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ABSTRACT

In most social networking websites, users are allowed to perform interactive

activities. One of the fundamental features that these sites provide is to connecting

with users of their kind. On one hand, this activity makes online connections visible

and tangible; on the other hand, it enables the exploration of our connections and

the expansion of our social networks easier. The aggregation of people who share

common interests forms social groups, which are fundamental parts of our social lives.

Social behavioral analysis at a group level is an active research area and attracts many

interests from the industry.

Challenges of my work mainly arise from the scale and complexity of user gen-

erated behavioral data. The multiple types of interactions, highly dynamic nature of

social networking and the volatile user behavior suggest that these data are complex

and big in general. Effective and efficient approaches are required to analyze and in-

terpret such data. My work provide effective channels to help connect the like-minded

and, furthermore, understand user behavior at a group level. The contributions of this

dissertation are in threefold: (1) proposing novel representation of collective tagging

knowledge via tag networks; (2) proposing the new information spreader identification

problem in egocentric soical networks; (3) defining group profiling as a systematic ap-

proach to understanding social groups. In sum, the research proposes novel concepts

and approaches for connecting the like-minded, enables the understanding of user

groups, and exposes interesting research opportunities.
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Chapter 1

INTRODUCTION

The growing popularity of social networking services enables online interactions be-

tween the social media users. Online activities have become an even more important

ingredient in our social lives than ever before. From the individual’s point of view, the

need to connect with other people arises. Then social groups form naturally as peo-

ple selectively connect with others, i.e., forming a community structure. Understanding

social groups becomes an emergent task in social and behavior science, impacting

many applications such as targeted advertisement, trend prediction, group dynamics

modeling, etc.

1.1 Background

Social networking sites enable the building of social networks or connections among

people who make friends, share interests, activities and their likes. On social network-

ing sites, people can interact freely, sharing and discussing information about each

other and their lives, using multiple types of media such as text, photos, videos, and

taking various kinds of activities that are provided by these sites.

Social media appears in many different forms including blogs and microblogs,

forums and message boards, social bookmarking, tagging, social networking, review-

ing, questioning and answering, data and content sharing, etc. Many social networking

sites serve some features mentioned above.

As more and more people are involved, social media has become an integral

part of our social lives. Social media is now a platform for maintaining our relationships

and serves as a new dimension of our identities. We also use social media as a new

channel for self expression, for sharing interests, worries and needs, for communication

and interaction with other people.
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The rise of social media provides many research and business potentials in the

years to come. It is a multidisciplinary research area which requires knowledge in social

science, physics, mathematics and computational science, involving many different

cultural aspects. Compared to data in traditional social science, the availability of the

big behavioral data in social media presents new challenges in processing, analyzing

and modeling, which is attributed by the complexity of the data. It also presents even

greater opportunities to study online human behaviors at arbitrary resolutions, answer

questions that are beyond reach in the past, gain insight and knowledge, make use of

the data to improve productivity, explore business opportunities, etc.

One fundamental problem in analyzing the big behavioral data is to form groups

of users with similar interests and to understand the unique characteristics of a group.

They are two interconnected aspects of the problem. With the aggregation of the like-

minded, social groups with specific characteristics form naturally. At a bigger scenario,

ultimately, we attempt to understanding (both explicit and implicit) social groups. The

knowledge could be harnessed to explain group formation and evolution, provide in-

sights in designing and improving social services with practical significance.

The first aspect of the problem has become an important component in social

media websites as they grow. For example, Facebook and LinkedIn provide a function

(i.e., “People You May Know” or PYMK) to recommend other potential friends, Twit-

ter and Google+ have a similar function called “Who to Follow”. The second aspect

of the proposed problem is not yet well developed but is important in many different

perspectives. Studying a group of users who have similar interests or tastes differs

from studying individuals. It is usually impractical to study individual users as the social

networking sites host hundereds of millions of users. Group analysis is more tangible

without losing fine granularity. The group level analysis plays a key role in social sci-

ence, “the founders of sociology claimed that the causes of social phenomena were to

2



be found by studying groups rather than individuals” [40]. In practice, understanding

social groups helps to provide insights into group formation and evolution, explaining

various social phenomena, monitoring and tracking group dynamics, predicting future

trends, behavioral targeting [71] and improving social services.

In this dissertation, we study the problem of connecting users who have similar

interests in a social network, and propose novel approaches to facilitate the under-

standing of such groups. It is organized into two interrelated components: connecting

the like-minded and understanding social groups. Next we introduce each component.

Connecting the Like-minded

In the social media era, users are consumers and producers simultaneously. As a con-

sumer, users read articles and posts, receive messages and updates from their online

contacts. As a producer, users write blogs, post updates, use tags to organize on-

line resources, initiate interactions with their online contacts, etc. The changing role of

social media users brings new challenges and opportunities in academia and industry.

The long tail distribution of social networks implies that the majority of users

(e.g., 80%) have only few links. Similarly, users in the long tail produce less content

than users in the short head. These challenges are not easily captured by the tradi-

tional data mining approaches (e.g., Collaborative Filtering). For instance, it is hard to

follow links and find the like-minded users who are several hops away in the social net-

work. It is meaningful to clarify the differences between the Collaborative Filtering and

the proposed approach. Collaborative Filtering is designed for recommending items

instead of people in social networks, assuming that similar people would likely to have

similar tastes. Furthermore, user generated content (e.g., tags) is produced in a free

style, meaning that synonyms and polysemy co-exist. Capturing the semantic corre-

lation is not a trivial task in general. We enable the measure of semantic relevance

among different terms by introducing the novel concept of tag network.

3



I demonstrate that the collective tagging knowledge can be captured by the

introduction of tag networks. Furthermore, I demonstrate that identifying like-minded

users via tag networks is a more effective methods than several baseline methods.

Details will be discussed in Chapter 2.

Identifying users with similar interests via tag networks. We propose to

utilize tag networks to effectively connect users with similar interests. A tag network

is the “wisdom of a crowd” or collective wisdom. It organizes user generated tags into

a graph, which is able to capture the semantic correlation between tags with different

forms. Based on the tag network, we are able to infer who are the like-minded in a

social network.

We set forward to studying the interaction among the like-minded, especially the

spread of information. A direct important question is to identifying information spread-

ers, i.e., the key persons who have similar interests and relay information in a social

network.

Identifying information spreaders. Use Twitter as an example, we propose

to utilize user generated Tweets to find information spreaders in the Twitter follower

networks. An information spreader is defined as a person who relays information (i.e.,

tweets) from her friends and share them with her own followers. A set of feasible ap-

proaches are proposed and compared with each other of their effectiveness of identify-

ing information spreaders. Interesting findings are reported with detailed discussions.

Understanding Social Groups

Social groups form naturally for a multitude of reasons. A major reason is for some

people to achieve common goals or satisfy some form of need. Besides, the edge dis-

tribution in a social network suggests a group structure with high concentrations within

a set of neighboring nodes and low concentrations between these two sets of neigh-

4



boring nodes. In this dissertation, groups and communities are used interchangeably.

Examples of communities or groups in the real world include families, relatives, lab-

mates, etc. A prominent feature of such community structure is that they are generally

overlapped, i.e., one person belongs to one or more communities.

Hypotheses are in place to explain why communities are formed in social net-

works: “similarity breeds connection”, or the homophily effect [77]. The homophily

principle states that people within a community are homogeneous such that they share

a lot of commons in terms of sociodemographic, behavioral, and interpersonal charac-

teristics.

Communities in social networks have different forms, i.e., communities are dis-

jointed [111], overlapped [117], or hierarchical [118]. To identify meaningful commu-

nities, some methods make use of one type of interaction (e.g., links [109, 111], con-

tent [117]), while some other methods integrate mutiple types of (heterogeneous) rela-

tions [112]. Multiple mechanisms such as graph partition, objective function maximiza-

tion, and statistical inferences are applied to detect communities, as well summarized

in the survey [33].

Although community detection is an important task with various applications, it

is even more important to understanding social groups, which helps to reveal group

formation and evolution, identify group sentiment, predict future group dynamics, etc.

Therefore, our work propose mechanisms to extract the unique characteristics of social

groups. Details will be presented in Chapter 3.

Co-clustering users and tags. We propose a user-tag co-clustering frame-

work, which takes advantage of networking information between users and tags in so-

cial media, to discover overlapping communities. In the network, users are connect to

tags and tags to users, thus forming a bipartite graph. This explicit representation of

5



users and tags in a same group, entailing who are interested in what, is useful for group

understanding.

Co-clustering users and tags is a constraint scenario which demonstrates the

feasibility of group understanding by leveraging community detection technologies. To

generalize, with the presence of social groups (either explicit or implicit), we propose

the group profiling as a systematic approach for group understanding.

Interpreting communities via group profiling. Group profiling is a task to

extract most meaningful keywords that describe a group. Provided with representative

keywords, we are able to understand what the group of people are interested in. We

explore different group-profiling strategies to construct descriptions of a group. This

research can assist network navigation, visualization and analysis, etc.

1.2 Problem Formulation

Let G(U,E) represent a social network, where U = {u1, u2, . . . , u|U |} is the set of users

and E = {e1, e2, . . . , e|E|} is the set of edges. The cardinality of a set represents the

size of the set, e.g., |U | is the number of users and |E| is the number of edges. An

edge or a connection could be directed (e.g., representing a following relationship) or

undirected (e.g., representing a friend relationship).

A user could be connected with other users, or contacts. Contacts could be

followers (i.e., connections from others), followees (i.e., connections to others), friends

(i.e., undirected and positive links), foes (i.e., negative links), or a combination of some

of the specific relationships, depending on the specific social network site. A user could

generate certain content such as user profiles, bookmarks, posts, likes, blogs, tags, etc.

A specific social networking website provides some of these features.

Given the necessary definitions, the problem of our study is defined as follows,
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in a social network, we aim to connecting users with similar interests, fur-

thermore, to understanding the unique characteristics of social groups with

the most descriptive attributes.

The problem consists of several interrelated subtopics which will be given spe-

cific definitions and discussed in detail in each chapter of the dissertation.

1.3 Contributions

Most work in this dissertation are closely connected to real applications in social media.

They are developed to addressing real world needs, therefore some of them could be

leveraged to improve user experiences in large scale social networking platforms such

as LinkedIn, Facebook, Twitter, etc.

In addition, the proposed work address fundamental problems (e.g., identifying

information spreaders, group profiling) in the scope of social media, contributing to the

active research area in the near future. We believe that these work will have wide

impact on relevant research areas including but not limited to collective knowledge

representation and utilization, community detection and understanding, etc. Below is a

summary of contributions of this dissertation:

• proposing tag networks as a novel representation of collective tagging knowledge

and an effective approach to connecting the like-minded;

• proposing and solving the new problem of identifying information spreaders in

egocentric social networks;

• proposing a co-clustering framework to both detect and interpret social groups;

and

• proposing group profiling as a systematic approach to extract the most represen-

tative keywords for understanding social groups.
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1.4 Organization

The dissertation consists of two major parts: connecting the like-minded and interpret-

ing social groups. In Chapter 2, we demonstrate approaches that are based on user

generated content to connect the like-minded. Two subtopics are studied. One utilizes

tag networks and the other one utilizes user generated tweets in Twitter. In Chapter 3,

we attempt to interpret online groups. We propose a user-tag co-clustering framework

to detect and interpret communities. Then we generalize the group understanding prob-

lem via group profiling techniques. The related work is summarized in Chapter 4. We

conclude the dissertation and point out promising research directions in Chapter 5.
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Chapter 2

CONNECTING THE LIKE-MINDED

One of the most popular activities that social media users perform is to connect with

other users, especially with those who share things in common. This is an active re-

search area as the findings could be potentially applied to social networking websites

for recommending future connections.

We study two sub-topics in this section. In the first task, we propose to connect

users with similar interests in social media websites, utilizing tag networks as a new

representation of collective tagging knowledge. In the second task, we study the novel

problem of identifying information spreaders who have similar interests, relay informa-

tion and share with their own contacts.

2.1 Learning from Tag Network Inference

Networking via social media is increasingly becoming an integral part of social life in

which friend recommendation is an important feature. There are many successful appli-

cations of leveraging link information or connectivity in social networking environments.

However, in identifying users with similar interests, there are also limitations that come

with links: following links is inefficient and could be incomplete. For instance, the space

complexity of an exhaustive search is exponential; an incomplete search risks not be-

ing able to find anybody of interest. The long tail users who only have few connections,

could be difficult to find, and in certain scenarios, some of them are disconnected from

the largest component of a social network. Therefore, link based approaches could fail.

Nonetheless, connecting people with similar interests is an important task. For

instance, these like-minded could be treated as a source of future friends. Besides,

in problem solving areas, we would have a better chance to solve an issue if we can

find someone who has worked on similar tasks. In addition, understanding behavior
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Tag Network

apple iphone

itouch

Figure 2.1: Connecting Like-minded Users in a Tag Network Approach

of users with similar interests could help gain better insights on interpreting group level

behaviors. Connecting to “people like you” has psychological edges: “a sense of self-

worth and fulfillment, being reassured of their worth and value, a sense of belonging to

a community, the need to both seek help from and provide help to others, etc” [48].

Challenges of connecting users with similar interests are summarized below.

First of all, people only have an egocentric view of the social network, i.e., users only

see their immediate contacts. Secondly, the scale of a social network website like Face-

book, Twitter, or LinkedIn makes manual search unrealistic. Therefore, inventing more

effective and efficient tools is a necessity. Thirdly, as shown earlier, link information has

innate limitations due to the long tail distribution of social networks.

Connecting via Tag Network Inference

We propose to connect users of like-minded via tag network inference. The basic idea

is illustrated in Figure 2.1 in a simplified way. Nodes with different colors represent

users of different kinds in a social network. Some users are in the largest component

of the network, whereas other users are disconnected, thus either isolated or in small
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groups. A solid link represents two users are connected. Dashed link represents two

users are not directly connected, but reachable from one to another. The four nodes

highlighted in blue (dark) are, for example, fans of Apple products such as iPhone,

iTouch, etc. Thus, the four users are deemed “like-minded”. The right part of the figure

represents a tag network in which each node represents a tag, and the weight between

two tags corresponds to users who use the two tags simultaneously.

Providing the “wisdom of the crowd”, tag network can be utilized to describe

the semantic relationships among tags (more details later in this Chapter). Based on

the tag network, the similarity between two users can be measured by their tag usage

similarity. Take Figure 2.1 as an illustrative example, assume we want to connect other

Apple fans to the upper left user in blue (dark). Instead of traversing links, we turn to

the tag network, and return the other three Apple fans in the lower left.

Notations and Formulation

A social network G = (U , E) is represented as an undirected graph, in which U =

{u1, u2, . . . , un} represents a set of n users and E = {e1, e2, . . . , eℓ} represents ℓ con-

nections amongst the set of users. Each user subscribes to a certain number of tags.

We denote the tag subscription relationship as a matrix U ∈ Rt×n, in which each entry

represents the number of times a tag is used by a given user. Let the number of unique

tags associated to ui be ‖ui‖. Denote uinterest
i as a set of interests (e.g., categories

specified by users on BlogCatalog) explicitly declared by the i-th user. Two users are

said to be like-minded if they share some interests, e.g., both of them are fans of Apple

iPhone.

uinterest
i ∩ uinterest

j 6= ∅, 1 ≤ i, j ≤ n (2.1)

However, two Apple fans may not necessarily use same tags, e.g., one person likes to

use iPhone as a tag, the other person prefers to use apple iPhone.
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Table 2.1: Notations

Notations Description

G Social Network

U User Tag matrix

W Tag Network

ui The i-th user in U
uinteresti Interests of the ui
‖ui‖ Number of unique tags of ui
Si The set of top k most similar users of ui
k Number of users to be selected

Kβ Diffusion kernel with parameter β

MSIj Mean Shared Interests between ui and the j-th

user in Si averaged on all uis in G

A tag network W ∈ Rt×t is a symmetric graph in which each node represents a

tag that could be a word or a phrase, a non-zero entry wij in W represents the number

of users who use the two corresponding tags simultaneously. A diffusion kernel Kβ

defined on a tag network is utilized to measure the tag similarities, where β is the

parameter which controls the speed of diffusion. Table 2.1 summarizes the notations.

The problem is then defined as follows:

• Input: Given a social network G, a user ui (1 ≤ i ≤ n), a tag network W ∈ Rt×t,

and a scalar k.

• Output: top k most similar users from G.

We next introduce the construction of tag networks from user generated tags,

then design the novel approach, utilizing tag networks, for identifying users with similar

interests.

