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ABSTRACT 

 

 Trenchless technology is a group of techniques whose utilization allows for the 

installation, rehabilitation, and repair of underground infrastructure with minimal 

excavation from the ground surface. As the built environment becomes more congested, 

projects are trending towards using trenchless technologies for their ability to quickly 

produce a quality product with minimal environmental and social costs. Pilot tube 

microtunneling (PTMT) is a trenchless technology where new pipelines may be installed 

at accurate and precise line and grade over manhole to manhole distances. The PTMT 

process can vary to a certain degree, but typically involves the following three phases: 

jacking of the pilot tube string to achieve line and grade, jacking of casing along the pilot 

bore and rotation of augers to excavate the borehole to a diameter slightly larger than the 

product pipe, and jacking of product pipe directly behind the last casing. Knowledge of 

the expected productivity rates and jacking forces during a PTMT installation are 

valuable tools that can be used for properly weighing its usefulness versus competing 

technologies and minimizing risks associated with PTMT. 

This thesis outlines the instrumentation and monitoring process used to record 

jacking frame hydraulic pressures from seven PTMT installations. Cyclic patterns in the 

data can be detected, indicating the installation of a single pipe segment, and enabling 

productivity rates for each PTMT phase to be determined. Furthermore, specific 

operations within a cycle, such as pushing a pipe or retracting the machine, can be 

observed, allowing for identification of the critical tasks associated with each phase. By 

identifying the critical tasks and developing more efficient means for their completion, 

PTMT productivity can be increased and costs can be reduced. Additionally, variations in 
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depth of cover, drive length, pipe diameter, and localized ground conditions allowed for 

trends in jacking forces to be identified. To date, jacking force predictive models for 

PTMT are non-existent. Thus, jacking force data was compared to existing predictive 

models developed for the closely related pipe jacking and microtunneling methodologies, 

and the applicability of their adoption for PTMT jacking force prediction was explored.  
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CHAPTER 1:  INTRODUCTION 

 Maintaining adequate water and wastewater infrastructure is paramount to 

providing the means for modern societies to flourish economically and to preserve the 

health of the society as a whole. Businesses depend on reliable supplies of treated water 

to cool equipment, manufacture goods, and operate in a way that conforms to 

contemporary sanitary regulations. Additionally, the abundant generation of water waste 

needs to be efficiently and effectively removed from their site to prevent production 

delays or shutdowns. As cities continue to grow and place an ever increasing demand on 

underground infrastructure systems, the importance of repairing, rehabilitating, and 

replacing current underground infrastructure systems in a cost effective and sustainable 

manner is well apparent. To complicate the matter, many of the existing underground 

infrastructure systems are failing or in poor condition.  

The American Society of Civil Engineering’s Report Card for America’s 

Infrastructure (2013) rated the U.S. water and wastewater infrastructure with a grade of 

D. Combined sewer overflows (CSOs), in which the combined flow of storm and 

wastewater exceeds system capacity and is discharged untreated to local waterways, and 

outbreaks of water-borne pathogens, such as cryptosporidium or giardia, are incidental to 

such poor infrastructure. Environmental and health effects due to poor infrastructure are 

severe; Lake Michigan beach closures in Milwaukee are frequent as the yearly CSO 

volume has been as high as 8,000 million gallons within the last ten years (MMSD 2013), 

and waterborne disease is responsible for more than 3 million deaths and innumerable 

cases of sicknesses every year worldwide (WRF 2013). Bringing the underground water 

and wastewater infrastructure in the U.S. up to par is no easy task. It is estimated that 
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there is a need for $335 billion and $298 billion in drinking water and wastewater 

infrastructure investment, respectively (USGAO 2013). With limited funding, alternative 

methods must be employed to repair, rehabilitate, and replace existing infrastructure and 

install new infrastructure in a sustainable and economical manner. Trenchless 

technologies are a family of innovative construction methods that may be called upon to 

achieve said tasks.  

1.1 Trenchless Technology Overview 

Trenchless Technology refers to a group of construction methodologies used to 

install, rehabilitate, and replace underground infrastructure while minimizing ground 

excavation, construction site footprint, and other social and environmental costs. 

Traditional open trench practices for installing and repairing underground infrastructure 

require a substantial amount of ground restoration, which tends to inflate direct project 

costs along with social and environmental costs. Although open trench installation has its 

place, namely in rural areas with limited congestion, trenchless technologies have proven 

to be highly effective in urban and environmentally sensitive areas.  

In a paper written by Jung and Sinha (2007), a methodology for comparing direct, 

social, and environmental costs associated with underground pipeline construction was 

described. The above costs were specifically evaluated based on data from six traditional 

open trench and two trenchless technology, pipe bursting, projects. It was found that 

social and environmental costs were almost always higher with open trench techniques, 

as these methods negatively impact vehicular/pedestrian traffic, worker safety, local 

businesses, and pollution, to name a few. Direct installation costs for the pipe bursting 

methods were higher than that of open trench, due to the more specialized equipment 
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required, however, when comparing the total cost of the projects (e.g. direct, social, 

environmental, and other factors) pipe bursting proved to be the cheaper method. Lower 

total costs are common ground with many of the trenchless technologies when compared 

to open trench, a key component to creating an underground infrastructure system of 

good quality and function in a sustainable manner. Selecting the optimal trenchless 

technology for a given project depends on the project goals and site characteristics. 

Trenchless technologies may be subdivided into those used for repair and new 

installations. Of the new installation methods, there are guided and unguided techniques. 

Many of the guided techniques are ideal for installation of gravity fed sewers or in 

congested underground space. Microtunneling provides the means to install pipelines 

with high degrees of accuracy, plus or minus one inch, in both line and grade through a 

laser guidance and remotely-controlled steering system (Gottipati 2011). Microtunneling 

requires a large capital investment, or rental fee, to acquire the slurry tanks, lubrication 

unit, control cabin, power pack, and microtunneling boring machine. A cheaper 

alternative to microtunneling is a variation termed pilot tube microtunneling (PTMT), 

also known as guided auger boring or the guided boring method. 

1.2 Pilot Tube Microtunneling  

PTMT originated in Japan and Europe two decades ago as a way to install 4 to 6-

inch laterals to connect residences to main sewer lines (Boschert 2007). Since its 

introduction in the United States in 1995, its niche has expanded to the installation of 48-

inch mainlines for distances up to 580 feet (Gottipati 2011). Procedures required to 

conduct PTMT installations are adopted from the microtunneling, auger boring, and 
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horizontal directional drilling (HDD) methodologies. The following section outlines the 

methodology, equipment, advantages, and limitations of PTMT.  

1.2.1 Methodology and Equipment 

PTMT is a hybrid technology which adopts techniques from three other trenchless 

technologies: microtunneling, auger boring, and HDD. HDD involves installation of a 

pilot bore to obtain line and grade followed by reaming and product pipe pull-back. The 

pilot bore is directionally controlled through the use of a slant faced steering head on the 

lead rod. This pilot bore, reaming, and product installation process is mimicked by the 

PTMT methodology in either two or three distinct phases. Akin to traditional 

microtunneling, PTMT uses a guidance system to install pipelines at high levels of 

accuracy in line and grade, plus or minus 0.25 inches per a 400-foot drive (Akkerman 

2013). However, guidance is accomplished through the use of an LED target, digital 

theodolite, and a “real time” camera with PTMT, as opposed to a laser guided system 

with microtunneling. The auger boring methodology is adopted during jacking of the 

casing and product pipe and removal of the spoil material with auger flights. There are 

three common variants to the PTMT installation process: the two phase method, the three 

phase method, and the modified three phase method. 

The common phase to all PTMT variations includes jacking of the pilot tubes to 

obtain proper line and grade (Figure 1.1). With this phase, pilot tubes are jacked from the 

jacking shaft to the reception shaft. A steering head with a slanted face is attached to the 

lead pilot tube. If pilot tubes are advanced without rotation, the tubes will proceed in the 

direction of the slant. An LED illuminated target, with two concentric circles and a line 

indicating the orientation of the slant, rests within the steering head. A camera is mounted 
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on a digital theodolite positioned in the jacking shaft, which views down the center of the 

hollow pilot tubes towards the LED target and displays an image in “real time” to a 

monitor located on the jacking frame. If the operator notices that the pilot tubes are 

drifting off of line or grade, the pilot tubes are rotated to orientate the slant on the steering 

head to the preferred direction and pilot tube jacking proceeds to bring the lead tube back 

on alignment. Lubrication of the pilot tube string is possible when dual walled pilot tubes 

are used. In this scenario, lubrication flows between the outer and inner walls to the 

steering head, where it is expelled, and the camera’s optical path is maintained within the 

inner wall. 

 

Figure 1.1 Pilot Tube Installation during Phase One 

 Deviation between the three PTMT installation processes occurs once the lead 

pilot tube reaches the reception shaft, at the onset of phase two.  The remaining 

methodology for the three PTMT variations will first be described for the three phase 

method, then the modified three phase method, and finally the two phase method. 

 Phase two of the three phase method involves replacing the smaller diameter pilot 

tubes with larger diameter casings to increase the size of the borehole (Figure 1.2). 

Augers are used to excavate the soil at the face and transfer spoil back to the jacking shaft 
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where it may be removed. A reaming head (Figure 1.3), which transitions from the 

outside diameter (OD) of the pilot tubes to slightly larger than the OD of the casings, is 

used to link the pilot tubes to the casings. The purpose of the reaming head is threefold: 

1) to upsize from the pilot tubes to the casings, 2) to break up the soil before it enters the 

casing, and 3) to transfer thrust force from the casings to the pilot tubes. Additionally, 

lubricant can be applied to the casing outside surface or to the auger flights through ports 

located in the reamer. As casings are jacked forwards along the pilot tube trajectory, pilot 

tubes are disassembled and removed once they enter the reception shaft. 

 

Figure 1.2 Auger-Casing Installation and Pilot Tube Removal during Phase Two 

 

Figure 1.3 Upsizing Reamer to Fit 25.5-Inch OD Casings, Casings in Background 
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 Phase three of the three phase method involves replacing the casings with the 

final product pipe (Figure 1.4). There is an adapter that links the casings to the product 

pipe which minimizes the contact pressure on the front product pipe and allows for a 

secure connection. All spoil material was removed in phase two, so the only operations 

taking place in this phase are jacking of the product pipe and removal of the casings. 

Furthermore, lubrication is not applied during this phase. 

 

Figure 1.4 Product Pipe Installation and Auger-Casing Removal during Phase Three 

 The modified three phase method involves using a hydraulically powered cutting 

head (PCH) (Figure 1.5) or powered reaming head (PRH) (Figure 1.6). The main 

difference between the two heads is that cutting heads are fitted with cutting bits on their 

face and reaming heads have a cutting ring. Regardless of the excavation tools fitted to 

the powered heads, the heads are used to further upsize the borehole diameter from that 

of the casings installed in phase two. The units are positioned between the last casing 

installed in phase two and the first product pipe installed in phase three. Powered heads 

are directly linked to the auger flights within the casings and are capable of rotating these 

augers in the reverse direction. As a powered head advances, excavated material is 

channeled through to the auger flights inside the casings and transferred to the reception 
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shaft where it is removed. Hydraulic hoses powering the powered heads run through the 

inside of the product pipes. As such, the product pipes are often staged on the ground 

surface with the hoses already running through them. Lubrication is able to be applied at 

the face and rear of the powered heads. Face lubrication softens the soil, making it easier 

to excavate and remove, while rear lubrication aids in reducing frictional forces 

associated with jacking the product pipe. 

 

Figure 1.5 Akkerman PCH 22.5 (Akkerman 2013) 

 

Figure 1.6 Akkerman PRH (Akkerman 2013) 

 The two phase method of PTMT combines the second and third phases of the 

three phase PTMT methodologies. After the installation of the pilot tubes during phase 

one, a specialized reaming head is attached to the last pilot tube. This reaming head links 
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the pilot tubes to the product pipe and is advanced along the pilot bore as the product 

pipes are jacked from the jacking shaft. As the reamer advances, soil is funneled from the 

reamer to auger flights coupled within the product pipe, where it is transferred back to the 

jacking shaft. Figure 1.7 shows vitrified clay pipes (VCPs) with casings and augers 

inside. Benefits of the two phase method include the ability to install a variety of product 

pipe diameters with the same set of casings and augers and the ability to eliminate one of 

the phases necessary to complete a PTMT installation. However, the installation rate 

during the second phase is often slow when installing larger diameter product pipes, as a 

lot of soil needs to be removed through a casing of limited size. 

 

Figure 1.7 Product VCP with Casing/Auger Inside (Gottipati 2011) 

 In addition to the two phase method, three phase method, and modified three 

phase method, there are hybrid methodologies which incorporate PTMT and other 

trenchless technologies to tailor the installation procedures to best suit project 

characteristics. PTMT may be used in conjunction with auger boring equipment. In this 

scenario, pilot tubes are installed with a traditional PTMT guided boring machine 

(GBM). After pilot tubes are installed, the GBM is removed and a conventional auger 

boring drill rig is used to complete the second and third phases. By adopting this hybrid 
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technique the benefits of using an auger boring drill rig (namely larger pipe diameters 

installed at quicker rates and a higher available thrust force) may be realized while 

maintaining the high degree of accuracy associated with PTMT. Pipe ramming can also 

substitute for the second phase of the PTMT process. In this scenario, a pipe is rammed 

following the pilot tube trajectory. This hybrid technology may be advantageous when 

crossing under railroads where settlement and heave requirements are stringent, yet the 

desire to maintain an accurate installation is still present. PTMT and HDD methodologies 

can be combined to birth a method in which line and grade can be held within fine 

tolerances and product pipe can be pulled from the reception shaft to the jacking shaft. 

With this hybrid method, the pilot tubes are installed as normal and a reamer and swivel 

are used to attach the lead pilot tube to a continuous string of pipe. Typical pipe types 

used for this method include high density polyethylene (HDPE) and fusible polyvinyl 

chloride (PVC) due to their ability to be fused together to form a highly tensile resistant 

pipe string with little variation in OD. 

1.2.2 Advantages and Limitations 

 There are many advantages of using PTMT for installation of new underground 

pipelines. The main advantage includes its ability to install pipelines with extreme 

accuracy in congested urban settings. Accuracy is on par with that of traditional 

microtunneling; however, the construction footprint associated with PTMT is smaller. 

Furthermore, PTMT is less expensive and less technology intensive than the 

microtunneling alternative (Abbott 2005). Another advantage of pilot tube technology is 

the ability to use the pilot tube jacking process in exploratory processes. Pilot tubes may 

be jacked through a proposed alignment to determine the soil suitability for installation of 



11 

subsequent casings and augers. If difficult ground conditions are encountered, pilot tubes 

may be retracted and an alternative alignment may be proposed.  

PTMT is not without its limitations, however, and is not as versatile as traditional 

microtunneling when it comes to the soil conditions it can be used in. Soils with blow 

counts exceeding an N-value of 50 tend to be too hard for the standard penetration and 

displacement method and require the use of an air hammer to perform the installation. 

Cobbles and boulders exceeding 4 inches in diameter also add difficulty to advancement 

as well as problems with maintaining an accurate installation. Stability problems may be 

encountered when advancing through loose sands, but with adequate lubrication to reduce 

friction development and to maintain a stable borehole, installation in loose sands is 

possible. Sands below the water table also pose difficulties. As the second phase of 

PTMT involves open faced casing advancement with an auger spoil removal process, 

sand and water flowing into the casings may result in stability problems and excessive 

ground settlement above the bore alignment.  

With the wide variety of upsizing and reaming tools available, larger diameter 

installations are possible. However, the production rate of installing products with 

diameters exceeding 48 inches decreases to a point where the implementation of 

alternative trenchless technologies is more cost effective. Drive length for PTMT 

installations is mostly controlled by the ability to accurately view the target in the lead 

pilot tube. The target becomes smaller and harder to see as installation length increases. 

Zooming in with the camera is possible; however, decreased resolution accompanies 

excessive zoom. Furthermore, longer drive lengths increase the probability of 

condensation forming in the inner walls of the tubes or lubricant leaking in and ponding 
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along the bottom. Both of these conditions make it more difficult for the operator to view 

the target and keep the pilot tubes on line and grade.  

1.3 Scope of Study 

Being able to accurately predict jacking forces during PTMT operations based on 

project conditions such as depth of cover, soil type, and product pipe diameter is 

fundamental towards design of the thrust reaction wall in the jacking shaft, selection of 

the main jacking frame, selection of pipe, and determining the location of jacking and 

reception shafts. Previous research has been conducted to understand how jacking forces 

develop throughout an installation during other technologies (Stein et al. 1989, Bennett 

1998, Chapman and Ichioka 1999, Milligan and Norris 1999, Osumi 2000, Baumert and 

Allouche (2002), and Staheli 1996 and 2006, among others), but jacking force research 

has yet to be completed on jacking loads from PTMT installations. Understanding the 

factors that affect jacking loads during PTMT will reduce risks associated with uncertain 

jacking forces, unnecessary factors of safety, and excessive contingency planning. Lower 

project costs associated with these factors can benefit contractors, engineers, and owners 

as well as aid with reducing underground infrastructure budget deficits (Lueke and Olson 

2012). 

In addition to dialing in uncertainties with regards to jacking force, productivity 

analysis of PTMT installations can provide insight to the factors that affect installation 

rates. Factors with a large influence on PTMT productivity may be identified and 

proactive control to reduce their hindrance on installation rate may be taken. Critical 

tasks associated with each PTMT phase may also be identified. Contractors may pinpoint 

these critical tasks and brainstorm or develop new techniques for maximizing 
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productivity during these tasks. Results from in depth productivity analysis may be used 

to develop PTMT simulations aiding engineers and contractors with predicting project 

schedules, benefitting project stakeholders. 

With a need to further understand jacking forces and productivity during PTMT 

installations, this study was conducted in an attempt to reduce these uncertainties. To do 

so, PTMT jacking frames were instrumented with hydraulic pressure transducers to 

capture the hydraulic pressure during seven PTMT installations from the Reid Drive 

Interceptor Project in Appleton, WI throughout the summer of 2011. Four of the 

installations were of the three phase PTMT/Auger Boring methodology, one of the 

installations incorporated the traditional three phase PTMT method, and two of the 

installations were of the PT/HDD methodology. Recorded hydraulic pressures were time 

stamped, allowing for PTMT installation behavior to be correlated with time, and thus 

paving the way for productivity analysis. From the recorded hydraulic pressures and 

knowledge of the jacking frames’ dimensional and hydraulic specifications, the jacking 

force necessary to install pipes during each phase of the PTMT methodology was able to 

be determined. 

A comprehensive literature review of monitoring of trenchless technologies and 

existing jacking force predictive models was conducted to shed light on the means and 

methods for recording real-time data and predicting jacking force based on site, project, 

and ground conditions. Data analysis was conducted to decipher installation patterns 

within the data, indicating installation of segmental pilot tubes, casings, or product pipes. 

Expected installation rates during each phase of the PTMT process could be obtained 

from this analysis. Changes in productivity were linked to field notes collected during 
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installation, in an attempt to determine factors that influence production rates. The 

benefits and limitations of automatic computer recognition in deciphering installation 

patterns and performing productivity analysis are discussed in brief. Upon identifying 

cyclic patterns indicative of sectional pipe installation, thrust force with respect to length 

of drive could be observed and trends in thrust force variation could be identified. Select 

predictive models from the literature review were adopted and compared to the collected 

PTMT data. The applicability of the models, which were developed for alternative 

trenchless construction methods, for use in PTMT jacking force prediction was evaluated.  
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CHAPTER 2:  LITERATURE REVIEW 

 Monitoring of construction equipment is becoming increasingly important during 

trenchless installation of underground infrastructure, as equipment becomes more 

complex and proper equipment operation becomes an integral component to completing 

projects on time, with high quality, and under budget. Traditionally, monitoring has been 

accomplished through physical means, either by note taking and observations from 

equipment operators or project inspectors or through observing recorded video. 

Automated techniques, such as using data logging devices, have since been developed 

and allow for a more accurate and comprehensive understanding of installation behavior. 

Data from automated monitoring of pipeline installations can be correlated with time and 

may include pressure readings from equipment hydraulics, pull or push forces developed 

in the system, strains within the installed infrastructure, or drilling fluid usage. The 

following sections review literature on incorporating physical observational methods and 

data logging devices to collect data and current practices for predicting jacking forces 

during trenchless pipeline installation projects. 

2.1 Data Collection of Trenchless Technology Projects 

 Data collection serves a variety of purposes in trenchless technology. One of such 

applications includes the ability to perform detailed productivity analysis. Depending on 

the data collection method, productivity analysis may be as simple as determining 

average installation rates or as complex as revealing which operational tasks are most 

dependent on smooth and efficient workmanship and which tasks are, for the most part, 

independent of operator skill. Detailed productivity data enables contractors and 

engineers to pinpoint critical tasks within the construction workflow, enabling them to 
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brainstorm innovative techniques to improve efficiency, overall productivity, and 

consequently, save time and money for vested parties (Tang et al. 2013). Another facet of 

data collection is its ability to assist in achieving high levels of quality control and quality 

assurance through tracking installation loads. 

