSAL 

The second example in Norris (2001) deals with ranking reversal.  Ranking reversal 

occurs when a third alternative, C, is introduced to the previous comparison of A and B 

as shown in Figure 6. Alternative C performs the worst in the most important impact 

category (Global Warming), but it is competent in Human Toxics and Acidification.  Prior 

to the introduction of alternative C, alternative A ranks higher than B.  However, once 

alternative C is added, the new ranking becomes B, A then C (Figure 7).  Note that the 

ranking of A and B is reversed.  Before, alternative A had a considerably larger 

advantage over B in the Global Warming impact category, but compared to the high CO2 

emissions of alternative C, the difference between A and B becomes relatively 

insignificant.  Rank reversal is an indication that the problem has changed.  Comparing 

A and B, is very different than comparing A, B and C.  Each alternative provides some 
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information to the decision problem, and when one alternative is included or removed, 

the way the problem is perceived also changes. 

 
Figure 6. Performance Assessment of Alternatives A, B and C in Global Warming (GW), 

Acidification (A), and Human Toxics (HT) categories. 
 

 
Figure 7. Weighted score for Alternatives A, B and C through internal 

division-by-maximum approach. According to the results, alternative B is 
ranked first followed by A and C. 
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new alternative seems inferior (Johnson et al., 2007).  Nonetheless, depending on the 

context, an alternative can become more or less desirable (Busemeyer et al., 2007).  

Context effects are often used as selling techniques in order to make a product seem 

better. For example, Shafir et al. (1993) provide an example of context effect when a 

baking equipment store in San Francisco started selling more ovens once it included a 

much more expensive option.  The relatively higher price of the new oven made the 

other ones seem more reasonable purchases.  Context effects can also be witnessed in 

wine purchasing in restaurants.  For example, restaurant diners tend to buy the second 

cheapest wine in a list, to avoid being perceived as frugal. This behavior is often known 

to as the “second-cheapest syndrome” (Telegraph UK, 2007, Harvard Law Record, 

2002).  Consider a wine list that offers three wines with prices of $30, $45, $55. The $45 

wine might seem like the best compromise, not too expensive, not too cheap.  Now 

consider a wine list that offers a $45, $55 and an $80.  The new addition ($80 wine) 

might motivate the costumer to purchase the $55 wine instead of the $45 wine.  The new 

option reframes the problem, and consequently forms a different decision problem (with 

a different preferred resolution). 

Performing the example in Norris (2001) with outranking also results in the rank reversal 

of A and B when C is introduced.  However, our view is that rank reversal is not 

“absurd”, but a fact of life (Vargas, 1994).  Each alternative in a choice set provides 

information and whenever these change so does the way the problem is perceived.  In 

the example provided in Norris (2001), introduction of alternative C, which is clearly 

worse than A and B in the most heavily weighted category, it change the way A and B 

are perceived.  Previously A’s “advantage” over B seemed strong.  However, C makes 

this difference seem less significant and because B was superior than A in the other two 

categories, it outranked A.  
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Both examples of changes in magnitude and rank reversal suffer from the use of 

deterministic values in the performance assessment and weights, and consequently 

result in absolute rankings.  However, in LCA there is uncertainty in every stage. Using 

point estimates can be useful for a basic understanding, but it can also result in an 

oversimplification of the problem with a narrow perspective.  Comparative LCA deals 

with irreducible criteria that need more robust methods of analysis that allow for 

uncertainty in the performance assessment and weights.  There are environmental 

decision problems that utilize an outranking approach with probabilistic ranking in areas 

such as transportation fuels (Rogers and Seager, 2009), emerging nanotechnologies 

(Canis et al., 2010), and energy technologies in buildings (Tylock et al., 2011).  

 

2.10 CONCLUSIONS 

External normalization can be beneficial for improvement assessment in LCA, but is 

inadequate for comparative LCA because it can mask important criteria and introduce 

severe bias and uncertainty into the results.  For comparative LCAs, it is best to 

normalize using outranking algorithms that avoid full compensation, work effectively with 

non-quantitative data and allow for judgment in terms of indifference and preference 

thresholds.  Furthermore, given the inherent uncertainty in both weights and inventories, 

it is unrealistic to consider discrete values.  Instead, by exploring a range of possible 

weights through Monte Carlo analysis and creating probabilistic, rather than discrete 

rankings, stakeholders can gain a greater understanding of the life-cycle environmental 

decision problem. 
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Chapter 3 

INTRODUCTION TO MANUSCRIPT 

The following manuscript in Chapter 4 introduces a novel approach to normalization and 

weighting of characterized life-cycle inventory data for use in comparative LCAs. This 

novel approach applies a version of Stochastic Multi-attribute Analysis (SMAA), which 

consists of internal normalization by means of outranking and application of relative 

probabilistic weights. The proposed method avoids the bias introduced by external 

normalization references, and is capable of exploring high uncertainty in both the input 

parameters and weights. To demonstrate the nature of both valuation methods, this 

study utilizes the characterized inventory of a comparative LCA of laundry detergents.  

 

Prado-Lopez , V., Seager, TP., Chester, M., Laurin, L., Bernardo, M., Tylock, S., 2013. 

“Stochastic Multi-attribute Analysis (SMAA) as an Interpretation Method for Comparative 

Life Cycle Assessment (LCA)”. International Journal of Life Cycle Assessment 

(accepted) 

 

Note: All co-authors have granted authorization to include publication as part of this MS 

thesis.  
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Chapter 4 

SMAA AS AN LCA INTERPRETATION METHOD 

  

4.1  ABSTRACT 

Purpose: Comparative Life Cycle Assessments (LCAs) today lack robust methods of 

interpretation that help decision makers understand and identify tradeoffs in the selection 

process. Truncating the analysis at characterization is misleading and existing practices 

for normalization and weighting may unwittingly oversimplify important aspects of a 

comparison. This paper introduces a novel approach based on a multi-criteria decision 

analytic method known as Stochastic Multiattribute Analysis for Life Cycle Impact 

Assessment (SMAA-LCIA) that uses internal normalization by means of outranking and 

exploration of feasible weight spaces.  

Methods: To contrast different valuation methods, this study performs a comparative 

LCA of liquid and powder laundry detergents using three approaches to normalization 

and weighting: (1) characterization with internal normalization and equal weighting, (2) 

Typical valuation consisting of external normalization and weights, and (3) SMAA-LCIA 

using outranking normalization and stochastic weighting. Characterized results are often 

represented by LCA software with respect to their relative impacts normalized to 100%. 

Typical valuation approaches rely on normalization references, single value weights and 

utilizes discrete numbers throughout the calculation process to generate single scores. 

Alternatively, SMAA-LCIA is capable of exploring high uncertainty in the input 

parameters, normalizes internally by pair-wise comparisons (outranking) and allows for 

the stochastic exploration of weights. SMAA-LCIA yields probabilistic, rather than 

discrete comparisons that reflect uncertainty in the relative performance of alternatives.  
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Results and Discussion: All methods favored liquid over powder detergent. However, 

each method results in different conclusions regarding the environmental tradeoffs. 