Tag Network Construction

Tagging is an activity for organizing various objects like bookmarks and blogs for future

browsing, management, and sharing using informal vocabularies. Tags can be words

or phrases, and informal implies that they may not be found in any dictionary. Figure 2.2
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Figure 2.2: A Snapshot of a Blog Description

is a snapshot of a description for a blog on BlogCatalog with tags1. As shown in the

figure, the blog, which is a news and review website on iPhone and iPhone applications,

was added September 2008. It has a primary category Mobile Tech and a secondary

category (or sub-category) Gadgets. Categories indicate the owner’s interests. Six

semantically relevant tags (i.e., apple, ipod, iphone, mac, apple iphone, iphone apps)

are specified by the owner such that other readers can easily discover the topics of the

blog without browsing hundreds of articles within it.

Tagging is a sort of knowledge that reflects labels on various web resources [42].

Collective wisdom emerges when many people’s tag knowledge are aggregated to-

gether. The underlying hypothesis is that collective tagging naturally brings semanti-

cally relevant tags closer. For example, if two tags (e.g., iPhone and Apple iPhone) are

used simultaneously by many people, there could be a semantic relevance between

them. We represent the connectivity of tags in a network format: Tag Network.

We illustrate the steps to construct a tag network on the BlogCatalog data set.

• For each object (e.g. blog) and its descriptive tags, we connect the tags as a

clique as shown in Figure 2.3 (a);

1http://www.blogcatalog.com/blogs/apple-iphone-news-and-app-reviews-ifonescom#
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(a) Tag Network of a Blog (b) Tag Network of a Site

Figure 2.3: Examples of Tag Networks

• For each person, we combine all cliques corresponding to the objects she owns

and form one or more unweighted tag networks, since her tags may or may not

be connected in a tag network;

• We construct a weighted tag network by aggregating all tag networks belonging

to each person. In the weighted tag network, tags correspond to the union of all

users’ vocabularies, and the weight of each link represents the number of users

who use both tags simultaneously.

A snapshot of the weighted tag network is demonstrated in Figure 2.3 (b). Note

that other tags and the corresponding links are not shown. We count the number of

users instead of the number of times two tags cooccur as the weight of each link to

discount bias from spam use rs, i.e., those who may use automated tools to assign

the same group of tags many times. However, it could be interesting to consider user

influence in assigning link weights as future work. Tags are available on most social

networking sites in different forms such as user interests, bookmarks, labels, etc. Thus,

the construction process can be easily adapted.

The tag network enables us to measure the similarities between any pair of tags

within it. The simplest measure of similarity between two tags is the shortest path dis-

tance. However, the shortest path distance is susceptible to change in graph structure,

i.e., newly added or removed tags and links might dramatically affect the distance be-
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tween two nodes. Therefore, we prefer to average all path distances between two given

tags for a more robust similarity measure, which leads to the idea of random walk with

varying steps, equivalent to a diffusion kernel on a network [53, 97]. The concept of

diffusion kernels is well established, thus readers who are familiar with it can simply

skip.

Given a tag network W ∈ Rt×t, where t represents the number of unique tags

in a social network, we define a matrix L, whose negation is called Laplacian matrix,

as follows,

L = W −D, (2.2)

where D is a diagonal matrix in which the i-th diagonal entry corresponds to the sum-

mation of the entries in i-th column of matrix W . Let I represent the identity matrix, the

diffusion kernel Kβ of a tag network is defined as follows,

eβL = lim
s→∞

(I +
βL

s
)s, (2.3)

where β ≥ 0 is a user specified parameter which controls the speed of diffusion. A

larger β value means a faster information diffusion speed on the network; and there is

no diffusion when β is set to 0. The diffusion kernel is positive semi-definite, thus is a

valid kernel for measuring similarity between any pair of two tags [97].

The computation of a diffusion kernel requires an eigen-decomposition of L

such that L = V ΣV ⊤,

Kβ = eβL

= I + βL+
(βL)2

2!
+

(βL)3

3!
+ . . .

= V
(

I + βΣ +
β2

2!
Σ2 +

β3

3!
Σ3 + . . .)V ⊤

= V eβΣV ⊤

(2.4)

where the columns of V are the eigenvectors, Σ is a diagonal matrix whose diagonal

entries are eigenvalues, and (eβΣ)ii = eβΣii , other non-diagonal elements are all zeros.
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Recommending Like-minded Users

Let ui be a seed user, Kβ be the kernel, the goal is to select the top k most relevant

users in terms of similarity from the social network. The similarity between two users is

aggregated on the pair-wise tag similarity given below,

sim(ui, uj) =
∑

t∈ui,t′∈uj

ui(t)
√

‖ui‖
·Kβ(t, t

′) · uj(t
′)

√

‖uj‖
, (2.5)

where ui(t) represents the number of times the tag t is used by the i-th user and two

normalization terms
√

‖ui‖ and
√

‖uj‖ are applied to the two users, respectively. The

normalization is necessary because it prevents selecting spammers who use a large

number of tags. But users who share more semantically relevant tags are credited thus

we use the square root for both normalization terms. The intuition of Equation (2.5) is

that two users are more like-minded if they share more semantically relevant tags.

Denote Z as a diagonal matrix whose diagonal entries are Zii = 1√
‖ui‖

. We

rewrite the similarity between ui to other users in the social network as follows,

sim(ui, ·) = u⊤
i ·Kβ · U · Z (2.6)

We discard the normalization term ‖ui‖ since it does not affect the final ranking. Without

prior knowledge, determining parameter β is difficult in practice. However, tag network

does provide heuristics for β selection. Tags that are frequently used simultaneously

are semantically relevant, which is also the basic idea behind Latent Semantic Index-

ing (LSI) which leverages term co-occurrence in articles [25]. In a tag network, many

semantically relevant tags are close or even immediate neighbors, thus it is desirable

to select small values of βs.
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Table 2.2: Statistics on BlogCatalog

Measure BlogCatalog

Nodes 88,784

Edges 1,409,112

Average Contacts 49

Unique Tags 5,713

Average Tags 4.0

Data Collection and Experiments

BlogCatalog2 is an online blog service which enables bloggers to register, manage,

share, and connect blogs. A blog in BlogCatalog is associated with various pieces of in-

formation such as the categories that the blog is listed under, blog level tags, blog statis-

tics such as the average rating and recent viewers, posts within the blog, and reviews

from peer bloggers. A blogger also connects to other bloggers to form her social cir-

cle on BlogCatalog. A blogger’s interests could be gauged by the categories (e.g. arts,

business, education, etc) she publishes her blogs in. We obtained in total 60 categories

in the processed BlogCatalog data set. We notice that a blogger can specify more than

one category for each blog. On average each blogger lists their blog under 1.69 cate-

gories. In the rest of the paper, categories are treated as bloggers’ interests. Bloggers

in this social network form the largest component, thus any blogger can be connected

to any other blogger through some intermediate bloggers. The social network is undi-

rected. After post processing, we obtain a data set with 88,784 bloggers, 5,713 unique

tags3, and 60 categories. The BlogCatalog data set is shared with the public and can

be downloaded from this link: http://dmml.asu.edu/users/xufei/datasets.html

2www.blogcatalog.com
3Tags that are used by less than 10 users are removed. This process helps to reduce noisy tags or

typos in tags.
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Baseline Methods

Two baseline approaches are selected. One is based on connectivity and the other one

is based on latent semantic indexing.

Triadic Closure seeks to find similar users in terms of the number of mutual

friends, and is solely based on links. This approach returns the top k people who are

two hops away (friends of friends) in a social network. Note that it may return potential

friends, but not necessarily return the most similar users.

Latent Semantic Indexing (LSI) is used to capture semantic correlation by

applying Singular Value Decomposition (SVD). This approach computes the cosine

similarity between an arbitrary pair of users in the latent space and can connect like-

minded users who are far apart in a social network.

Evaluation Metrics

The quality is evaluated by the number of shared interests between the seed user and

the selected users. More specifically, if the users selected by approach A share more

interests with the seed user than those by approach B, intuitively, we say approach A

is better.

On BlogCatalog data set, each individual has explicit categories (or interests)

which serve as the ground truth for evaluation purposes. The metric, Mean Shared

Interests (MSI), is formally defined in Equation (2.7),

MSI(j) =
1

n

n
∑

i=1

‖uinterest
i ∩ Si(j)

interest‖, 1 ≤ j ≤ k, (2.7)

where ui represents the seed user, Si(j) (1 ≤ j ≤ k) represents the j-th recommended

user for ui, noting each user set Si (ranked in descending order) depends on ui. We

average the shared interests over all users in a social network.
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Figure 2.4: Shared interests v.s. selection of β

Comparative Study

The diffusion parameter β is sensitive to the outcomes. Figure 2.4 shows the MSI

values with respect to different β values range from 10−1 to 10−5. The performance

stabilizes when βs are set to smaller than or equal to 10−5. The x-axis represents the

top 100 users sorted in descending order in terms of similarity with the seed user. The y-

axis denotes the MSI values between the j-th selected user (excluding the seed user’s

immediate contacts) with the seed user. The plots suggest that the best performance

is achieved when β is set to 10−5, since we often recommend few users as candidates,

e.g., 10 or 15. We also notice that large β values cause large variations. For instance,

when β is set to 0.1, the performance is not stable. As a baseline measure, we compute

the average shared interests between the user and her immediate neighbors, denoted

by the lower solid line in Figure 2.4. The higher MSI values of the proposed approach

suggest that more like-minded users could be returned.

Theoretically, in a connected network, there is a path from any user to any other

user. Thus, it is possible to connect all like-minded users by following links. However,

exhaustive search is expensive and inefficient for a contemporary social network which

can have hundreds of millions of nodes. As an alternative, applying triadic closure only
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searches for candidates up to two hops away. Therefore, the search by triadic closure

principle is incomplete.

For comparison, we include all three approaches: triadic closure, LSI, and tag

network with a specified parameter. The results are plotted in Figure 2.5. The LSI

approach does provide improvement to some extent compared to the baseline mea-

sure as indicated by Friendship. It should be noted that the best performance for LSI

is obtained when the latent dimension is set to 200 for the studied data set. The pro-

posed method outperforms the LSI approach significantly under t-test (p < 0.001). In

computing the MSI values for above two approaches, the seed user’s immediate con-

tacts are excluded. The approach based on triadic closure is not as effective as the

other two approaches, as indicated by the bottom curve in Figure 2.5. Comparing to

the baseline methods (or measures), on average, the relative improvements of the tag

network approach are 27%, 60%, and 108% for LSI, Friendship, and Triadic Closure,

respectively.

Further Discussions Tag network and Latent Semantic Indexing are both ca-

pable of capturing the semantic correlation between tags, but diffusion on tag network

appears to be more capable than LSI. The probable reasons for this are (1) the collec-

tive wisdom from the crowd brings the semantically relevant tags close to each other in

terms of the number of hops; (2) although LSI also leverages the tag co-occurrence for

dimension reduction, the diffusion kernel is more capable of measuring the similarity

between any pair of two tags. We interpret the difference between LSI and diffusion on

tag networks: LSI uses one path (i.e., the co-occurrence of two tags), whereas diffusion

kernel combines all paths between any two tags (i.e., combining many different paths

but discounted by distance).
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Correlation Analysis

In this section, we demonstrate the overlap between the true friends of the seed user

and the top k most similar users. We find that a small set of selected users are actually

the user’s friends. The correlation between the friends and the returned top k users

are presented in Figure 2.6. The x-axis represents top k most similar users sorted

in descending order; y-axis represents the number of users who are actually friends,

noting that y-axis values are averaged over all users in the social network. We found

most similar users (around 98%), thoese who share interests with the seed users, are

not her immediate friends. We evalute different kernels but they all show very similar

performance.
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Distance Distribution from a Seed User

We observe on the BlogCatalog data set that users that are multiple hops away could

be like-minded. Thus, we compute the number of hops between the seed users and

their top k most similar users. The computation is done by a breadth first search starting

from a seed user, then each of the top k users is assigned the number of hops from the

corresponding seed user. Finally we aggregate the number of users by hop distance

from their corresponding seed users.

The distance distribution is presented in Figure 2.7, in which the curves from

bottom to top represent top k (k = 10, 20, . . . , 100) users who are considered. As

shown in this figure, statistically, the majority of the most similar users are 2, 3, and

4 hops away. A small number of users who are 5 or 6 hops away from the seed

users, (the diameter of the BlogCatalog social network is only 7) are also suggested

as like-minded. The percentages of users with different hops from the seed users are

summarized in Table 2.3. The immediate friends who are 1-hop away from a seed

user account for less than 2%. The above results demonstrate that the tag network

approach is capable of returning distant like-minded people for future interactions.
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Table 2.3: Distance Distribution of Top k Candidates

# of Hops 1 2 3 4 5 6

Top 10 1.555% 20.197% 55.825% 12.160% 0.263% 0.002%

Top 50 1.062% 29.035% 57.406% 12.229% 0.264% 0.003%

Top 100 0.875% 28.528% 58.072% 12.260% 0.261% 0.003%
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2.2 Identifying Information Spreaders in Egocentric Social Networks

The microblogging service Twitter has exploded in popularity in recent years by provid-

ing the ability for users to share information with one another in the form of short posts,

called “tweets”. One feature that distinguishes Twitter from other social networking

platforms is the ability to “retweet” another user’s tweet. Retweeting is a powerful way

of disseminating information in the Twitter follower social network, becoming the key

mechanism for information diffusion in Twitter [104]. Recently, a number of research

efforts have studied the factors that affect retweeting [11, 104], retweet patterns and be-

haviors [59, 80], predicting retweets [82, 89, 131] and information diffusion [114, 126].

An important yet unaddressed question in retweet analysis is to identifying the

people who retweet information from their friends (a.k.a. followees) and share with

their own followers, or the identifying information spreader problem. A direct impact

of this work is to increase user engagement at Twitter. When a user posts an update,

Twitter can send messages (e.g., email or SMS) to the information spreaders, then

they might follow back or their followers might join the discussion. The second impact

is viral marketing. Later in this paper we demonstrate that information spreaders are

not influentials. Investing in information spreaders rather than the influentials could be

more effective in increasing the exposure of a product to more potential buyers. The

next impact is to help understand the information diffusion in Twitter. Identifying the

information spreaders discovers the backbone of information pathways, which helps

visualize and understand the information flow in a network.

Next we define the concept of information spreader and point out the important

difference between this work and previous work.
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The Information Spreader Identification Problem

Previous studies show that the vast majority of users are information consumers [79].

However there exists some small set of users who are information spreaders who

retweet from his or her friends and share information with his or her own followers. How

information spreads from sources to the silent majority has been the subject of many

research efforts [21, 65, 93, 115, 126]. However, identifying information spreaders in

Twitter and other social networks is not formally defined. Furthermore, we demonstrate

a set of feasible approaches for identifying information spreaders.

Though some prior problems may seem similar, there are substantial differences

between prior work and ours. Those problems either operate at the global level (e.g.,

information diffusion and identifying influential people) or narrow the scope down to only

one tweet (e.g., retweet prediction). The problem of information spreader identification

asks who among a user’s direct contacts spreads information.

Knowing who spreads ideas in social networking is important in many fields.

By identifying these people, information diffusion can be expedited, access to informa-

tion can be increased, new ideas can be adopted more quickly, and the backbone of

information pathway can be discovered. This work proposes the problem of identify-

ing information spreaders, shows that this problem is different from finding influential

people, and empirically evaluates a set of feasible approaches.

Our primary focus is to understand retweet patterns between pairs of following

users in the Twitter social network, the effectiveness of features which are originated

from both the social network and user generated content, and various approaches in

predicting who are the willing-to-retweet followers. Next we will introduce the necessary

notations and the formal definition of the novel problem.
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Notations and Formulation

We first introduce the notations to be used in this section. The Twitter social network

can be modeled as a directed graph G = {U,E}, where U = {u1, u2, . . . , un} is the

set of users and E is the following relationship between users. A typical Twitter user

u has a set of followers (Follower(u)) and friends (Friend(u)) which is known as

followees before. We denote contacts (Contact(u)) as the union of the user’s followers

and friends, that is,

Contact(u) = Follower(u) ∪ Friend(u) (2.8)

The friends, followers and contacts are called neighbors of a user as they are con-

nected in a certain manner. The cardinality of a set represents the size of the set, e.g.,

|Friend(u)| represents the number of friends of user u.

Common friends CFR refer to the set of users who are followed by two users ui

and uj . Similarly, we define the common followers CFO and common contacts CCO

as the users who are shared by the two corresponding user sets. That is,

CFR(ui, uj) = Friend(ui) ∩ Friend(uj)

CFO(ui, uj) = Follower(ui) ∩ Follower(uj)

CCO(ui, uj) = Contact(ui) ∩ Contact(uj)

(2.9)

We aggregate all tweets that are owned by user u, then form a term-frequency

vector t(u), excluding stop words. Similarly, the set of hashtags and URLs that are

associated to user u are represented as term-frequency vectors ht(u) and url(u), re-

spectively.