 Due to the vast majority of products installed through trenchless means being 

hidden beneath the surface, traditional on-site inspection is unsuited to provide sufficient 

quality control and quality assurance. Real-time data collection and transmittal to 

equipment operators can prevent operators from exceeding maximum tensile or 

compressive product pipe force ratings or improperly applying drilling fluids. Preventing 

excessive loading is critical in controlling the quality of the finished product, particularly 

because the final product cannot be easily accessed for direct inspection without 

defeating the purpose of using trenchless technology in the first place (Allouche 2002). 

Upon installation of a pipeline, the owner may desire assurance that the pipeline has not 

been damaged. In HDD, the product pipe is often pulled through the borehole an extra 

1% or 2 meters, whichever is less, to inspect for damage and a mandrel is pulled through 

the pipeline to check for geometrical irregularities (Baumert and Allouche 2003). These 

techniques, however, lack the ability to detect reductions in the pipe’s structural integrity 

due to excessive loading, a characteristic that could be predicted upon comparing 

allowable loads specified by the manufacturer to the installation loads generated during 

installation.  

2.1.1 Physical Observational Methods  

Physical observational methods are a common way to collect installation specific 

information. These methods include those such as watching pressure gauges of 



17 

equipment hydraulics, observing signs of excessive force, detecting malfunctions with 

drilling fluid application, or noticing a decrease in installation rate under the same applied 

force. Even though these methods are rudimentary, may be subjective, and require 

experience to interpret correctly, they are still a valuable tool in providing useful 

information about a trenchless installation. Limited literature is available documenting 

the use of physical observations, attributable to their subjective and largely qualitative 

aspects. Nevertheless, a strong understanding of how these techniques are used during 

trenchless installations can be ascertained through speaking with experienced industry 

professionals. Terry Johnson, a foreman from Bore Master Inc., was interviewed to gain 

insight on how he uses these techniques to aid with his trenchless projects (Johnson 

2013). 

Johnson has over 25 years of experience in the tunneling industry and specializes 

in pipe jacking, pipe ramming, PTMT, and auger boring. An observational technique he 

utilizes throughout all projects includes tallying the sections of pipe installed throughout 

the day, allowing him to know the exact distance the drive has proceeded at any given 

time. Knowing the location of the cutter head or lead pipe section is critical towards 

being able to deal with unexpected problems at the cutter head or lead pipe section. 

Additionally, with technologies that consist of more than one pass along the alignment, 

such as PTMT or HDD, if equipment hydraulic pressures increase beyond expected 

values, note of the high pressure location may be taken, enabling the operator to make 

precautionary measures when passing this location in subsequent phases to mitigate 

potential difficulties that may arise. Mitigation techniques may include pumping 

additional drilling fluid to help lubricate and stabilize the borehole, advancing at a slower 
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rate, or upsizing in smaller increments during reaming processes. Besides correlating 

tunnel advancement with observed jacking resistance, Johnson monitors drilling fluid 

returns and consistency. In PTMT, Johnson checks to see that fluid is being expelled 

from the borehole surrounding the pilot tube, suggesting that drilling fluid is present 

along the entire borehole, and that the fluid is of the appropriate consistency, thick 

enough to remain in the borehole upon adding a new pilot tube and thin enough to 

prevent clogging in the pump and hoses. 

If geotechnical investigations or previous installation experience in an area 

indicates soils that may result in high jacking forces, intermediate jacking stations may be 

utilized. Intermediate jacking stations are used to advance the installation in an 

‘inchworm” like fashion to avoid excessive forces. Friction resistance increases with 

drive length due to the increased soil-pipe contact area. Consequently, installing an 

intermediate jacking station halfway throughout a drive will essentially halve the soil-

pipe interface area and the resulting friction resistance. This procedure is especially 

advantageous with installations of great length, large outside diameter, or problematic 

soils. 

In 2003, common methods for providing quality control in terms of load 

monitoring during HDD installations included monitoring drill rig pull on display gauges 

and the use of weak links, or break away swivels (Baumert and Allouche 2003). Dial 

gauges on drill rigs typically read thrust/pull pressure, rotation pressure, and mud 

pressure. It is extremely important for an operator to monitor these gauges to ensure the 

pipe is not being overstressed, the advancement rate is appropriate, and that mud 

pressures are within an acceptable range. The pull load measured by the drill rig, 
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unfortunately, provides only an upper bound measurement of the actual load transferred 

to the pipe, as the pull load measured by the rig measures a combination of the loads 

necessary to pull the pilot rod string, reamer, and the pipe. Thus, dial gauge readings do 

not provide the operator with much insight of the actual pipe loading (Baumert and 

Allouche 2002). 

Use of weak links, or breakaway swivels, provide insurance during HDD 

operations that pipe loadings will not be overstressed by breaking before loading 

approaches an unacceptable level. With this technology, an owner can be assured that the 

pipeline has not been overstressed, although, this practice often results in the loss of the 

pipeline in the borehole and costly pipe recovery and reinstallation operations. Not only 

are remedial operations costly and time consuming, but the pipe may also be damaged in 

the retrieval process. Furthermore, brief periods of pull loads exceeding specified pipe 

load capacity by small percentages are not likely to damage thermoplastic pipe; however, 

it will result in breakage of the weak link (Baumert and Allouche 2003).   

Although physical observational methods enable the operator to gain an 

understanding of the soil’s resistance and to alter operational procedures to ease 

installation, these methods do not provide the means to record data in an accurate and 

precise manner for use in quality control, quality assurance, and research tasks aimed at 

increasing efficiency, predicting jacking forces for feasibility and design purposes, and 

reducing jacking forces to expand capabilities of existing technologies. To capture data 

detailed enough to provide these benefits an automated data logging approach is advised.  
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2.1.2 Automatic Data Logging 

Automatic data logging has been employed through numerous trenchless 

technology projects for a vast assortment of reasons. Development of data logging 

technologies for purposes of leak detection in oil and gas pipelines is documented in 

Ariaratnam and Chandrasekaran (2010) and in wastewater force mains in Laven et al. 

(2007). In both of these instances, sensors pick up acoustic variations as they travel 

through pipelines to identify severity and location of leaks, providing a cost effective 

method for inspecting the integrity existing pipelines. Lueke et al. (2011) introduces the 

application of photogrammetric methods towards monitoring ground displacement due to 

trenchless installations and developing three-dimensional mapping for accurate as built 

documents. Data generated from photogrammetry can aid contractors with providing 

quality control for their trenchless installations and assist owners with maintaining an 

accurate and easy to use database of their utility locations. Maintaining a quality record 

of existing underground utility locations is paramount towards reducing the probability of 

striking utilities during future trenchless installations and allows for proper management 

of underground space. Besides using data logging for inspection and mapping purposes, a 

plethora of projects have utilized data logging to monitor and record installation loads. 

Work by Ariaratnam and Colwell (2002) includes the field monitoring of three 

HDD installations in July, 2000 at the Sil Silica sand pit near Bruderheim, Alberta. 

Monitoring devices included a load cell, pressure transducers, and linear potentiometers 

attached to the interior of the product pipe. The load cell housed eight strain gauges and 

the data collection unit. By positioning the load cell between the product line and the 

reamer, the actual load transferred to the product line may be captured. This measurement 
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is unattainable by solely monitoring drill rig gauges due to the uncertainty of the force 

split between the reamer and product line (Ariaratnam and Colwell 2002). The pressure 

transducers used in the project measured the hydraulic fluid pressures experienced by the 

drill rig. By employing multiple transducers thrust/pull-back, rotational torque, and 

drilling fluid hydraulics were able to be measured and recorded. The linear 

potentiometers fitted to the inside of the product line measured the strain induced on the 

product line by monitoring changes in electrical current from one point to the next. 

Advantages of using the linear potentiometers to capture strain data included the relative 

ease of installation and the fact that they do not reinforce the pipeline in any way 

(Ariaratnam and Colwell 2002). The extensive monitoring of these installations allowed 

for monitoring of drill rig pullback pressures, drill rig rotational pressures, loading on the 

product pipe, and strain experienced by the product pipe, allowing for an in-depth 

understanding of the installation behavior. 

In 2001, the Belgian National Gas Association mandated the use of a load and 

pressure monitoring device for all HDD installations under their jurisdiction (Finnsson 

2004). In response, Digital Control Incorporated began development of TensiTrak
™

 

(Figure 2.1), a load and pressure monitoring device. TensiTrak
™

 utilizes a strain gauge 

and pressure measuring device connected to a transmitter to transmit the recorded data in 

real time to the drill rig operator. The transmission device also has a locating function 

incorporated in its design, making it possible to obtain accurate depth and direction 

readings. Similar to the load cell utilized by Ariaratnam and Colwell (2002), the device is 

positioned between the reamer and product line. 
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Figure 2.1 TensiTrak
™

 Load and Pressure Monitors (Finnsson 2004) 

The maiden voyage for TensiTrak
™

 was in Kircheim/Nabern in Germany. 

Throughout the HDD installation of 80 meters of 160-mm PE gas pipe at a maximum 

depth of 1.2 meters, a maximum recorded load of 50 kN was observed. Irregular patterns 

in the recorded pull forces were observed, leading the technician to believe the 

transmitter was receiving interference when large vehicles passed over the transmitter. 

Thus, a second field trial in New York was conducted.  

The NY field trial incorporated the use of two receivers to capture the data 

transmitted from the TensiTrak
™

. It was found that the errors present in the first field trial 

were due to problems with the receiver, not the TensiTrak
™

 device. Complications 

regarding the receivers have currently been worked out and more sophisticated signal 

processing and data transfer methods have been incorporated (Finnsson 2004).  

Ariaratnam and Allouche (2003) conducted full-scaled field testing to evaluate the 

performance of seventeen segments of 100-mm diameter DR14 Class 200 bell-and-spigot 

C-900 PVC pipe joined with a new restrained joint system during HDD installations. In 
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these tests, the pull-head and the first two leading joints were equipped with twelve strain 

gauges to measure the tensile, bending, and shear strains induced on the pipe throughout 

the installation. Additionally, a load cell was fitted between the pull-head and the reamer 

to measure and record the actual pull forces transferred from the drilling machine to the 

leading pipe section. From the collected data, they were able to gain valuable information 

about the joint behavior and performance during installation and conclude that the 

maximum pulling length of the PVC pipe is a function of both borehole geometry and 

pulling load (Ariaratnam and Allouche 2003).  

Sofianos et al. (2004) comment on how field monitoring of jacking resistance 

during a series of microtunneling installations in Athens, Greece was completed as a 

learning tool to aid future owners and designers with predicting jacking loads under 

similar installation parameters. Monitoring was accomplished by utilizing analogue 

piezometers which measured the pressure in the jacking frame’s hydraulic jacks. Two to 

three measurements were taken per monitored pipe, yet for logistical reasons, pressures 

were not monitored for every pipe installed. Upon capturing the pressure readings, the 

pressures were converted to thrust force.  

Ripley (1989) performed laboratory tests on model pipes at the University of 

Oxford to address specific issues raised by the tunneling community. In his experiments 

changes in soil pressures, pipe geometry, and strains experienced by the pipes were 

recorded. Data was used to investigate pipe deformation, deflection at pipe joints, stress 

distribution at pipe joints, and the effects of using joint packing materials on the 

magnitude of stress induced on the pipeline. He supports fieldwork monitoring of pipe 
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jacking installations to promote industry advancement and understanding of the soil 

structure interaction with regard to jacking pipe. 

At Oxford University, Norris and Milligan (1991) instrumented pipe sections 

(Figure 2.2) and monitored them during numerous pipe jacking installations to investigate  

the performance of pipe joints and the interaction between pipes and the surrounding soil. 

Pipe instrumentation enabled measurement of the joint articulation, longitudinal strains, 

joint stress distribution, pore pressure, and normal and shear stresses at the soil-pipe 

interface. Furthermore, jacking loads were monitored at the jacking pit with load cells. 

The contact stress cells instrumented on the pipe sidewall gave the magnitude of radial 

and shear stresses, allowing for determination of the extent to which the pipe is in contact 

with the ground and a measure of the soil-pipe interface friction. 

Figure 2.2 Instrumented Pipe (Norris and Milligan 1991) 

One of the most extensive examples of field measurement and data collection in 

trenchless technology is that of the microtunneling tests performed at the Waterways 

Experiment Station (WES) facility in Vicksburg, MS (Bennett 1998). Detailed 
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descriptions of the testing that took place may be found in Bennett (1998); however, a 

short summary of the test facility construction and collected data is presented herein. A 

brief overview of the study’s findings follows, in Section 2.2. 

 The WES testing facility included a specially designed trench 340-ft long, 

16-ft wide, and 13-ft deep consisting of six different soil types placed in 60-ft long 

sections (Bennett 1998). Interfaces between soil type transitions were sloped to capture 

tunneling behavior during mixed face conditions. Two separate microtunnels, one with an 

auger removal process and the other with a slurry system, were conducted side by side in 

the test bed. A retrievable microtunnel test was performed in the test bed following the 

first two tests and reconstruction of the bed. Horizontal inclinometers and settlement 

plates were installed 2-ft and 4-ft above the crown of each intended tunnel alignment. 

Figure 2.3 depicts the testing bed, instrumentation, and microtunnel alignments for the 

first two tests. Strain gauges were fitted in eight of the 24-inch diameter Hobas pipe 

sections to capture strain behavior during the installation. Furthermore, jacking thrust 

loads, steering jack loads, and cutterhead torque were measured. 
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Figure 2.3 WES Test Bed (Bennett 1998) 

2.2 Jacking Force Studies and Theory 

The use of jacking systems to propel pipe segments along a tunnel alignment is a 

common core for trenchless technologies such as microtunneling, pipe jacking, PTMT, 

and other tunnel boring methods. At this time, research regarding jacking forces for 

PTMT has yet to be conducted. The fundamental ideology of computing jacking forces 

for technologies utilizing jacking systems is akin, and only slight deviations are necessary 

to capture the influence of differences in construction operations and sequences. Thus, it 

is advantageous to explore literature related to jacking forces for other trenchless 

technologies utilizing jacking frames to supply a basis of understanding of the jacking 

forces involved with PTMT. 

The earliest works regarding monitoring of microtunneling installations for the 

purposes of recording installation loads began in the 1970’s, and for the most part in 
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Japan and Germany. Stein et al. (1989) summarizes much of the early work completed by 

Salomo (1979), Scherle (1977), Weber (1981), and Herzog (1985) and provides empirical 

relationships for the determination of skin friction between various pipe materials and 

soil types with and without lubrication.  

Jacking forces required for tunnel advancement are the result of two components, 

the penetration resistance of the jacking shield and the skin friction resistance developed 

along the pipe-soil interface (Pecora III and Sheahan 2004). As such, required jacking 

thrust for tunnel advancement is proportional to the length of the drive, as the pipe-soil 

interface surface area increases with drive length. Many studies have been completed to 

gain insight to the friction resistance. Reviews by Craig (1983) indicate that clays in 

France, Australia, UK, and Germany exhibit friction resistance between 5 and 20 kPa. 

The UK pipe jacking association (1995) suggests that one may expect average shear 

resistance to be between 5 and 15 kPa. The French Society for Trenchless Technology 

(FSTT) expresses average dynamic shear resistances for sandy, sandy-gravelly, and 

clayey ground of 5.4, 7.4, and 7.4 kPa, respectively, based on 14 microtunnelling 

installations conducted under the French National Research Project (FSTT 2004). 

To put things in perspective, an installation in Athens, Greece analyzed by 

Sofianos et al. (2004) consisted of a 200-m drive using 1.49-m diameter pipes and a 

jacking frame with a capacity of 6000 kN. Such installation is only possible if the average 

shear resistance is limited to 6.4 kPa (Sofianos et al. 2004). Accordingly, particular 

attention must be given towards minimizing the degree and quantity of alignment 

deviations and corrections, providing adequate overcut, and properly injecting lubricant 
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into the annular space between the borehole and the pipe walls to allow for successful 

completion of this drive. 

Due to the stable nature of the stiff to hard sandy clay (CL) present along the 

intended alignment in the Athens installation, it was decided that an open face articulated 

micro-backacter double shield would be successful advancing the tunnel. Consequence to 

the stable face and use of the open shield, the recorded thrust forces were believed to be 

only due to the shear resistance along the soil-pipe interface (Sofianos et al. 2004). They 

compared collected thrust force data to theoretical trust forces derived from two 

hypothesis: one, that the ground is in full contact with the pipe and causes loading on the 

entire outside surface area, and two, that the borehole remains intact and frictional 

resistance is solely based on the weight of the pipe and the soil-pipe interface at the 

bottom of the borehole. 

Frictional resistance (Fs) generated at the soil-pipe interface is related to the 

effective stress normal to the pipe (σ’) and a friction coefficient (µ). 

         (2.1) 

Although Equation 2.1 is rather simple, determining the effective normal stress and 

friction coefficient is rather problematic. Both parameters can vary significantly 

throughout the length of a drive due to changing soil conditions, corrections in 

alignments, or simply with time, which can cause overcut and lubrication benefits to 

diminish as soil begins to relax. Terzaghi’s Arching Theory (1943) is a widely accepted 

model for calculating the ground pressure, or effective normal stress, induced on the pipe 

walls (Bennett 1998, Bennett and Cording 1999, Pellet-Beaucour and Kastner 2002, 

Staheli 2006, and Shou et al. 2010). 
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 Terzaghi developed his arching theory through performing an experiment where 

he filled a box with layers of sand and measured the vertical stresses as he incrementally 

lowered a trap door in the middle of the box. It was found that when the trap door was 

lowered, the trap door experienced decreases in vertical stress equal to the vertical 

component of the shear stress developed in the sand. He then proposed the following 

equation for the vertical stress in sand with zero cohesion at various heights above the 

trap door centerline:   

    
  

     
 (2.2) 

where γ = unit weight of the soil 

 B = half of the trap door width 

 φ = angle of soil internal friction 

K = 1 at the trap door centerline, 1.5 at 2B above the centerline, and 
 

     
 at 5B 

above the centerline (where z is the depth below ground surface) 

The Terzaghi Arching Theory as modeled by the trap door experiment, as 

depicted in Figure 2.4 (Bennett 1998), does not however, directly apply to the vertical 

stress imposed on pipes, as alterations need to be made to take into account the 

cylindrical shape of a pipe’s outer dimensions. Regardless, analysis of frictional 

resistance versus earth cover and standard penetration test N values do support the 

arching theory, as frictional resistance tends to decrease with deeper and stronger soils 

(Chapman and Ichioka 1999).  
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Figure 2.4 Analogy of Terzaghi’s Trap Door Experiment (Bennett 1998) 

 There are a number of methods for applying the arching theory to cylindrical 

pipes. Variations in the methods account for differences in what to use as the trap door 

width, as the trap door width should be converted to pipe diameter in order to use the 

arching theory for pipe jacking purposes (Staheli 2006). Auld (1982) adopted the 

Terzaghi Arching Theory for this application and derived the following equations 

referring to Figure 2.5: 

    
  

     
(            

) (2.3) 

        (        ) (2.4) 

 
               

  

 
(     ) 

(2.5) 
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Figure 2.5 Distribution of Normal Stress (Auld 1982) 

German Standards regarding normal stresses imposed on pipes during 

microtunneling using arching theory can be found in ATV A 161 (Stein et al. 1989). 

Figure 2.6 (Stein et al. 1989) summarizes work done by others, who have adopted 

Terzaghi’s Arching Theory. 

 

Figure 2.6 Terzaghi’s and Various Authors’ Arching Theory (Stein et al. 1989) 

McNulty (1965) performed numerous tests evaluating Terzaghi’s Arching Theory 

in sands using a 36-inch diameter cylindrical pressure cell. Trap doors of 3-inch and 6-
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inch diameter were constructed in a way where upward and downward expansion from 

the pressure cell was possible. McNulty found that even in shallow depth of cover with 

respect to pipe diameter scenarios, slight deformations resulted in noteworthy decreases 

in stresses. Jester (1970) also conducted arching experiments, although he used Buckshot 

clay. He found that Terzaghi’s Arching Theory under predicted stresses when the depth 

of cover equaled the diameter of the pipe and over predicted when the pipe diameter was 

three times greater than depth of cover. 

Alternative to Terzaghi’s Arching Theory, the cavity contraction model (Atkinson 

and Potts 1977) details the failure envelope above tunnels in sandy soil (Figure 2.7). The 

failure envelope is defined by the angle 2ψ, where ψ is the dilation angle of the soil. 

Jacobsz et al. (2004) developed a centrifuge model based on the cavity contraction 

model. It was concluded that the cavity contraction model adequately represented actual 

ground conditions in granular material due to the predicted failure envelope being the 

location where the stress path at the tunnel crown reached failure (as summarized in 

Staheli 2006). 

 

 

 

 

 

 

 

Figure 2.7 Predicted Failure Envelope, Cavity Collapse Model (Atkinson and Potts 1977) 

Other work on cohesive soils includes that of Haslem (1986). He developed a 

predictive model (Equation 2.6) that accounts for adhesion between the soil-pipe 
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interface to determine the jacking forces in stable clay installations (Bennett 1998). Use 

of Haslem’s predictive model requires accurate prediction of the adhesion factors and the 

contact width and pressure between the soil and pipe. Additional required parameters can 

be determined through laboratory testing. Contact force in stable clay bores may be 

estimated using the weight of the pipe, however, in soft or swelling clays, the contact 

force would be expected to be significantly greater and would require knowledge of the 

soil vertical stresses and swelling pressures to compute (Bennett 1998). 