Graphical outputs at characterization of comparative assessments portray results in a 

way that is insensitive to magnitude and thus can be easily misinterpreted. Typical 

valuation generates results that are oversimplified and unintentionally biased towards a 

few impact categories due to the use of normalization references. Alternatively, SMAA-

LCIA avoids the bias introduced by external normalization references, includes 

uncertainty in the performance of alternatives and weights, and focuses the analysis on 

identifying the mutual differences most important to the eventual rank ordering. 

Conclusions and recommendations: SMAA is particularly appropriate for comparative 

LCAs because it evaluates mutual differences and weights stochastically. This allows for 

tradeoff identification and the ability to sample multiple perspectives simultaneously. 

SMAA-LCIA is a robust tool that can improve understanding of comparative LCA by 

decision- or policy-makers. 

 

Key words Outranking Valuation Normalization Comparative life cycle assessment 

Decision analysis 

 

4.2 INTRODUCTION 

Methodological challenges in normalization and weighting have received comparatively 

less research attention than those of inventory building and characterization in Life Cycle 

Assessment (LCA). According to the International Standardization Organization (ISO), 

normalization and weighting are optional steps that require justification from LCA 

practitioners (ISO 14044, 2006). Although the ISO guidelines mention normalization by 

means of a reference (external normalization) or by a baseline (internal normalization), 
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in practice, the LCA community applies external normalization. Therefore typical 

valuation as defined by this study is representative of methods such as ReCiPe, 

IMPACT 2002+, TRACI, and Ecoindicator- all which normalize externally (Lautier et al. 

2010). 

However, it is now recognized that problems in existing external normalization 

approaches include reference data gaps (Heijungs et al. 2007), a lack of consensus in 

data compilation (Bare et al. 2006), lack of uncertainty information (Lautier et al. 2010) 

and spatial and temporal variability (Finnveden et al. 2009; Bare and Gloria 2006). In 

addition, normalization references can be outdated, partly because compilation is a 

resource-intensive process. For example, the latest USA normalization reference, 

TRACI (Tool for the Reduction and Assessment of Chemical and other Environmental 

Impacts), released in 2006 has a reference year of 1999 (Bare et al. 2006). 

In response to these shortcomings, current research efforts in normalization focus on 

repairing and building normalization references and in creating approaches to document 

spatial and temporal discrepancies (Lautier et al. 2010; White and Carty 2010). 

Nonetheless, even if current issues with normalization reference datasets are resolved, 

typical valuation approaches with regards to normalization and weighting remain 

mathematically incompatible for comparative LCAs, where the goal is to identify an 

environmental preferable product, process, or pathway from a set of 

comparable alternatives with the same functional unit (Prado et al. 2012). In fact, the use 

of external normalization references in a comparative LCA can mask important aspects 

of a decision problem because the normalized impact depends on the size of the 

normalization reference (White and Carty 2010). This effect is evident when the 

normalization step completely overcomes the weights elicited from stakeholders or 

decision-makers (Rogers and Seager 2009). For example, when using a normalization 
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reference that includes a large inventory of emissions in a specific category, external 

normalization relative to that reference will systematically diminish differences between 

alternatives that might nevertheless be important to decision makers. To some, masking 

the environmental consequences of their choices by dividing them by emissions 

attributable to others may be the moral equivalent of justifying bad behavior by saying, 

“But everybody is doing it!” 

Subjectivity concerns in the normalization and weighting stages of impact assessment 

often lead LCA practitioners to truncate impact assessment at characterization. While 

this may be effective for LCA motivated by improvement assessment, in a comparative 

LCA the characterized data present decision makers with too much information to 

interpret (Le Teno 1999; Boufateh et al. 2011). As a result, decision makers are forced to 

confront uncertain multi-criteria environmental problems without the aid of analytic 

guideposts, and may be subject to systematic biases, vulnerable to first impressions or 

prior stigmatization (Hertwich and Hammit 2001). To work around these difficulties, LCA 

practitioners may use the comparative impact representations built into several popular 

LCA software applications. These show the relative performance of a characterized 

inventory for each alternative, normalized so that 100% in any impact category 

represents the worst performer among all the alternatives. In contrast to the ISO 

recommendations, this internal normalization approach avoids the necessity of external 

normalization references. However, these approaches lead to an analysis that is 

insensitive to magnitude, incapable of identifying tradeoffs (Norris 2001), and incorrectly 

presented as “unweighted” when in fact they represent equal weights that may or may 

not correspond to decision maker priorities. Thus, relying on default graphical outputs 

can be misleading. There is an acute need for normalization and weighting (i.e., 

valuation) methods in Life Cycle Impact Assessment (LCIA) that can guide a 
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comparative decision making process in a transparent and objective manner. This paper 

introduces a novel approach to normalization and weighting based on Stochastic Multi-

Attribute Analysis (SMAA) that uses internal normalization by means of outranking and 

stochastic exploration of weight sets that do not privilege one impact category over 

others (Tylock et al. 2012). The method elucidates the trade-offs inherent in a 

comparative LCA problem, does not rely on external databases, and facilitates a more 

thorough exploration of uncertainty (including uncertainty and variability in preferences 

among multiple stakeholders or decision makers). To illustrate application of the new 

method to a problem in comparative LCA, we present a study in dry versus concentrated 

liquid laundry detergents using both typical and the novel approach to valuation. 

 

4.2.1 LCA AND DECISION ANALYSIS 

Although it is widely understood that problems in comparative LCA present as 

paradigmatic multicriteria-decision analytic (MCDA) problems under uncertainty, 

common valuation practices fail to incorporate knowledge from the fields of operations 

research or decision analysis that might be brought to bear in LCA. Partly this may be 

due to unresolved controversies within the decision analytic community itself. There are 

currently two schools of thought: normative and descriptive. 

The normative suggests that decision analysis should conform to idealized mathematical 

or economic representations of how decisions should be made, while the descriptive 

maintains that decision analytics should be representative of the more heuristic and 

naturalistic processes that people actually use when confronting problems unaided. 

External normalization, as mentioned by ISO, more closely aligns with the normative 

school, while internal normalization in SMAA more closely aligns with the descriptive 
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school. Each approach has different assumptions and implications (Prado et al. 2012), 

as summarized in Table 1. 

Table 1. Normative and descriptive assumptions in external and outranking 

normalization.  

 External Normalization in 
typical valuation Outranking in SMAA 

Underlying decision theory 

Normative: Models decisions the 
way they should be made 
according to normative 
assumptions. 

Descriptive: Models decisions 
more like the way they are 
made.  