Given a user u and her followers, our primary focus is to predict which of the

followers would like to retweet her tweets, considering a wide range of features from
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Table 2.4: Parameters Used to Data Collection

Country Keywords/Hashtags Geo-Boundary

Egypt
#egypt,#muslimbrotherhood,#tahrir,#mubarak,

(22.1,24.8),(31.2,34.0)
#cairo,#jan25,#july8,#scaf,#noscaf

Syria #syria,#assad,#aleppovolcano,#alawite,#homs (32.8,35.9),(37.3,42.3)

Libya
#libya,#gaddafi,#benghazi,#brega,#misrata,

(23.4,10.0),(33.0,25.0)
#nalut,#nafusa,#rhaibat

Bahrain #bahrain,#bah (50.4,25.8),(50.8,26.3)

Yemen
#yemen,#sanaa,#lbb,#taiz,#aden,#saleh,

(12.9,42.9),(19.0,52.2)
#hodeidah,#abyan,#zanjibar,#arhab

the Twitter social network and user generated content. It can be modeled as a ranking,

prediction, or regression problem depending on the specific context,

max
{fi}ki=1

k
∑

i=1

P (fi|u)

s.t. fi ∈ Follower(u)

(2.10)

Collection Methodology

In order to assemble our data set, we collected tweets, user profiles and network data

through the Twitter API using the system described in [58]. The collection of data

was restricted through the use of keywords, hashtags, and geographic regions. We

collected more than 660, 000 users and 16 million tweets published from or concerned

Egypt, Syria, Libya, Bahrain and Yemen. The tweets were crawled using the streaming

API over a period of 7 months starting February 1st, 2011 and ending August 31st,

2011. A full list of the parameters used is presented in Table 2.4. Column 3 lists the

geographic bounding box used to crawl all the geo-located tweets from each country in

that region. The inspected Tweets during this period account for approximately 10% of

all tweets hosted by Twitter4.

As expected, the node degree distribution follows a power law distribution. Con-

sistent with other studies on the Twitter network [59], only around 20% of links are

4We verifed this claim with Twitter’s “firehose” data which cannot be directly used in this paper for

legal reasons.
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Table 2.5: Statistics of the Twitter Data Set

Measure Value Measure Value

Users 666,168 Mean Friends 130.20
Mean Followers 130.20 Mean Contacts 217.09
Links 86,710,704 Bidir. Links 19.9%
Tweets 16,043,422 Retweets 3,874,449
URL 6,531,602 URL Ratio 40.33%
Hashtag 37,276,618 Hashtag Ratio 97.88%
Reply 472,160 Reply Ratio 3.98%
Mention 972,042 Mention Ratio 5.49%

reciprocated. We computed several other relevant statistics, in particular, the retweet

ratio is around 24%, suggesting that information diffusion in the collected data set is

prevalent. Around 40% of tweets contain URLs and interactive tweets only account for

a small part of the data, around 4% and 5% of the tweets are replies and mentions,

respectively. Table 2.5 summarizes many other data set statistics.

Pair-wise Retweet Analysis

An intuitive idea for identifying information spreaders is to look at the retweet history.

Next, we present some interesting findings on aggregated retweeting behavior concern-

ing retweet history in egocentric social networks. That is, a user and her followers, or

pair-wised retweet analysis.

We take a closer look at the retweeting pairs, that is, the two involved users in

an instance of retweeting. More than 75% of users only retweeted once in the entire 7

months of data collection and 95% of the users have less than or equal to 5 retweets

in the whole duration. Figure 2.8 shows the retweeter count distribution. For each

individual user, we compute the number of his or her followers who retweet at least once

in the seven month time window. The distribution shows that more than 50% of users

have been retweeted by only one follower and 80% of users have been retweeted by

less than or equal to 5 followers. These two observations that are plotted in Figure 2.8

reveal that retweeting is not a daily activity for the vast majority of users.
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Figure 2.8: Retweet and Retweeter Count Distribution

We conducted an empirical analysis on retweet likelihood with respect to the

users’ retweeting history. The 7-month data is split into seven time frames by month;

February, March, . . ., August. Then we study the correlation between retweet history

and any future retweets, by comparing August retweet behavior to retweet behavior

occurring in previous months.

The first empirical study reveals the extent to which users stop retweeting in

the last month, August, compared to previous months of historical retweeting behav-

ior. The measure inactive ratio is thus in place to represent the percentage of people

who have at least one retweet in the previous months but stop retweeting in August.

Results are demonstrated in Table 2.6, in which each row represents different length

of historical retweeting data that is considered and the last column represents the per-

centage of people who stop retweeting in August. This table shows that retweet history

only tells part of the users’ retweeting “story”: within the set of users who retweet from

their friends in February, only 25.8% of them retweet again in August. Even when we

consider the retweet history over all six months, over one third stop retweeting.

The second empirical study reveals how the active retweeter behaves in the last

month considered in this paper, August of 2011. We compute the retweet likelihood in

August with respect to the number of retweets that were performed in the first seven

months. The distribution is plotted in Figure 2.9, in which the x-axis is log-scaled. A
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Table 2.6: Retweet Inactive Ratio

Time Span Test Month Inactive Ratio

Feb August 74.2%
Feb - Mar August 66.7%
Feb - Apr August 59.7%
Feb - May August 56.9%
Feb - Jun August 50.4%
Feb - Jul August 36.2%
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Figure 2.9: Retweet Likelihood Analysis.

roughly positive correlation (Pearson coefficient r = 0.21) between the retweet likeli-

hood and the number of historical retweets is observed. If a user retweets a lot from the

same friend (e.g., more than 100 retweets in the last six months), it is likely that she will

retweet again from that friend in the future. However, 7.8% of the users who retweeted

significantly in the last six months do not continue to retweet in the seventh month.

The three observations show that retweeting behavior is highly dynamic and

ephemeral. Many people stop retweeting and other people start to retweet at any time.

The study suggests that active retweeters are also likely to be information spread-

ers. However, the limitation of utilizing retweeting history for identifying information

spreaders is obvious: the silent majority are infrequent retweeters and are infrequently

retweeted by their followers. For these people, historical data is either absent or lim-

ited in usefulness, meaning more sophisticated approaches must be incorporated to

identify information spreaders in egocentric networks.

30



Methods for Identifying Information Spreaders

In this section, we attempt to automatically rank a user’s followers by their likelihood for

future retweeting. Our hypothesis is that retweet behavior of a given user’s followers

can be learned from the follower’s other online behavior.

We propose to do this by extracting features that may contribute to the follower’s

likelihood of retweeting. These features include user similarity, online interaction, struc-

tural features, and profile features. Some features are well discussed by prior work such

as [82, 89, 104, 131]. These features are summarized in Table 2.7 with descriptions in

the last column.

• Proximity-based features measure the similarity between an arbitrary pair of fol-

lowing users ui and uj , relative to the network topology. These features are

extracted from the Twitter following network and thus give no indication of con-

tent of tweets or retweets. Features include common friends, common followers,

common contacts, social status, etc.

• Content-based features measure the similarity of the user-generated content be-

tween two users. The set of features used in this paper are common hashtags,

common URLs, and tweet similarity.

• Interaction-based features indicate the frequency that two persons interact with

one another. We extract the number of replies and mentions between a pair of

users as the interaction features.

• Profile-based features include statistics related to each user: the number of

tweets; followees, followers and contact counts; the number of lists that user

appears on; the language a person uses; and the account creation date.
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Table 2.7: Feature Description

Group Feature Description

Proximity

Common Followers The number of users who follow both users

Common Friends The number of users who are followed by both users

Common Contacts The union of followers and friends

Mutual Link Indicator of whether two users follow each other

Social Status PageRank values

Content

Common Hashtags The number of common hashtags

Common URL The number of common URLs

Tweet Similarity The cosine similarity

Interaction
Reply The number of replies

Mention The number of mentions

Profile

Status The number of Tweets of a user

Lists The number of lists that belongs to a user

Language The preferred language of a user

Account The date that the user’s account is created

Friends The number of friends

Followers The number of followers

Contacts The number of contacts

Feature Extraction

For each tweet, we extract the following information where possible: the owner of the

tweet, the hashtag(s), URL(s), mentioned user(s) and the reply-to user. Then, we form

the previously discussed term-frequency vectors t(u), ht(u), and url(u). We found

that an average Twitter user uses the same small set of tweet terms and hashtags

repeatedly. However, URL usage statistics are very different. Although the average

number of hashtags and URLs are relatively large, the majority of the users use very

few of them, as indicated by the median numbers in Table 2.8. Most Twitter users have

used certain amount of tweet terms and hashtags within tweets. The last column “NZ”

(Not Zero) highlights the fact that hashtag usage is substantially more prevalent than

URL usage.
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Table 2.8: Feature Statistics

Measure
Unique Duplicate

NZ
Mean Median Mean Median

Terms 52.8 13 147.0 13 91.1%
Hashtag 9.1 4 52.4 4 92.7%
URL 14.1 1 16.4 1 52.9%

Methods for Ranking Followers

In this section, we summarize the set of approaches that are potentially suitable for

ranking a user’s followers by their likelihood of retweeting. All these methods assign

a score to an arbitrary following relationship, i.e., P (fi|u) ∈ [0, 1], fi ∈ Follower(u).

Some methods are very well developed but are also applicable in other tasks. To sim-

plify notations, we always use the hashtag ht(u) as an example to derive the proposed

approaches. The definitions can be generalized to the other features easily. Assume

ui and uj are two Twitter users that have a following relationship, e.g., ui is a follower

of uj .

• Shared Feature Counting. Countable features in this data set include shared

followers, followees, and contacts, shared hashtags and URLs. This approach is

reasonable because shared features and retweet likelihood are positively corre-

lated. However, the statistical results are not presented in this paper due to space

limitations.

|ht(ui) ∩ ht(uj)| (2.11)

• Jaccard Index measures the extent to which two sets overlap. It is a normalized

similarity measure.

|ht(ui) ∩ ht(uj)|
|ht(ui) ∪ ht(uj)|

(2.12)

• Adamic/Adar Index assigns more weights to shared features that are rarely used

by other people [1]. We consider the hashtags and URLs that are used by Twitter
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users in the paper to compute this index. Let ui and uj be two users, z be a

shared hashtag, F (z) represents the number of users who used the feature z in

the data set, the Adamic/Adar index between two users is given by

∑

z∈ht(ui)∩ht(uj)

1

logF (z)
(2.13)

We also consider a variation (i.e., Weighted Adamic/Adar Index) which takes into

account the number of times that a hashtag has been shared by two users. Let zui

be the number times that a hashtag z is used by user ui, we define the weighted

Adamic/Adar index in this way

∑

z∈ht(ui)∩ht(uj)

min(zui
, zuj

)

logF (z)
(2.14)

• Tweet Similarity is computed by modeling each user as a term-frequency vector.

The similarity of two users is thus given by their cosine similarity.

t(ui) · t(uj)

‖t(ui)‖ · ‖t(uj)‖
(2.15)

• Regression Models are used to investigate the relationship between a depen-

dent variable and one or more independent variables. In this paper, the depen-

dent variable is the occurrence of retweeting (more details in next section), and

the independent variables are the features with z-score normalization. Two re-

gression models are considered: logistic regression and random forest regres-

sion.

Logistic Regression [44] is widely used in many fields. Given a pair of two users

fi and u, fi ∈ Follower(u), the likelihood that a user fi will retweet from user u

can be estimated by

p(fi|u) =
1

1 + e−(w⊤xi+b)
, fi ∈ Follower(u) (2.16)
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where w and b represent the weight of the features and offset, respectively, vector

xi is a feature vector that is associated with fi and u.

Random Forest [12] is an ensemble learning method which consists of many

decision trees and can be used in both prediction and regression tasks. It takes

advantages of high accuracy, efficiency, and robustness to noise [92].

Table 2.9: Precision Performance of Various Methods

Method Top k Retrieved Followers

1 5 10 20 30 40 50 100 500

Hashtag

Common Tags .29 .18 .15 .13 .11 .11 .10 .09 .07

Jaccard Index .26 .16 .13 .11 .10 .10 .09 .08 .07

Adamic/Adar .33 .20 .16 .13 .12 .11 .10 .09 .07

Weighted Adamic/Adar .29 .18 .15 .12 .11 .11 .10 .09 .07

URL

Common URLs .42 .25 .19 .15 .13 .12 .11 .09 .07

Jaccard Index .41 .24 .18 .14 .12 .11 .10 .09 .07

Adamic/Adar .47 .28 .21 .16 .14 .12 .11 .09 .07

Weighted Adamic/Adar .47 .28 .21 .16 .13 .12 .11 .09 .07

Neighbor

Common Friends .09 .07 .07 .07 .07 .07 .07 .06 .06

Jaccard Index (CFR) .15 .10 .09 .08 .07 .07 .07 .07 .06

Common Followers .11 .09 .08 .08 .08 .07 .07 .07 .06

Jaccard Index (CFO) .15 .11 .10 .09 .08 .08 .08 .07 .06

Common Contacts .10 .08 .08 .07 .07 .07 .07 .07 .06

Jaccard Index (CCO) .16 .11 .09 .08 .08 .07 .07 .07 .06

Interaction
Reply .15 .13 .13 .12 .12 .12 .12 .12 .12

Mention .18 .15 .14 .14 .14 .14 .14 .13 .13

Similarity Tweet .37 .21 .16 .13 .12 .11 .11 .10 .08

Regression
Logistic .23 .15 .13 .11 .10 .10 .09 .08 .07

Random Forest .42 .24 .18 .14 .12 .11 .10 .09 .07

It is possible to design even more sophisticated models which integrate retweet

history (e.g., the number of retweets) and other relevant features. In this work, we use

the retweet history as ground truth, thus it is not used as a feature. In addition, our

primary focus of this work is to introduce the information spreader prediction problem.

Therefore, there are plenty of future research opportunities along this direction, e.g.,

designing more sophisticated approaches and verifying their effectiveness in prediction.
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Experimental Results

We first introduce the ground truth construction and the measure that will be used to

evaluate the performance of above methods. Then we present the experimental results.

Ground Truth Construction. The emergence of retweet between a user and

her friends is deemed as ground truth. More specifically, if a user retweets at least once

from her friends, then the directed link her to the friend is labeled as positive (i.e., ‘+1’),

whereas, if no retweet occurs during the seven-month time frame, this link is labeled as

negative (i.e., ‘–1’). Thus, for each user, followers are in two categories: the positive set

in which all followers retweet at least once and the negative set in which all followers

never retweet.

Evaluation Strategy. We evaluate the performance of different methods by the

measure precision which is widely used in information retrieval tasks. More specifically,

for each user, we rank the followers by their likelihood in retweeting from the user in

descending order, then compare the top-k ranked users with the ground truth. In the

following experiments, the number k is chosen as 1, 5, 10, 20, 30, 40, 50, 100 and 500.

The precision that is averaged over all users in the Twitter social network is reported.

Experimental Results. Table 2.9 lists the precision performance of the different

methods. Each column represents the top k users that are retrieved, e.g., column 1

indicates that we only consider the first user who is recommended by the corresponding

methods.

The URL-based methods outperform the other methods, especially when the

selected number k is small. For example, the best performance of URL-based approach

is 11.9% better than the second best approach when k = 1. We also notice that different

features have different strengths in predicting retweets: URL is the best, followed by

tweet similarity and hashtags. Statistically, when comparing the best performances of
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URL-based methods to those of feature based methods, the relative improvements are

30.5% and 72.4%, respectively. This result is consistent with prior studies that tweets

with URLs are more likely to be retweeted by others [59, 82, 104].

There are several observations of the different treatments of the features: (1)

the Adamic/Adar Index consistently outperforms the other approaches, (2) applying

weights to the Adamic/Adar index does not improve the performance at all, suggesting

information spreaders are likely to be infrequent retweeters, and (3) the performance of

common feature counting is comparable to that of the Jaccard Index.

We found interaction features are not suitable for predicting which followers are

likely to retweet because there are too few interactions in the data, e.g., only around

4% and 5% of the tweets are related to reply and mention, respectively. On the other

hand, since more than 90% of users have at least one tweet, the tweet similarity is a

relatively strong feature for retweet prediction.

Regression models that take all relevant features into account do not improve

the retweet prediction any further. Logistic regression is less effective than the random

forest approach. For both regression models, we randomly sample a certain amount of

data as training data. Different sizes of instances (i.e., from 1, 000 to 20, 000) that are

used to train the regression models are tried, and we find sizes are insensitive to the

prediction performance. The results are not presented due to space limitation.

Determine the Best Strategy. For the studied Twitter users who have been

retweeted at least once by their followers, the majority of them are retweeted by a very

small number of followers. Figure 2.8 shows that around 50% of Twitter users are

retweeted by only one follower. We assign users into different groups by the number

of retweeters, then study which methods might be appropriate for diffrent user groups.