          (2.6) 

where α = Adhesion factor 

su = Undrained shear strength 

b’ = Soil-pipe contact width  

and 

       √(      ) (2.7) 

where Pu = Contact force per unit length of pipe 

and 

    
    

     
 (2.8) 

where db = Bore diameter 

 dp = Outer diameter of pipe 

and  

    
    

 

  
 

    
 

  
 (2.9) 
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where ES and EP = Soil and pipe elastic modulus, respectively 

 νs and νp = Soil and pipe Poisson’s Ratios, respectively 

Through the numerous installations monitored by Milligan and Norris (1999), 

they concluded that the overcut provided by tunneling shields typically remains stable 

with cohesive soils, with the exception of very soft clays. Moist fine or silty sand soils 

also tend to be stable due to capillary suction. Dry or fully saturated cohesionless soils 

tend to collapse and fill the annular space (Milligan and Norris, 1993). In order to fully 

understand the jacking forces expected during an installation, accurate prediction of the 

borehole conditions must be made. To complicate things further, heavily 

overconsolidated plastic clays have a tendency to swell upon pressure relief from the 

overcut. This characteristic, in combination injected drilling fluid, which provides a water 

source for increased swelling, can result in shrinkage of the borehole and particle to pipe 

contact, significantly increasing frictional resistance (Milligan and Norris, 1999). 

Additional components to their research include explanations for increased jacking forces 

due to misalignments and time effects. 

In Staheli’s doctoral work (2006), she focused on identifying the mechanisms 

controlling soil-pipe interface shearing for cohesionless soils from which she was able to 

develop a jacking force prediction model. Staheli ran a series of interface shear tests to 

determine the effects of surface roughness, normal stress, relative density, and particle 

angularity on shear behavior. Various pipe materials were tested under normal loads of 

40, 80, 120, 160, and 200 kPa against two types of sand: Ottawa 20/30, a sub-rounded 

quartz sand, and Atlanta blasting sand, an angular blasting quartz sand. Additional 

specifics regarding the testing program can be found in Staheli (2006) and Iscimen 
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(2004). Based on the results, the interface friction coefficient between each soil and pipe 

combination could be determined. Extrapolation and interpolation was used to create 

Table 2.1 (Staheli 2006), which outlines interface friction coefficients for cohesionless 

soils with residual friction angles ranging from 25 to 40 degrees.  

Table 2.1 Interface Friction Coefficients for Numerous Pipe Materials and Residual 

Friction Angles (Staheli 2006) 

Soil at 

Interface 
Soil-Pipe Interface Friction Coefficient 

Residual 

Angle of 

Friction 

Hobas Polycrete 
Permalok 

Steel 

Wet Cast 

Concrete 

Vitrified 

Clay Pipe  

Packerhead 

Concrete 

25 0.37 0.40 0.38 0.43 0.42 0.49 

26 0.39 0.41 0.40 0.45 0.44 0.50 

27 0.41 0.42 0.42 0.47 0.46 0.52 

27.9        

Ottawa 20/30 
0.43 0.43 0.44 0.48 0.48 0.53 

28 0.43 0.43 0.44 0.48 0.48 0.53 

29 0.45 0.44 0.46 0.50 0.50 0.55 

30 0.47 0.45 0.48 0.51 0.52 0.56 

31 0.49 0.46 0.51 0.53 0.54 0.57 

32 0.51 0.47 0.53 0.55 0.56 0.59 

33 0.53 0.48 0.55 0.56 0.58 0.60 

34 0.55 0.49 0.57 0.58 0.60 0.61 

34.6         

Atlanta 

Blasting 

0.56 0.49 0.58 0.59 0.61 0.62 

35 0.57 0.49 0.59 0.60 0.62 0.63 

36 0.59 0.50 0.61 0.61 0.64 0.64 

37 0.61 0.51 0.63 0.63 0.66 0.65 

38 0.62 0.52 0.65 0.65 0.68 0.67 

39 0.64 0.53 0.67 0.66 0.70 0.68 

40 0.66 0.54 0.69 0.68 0.72 0.69 

 

Staheli developed her jacking force prediction model (Equation 2.10) based on the 

interface friction coefficients listed in Table 2.1 and normal forces derived from 
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Terzaghi’s Arching Theory. She also outlined many of the relationships developed by 

other authors, as detailed by Stein et al. (1989), in Table B.1. 

             

       (   
  

 )

     
       (2.10) 

where JFfrict = Frictional component of jacking force (tons) 

 μint = Pipe-Soil residual interface friction coefficient (Table 2.1) 

 γ = Total unit weight of the soil (tons/ft
3
) 

φr = Residual friction angle of the soil (degrees) 

d = Pipe outside diameter (ft) 

r = Pipe radius (ft) 

l = Length of pipe (ft) 

Scherle’s work (1977) involved determining interface friction coefficients 

between concrete and asbestos pipe and gravely, sandy, and clayey soils. Due to 

variances in friction coefficients in the static, kinetic, and lubricated scenarios, Scherle 

established values for each (Table 2.2). 

Table 2.2 Scherle’s Interface Friction Coefficients (Stein et al. 1989) 

Pipe-Soil Interface 

Static Interface 

Friction 

Coefficient (μ) 

Sliding Interface 

Friction 

Coefficient (μ) 

Fluid Interface 

Friction 

Coefficient (μ) 

Concrete Pipe,  

Gravel or Sand 
0.5 to 0.36 0.3 to 0.4 0.1 to 0.3 

Concrete Pipe, Clay 0.3 to 0.4 0.2 to 0.3 0.1 to 0.3 

Asbestos Cement Pipe, 

Gravel or Sand 
0.3 to 0.4 0.2 to 0.3 0.1 to 0.3 

Asbestos Cement Pipe, 

Clay 
0.2 to 0.3 0.1 to 0.2 0.1 to 0.3 
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Weber (1981) established an upper bound for the interface friction coefficient, 

0.46, or a soil friction angle of 24.7 degrees, based on the investigation of jacking forces 

of microtunneling installations (as summarized in Stein et al. 1989 and Staheli 2006). 

Utilizing his upper bound interface friction coefficient yields a conservative estimate, not 

necessarily the most accurate or precise. He included with his work tabulated values 

(Table 2.3) of the jacking stresses due to skin friction from the various microtunneling 

installations he used in his study. 

Table 2.3 Frictional Jacking Stress for Various Soil Types (Weber 1981) 

Soil Type Jacking Stress due to Skin Friction (kPa) 

Gravel, Sand 8.4 ± 2 

Loamy Sand 9.3 ± 1 

Loam 7.3 ± 1 

Loam, Stones 5.7 ± 4 

 

Chapman and Ichioka (1999) expanded on data collected from ISTT’s Working 

Group No. 3 (1994) on 398 microtunneling operations. They separated the case histories 

by soil type and installation method (i.e. slurry shield, auger, and push-in machines) and 

utilized a probability based method to develop a model to predict the jacking force for 

these scenarios. During analysis of the slurry shield machines, a total of 47 data sets were 

removed due to data abnormalities, such as localized thrust force irregularities due to 

boulders or unexpected ground conditions or machine or pipe damage (Chapman and 

Ichioka 1999). By eliminating erroneous data, variability in their scatter plots relating 

frictional resistance to pipe diameter and other parameters decreased significantly. 

Resultantly, their predictive models are based off of typical installations and do not 

capture the “worst case” scenario, which may be an issue when applying this model to 

projects with insufficient geotechnical investigation. 
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The predictive model developed by Chapman and Ichioka (1999) for slurry shield 

machines can be expressed with the following equation: 

            (2.11) 

where F = Total jacking force (T) 

 ƒ0 = Primary resistance (T) 

 D = Outside pipe diameter (m) 

 L = Jacking distance (m) 

 P = Frictional resistance (T/m
2
), see Table B.1 

And  

      
  

 
   (2.12) 

where D0 = Machine outside diameter (m) 

P0 = Face resistance (T/m
2
) 

 Little correlation between outside diameter and face and frictional resistance was 

noticed in the analysis of 69 auger boring installations (Chapman and Ichioka 1999). Due 

to the variability in the results, they chose to use constant values for face and frictional 

resistance to achieve designated levels of coverage of the data. These constants 

designating 80% coverage were 50 and 70 T/m
2
 for face resistance in clay and 

sand/gravel, respectively, and 0.7 and 0.75 T/m
2
 for frictional resistance in clay and 

sand/gravel, respectively. Applying these constants to Equation 2.11 enables the 

prediction of jacking resistance for 80% of auger boring installations (Chapman and 

Ichioka 1999). 
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 Data from push-in operations posed similar difficulties as the auger boring 

operations. Thus, an analogous approach was taken towards determining the face 

resistance. It was determined that 60 and 90% data coverage yields a face resistance of 

200 and 400 T/m
2
, respectively (soil type not specified) (Chapman and Ichioka 1999). A 

linear relationship was able to be seen regarding friction resistance and pipe outside 

diameter and can be expressed through Equations 2.13 and 2.14. It should be noted that 

these equations are to be used with pipe outside diameters in the range of 100 to 250-mm. 

 Clay:             (2.13) 

 Sand:              (2.14) 

Bennett (1998) reviewed case studies in sands, clay, and silts from 39 

microtunneling projects totaling over 15,000 feet and conducted field tests in a 340-ft 

long testing facility, the Waterways Experiment Station, with a horizontal alignment 

consisting of six different soil types (Bennett 1998). Goals of his research were to 

evaluate ground deformations due to varying advancement rates and overcuts, to develop 

a model to accurately predict jacking forces, and to look at time effects, steering 

corrections, misalignment, and dewatering and their influence on jacking resistance. The 

model he developed, as outlined in Table B.1, predicts jacking force as a function of the 

pipe’s surface area, normal stresses imposed on the pipe wall, and a coefficient of 

friction.  

He concludes that normal stress is dependent on the effective soil unit weight and 

the outside diameter of the pipe and independent of the depth of cover. A reduction 

factor, Ca, is introduced to account for arching effects. A friction reduction factor, Cf, is 
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also implemented to properly establish the friction coefficient representing the soil-pipe 

interface behavior. As consequence to the well-designed experimental field tests and the 

high quality and abundance of the recorded data, Bennett was able to distinguish between 

“initial dewatered, non-lubricated” and “non-dewatered, lubricated” segments of the 

installations, providing insight to the effects of dewatering and lubrication on friction 

development. A summary of the arching and friction reduction factors found to be 

representative of his study can be viewed in Table 2.4. 

Table 2.4 Friction and Arching Reduction Factors (Bennett 1998) 

Bennett's Friction and Arching Reduction Factors 

Model 

Dewatered, Non-Lubricated  Non-Dewatered, Lubricated 

Arching 

Reduction Factor 

Ca 

Friction 

Reduction Factor 

Cf 

Arching 

Reduction Factor 

Ca 

Friction 

Reduction Factor 

Cf 

Sand 

Upper Bound 1.5 1.0 1.0 0.66 

Best Fit 1.0 1.0 0.66 0.66 

Lower Bound 0.75 1.0 0.5 0.5 

Stiff to Hard Clay 

Upper Bound 1.0 1.0 0.66 0.66 

Best Fit 0.66 1.0 0.5 0.5 

Lower Bound 0.33 0.66 0.5 0.5 

Soft to Medium Clay 

Upper Bound 1.0 1.0 3.0 1.0 

Best Fit 0.66 1.0 1.5 1.0 

Lower Bound 0.5 1.0 1.0 0.5 

 

Another predictive model for determining the jacking resistance during pipe 

jacking includes that of Osumi (2000), from the Japan Microtunneling Association. 

Osumi reviewed 49 pipe jacking installations and developed his model empirically 

(Osumi 2000). His model incorporates interface friction and adhesion parameters, thus 

making it a valid predictor for jacking forces in cohesionless and cohesive soils. The 
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interface friction component incorporated the friction coefficient, µ’, determined as the 

tangent of half of the soil internal friction angle, and a normal force dependent on the 

depth of cover and pipe weight. He applied a jacking force reduction factor, β, to reduce 

the calculated jacking forces to appropriately represent the studied microtunneling 

projects. Table 2.5 outlines the reduction factor for four soil types. Osumi does not 

provide explanation for the atypical soil classification “solid soil”, however, it is 

reasonable to assume he is referring to extremely hard soil or rock. 

Table 2.5 Jacking Force Reduction Factors (Osumi 2000) 

Soil Category Jacking Force Reduction Factor (β) 

Cohesive Soil 0.35 

Sandy Soil 0.45 

Gravel 0.60 

Solid Soil 0.35 
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CHAPTER 3:  FIELD DATA COLLECTION 

 In order to develop a strong understanding of the PTMT process, it was 

advantageous to collect field data from numerous PTMT installations. Instrumenting 

PTMT machinery with hydraulic pressure transducers to intercept hydraulic pressures in 

thrust and rotational torque components provides insight to the methodological 

installation process and induced installation loads. Knowledge in these areas enables the 

means to perform productivity and jacking force analysis of all three phases of the PTMT 

process. It was beneficial to locate multiple PTMT installations in the same general area 

to simplify logistics of mobilizing data collection equipment, minimize the quantity of 

equipment needed for the study, and to make it possible for data collection procedures to 

be conducted by a sole individual in a timely manner. As such, the Reid Drive Interceptor 

Project in Appleton, WI was a prime candidate for field data collection of PTMT 

processes. 

3.1 Reid Drive Interceptor Project 

The Reid Drive Interceptor Project was located in Appleton, WI on the north side 

of the Fox River (Figure A.1) and completed in the summer of 2011. The existing 

interceptor sewer (purple) was aging and concern was growing about sewer leakage into 

the Fox River. Consequently, a new interceptor located an average of 250-ft north of the 

river was proposed to alleviate the pollution risks. Proposed pipeline quantities for the 

project included approximately 2,400 lineal feet of 21-in nominal inside diameter (ID) 

sanitary sewer (red), 400 lineal feet of 8-in nominal ID sanitary sewer (yellow), and 1500 

lineal feet of 4-in nominal ID sanitary lateral (blue). However, not all installations were 
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monitored with data logging devices due to the inability to procure and calibrate data 

logging instruments prior to the project start date.  

 Alignment for the sanitary sewer main was to run along Reid Drive, connecting to 

an existing sewer line just west of South Orchard Drive and East of Alicia Park near the 

bottom of the river bank. Steep northern river banks, two horizontal to one vertical, 

complicated the proposed design. To make the eastern connection feasible, while 

maintaining the specified slope of 0.2%, 35 to 40-ft installation depths were required for 

the sanitary sewer main. Such a deep installation and the close proximity of the houses 

adjacent to the proposed alignment caused project designers to shy away from using 

traditional open trench techniques. Open trench installation would have been possible in 

Alicia Park; however, due to the mature trees located in the park trenchless operations 

were preferred to minimize potential damages. Furthermore, the park is highly valued by 

the local residents and closing of the park would have unnecessarily increased social 

costs of the project. Additional difficulties regarding working around and relocating 

existing utilities within the proposed alignment would have surfaced if open trench 

methods were employed. The conglomeration of installation complications associated 

with open trench techniques lead designers to specify trenchless installation methods for 

the project. 

The trenchless technique to be utilized for the installation of the sanitary sewer 

mains was not specified in project plans; yet, sanitary laterals were to be installed by 

HDD practices. The awarded contractor, Globe Contractors, Inc., subcontracted Bore 

Master, Inc. to perform the trenchless installations. Upon evaluating the site conditions, 

the geotechnical report, and their machinery inventory, Bore Master elected to use a three 
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phase PTMT/Auger Boring method to install the 21-in nominal ID mains and a 

traditional three phase PTMT method to install the 8-in nominal ID services. Steel pilot 

tubes and steel casings were used in the first and second phases. The product pipe 

material used in phase three was chosen to be Mission Clay’s No-Dig VCP. No-Dig VCP 

is used on more PTMT projects than any other pipe material and is ideal for jacking 

installations due to its high 7,000 psi axial compressive strength, its compression gasket 

joint seal system, and its consistent outside dimensions (Mission Clay Products 2013).  

A PT/HDD technique was used to install the 4-in nominal ID laterals. The 

PT/HDD procedure incorporates the guided protrusion of pilot tubes to provide the 

proper line and grade, attachment of a reaming head to create a borehole slightly larger 

than the product pipe, and pull back of the product pipe attached with a swivel to isolate 

the product line from the rotation necessary for the reaming process. Contrary to 

traditional HDD procedures, installation of a larger exit pit (Figure 3.1) to facilitate 

attachment of the reamer, swivel, and product pipe was necessary in most instances due 

to the inability to accurately steer the pilot tubes towards the ground surface upon 

successful completion of the pilot bore. As with many pull back operations (Carpenter 

2007), HDPE pipe was utilized as the product pipe material due to its high tensile stress 

ratings.  
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Figure 3.1 Exit Pit Installation for PT/HDD Procedure 

 Utilizing the three phase PTMT, PTMT/Auger Boring, PT/HDD methods proved 

advantageous for this project for a variety of reasons. Deep installations are quite feasible 

with these technologies, as access to great depths is provided by the jacking and reception 

shafts required for the jacking machinery and pilot tube/casing removal. The only 

excavation necessary for these methods is that of the shafts. Thus, the decreased 

construction footprint enabled the residential streets to remain open, trucking traffic to be 

reduced, and surface restoration to be as minute as possible. Furthermore, the proximity 

of Alicia Park results in the presence of numerous children and other pedestrians. This 

increases the importance of having a safe construction site with minimal hazardous 

excavations.  

Besides the ease of deep installations and significant societal benefits, PTMT 

technology allows for the installation of a product line at a high degree of accuracy in line 

and grade. By utilizing the theodolite, camera, and an LED target guidance system, 

design accuracy in line and grade of 0.25 inches in a 400 foot installation could be 
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maintained (Akkerman 2013). Accuracy of this caliber was necessary for this project due 

to the near flat grade of 0.2% and due to the fact that the sanitary sewer is to operate 

under gravity flow. Utilizing installation methods unable to provide such high accuracy 

standards may lead to back pitch in localized areas, which can cause severe operational 

problems in critical grade infrastructure systems such as this gravity flow sewer.  

PTMT also was an ideal candidate for the type of soils documented throughout 

the alignment. Borings indicated fairly consistent soil at the depths of the proposed 

sewer, consisting mostly of red-brownish-gray silty clay with trace amounts of moist 

sand. Table 3.1 describes the soil characteristics expected to be encountered, based on the 

project’s geotechnical report, for the installation drives with collected data. Obstructions 

were not expected to be encountered during directional drilling procedures, as 

obstructions during the soil boring operation did not occur. 

Table 3.1 Soil Characteristics Corresponding to Drives with Collected Data 

Drive # 

Estimated 

Depth Below 

Water Table (ft) 

Stiffness N 
qu 

(tsf) 

qp 

(tsf) 

qs 

(tsf) 

w 

(%) 

γd 

(pcf) 

1 25 Medium Stiff 4 0.9 0.4 0.4 22 107.5 

2 17 Medium Stiff 5 0.7 0.4 0.4 22 107.0 

3 19 Medium Stiff 5 0.6 0.3 0.4 23 106.9 

4 14 Medium Stiff 4 0.7 0.2 0.4 23 106.7 

5 4 Stiff 9 1.6 1.2 0.7 17 107.1 

6 3 Stiff 9 1.6 1.2 0.7 17 107.1 

7 3 Stiff 8 1.8 1.4 0.5 21 107.1 

 

where N = Standard penetration resistance N value (ASTM D-1586) 

qu = Unconfined compressive strength 

 qp = Calibrated penetrometer resistance 

 qs = Vane-shear strength 
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 w = Moisture content 

 γd = Unit weight of dry soil 

3.1.1 Monitored Installations  

All phases of seven installations, or drives, were monitored with data logging 

equipment throughout the duration of the project. The drive numbers and their 

corresponding characteristics may be viewed in Table 3.2. Jacking shafts were 

constructed at the locations of manholes 26.100, 26.102, and 26.106. Other manhole 

locations were the site of the reception shafts. Data collection during drives three and 

four adequately captured jacking behavior during phases one and two, although, jacking 

behavior for phase three of both drives was not. Upon downloading the phase three data 

for drive three, it became evident that pressure transducer outputs were constant and did 

not represent actual field conditions. Phase three data for drives one and two appeared to 

represent field conditions, but required some modification (see section 5.1.1). Further 

descriptions of the complications associated with this pressure transducer are detailed in 

Appendix D. 

Table 3.2 Monitored Installation Drive Characteristics 

Drive # Manholes Length (ft) Depth (ft) 
Nominal 

I.D. (in) 

Product 

Pipe 
Boring # 

1 26.100 to 26.99B 405 38 21 VCP
 

B3 to B4 

2 26.100 to 26.101 385 36 21 VCP B3 to B3/B2 

3 26.102 to 26.101 200 35 21 VCP B2 to B2/B3 

4 26.102 to 27.3 407 34 21 VCP B2 to B1 

5 26.106 to 26.100 123 26 8 VCP B3 

6 26.106 to NA
* 

230 25 4 HDPE B3 

7 26.100 to NA
* 

260 35 to 16 4 HDPE B3 
*
The exit locations for lateral installations were not at proposed manhole locations. 
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 PT/HDD was utilized in drives six and seven to install 4-inch HDPE laterals. 