Type Evaluation/measurement Absolute Relative (i.e., comparative) 

Sensibility to context 

Rigid. Evaluation of alternatives 
should not change if the options 
around it change (context 
independent) 

Flexible. If alternatives change 
the relative evaluation of all 
alternatives may also change by  
causing a reframing of the 
problem (context dependent) 

Appropriate application Improvement assessment LCA Comparative LCA 

 

Outranking algorithms (and consequently SMAA) use pair-wise comparisons to assess 

the significance of mutual differences.  The comparative performance of multiple 

alternatives are evaluated against pseudo-criteria called preference (p) and indifference 

(q) thresholds (Brans and Mareschal 2005), respectively representing the smallest 

difference between the performance of two alternatives on a single criterion that results 

in a conclusive preference for one over the other, and the largest difference that is 

entirely inconclusive (Rogers and Seager 2009).  Thus, outranking allows the analyst to 

discard those categories in which the alternatives are deemed equivalent and focus 

attention on critical differences.  Although internal normalization approaches in the 

absence of preference and indifference thresholds may result in “absurd” conclusions 

(Norris 2001), outranking avoids these pitfalls by distinguishing between negligible and 

significant differences (Prado et al. 2012).  Moreover, because outranking relies on 

comparative pair-wise judgments, analysis can proceed with partially quantitative data, 

or even qualitative data (Geldermann and Schobel 2011).  
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SMAA combines outranking normalization with Monte Carlo Analysis (MCA) in weighting 

(Lahdelma and Salminen 2001; Lahdelma et al. 1998).  Specifically, SMAA avoids 

subjectivity in weighting by allowing for the stochastic exploration of weight spaces 

(including all possible weight sets, if preferred) rather than point values.  This study uses 

a variation of SMAA, called SMAA-TY, which constrains weight ranges with respect to 

the relative importance of each criterion for easier weight elicitation (Tylock et al. 2012).  

 

4.3  METHODS 

To understand how SMAA-LCIA operates in comparison to other methods, this study 

compares three approaches to normalization and weighting in a comparative LCA of dry 

powder and concentrated liquid laundry detergents (Figure 8).  These three are: 

Graphical outputs at characterization (resulting from internal normalization and equal 

weighting), typical valuation that consists of external normalization relative to national 

reference datasets, and SMAA-TY style valuation. 

The comparative LCA covers the phases of raw material production, product 

manufacturing, packaging, transportation and disposal of packaging.  The use phase, 

retail and product’s end of life is equivalent in both formulations, thus are excluded from 

the LCA.  The functional unit (FU) of the comparison is a standard dose of concentrated 

liquid and powder detergent.  The detergents in this study represent typical market 

products of double concentration (2X) which can be found in retail stores in the United 

States.  

The inventories of raw materials for the respective products use the ingredient 

formulations from the Handbook of Detergents (Showell 2006).  The formulations in this 

study use point estimates of the content percent by weight of each chemical (See 

Supplementary Information).  Each chemical component is then matched to an 
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appropriate Ecoinvent entry (dataset version 2.2). These entries contain 

chemical production requirements with respect to electricity, natural gas, and water 

(Koehler and Wildbolz 2009).  For components not found in Ecoinvent, this model uses a 

proxy.  For instance, enzymes in both formulations do not have an Ecoinvent dataset 

equivalent.  Thus, this model uses average datasets of liquid enzyme with enzyme 

content of 4-6% and a granular enzyme with an enzyme content of 4-6% as proxies 

(Novozymes 2010).  Inventory of packaging materials according to product surveys by 

The Sustainability Consortium (2011) is also sourced from Ecoinvent (See Appendix).  
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Figure 8 Three interpretation approaches; typical valuation, graphical output at 

characterization, and SMAA-TY valuation. 
 

Laundry detergent manufacturers double the concentration of their products because it 

allows for more doses in the same container, and improves storage, distribution and 

transportation efficiency.  Current consumer perceptions (as shaped by marketing 
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messages) are that concentrated detergents save on packaging and transportation 

costs, and are therefore preferable from an environmental perspective.  However, 

because laundry production is a wet chemical process, production of powder detergents 

requires an additional drying process prior to packaging – an energy intensive process 

that may nullify environmental gains in reduced packaging and transportation.  

Therefore, a comparative LCA can clarify whether the gains in transportation efficiency 

for powder detergents make up for the additional energy investment required in the 

manufacturing stage.   

After processing, the liquid alternative is packaged in a plastic bottle with a plastic cap 

and spout, and the powder alternative is packaged in a cardboard container with a 

plastic scoop (Table 2).  Both formulations are then distributed from the manufacturer to 

major cities across the USA.  

Table 2.  Material and process inventory of each representative product for the liquid and 
powder detergent. The powder detergent contains more doses per packaged product. 

 
 Liquid Laundry Detergent Powder Laundry Detergent 

Main Packaging- 
Materials 

170 grams of High density polyethylene 
bottle, and polypropylene cap and spout 

355 grams of cardboard box and 
polyethylene terephthalate scoop 

Main Packaging  - 
Processing 

Bottle uses stretch blow molding and the 
cap and spout use an injection molding 
process 

Cardboard box made from virgin 
material and cap uses injection 
molding. 

Number of FU per  
packaged product 

64 80 

Mass of functional 
unit 

49.9 g of liquid detergent plus 2.6 g of 
combined packaging 

34.1 g plus 4.4 grams of combined 
packaging 

 
Transportation of detergents is based on an illustrative example in the US.  According to 

the US Census Bureau (2012), the largest economic activity in the laundry detergent 

industry occurs in Ohio.  To explore the gains in transportation efficiency versus initial 

manufacturing energy investments, we model approximately the greatest transportation 

distance within contiguous United States – from Cincinnati, OH (headquarters of Procter 

and Gamble, a large laundry detergent manufacturer) to Los Angeles, CA (the most 
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population dense city on the West coast).  Thus, we assume the detergents travel 

approximately 2,300 miles (or 3,700 km) in heavy duty trucks using diesel fuel.  Since 

both products are dense goods, fuel inventories are proportional to weight.   

Based on the GREET 1.0 database, a heavy duty truck has a load capacity of 25 short 

tons with a gas mileage of 5 mpg. We assume each shipment to be at 90% load capacity 

to take into account further tertiary packaging and pallets. The emissions during 

transportation depend on the fuel requirements per FU (Table 3).  Further distribution to 

retail stores and use phase transportation is not included in the analysis.   