For example, “group 1” represents the group in which users are retweeted by only one
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Figure 2.10: Precision performance of different approaches

follower, and “group 10” represents that these users are retweeted by more than 5 but

at most 10 followers. These groups have different characteristics and would deserve

different treatments.

We consider four methods in this experiment: Adamic/Adar Index on hashtag,

Adamic/Adar Index on URL, Tweet Similarity and Random Forest. Results are pre-

sented in Figure 2.10 in which each figure represents the precision performance on the

corresponding user group. In order to return the top 10 most likely to retweet follow-

ers, we find in “group 1”, it is preferable to use Random Forest or Tweet Similarity for

retweet prediction, for “group 5” and “group 10”, both Random Forest and URL-based

approaches are good candidates. Otherwise, URL-based approach is preferred. We

conjecture that for user groups with an extremely small number of retweeters, users

might not share any of the single features (e.g., hashtag, URL), so it is imperative to

take other information (e.g., tweets or other features) into account.

Are Information Spreaders Important Persons? Important Persons (IP) or in-

fluential persons in online social networks are usually characterized by their Pagerank

values [59]. For each Twitter user, two ranked lists are present: the list of important per-
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Table 2.10: Comparing information spreaders to important people

Measures and Methods
Top k Information Spreaders

1 5 10 15 20 25 30 35 40 45 50 100

nDCG

URL .01 .03 .05 .06 .07 .08 .09 .10 .11 .12 .13 .18
HashTag .02 .05 .06 .07 .09 .10 .11 .12 .13 .14 .14 .20
Similarity .02 .03 .05 .06 .07 .08 .09 .10 .11 .12 .13 .18
Random Forest .01 .03 .05 .06 .07 .08 .09 .10 .11 .12 .13 .18

Jaccard Index

URL .01 .03 .04 .06 .07 .09 .10 .11 .11 .12 .13 .17
HashTag .02 .03 .04 .06 .07 .08 .09 .10 .10 .11 .12 .16
Similarity .02 .03 .04 .05 .07 .08 .09 .10 .11 .11 .12 .16
Random Forest .01 .02 .04 .05 .06 .07 .08 .09 .10 .10 .11 .15

sons (IP), and the list of information spreaders (IS). Both ranked lists are in descending

order either by their Pagerank values or the likelihood of retweeting. Comparing the IS

list to the IP list is able to answer the question. Two measures the discounted cumu-

lative gain (nDCG) and the Jaccard Index are used to quantify the difference between

the two lists. In nDCG, the relevance score is binary and is determined in the following

way: if the i-th user IS(i) appears in the first i users in the IP list, the relevance value

is 1, otherwise, it is 0. That is,

reli =











1 IS(i) ∈ {IP (1), IP (2), . . . , IP (i)}

0 otherwise

(2.17)

Both measures fall between 0 and 1. Value 0 represents that two lists are completely

different, and value 1 represents that the two lists are exactly the same. So if the infor-

mation spreaders are equal to the important persons in each user’ follower networks,

we would expect that the mean nDCG value and Jaccard Index that are averaged over

all Twitter users are close to 1. Results in Table 2.10 disprove this statement: in fact, the

small values suggest that information spreaders are very unlikely to be the important

persons in the egocentric networks, and even unlikely to be important persons globally.

The results are obtained on the four best strategies: Adamic/Adar Index on URL and

hashtag, tweet similarity and Random Forest.

In social networking websites, as more and more people are connected with

their kinds, groups form naturally. In recent years, many work are dedicated to find

39



groups from the network structure, user generated content or the combination of both,

ignoring the essential task of understanding these social groups. Next we introduce our

novel work for group understanding.
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Chapter 3

UNDERSTANDING SOCIAL GROUPS

In social network analysis, analysis at group level attracts increasingly interests from

social science and applied research such as behavioral targeting [71]. One of the

urgent tasks is to understanding social groups that are formed in social media websites,

which is the focus of this Chapter.

We first propose a novel framework to co-clustering users and tags into groups.

This representation of groups entails who are interested in what, helping to answer

questions such as “who these people are”, “why they form a group”, etc. To generalize,

with the presence of social groups (both explicit and implicit), we propose the group

profiling as a systimatic approach for group understanding.

3.1 Co-clustering Users and Tags

Community detection, which is generally based on link analysis, attempts to return a

community structure, but ignores the interpretation of these communities. That is, there

is no straightforward proof showing the focus of a group or what a group is about. On

the other hand, social network sites usually provide both link information and various

user generated content (e.g., tags). Can we obtain social groups with meaningful de-

scriptions such that the groups can be easily interpreted.

We propose to co-clustering users and tags to obtain ‘meaningful’ community

structure. Let us demonstrate the high level idea with a toy example which is shown in

Figure 3.1 with two communities. Vertices u1−u5 on the left represent users, t1− t4 on

the right represent tags and edges represent tag subscription relation between users

and tags. Based on the graph structure, it is more reasonable to have two overlapping

clusters (u1, u2, u3, t1, t2) and (u3, u4, u5, t3, t4), in which the users’ interests of each

cluster can be summarized using t1, t2, and t3, t4, respectively.
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Figure 3.1: A 2-community toy example

A user usually has multiple types of relationships, therefore, groups usually over-

lap. An interesting observation in social life is that a connection is often associated with

one affiliation [107]. For instance, a person likes or dislikes a movie, he/she is or is not

a member of special interest group, and so on. Instead of clustering vertices, clustering

edges seems more appropriate and obtains overlapping communities.

Notations and Formulation

Let U = (u1, u2, . . . , um) denote the user set, T = (t1, t2, . . . , tn) the tag set. A commu-

nity Ci(1 ≤ i ≤ k) is a subset of users and tags, where k is the number of communities.

As mentioned above, communities usually overlap, i.e., Ci

⋂

Cj 6= ∅ (1 ≤ i, j ≤ k). On

the other hand, users and their subscribed tags form a user-tag matrix M, in which each

entry Mij ∈ {0, 1} indicates whether user ui subscribes to tag tj . So it is reasonable to

view a user as a sparse vector of tags, and each tag as a sparse vector of users.

We formulate the overlapping co-clustering problem as follows:

• Input: A user-tag subscription matrix MNu×Nt
, where Nu and Nt are the numbers

of users and tags, respectively, and a scalar k.

• Output: k overlapping communities which consist of both users and tags.
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The Co-Clustering Framework

The observation that a user is usually involved in several affiliations but a link is usu-

ally related to one community enlightens us to cluster edges instead of nodes. After

obtaining edge clusters, communities can be recovered by replacing each edge with its

two vertices, i.e., a node is involved in a community as long as any of its connection is

in the community. Then the obtained communities are often highly overlapped.

In a user-tag network, each edge is associated with a user vertex ui and a tag

vertex tp. If we take an edge-centric view by treating each edge as an instance, and

two vertices as features, each edge can be represented as a sparse vector. The length

of vector is Nu +Nt, in which the first Nu entries correspond to users, and the other Nt

entries correspond to tags. For example, the edge between u1 and t1 in Figure 3.1 can

be represented as (1, 0, 0, 0, 0, 1, 0, 0, 0), in which only entries for vertices u1 and t1 are

non-zero.

Communities that aggregate similar users and tags together can be detected by

maximizing intra-cluster similarity, which is shown in Eq. (3.1).

argmax
C

1

k

k
∑

i=1

∑

xj∈Ci

Sc(xj, ci) (3.1)

where k is the number of communities, C = {C1, C2, . . ., Ck}, xj represents an edge,

and ci is the centroid of community Ci. This formulation can be solved by using k-

means. However, k-means is not efficient for large scale data sets. We propose to

use EdgeCluster which is a k-means variant and is a scalable algorithm to extract com-

munities for sparse social networks [107]. EdgeCluster maintains an indexing struc-

ture which significantly reduces the number of comparisons between instances and the

centroids. It is reported to be able to cluster a sparse network with more than 1 million

nodes into thousands of clusters in tens of minutes. The clustering quality is compara-
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ble to modularity maximization but the time and space reduction is significant. It should

be noted that the network in [107] is 1-mode, but the user-tag network is 2-mode.

The expected density of the user-tag network is shown in Eq. (3.2), which guar-

antees an efficient solution by applying EdgeCluster.

density ≈ γ − 1

2− γ
· (d2−γ − 1) · 1

Nu

(3.2)

where d is the maximum tag degree, Nu is the number of users in this graph and γ is

the exponent of the power law distribution, which usually falls between 2 and 3 in social

networks [84]. The maximum degree d is usually large in a power law distribution.

Thus, the density is approximately inverse to the number of users.

A key step in clustering edges is to define edge similarity (centroids can be

viewed as edges as well). Given two edges e(ui, tp) and e′(uj, tq) in a user-tag graph,

the similarity between them can be defined in Eq. (3.3):

Se(e, e
′) = αSu(ui, uj) + (1− α)St(tp, tq) (3.3)

where Su(ui, uj) is the similarity between two users, and St(tp, tq) is the similarity be-

tween two tags. This is reasonable because the edge similarity should be dependent

on both user and tag similarity. And parameter α (0 ≤ α ≤ 1) controls the weights of

users and tags. Considering the balance between user similarity and tag similarity, α

is set to 0.5 in our experiments.

In the following sections, we show that our framework can cover different simi-

larity schemes.

Independent Learning Independence assumption is a popular way to simplify

the problem we want to solve. If two tags are different, their similarity can be defined
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as 0, and 1 if they are the same. Thus the similarity can be represented by an indicator

function which can be shown by Eq. (3.4).

δ(m,n) =











1 m = n

0 m 6= n
(3.4)

The user-user similarity is also defined in a similar way. Cosine similarity is

widely used in measuring the similarity between two vectors. Given two edges e(ui, tp)

and e′(uj, tq), their cosine similarity can be rewritten in Eq. (3.5).

Se(e, e
′) =

1

2
(δ(ui, uj) + δ(tp, tq)) (3.5)

Following Eq. (3.3), we can define the similarity between two edges as in Eq. (3.5),

which is essentially the cosine similarity between two edges.

Normalized Learning In online social networks, the tag usage behavior differs

one user to another. For example the tag usage distribution follows a power law: some

tags are shared by a small group of people, which might suggest a higher likelihood

that they form a community. On the other hand, popular tags may not be discriminative

in inferring group structures. Thus there is a need to differentiate the importance of

different users and tags.

Let dui
denote the degree of the user ui, and dtp represent the degree of tag tp in

a user-tag network. After applying normalization, edge e(ui, tp) can be represented by

(0, . . . , 0, 1
dui

, 0, . . . , 0, 1
dtp

, 0, . . . , 0). Given two edges e(ui, tp) and e(uj, tq), the cosine

similarity after normalization between them can be written in Eq. (3.6).

Se(e, e
′) =

dtpdtqδ(ui, uj) + dui
duj

δ(tp, tq)
√

d2ui
+ d2tp

√

d2uj
+ d2tq

(3.6)
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Setting α to 0.5, Su(ui, uj) and St(tp, tq) given by Eq. (3.7), we can derive

Eq. (3.6) from Eq. (3.3). Thus normalized edge similarity is consistent with the pro-

posed framework.

Su(ui, uj) =
2dtpdtqδ(ui, uj)

√

d2ui
+ d2tp

√

d2uj
+ d2tq

St(tp, tq) =
2dui

duj
δ(tp, tq)

√

d2ui
+ d2tp

√

d2uj
+ d2tq

(3.7)

It is noticed that the similarity between two users is not only related to users,

but also the tags they are associated with. Eq. (3.5) and Eq. (3.6) both assume tags

(users) are independent, which is not true in real applications. We next propose a

similarity measurement based on correlation.

Correlational Learning Users often use more than one tag to describe the main

topic of a bookmark. Grouped tags indicate their correlation. For instance, the tags car

information, auto info and online cars info, are used to describe a blog1 registered on

BlogCatalog, are different, but semantically close.

In a user-tag network, a user can be viewed as a vector by treating tags as

features. On the other hand, a tag can also be viewed as a vector by treating users

as features. Representing users in a latent semantic space captures the correlation

between tags, for example, mapping several semantically close tags to a common latent

dimension. Let t̃1, t̃2, . . . , t̃m be the orthogonal basis of a latent semantic sub-space for

tags, user vectors in the original space can be mapped to new vectors in the latent

space, which is shown in Eq. 3.8.

ũi(t̃1, t̃2, . . . , t̃m) = M(ui(t1, t2, . . . , tn)) (3.8)

where M is a linear mapping from the original space to the latent sub-space. Singular

Value Decomposition (SVD) is one of the ways to obtain the set of orthogonal basis.

1http://www.blogcatalog.com/blogs/online-cars-info-auto-info-car-news.html
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The singular value decomposition of user-tag network M is given by M = UΣV ⊤,

where columns of U and V are the left and right singular vectors and Σ is the diagonal

matrix whose elements are singular values. User vectors in the latent space can be

formulated in Eq. (3.9).

ui(t1, t2, . . . , tn) = {UΣ}iV ⊤

⇔ui(t1, t2, . . . , tn) = ũi(t̃1, t̃2, . . . , t̃m)V
⊤

⇔ũi(t̃1, t̃2, . . . , t̃m) = ui(t1, t2, . . . , tn)V

(3.9)

where ui(t1, t2, . . . , tn) and ũi(t̃1, t̃2, . . . , t̃m) are the user vectors in the original and

latent space, respectively.

However, only a small set of right singular vectors V ′ = (v2, v3, . . . , vm) are

necessary to be computed. Dhillon [23] suggests that it be ⌈log2 k⌉ + 1. Recent ex-

perimental evaluation in text corpus suggests the dimension between 50 and 1,000

depending on the corpus size and the problem being studied [61]. Another reason of

taking a relatively small m is to reduce noise in the data. The user vectors in the latent

space can be represented by pluging V ′ into Eq. (3.9). We set m to 300 for social media

data sets. The user similarity and tag similarity are then defined by the corresponding

vectors in the latent space.

Su(ui, uj) =
ũi · ũj

‖ũi| ‖ũj‖

St(ti, tj) =
t̃i · t̃j

‖t̃i| ‖t̃j‖

(3.10)

The above treatment is related to spectral clustering on graphs [74].

Lz = λWz (3.11)

where z solves the generalized eigenvectors of above equation, L is the laplacian ma-

trix and W is the adjacency matrix, their definitions are shown in Eq. (3.12) in which D1
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and D2 are diagonal matrix whose non-zero entries are user degrees and tag degrees,

respectively.

L =







D1 −M

−M⊤ D2







W =







0 M

M⊤ 0







(3.12)

Let Z =







U

V






denote the eigenvectors of Eq. (3.11). The generalized eigen-

vector problem can be rewritten by:







D1 −M

−M⊤ D2













U

V






= λ







D1 0

0 D2













U

V






(3.13)

After simple algebraic manipulation, we obtain

M = (1− λ)V ⊤D1U

M⊤ = (1− λ)U⊤D2V

(3.14)

Thus eigenvectors Z are actually the right and left singular vectors of adjacency

matrix M . Thus top singular vectors (except the principle singular vector) of the ad-

jacency matrices contain partition information [23, 74, 124]. Since the user-tag graph

studied in this paper is connected, the principle singular vector is discarded.

Data Collection and Statistics

BlogCatalog is a social blog directory where the bloggers can register their blogs under

predefined categories. We crawled user names, user ids, their friends, blogs, the as-

sociated tags and blog categories. For each blog, users are allowed to specify several

tags as a short description. These tags are usually correlated with each other. We

crawled more than 10,000 users. Users who have no tags are removed from the data
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Table 3.1: Statistics of BlogCatalog and Delicious

BlogCatalog Delicious

# of users 8,797 11,285

# of unique tags 7,418 13,592

# of links 69,045 112,850

density 1.1 ×10−3 7.3 ×10−4

maximum tag usage 165 10

minimum tag usage 1 10

average tag usage 7.8 10

set, and tags that were used by less than two persons were removed as well. Finally,

we obtained a data set with 8,797 users and 7,418 tags.

Delicious is a social bookmarking website, which allows users to tag, manage,

and share online resources (e.g., articles). For each resource, users are asked to

provide several tags to summarize its main topic. We crawled 11,285 users whose in-

formation include user name, user id, their friends and fans, their subscribed resources

and tags for each resource. The top 10 most frequent tags of each person are kept,

which is 13,592 in total. In contrast to BlogCatalog, two kinds of links are formed in

Delicious. Fans are the connections from other people (in-links) and friends are the

links point to others (out-links). Thus, the connections are directional in Delicious.

The statistics of both data sets are summarized in Table 3.1. The most impor-

tant difference between the two data sets is that BlogCatalog has category information

which can be served as a ground truth for clustering distribution.