During each of these installations, deviations from the traditional methodology of a single 

pilot run to establish line and grade and one ream/pull-back of the HDPE product pipe 

existed. In drive number six, stresses induced throughout the installation caused the 

product pipe to yield, and eventually snap, about 40 feet from completion. The following 

day, a rescue shaft was constructed to access the location of the snapped HDPE pipe. 

Pilot tubes were then jacked to this location and the reaming assembly and swivel 

attachment were connected to link the HDPE pipe to the pilot tubes. Pull-back operations 

followed and were successful in pulling the product pipe back into the jacking shaft.  

 Due to the experience with the sixth drive, it was decided that an alternative 

approach would be used to install the HDPE lateral for drive seven. This approach 

involved jacking the pilot tubes to establish the line and grade, hooking up the reamer at 

the exit location, and pulling back the reamer without the product pipe attached. Once the 

reamer exited the pilot bore, pilot tubes were then jacked through the reamed borehole to 

the exit location. The reamer and swivel were then used to link the pilot tubes to the 

HDPE product line, and the product line was pulled through the borehole to the jacking 

shaft to complete the drive. It was thought that by pre-reaming the borehole, the forces 

experienced by the HDPE product line would be reduced and the chances of the product 

pipe failing would be minimized. The effect of pre-reaming is further described in 

Chapter 5. To differentiate between initial and subsequent pilot tube jacking and pull-

back operations terminology such as “PT 1”, “PT 2”, “pull-back 1”, and “pull-back 2”, 

respectively, are utilized.  
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3.2 Prepping the Data Logger 

 The data logger utilized to record the hydraulic pressures from the Akkerman 

GBM-240A guided boring machine (GBM) used in phase one, the American Auger 36-

600 NG Auger Boring Machine (AA) used in phase three, and a custom built pipe pusher 

(BM pusher) used in phase three was the Data Dolphin DD-400 from Optimum 

Instruments, Inc. This data logger was used due to its extreme versatility, ability to store 

data on a flash memory to prevent data loss in the event of dead batteries, and its 

allowance for sample rates to be adjusted without being restarted. Voltage outputs 

transmitted from three pressure transducers (Econoline 10,000 psi, 0.5-4.5 VDC) to the 

data logger are correlated with the time and date of their occurrence, aiding with 

productivity analysis and for linking data with operational field notes. Before being able 

to begin recording field data with the device, the following procedures must be 

performed: calibration of the pressure transducers, programming of the data logger, and 

proper connection to the PTMT machinery. 

3.2.1 Pressure Transducer Calibration 

Three pressure transducers, denoted as “L1”, “L2”, and “L3”, were used to output 

voltage values to the data logger from the hydraulic pressures in the GBM, AA, and BM 

pusher during installation. The first transducer, L1, was used to collect the thrust 

hydraulic pressure for the BM pusher. Transducer L2 was responsible for capturing the 

thrust hydraulics in the GBM. Transducer L3 output voltage from thrust hydraulics from 

the AA and rotational hydraulics from the GBM. It should be noted that the BM pusher is 

capable of producing 10,000 psi pressures, yet the AA and GBM are only capable of 

5,000 psi pressures. A 10,000 psi hydraulic pressure is the maximum pressure the 
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transducers can read, resulting in a maximum voltage output of 4.5 volts. The Data 

Dolphin data logger is only able to record voltage inputs less than or equal to 2.5 volts. 

Consequently, a reducer was fixed between the L1 transducer and the data dolphin to 

scale down the voltages to a recordable level. L1 was not used to collect data for the other 

machines as it was thought the reducer may have a negative effect on the resolution of the 

collected data. Thus, utilizing three transducers was necessary to be able to capture both 

the thrust and rotational torque hydraulics during phase one and the operations of the BM 

pusher in phase three. 

In order to ensure proper identification of machine hydraulic pressures during the 

installations, the pressure transducers needed to be calibrated in a controlled laboratory 

setting. Each transducer was individually hooked up to intercept hydraulic pressure from 

a hydraulic line that could be held at constant pressure. The transducers were then 

exposed to constant pressures of 500, 1000, and 2000 psi for between 30 to 60 seconds. 

The mean voltage value from a pressure transducer recorded by the data logger during a 

period of exposed hydraulic pressure was noted to be representative of the respective 

hydraulic pressure. The increase in voltage resulting from an increase in hydraulic 

pressure was linear for all three transducers, with fitted R
2
 values greater than 0.998 for 

all three lineal fits. Thus, linear extrapolation was used to determine voltage outputs 

resulting from each machine’s maximum hydraulic pressure.  

3.2.2 Programming the Data Logger 

In order to program the Data Dolphin to perform desired tasks, communication 

must be established through one of the following methods (Optimum Instruments 2004): 

1. Direct connection via a RS-232 cable  
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2. Land line dial-up modem 

3. Spread spectrum radio (2 to 20 mile range)  

4. Wireless IP (via Data Dolphin’s internal cellular modem) to the internet or an 

intranet 

5. Ethernet 

The ease of establishing a connection between the user and the Data Dolphin adds 

to versatility of the data logging system. One may connect wirelessly, or directly, to a 

Data Dolphin with an advanced communication module and have that Data Dolphin be 

the “hub” for a network of Data Dolphins, effectively enabling the user to communicate 

with all data loggers through the hub. A connection such as this would be advantageous 

for collecting data on a large project, where multiple installations are being completed at 

once and there is a need for using and accessing multiple Data Dolphins at one time. 

However enticing a wireless communication method may be, a direct connection using a 

RS-232 cable and a USB adapter was used for this study. The data logger containment 

box was taken away from the jobsite each night to monitor its condition and charge its 

battery if need be, making the simple direct connection the preferred method. 

 Once a connection between the Data Dolphin and the user has been established, 

communication is initiated by opening the Data Dolphin software and clicking the “load 

from Data Dolphin” button in the “dolphin setup” window. Upon doing so, Data 

Dolphin’s current operating parameters should be displayed on the user’s computer in the 

“status” window. To change any of the current operating parameters, the “dolphin setup” 

window needs to be used. From here, the Data Dolphin’s internal clock time may be set 

so data is time stamped correctly with the time of day. Conditions regarding the sampling 
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rate may also be specified. For this study the sample rate was set to one sample every 

three seconds, to ensure that most operational procedures during the installation would be 

captured. A delayed start was often used so that recording would begin at the beginning 

of the work day in an attempt to optimize battery life. Other setup parameters were rarely 

used and are not worth mentioning. Additional setup parameters and Data Dolphin 

capabilities may be found in the Optimum Instrument’s Data Dolphin Data Logger Series 

Operators Manual (2004). 

 After a period of data collection the data may be retrieved from the data logger by 

establishing a communication session with the unit as previously described. Afterwards, 

the “download” button should be clicked in the “status” window. The project site 

database on the user’s computer will then be updated with the most recent Data Dolphin 

input capture. Alternatively, a specific date and time window may be selected to 

download data that has already been downloaded or to download data within a specific 

time frame. Upon filling the flash memory used to store data in the Data Dolphin, the 

software will direct the Data Dolphin to either stop recording new data or to record new 

data while simultaneously deleting the oldest data. For this case study, the Data Dolphin 

was programmed to stop recording once full. As such, it was important to clear the data 

from the flash memory as soon as it was downloaded and verified on the user’s computer. 

Clearing the Data Dolphin’s memory may be accomplished through selecting the “erase 

all data” button from the “tools” drop down menu. 

3.2.3 Connecting the Data Logger to Machines 

The data logger, along with an external battery source, was housed in a 

containment box to keep it secure and in good condition while exposed to construction 
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site hazards (Figure 3.2). To facilitate connections to machine hydraulics, the pressure 

transducers were connected to the data logger with 25-ft cables. Quick coupler 

connections were installed immediately behind machine pressure gauges to present an 

efficient and easy way to attach the pressure transducers. Figure 3.3 illustrates the quick 

coupler system employed for phase one operations with the GBM. Utilization of quick 

coupler connections, as opposed a standard rotational attachment system, made the 

transducer hook up procedure simple and imposed minimal infringements upon the 

productivity of the installation process, a key factor in maintaining a good relationship 

with the contractor. Once the transducers were in place to intercept hydraulic pressures, 

the storage location of the Data Dolphin containment box needed to be evaluated on a 

phase by phase basis. 

 

Figure 3.2 Photograph of the Data Logger and Battery Inside Containment Box 
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Figure 3.3 Quick Coupler Connection Used for Pressure Transducer Connection to GBM 

Hydraulics (Lueke and Olson 2012) 

It was crucial to ensure the Data Dolphin would be safe from on-site hazards, that 

the 25-ft cables could span the distance from the containment box to the hydraulic lines, 

and that the containment box would be in a location where it did not interfere with phase 

specific operations or procedures. The power pack for the GBM, which contained the 

engine and pressure gauges and was enclosed in a steel 6 x 6 x 12 cubic foot containment 

box, was located beside the jacking shaft during installations. Inside the containment box 

proved to be the ideal location for the Data Dolphin due to the available storage space 

inside the unit, the close proximity of the dolphin and the pressure gauges, and the 

provided protection from the outside environment. Storage locations for the Data Dolphin 

while using the AA and the BM pusher were down in the jacking shafts.  

When the AA was in use, the Data Dolphin was fastened on top of the machine’s 

hydraulic fluid tank with two straps (Figure 3.4). Although the data dolphin was exposed 

to vibrations, the straps were sufficient in securing the device to the machine. The BM 

pusher was powered hydraulically by a large external power pack that would sit beside 

the pusher during installation. The hydraulic lines traveled up from the power pack to a 
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boom, across the boom, and down to the pusher (Figure 3.5). This boom was attached to 

the power pack with a swivel joint, enabling the boom to neatly guide the hydraulic lines 

forward as the pusher proceeded with pipe installation. As shown in Figure 3.5, the Data 

Dolphin rested securely on top of the power pack and the cable for the L1 transducer ran 

across the ground to the BM pusher’s hydraulics. This configuration proved to be 

bothersome for the workers, as they would need to ensure the cable didn’t snag on 

anything as the pusher moved back and forth. A later configuration of running the cable 

along the boom, following the other hydraulic lines, turned out to work the best. 

 

Figure 3.4 Data Dolphin Containment Unit Strapped to the AA During Phase 2        

(Lueke and Olson 2012) 
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Figure 3.5 Power Pack & Data Dolphin Containment Unit Configuration for the BM 

Pusher During Phase 3  
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CHAPTER 4:  PRODUCTIVITY ANALYSIS 

Instrumenting jacking frames with pressure transducers and logging the voltage 

outputs during all three phases of the PTMT process provides detailed construction 

workflow data, ideal for detailed productivity analysis. Insight into the factors affecting 

productivity can assist engineers and contractors with estimating accurate construction 

schedules and project costs (Olson and Lueke 2013). These factors may include, but are 

not limited to, installation depth, crew experience, utilities or other obstacles, pipe 

diameter, drive length, and site or ground conditions. Being able to predict installation 

rate based on these factors provides value to project stakeholders, as it aids evaluation of 

viable construction methodologies proposed for a project, increases contractor efficiency 

by providing a greater understanding of the critical tasks associated with PTMT 

installations, and supplies a framework for the development of PTMT simulation models 

to strengthen project schedules, cost estimates, and further academic studies. Data from 

instrumenting and monitoring jacking frames provides the means to attain such benefits. 

Voltage output from pressure transducers fitted to the jacking frames correlates to 

distinct hydraulic pressure values, which may be linked to thrust force behavior generated 

by the hydraulic jacking rams. Since the Data Dolphin data logger time stamps the 

voltage outputs received from the pressure transducers, fluctuations in voltage versus 

time describe the operational behavior of the jacking frames, in terms of jacking force 

trends as well as installation productivity. Before trends in jacking force may be fully 

explored, it is necessary to be able to identify cyclic patterns in the recorded data. Cyclic 

patterns indicate operations that occur over and over again, akin to the installation of the 

numerous pipe sections required to complete a PTMT installation. By identifying the 
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cyclic patterns within each PTMT phase, data representative of each pilot tube, casing, or 

product pipe installation may be isolated. Once the data pertaining to each pipe is known, 

data may be analyzed with respect to the length of drive completed, or “chainage”, given 

that the length of a pilot tube, casing, and product pipe is known. From here, detailed 

analysis regarding jacking force trends, described in Chapter 5, and productivity analysis, 

discussed in this chapter, may be completed. Factors influencing productivity may be 

identified through in depth understanding of the elements, or operations, within typical 

installation cycles. Resultantly, methodology for identification of typical cycles and 

descriptions of their operational components are outlined in this chapter. Organization of 

this chapter proceeds as follows: identifying typical cycles within each phase and 

classifying their operations, productivity trends and observations, and the benefits of 

utilizing an automatic neuro network (ANN) for pattern recognition and productivity 

analysis. 

4.1 Cycle Identification 

 Cyclic patterns representing particular operations required to complete installation 

of a single pipe section (i.e. pilot tube, casing, or product pipe) may be observed in the 

recorded voltage outputs from the pressure transducers fitted to the jacking frames’ 

hydraulics. Each of these operations, such as hooking up a pipe, jacking the pipe, 

pausing, or retracting the jacking rams, constitutes distinct behavior that may be 

identified within the recorded time series data. For example, voltage outputs are likely to 

be higher during jacking of a pipe section than during periods of pausing or readying a 

pipe section for installation. Recurring patterns of said operations indicate installation of 

a single pipe section. Isolating the installation of each pipe section allows for comparison 
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of jacking forces with respect to chainage, as well as productivity information such as 

installed length versus time. Time variability in a cycle’s operations provides insight 

towards the dependency of each operation on factors such as crew experience and 

difficult soil conditions.  

The following sections describe the operations that make up the cyclic patterns for 

phase one, two, and three (i.e. jacking of pilot tubes, casings, and product pipes). Cyclic 

patterns, and the operations within, are described in terms of voltage output from the 

hydraulic pressure detected from the pressure transducers. In doing so, analysis is based 

on the raw data collected by the Data Dolphin data logger. Furthermore, comparing 

voltage outputs allows for conjunctive comparison between thrust and rotational torque 

fluctuations representative of phase one operations. 

Depending on the characteristic of an observed operation, its behavior, in terms of 

voltage fluctuations, may be easier or harder to identify. Most commonly, instances 

between operations resulting in high and low voltage outputs are easily identifiable and 

were chosen as the starting and end points of pipe section installation. Only after careful 

and prolonged observation and analysis of multiple cycles of each phase were the 

operational tasks within each cycle able to be identified. Consequence to predetermining 

the cycle start and end points, in order to complete preliminary work on jacking force 

versus chainage and installation rates, the start and end operations for each PTMT phase 

are not necessarily the same. The effect of defining differing start and end points for 

installation cycles of each phase is purely aesthetic and the consequences are 

insignificant. To provide consistency between this thesis and previously published works 

(Olson and Lueke 2013 and Tang et al. 2013), the start and end points for the installation 
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cycles remain unchanged. Start and end points for typical cycles for each phase are thus 

identified at the beginning of the corresponding section in this thesis. 

4.1.1 Typical Cycle – Phase One 

 A phase one cycle has been defined to start once the GBM has been disconnected 

from the pilot tube recently installed and the GBM has been retracted to its starting 

position. Throughout a phase one cycle five distinct operations may be seen, as depicted 

in the typical phase one cycle shown in Figure 4.1.  

 
Figure 4.1 Typical Pilot Tube Installation Cycle 

The majority of operation one includes hooking up a pilot tube to the previously 

installed tube and to the GBM. There is mainly only rotation during this operation. The 

rotation pulls the machine towards the borehole, so there shouldn’t be any spikes in thrust 

voltages. There may be small deviations above the ambient thrust voltage observed in the 

beginning of this operation due to the operator moving the machine towards the incoming 
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pilot tube. Additionally, there may be a significant pause during this operation as the 

operator may be waiting for another crew member to bring in another pilot tube. 

Operation two is relatively short and includes lowering the “make-up tool”, as 

termed by Akkerman (2013), to allow for installation of the recently hooked up pilot 

tube. The purpose of the make-up tool is to allow for tightening of pilot tubes prior to 

jacking operations and for separating the pilot tubes during pull-back operations. Figure 

A.2 shows the make-up tool and the slot on the pilot tube that allows for the make-up tool 

to grasp the pilot tube. 

Jacking of the pilot tubes makes up the third operation in a phase one cycle. 

Rotation is infrequent during this operation, as rotation may be paused to correct 

alignment. In Figure 4.1, it may be seen that thrust decreased to the ambient level while 

rotation voltages increased. Rotation without thrust may have occurred to orient the bias 

on the lead pilot tube to steer the tubes back onto alignment upon further jacking. 

Once the pilot tube has been pushed into the soil, operation four begins, in which 

the make-up tool is raised to grasp the slots on the installed pilot tube. Rotation may be 

observed as the tubes are rotated to align the pilot tube slots with the make-up tool. 

Determining the task at hand during operation five proved rather difficult, as the 

high thrust force pressures may mislead one to believe that this operation dictates jacking 

of the pilot tubes. However, upon gaining familiarity with the thrust and rotational torque 

behavior of this operation in comparison to that of operation three, it became evident that 

expected trends in thrust forces occur in operation three, and not operation five. For 

example, in drive number two, thrust forces from operation three increased at the 

locations where high thrust pressures were described in the field notes, and fell upon 
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exiting those locations. On the contrary, high thrust values during operation five were 

relatively constant, except at a chainage of 125 feet, where they rose when second gear 

was initiated to ease jacking operations.  

After much thought as to why thrust voltage output was higher during operation 

five than during operation three, where the pilot tube is being installed, it became evident 

that the high pressures in the thrust hydraulic lines were actually a result of the GBM 

rotating off of the installed pilot tube and retracting towards the starting position. The 

GBM uses rotational torque to disconnect from the pilot tube, and with the pilot tube 

location fixed in the make-up tool, the GBM is forced backwards creating high pressures 

in the jacking rams, even though the machine is not moving forwards. It is believed that 

these high pressures are maintained throughout retraction of the machine to its starting 

position. The instantaneous thrust voltage increase observed upon switching from first to 

second gear, provides support to the hypothesis that operation five includes disconnecting 

the pilot tube and retracting the GBM. Second gear supplies greater hydraulic pressure to 

thrust and rotational lines, as such the thrust voltage during this operation is likely to 

increase to a higher level, regardless of the location of the lead pilot tube and the soils of 

which it is advancing through. 

4.1.2 Typical Cycle – Phase Two 

 The beginning of phase two typical installation cycles has been defined to start 

once the AA has traveled back to its starting position, farthest away from the borehole. A 

typical casing installation cycle may be seen in Figure 4.2. Casing cycle operations are in 

essence quite similar to that of the pilot tubes, although the operations have longer 

durations and exhibit different thrust voltage fluctuation behavior. 
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Figure 4.2 Typical Casing Installation Cycle 

  Operation one begins with cleaning up spoil returns around the borehole, 

adjacent to the AA tracks, and inside the barrel of the AA. Afterwards, the new casing is 

lowered onto the tracks to be prepped. To ready the casing for installation, the new auger 

flight is first fitted to the auger inside the previously installed casing. After that, the 

spigot end of the new casing is slid inside the bell of the casing previously installed, and 

pins are pushed into slots in the joint to secure the two casings together. This entire 

process takes some time and is the cause for the long duration of operation one. 

 Connecting the auger string to the rotational drive of the AA and sliding the 

casing into the AA barrel makes up operation two. High thrust voltage outputs may be 

observed if the AA is misaligned with the casing as it proceeds forward. 

 Operation three represents a short pause in which communication between the 

jacking shaft and reception shaft crew takes place to ensure all parties are ready to begin. 
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There may also be some readying or setup of equipment used to remove spoil material 

generated during excavation. 

 Jacking rams on the AA have a 35-inch stroke. Consequently, once the full stroke 

length has been reached, the rams have to be retracted back into their housing and reset 

before jacking may proceed. The reset process includes retracting the “dogs”, as termed 

by American Augers (2013), from the slots in the track with a hydraulic push bar 

cylinder, retracting the jacking rams back into their housing, and extending the dogs into 

slots in the track at a position 2.5-ft closer to the borehole. To completely push an 8-ft 

casing, three resets and four jacking periods are necessary. Each of the jacking periods 

corresponds to operations four through seven, as indicated in Figure 4.2. The reset sub-

operations are circled in red. A full 35-inch stroke during the first and last push was not 

utilized due to the positioning of the casing at the start and end of operations four and 

seven, respectively. 

 The eighth operation begins once the casing has been completely advanced. The 

dogs are then retracted from the track and the AA is geared back to its starting position. 

When quick movement of the AA is desired and high thrust or pull power is not required, 

a “Quick Tran” rack and pinion system is used to gear the machine forwards and 

backwards at a fast rate. This system allows for increased productivity as it eliminates the 

need to move the machine through action of its jacking rams and resetting of the dogs. 

The system is independent of the thrust hydraulics and therefore its use does not directly 

cause fluctuations of the thrust voltage recorded by the Data Dolphin data logger. 