Table 3. Each heavy duty truck contains more doses of powder detergent than 
liquid. Therefore, the emissions from transportation per FU are about 40% less for 
the powder detergent. GREET 1.0 emission factors per gallon of diesel combusted 

can be found in the appendix 
 

 Liquid Detergent Powder Detergent 

Weight per unit (includes product and packaging) 3.2 kg 2.7 kg  
Number of units in one truck at 90% capacity 7080 bottles 8400 boxes 

Number of FU in one truck 453,120 672,000 
Diesel fuel requirements for travel per FU 0.025 gal 0.017 gal 

 
 

Finally, the model includes disposal of the plastic and cardboard packaging of the 

detergents according to an average US waste scenario.  Packaging is disposed of 

through a municipal solid waste system.  Recycling rates according to the EPA (2011) 

are 19.3% for low-density polyethylene bottles, 8.3% for polypropylene other packaging 

and 85% of cardboard.  There are no recycling credits given in this analysis because the 

impacts of the recycling process are attributed to the new product. However, this LCA 

does take into account the impacts of sending the remaining solid waste to landfills in 

accordance to the Ecoinvent dataset for sanitary landfill disposal. This model assumes 

no incineration. Finally, the impact of wastewater treatment for the residual laundry 

product is excluded as the active ingredients in each detergent are biochemically 

indistinguishable at the treatment plant. 
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To address uncertainty in the inventory data this study uses the Pedigree Matrix.  The 

Pedigree Matrix assumes a lognormal distribution (represented by arithmetic 

parameters) for each input in the model. The standard deviation of each distribution is 

based on six parameters: reliability, completeness, sample size and temporal, 

geographical and technological correlation (Weidema and Wesnaea 1996).  Each 

parameter in the Pedigree Matrix can be described with a coefficient from 1 to 5.  The 

matrix-based standard deviation captures uncertainties related to the assumptions of the 

input value. For instance, manufacturing data points tend to have less uncertainty 

because they are usually tightly controlled.  While other inputs, such as transportation, 

have higher uncertainty because of their dependence on various factors like weather 

and traffic.   

Therefore, this study assigns the Pedigree coefficient to each input in order to model 

uncertainty. Ecoinvent data already contains the corresponding Pedigree Matrix 

coefficients that provide a standard deviation to the inventory. Then, a Monte Carlo 

simulation generates random values for each inventory input to populate the lognormal 

distribution.  This simulation ran 350 scans for all inventories to ensure a complete 

depiction of the uncertainty values at a 90% confidence level.  The resulting inventories 

were characterized using the ReCiPe method, which multiplies the lognormal distribution 

of an inventory by a characterization factor represented by a single value. The ReCiPe 

impact assessment method characterizes the inventory into 18 midpoint impact 

categories (Table 4). 
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Table 4. Distributions of characterized results. The mean and standard deviations are 
both arithmetic, but the distribution is lognormal. 

 

Characterized Impact category Unit 
LIQUID POWDER 

Mean SD Mean SD 

Metal depletion kg Fe eq 1.99E-04 2.28E-05 4.43E-03 4.64E-04 

Water depletion m
3 

2.66E-03 4.42E-04 1.38E-03 1.74E-04 

Terrestrial ecotoxicity kg 1,4-DB eq 7.06E-04 1.81E-04 2.62E-04 6.97E-05 

Agricultural land occupation m
2 

1.02E-02 2.84E-03 2.10E-02 3.80E-03 

Ozone depletion kg CFC-11 eq 9.24E-09 1.49E-09 6.65E-09 7.05E-10 

Climate change kg CO2 eq 9.04E-02 1.00E-02 1.02E-01 8.98E-03 

Ionizing radiation kg U235 eq 6.89E-03 8.91E-03 2.03E-02 1.28E-02 

Marine ecotoxicity kg 1,4-DB eq 5.10E-04 2.43E-04 1.04E-03 6.16E-04 

Human toxicity kg 1,4-DB eq 1.95E-02 1.21E-02 4.10E-02 2.41E-02 

Urban land occupation m
2 

1.43E-03 4.75E-04 7.75E-04 6.39E-04 

Freshwater ecotoxicity kg 1,4-DB eq 7.02E-04 2.56E-04 1.17E-03 6.37E-04 

Terrestrial acidification kg SO2 eq 5.12E-04 1.95E-04 4.32E-04 6.54E-05 

Marine eutrophication kg N eq 7.05E-05 1.15E-05 7.93E-05 1.82E-05 

Photochemical oxidant formation kg NMVOC 3.06E-04 3.85E-05 2.89E-04 2.93E-05 

Fossil depletion kg oil eq 3.29E-02 7.44E-03 3.92E-02 1.91E-02 

Freshwater eutrophication kg P eq 3.49E-05 2.12E-05 4.20E-05 1.05E-04 

Particulate matter formation kg PM10 eq 1.55E-04 4.32E-05 1.57E-04 1.71E-05 

Natural land transformation m
2 

1.95E-05 2.24E-04 1.15E-05 9.53E-05 

 

4.4 RESULTS 

4.4.1 TYPICAL SOFTWARE OUTPUT 

Most comparative LCAs stop at the characterization stage to avoid subjectivity risks 

associated with valuation.  However, avoiding valuation can lead to a misinterpretation of 

data. Uncertain characterized results are notoriously difficult to interpret unaided 

because of the large amount and disparate range of units and data ranges (as shown in 

Table 4).  To speed interpretation of results, the many studies represent characterized 

results in a single figure according to their relative performance normalized to 100%  .  

Figure 9 shows the relative performances of the liquid and powder detergent in 18 

characterized impacts, where the better performing alternative is normalized relative to 

the poorer performer on a category-by-category basis.  This type of graph is also the 

main output from comparative analysis in most LCA software packages.  



  46
  

 

Figure 9 Eighteen characterized impact categories normalized to the worst in each 
category. Here, the liquid detergent performs relatively better in 11 of the 18 

categories while the powder alternative performs best in the remaining 7 impact 
categories. This graph lacks preference thresholds that measure the significance of 

“wins” and “losses”. 
 
Figure 9 is insensitive to the magnitude (or significance) of each impact category, 

graphically depicting the worst performer in all categories as 100% regardless of the 

absolute scale of emissions in any category.  This graph can easily be misinterpreted 

because it suggests an approach of counting winners and losers in each category 

without any notion regarding the significance of those wins or losses.  Without 

preference or indifference thresholds, this graph is unable to distinguish those 

differences that are important to decision-makers from those that have such a small 

magnitude that they may reliably be ignored. 

Even though this analysis is performed when avoiding valuation, there is an inherent 

valuation in Figure 9 that analysts often fail to make explicit.  While it is sometimes 

reported that output such as Figure 9 is “unweighted”, in fact the graphical depiction 
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represents equal weights applied to each impact category (which is itself a subjective 

judgment).  As a result, there is a need for valuation methods that process data in a 

way that highlights salient aspects without introducing subjectivity.   

 

4.4.2 TYPICAL VALUATION: EXTERNAL NORMALIZATION AND SINGLE VALUE 

WEIGHTS 

In accordance with ISO recommendations, characterized inventory data can be 

normalized relative to an external normalization reference.  These references are single 

values and report no uncertainty.  Figure 10 reports the results of applying normalization 

factors inherent in the ReCiPe Midpoint Hierarchist methodology on a European scale 

within the SimaPro software package for the liquid and powder detergent. 

 

Figure 10 Normalized impacts according to the ReCiPe Midpoint Hierarchist model 
(values in supplementary information).  There is no normalization reference available 

that quantifies the regional water resources, thus it is not possible to include the Water 
Depletion category in the analysis of typical valuation (another drawback of relying in 
external databases). The impacts to the left of Freshwater Eutrophication have the 

greatest contributions, while the impacts to the right are negligible. 
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Normalization is followed by weighting that evaluates multiple indicators according to the 

priorities of the decision makers’ agendas. Weights are typically represented as single 

values without uncertainty, and are entirely subjective because they depend on the 

individual priorities of decision makers (Schmidt and Sullivan 2002).  We apply equal 

weights for the seventeen impact categories for which normalization references are 

available, weighting each at 5.88% to give impacts the same level of priority.  Overall 

scores follow Equation 2 and utilize mean values of the characterized inventory. 