Interplay between Link Connection and Tag Sharing

There exist explicit and implicit relations between users. Examples of explicit relations

are friends or fans people choose to be. Examples of implicit relations are tag sharing,

i.e., people who use the same tags. Are there any correlation between the two differ-

ent relations? What drives people connect to others? Is it a random operation? We

conducted statistical analysis between user-user links and tag sharing.
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Figure 3.2: Tag sharing v.s. connectivity

In the first study, we fix users who have or have no connection with others, then

show the tag sharing probabilities. Figure 3.2 shows the tag sharing probabilities in

BlogCatalog and Delicious data sets. For Delicious data, the friends network and fans

network are evaluated separately. All three graphs show a similar pattern that the tag

sharing probability is higher among users who are connected than users who are not.

This can be explained by the homophily principle that people tend to connect with those

who are like-minded.

Figures 3.3 and 3.4 are the probability that two users being connected if they

share tags in BlogCatalog and Delicious, respectively. In Figure 3.3, the probability of

a link between two users increases with respect to the number of tags they share. In

Delicious, similar pattern is observed. It is also intriguing to show the probability that

two users are connected is higher in fans network than that in friends network, which

implies users are more similar to their fans than their friends.

Clustering Evaluation

The clustering evaluation consists of three studies. First, cross-validation is performed

to demonstrate the effectiveness of different clustering algorithms in BlogCatalog data

set. Then we study the correlation between user connectivity and co-occurrence in

extracted communities. Finally, concrete examples illustrate what clusters are about.
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Table 3.2: Cross Validation Performance on BlogCatalog (Micro-F1)

Training Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%

Correlational Learning 38.45 37.75 40.53 38.84 41.92 41.30 43.77 43.15 44.88
Independent Learning 33.96 36.15 35.07 34.72 35.36 37.32 42.12 41.83 43.09
Normalized Learning 23.89 28.10 29.22 32.14 34.52 35.19 35.79 35.74 37.62
EdgeCluster(user-user) 24.85 25.55 26.27 25.18 25.28 24.80 24.11 23.94 22.22
Dhillon’s Co-clustering 23.18 24.18 24.11 24.30 24.34 24.23 24.18 24.15 23.97

Table 3.3: Cross Validation Performance on BlogCatalog (Macro-F1)

Training Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%

Correlational Learning 28.85 26.83 27.68 28.52 28.18 29.69 28.60 30.16 29.96
Independent Learning 23.84 25.32 24.34 23.81 25.06 26.28 29.05 27.27 26.84
Normalized Learning 14.76 17.61 16.85 18.78 21.66 21.80 22.07 22.39 24.20
EdgeCluster(user-user) 14.24 15.16 16.43 15.75 15.96 16.08 15.42 15.78 14.99
Dhillon’s Co-clustering 4.95 5.06 5.11 5.19 5.07 5.18 5.17 5.23 4.66

Comparative Study

In BlogCatalog, categories for each blog are selected by the blog owner from a prede-

fined list. A category is treated as a community or group which suggests the common

interest of people within the group. For example, category “Blog Resources” is related

to the gadgets used to manage blogs or to communicate with other social media sites.

Around 90% of bloggers had joined two categories, and few bloggers had more than 4

categories.

With category information, certain procedures such as cross validation (e.g.,

treating categories as class labels, cluster memberships as features) can be used to

show the clustering quality. Linear SVM [30] is adopted in our experiments since it

scales well to large data sets. As recommended by Tang et al. [107], 1,000 communities

are used in our experiments. We vary the fraction of training data from 10% to 90% and

use the rest as test data. The training data are randomly selected. This experiment is

repeated for 10 times and the average Micro-F1 and Macro-F1 measures are reported.
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Tables 3.2 and 3.3 show five different clustering methods and their prediction

performance. In this table, the fourth algorithm EdgeCluster [107] uses user-user net-

work rather than the user-tag network. Dhillon’s co-clustering algorithm is based on

Singular Value Decomposition (SVD) of the normalized user-tag matrix. As shown in

Tables 3.2 and 3.3, Correlational Learning consistently performs better, especially when

the training set is small. And normalization does not improve performance. This sug-

gests normalization should be taken cautiously. Dhillon’s co-clustering method which

can only deal with non-overlapping clustering does not perform well compared to other

methods.

It is also interesting to notice that clustering based on user-tag is significantly

better than user-user connection which suggests that meta data (e.g., tags) rather than

connection is more accurate in measuring the homophily between users. The cluster-

ing difference between meta data and links also reveals promising applications of the

framework in link prediction systems. Next, we try to interpret clustering results.

Connectivity Study

We study the correlation between user co-occurrence in extracted communities and

the actual social connections between them. We also study the connectivity between

users who are in the top similar list. 1,000 overlapping communities are extracted by

Correlational Learning.

In Table 3.4, first row represents the number of communities two users co-occur,

and each entry in this table is the probability that two users have a connection es-

tablished in actual social networks. The last column lists the probability if two users

are connected randomly. Higher probability than randomness suggests that users

within communities are similar to each other. As observed in Table 3.4, frequent co-

occurrence of users in different communities implies that they are more likely to be

connected. Therefore, it is reasonable to state that higher co-occurrence frequency
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Figure 3.3: Link probability w.r.t tag sharing in BlogCatalog
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Figure 3.4: Link probability w.r.t tag sharing in Delicious

suggests that two users are more similar. Similar patterns are observed in the other

two methods.

We compute pairwise cosine similarity between users (in the latent space) and

sort them in descending order, then study the dis-connectivity between users who are

most similar. Figure 3.5 shows that the probability of being disconnected is higher than

96% and 99% in BlogCatalog and Delicious, respectively, which means that the major-

ity of homogeneous users are not connected in actual social networks. For example,

users marama2 and ameer1573 both are interested in the online game “World of War-

2http://www.blogcatalog.com/user/marama
3http://www.blogcatalog.com/user/ameer157
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Figure 3.5: Probability being Dis-connected between Top Similar Users

Table 3.4: Co-occurrence vs. Connectivity

# of Co-occurrence 1 2 3 4 5 Random

BlogCatalog(×10−2) 1.64 2.78 4.27 4.43 4.48 0.74

Delicious(×10−3) 2.52 3.83 3.94 3.97 3.45 0.35

craft”. Their tags highly overlap, but there is no connection between them. In online

social networks, most users are scattered in the long tail, and are usually unreachable

by following their and their friends’ links. But it is possible to connect them with our

Correlational Learning.

Illustrative Examples

Below we use “category” to represent the ground truth and use “cluter” to represent the

groups that we obtained via the proposed Correlational Learning. Two clusters cluster-

health and cluster-nutrition are sub-groups of the Health category. The two clusters are

different as suggested by the tag clouds and, meanwhile, they overlap with each other

to some extent.

Health is the second largest category (the largest is personal) in BlogCatalog,

a hot topic that attracts lots of cares. To visualize communities, we create tag clouds

using Wordle4. In a tag cloud, size of a tag is representative of its frequency or impor-

4http://www.wordle.net/
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Figure 3.6: Tag cloud for category-health in BlogCatalog

Figure 3.7: Tag cloud for cluster-health in BlogCatalog

tance in a set of tags or phrases. Figure 3.6 shows the tag cloud for Category Health

(category-health) including all tags of this category. The most frequent 5 tags, health,

weight loss, diet, fitness and nutrition, are all about health.

The largest cluster about Health obtained by Correlational Learning is cluster-

health with 127 users and 102 tags. The cluster that has the maximum user overlapping

with cluster-health is cluster-nutrition with 83 users and 25 tags. Their tag clouds are

shown in Figures 3.7 and 3.8. Between the two clusters, there are 18 users and 3 tags

health, nutrition and weight loss in common. Both clusters are related to health but

the first has an emphasis on physical health, highlighted by tags arthritis, drugs, food,

dentist, and the second is more about nutrition.
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Figure 3.8: Tag cloud for cluster-nutrition in BlogCatalog

We also study the tag overlapping between category-health and cluster-health,

and between category-health and cluster-nutrition. The top 102 tags of category-health

are compared to the tags of cluster-health and the top 25 tags of category-health to

those of cluster-nutrition. The numbers of shared tags are 16 for cluster-health and

9 for cluster-nutrition. The overlapping analysis indicates that tags of the two clusters

differ (with only 3 tags in common), the tags of the two clusters are not the same as

those of category-health, and each cluster represents a new concept (or a sub-topic of

health) that is buried in the tags of category-health.
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3.2 Group Profiling for Understanding

Recently, a surge of work has reported statistical patterns presented in complex net-

works across many domains [83, 16]. The majority of work studies global patterns

presented in a static or an evolving network [57, 67]. Microscopic patterns such as

individual interaction patterns are also attracting increasing attention [66]. We, alterna-

tively, focus on meso-level or group-level analysis of a network. A variety of community

detection (a.k.a. finding cohesive subgroups [119]) methods have been proposed to

capture such social structures in a network [85, 87, 33].

While a large body of work has been devoted to discovering groups based on

network topology, few systematically delve into extracted groups to understand the for-

mation of a group. Some fundamental questions remain intriguing:

How to understand a social structure emanated from a network? What is

the particular reason that binds group members together?

Some pioneering work attempts to understand group formation based on sta-

tistical structural analysis. [7] studied prominent online groups in the digital domain,

aiming at answering some basic questions about evolution of groups. One of them is:

what are the structural features that determine which group an individuals will join. They

found that the number of friends in a group is the most important factor to determine

whether a new actor would join the group. This result is interesting, though not surpris-

ing. It provides a global level of structural analysis to help understand how communities

attract new users. [68] observed that spectral clustering (a popular method used for

community detection) always finds tight and small-scale but almost trivial communities,

i.e., the community is connected to the remaining network via one single edge. Both
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papers above focus on a global (statistical) picture of communities. Further research is

required to understand the formation of a particular group.

In social media, people are likely to interact with each other if they share certain

similarity (a.k.a. homophily [77]), resulting in assorted communities. Various reasons

lead to the formation of a community. For example, some users may interact with each

other because they attend the same university; some users form a group as they are

enrolled in an event. Users can also coalesce if they share the same political view.

In this work, we attempt to understand a group from a descriptive aspect, which helps

explain the group formation.

• Given individual attributes, can we find out group-level shared commonalities?

• If so, what are the effective approaches?

We aim to extract group attributes that help understand a group. For the afore-

mentioned examples, the group attributes, ideally, should indicate the university, the

event, and the political view, respectively.

Extracting descriptive attributes for a group of people is referred as group pro-

filing [110]. To construct a group profile, we study strategies to extract attributes for a

group when individual attributes are available. This is especially applicable in social

media since individuals might share their profiles as well as user activities, such as

blog posts, status updates, comments, visited web pages, clicked ads, and so on. This

large number of noisy individual traces pose a challenge to extract useful information to

describe a group. In this work, three sensible methods are presented for comparative

study: aggregation, differentiation, and egocentric differentiation based group profil-

ing. Another challenge is that evaluation usually requires extensive human efforts to

delve into group member activities to figure out the shared similarity among them. We
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carefully designed experiments to alleviate human burden for evaluation. Extensive

experiments with concrete case studies on two social media domains demonstrate the

effectiveness of group profiling based on (egocentric) differentiation. We also enclose

a discussion of potential applications based on group profiling, paving the way for in-

depth network analysis at large as well as effective group search and retrieval.

Group profiling is to construct a descriptive profile for a provided group. In this

section, we motivate this task and formally define the problem.

Motivation

According to the concept of Homophily [77], a connection occurs at a higher rate be-

tween similar people than dissimilar people. Homophily is one of the first characteristics

studied by early social network researchers [6, 121, 10], and holds for a wide variety

of relationships [77]. Homophily is also observed in social media [31, 113, 62]. In this

work, we study the “inverse” problem: given a group of users, can we figure out why

they are connected? Or what is their shared similarity?

It is impossible to answer these questions if no information other than a social

network is available. Luckily, social media often provides more information than just a

network. In blogosphere, users post blogs and upload tags. On Facebook, users chat

with each other, update their status, leave comments and share interesting stories.

These different activities reflect online social life of users, and thus can be used to

answer the aforementioned questions.

Social media sites often come with a social network between users. For in-

stance, in Twitter5, there is a following-follower network. Some community detection

methods can be applied to find out the implicit groups hidden beneath the interactions.

Group profiling, in this case, can be used to understand the extracted communities,

facilitating the network analysis and community tracking.

5http://twitter.com/
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At some other sites like Livejournal6, Flickr7, YouTube8, and Facebook9, users

are allowed to form explicit groups. Various explicit groups, besides implicit groups,

have cropped up. Some might suspect that the group name and description already

provide enough information to peek into one explicit group. Unfortunately, this is not

necessarily true. In Livejournal, one of the data sets we studied in the experiments, we

encountered a large number of communities whose profile page provides little informa-

tion on the group. For instance, the community profile of fruits10 does not say much

about the exact topic of the community. Group name might provide some hints, but can

be misleading in certain cases. Take fruits as an example again. A first glimpse at the

community name led us to think that this community is composed of people who are

fond of fruits. However, after we conduct group profiling11 on this community, we obtain

the following top-ranking tags for this group:

fruits, japan, hello kitty, sanrio lolita, fashion, Japanese street fashion.

Except the first tag that coincides with the group name, all the other tags indicate

this group is more about Japanese fashion. Though this group starts with fruits, some

characters in animes and mangas like hello kitty12 are often discussed as well. It is

known that hello kitty is a very popular character used in Japanese fashion. Group pro-

filing can help understand implicit communities extracted based on network topology

as well as explicit communities formed by user subscriptions. Besides understand-

ing social structures, group profiling also assists network visualization and navigation,

tracking the topic shift of a group, group modeling, event alarming, direct marketing and

6http://www.Livejournal.com/community/
7http://www.flickr.com/groups/
8http://www.youtube.com/groups_main
9http://www.facebook.com/

10http://community.Livejournal.com/fruits/profile
11More details in later parts.
12http://www.sanrio.com/
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connecting the dots. As for direct marketing, it is possible that the online consumers

of products naturally form several groups, and each group posts different comments

and opinions on the product. If a profile can be constructed for each group, the com-

pany can design new products accordingly based on the feedback of various groups.

It is noticed that an online network (e.g., blogosphere) can be divided into three re-

gions [57]: singletons who do not interact with others, isolated communities, and a

giant connected component. Isolated communities actually occupy a very stable por-

tion of the entire network, and the likelihood of two isolated communities to merge is

very low as a network evolves. If group profiles are available, it is possible for one

group or a singleton to find other similar groups and make connections of segregated

groups of similar interests.

Problem Statement

In order to understand an emerging structure in social media, we aim to build a group

profile that illustrates the concerns of a group. This group profiling problem can be

stated formally as follows:

Given:

• A social network G = (V,E) where V is the vertex (actor) set, and E

the edge (connection) set;

• A particular group g = (Vg, Eg) where Vg ⊆ V , and Eg ⊆ Vg × Vg,

Eg ⊆ E.

• Individual attributes A ∈ {0, 1}n×d where n is the number of nodes in

the network G, and d is the total number of attributes;

• The number of group attributes to pick k.

Output:
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• A list of top-k descriptive attributes of group g.

Here we assume the attributes of individual users are boolean. For instance,

one attribute can denote the gender of actors, or their attitude toward abortion. It can

also represent whether a word occurs in an actor’s status update, blog post or recently

uploaded tags. In some real-world applications, individual attributes might be categor-

ical rather than boolean, e.g., a user’s favorite color, location, age, etc. For this kind

of attributes, we can convert them into multiple boolean features. For example, if the

color attribute contains three values {red, yellow, green}, we can convert it into three

boolean features Ared, Ayellow, and Agreen. So Ared = 1 means the user likes red.

Thereafter, we just focus on boolean attributes. For convenience, we say a node has

attribute Ai if Ai = 1 for the node.

It is desirable if a group profiling method satisfies the following properties:

• Descriptive. The selected attributes for a group should reflect the foundation of a

group and the shared interest or the associated affiliation.

• Robust. Mountains of data are produced each day in social media. These data

tend to be very noisy. The group profiling method should be robust to noise.

• Scalable. In social media, a network of colossal size is the norm. Typically, one

network involves hundreds of thousands or millions of actors. E.g., Livejournal

has more than 27 million registered users and around 140,000 users updated

their journals in last 24 hours13. Twitter has 190 million users and tweets 65 mil-

lion times a day14. And Facebook even has more than 500 million active users,

and on average, each user creates 90 pieces of content in a month15. Mean-

while, networks are highly dynamic. Each day, new users join a network, and

13http://www.Livejournal.com/stats.bml
14http://techcrunch.com/2010/06/08/twitter-190-million-users/
15http://www.facebook.com/press/info.php?statistics
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Table 3.5: Statistics on group and attribute

group + −
A = 1 tp fp
A = 0 fn tn

new interactions occur between exiting ones. Users engage in various activities,

producing rich user interactions and overwhelming user-generated content. This

also presents a challenge for a group profiling method to be scalable and efficient.