However, as the machine is retracted pressure in the thrust cylinders increases, akin to the 

behavior observed in phase one operation five. 
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4.1.3 Typical Cycle – Phase Three 

 Phase three installation cycles are defined to start once a VCP has just been 

installed and the machine is in its most forward position (closest to the borehole). A 

typical cycle depicting installation of a VCP can be seen in Figure 4.3. 

 
Figure 4.3 Typical VCP Installation Cycle 

 Phase one begins with retracting the hydraulic jacking rams inside their housing 

while simultaneously retracting the BM Pusher to its starting position with a battery 

powered winch. It is believed that there are high pressures in the hydraulic rams due to 

the combination of pressure left over from jacking the previous VCP and the resistance 

generated from winching the machine back to its starting position. This pressure 

gradually drains as the rams retract.  

 Operation two represents a pause in all tasks. The BM Pusher is turned off as the 

operator waits for the new VCP to be lowered into the jacking shaft.  
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The third operation consists of readying the next VCP for installation. Small 

fluctuations in thrust voltage output may be seen during this operation as the BM Pusher 

is moved back and forth by small amounts. Occasionally, the duration of this operation 

may be extended while the crew in the reception shaft works on disassembling and 

removing the casing. Disassembling casings is the critical task for phase three operations 

and requires an experienced crew to perform these tasks in an efficient manner. 

As with phase two operations, the entire 8-ft pipe section cannot be installed 

without resetting the hydraulic rams. The rams for the BM Pusher have a 4-ft extension 

and thus require two separate pushes to complete installation of a VCP section. 

Operations four and six indicate pushing the first and last four feet of the VCP, 

respectively. The fifth operation includes retracting the dogs out of the track, retracting 

the hydraulic rams back inside the housing, and extending the dogs back into the track to 

complete the remainder of the installation. 

4.2 Installation Productivity 

In 2011, Arizona State University surveyed 22 North American PTMT 

contractors to evaluate the industry state of practice with regard to PTMT (Gottipati 

2011). The survey asked respondents about their company profile, completed PTMT 

project information, and PTMT planning and risks. Figure 4.4 presents the results from 

the survey regarding factors affecting productivity. Productivity factors are listed on the 

vertical axis and the percentage of contractors of whom identified the factor as having an 

impact on PTMT productivity on the horizontal axis. It was found that ground conditions 

affect productivity rates to the greatest extent, where installation depth mas not as critical. 

Ground conditions may make or break a project’s productivity. If unforeseen ground 
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conditions occur, there may be difficulties with advancing the installation, stabilizing the 

borehole, or maintaining accurate line and grade.  

 
 

Figure 4.4 Ranking of Factors Affecting PTMT Productivity (Gottipati 2011) 

The soils report for the Reid Drive Interceptor Project does not indicate highly 

variable soil strata to allow for proper evaluation of ground conditions on PTMT 

productivity, although, there were isolated sections where difficult soil conditions caused 

high machine pressures, as documented in the field notes. Thus, a basis for evaluation the 

effect of ground conditions on PTMT productivity is possible. Additionally, the effect of 

the other factors listed in Figure 4.4 was evaluated when the impact of the factor could be 

isolated from other productivity stressors. Before a just assessment of factors affecting 

PTMT productivity may be made, expected productivity rates and characteristics for each 

PTMT phase should be identified. By analyzing the trends in cycle duration frequency 

bar graphs and cumulative installed distance versus time graphs, insight towards the 

factors affecting productivity and their influence on PTMT productivity may be gained 

(Olson and Lueke 2013).  
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4.2.1 Phase One Productivity 

Figure 4.5 represents the frequency of which the duration of all monitored pilot 

tube installation cycles from the three step PTMT method, drives one through five, fall 

into. All in all, there were 605 pilot tube cycles included in this analysis. It can be seen 

that cycle duration frequency is represented by an exponential distribution about the most 

common cycle duration bin with a more gradual decrease in occurrence frequency for the 

longer cycles. There were seven “fast” cycles with durations lower than 40 seconds. The 

infrequency of these fast cycles is due to there being a minimum amount of time required 

to install a pilot tube given that crew efficiency is at its maximum and installation 

proceeds as fast as possible. This minimum installation time is estimated to be near 40 

seconds. The seven cycles installed in less than 40 seconds may be a result of odd, or 

difficult to interpret, thrust voltage patterns misleading the analyst into classifying a short 

cycle time. Thus, it is unlikely that pilot tube cycles on the Reid Drive Interceptor were 

quicker than 40 seconds.  

 
Figure 4.5 Pilot Tube Installation Cycle Duration Frequencies 
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Cycle duration frequencies taper in an exponential fashion from the most common 

duration, between 50 and 60 seconds, to longer cycles of 100 to 110 seconds. The 

exponential decrease in occurrence frequency is the result of more common and shorter 

delays, such as a laborer falling behind in his or her tasks, occurring more commonly 

than longer less frequent delays, such as experiencing problems with the bentonite pump. 

A minor delay may increase cycle time by less than 20 seconds, whereas a more 

substantial delay could result in cycle time increases of several minutes. 

The average cycle duration was 80 seconds, but this included outlying cycles 

where delay caused excessive increase in cycle time. Consequently, cycles exceeding the 

mean plus one standard deviation, 140 seconds, have been omitted from Figure 4.5 to 

more accurately display cycle durations expected to occur in the field. Furthermore, these 

long cycle durations do not represent the true cyclical pattern of a pilot tube installation, 

as there was most likely a production delay caused by the need of a tool located 

elsewhere on the jobsite or equipment malfunction. A more adequate representation of 

the expected cycle time for a pilot tube installation is the median value, which was 66 

seconds.  

Figure 4.6 illustrates the cumulative lineal distance installed for pilot tubes from 

drives one through five as a function of elapsed time. Average installation rates for drives 

one through five are 106, 98, 139, 89, and 106 feet per hour, respectively. The average 

installation rate of based on the total drive footage per cumulative time to complete the 

drives was 102 feet per hour. This installation rate includes stoppages due to delays. If a 

crew were able to reduce the amount of delays occurring throughout a drive and install 

pilot tubes with an average cycle time equal to the median cycle time of 66 seconds, the 
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installation rate would increase from 102 to 136 feet per hour. This illustrates how 

production may be increased by 33% if construction delays are reduced to a negligible 

amount where there occurrence is either infrequent or the length of delay is short. Of 

course, a production increase of this magnitude is difficult, due to the low probability of 

all construction processes being completed at maximum efficiency and with zero 

complications. However, as the high installation rate of the third drive illustrates, 

production without significant delays is possible if adequate planning and preparation are 

completed and soil conditions, machinery operation, and other external factors go in the 

contractors favor.  

 
Figure 4.6 Cumulative Pilot Tube Installation Distance vs Time 

 From Figure 4.6 it can be seen that there was considerable delay at the beginning 

of the fourth drive. This may have been due to the crew retracting their rods to advance at 
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minute mark. An additional productivity trend to point out is that towards the end of each 

drive, the isntallation rate tends to decrease. This is most likely a result of the GBM 

operator pausing to establilsh communication with another crew member at the receiving 

pit, who is observing to see when the pilot tube protrudes into the reception shaft. 

 It should also be noted that there was delay on drive two when the lead pilot tube 

was proceeding through a difficult ground conditions as noted by the field notes and seen 

in the high voltage outputs. The difficult ground conditions were encountered from about 

30 to 90 minutes into the drive. During this period the average installation rate was 79 

feet per hour. This is 19% less than the average installation rate of this drive. Although 

difficult to see in detail, the decreased installation rate throughout this hour is evident in 

Figure 4.6. In fact, the decreased installation rate throughout the difficult soil is solely a 

result of two cycles of which the durations were 11 and 14 minutes. The cause of the two 

longer cycles was not documented in the field notes, although a possible cause may be 

due to the operator applying lubricant without advancing the pilot tubes in an attempt to 

stabilize the borehole and decrease soil-pipe interface friction. Other cycles during this 

time period exhibited expected durations.  

 Another factor identified by Gottipati’s survey (2011) to have an influence on 

productivity was drive length. Although there may be some learning effects that increase 

a crew’s efficiency as a drive progresses, workers may tend to become fatigued towards 

the end of an installation, especially if they are understaffed. Additionally, increases in 

jacking resistance due to greater pilot tube-soil interface surface area may result in slower 

jacking of pilot tubes. This behavior is illustrated by the chainage versus elapsed time 

behavior for drive number one. Around 100 minutes into the drive the installation rate 
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begins to taper slowly for the remainder of the drive. It can be seen that there was not an 

increase in outlying or delayed cycles, but that there was merely a lengthening in the 

operations within the cycles. Towards the end of drives one through four it can be seen 

that installation rates reduced even further. This is mainly a result of increased 

communication between those in the jacking shaft and the reception shaft.  

4.2.2 Phase Two Productivity 

Casing cycle durations are much longer than those of the pilot tubes, as more time 

is required to excavate the borehole, clean up spoil from the reception shaft, and hook up 

subsequent casings for installation. Figure 4.7 shows the cycle duration frequencies of the 

21-inch nominal ID 8-ft long casings from a total of 176 observations, which were 

completed in drives one through four. The frequency distribution is similar to that of the 

pilot tube cycle durations, although, the casing cycle durations exhibit slightly less 

variance and do not contain as many longer duration cycles. However, there is still a 

tendency for more long duration cycles than short duration cycles due to construction 

workflow delays. Also akin to the pilot tube cycles, it is unlikely that the three cycles 

categorized in the less than 20 minute duration bin actually were less than 20 minutes. 

Most likely there were irregularities in the voltage output behavior that mislead the 

analyst into categorizing the cycle length as less than 20 minutes. Consequently, the 

minimum cycle duration expected for a 21-inch nominal ID casing is between 20 and 25 

minutes. Additionally, common construction workflow delays are expected to increase 

cycle durations from the common 25 to 30 minute range by at most 30 minutes. As the 

length of the delay becomes longer, the likelihood of such a delay occurring is decreased, 
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as illustrated by the exponential reduction in occurrence frequencies from 30 minutes 

onwards.  

 
Figure 4.7 21-Inch Nominal ID Casing Installation Cycle Duration Frequencies 

The average cycle duration was 33 minutes, but as with the pilot tube cycles, this 

included outlying cycles with excessive increase in cycle time due to delay. Resultantly, 

cycles with durations exceeding the bin containing the mean plus one standard deviation, 

45.6 minutes, have been omitted from Figure 4.7. A more adequate representation of the 

expected cycle time for a 21-inch nominal ID casing installation than the average value is 

the median value, which was 29 minutes.  

Data from drive number five included cycle behavior for 8-inch nominal ID 3.49-

ft casings. A comparison between productivity of the larger diameter 8-ft casings and the 

smaller diameter 3.5-ft casings proves to be quite interesting, as it provides an 

understanding of how casing diameter and length effect productivity. Shorter casings 

require more casing sections to complete an installation of the same length. Accordingly, 
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there will be more instances where installation ceases to allow for crew members to ready 

the next pipe for installation. However, due to the decreased weight of the smaller casing 

crews can handle the casing with greater ability and less dependency on the crane 

operator and signal man as it is lowered into place, increasing the speed and efficiency of 

readying each casing for installation.  

Figure 4.8 shows the cycle duration frequencies for installation of the 8-inch 

nominal ID 3.5-ft casings. The average cycle duration was 14.75 minutes, although this 

included three cycles outside the mean plus one standard deviation (24.5 minutes). 

Outliers were observed on the 13
th

, 36
th

, and 37
th

 cycle and had durations of 53, 41, and 

36 minutes, respectively. Field notes indicate that just after the 12
th

 installation cycle, the 

muck cart, used to catch and remove spoil returns from the borehole, was struck by the 

GBM as it moved forward and was bent to the extent where it no longer fit in its position. 

Repair of the muck cart was necessary before installations could proceed, hence causing 

the long 53 minute 13th cycle. The 36
th

 and 37
th

 cycles were the last casings installed in 

the drive. It is believed that installation rates slowed as the lead casing approached the 

reception shaft, as communication between the reception shaft and jacking shaft crews 

increased. Upon taking an average of the cycle durations in the absence of these three 

outliers, the average was 12.2 minutes. This is fairly similar to the median cycle time 

including all cycles of 12.6 minutes. Although it is clear that most cycles were between 

7.5 and 15 minutes, collection and analysis of additional data is recommended, since only 

one drive consisting of 37 cycles was available for analysis. Thus, a conservative cycle 

duration estimate may be warranted. Based on the results shown in Figure 4.8, a good 
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conservative cycle duration estimate for the 8-inch nominal ID 3.5-foot casings would be 

12.5 to 15 minutes. 

 
Figure 4.8 8-Inch Nominal ID Casing Installation Cycle Duration Frequencies 

Figure 4.9 illustrates the cumulative lineal distance installed for 21-inch and 8-

inch nominal ID casings from drives one through five as a function of elapsed time. 

Average installation rates for the 21-inch casings of drives one through four are 13.5, 

14.4, 13.6, and 16.9 feet per hour, respectively. The average installation rate based on the 

total drive footage per cumulative time to complete the 21-inch drives was 14.6 feet per 

hour. The 8-inch casing drive was installed at an average rate of 13.3 feet per hour. These 

installation rates include stoppages due to delays. As in the pilot tube installations, if a 

crew were able to reduce the amount of delays occurring throughout a drive and install 

21-inch and 8-inch casings with average cycle times equal to median cycle times, 29.2 

and 12.4 minutes, the installation rates would increase from 14.6 and 13.3 to 16.5 and 

15.6 feet per hour, respectively. This illustrates how production may be increased by 13% 

and 17% for the 21-inch and 8-inch casings, respectively, if construction delays are 
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reduced to a negligible amount. It is not unreasonable for the median installation rates to 

be obtained on future installations, as drive number four exceeds the respective median 

rate. 

 
Figure 4.9 Cumulative Casing Installation Distance vs Time 

4.2.3 Phase Three Productivity 

 Product VCP installation cycle durations were between that of the pilot tubes and 

steel casings. The average cycle times for 21-inch and 8-inch nominal ID VCP 

installations were 7.5 and 3.9 minutes, respectively. An interesting aspect of the cycle 

duration frequency for the 21-inch VCP is that there was significant reduction in cycle 

times from drive numbers one to two. The average cycle times for drives one and two 

were 8.8 minutes and 6.3 minutes, respectively. A factor likely to contribute to the 

reduced cycle times from drives one to two may be efficiency gains of the crew in the 

reception shaft. During the second drive, completed ten days after the first, the reception 

shaft crew developed more efficient techniques for separating the casings once they were 
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fully jacked into the shaft. Casing removal is difficult, as it often takes significant prying 

with pry bars in the correct places to dislodge one casing from the next. Additionally, 

once the casings have been separated, the lead casing must be held back while the augers 

are disconnected. With these difficult tasks and the limited working room in the reception 

shafts, a significant amount of the time necessary to remove a casing depends on the 

techniques adopted by the crew. Figure 4.10 illustrates the cycle duration differences 

between the first and second drives of 21-inch VCP. It also shows how the 8-inch VCP 

cycles are much quicker than those of the 21-inch VCP. As described in sections 4.2.1 

and 4.2.2, it should be feasible for the contractor to obtain cycle durations equal the 

median duration, if delays are minimized. Median cycle times for the 21-inch and 8-inch 

VCP installations are 6.8 and 3.0 minutes, respectively. During the second drive, the 

contractor was able to minimize delays and actually obtained an average cycle duration 

of 6.3 minutes, 30 seconds faster than the median from drives one and two. 

 
Figure 4.10 VCP Installation Cycle Duration Frequencies 
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Figure 4.11 illustrates the cumulative lineal distance installed for 21-inch and 8-

inch nominal ID VCP from drives one, two, and five as a function of elapsed time. As 

described in Chapter 3 and Appendix D, monitoring of drives three and four was 

unsuccessful and are therefore not included in Figure 4.11. Average installation rates for 

the 21-inch VCPs of drives one and two are 54 and 75 feet per hour, respectively. The 

average installation rate of based on the total drive footage per cumulative time to 

complete the 21-inch drives was 63 feet per hour. The 8-inch VCP drive was installed at 

an average rate of 51 feet per hour. As in the pilot tube and casing installations, if a crew 

were able to reduce the amount of delays occurring throughout a drive and install 21-inch 

and 8-inch VCPs with average cycle times equal to median cycle times, 6.8 and 3.0 

minutes, the installation rates would increase from 63 and 51 to 71 and 67 feet per hour, 

respectively. This illustrates how production may be increased by 13% and 31% for the 

21-inch and 8-inch VCPs, respectively, if construction delays are reduced to a negligible 

amount. As with the casing installations, it is not unreasonable for the median installation 

rates to be reached, as drive number two exceeds the respective median rate by 4 feet per 

hour. 
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Figure 4.11 Cumulative VCP Installation Distance vs Time 

4.3 Automatic Pattern Recognition 

Manually picking through recorded data from numerous PTMT installations can 

be cumbersome and time consuming, even for an experienced engineer who understands 

what the data should look like. Furthermore, the monotony of sifting through thousands 

of cells of data can lead to human errors which may affect conclusions about the data’s 

behavior. In this study, the Data Dolphin data logger was programmed to record voltage 

from the three pressure transducers once every three seconds. A sampling rate of this 

frequency results in 28,800 recorded data points, 9600 from each transducer, during an 

eight hour period, which is actually less than what is typically recorded during a work 

day as it is not uncommon for PTMT crews to work ten to twelve hour shifts. The benefit 

of organizing and interpreting recorded data through manual methods for use in 

productivity or jacking force analysis may not be worth the cost, especially if the data is 

to be used for proactive control of construction processes. Thus, an automated data 
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collection and interpretation approach can be advantageous towards providing a 

decreased cost to benefit ratio with quicker results. The following sections outline how an 

automated pattern recognition method can be used to automatically classify time series 

data into patterns of hydraulic pressure to detect installation cycles from all three phases 

of the PTMT methodology. 

4.3.1  Methodology 

Automated pattern recognition of time series data recorded with data loggers may 

be accomplished in two stages, through the use of an Artificial Neural Network (ANN) 

algorithm and an anomaly detection algorithm. To begin with, the pressure transducer/s 

responsible for recording thrust or torque hydraulics from each PTMT phase is/are 

identified. This is accomplished by using a “sliding window” algorithm that scans 

through the entire time series data set to train the algorithm and then utilizing a Back 

Propagation Artificial Neural Network (BP ANN) algorithm to classify which pressure 

transducers correspond to which phase of the PTMT methodology based on the training. 

Once this has been accomplished, an anomaly detection algorithm is used to further 

dissect the time series data and detect PTMT installation cycles and the operations within 

those cycles.  

The first step towards using the sliding window algorithm to train the BP ANN is 

to define the window width and the amount of which the window is moved as it slides 

through the time series. Wider widths are desirable for detecting data trends on a more 

macro level, although a wider trend may fail to identify trends on a micro level. 

Consequently, the widest window was used to identify phase two, and the shortest 

window was used to identify phase one. The amount of the sliding step controls how 
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much of the data overlaps subsequent windows. Methodology for choosing the length of 

the sliding step is akin to that of the window width, in that longer steps are to be used in 

data with patterns of longer duration.  

Once the window width and sliding step have been determined, the algorithm is 

used to calculate the median, lower quartile, upper quartile, and variance of the voltage 

outputs from each pressure transducer during each PTMT phase. The result is a twelve 

dimensional matrix that can be input into the BP ANN algorithm to predict which phase a 

time series sample, from a pressure transducer, represents. The BP ANN algorithm 

recognizes that if the variance of a given transducer’s time series is small (e.g. 0.0008 

volts) then the transducer was not in use for the phase of which this occurred. From this 

recognition, the BP ANN algorithm can predict which PTMT phase is represented by a 

given time series sample. To check to see if the BP ANN algorithm is running correctly, a 

certain proportion of the sample data needs to be reserved to test the results. Training of 

the BP ANN algorithm, however, requires a more abundant supply of data. Thus, 90% of 

the sample data was used for training purposes, and the remaining 10% was reserved for 

testing. 

The anomaly detection algorithm is used to analyze the time series data in greater 

detail and in tighter time windows. Essentially, this algorithm scans the time series and 

looks for discontinuities in the data, or “anomalies”. Based on the location of anomalies, 

the algorithm partitions the time series into numerous cycles, which in this case represent 

the installation cycles present within the PTMT phase. In this study, use of the anomaly 

detection algorithm was demonstrated using time series data from phase three.  
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Boundary conditions may be input into the anomaly detection algorithm, such as 

the cycle must be longer than four minutes, for more robust detection results. Figure 4.12 

depicts four plots in which the entire time series, an installation cycle of typical duration, 

and two longer duration installation cycles for the third PTMT phase are shown. The 

difference between the longer and shorter cycles is usually in the duration of the pausing 

period, classified as operation two in Figure 4.3. There are slight differences in the 

durations of pushing operations, operations four and six; however, these variances are 

less than that of operation two, as difficult ground conditions do not decrease productivity 

to as great of an extent as difficulties in disassembling casing in the reception shaft. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 4.12 Time Series Data for Phase Three: a) Entire Time Series, b) Typical 

Installation Cycle, c) and d) Installation Cycles with Long Durations (Tang et al. 2013) 

 Varying durations of the operations within the installation cycles makes it harder 

for the anomaly detection algorithm to partition the time series from cycle to cycle. To 
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assist the algorithm with the anomaly detection, certain operations were grouped together 

based on the characterization of their purpose. Operation one was singled out as the 

“retraction” operation. The second operation also stood alone, but as the “pause” 

operation. Operations three through six included hooking up the pipe and pushing the 

first and last half of the VCP, including a period of hydraulic ram resetting in between 

pushes. These operations were grouped together and classified as “pushing” operations.  