However, because categories are equally weighted, the relative size of the weighted 

impacts is the same as the normalized impacts.  

              ∑
                     

                        
           

Figure 11a shows that in average, the liquid alternative likely has a lesser overall 

environmental impact.  Furthermore, the combined mean scores of 11 impact categories 

(labeled as “Others”) has a joint contribution of approximately 15%, and the remaining 6 

impact categories drive majority of the results.  Therefore, the use of normalization 

references is masking 11 out of the 17 impact categories.  Figure 4b shows the 

lognormal distribution of scores. Even though mean values favor the liquid alternative, 

the probability distributions overlap, indicating instances in which the liquid detergent 

performs worse than the powder detergent.  However, this overlap is not visible when 

reporting single scores.   
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Figure 11a-b Overall average and probabilistic scores for liquid (LIQ) and powder 
(POW) detergent according to the typical valuation method. The category “Others” is 

composed of Metal depletion, Fossil depletion, Agricultural land occupation, Terrestrial 
acidification, Ionizing radiation, Urban land occupation, Climate change, marine 

eutrophication, Photochemical oxidant formation, Ozone depletion, and Particulate 
matter formation. Probability distribution in Figure 11b is a representation of the 

lognormal distribution of characterized impacts in Table 4. 
 

4.4.3 STOCHASTIC MULTI-ATTRIBUTE ANALYSIS TY 

Stochastic Multi-attribute TY (SMAA-TY), a modified version of SMAA, consists of 

outranking normalization (Figure 12) and relative probabilistic weights (Tylock et al. 

2012).  Conventional SMAA methods examine the entire feasible weight space or a 

range, but SMAA-TY elicits weights in terms of the relative importance of each criterion 

according to six levels of importance: Well Above Average, Above Average, Average, 

Below Average and Well Below Average.  This feature is unique to SMAA-TY.  Instead 

of translating preferences directly into numeric values, SMAA-TY elicits weights 

qualitatively from decision makers.  The choices by decision makers are then converted 

into a probability distribution as a function of the level of priority given, the total number 
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of criteria and the confidence level. The confidence level in SMAA-TY is another unique 

feature and it ranges from Fair to Precise.  The more confidence in a weight (i.e. the 

more precise), the more clustered the distribution.  Likewise, if the confidence level is 

Fair, the distribution is wider. 

 

Figure 12 shows the probabilistic performance of liquid and powder in the Water 
Depletion characterized impact category, and the outranking function indicating the 
preference and indifference thresholds.  Preference thresholds in this study equal the 
average between standard deviations, and the indifference threshold is half of the 
preference threshold. The difference in performance in each criterion in Figure 12a is 
evaluated with the preference threshold (p) and the indifference threshold (q) in 
Figure 12b. The outranking score ranges from -1 to 1 for each of the Monte Carlo 
runs (shown by the red “x”). This study performs 2,000 Monte Carlo simulations. 
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Outranking scores are unitless numbers between -1 and +1, where +1 is complete 

preference, and 0 is indifference.  The preference threshold (p) is the smallest difference 

between the two alternatives for which a complete preference may be inferred.  In this 

case, a complete preference of +1 signifies an alternative that performs worse than the 

other in a given impact category.  A score of -1 indicates superior comparative 

environmental performance. 

Indifference is determined by the indifference threshold (q), the largest deviation 

considered negligible.  Strict indifference occurs when both alternatives performances 

are within a negligible difference from each other (between –q and +q), and both receive 

a 0.  A weak preference is when the difference in performance lies between the 

indifference and preference threshold and it results in an interpolated value between -1 

and +1.  A weak preference means that an alternative is better than the other, but not 

enough to be a strict preference. Preference and Indifference thresholds can be selected 

through expert elicitation or with respect to the uncertainty of a given criteria (Linkov et 

al. 2007; Rogers and Bruen 1998; Rogers and Seager 2009).  This study instead utilizes 

uncertainty in the data to calculate preference and indifference thresholds (Figure 12a).  

Note that negative scores do not mean a negative impact (i.e. environmental benefit).  

Similar to typical valuation scores, a higher outranking score represents a greater 

environmental impact.  

Before weighting, SMAA-TY winnows the alternatives to a maximum of eight impact 

categories in which the differences are the greatest and most significant.  To evaluate 

this significance in the 18 characterized impact categories in Table 4, we use the 

relevance parameter (r) derived from the outranking algorithm in Equation 3.  

   
|         | 
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 The numerator in Equation 3 represents the absolute difference between the means for 

each impact category, and the denominator represents the average of the arithmetic 

standard deviations for each impact category (i.e. the preference threshold).   A large 

relevance parameter means that the detergents mutual difference in performance is 

significant. It is important to include the standard deviations otherwise the absolute 

differences in mean values alone will favor those categories with greater magnitudes, 

when in fact their mutual difference might not be significant. Figure 13 shows the 

relevance parameter of the 18 characterized impact categories.  Since the relevance 

parameter is a function of the mutual differences, there is one indicator per impact 

category. 
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Figure 13 shows the relevance parameter of impact categories and a graphical 
representation of the most and least relevant categories (metal depletion and 
natural land transformation respectively). Therefore, when probability distributions 
overlap the difference in performances is irrelevant because there is not enough 
certainty that one outperforms the other. 

From this point forward there is a clear difference between typical valuation and 

SMAA-TY. Even though the mutual difference between the detergents is very 
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significant for the Metal Depletion category (Figure 13), its impact is masked when 

dividing it by an external normalization reference (Figure 10). Therefore, evaluating 

performance with respect to a normalization reference fails to identify key tradeoffs 

among alternatives. In addition, the Water Depletion impact category which is not 

evaluated past characterization, in this case by ReCiPe, happens to be the second 

most relevant impact category - a significant impact that is excluded when there is a 

lack of a specific normalization reference. 

SMAA-TY performs 20,000 outranking Monte Carlo simulations for each of the eight 

impact categories and gathers outranking scores in terms of a probability 

distribution.  Scores from the pair-wise comparisons are multiplied by the 

probabilistic weights selected by the simulation for each impact category.  All weight 

parameters were set at a relative importance of “Average” with a confidence level of 

“Fair”. (See the stochastic weight representation in Appendix). Finally, SMAA-TY 

generates a probability distribution for the overall environmental score of each 

detergent (Figure 14).  The overall score reflects environmental impact, therefore 

the powder detergent, which is further to the right, is more likely to have a greater 

environmental impact.  Scores are entirely relative to one another.  Therefore, a 

negative score means a lower score with respect to other alternatives, not an 

environmental benefit.  From this analysis, it can be calculated that the powder is 

83% likely to be worse than the liquid alternative.  Alternatively, 17% of the time the 

liquid detergent is worse than the powder alternative. The probabilistic score 

contributions in Figure 14 show that five out of the eight most relevant impact 

categories evaluated in SMAA-TY can be masked by the use of normalization 

references. An additional category, Water Depletion, lacks normalization references 

in the ReCiPe method, so is not evaluated by the typical valuation approach.  
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Figure 14 Shows the probability distribution and contribution of the overall scores for the 
liquid and powder detergent according to SMAA-TY. 
 