Following the guidelines above, we next present several possible strategies for

group profiling.

Profiling Strategies

Suppose there are n nodes in a social network G, and d attributes {A1, A2, · · · , Ad}.

For a specified group g, we are interested in the most descriptive features to explain

the group formation. We can treat the group as the positive class (denoted as “+”)

and some other nodes not belonging to the group as the negative class (denoted as

“−”). The instances (nodes) of positive (negative) class are called positive (negative)

instances, respectively.

Given a feature A, we have the following statistics as summarized in Table 3.5:

• true positive (tp) is the number of positive instances containing feature A.

• true negative (tn) is the number of negative instances not containing feature A.

• false positive (fp) is the number of negative instances containing feature A.

• false negative (fn) is the number of positive instances not containing feature A.

Given these statistics above, we can compute the conditional probability of an

attribute occurring in a group as follows:
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• true positive rate (tpr) is the conditional probability of a feature occurring in a

group. In particular,

tpr = P (A|+) =
tp

tp+ fn
(3.15)

• false positive rate (fpr) is the conditional probability that a feature associated

with the nodes that are not of the group. Specifically,

fpr = P (A|−) =
fp

fp+ tn
. (3.16)

We now present the methods for group profiling (GP).

Aggregation-based Group Profiling (AGP)

Since group profiling aims to find features that are shared by the whole group, a natural

and straightforward approach is to find attributes that are most likely to occur within the

group. This aggregation-based group profiling (AGP) essentially solves the problem

below:

max
{Ai}ki=1

k
∑

i=1

P (Ai|+) (3.17)

We can simply aggregate individual attributes in the group and pick the top-k

most-frequent features. Note that this aggregation-based profiling is widely used in

current tagging systems in forms of tag clouds. Tag clouds are widely used in social

media to show the popularity of a tag by its font size. If the whole network is considered

a group, a tag cloud is produced based on aggregation.

However, this method can be sensitive to certain (dumb) features. For instance,

words like world, good and 2009 in blog posts or status updates can be very frequent.

They do not contribute to characterizing a group. Even the wisdom of crowds such

as user shared tags may not help much following this aggregation strategy. Take one

community named photography16 in Livejournal as an example. It is not difficult to

16http://community.Livejournal.com/photography/profile
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figure out the shared interests among the group members. If we look at those interests

that occur most frequently in profiles of users the group, we have the following list:

photography, art, music, movies, reading, writing, love, books, painting,

poetry

Except the first two, other tags are actually not good group descriptors. This is

because these tags are shared by a large number of people, thus in this group as well.

Directly aggregating these tags is biased towards selecting popular tags, rather than

those that can characterize this group.

Differentiation-based Group Profiling (DGP)

Instead of aggregating, we can select features which differentiate one group from oth-

ers in the network. Hence, the group profiling problem amounts to feature selection [70]

in a 2-class classification problem with the group being the positive class and the re-

maining nodes in the network as the negative class. The goal is to find out those top-k

discriminative features that are representative of a group.

Note that a particular group is fairly small compared with the whole network.

For instance, the Livejournal data set that we collected has 16,444 users, and the first

two largest groups have around 5,000 and 1,500 members respectively. The majority

(90.1%) of the groups are in the long tail, each with less than 100 members. This results

in a highly unbalanced class distribution [106]. With this skewed class distribution, Bi-

normal separation (BNS) [32] is an effective method that outperforms other feature

selection methods [32, 106] such as information gain and χ2 square statistic. The BNS

score of an attribute is defined as

BNS =
∣

∣F−1(tpr)− F−1(fpr)
∣

∣ , (3.18)
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where F−1 is the inverse cumulative probability function of a standard normal

distribution. A difference of discriminative group profiling and feature selection is that

we only care about features that are descriptive of a group (the positive class). Thus

we enforce the following constraint for selected attributes:

tprAi
> fprAi

(3.19)

In other words, feature Ai should better explain the positive class rather than

the negative class.

Combining the BNS criterion in Eq. (3.18) and the constraint in Eq. (3.19), we

have the following formulation for differentiation-based group profiling (DGP):

max
{Ai}ki=1

k
∑

i=1

∣

∣F−1(tprAi
)− F−1(fprAi

)
∣

∣

s.t. tprAi
≥ fprAi

(3.20)

Since F−1 is a monotonic increasing function, the objective can be reformulated

as follows:

max
{Ai}ki=1

k
∑

i=1

(

F−1(tprAi
)− F−1(fprAi

)
)

(3.21)

Essentially, we select those features that appear frequently in one group but

rarely outside the group.

Egocentric Differentiation-based Group Profiling (EDGP)

In the previous differentiation strategy, all the nodes outside a group are deemed as

belonging to negative class. However, it might be a luxury to have this global view of all

the nodes in a network. Scalability can also be a concern. Most popular online social

networks are very huge. For instance, Facebook claims to have more than 500 million

active users as of January 10, 2011. Livejournal has more than 25 million registered

accounts17. It’s either time consuming or impractical to retrieve all the information of

17http://www.Livejournal.com/stats.bml
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a real-world network. In some applications, only an egocentric view is available. In

other words, we only know our friends but little knowledge about the people who are

strangers to us. Is it possible to describe a group by its members and the members’

network structure without knowing the global network topology?

Instead of differentiating a group from the whole network, we propose to dif-

ferentiate the group from the neighbors of its members, i.e., group profiling based on

the egocentric view (EDGP). Group neighbors refer to nodes outside a group that are

connected to at least one group member as in Figure 3.9. Egocentric differentiation

follows the same objective function as in Eq. (3.21). The key difference is that the ego-

centric approach treats only the group neighbors, instead of the whole network, as the

negative class. Given the huge size difference of the negative classes between DGP

and EDGP, one wonders if this egocentric approach suffices in finding discriminative

features.

Figure 3.9: Neighbors of a group

Experimental Evaluation

Evaluation Methodology

Group profiling outputs a list of features to describe groups. The quality of the extracted

profile depends on the group profiling method being used. There are several challenges

to perform the comparison. We will address them one by one.
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1) How can we obtain group information? For evaluation purpose, we use explicit

communities in social media as the group information. In certain social media

sites, users can subscribe to one or more interested groups. Explicit communi-

ties come with their group names and sometimes descriptions as well. These

information can help human subjects to find out the ground truth for evaluation.

Of course, this evaluation strategy does not limit the group profiling approach

to be applied to implicit groups extracted from a network. As shown later, most

explicit online groups also demonstrate a much higher link density than expected.

2) What kind of individual attributes should we look into to extract group profiles?

In social media sites, users can share their profiles, upload tags, post blogs and

update status. All these activities provide certain information. We treat user

interests in profiles or words and tags occurring in their posts as attributes, and

find out those key attributes to describe groups.

3) How to evaluate the quality of extracted group profiles? Since there is no ground

truth information available, we invite people with different backgrounds to evaluate

the result.

We launched a website with a user-friendly interface for evaluators to log in and

rate. A screenshot of the website after a user log in is shown in Figure 3.10.

For each group, we use the three proposed approaches (AGP, DGP, EDGP) to

select top k (k = 10 in our experiments) most representative features. On each

evaluation page, the profile features extracted based on each method were listed

in a column from top to bottom by importance in descending order (denoted as

method 1, method 2 and method 3, respectively in the screenshot). It should be

emphasized that evaluators do not know what the group profiling methods are and

which column is generated by which method. To avoid the bias associated with

the column position, the presentation order of group profiles is also randomized
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Figure 3.10: Screenshot of the Evalua-

tion System
Figure 3.11: Group Profile Page for

Reference

for each page. Suppose for one group the three columns are generated by AGP,

DGP, EDGP, respectively. The next time this group or another group is chosen,

the three columns might correspond to methods in a totally different order.

We also highlighted the title of the studied group and provided a link to the partic-

ular online group profile page, so that evaluators are encouraged to get general

group information before making a decision. For instance, by clicking on the link

at the top of the screenshot in Figure 3.10, one will be directed to the group page

as in Figure 3.11. This profile page contains some description of the group and

links to the activities and journal posts insides the group. Hopefully, this can help

a subject to make the right decision.

Each evaluator will rate for the resultant profiles on how well they are describing

this group. The rating is ranged from 0 to 3, respectively representing “irrelevant”,

“partly related”, “reasonable” and “very good”. An evaluator can also decline to

give a rating (by choosing a “no idea” option) if he is not sure. As we noticed in
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Table 3.6: Statistics on BlogCatalog and Livejournal

BlogCatalog Livejournal

# Bloggers 70,086 16,444

# Links 1,706,146 131,846

Link Density 6.9 ×10−4 9.8 ×10−4

Average Links 49 16

Diameter 5 8

Group Title Category Name Community Name

Group Numbers 344 100, 441

Average Groups Joined 1.9 32.6

one pilot study, subjects tend to assign random ratings if the task takes too much

time. To assure the quality of evaluation, each person was asked to evaluate only

10 group profiles in one session, which can be finished in few minutes.

Social Media Data

As mentioned above, we need data sets with groups as well as rich individual attributes.

Hence, we select two social media sites for data collection: BlogCatalog18 and Live-

journal19. BlogCatalog is a social blog directory where bloggers can register their blogs

under specified categories. Livejournal is a virtual community where users can keep a

blog, journal or diary. Both websites serve as a platform for users to connect and com-

municate with others. At both sites, users can engage in social activities like adding

friends, joining groups, commenting, tagging and so on.

On BlogCatalog, we crawled blogger’s name, friends, the blogs belonging to

him/her, tags, categories and most recent 6 snippets. We treat blog categories as

groups. After removing the non-English blogs, we obtained 70,086 bloggers and 344

groups. The total friendship links are 1,706,145, and each blogger has 49 friends on

average. On Livejournal, we started with a popular blogger just_ducky, and crawled

bloggers that are reachable in 4 hops away from this seed by following their friendship

18http://www.blogcatalog.com/
19http://www.Livejournal.com/
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(b) Livejournal

Figure 3.12: Group Size Distribution
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(b) Livejournal

Figure 3.13: Group subscription distribution

connections. We collected blogger’s name, friends, posts, interests specified in his/her

profile and the communities the blogger subscribes to. Each user-created community is

considered a group. Finally the data set has 16,444 bloggers, more than 130 thousand

pairs of friendship links and 100,441 different communities. The statistics of these two

data sets are summarized in Table 3.6. One key difference between these two social

media websites is that Livejournal bloggers can create communities freely. BlogCatalog

users, however, can only specify categories from a predefined list. This explains why

there is a much larger number of groups in Livejournal.

These two sites demonstrate different statistical patterns. The group size dis-

tributions at both sites are plotted in Figure 3.12, in which, the x-axis represents the

group size and the y-axis the frequency. Since the number of groups is very limited in

BlogCatalog, we plot the distribution in histogram instead of scatter plot. The group size

distribution in BlogCatalog is more like a bell curve, possibly because of the different
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Table 3.7: Selected Groups on BlogCatalog

Group Size Density Group Size Density

personal 11478 1.3h dogs 173 8.0h

blogging 7727 2.7h adult education 139 1.3h

entertainment 4671 1.9h buddhism 96 11.0h

health 3877 2.4h hunting 86 41.0h

shopping 2687 2.1h sailing 71 8.9h

sports 2529 2.0h lawn&garden 55 8.9h

computers 1934 2.4h music industry 47 6.1h

animals 1357 5.6h natural 41 10.0h

investing 906 3.8h city guides 40 32.0h

science 826 2.4h anarchism 29 34.0h

home cooking 564 3.7h auto repair 23 4.3h

hardware 424 1.2h earth science 22 16.0h

pop 254 2.5h aqua. fish 19 17.0h

stock&bond 245 7.1h choreography 13 26.0h

cultural 229 4.5h extinct birds 3 0.0h

Table 3.8: Selected Groups on Livejournal

Group Size Density Group Size Density

photography 320 13.0h ontd_startrek 139 12.0h

sextips 297 1.8h behind_the_lens 134 16.0h

mp3_share 288 2.1h tvshare 132 5.2h

art_nude 232 33.0h ru_portrait 131 76.0h

ourbedrooms 216 12.0h knitting 124 2.3h

houseepisode 211 6.2h girl_gamers 121 3.6h

fruits 205 16.0h wow_ladies 115 2.0h

free_manga 205 9.1h art_links 113 50.0h

ucdavis 189 39.0h weddingplans 110 4.7h

photographie 188 12.0h doctorwho_eps 109 25.0h

cooking 181 2.3h ru_travel 108 20.0h

hot_fashion 161 25.0h blythedoll 108 110.0h

naturalliving 157 3.8h rural_ruin 105 14.0h

topmodel 155 2.8h supernatural_tv 103 15.0h

photocontest 147 1.5h animeicons 102 5.0h

cheaptrip 142 29.0h gossipgirltv 101 8.1h
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mechanism for creating groups as we mentioned above. On the contrary, group size in

Livejournal follows a power law distribution as observed in many large-scale networks.

On the other hand, the number of groups one blogger joins is shown in Fig-

ure 3.13. In BlogCatalog, most bloggers join 2 groups, but a few bloggers (0.23%) join

more than 3 groups. In Livejournal, the distribution is different, with 82.3% bloggers

joining at least 4 groups. One blogger even has joined 1,032 groups. The average

number of groups that one single blogger subscribes to are 1.9 and 32.6 on these two

sites, respectively.

In the experiment, we would like to test group profiling methods with different

noise level and investigate how each method performs. Typically, words in blog posts

are much more noisy than tags or user interests listed in users’ profile pages. Hence,

we created 4 data sets: BlogCatalog based on tags (BC-Tag) or blog posts (BC-post),

and Livejournal based on user interests (LJ-Interest) or journal posts (LJ-post). We

expect Livejournal to be more noisy than BlogCatalog as the communities there are

user-generated rather than pre-specified.

Since the evaluation involves human efforts, it is impractical to evaluate exhaus-

tively over all groups. We select a subset of representative groups with varying sizes

and densities as listed in Tables 3.7 and 3.8. In particular, 30 groups from BlogCatalog

and 32 groups from Livejournal. For evaluation purpose, here we use explicit groups,

i.e., in which the membership is determined by subscription. But we would like to point

out that the density of most groups is much higher than the network density suggesting

frequent within-group interactions. Their neighborhood size versus the group size is

also plotted in Figure 3.14. Because each node has a plurality of connections, thus

the neighborhood size is typically much larger and increasing with respect to the group

size.
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Figure 3.14: Group size v.s. neighborhood size

Empirical Results

52 people with assorted backgrounds (undergraduate, graduate students,university fac-

ulty and employees) participated in our evaluation. In total, 2, 028 ratings were col-

lected, of which 101 ratings were “no idea”. So only the remaining 1, 927 ratings were

used in our analysis. On average, each group was evaluated 32 times and the average

ratings were reported.

Comparative Study

The average ratings for each method on different data sets are shown in Table 3.9.

On BC-Tag, three methods are comparable, however the aggregation-based approach

deteriorates when we use words in blog posts as features. A similar pattern is observed

on Livejournal, though the ratings drop sharply. On both data sets, DGP and EDGP

consistently outperform AGP. This is most observable when individual attributes are

noisy. That is, a large number of attributes are associated with individuals, among

which only few of them are relevant to the group topic (say, when words appearing in

blog posts are used as attributes).
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Table 3.9: Ratings averaged over all groups

Data set AGP DGP EDGP

BC-Tag 2.55 2.62 2.62

BC-Post 1.92 2.35 2.26

LJ-Interest 1.53 1.91 2.00

LJ-Post 0.54 1.42 1.35

This result is more visible in Figure 3.15, where we plot the probability of each

group profiling method being the winner. It is computed as the frequency of one method

winning over the total number of evaluations. One method wins when it receives the

highest rating among the three. It is noticed that ties often occur during evaluation. For

example, if the ratings for AGP, DGP and EDGP are 2, 3, 3, then we consider both DGP

and EDGP win. On BC-Tag, all three methods yield a similar performance. But on the

other data sets, DGP and EDGP are consistently better than AGP, and the difference

between the former and the latter increases as the noise level increases (Livejournal

is more noisy than BlogCatalog as communities are not pre-specified, and posts are

more noisy than tags or user-specified interests).