 The anomaly detection algorithm was used for two purposes: first, to identify the 

phase three installation cycles within the time series, and second, to recognize the distinct 

operations within those installation cycles. In partitioning the time series into installation 

cycles, the algorithm looks for sequences of low voltage values, on the order of 0.00 to 

0.008 volts. The end of these low voltage sequences are likely to be the beginning of an 

installation cycle.  An engineer checks that the first discontinuity is indeed representative 

of the start of an installation cycle, the algorithm is run to check that the following low 

voltage sequences due in fact represent installation cycles using the boundary condition 

of cycle durations being longer than four minutes. When the algorithm is used to detect 

the operations within the installation cycles, it searches for discontinuities in a cycle’s 

time series where voltage values smaller than 0.12 volts jump to values larger than 0.15 

volts, and visa-versa. These voltage jumps likely occur due to a switch in workflow 

operation between pushing, retracting, or pausing. Once the operational discontinuities 

are aligned with the cycle start and end discontinuities, the work flow operations may be 

identified and isolated from the time series data.   
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4.3.2 Results 

 During monitoring of the PTMT construction on the Reid Drive Interceptor 

Project, the day that a phase of a PTMT installation was completed was always 

documented. Since the phase was known, the BP ANN algorithm was used to identify 

which transducer was responsible for collecting data pertaining to the machine in use 

during any particular phase. The algorithm proved to be successful in this endeavor, with 

the exception of the L1 transducer.  

Figure 4.13 illustrates the voltage time series data from each transducer during all 

three phases of the PTMT process from drive number two. It can be seen that transducer 

L2 is only utilized during phase one and that transducer L3 is used in phases one and two, 

as what was to be expected from field note documentation. L2 was responsible for thrust 

hydraulic monitoring during GBM operations and L3 was allocated for monitoring 

rotational torque hydraulics of the GBM and thrust hydraulics for the AA. Although field 

notes indicate that the only transducer used to monitor hydraulics in phase two was the 

L3 transducer and that the L1 transducer was only used for phase three monitoring, the 

L1 transducer was outputting active, or non-ambient, voltage values to the data logger 

during phase two. Reasons for the voltage output from the L1 transducer during phase 

two are uncertain, but complications with the L1 transducer arose as the project 

progressed. Whatever caused the “ghost” outputs from the L1 transducer during phase 

two of drive number two may have also been the reason for the complications 

experienced by the transducer during subsequent drives (as outlined in Appendix D). 
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a) 

 
b) 

 
c) 

 

Figure 4.13 Scatter Plot of Voltage Time Series Data from All Transducers from Each 

PTMT Phase: a) L1, b) L2, and c) L3 Transducers (Tang et al. 2013) 

The anomaly detection algorithm also proved to be successful and yield useful 

characteristics of the time series data. Phase three installation cycles were identified for 

the time series pertaining to drive number two. Manual interpretation of this drive 

concluded that there were 49 VCP installation cycles. The anomaly detection algorithm 

detected 48 discontinuities that exactly matched the predefined cycle borders. The 
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remaining cycle may have been missed due to the first cycle of phase three not exhibiting 

a retraction operation. Consequently, it is recommended to define cycles to start upon the 

beginning of pushing operations. Results from the algorithm can show the detected cycles 

and their durations (Figure 4.14), as well as statistical data such as the average minutes 

per cycle and degree of variance. These productivity characteristics provide contractors 

and engineers with the tools to identify periods of slow productivity, such as the 

beginning of this phase three installation, which may be attributed to needing unforeseen 

equipment or tools that are located elsewhere on the jobsite.  

 

Figure 4.14 Detected Cycles and their Duration (Tang et al. 2013) 

From the dissection of installation cycles and the identification of the workflow 

operations within, statistical behavior regarding the duration of each operation and the 

voltage outputs during each operation may be developed. This can allow contractors to 

determine why certain cycles are longer than others. Table 4.1 shows productivity results 

that may be obtained through the use of the operational anomaly detection algorithm. 

From here, it may be seen that the greatest influence to total cycle duration is the duration 

of the pausing period, which is greatly affected by the efficiency of the reception shaft 

crew in disassembling the casings. All in all, the operational portion of the anomaly 
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detection algorithm was able to detect all three operations (i.e. retraction, pausing, and 

pushing) in 81% of the detected cycles. 

Table 4.1 Cycle Duration Contributing Factors (modified from Tang et al. 2013) 

Cycle Duration (minutes) 

# Retraction Pausing Pushing Total 

1 2.7 6.5 2.8 12.0 

2 3.3 10.9 2.9 17.0 

12 0.1 2.1 2.9 5.1 

19 2.2 1.7 1.8 5.7 

 

4.3.3 Advantages and Limitations 

 Results from this analysis indicate that pattern recognition need not be completed 

manually, but that automatic pattern classification and anomaly detection algorithms may 

be used to assist engineers in organizing, classifying, and interpreting time series data 

from monitored PTMT installations. This significantly reduces the cost to benefit ratio of 

monitoring trenchless installations and analyzing the recorded data for productivity, 

quality control, and research purposes. Valuable information pertaining to productivity 

may be gained, such as statistical facets of cycle and operational durations, which may be 

utilized in concluding upon critical construction workflow tasks. This facet, if 

appropriately applied, will increase construction productivity through increased 

efficiency while decreasing costs associated with faster project completion and decreased 

use of operational resources.  

 The BP ANN achieved 95% accuracy in detecting the three PTMT phases. With 

this degree of accuracy, field notes may not be required to document which transducer is 

connected to which machine for which phase of the PTMT methodology. The anomaly 

detection algorithm was also successful. It can be used to partition time series data into 
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installation cycles, and further, into workflow operations within the cycles. Although, all 

operations may not be detected in each installation cycle due to atypical installation 

sequences that may occur throughout an installation, 81% of the operations were detected 

and allow for a sound evaluation of the impact each operation has on overall installation 

productivity. 

 Additional research on, and refinement of, the input parameters necessary to run 

the algorithms is warranted to further increase the quality and widespread usability of BP 

ANN and anomaly detection algorithms for PTMT installation data analysis. This 

research may include exploring window widths and sliding steps used to train the BP 

ANN algorithm and methods for determining threshold input values used in the anomaly 

detection process of discontinuities in time series data. The use of the algorithm process 

for interpreting time series data, at this point, still requires the expertise of an experienced 

engineer to specify input parameters and interpret the results. Being able to create a well-

developed software package that automates input and output parameters based on a user’s 

preferences would be the end goal. This software package may be able to take in 

information such as soil type, pipe diameter, and other contextual conditions and estimate 

PTMT productivity accordingly. 

4.4 Summary 

 This chapter outlines how instrumentation and monitoring of PTMT jacking 

frames may be used to perform productivity analysis of the construction operations 

inherent to each PTMT phase and the cyclic operations fundamental to the installation of 

each pipe section. Productivity analysis may be used to increase PTMT efficiency and 

decrease operational costs. Analysis may be performed through manual or automatic 
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interpretation of the time series data. Essential to properly utilizing both techniques, is the 

understanding of the behavior within typical pipe section installation from each PTMT 

phase. With this knowledge, productivity characteristics such as installed distance versus 

time and the average duration to install a pipe section may be obtained. Factors affecting 

productivity may be quantified and comparison of how these factors affect operations 

within the installation of a pipe section may be explored. 
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CHAPTER 5:  COMPARISON OF EMPIRICAL MODELS TO CASE STUDY 

Understanding the thrust forces involved with jacking operations is critical 

towards being able to properly size and select the product pipe, design the thrust reaction 

wall in the jacking shaft, design or select efficient jacking frames and jacks, and to select 

and place intermediate jacking stations (Bennett 1998). These same design aspects are 

also fundamental to the PTMT process, which involves jacking of pilot tubes, casing, and 

product pipe in three distinct phases. Empirical models have been proposed to predict 

thrust forces during jacking operations, as outlined in Chapter 2.  

The developed models predict jacking forces for tunneling installations due to 

various operational parameters:  lubrication of the pipe string and cutterhead, soil type 

and corresponding strength and behavioral characteristics, overburden pressure, water 

head, pipe material, pipe dimensions, and overcut (dimensions of the product pipe 

relative to the cutterhead). Depending on the source of information, certain installation 

parameters are deemed to be more influential on overall jacking stresses than others. 

Much of the variability between existing models occurs in calculation of the frictional 

component of jacking force as opposed to the face resistance at the cutterhead or leading 

pipe section.  

It is logical that the existing predictive models used in pipe jacking may be 

adopted for use in determining jacking forces during PTMT operations due to the 

similarity in the installation processes. The following sections explore the applicability of 

adopting existing empirical models for this purpose. Preliminary work involves 

developing relationships for the recorded hydraulic pressures to jacking force, pull-back 

force, and rotational torque. General trends in forces and rotational torques may then be 
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observed in conjunction with field notes and other operational characteristics. These 

trends may be compared to existing models to investigate their use in predicting jacking 

behavior for PTMT installations. The end goal of this chapter is to recognize which 

operational characteristics are the most pertinent in predicting PTMT forces and to 

identify which equations use these characteristics in a manner most applicable to PTMT.  

5.1 Hydraulic Pressure Correlations 

To gain valuable understanding of the forces and torques associated with PTMT 

installations, proper calibration of the pressure transducers and accurate translation 

between hydraulic pressures, forces, and rotational torques must be accomplished. With 

these fundamentals, one may conclude upon operational and environmental parameters 

that affect PTMT installation behavior. Sections 5.1.1, 5.1.2, and 5.1.3 set the framework 

for translating recorded hydraulic pressures to jacking forces, pull-back forces, and 

rotational torques for the Reid Drive Interceptor Project.  

5.1.1 Jacking Force 

At the root of developing an appropriate relationship between hydraulic pressures 

in a machine’s jacking rams to the resulting thrust force, lies proper calibration of the 

pressure transducers, as described in Chapter 3. As expected, each transducer has a 

distinct relationship between the pressure it is exposed to and the voltage it outputs to the 

Data Dolphin data logger. Furthermore, each machine utilized for the three phase PTMT 

methodology has a unique pressure versus thrust force relationship that needs to be 

identified. The ideology behind converting from hydraulic pressure to the resulting thrust 

is rather simple, and incorporates the surface area inside the hydraulic jacks, or rams, that 

the hydraulic fluid acts upon. To obtain the thrust force generated by a ram, the fluid/ram 
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contact area should be multiplied by the hydraulic pressure. Figure 5.1 illustrates a 

generic detail for jacking rams and gives insight to how hydraulics are utilized to produce 

force. It should be noted that the black rectangle represents the location where the shaft is 

fixed to the jacking frame. As hydraulic pressure increases in the piston chamber, the 

barrel assembly will slide along the shaft to the right with a force equal to the pressure 

times the inside diameter of the seal. Most jacking frames apply hydraulics in this fashion 

to generate thrust. Pull-back is achieved by generating greater hydraulic pressure in the 

area between the shaft and the barrel assembly (pink zone) than the piston chamber, 

resulting in the barrel assembly moving towards the left (Figure 5.1).  

 

 
Figure 5.1 Jacking Ram General Detail 

 The jacking rams for the machines involved in each PTMT phase consisted of 

unique geometries, lending to distinct hydraulic pressure and thrust force relationships. 

The number of jacking rams utilized on each machine and the piston dimensions may be 

viewed in Table 5.1. 
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Table 5.1 Jacking Ram Characteristics for all Reid Drive Interceptor Jacking Frames 

Jacking 

Frame 

Phase 

Utilized 

# of 

Rams 

Piston I.D. 

(in) 

Piston Area 

(in
2
) 

Total Area 

(in
2
) 

GBM 1 2 5 20 39 

AA 2 2 9 64 127 

BM Pusher 3 3 7 38 115 

 

Multiplying recorded hydraulic pressures by the total area of the pistons for each 

machine enables one to graph the thrust force versus time for all installations, as 

illustrated by a pilot tube installation cycle in Figure 5.2. Upon linking generated thrust 

forces with cyclic installation operations, an unusual aspect was observed. How, during 

periods of machine inactivity (circled in red) is there a generated force of slightly less 

than 5 tons? Should not the true thrust force during this period should be zero, as the 

jacking rams are either stationary or extending or retracting in small amounts with little 

resistance? A likely reason for the non-zero thrust forces during machine inactivity may 

be that the hydraulic pressure between the barrel assembly and the shaft is not zero, 

equating to an ambient force of just less than five tons acting in the opposite direction of 

normal thrust operations. To account for this phenomenon, calculated thrust forces were 

reduced by a uniform amount to zero thrust force values during periods of machine 

inactivity (Figure 5.3). 
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Figure 5.2 Non-Adjusted Thrust Force vs. Time for a Pilot Tube Installation Cycle 

 
Figure 5.3 Adjusted Thrust Force vs. Time for the Figure 5.2 Pilot Tube Installation 

Cycle 

 A similar behavior was noticed with the AA. Consequently, the same approach 

was adopted to zero thrust force values during machine inactivity. The ambient pressure 

between the barrel assembly and the shaft differs depending on the machine. Thus, 

calculated thrust forces recorded from the AA were reduced by roughly 6 tons. 
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 The BM pusher data also required adjustment; conversely, a uniform modification 

to the data was not appropriate due to the complications observed in the L1 pressure 

transducer (See Appendix D). Sections of consistent ambient hydraulic pressures needed 

to be isolated and corrected on a case by case basis. Even though picking the data apart 

and adjusting the pressures to result in ambient values of zero better represented actual 

field conditions, it was important to keep the number of isolated sections to a minimum. 

By doing so, the data would adequately represent the true, or logical, thrust forces 

produced throughout the installations while maintaining as much data authenticity as 

possible.  

5.1.2 Pull-Back Force 

Pulling pipe through the borehole was not used as frequently as jacking 

operations. The only machine utilized for pull-back operations was the GBM, in which 

pulling was employed for two purposes: 1) to pull back pilot tubes allowing for a second 

attempt at avoiding an obstacle or location of very stiff soil, or 2) to pull back the pilot 

tubes, reamer, and HDPE pipe during the second phase of PT/HDD processes. The AA 

may be used to pull the auger string out from within installed casing to investigate 

conditions near the reamer, but observance of this task did not take place while recording 

data. The BM Pusher does not have the means to pull product pipe backwards and is 

incapable of pulling operations. 

GBM maximum pulling force is less than its maximum jacking force due to the 

smaller contact area of which the hydraulic fluid acts upon to generate force. The 

magnitude of pull-back force under a given hydraulic pressure may be calculated by 

multiplying the hydraulic pressure by the contact area (Equation 5.1): 
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 ) (5.1) 

where PF = Pull-back force 

HP = Hydraulic pressure 

IDP = Inside diameter of the piston 

ODS = Outside diameter of the shaft 

 As with the calculated jacking forces, calculated pull-back forces needed to be 

reduced to zero the forces during periods of machine inactivity. A uniform reduction of 

the original pull-back force by 2 tons achieved this result. The likely cause of the 

originally non-zero ambient pressures is akin to that which was observed with the jacking 

forces. Pressure inside the piston chamber creates a force that acts in the opposite 

direction of the pull-back force, thus necessitating the force reduction. 

5.1.3 Rotational Torque 

 In addition to pulling operations, data for rotational torque was only captured 

during GBM operations. Rotation was accomplished in the AA through the engine and 

transmission, not through hydraulics. Rotation was not possible with the BM pusher, nor 

was it desired to apply torsion to the product pipes.  

 Correlations between recorded hydraulic pressures and resulting rotational torques 

were derived in an alternative manner to that of the jacking and pull-back forces. Linear 

interpolation between maximum and minimum hydraulic pressures and rotational torques 

for the GBM (Table 5.2) was used to develop the torque versus pressure relationship. 

Maximum values were obtained from the Akkerman Guided Boring Machine Technical 

Manual (2013), but the minimum hydraulic pressure, 0 psi, corresponding to a minimum 

rotational torque, 0 ft-lbs, was assumed. Upon converting pressure to rotational torque 
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and graphing the rotational torque versus time, it became evident that zero rotational 

torque corresponded to a hydraulic pressure of about 650 psi, which was observed during 

periods of inactivity or machine idling. Thus, the linear relationship used to convert 

pressures to torques was invalid, and an updated linear relationship using a minimum 

pressure of 650 psi corresponding to a minimum rotational torque of 0 ft-lbs needed to be 

applied (Table 5.2). By doing so, the proper relationship was realized and zero ft-lbs of 

torque was observed during periods of inactivity. 

Table 5.2 Minimum and Maximum GBM Pressures and Torques 

  Original Minimum Updated Minimum Maximum 

Hydraulic Pressure (psi) 0 650 5000 

Rotational Torque (ft-lbs) 0 0 10,500 

 

5.2 General Trends 

To begin identifying trends in forces and rotational torques, it is helpful to look at 

the forces and torques as they vary with time, length of drive, and the phase or drive of 

which they occurred. Figures illustrating time and length of drive relationships may be 

viewed in Appendix A. Critical installation characteristics such as the maximum 

observed, typical high, and typical low values were noted for each drive, as shown in 

Table B.2. By doing so, specific force and torque behavior representative of each PTMT 

or PT/HDD phase may be identified and compared (see Table B.3).  

Table 5.3 ranks the various phases for PTMT and PT/HDD based on their 

maximum observed and typical high forces and torques. It was observed that forces and 

torques were the greatest during installation of 21-inch steel casings and reaming/pull-

back of 4-inch HDPE product pipes, respectively. High thrust forces during jacking of 

21-inch casing seem logical, as the borehole is being increased to a large extent and there 
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is significant casing-soil surface area for which friction may build upon. It also is 

reasonable that the highest torques were observed during pull-back operations, where 

significant torque is necessary to ream the borehole to a greater diameter.  

Table 5.3 Rankings of Force and Torque Magnitudes for PTMT and PT/HDD Phases 

Ranking 
Force Torque 

Max Typical High Max Typical High 

Greatest 21 Casing 21 Casing Pull Back Pull Back 

  21 VCP 21 VCP Push PT 8 Casing 

Pull Back Pull Back Push PT 2 Push PT 

Push PT 8 Casing Pull Back 2 Pull Back 2 

8 Casing Pull Back 2 8 Casing Push PT 2 

Pull Back 2 Push PT N/A N/A 

Push PT 2 Push PT 2 N/A N/A 

Least 8 VCP 8 VCP N/A N/A 

 

The smallest forces were experienced during jacking of 8-inch VCP. Rotational 

torques experienced during jacking of 8-inch steel casing and auguring of spoil material 

were relatively constant and generally were between 2000 and 4000 ft-lbs. Torques of 

this magnitude exceeded typical high torques of most other phases, with the exception of 

initial reaming operations. However, the maximum torque of 4000 ft-lbs was less than the 

maximum torque observed in all other phases. 

There was only one monitored drive for the 8-inch casings. As such, the 

maximum observed torque and the typical high torque value for the 8 inch casing drive 

were not far apart. Maximum observed torques for other phases were representative of 

the most resistive conditions from several recorded drives. Since there were multiple 

drives of the other phases, the typical high torque value was derived from average 

conditions from those drives and is significantly lower than the maximum observed 

torque. Thus, additional monitoring of 8-inch casing installations is recommended to 
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draw more complete conclusions based on how the rotational torques are related to other 

PTMT or PT/HDD phases. However, it should be noted that thrust forces and rotational 

torques for drive number five were greater during installation of the casings than during 

installation of the pilot tubes or VCP, suggesting that if more data were collected results 

would show highest typical and maximum forces and torques during installation of the 8-

inch casing. This behavior was also observed within the 21-inch installations.  

Table B.4 identifies the drive, as defined in Table 3.2 of Chapter 3, during which 

the characteristics listed in Table B.3 were observed to allow for correlation to drive 

specific parameters such as installation depth, soil type, and other drive specific features. 

The following trends and observations attempt to provide insight towards which drive 

specific parameters have the greatest effect on thrust force, pull-back force, and rotational 

torque. 

5.2.1 Installation Depth 

Installation depths for the 21-inch casings and product pipes ranged from 34 to 

38-ft below grade. The lack of depth variation does not allow for proper evaluation of the 

effect of installation depth on the forces incurred during phases two and three of the 

PTMT process. Drives utilizing manhole 26.106 as a jacking shaft were of shallower 

depth. The 8-inch PTMT and 4-inch PT/HDD installations out of this shaft were at 26 

and 25-ft of depth, respectively. Due to the approximately 10-ft depth difference between 

these drives and the 21-inch drives, evaluation of the effect of installation depth on pilot 

tube jacking forces is possible, which is a common phase of all drives.  