4.5 DISCUSSION 

Both valuation methods recommend the liquid over the powder detergent, suggesting 

that the additional energy footprint during processing of the powder detergent exceeded 

the gains in transportation efficiency.  However, the results shown in this paper are not 
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intended to give a definite recommendation on laundry detergents.  Rather, they 

showcase the capabilities of different interpretation approaches.   

The first approach consists of showing characterized impacts in relation to one another 

(Figure 9).  These results have inherent normalization and weighting which, according to 

ISO guidelines, weighting should not be applied when sharing LCA results to the public.  

In addition, they are insensitive to magnitude and oblivious to negligible and significant 

differences between impact categories. Thus, this type of analysis has severe limitations 

in terms of decision support. 

Results from typical valuation in Figure 11 show the overall scores resulting from 

external normalization on a European scale with single value egalitarian weighting.  

Results show that the categories accounting for at least 80% of both total scores are: 

Marine Ecotoxicity, Terrestrial Ecotoxicity, Natural Land Transformation, Freshwater 

Ecotoxicity, Human Toxicity, and Freshwater Eutrophication.  The remaining eleven 

categories have little influence on both detergents.  However, single scores are a poor 

representation of life cycle data because environmental performance is not a single 

indicator, nor it is a discrete value.  Figure 11b shows the uncertainty in the overall 

scores of the typical valuation method. However, these scores remain distorted by 

normalization references.  

Alternatively, the results from SMAA-TY show the probability distributions of the overall 

scores indicating the powder detergent is 83% more likely to have a greater impact than 

the liquid detergent (Figure 14).  The individual contribution from each weighted 

characterized impact category is also a distribution composed of 2,000 Monte Carlo runs 

represented by Box-and-Whisker plots.  The breakdown by category in Figure 14 shows 

that most impact categories contribute more to the powder detergent than to the liquid 

detergent.  However, the liquid detergent has a greater impact in Terrestrial ecotoxicity 
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and Ozone depletion.  Five out of eight of the categories evaluated by SMAA-TY show a 

negligible contribution in the results from typical valuation in Figure 11.  

Out of the total eighteen characterized impact categories generated by ReCiPe in Table 

4, six impact categories drove the majority of the results in the typical valuation, and 

eight impact categories drove the results in SMAA-TY.  However, SMAA-TY focuses the 

analysis in the categories with the most tradeoffs - something that typical valuation and 

truncation at characterization fails to evaluate. 

 

4.6 CONCLUSION 

There is an acute need for interpretation methods in comparative LCAs that help 

understand the significance of mutual performances even before weighting.  Graphical 

outputs at characterization fail at evaluating tradeoffs at the characterization stage, and 

typical practices in valuation, although in accordance to ISO guidelines, further distort 

data at normalization and weighting.  This method conceals most impact categories due 

to the use of external normalization references. Therefore, it allows for a small fraction of 

the categories to dominate both scores and it does not present a robust platform for 

decision makers. Such high bias overcomes earlier efforts of data collection, impact 

assessment and inputs from decision makers.  An ideal valuation method is capable of 

guiding the decision making process by revealing all aspects and dimensions of the 

problem in a transparent and concise way.  A descriptive approach to interpretation that 

implements preference thresholds distinguishes between negligible and significant 

differences and can better highlight existing tradeoffs. We propose utilizing SMAA-TY 

based valuation applicable in all comparative LCAs.  This novel method avoids masking 

criteria, is independent of external databases, includes multiple perspectives, and 

generates results that better inform decision makers. 
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Chapter 5 

KEY FINDINGS 

Existing LCA research efforts in valuation call attention to inconsistencies within 

normalization references, including incomplete datasets, geospatial variability, and non-

stationarity of technology.  However, regardless of data completion and availability, 

current valuation practices have fundamental issues when applied to comparative LCAs.  

This study demonstrates fundamental flaws in existing comparative LCA interpretation 

practices, and demonstrates the application of stochastic decision analysis methods, 

namely, SMAA, for a more robust decision platform.  
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S1. Liquid laundry detergent Life Cycle Inventory 

Ingredients 
% of total 

mass 
Inventory Dataset 

Uncertainty 

Pedigree 

Matrix 

SD 

Value 

C11-C13 Linear 

Alkyl Benzene 

Sulfonate 

12.00% 
Alkylbenzene sulfonate, linear, 

petrochemical, at plant/RER 
(1,3,3,5,3,4) 1.29 

C14-C15 Alkyl 

Ethoxy (E2.5) 

Sulfate 

12.00% 
Fatty alcohol sulfate, palm oil, at 

plant/RER 
(1,3,3,5,4,4) 1.56 

C12-C13 Alcohol 

Ethoxylate (E7) 
3.00% 

Ethoxylated alcohols (ae7), palm 

kernel oil, at plant/RER 
(1,3,3,5,3,4) 1.29 

C12-C14 Fatty 

Acids 
2.00% 

Fatty alcohol sulfate, palm oil, at 

plant/RER 
(1,3,3,5,4,4) 1.56 

Citric Acid 3.00% 
Edta, ethylenediaminetetraacetic 

acid, at plant/RER 
(1,3,3,5,4,4) 1.56 

Sodium Cumene 

Sulfonate 
4.00% 

Sodium tripolyphosphate, at 

plant/RER 
(1,3,3,5,4,4) 1.56 

Sodium Hydroxide 6.00% 
Sodium hydroxide, production mix, 

at plant/kg NREL /RNA 
(1,3,3,5,3,4) 1.29 

1,2 Propanediol 3.00% Propylene glycol, liquid, at plant (1,3,3,5,4,4) 1.56 

Monoethanolamine 3.00% Monoethanolamine, at plant/RER (1,3,3,5,3,4) 1.29 

Protease 0.80% Detergent enzyme, at plant (1,3,3,5,3,4) 1.29 

Polyester-based 

release polymer 
0.20% 

Polyester resin, unsaturated, at 

plant/RER 
(1,3,3,5,4,4) 1.56 

Water 51.00% Water, completely softened, at plant (1,3,3,5,3,4) 1.29 

Production Inputs 
Required per 

load 
Inventory Dataset 

Uncertainty 

Pedigree 

Matrix 

SD 

Value 

Electricity supply 
2.78E-03 MJ 

eq 
Electricity, high voltage, at grid (2,4,2,5,3,3) 1.28 

Heat (natural gas) 