The performance of DGP and EDGP are comparable, with the former slightly

better. This demonstrates that little information is lost if we only compare a group with

its adjacent neighbors, rather than with all users. With only an egocentric view, the

computation cost of profiling a particular group can dramatically drop because of a

much smaller number of involved bloggers. In BlogCatalog, the number of 1-hop away

bloggers averaged on the selected groups is 8,274, or around 11.8% of the whole net-

work. On Livejournal, for groups whose sizes are larger than 50, the average number

of 1-hop away bloggers is 1,016, or around 6.2% of all the bloggers. The egocentric

differentiation method is favorable in dynamic and evolving huge networks, because

updating features is easy. Only the local information instead of the whole network is

required.
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Figure 3.15: Probability of receiving highest rating

Table 3.10: Profiles for health group

BC-Tag BC-Post

AGP DGP EDGP AGP DGP EDGP

health health health people health health

fitness fitness fitness health people people

diet diet diet body body body

weight loss weight loss weight loss life life weight

nutrition nutrition nutrition world weight life

exercise exercise exercise weight disease disease

beauty cancer cancer long diet diet

medicine medicine medicine find food treatment

cancer beauty mental health back healthy food

mental health mental health wellness important treatment healthy

Table 3.11: Profiles for blythedoll group

LJ-Interest LJ-Post

AGP DGP EDGP AGP DGP EDGP

blythe blythe blythe love blythe blythe

photography dolls dolls back doll doll

sewing sewing sewing ll flickr dolly

japan japan blythe dolls people ebay dolls

dolls blythe dolls super dollfie work dolls ebay

cats super dollfie japan things photos sewing

art hello kitty hello kitty thing dolly flickr

music knitting toys feel outfit blythes

reading toys knitting life sell outfit

fashion junko mizuno re-ment pretty vintage dollies
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Case Studies

To have a tangible understanding of the outcome of different methods, here we show

two concrete examples: health group in BlogCatalog and blythedoll group in Livejour-

nal.

Health group has 2,607 members. The topics covered in this group are medicine,

diet, weight loss, men’s and woman’s health, and so on. Table 3.10 presents profiles

extracted to describe the group based on tags and posts, respectively. The features

are sorted by importance in descending order. In BC-Tag, features extracted by all the

three methods are related to health. Only the order of some keywords are different. In

BC-post, the result of AGP becomes worse. Some features like world, long, find, and

important, seem irrelevant to health. By looking at the features generated by DGP and

EDGP, it is not difficult to figure out that they are about health. These two methods

demonstrate subtle difference. Only the order of some features differs.

Table 3.11 shows profiles for blythedoll group on Livejournal. Blythedoll was first

created in 1972 by U.S. toy company Kenner. Later it spread out to the world. In LJ-

Interest, some of the features extracted by AGP method are very frequently used words,

e.g., photography, art and music, and we can hardly connect them to blythedoll. In

LJ-Post, the AGP result is even worse. There is almost no connection to the blythedoll

group. The other two methods, DGP and EDGP, perform consistently better than simple

aggregation. This example demonstrates the superiority of DGP and EDGP with noisy

data.

Similarity Between Profiles of Different Methods

In previous experiments, we have shown that (egocentric) differentiation-based group

profiling tend to outperform the aggregation-based method. In this subsection, we sys-

tematically examine the similarity of the profiles produced by the three methods. It is
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noticed that DGP and EDGP receive similar ratings as reported in Section 3.2. Is this

due to the effect that they often select similar features to construct group profile?

As each method outputs a ranked list of attributes, we use Kendall’s Tau(τ )

rank correlation coefficient [52] to measure the difference of the ordering. Kendall Tau

Coefficient measures the agreement between two ranked list. In our experiments, only

ten terms are selected for each group, we first construct two ranked lists by assigning a

rank for each term. Given two rankings R1 and R2 concerning the same set of elements,

let x1 and x2 denote the rank of element x in R1 and R2 respectively. Two elements x

and y are a concordant pair when the ranks for both elements agree, i.e., if x1 < y1

and x2 < y2, or x1 > y1 and x2 > y2. x and y form a discordant pair if the relative rank

of the two does not agree, i.e., if x1 < y1 yet x2 > y2, or x1 > y1 yet x2 < y2. The

Kendall τ coefficient is defined as

τ =
number of concordant pairs − number of discordant pairs

1
2
n(n− 1)

.

Its value is between -1 (one ranking is the reverse of another) and +1 (two

rankings are the same). Two ranks have no correlation if their Kendall Tau Coefficient

is 0.

The τ coefficients on all the four data sets are listed in Table 3.12, with entries

in bold face to denote the highest similarity in each column. It is observed all methods

demonstrate a positive correlation. Among them, DGP and EDGP often output similar

rankings. It is noticed that the coefficient on Livejournal data is much smaller than that

on BlogCatalog. This might due to the noisy nature as embedded in the Livejournal

data.

The ordering effect is ignored, one might be only interested in the set of top-

ranking attributes. Thus, we computed the Jaccard similarity [45] between the top-
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BC-Tag BC-Post LJ-Interest LJ-post

AGP / DGP 0.48 0.18 0.10 0.14

AGP / EDGP 0.42 0.08 0.11 0.11

DGP / EDGP 0.60 0.31 0.10 0.15

Table 3.12: Mean Kendall’s Tau Rank Coefficient

BC-Tag BC-Post LJ-Interest LJ-post

AGP / DGP 0.80 0.42 0.22 0.04

AGP / EDGP 0.73 0.32 0.07 0.01

DGP / EDGP 0.85 0.71 0.31 0.14

Table 3.13: Jaccard Index

ranking attributes output by different methods. Given two sets A and B, Jaccard simi-

larity is defined as

Jaccard(A,B) =
|A ∩ B|
|A ∪ B| . (3.22)

Its range is between 0 and 1. The average Jaccard similarity between the top-10

attributes as selected by different profiling methods are reported in Table 3.13.

Again, DGP and EDGP are quite similar, especially on the BlogCatalog data.

This explains why their ratings are similar as reported in Section 3.2. It also suggests

that by comparing one group with its neighborhood, rather than the whole network, it is

often sufficient to extract a discriminative group profile.

Further Analysis

Understanding Evaluation Results

We noticed that different groups receive quite distinctive ratings even for the same

group profiling method. What might be the reason leading to this differences? Is there

any connection between group size and ratings? Figure 3.16 plots individual group

ratings of EDGP on BC-Post. The groups are sorted, from left to right, by group sizes

in a descending order. No evident correlation is found between the group size and the

quality of group profiling. Large groups such as “personal” can receive low ratings, and
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Figure 3.16: Rating of individual groups

small groups like “auto repair” can have high ratings. We observed similar patterns on

other data sets with different profiling methods.

One interesting finding is that the more specific a group is, the higher the rating it

receives. For instance, the largest group “personal” contains 11, 478 members but has

an average rating of 1. Group “auto repair” with only 234 members receives a rating of

2.4. This result agrees with intuition that it is more difficult to describe general concepts,

but easier to describe a specific one.

We further analyze the user evaluation behavior. We show the groups of Blog-

Catalog in Figure 3.17 sorted by their average ratings. The red circles in the curve

highlight those groups receiving “no idea” during evaluation, with their sizes indicating

the relative probability. It is noticed that the markers tend to reside at the tail of the

curve, i.e., when the rating is relatively low. When it is difficult for a human to judge

what a particular group is about, it is not surprising the performance of group profiling

decreases as well.
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Figure 3.17: Average ratings of groups

Exploiting Group Internal Structures

For all our studied methods, we do not exploit the internal structure inside a group.

Presumably, all groups have their influentials [3]. These are opinion leaders, and may

play a more important role to reflect the peculiarity of a group. There are many ways

to define the importance of a node. Commonly used ones include degree centrality,

closeness centrality, betweenness centrality or eigenvector centrality [119]. Here, we

take degree centrality as an indicator of a node’s importance inside a group. The more

connections he has inside a group, the more central role he plays in the group. The

number of one node’s connections inside a group is used as a weight when we compute

the statistics as in Table 3.5.

After applying this simple weighting for profiling, we observe the top ranking

features are changed for many groups. Table 3.14 shows the average Jaccard similarity

between methods without and with weighting. For DGP and EDGP, the weighting can

change the profile a lot. Nevertheless, AGP is not affected as much by the weighting.
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Table 3.14: Mean profile similarity

BC-Tag BC-Post LJ-Interest LJ-post

AGPwo/AGPw 0.35 0.30 0.94 0.59

DGPwo/DGPw 0.20 0.05 0.06 0.01

EDGPwo/EDGPw 0.21 0.06 0.05 0.01

Table 3.15: Profiles for City Guides group

Without Weighting With Weighting

olympic games singapore sights

travel singapore food

country singapore recommendations

california singapore places

tourism singapore parks

islam travel products

people boutique hotels

lifestyle travel deals

culture travel style

reviews luxury resorts

It is noted that the group profiles with a weighting scheme demonstrate some

interesting patterns. Those more specific attributes might appear in a profile. For exam-

ple, Table 3.15 shows the DGP profiles for group City Guides with or without weighting.

Both types of profiles are sensible. The profiles without weighting seem to be more

general whereas some specific terms related to Singapore appear frequently on the

right column as the central node is quite interesting in visiting there. It is difficult to

conclude which type is better. But it is clear that the group internal structures can play

a role in the construction of different informative profiles. We expect that the group

internal structure as well as connections to members outside the group can affect the

profiling output, and requires further research.

Potential Applications of Group Profiling

Group profiling can help describe groups. The group description can be further used in

various types of applications. For instance, group profiles can be used to enrich user
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profiles. User profiling [101] is one fundamental task in targeting and advertising. How-

ever, some users might have very few features. In this case, borrowing features from

their group profiles can help improve targeting [100]. Group profiles can also be used

to understand the formation of implicit groups, assist community tracking, and group

search. Below, we showcase two applications of group profiling: one for understanding

implicit groups, and the other for group search and retrieval.

Understanding Implicit Groups

Social media provides tremendous data of network interactions, providing opportunities

to study human interactions on an unprecedented scale. These large-scale networks

present strong community structures [16]. Group profiling can help understand those

implicit groups behind these diverse interactions. Here, we show some interesting

findings of group profiling applied to a Flickr network.

Flickr20 is a photo sharing website where photos are organized in a collaborative

way such that both the owner and browsers can upload tags to them. We crawled

user names, their contacts, and tags associated with their uploaded photos, ending up

with 39,933 users and more than 3.59 million connections after 2 weeks. We applied

the EdgeCluster algorithm [108] to find overlapping communities inside the network.

EdgeCluster defines a community as a set of edges, rather than a set of nodes like the

majority of existing work. By partitioning edges into disjoint sets, it allows the resultant

communities to overlap. We obtained 171 clusters with varying sizes. After applying

group profiling methods to those clusters, we have several interesting observations.

• People are usually gathered together by their nationality. Flickr is an interna-

tional social media site, people from different countries might speak different

languages. This is intuitive since people tend to tag places, events in their

20http://www.flickr.com/
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own languages. We found groups extensively focused on Italian, Arabic, Indian,

Malaysian, Farsi, Spanish, and so on. A representative profile for an Italian group

is shown below (only top 15 keywords are included):

bimba, italians, Italians, ritratto, amicizia, ombrello, abbandono, au-

tunno, viaggio, luce, amica, dolcezza, colori, nuvole, gambe

All keywords except italians and Italians are all Italian. For instance, bimba means

infant, ritratto means picture or portrait. The other words starting from amicizia

can be translated as friendship, umbrella, neglect, autumn, travel, light, friend

(female), sweetness, colors, clouds, legs, respectively. The topic is not focused

yet at such a large community. But based on group profiling, we know that the

communication at a high level is mainly between people speaking the same lan-

guage. We can also apply group profiling to sub-communities to understand each

community in a finer granularity.

• People connect to like-minded peers. Their shared interests are reflected in group

profiles. For example, the top keywords for one of these groups is shown below:

TheUnforgettablePictures, TopShots, platinumphoto, SuperShot, Gold-

StarAward, RubyPhotographer, NaturesElegantShots, ourmasterpiece,

SOE, Cubism, GoldDragon, AnAwesomeShot, ABigFave, WorldWide-

Landscapes

These keywords are highly similar in semantics, reflecting users’ consensus in

their preference. We found most of them are actually titles of some explicit in-

terest groups in Flickr. Though people subscribe to different interest groups with

different titles, they interact with each other frequently, thus forming an implicit

group with similar interests. This indicates the usefulness of group profiling in

understanding community structures in social media.
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Group Search and Retrieval

On social networking sites, users may want to subscribe to different groups. Some

groups might match their interests, but with a misleading group name. In this case, it

is difficult for a user to locate these groups. On the other hand, advertisers would like

to launch campaigns target those groups with desired properties, such as age, gender,

education level, interest, etc. Group profiling, by providing an expanded and discrimina-

tive description of groups, can be used to build a better group recommendation system.

As a proof of concept, we present one example to show how to retrieve and rank related

groups to a query based on the result of group profiling. More advanced techniques

may be borrowed from the tasks in BlogTrec [76].

A query can have multiple words q = {w1, w2, · · · , wℓ}. Given a group profile,

i.e., the ranked list of top-k features, we deem a group relevant if at least one word in q

appears in the list. We determine each word’s ranking score r(wi) by its position in the

group profile. That is, r(wi) = m if a word wi appears in the m-th position of the profile.

If the word does not appear in the profile, we enforce a penalty by setting r(wi) = k+1.

Then, we can compute the proximity of the query and the group:

P (q, g) =
ℓ

∑

i=1

r(wi) (3.23)

Those groups with lower proximity can be returned as recommended. For in-

stance, in Livejournal data set, the search of “street fashion” results in the following

top-ranking groups:

photo_loli, fott, flammable_live, the cutters, fashion_fucks, books_and_knits,

neon_haul, thriftybusiness, alt_boutique, print_project, ru_york, girl_style,

egl_glamour, pansy_club, purple_hair, the_chic
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Most are reasonable by looking at the group names. Some like thriftybusiness21

seem irrelevant at first glimpse. But once we look at the pictures uploaded by its mem-

bers, we notice that the majority of the uploaded pictures are indeed about clothes

and accessories, confirming the relevance of the group to the query. This example

showcases the power of group profiling. The Livejournal website also provides a group

search engine. It sorts returned groups by recency of one group being active. The

group profiling strategy can find groups based on relevance. In practice, ranking can

be accomplished following a hybrid criterion of group activeness and group-query rele-

vance can be explored.

21http://community.Livejournal.com/thriftybusiness
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Chapter 4

LITERATURE REVIEW

Related work of this dissertation include two parts: connecting the like-minded and

understanding social groups in online social networks. Next we give a literature review

for each component.

4.1 Connecting the Like-Minded

This section includes two sub-topics that aim to identifying users with similar inter-

ests. The first task demonstrates the power of using tag networks in finding the most

alike users. The second task shows various feasible approaches to predict information

spreaders who are willing to retweet and share novel information with her own followers

on Twitter follower networks.

Learning from tag network inference

Closely related work to this problem include collaborative filtering, link prediction and

utilization of tags in social network analysis.

Collaborative Filtering (CF) is widely used in many modern recommendation

systems. The underlying assumption of collaborative filtering is that people who agreed

in the past tend to agree in the future. Therefore, we could leverage past known infor-

mation to predict future known information [103]. One of the important applications is

to recommend items such as products, movies and books that a user could be inter-

ested in using different models and knowledge [2, 55, 127]. Recently, social network

information is also incorporated into collaborative filtering [50, 54]. One application is

to recommend “People You May Know” (or PYMK) in social networking websites such

as LinkedIn and Facebook by the number of mutual friends or triadic closure [119].

Link prediction is to infer future interactions between users in a social network

with the knowledge at current time stamp. The key idea of link prediction is to rec-
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ommend potential friends, in terms of proximity, for a seed user [69]. There are sev-

eral lines of work in predicting future links. The mainstream method is to measure

the proximity or similarity between two users, then recommend user pairs with high-

est proximity scores. The proximity between two users is usually based on structural

features [27] such as Common Neighbors [56], Salton Index [96], Jaccard Index [45],

Leicht-Holme-Newman Index [64], Hub Promoted Index [91], Adamic-Adar Index [1],

etc. The second line of work attemps to modeling the network structure by likelihood

maximization [19, 36]. Typically, a probabilistic model is first learnt from the observed

network, then is applied to predict missing links. Example models include Probabilistic

Relational Model [19], Probabilistic Entity Relationship Model [41], and Stochastic Re-

lational Model [129]. Other approaches for link prediction utilize multitude types of infor-

mation such as user profile, activity, interaction, user generated content [18, 43, 75, 98],

interest [88], or features extracted from above [39], etc.

Tagging on the web is a collective effort that helps to promote information shar-

ing, managing and organizing. The crowd wisdom can be utilized in applications such

as tag recommendation [125], social bookmarking, web navigation and browsing [116],

query expansion [73], etc. Comparing to domain experts, normal users can tag with

reasonably high quality [42], suggesting that collective tagging could be a high quality

source of collective human knowledge. However, semantic relevance between tags

is rarely addressed in prior work. We focus on measuring the semantic correlation

between user generated tags via diffusion kernels that are defined on tag networks.