 Depth of cover did not turn out to be a factor that highly effects the thrust force or 

rotational torques experienced during phase one, pilot tube, operations. As one would 
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expect, the average high rotational torques for the deeper and shallower installations were 

3375 and 2250 ft-lbs, respectively. A 40% difference in the rotational torques may 

indicate that installation depth has a positive correlation with installation resistance. 

However, upon comparing the thrust forces, a 30% difference between the higher thrust 

force for shallower installations and the lower thrust force for the deeper installations 

leads one in the opposite direction.  

Drive seven, the 4-inch lateral installation out of manhole 26.100, may also 

provide insight to the effect of installation depth. This drive was installed at a 7% grade, 

resulting in a 20-ft elevation difference between the manhole and the exit pit location. 

The ground surface elevation at the exit location and the manhole was about the same, yet 

there was a valley midway through the alignment. Thrust forces observed throughout this 

installation did not show any sort of decrease when the lead pilot tube was under the 

valley and in a shallower depth of cover. On the contrary, about 100 feet into the drive, 

thrust forces began to rise by about 4 tons every 25-ft (Figure A.53). Rotational torque 

was unaffected. It is thought the thrust force increase may be due to increased tree root 

interference and possibly some cemented soil material. 

Comparison of drives with differing depths of cover indicates that depth of cover 

is not a significant factor in regards to jacking resistance. Terzaghi’s Arching Theory 

illustrates how the vertical effective stresses are decreased due to the opening of a void 

underneath, as is the case in phases two and three of the PTMT method. Although, phase 

one is a displacement method, where the soil surrounding the pilot tubes is likely in direct 

contact with the pilot tube, there still may be some stress reduction occurring, possibly 

due to the lubrication applied during installation. Further monitoring of PTMT 
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installations where the effect of depth is able to be isolated would provide the means to 

investigate this effect to a greater degree. 

5.2.2 Soil Type 

Since jacking force is proportional to the skin friction between the soil and pipe 

interface and the penetration resistance at the lead face, soil type likely plays a large role 

in the magnitude of forces necessary to install pipelines with the PTMT methodology. 

Unfortunately, soil strata throughout the project was relatively consistent and was mostly 

composed of a silty clay of low plasticity (CL) with trace amounts of moist fine grained 

sand. The clay was generally reddish brown, but transitioned to a gray brown about 20-ft 

below grade, generally once the soil was below the ground water table. Drives five 

through seven, the 8-inch VCP and 4-inch HDPE laterals, were shallower and installed in 

stiff silty clay with standard penetration test N values of 8 to 9, whereas, the other drives 

were installed through a silty clay of medium stiffness with N values of 4 to 5. Elevations 

of the shallower and deeper drives were thought to be at, and 20-ft below, the ground 

water table elevation, respectively, although, their water content was not too far off, 

around 17% for the shallower drives and 23% for the deeper ones.  

Since the drives in the stiffer and lower water content soils were either for the 

installation of 8-inch VCP or 4-inch HDPE laterals, and the less stiff, higher water 

content drives were for the installation of 21-inch VCP, the only common phase between 

the two sets of installations was phase one. Also, since the stiffer soils were shallower 

and the medium stiffness soils were deeper, comparison of the phase one forces and 

torques based on soil type is analogous to the assessment made to evaluate the effect of 

depth below grade. Thus, a complete analysis of the effect of soil type, particularly 
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stiffness and water content, is irresoluble based on the data collected from this project. 

There were, however, some installations where the operator noticed spikes in the pressure 

gauges of the machine and believed to be traversing through sections of “hardpan” or a 

cementatious soil medium.  

In several instances throughout the Reid Drive Interceptor Project, the operator 

suspected that sections with small boulders, cobbles, or hardpan were encountered due 

sudden increases in the machine pressure gauge readings. Hardpan is a slang terminology 

commonly used by field operators to describe soil that is extremely hard and cemented 

together (Johnson 2013). Cementation may occur through precipitation of calcite, silica, 

alumina, iron oxides, or other compounds onto soil particle surfaces at interparticle 

contacts or in soil pores (Mitchell and Soga 2005). These compounds crystallize and 

often form a very hard soil structure that is more resistant to tensile and tangential 

stresses.  

The effect of hardpan on jacking forces is unique compared to that of cobbles or 

boulders. Being that jacking forces are the resultant of two components, frictional 

resistive forces along the soil-pipe interface and penetration resistance at the lead pipe, it 

is possible for certain soil types to increase one component of jacking resistance while 

decreasing the other. Interparticle cementation results in high tensile strengths which 

increases borehole stability. Barla and Camusso (2013) found through numerical 

modeling of jacking forces through various degrees of cemented soil that as there is an 

exponential increase in normal stress upon reduction in the degree of cementation. As a 

lead pipe or pilot tube proceeds through a section of hardpan, jacking forces are likely to 

increase substantially as the penetration resistance drastically increases due to the 
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hardness of the cemented soil. Upon exiting the hard pan, jacking forces should sharply 

decline due to the immediate reduction in penetration resistance and the negligible 

amount of frictional resistance added throughout traversing through the hard pan section. 

Cobbles and boulders, on the other hand, are expected to cause an increase in penetration 

resistance as well as higher frictional forces as they continue to press against the pipeline 

as it is jacked through the soil. 

A prime example of how hardpan can influence jacking force is seen in the 

second drive of the Reid Drive Interceptor Project, a 385-ft run of 21-inch mainline 

sewer. There were two locations along this drive where the operator suspected that 

hardpan was causing machine pressures to rise. As it may be seen in Figure A.13, after 

about 120-ft of pilot tubes had been installed jacking forces quadrupled from 4 tons to 12 

tons. By about 200-ft jacking forces had reduced to 5 tons. Towards the end of the 

installation forces began to rise again, from 5 to 7 tons. Torque required to rotate the pilot 

tube string increased in a similar fashion and degree of magnitude as the jacking forces. 

Of course, observing pilot tube operations and analyzing thrust force data does not give 

insight to the reason for any jacking force increases. Examining spoil generated from 

phase two operations does, however, allow one to discern this cause and effect 

relationship.  

Jacking forces prior to the first section of hardpan during phase two were near 30 

tons (Figure A.16). The highest observed force during the first hardpan location was 225 

tons, eight times greater than with the silty clay. Forces dropped back down to near 40 

tons before increasing to around 145 tons at the second location of hardpan. Spoil 

material generated from the first area causing higher forces contained large amounts of 
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sandy clumps, watered down with lots of bentonite lubrication. This material was in 

contrast to the usual spoil material, a stiff putty like silty clay. Spoil from the 340-ft 

chainage mark contained wood fragments, sandy clumps, as well as some silty clay.  

Analysis of the jacking forces during VCP jacking showed a relatively constant 

resistance of about 25 to 30 tons (Figure A.18). There were no signs of increased force at 

the hardpan locations. This is likely due to the fact that there is zero face pressure during 

this phase and frictional forces are limited due to the ¾-inch overcut between the casing 

and VCP diameter. 

There were other drives in the Reid Drive Interceptor Project where higher forces 

were observed and it was thought the alignment was traversing through sections with 

hardpan. However, the second drive was the only one where field notes pertaining to the 

spoil material were taken. Field notes for drive number six, a 4-inch lateral installed with 

the PT/HDD method, described hardpan starting at 105-ft from the jacking shaft. Forces 

during pilot tube jacking rose from 4 tons to 25 tons at this location (Figure A.45). Forces 

upon exiting the hardpan fell to 7 tons, before rising to 20 tons at the end of the drive, 

where the cause of high forces was not documented.  

Following pilot tube installation on the sixth drive, tooling was changed to allow 

for pull-back of the HDPE pipe. Pull forces followed the same trends as the pilot tube 

jacking. Figure A.45 illustrates HDPE pull-back forces along with pilot tube jacking 

forces and how changes in conditions equally influence both operations. To make 

comparison of the forces in regards to location easier, the length of drive is defined as the 

distance from the jacking shaft, where the machine was stationed. Thus, pull-back forces 

recorded at the beginning of pull-back operations are shown to occur at the 240-ft mark.  
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When pull-back operations were 40-ft from completion, the HDPE pipeline 

snapped and pull-forces immediately reduced from 23 to 15 tons. It is likely that pull-

forces of 35 tons during the hard pan section imposed high stresses on the HDPE pipe, 

causing it stretch beyond elastic strain, compromising its ultimate strength. Once the 

reamer had been pulled through the hardpan, 110-ft chainage, pull-forces decreased to 20 

tons. Forces steadily rose to 23 tons at the location of the pipe breakage. The recorded 

hydraulic pressures throughout this study only shed light on the forces generated from the 

machinery, and consequently do not directly reflect the forces experienced by the HDPE 

product pipe, as forces are split between the pipe and the reamer during pull-back 

operations. Regardless, the hardpan most likely compromised the tensile strength of the 

product line, which along with the slight increase in pull forces after the hardpan, may 

have caused the pipe to fail. Figure 5.4 shows the HDPE pipe section that was attached to 

the swivel; notice how close it broke to the beginning of the pipe. 

 

Figure 5.4 Broken HDPE Pipe from Drive Six 

The pipe break phenomenon occurred on at 4:30 on a Friday afternoon. By the 

time the pilot tubes were retracted from the borehole it was decided that retrieval of the 

HDPE pipe would have to wait for Monday. On Monday, crews worked with a small 
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closed circuit television camera to view down the HDPE line to evaluate the condition of 

the pipe as best as possible. Fortunately, the line looked to be in good condition until 40-

ft from the jacking shaft, where the GBM stationed. Problems with the backhoe and other 

non-related project tasks delayed the HDPE retrieval process an additional day.  

On Tuesday, a retrieval shaft was dug surrounding the location where the HDPE 

pipe had broken. The compromised section of the HDPE pipe was cut off to ensure 

installation of a quality product and to reduce chances of having another failure. Pilot 

tubes were jacked until the lead rod was close enough to attach the HDPE pipe with the 

reamer and swivel assembly. Pull-back of the HDPE product proceeded without 

complications or unusually high forces. There are a few interesting observations about 

the thrust and pull-back forces due during the HDPE retrieval process. Pilot tube jacking 

forces ranged from 3 to 4 tons, about 1 ton less than during the initial pilot tube jacking in 

the same soil location. Pull-back forces were also slightly lower; they were now 13 tons 

instead of 15 tons. This leads one to believe that the forces were lower due to the prior 

action of the pilot tube jacking and pull-back procedures creating a borehole. It is 

understood that the borehole may not have remained completely open, but having it open 

once before did contribute to lower forces in subsequent operations. 

For this reason, drive number seven, another 4-inch HDPE lateral, was conducted 

in the following manner: jacking of pilot tubes to establish line and grade, pre-reaming of 

the borehole without pull-back of the product pipe to enlarge the borehole diameter, 

jacking of pilot tubes through the enlarged borehole to reach the exit location, and final 

reaming and pull-back of the HDPE product pipe. It was thought that the pre-reaming 

operation would result in decreased forces during pull-back of the HDPE pipe and 
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decrease the chances of having another pipe failure. Fortuitously, the pipe failure on drive 

number six occurred in a location where retrieval operations were quite feasible. 

Alignment for drive number seven crossed through a private wood with a significant 

ravine in the middle. Accordingly, pipe failure during this drive would be highly 

detrimental to the project schedule and budget. 

Pilot tube jacking forces oscillated around 4 tons for the first 100-ft of the 

installation, at which point they began to rise roughly 4 tons every 25-ft until they 

reached 22 tons by the end of the drive (Figure A.53). The 22 ton force experienced with 

this installation is similar to the high force of 25 tons from drive number six, although, 

thrust forces gradually rose to this level over a distance of 150 feet. Steady increases to 

jacking forces are likely due to increased frictional resistance, as opposed to penetration 

resistance. For this reason, and that the installation was crossing under a wood, it is 

believed that tree roots are the source for the force increase. 

Pre-reaming forces started out at 25 tons and steadily declined to 15 tons upon 

entering the manhole where the GBM was stationed (Figure A.55). The 25 ton force was 

less than the maximum that occurred during the pipe failure; however, forces may have 

been higher if the swivel was trailing a continuous string of HDPE pipe. Jacking pilot 

tubes through the enlarged borehole went smoothly and only 3 tons was necessary to 

advance the pilot tubes to the exit location. There was no increase in forces upon crossing 

under the wood as there was with the initial piloting. Pull-back of the HDPE pipe also 

exhibited smaller forces than the initial pre-ream. Forces started out around 14 tons and 

fell to 11 tons at the completion of the pull. This resulted in a force reduction of 44% and 

27% percent at the beginning and end, respectively, of the HDPE pull-back operation. 
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Force reductions of this magnitude provide significant benefits towards pulling back 

HDPE pipe in difficult ground conditions. Hence, pre-reaming is recommended when 

pilot tube jacking forces approach 20 tons and the PT/HDD method is to be used. An 

alternative to pre-reaming may include using a larger reamer, although, the benefits to 

this approach were not explored in this study. 

5.2.3 Stoppages  

In addition to soil type and the presence of roots, boulders, or cobbles, stoppages 

play a role in increasing jacking forces. There are short cyclic stoppages, when 

positioning new pipes or tubes for jacking or between PTMT phases when machinery and 

tooling is being changed, and longer stoppages such as shutting down at the end of a 

work day or for the weekend. Generally speaking, as jacking operations are paused, 

displaced soil surrounding the borehole begins to relax and presses against the walls of 

the pipe. This is especially true with installations in expansive clays. Unfortunately, there 

was a prime example of how stoppages may be detrimental to an installation on the Reid 

Drive Interceptor Project that occurred before the monitoring equipment was ready for 

use. However, there were field notes pertaining to this drive to document the cause and 

affect the stoppage had on project efficiency. 

Drive number one was actually a second attempt at completing a 21-inch VCP 

PTMT installation from manhole 26.100 to manhole 26.99B. In an effort to increase 

project efficiency, a second crew was enacted to originally perform this installation while 

the usual crew finished up work in other areas. For whatever reason, the new foreman 

proceed with jacking pilot tubes at a slope of positive 0.2%, when they were supposed to 

be installed with a negative 0.2% slope. To make matters worse, adequate lubrication was 



109 

not being applied during pilot tube jacking, consequence of the new foreman having to 

use an inferior and operationally temperamental bentonite pump. The incorrect grade 

remained unrealized until the pilot tubes were jacked into manhole 26.99B, on the Friday 

before the three day Memorial Day Weekend.  

On Tuesday, attempts to remove the pilot tubes by pulling back into the jacking 

pit failed, as the tubes would not budge. Wednesday’s efforts involved trying to get the 

pilot tube string to move by jacking from MH 26.100 towards MH 26.99B. Again, this 

process was futile. It was thought that the pilot tubes may be able to be pushed from MH 

26.99B with the GBM while being pulled from MH 26.100 with the AA. So, on Thursday 

machinery was moved and prepped to begin this operation. Friday was successful in 

moving four pilot tubes, before it became evident that a concrete backstop was needed for 

the GBM to jack against. The concrete backstop was poured on Saturday morning and 

retrieval operations were delayed until the following Monday. By Friday the crew was 

able to pull out all of the stuck pilot tubes. All in all it took nine days to remove the stuck 

rods. Furthermore, the AA broke in the process of pulling the tubes and an alternate auger 

boring unit had to be brought in. Additional, less valuable tooling was also ruined in the 

retrieval process. This two week setback put tremendous strain on the contractor as he 

was now operating on a fine line of being able to complete the project on time and for 

profit. 

The previous scenario paves the way towards realizing the severity of what may 

happen after unnecessary stoppages. Evaluation of the degree to which stoppages of 

varying durations affect thrust forces from all PTMT and PT/HDD phases is logically the 

next step. In the collected data, three classes of stoppage durations could be observed: 
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Class One) stoppages occurring after jacking of a pipe section while retracting machinery 

and readying the subsequent pipe for installation, Class Two) Stoppages greater than ten 

minutes in which operations are halted while supplies are being gathered elsewhere on 

site or other from other setbacks to the installation’s critical path progress, and Class 

Three) overnight or weekend stoppages. Class one stoppages are fundamental to all 

PTMT and PT/HDD processes and may be observed in plenty. Class two stoppages were 

sighted in each operational phase, yet occurred on a less frequent basis. Class three 

stoppages were only observable during jacking of 21-inch steel casing. All other phases 

were able to be accomplished in one day’s work. 

The class one stoppages were roughly less than 30 seconds, 30 seconds, 2 

minutes, 5 minutes, 8 minutes, and 10 minutes for the pulling back of HDPE pipe, 

jacking of pilot tubes, jacking of 8-inch VCP, jacking of 21-inch VCP, jacking of 8-inch 

casing, and jacking of 21-inch casing, respectively. Stoppages of this duration appear to 

be negligible, as both force increases and decreases were observed following the period 

of inactivity. Class two stoppages were negligible for all phases except for jacking of 21-

inch steel casing. Of the instances included within the recorded data, stoppages of 45 and 

90 minutes were noticed. Ironically, the maximum thrust increase of 6 tons was observed 

after the 45 minute delay and a thrust decrease of 5 tons was seen after the 90 minute 

delay. Class three stoppages, only occurring during jacking of the 21-inch casing, ranged 

from 12 to 58 hours. Force increases after 12 hour stops ranged from negligible to 7 tons, 

while the increase in force after 58 hours was 4 tons. Of consequence to the highly 

variable thrust increases upon jacking delays observed in this data, a strong relationship 

between delay and increased thrust force could not be identified.  
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One correlation that could be detected was that during the jacking of a 21-inch 

casing, thrust forces tended to decrease. Although sometimes thrust force increased 

during the jacking of a casing, more often than not a decrease between 1 and 10 tons was 

observed. This illustrates that the friction between the soil-pipe interface is reducing from 

a higher static friction to a lower kinetic friction. Being that minimizing friction along the 

soil-pipe interface is a key component towards reducing necessary jacking forces, it is 

wise to progress with an installation in a manner that is as continuous as possible. 

Applying adequate lubrication is also a technique that should be used to help minimize 

frictional forces. 

5.2.4 Lubrication 

Lubrication aids in borehole stabilization and in decreasing the friction coefficient 

between the soil-pipe interface. An experiment conducted by Shou et al. (2010) involved 

placing various lubricants between a concrete block and soil and measuring the drag 

force required to move the concrete block. Depending on the lubricant, they observed 

friction coefficient reductions due to the lubricant ranging from 16% to 75%, with the 

bentonite/polymer and the plasticizer/polymer being the least and most effective, 

respectively. M-I SWACO’s Max Bore HDD drilling fluid, which is composed of a high-

yielding Wyoming bentonite, and a generic dish soap were used in conjunction to 

lubricate phase one and two operations on the Reid Drive Interceptor Project. Shou et al. 

(2010) found that bentonite reduced the friction coefficient by 23.5% in their large scale 

testing method. It is reasonable to assume that the addition of dish soap would reduce the 

friction coefficient even further. 
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The only phase not utilizing lubrication for the Reid Drive Interceptor Project was 

the jacking of VCP. During pilot tube jacking, lubrication flowed between the outer and 

inner walls of the tubes to the lead pilot tube, where it was expelled through a single port.  

Upon completing jacking of a pilot tube and before disconnecting the GBM from the 

pilot tube, the lubrication pump was shut off, a valve to the pilot tubes was closed, and a 

discharge hose was used to drain excess lubricant pressure in the line. Once a new pilot 

tube was hooked up, the valve supplying lubricant to the tube was opened and the 

lubrication pump was turned on. Lubrication during jacking of the casing was slightly 

more complicated and varied depending on the diameter of the casings being installed.  

During the 21-inch casing installations, a 10-ft long switch over rod was utilized 

to connect the pilot tubes to the reamer. This rod provided added stability as well as the 

means of applying lubrication to the casings. Lubrication was applied from the reception 

shaft between the inner and outer walls of the pilot tubes. The lubrication flowed through 

the adapter rod, into the reamer, and out of the reamer’s four prongs to the outside of the 

lead casing (Figure 1.3). This application was sufficient in lubricating the outside of the 

casings. After several casings were installed, there was enough lubricant on the outside of 

the casings where it began to leak into the casings and provide lubricant to the augers. 

Alternatively, the lubrication hose used to supply lubricant to the outside of the casings 

could have been fitted to the pilot tubes in a manner that supplied lubricant to the center 

of the lead casing. However, applying fluid to the outside of the casings and to the center 

of the lead casing simultaneously was not possible. Applying lubricant to the outside of 

the casing was thought to be the most effective, as it supplied borehole stabilization, 

lubrication to the soil-pipe interface, and lubrication to the auger string due to leaking 
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through the casing joints. Lubrication was applied continuously throughout phase two, 

although if spoil returns were too wet or dry the lubricant flow was reduced or increased, 

respectively. 

Lubrication for 8-inch casing installations was applied to the exterior of the 

casings through the four lubrication ports located on the 8-inch reamer. Supplying 

lubrication to the center of the lead casing was not possible, as a different setup was used 

to send lubricant from the receiving shaft to the reamer. Upon completion of pilot tube 

installation, a sting was blown from the reception shaft to the jacking shaft through the 

center of the pilot tubes. Lubrication hoses were then pulled from the jacking shaft to the 

reception shaft. These hoses were attached to the center of the reamer, which transferred 

the fluid flow to the reamer’s four forks. Lubrication was then controlled from crew 

members in the reception shaft who were in radio communication with the operator in the 

jacking shaft. Once a pilot tube was pushed into the reception shaft, the lubrication hoses 

would have to be disconnected to allow removal of that tube. The hoses would be 

reconnected before jacking the next casing. As in with the 21-inch jacking operation, 

lubrication was abundant enough to leak through the outside of the casing and lubricate 

the auger string in addition to the outside of the casing. The operator did not reduce 

lubrication flow if the spoil returns contained a large amount of lubricant, as he wanted to 

insure adequate lubrication to the auger string to minimize chances of it binding and 

becoming stuck. 