supply 
3.92E-03MJ eq Natural gas, burned in power plant (2,4,2,5,3,3) 1.28 

Water used 7.54E-02 kg 
Water, completely softened, at 

plant/RER 
(2,4,2,5,3,3) 1.28 

Packaging type 
Required per 

load 
Inventory Dataset 

Uncertainty 

Pedigree 

Matrix 

SD 

Value 
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LDPE, virgin 2.43E-03 kg 
Polyethylene, LDPE, granulate, at 

plant/RER 
(2,3,2,5,3,3) 1.26 

PP, virgin 2.38E-04 kg 
Polypropylene, granulate, at 

plant/RER 
(2,3,2,5,3,3) 1.26 

Plastic processing, 

PP 
2.39E-04 kg Extrusion, plastic pipes/RER (4,3,2,5,3,3) 1.34 

Plastic processing, 

LDPE 
2.44E-03 kg Injection moulding/RER (4,3,2,5,3,3) 1.34 

Disposal 
Required per 

load 
Inventory Dataset 

Uncertainty 

Pedigree 
Matrix 

SD 
Value 

LDPE, virgin 1.96E-03 kg 
Disposal, polyethylene, 0.4% water, 

to sanitary landfill/CH 
(4,2,3,5,3,3) 1.35 

PP, virgin 2.18E-04 kg 
Disposal, polypropylene, 15.9% 

water, to sanitary landfill/CH 
(4,2,3,5,3,3) 1.35 

 

 

S2. Powder laundry detergent Life Cycle Inventory 

Ingredients 
% of total 

mass 
Inventory Dataset 

Uncertainty 

Pedigree 
Matrix 

SD 
Value 

C11-C13 Linear 
Alkyl Benzene 

Sulfonate 
10% 

Alkylbenzene sulfonate, linear, 
petrochemical, at plant/RER 

(1,3,3,5,3,4) 1.29 

C14-C15 Alkyl 
Sulfate 

7% 
Fatty alcohol sulfate, palm oil, at 

plant/RER 
(1,3,3,5,4,4) 1.56 

C14-C15 Alkyl 
Ethoxy (E2) Sulfate 

1% 
Fatty alcohol sulfate, palm oil, at 

plant/RER 
(1,3,3,5,4,4) 1.56 

C14-C15 Alcohol 
Ethoxylate (E7) 

1% 
Ethoxylated alcohols (AE7), palm 

kernel oil, at plant/RER 
(1,3,3,5,3,4) 1.29 

Zeolite 22% Zeolite, powder, at plant/RER (1,3,3,5,3,4) 1.29 

Carbonate 19% 
Polycarboxylates, 40% active 

substance, at plant/RER 
(1,3,3,5,4,4) 1.56 

Silicate 1% 
Layered sodium silicate, SKS-6, 

powder, at plant/RER 
(1,3,3,5,3,4) 1.29 

Sodium Sulfate 10% 
Sodium sulphate, powder, 

production mix, at plant/RER 
(1,3,3,5,3,4) 1.29 

Sodium Perborate 
Tetrahydrate 

1% 
Sodium perborate, tetrahydrate, 

powder, at plant/RER 
(1,3,3,5,3,4) 1.29 

TAED 4% 
DTPA, 

diethylenetriaminepentaacetic acid, 
at plant/RER 

(1,3,3,5,4,4) 1.56 

DTPA 0.40% 
DTPA, 

diethylenetriaminepentaacetic acid, 
at plant/RER 

(1,3,3,5,3,4) 1.29 

Protease 0.30% Detergent enzyme, granulated (1,3,3,5,3,4) 1.29 

Amylase 0.10% Detergent enzyme, granulated (1,3,3,5,3,4) 1.29 

Acrylic/maleic 
copolymer 

1% Maleic anhydride, at plant/RER (1,3,3,5,4,4) 1.56 

Polyester-based soil 
release polymer 

0.40% 
Polyester resin, unsaturated, at 

plant/RER 
(1,3,3,5,4,4) 1.56 

Water 51% Water, completely softened, at plant (1,3,3,5,3,4) 1.29 



  72
  

Production Inputs 
Required per 

load 
Inventory Dataset 

Uncertainty 

Pedigree 
Matrix 

SD 
Value 

Electricity supply 2.77E-02 MJ Electricity, high voltage, at grid/US (2,4,2,5,3,3) 1.28 

Heat (natural gas) 
supply 

3.81E-02 MJ 
Natural gas, burned in power 

plant/US 
(2,4,2,5,3,3) 1.28 

Water used 1.03E-01 kg 
Water, completely softened, at 

plant/RER 
(2,4,2,5,3,3) 1.28 

Packaging type 
Required per 

load 
Inventory Dataset 

Uncertainty 

Pedigree 
Matrix 

SD 
Value 

Cardboard, fresh 
fiber 

2.45E-03 kg 
Corrugated board, fresh fiber, single 

wall, at plant/RER 
(2,3,2,5,3,3) 1.26 

PET, bottle grade 4.30E-03 kg 
Polyethylene terephthalate, 
granulate, bottle grade, at 

plant/RER 
(2,3,2,5,3,3) 1.26 

Plastic processing 
4.39E-03 kg 

 
Stretch blow moulding/RER (4,3,2,5,3,3) 1.34 

Disposal 
Required per 

load 
Inventory Dataset 

Uncertainty 

Pedigree 
Matrix 

SD 
Value 

Cardboard, fresh 
fiber 

3.67E-04 kg 
Disposal, packaging cardboard, 

19.6% water, to sanitary landfill/CH 
(4,2,3,5,3,3) 1.35 

PET, bottle grade 4.30E-03 kg 
Disposal, polyethylene terephtalate, 
0.2% water, to sanitary landfill/CH 

(4,2,3,5,3,3) 1.35 

 

S3. GREET 1.0 Emission factors per gallon of diesel 

Pollutant 
Emission factor 

(grams of pollutant/ gallon of diesel) 

volatile organic carbons 1.1 

carbon monoxide 4.5 

nitrogen oxides 13.4 

particulate matter of 10 micros (PM10) 0.5 

particulate matter of 2.5 microns (PM2.5) 0.4 

sulfur oxides 1.3 

methane 0.05 

nitrous oxide 0.2 

carbon dioxide 10,732 
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S4. Normalized Impacts, weighted impacts and Error propagation 