The (diffusion) kernel matrix is required to be positive semi-definite (PSD) and can be

viewed as a similarity matrix. There are many successful applications of diffusion ker-

nels in biomedical informatics [63, 97, 105], image retrieval [4], etc. Diffusion kernel

is closely related to random walks on graphs [53]. Recent studies show that learning

tasks that combining multiple kernels (linearly) often outperforms using a single ker-
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nel [60]. Some work are designed to learn the weights among different kernels with the

availability of extra information [105].

Identifying information spreaders on Twitter

Twittering becomes a hot research topic recently. We briefly introduce the most relevant

work with regard to identifying information spreaders, including the retweet pattern and

retweetability analysis, retweet prediction, information diffusion, friend and influential

user recommendation, etc.

Retweet is deemed as an effective means to relay information to users who are

not necessary direct followers. Kawk et al. studied several interesting topics related

to retweet patterns, e.g., the audience size of retweet, retweet tree, temporal aspects

of retweet [59]. They found the distributions of the height of retweet trees and the

number of participating uses in retweet trees follow a power law: with a small set of

retweet trees aggregate a large number of people and spread to longer distances, but

most tweet trees only involve a few persons and short distances. They also found that

retweeting is time sensitive, i.e., half of retweeting occur within an hour, and 75% within

a day. However, they also point out that around 10% of retweets take place a month

later.

Many researches analyze factors that might affect the retweetability of a tweet.

Boyd et al. interpret the retweeting practice as a way of conversation in which Twitter

participants “retweet others and look to be retweeted” [11]. Based on user feedback

of reasons why they retweet and on what they retweet most, they find that there are

diverse motivations such as “to amplify or spread tweets to new audiences” and “to

entertain or inform a specific audience”. More specifically, Suh et al. find that URLs

and hashtags have strong correlation with retweetability [104], i.e., a tweet with URLs

or hashtags are more likely to be rewteeted than one without.
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Retweet prediction, which attempts to predict the occurrences of retweeting,

attracts a number of research interests [20, 82, 89, 102, 131, 128]. Naveed et al. view

the likelihood of retweetability as a function of interestingness and propose to predict

retweeting based on content-based characteristics of tweets [82]. Petrović et al. also

attempt to predict whether a tweet is likely to be retweeted by considering a set of

social features and tweet features. They claim that the automatic retweet prediction

performance is as good as the human prediction. They also found that social features

dominate the performance, while the tweet features also add a substantial boost [89].

Zaman et al. propose to predict whether a person will retweet a given tweet from

another user by using a collaborative filtering approach [131].

Information diffusion is observed when information flow on the Twitter follower

networks. Both retweeting and the spread usage of hashtags are treated as informa-

tion diffusion on Twitter [21, 65, 93, 115, 126]. Compared to the spread of hashtags,

retweeting depends more on the Twitter social network. It is long believed that weak

ties are more likely to be sources of novel information, rather than strong ties [35].

Romero et al. examine the hashtags that are spread on Twitter and observe signifi-

cant variations on the spread of hashtags on different topics. They conclude that the

repeated exposure to hashtags have significant marginal effects on their adoption by

other users [93]. Tsur and Rappoport show that the combination of content features

with temporal and topological features all contribute to predicting the spread of an idea

in a given time frame [115].

Other relevant applications on Twitter include recommending friends or followees [13]

via link prediction techniques [69] and social collaborative filtering [14]. The informa-

tion spreader problem is also related to quantifying influence and identifying influential

users [8, 15, 38, 122]. Kwak et al. claimed that influential users on Twitter are mostly

overlapped with users who have the largest number of followers [59]. Though influential
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people are important people in a social network, we find that information spreaders are

not influentials at all. There are some other relevant work in understanding the factors

that affect response such as reply or retweet [20], the usage of Twitter [47, 132], etc.

4.2 Understanding Social Groups

This section is related to work in group discovery and understanding. Social networks

show several prominent properties such as high clustering coefficient and small char-

acteristic length (or “small-world networks”) [120] and community structure [33, 34], i.e.,

groups of nodes are more densely connected internally than with the rest of the net-

work. The majority of work have been contributed to discover implicit groups, rare are

focused on understanding these groups.

Group Discovery

Many early work in community detection attempt to discover disjoined communities by

maximizing various measurements and objectives [33]. Representative approaches

include graph partition [74], modularity maximization [85, 123], random walk [90, 133],

etc.

Later on, overlapping communities detection, which allows one user to be as-

sociated in one or more communities, attracts more attention. Fuzzy clustering or soft

clustering is one of the ways for overlapping community detection, in which each node

will be assigned a membership score to a community [86, 130]. Soft clustering re-

turns a dense representation of matrix, which requires an extensive memory footprint

to hold the data. Another way of overlapping community detection, which is more pop-

ular, is towards discrete assignment. CFinder [87] first enumerates all k-cliques and

combines them if there is a high overlapping (e.g., they share k-1 nodes) between two

cliques. Cliques are fully connected sub-graphs and a node may belong to several

cliques. This method can discover overlapping communities, but it is computationally

expensive. EdgeCluster [107] views the graph in an edge-centric angle, i.e., edges are
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treated as instances and nodes are treated as features. It also shows that a user is

usually involved in multiple affiliations, but an edge is usually only related to a specific

group. Thus, they propose to cluster edges instead of nodes. This discrete assignment

of nodes in a graph gives a clear definition on the community of nodes. Evans et al. [29]

proposes to partition links of a line graph to uncover the overlapping community struc-

ture. A line graph can be constructed from the original graph, i.e., each vertex in the

line graph corresponds to an edge in the original graph and the links in the line graph

represents the adjacency between two edges in the original graph, for instance, two

vertices in line graph are connected if the corresponding edges in the original graph

share a vertex. But it is difficult to scale up to large data sets because of the memory

requirement.

Recently, hierarchical clustering approaches are utilized for community detec-

tion at multiple resolutions [87, 91, 95, 99, 118]. This line of work first attempts to

find communities at the finest resolution (i.e., base communities), then combine com-

munities that are most similar in an aggregated approach until certain constraints are

met (e.g., the number of communities). Thus, a hierarchical structure of communities

form. Wang et al. found that communities that are discovered at different resolutions

all contribute to predicting users’ online behavior [118].

Co-clustering involves two sets of relational objects, which are often represented

as a bipartite graph, and assigns both sets of objects into different groups with certain

constraints. Dhillon et al. [23] propose to co-cluster documents and terms. At first, a bi-

partite graph between documents and terms is constructed, but partitioning documents

and words in this graph is NP-hard, thus it is relaxed to a spectral co-clustering problem.

Then top singular vectors (except the principle singular vector) of the document-word

bipartite graph are clustered by k-means algorithm. The work above does not take

the document-document correlation into account. Java et al. [46] advance this method
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by adding link structures between entities. For example, links between academic pa-

pers in terms of citation are added to the paper-word bipartite graph. The basic idea

of Zha et al. [124] is close to Dhillon’s work. The bipartite graph partition problem is

solved by computing a partial singular vector decomposition (SVD) of the weight ma-

trix. Furthermore, Zha et al. also show that the normalized cut problem is connected

to correspondence analysis in multivariate analysis. Similar to [23], this problem is also

relaxed to spectral clustering, then k-means is run on the eigenvectors to discover clus-

ters. Compared to [23], this method requires more memory and are computationally

more expensive. Information-theoretic co-clustering [24] maximizes mutual information

between document clusters and term clusters.

Group profiling

Group profiling describes the shared characteristics of a group of people. It can be

applied for policy-making, direct marketing, trend analysis, group search and tracking.

Tang et al. [110] present the group profiling problem in terms of topics shared by the

group. They propose to classify online documents associated with groups, and then

aggregate the class labels to represent the shared group interests. To capture latent

semantic relationship between different groups, topics are organized in a hierarchical

manner, represented as a taxonomy. As the semantics of different topics can vary

in an evolving online environment, they propose to adapt the taxonomy accordingly

when new content arrive. Note that the work [110] concentrates on topic taxonomy

adaptation. Group profiles are constructed by aggregation.

Group profiling is also applied by sociologists to understand politics and culture

in the Persian blogosphere [51]. In the study, bloggers are first clustered based on their

link structure. Then, human beings are hired to assign topics and write a short summary

for each blog site. Based on the description, the authors analyze profiles associated

with each group. They also count frequencies of Iranian related terms occurring in each
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group and report patterns associated with each group, including which terms occur

frequently in one particular group, what are the common terms shared by two different

groups. All above analysis require a lot of human effort. That is where our automatic

group profiling techniques can help to extend the analysis to a much larger scale.

Selecting the set of representative keywords could be modeled as a feature

selection problem, which chooses a subset of features to represent the original high di-

mensional data, in order to improve prediction performance or reduce time and space

complexity [37]. It has been widely used in various domains. Different metrics are used

to measure the importance of features. Take text as an example, term frequency, docu-

ment frequency, tf-idf weight [49], χ2 statistics, information gain, and mutual information

are commonly used to select terms from text. Term frequency selects most frequent

terms. Similarly, document Frequency (DF) measures the number of documents a term

appears. Tf-idf weighting is a combination of term frequency and document frequency

to balance between term specialty and popularity, widely used in information retrieval

and text mining applications. χ2 statistics (CHI) measures the divergence between a

term and a category from the χ2 distribution if one assumes the independence of the

term and category. This measure is not reliable for extremely infrequent terms [26].

Information Gain (IG) chooses feature with maximal information increment for classifi-

cation.

Another relevant line of research is to extract annotations from relational data.

For instance, Roy et al. [94] construct a hierarchical annotation structure with a gener-

ative model. The model complexity and scalability hinder its application to large-scale

networks. Chan et al. [17] propose NUBBI (Networks Uncovered By Bayesian Infer-

ence) to infer descriptions of entities in a text corpora. In addition, they also annotate

relationships between these entities. Another close branch of relevant work is text

summarization which is the creation of shortened version of a text, within the natural
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language processing community. It has two different forms: single document summa-

rization and multi-document summarization [22].

Some other work extend topic models to extract groups based on network and

text information together. Conventionally, a collection of documents are modeled as a

set of latent topics, and each topic represents a distribution of words. Link-LDA [28]

treats citations of papers the same way as normal words, i.e., the citation is generated

based on a multinomial distribution over documents. Pairwise Link-LDA [81] essentially

combines the topic model [9] and the mixed membership stochastic block model [5] by

sharing the same latent mixture of communities for both word topics and relation top-

ics. Link-PLSA-LDA [81] extends the model link-LDA one step further by modeling the

citation as a mixture of latent topics instead of a multinomial distribution. Mei et al. [78]

treats connections between documents in a different fashion. It enforces the connected

documents to share similar topics and use the network information as regularization to

extract topics. Topic-Link LDA [72] models the probability of connections between two

nodes as depending on their similarities in terms of both latent topics and latent com-

munity memberships.

These work differ from group profiling as they aim to extract latent topics of a

collection of documents, while group profiling aims to extract representative attributes

that are descriptive of a given group. After extracting topics, it remains unanswered

which topic or which words from the topics should be chosen to represent the given

group. However, we agree that the two approaches are relevant to some extent. For

instance, the group profiling techniques discussed here can be applied to select topics

for each group as well.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

Social networking services have eased personal communication since its origin in the

Web 2.0 era. In these online social networks, connecting users with similar interests

adds extra value to both the social networking platforms and the interacting individuals.

Next we conclude the dissertation and point out several promising future lines of work.

5.1 Conclusions

In the following sections, we set forward to conclude each of the two components:

connecting the like-minded and understanding social groups.

Connecting the like-minded

Social media users not only consume but also produce content simultaneously. The

user generated content are indicators of users’ intent or interests in the virtual world.

In our first attempt, we propose the new concept (i.e., Tag Networks) to repre-

sent the collective tagging knowledge that is produced spontaneously by social media

users. A tag network is a graph in which each node represents a tag, a weighted edge

between two tags represents the number of users who used the two tags for describ-

ing an object (e.g., article, photo, blog). The hypothesis is that co-occurrence counts

between two tags describe the semantic correlation between them. We measure the

semantic similarity by defining a diffusion kernel on tag networks. With tag networks,

we are able to measure the similarity between an arbitrary pair of users. Compared

to other popular approaches (e.g., Triadic Closure) to connecting users that are alike,

our approach achieved a 108% improvement. We also demonstrated that tag networks

are more capable of capturing the semantic relation between tags than Latent Seman-

tic Indexing (LSI), with an improvement of 27% on the studied social media data set

BlogCatalog.
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The second attempt is to identify information spreaders on Twitter follower so-

cial networks. An information spreader is a follower who is (more) likely to retweet a

tweet and share it with his or her own followers. Information cascade on the Twitter

follower networks by the aggregated efforts of information spreaders. We propose the

new problem of identifying information spreaders, which is remain unaddressed. Our

work helps to bridge the gap between analyzing the retweetability and understanding

information diffusion. By analyzing the user generated content (i.e., tweets), we pro-

posed a number of feasible approaches based on proximity, content, interaction and

profile features. We found simple methods outperform complex methods for the infor-

mation spreader identification problem, i.e., hashtags and URLs are strong features for

identifying information spreaders. Combining multiple features is necessary in scenar-

ios where users have only small number of followers. Furthermore, we also found that

information spreaders have very small overlapping with the influential people in a social

network, suggesting that information spreaders are unlikely to be influential people.

Understanding Social Groups

Link creation in online social media platforms is a fundamental activity. Groups with

focused interests are likely to form in these social networks. Identifying and interpreting

(overlapping) groups in social networks becomes an urgent and important research

topic recently.

Social groups that are identified by various community detection algorithms are

usually difficult to interpret as they are extracted from link information. We proposed

a co-clustering framework to identify and understand groups simultaneously. We first

construct an undirected bipartite graph in which users are connected to tags, and tags

to users. Compared to other state-of-the-art community detection algorithms, the iden-

tified groups by our approach are easier to be understood by looking at who are in-

terested in what. Empirical results show that the co-clustering framework is able to
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produce groups with more like-minded users than other approaches based on link in-

formation.

To generalize, we propose group profiling as a systematic approach for group

understanding when groups are present. This is an emergent field that requires more

research in years to come. We explore different strategies to construct descriptive fea-

tures of a group, e.g., aggregation, differentiation and egocentric differentiation. Em-

pirical evaluations show that the differentiation strategy which is based on Bi-normal

Separation [32] produces the most satisfied results, and its egocentric version helps to

save significant computational power, maintaining comparable profiling quality.

5.2 Future Work

Online relationships have become an integral part of our social lives. The importance

of online relationships is increasingly strengthened as more and more people accept

and get involved in online interactions. Recommending users with similar interests is

one of the most important components in popular social networking websites. Though

we have addressed some problems in the context of social media, there are many

meaningful work to be done as the web continue to evolve.

In social networking websites, multiple types of online interactions (e.g., con-

necting, posting, liking, etc) co-exist. Integrating the multiple heterogeneous data

sources and knowledge is a challenging and meaningful work that is worth further ex-

plorations, especially in the area of theoretical modeling and analysis. The problem

becomes even more challenging when negative relationship is introduced.

The second tangible work is to detect topical like-minded users. Users usually

have multiple types of interests (i.e., multi-faceted) and they could be interested more

in some and less in others (i.e., with preferences). Multi-faceted interests reflect user
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preferences more accurately, providing further potentials for finding users with closer

preferences.

Improve scalability is imperative as social networks grow significantly larger in

recent years. There are much space that we can improve our approaches to scale up

to social networks with millions or even hundreds of millions users. New techniques

such as sub-optimal approximation and cloud computing are the working directions to

adapt the learning approaches to cope with big data in years to come.

It is also intriguing to study temporal variations of user interests in online social

networks, and to study the evolutionary group behavior of users with similar interests.

As user groups may change over time dramatically, it is interesting to analyze the inter-

play between the group constitution and common interests. Many interesting questions

yet to be answered such as the group evolution drives the change of the common in-

terests or in the other way around.

A user leaves traces on each social networking website that she likes to visit. By

default, there is no connection among the set of activities, which might be significantly

different (or similar). Each part of user activities form the online identity of a user

in social networking environment. Therefore, whatever analysis done on one social

networking site is incomplete. It would be interesting to see how different the user

behaviors across multiple social networking sites and whether the knowledge on one

site helps to infer a user’s behavior on another. One direct question is that how the

collective wisdom (i.e., tag networks) can be generalized to other websites, i.e., whether

the tag networks from different websites are equivalent and to what extent that they are

similar.

Besides, I am working on several other pieces of work that are not closely con-

nected to the thesis, but are very relevant to my current work. One is to predicting the
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Twitter trends, by analyzing various factors and validating different models. Preliminary

results show that behavioral factors, which are rarely addressed, such as activeness

are critical in trend prediction. The second work is to learn negative relationships from

the link structure, leveraging the PU (partially supervised learning) framework. The

third work is to predicting query intent by integrating heterogeneous types of user gen-

erated data such as history clicks, user profile and friendship, etc. Next ongoing work

is to designing new models for improved search experience in social networking envi-

ronments.
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