Table S4.1 Normalized impact categories 

 
Liquid Powder 

Impact category Mean SD Mean SD 

Marine ecotoxicity 0.00006 2.85E-05 0.000122 7.25E-05 

Terrestrial ecotoxicity 0.000086 0.000022 0.000032 8.5E-06 

Natural land transformation 0.000121 0.00139 0.000071 0.00059 

Freshwater ecotoxicity 6.46E-05 2.35E-05 0.000108 5.86E-05 

Human toxicity 0.000033 2.04E-05 6.92E-05 4.07E-05 

Freshwater eutrophication 8.41E-05 5.11E-05 0.000101 0.000253 

Metal depletion 2.79E-07 3.19E-08 6.22E-06 6.51E-07 

Fossil depletion 1.98E-05 4.47E-06 2.36E-05 1.15E-05 

Agricultural land occupation 2.25E-06 6.27E-07 4.65E-06 8.42E-07 

Terrestrial acidification 1.49E-05 5.67E-06 1.26E-05 1.9E-06 

Ionizing radiation 1.1E-06 1.43E-06 3.25E-06 2.05E-06 

Urban land occupation 3.52E-06 1.17E-06 1.9E-06 1.57E-06 

Climate change 7.08E-06 8.92E-07 8.46E-06 8.01E-07 

Marine eutrophication 6.45E-06 1.14E-06 7.48E-06 1.8E-06 

Photochemical oxidant formation 5.47E-06 7.24E-07 5.25E-06 5.51E-07 

Ozone depletion 4.2E-07 6.76E-08 3.02E-07 3.2E-08 

Particulate matter formation 1.04E-05 2.9E-06 1.05E-05 1.15E-06 
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S5. Relevance parameter 

 
 

Characterized Impacts 
 

 
 Liquid Powder 

Impact category Unit Mean SD Mean SD p q r (Eq. 2) 

Metal depletion kg Fe eq 0.000199 
2.28E-

05 
0.00443 

0.00046
4 

0.0002
43 

0.0001
22 

18.2004
9 

Water depletion m3 0.00266 
0.00044

2 
0.00138 

0.00017
4 

0.0003
08 

0.0001
54 

4.15584
4 

Terrestrial ecotoxicity 
kg 1,4-DB 

eq 
0.000706 

0.00018
1 

0.000262 
6.97E-

05 
0.0001

25 
6.27E-

05 
3.54208

2 

Agricultural land 
occupation 

m2a 0.0102 0.00284 0.021 0.0038 
0.0033

2 
0.0016

6 
3.25301

2 

Ozone depletion 
kg CFC-11 

eq 
9.24E-09 

1.49E-
09 

6.65E-09 
7.05E-

10 
1.1E-

09 
5.49E-

10 
2.35990

9 

Climate change kg CO2 eq 
0.0903781

77 
0.01 

0.102304
355 

0.00898 
0.0094

9 
0.0047

45 
1.25671 

Ionising radiation kg U235 eq 0.00689 0.00891 0.0203 0.0128 
0.0108

55 
0.0054

28 
1.23537

5 

Marine ecotoxicity 
kg 1,4-DB 

eq 
0.00051 

0.00024
3 

0.00104 
0.00061

6 
0.0004

3 
0.0002

15 
1.23399

3 

Human toxicity 
kg 1,4-DB 

eq 
0.0195 0.0121 0.041 0.0241 0.0181 

0.0090
5 

1.18784
5 

Urban land 
occupation 

m2a 0.00143 
0.00047

5 
0.000775 

0.00063
9 

0.0005
57 

0.0002
79 

1.17594
3 

Freshwater 
ecotoxicity 

kg 1,4-DB 
eq 

0.000702 
0.00025

6 
0.00117 

0.00063
7 

0.0004
47 

0.0002
23 

1.04815
2 

Terrestrial 
acidification 

kg SO2 eq 
0.0005186

89 
0.00019

5 
0.000436

512 
6.54E-

05 
0.0001

3 
6.51E-

05 
0.63116

4 

Marine eutrophication kg N eq 
7.05104E-

05 
1.15E-

05 
7.92817E-

05 
1.82E-

05 
1.49E-

05 
7.43E-

06 
0.59065

6 

Photochemical 
oxidant formation 

kg NMVOC 
0.0003061

18 
3.85E-

05 
0.000289

197 
2.93E-

05 
3.39E-

05 
1.7E-

05 
0.49916 

Fossil depletion kg oil eq 0.0329 0.00744 0.0392 0.0191 
0.0132

7 
0.0066

35 
0.47475

5 

Freshwater 
eutrophication 

kg P eq 0.0000349 
2.12E-

05 
0.000042 

0.00010
5 

6.31E-
05 

3.16E-
05 

0.11252 

Particulate matter 
formation 

kg PM10 eq 
0.0001592

55 
4.32E-

05 
0.000159

87 
1.71E-

05 
3.02E-

05 
1.51E-

05 
0.02038

8 

Natural land 
transformation 

m
2 

0.0000195 
0.00022

4 
0.000011

5 
9.53E-

05 
0.0001

6 
7.98E-

05 
0.05011 
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S6. Summary Statistics of box-and-whisker plots in Figure 8. 

 Average 
Standard 
deviation 

Coeff. of 
variation 

Min Max 
Stnd, 

Skewness 
Stnd. 

Kurtosis 

Metal Depletion 
LIQUID 

0 0  0 0 - - 

Metal Depletion 
POWDER 

12.5749 9.30874 74.0262% 2.01106 63.2514 24.7071 19.3314 

Terrestrial 
Ecotoxicity 

LIQUID 
11.9968 9.23777 77.0018% 0 56.8079 22.934 15.3589 

Terrestrial 
Ecotoxicity 
POWDER 

0.0283343 0.51292 1810.24% 0 13.0137 361.666 3764.72 

Agricultural 
Land Occup. 

LIQUID 
0.0201122 0.47941 2383.67% 0 18.8601 601.951 11180.8 

Agricultural 
Land Occup. 

POWDER 
11.8027 9.17579 77.7429% 0 58.4434 24.4907 17.8069 

Ozone 
Depletion 
LIQUID 

10.285 9.26214 90.0549% 0 54.331 24.5792 17.7638 

Ozone 
Depletion 
POWDER 

0.201757 1.59945 792.762% 0 27.5305 197.222 1226.46 

Climate Change 
LIQUID 

1.05685 4.05926 384.089% 0 51.2206 102.499 368.702 

Climate Change 
POWDER 

8.07458 9.36653 116.0% 0 56.7676 29.3302 26.5967 

Ionizing 
Radiation 
LIQUID 

1.0362 4.15804 401.279% 0 51.593 105.892 387.763 

Ionizing 
Radiation 
POWDER 

8.25338 9.60312 116.354% 0 62.1913 29.4062 25.7677 

Marine 
Ecotoxicity 

LIQUID 
1.25335 4.56084 363.893% 0 43.5256 86.3565 231.847 

Marine 
Ecotoxicity 
POWDER 

7.85316 9.35932 119.179% 0 59.4454 28.5187 24.4123 

Water Depletion 
LIQUID 

1.16532 4.32966 371.544% 0 44.6004 90.9951 264.304 

Water Depletion 
POWDER 

7.98374 9.54312 119.532% 0 58.6613 28.9338 25.1148 
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S7. Stochastic weighting 

Figure S7 shows the beta distribution of the weights for eight impact categories. The 

vertical axis is the probability density and the horizontal axis is the weight value in 

percent. Since all impacts have the same priority level, the probability distributions 

overlap. At any given point the sum of all weights must equal 100, thus the probability of 

weights is higher at lower values. For more information on the weight calculation 

procedure see Tylock et al, 2012. 

 

 

 

 

 

 

 

 