Lubrication was also applied during pull-back of HDPE pipe in the PT/HDD 

hybrid method. As with pilot tube installation, lubrication was ejected through a single 

port in the lead pilot tube, on the opposite side of the reamer as the HDPE pipe. Contrary 
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to traditional HDD procedures where the drilling fluid is used to stabilize the borehole 

and return cuttings to the entrance pit, there were limited spoil returns until the last 10 to 

20-ft with the PT/HDD method. As such, the lubricant mostly served to stabilize the 

borehole and decrease frictional resistance along the soil-pipe interface. Furthermore, the 

reaming process most likely displaced the soil as the borehole was being enlarged, rather 

than cutting it away and having it circulate through suspension to the entrance pit. For 

this reason, it is possible for soil displaced by the reaming head to collapse once the 

reamer has passed if the drilling fluid has not properly stabilized the borehole. This action 

would increase stresses on the trailing HDPE pipe. 

Throughout the PTMT operations utilizing lubrication, the volume of lubrication 

applied and the bentonite to water concentration was not recorded using the data logger 

or any other real time monitoring device. Field notes are the only source of determining 

when lubrication was used, how much lubrication was applied, and the concentration of 

Max Bore HDD drilling fluid to water. The concentration for each lubrication application 

was documented as carefully as possible, but mostly consisted of observations such as 

two 50-pound bags were added to the bentonite tank, with an initial tank volume of 200 

gallons and a final tank volume of 500 gallons. Thus, the previous tank concentration 

needed to be known to accurately determine the new concentration. Volume used per 

footage was determined by dividing the difference in bentonite tank volume from the 

beginning to the end of the day by the footage gained for that day. As such, lubrication 

quantities were a daily average and did not represent any changes in application 

throughout daily activities.  
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Table 5.4 lists the phases that used lubrication in order of greatest to least for the 

volume of lubricant used per 10-ft of progress. Recommended concentrations for use in 

clay environments are highlighted in red (MI SWACO 2013). Generally, as soil 

conditions become more granular, and less cohesive, one would want to increase the 

bentonite to water concentration. MI SWACO recommends 10 to 15 pounds per 100 

gallons for clay environments, 20 to 25 pounds per 100 gallons for normal drilling, and 

25 to 30 pounds per 100 gallons gravel/rock/cobble soil conditions. Concentrations, in 

Table 5.4, exceeding the manufacturer’s recommendations are highlighted in blue.  

Table 5.4 Lubricant Volume and Concentration throughout the                                      

Reid Drive Interceptor Project 

Phase Drive Gallons per 10 Feet 
Pounds of Bentonite 

per 100 Gallons 

8-in Casing 5 41.7 15 

21-in Casing 1 37.5 33 

21-in Casing 2 37.5 13 

PT 1 7 18.3 25 

PT 3 10.3 25 

PT 2 7 8.7 21 

PT 5 8.3 25 

PT 1 6 7.6 19 

HDPE Pull 6 7.6 19 

HDPE Pull 7 3.8 21 

21-in Casing 3 3.1 13 

Pre-Ream 7 1.9 21 

PT 1 Not Recorded 33 

PT 2 Not Recorded 33 

21-in Casing 4 Not Recorded Not Recorded 

PT 4 Not Recorded Not Recorded 

PT 2 6 Not Recorded Not Recorded 

HDPE Pull 2 6 Not Recorded Not Recorded 
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High concentrations were used in the first and second phase of the first drive and 

phase one of the second drive. Reasoning for using the high concentrations was limited 

and was most likely a result of the laborer, myself, adopting a more is better philosophy. 

After several phases were completed with the high concentrations, the filter on the 

bentonite tank began to clog and the mixer started to malfunction. Whether this was a 

result of the concentration being too high or merely malfunctions in an old and well-used 

bentonite tank, frustrations with the bentonite system escalated, causing the crew to use a 

lower bentonite to water concentration, decreased lubricant application, or a combination 

of the two for the next several drives.  

Although comparison between phase one from the first two drives and the drives 

where less lubrication or bentonite was used should provide insight to the lubrication 

effects on the Reid Drive Interceptor Project, limited effect was observed in the recorded 

thrust and rotational torque data. Figures A.6 and Figure A.22 show the rotational torque 

as it varied with drive distance for phase one of the first and third drives. Rotational 

torque should increase with the length of the drive as the soil-pipe interface surface area 

increases. This phenomenon was observed in both of these drives, although the drive 

utilizing a less lubricant volume at a lower bentonite to water concentration did not 

exhibit a larger rotational torque increase per unit length. Furthermore, comparison of 

thrust force versus length of drive was also inconclusive (Figures A.5 and A.21). This 

behavior may indicate that there are other factors, such as soil type, that influence jacking 

behavior to a greater extent than lubricant concentration and applied volume, that the 

procedures for recording lubrication quantities on this project were insufficient, or that 
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the lubrication applied in drive three was sufficient in stabilizing the borehole and 

reducing the soil-pipe friction coefficient. 

There were, however, two instances throughout the Reid Drive Interceptor Project 

where either the hardships of ineffective lubrication were learned or the benefit of 

lubrication was realized. Back when the new crew was called upon to install the 21-inch 

VCP form manhole 26.100 to manhole 26.99B, lubrication was not adequately applied 

during jacking of the pilot tubes. The pilot tubes were installed at the wrong grade and 

retrieval operations did not commence until 3.5 days later. It ended up taking two weeks 

and numerous operational strategies to free the tubes from the borehole. There is little 

doubt that had retrieval operations been enacted immediately, the process would have 

been quicker and less detrimental to the project success. However, had adequate 

lubrication been applied during the pilot tube installation, retrieval operations likely 

would have been easier due to a more stable borehole with a lower soil-pipe interface 

coefficient of friction. 

The instance of which the benefit of lubrication was realized was during the 

second day of jacking 21-inch casings for drive number one. Lubrication was applied 

during jacking of all casings except, for reasons undocumented in the field notes, 

lubricant was not applied during jacking of the eighth casing. Figure 5.5 shows the thrust 

force generated during the jacking of the seventh, eighth, ninth, and tenth casings. Best fit 

lines of the high forces required for their installation are shown in red. It can be seen that 

forces between the seventh and eighth casing were fairly consistent and ranged from 26 

to 23 tons. During the ninth casing, increased friction due to the lack of lubrication was 

realized, and forces rose to 31 tons. By the time the tenth casing was being jacked, 
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lubrication, which was initiated during the jacking of the ninth casing, began to take 

effect and forces fell to 27 tons. It may seem peculiar that forces did not rise during the 

eighth pipe, when lubrication was halted, but rose during the ninth casing, when 

lubrication was re-instated. A likely conclusion is that during jacking of the eighth 

casing, most of the casings in the borehole remained lubricated. As time went on, 

lubrication covered less of the casing-soil interface, thus resulting in the higher forces 

during casing nine. It is also probable that adequate lubricant coverage along the casing-

soil interface was not re-established until one casing after lubrication was re-instated, 

casing number ten. 

 
Figure 5.5 Thrust Force for Casing Numbers 7, 8, 9, and 10 for Drive One 

Of course, there may have been other influences to the higher jacking forces 

during casing nine, although lubrication was the only one documented and able to be 

analyzed. If other variables affecting thrust force were in fact held constant from 11:00 

am to 1:30 pm, it is evident that lubricant application plays a role in the required thrust 
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force. As the machine operator dictates whether or not lubrication is to be used and in 

what quantity and concentration, operators seemingly play a significant role in the thrust 

forces necessary for PTMT operations. 

5.2.5 Operator Technique 

Project productivity and thrust forces generated during jacking installations are 

dependent upon an operator’s experience, skillset, and preferred installation methods. 

Although maintaining specified line and grade is very feasible with the PTMT method, 

inexperienced operators may have to correct for more deviations from the intended 

alignment than an experienced operator. If deviations are significant enough, jacking 

forces will rise accordingly as pipe sections negotiate through the corrections. 

Inexperienced operators may also fail to appreciate the benefits of lubrication or apply 

lubrication in an ill-suited fashion. Furthermore, progress and thrust force characteristics 

are dependent on the rate and style, or pattern, of advancement. 

Forward and backward movement for jacking frames is usually controlled by 

some sort of joy stick, or lever, located on the jacking frame. The farther the lever is 

pushed, the faster the machine will move, or if there is resistance, a larger force will be 

generated. During advancement of the casings in phase two, the usual operator on the job 

preferred to push the thrust lever all the way and then release it back to a neutral position 

in a cyclic fashion. He liked using this method of operation because it made things easier 

for the augers, as they essentially had a short break from capturing new material. 

Although the cyclic advancement procedure may have put less stress on the auger string, 

this method may not have been the best for minimizing forces required to jack the 

casings.  
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At about 2:55 on June 16
th

, circled in red on Figure 5.6, the main operator, 

operator one, had to leave the jobsite for a doctor’s appointment at which time a less 

experienced operator, operator two, took over. The most noticeable change in the jacking 

behavior is that it took much longer for operator two to install one casing section, about 

one hour as opposed to 30 to 40 minutes. Operator two adopted a similar cyclic 

advancement style as operator one, except he did not push the lever to farthest advance 

position nor did he maintain advancement for as long of a duration. From the generated 

thrust forces it may be seen that this new technique resulted in forces that were 

commonly 50% lower than those from operator one, although, there were some higher 

forces generated occasionally. The low production of operator two caused observing crew 

members to suggest another operator, operator three. Operator three installed two 

successive casings starting at around 4:10 pm. This operator advanced the casings at a 

constant rate using a lever position slightly less than maximum advancement. Forces 

were similar to those experienced by operator one, however, there tended to be less small 

forces and more outlying high forces. The decrease in smaller forces may be due to the 

constant advancement providing a more consistent, and larger, force. The more frequent 

high forces may have occurred when advancement was fast or aggressive. By 5:30, 

operator one had returned and took over jacking the last casing shown in Figure 5.6. 
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Figure 5.6 Illustration of the Dependency of Thrust Force on Operator Technique 

This last example illustrates the dependency of thrust forces and jacking behavior 

on an operator’s technique. Different techniques may result in more consistent thrust 

forces, smaller or larger forces, or productivity differences. It also can be seen that a 

slower advancement rate may lead to smaller forces, due to reduction in the face or 

penetration pressure needed to advance the casings. Even though slow advancement may 

lower thrust forces, project success also depends greatly on completing installations in a 

timely and efficient manner. Thus, slow advancement is not advised unless forces are 

approaching a critical value, such as the thrust capacity of the jacking frame or a level 

that would overstress the pipes or thrust block. 

5.3 Application of Jacking Force Predictive Models 

As mentioned in Chapter 2, jacking forces incurred during jacking installations 

are composed of two components: 1) penetration resistance at the cutterhead or leading 

section and 2) frictional resistance developed along the soil-pipe interface. Thrust forces 
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are typically the highest towards the end of a drive due to the increased soil-pipe interface 

area of which frictional forces act upon. The degree to which friction develops 

throughout an installation makes up an abundance of the uncertainty of the maximum 

thrust force to complete jacking installations. Numerous contributions have been made to 

develop predictive models as to the degree to which frictional jacking forces develop 

throughout an installation. The following section compares predictive models from select 

researchers who have developed models that are likely to be applicable to the PTMT 

methodology. Methodology and applicability of models from Chapman and Ichioka 

(1999), Bennett (1998), and Staheli (1996 and 2006) are described and compared to the 

data recorded from the Reid Drive Interceptor PTMT installations. 

Chapman and Ichioka (1999) performed statistical analysis on data collected from 

ISTT’s Working Group No. 3 (1994) on 398 microtunneling operations. They separated 

the case histories by soil type and installation method to develop predictive jacking force 

models for each scenario. Their models developed for auger and push-in machines should 

be applicable to jacking of casing and pilot tubes, respectively. Jacking of the product 

VCP pipes during phase three operations should mimic their auger boring equation, 

except their primary resistance factor should be eliminated as there is zero face resistance 

during this phase. The general form of their jacking force predictive model applies to 

slurry microtunneling installations and is represented by Equation 5.2: 

            (5.2) 

where F = Total jacking force (T) 

 ƒ0 = Primary resistance (T) 

 D = Outside pipe diameter (m) 
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 L = Jacking distance (m) 

 P = Frictional resistance (T/m
2
), see Table B.1 

and  

      
  

 
   (5.3) 

where D0 = Machine outside diameter (m) 

P0 = Face resistance (T/m
2
) 

 They found little correlation between outside diameter and face resistance for 

auger boring and push-in type installations in the recorded data. Therefore, they 

developed constants for the face resistance component of Equation 5.2 to make the 

predictive model applicable to cover various percentages of auger boring and push-in 

type installations. The following paragraphs first describe how to obtain their jacking 

force predictive model for push-in, phase one, and auger boring, phase two and three, 

installations. 

Based on their collected data, a face resistance value of 200 tons/m
2
 and 400 

tons/m
2
 should apply to 60% and 90% of push-in type installations in clay, respectively. 

Given the flexibility, a designer may want to conclude upon a face resistance applicable 

to the project at hand and choose a higher face resistance for installations in more 

problematic soils or when maintaining jacking force beneath the estimated jacking force 

used in project design is critical. They performed linear regression to develop a frictional 

resistance expression for push-in installations in clay soils (Equation 5.4). Thus, their 

jacking force predictive model for 90% of push-in type installations in clay is represented 

by Equation 5.5.  



124 

             (5.4) 

     
  

 
(            )    (         )  

(5.5) 

They developed frictional and face resistance values to cover 50% and 80% of 

auger boring installations. In clay soil, values of 32.8 tons/m
2
 and 50.0 tons/m

2
 should be 

used for face resistance to achieve 50% and 80% coverage, respectively. Frictional 

resistance for 50% and 80% coverage of installations through clay soils is 0.4 tons/m
2
 

and 0.7 tons/m
2
. By applying these constants, their estimation of jacking force for 80% of 

auger boring installations may be found using Equation 5.6. 

     
  

 
(          )    (           )  (5.6) 

Additional modification to Equation 5.6 is required in order to apply them to the 

second and third phase of the three phase PTMT method. During phase two, the actual 

face resistance should be reduced as a proportion of the face resistance calculated with 

Equation 5.6 is non-existent due to the presence of the preceding pilot tubes. Thus, an 

effective area of the casing’s reamer less the area of pilot tube should be used. 

Additionally, frictional forces transition between those computed for a full alignment of 

pilot tubes to a full alignment of casing. For phase three, the face resistance term should 

be eliminated and the frictional resistance should transition between that of the casings to 

that of the VCP. Applying these alterations and using the pipe dimensions indicated in 

Table B.5, the equations listed in Table 5.5 may be adopted for use in PTMT operations 

from the Reid Drive Interceptor Project.  
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Table 5.5 Application of Jacking Force Equations for PTMT in Clay Soil                  

(based on Chapman and Ichioka 1999) 

a) Pilot Tube Jacking Force (tons) 

Coverage (%) Pilot tubes 

60       (    )( ) 

90       (    )( ) 

 

b) 21-inch Casing Jacking Force (tons) 

Coverage (%) Casings 

50      [
                     

      
]              

80      [
                     

      
]              

 

c) 21-inch VCP Jacking Force (tons) 

Coverage (%) VCP 

50 [
                     

      
]              

80 [
                     

      
]              

 

d) 8-inch Casing Jacking Force (tons) 

Coverage (%) VCP 

50     [
                     

      
]              

80     [
                     

      
]              

 

e) 8-inch VCP Jacking Force (tons) 

Coverage (%) VCP 

50            

80            

 

where LTotal = Total drive length (m) 

 L = Chainage of current phase (m) 
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 Work by Bennett (1998) involved field measurement and data collection from 

three microtunneling installations at the WES test facility in Vicksburg, MS. The WES 

test facility consisted of six different soil types with slope transitions to evaluate jacking 

forces in each soil type and under mixed face conditions. In addition, he reviewed case 

studies in sands, clays, and silts from 39 microtunneling projects. He contributes jacking 

resistance as the sum of the face pressure and the frictional resistance. The model he 

developed, Equation 5.7, predicts the frictional jacking force component as a function of 

the pipe’s surface area, normal stresses imposed on the pipe wall, and a coefficient of 

friction. He applies reduction factors to account for arching effects in the soil and to 

establish a friction coefficient representing the soil-pipe interface behavior. 

             (    )    (5.7) 

Where Ca = Arching reduction factor 

 Cf = Friction reduction factor 

 γ
’
 = Effective soil unit weight  

 dp = Pipe diameter 

 φr = Residual soil friction angle 

 Ap = Pipe circumference 

 L = Length of bore  

 Geotechnical parameters found in the geotechnical report for the Reid Drive 

Interceptor Project did not include the residual friction angle; however, the peak friction 

angle was given as 31 degrees. In order to account for the residual shear strength of the 

soil, which is likely to control frictional forces along the soil-pipe interface, and to 

appropriately apply Equation 5.7, the residual soil for the soil should be determined. A 
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study by Pineda-Jaimes and Colmenares-Montañez (2011) evaluated the residual and 

peak friction angles of a soft clay and a soft clay-concrete interface from Shelby tube 

samples from a lacustrine deposit in Bogotá, Columbia. To obtain the soft clay-concrete 

interface strengths they performed direct shear tests where a concrete surface was placed 

in one half of the shear box and soft clay was placed in the other half, following the 

ASTM D-3080 standard. Shear stresses were applied once primary consolidation had 

occurred, after the placement of 50, 100, and 150 kPa normal stresses. They concluded 

that the peak angle of soft clay-concrete interface resistance is 0.8 to 0.95 times the peak 

angle of soil resistance. Furthermore, they found that the residual angle of soft clay-

concrete interface and the residual angle of soil resistance equaled the peak angle of soft 

clay-concrete interface resistance. Thus, the residual angle of soil resistance ranged from 

0.8 to 0.95 times the peak angle of soil resistance. Application of their findings does not 

directly apply to soils in the Reid Drive Intercept, but the relationship between peak and 

residual soil angels of friction may be used as guideline for estimating an appropriate 

residual soil friction angle. Peak and residual friction angles for the Bogotá clay used in 

the study were seventeen and fifteen degrees. 

 In a paper submitted by Skempton (1985), the post-peak drop in drained shear 

strength was evaluated for soils with varying percentages of clay sized particles. It was 

found that soils with the clay fraction less than about 25% residual friction angles are 

similar to those of a sand or silt, with a value typically greater than 20 degrees. When the 

clay fraction was greater than 50%, the residual friction angle was much lower. Clay 

composed of Kaolinite, illite or clay mica, and montmorillonite minerals exhibited 

residual friction angles of 15, 10, and 5 degrees, respectively.   
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 Due to the silty clay soil having trace amounts of fines and the absence of sieve 

analysis test results in the geotechnical report, a residual friction angle of 25 degrees was 

assumed to be representative of the soil on the Reid Drive Interceptor Project, based 80% 

of the 31 degree peak friction angle. Thus, Bennett’s predictive model (1998) was applied 

with 25 degrees as the residual friction angle.  

 Bennett’s best fit friction and arching reduction factors were utilized for this study 

to observe how the recorded data fit against his best predictive model. All phases of the 

PTMT and PT/HDD methods employed on the Reid Drive Interceptor Project were 

lubricated in non-dewatered soil. Drives one through four and five through seven 

traversed through medium stiff and stiff clays, respectively. As such, the arching and 

friction factors used for drives one through four were 1.5 and 1.0, respectively, and the 

arching and friction factors used for drives five through seven were 0.5 and 0.5, 

respectively. The only phase where Equation 5.7 may be directly applied is during 

jacking of the pilot tubes. During jacking of the casing and VCP, Equation 5.7 needs to 

be altered to take into account transitioning from friction due to the pilot tubes and casing 

to the casing and VCP, respectively. This approach is similar to that used to apply 

Equation 5.2 for use in PTMT installations. Equations 5.8, 5.9, and 5.10 describe the 

frictional forces that should develop for pilot tube and 21-inch casing and VCP 

installations, respectively. Equations 5.11 and 5.12 should be used for installation of 8-

inch casing and VCP, respectively. Simplification processes used in developing 

Equations 5.8 through 5.11 are shown in Appendix C.  

          (    )(        )  (5.8) 
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          (    ) [(
(         )       (        )      

      
)  

 (        )      ] 

(5.9) 

          (    ) [(
(         )       (         )      

      
)  

 (         )      ] 

(5.10) 

          (    ) [(
(        )       (        )      

      
)  

 (        )      ] 

(5.11) 

          (    )(        )(      ) (5.12) 

 To arrive at an estimated total jacking force, face pressure needs to be added to 

Equations 5.8 through 5.12. Bennett (1998) states that face pressures during 

microtunneling operations are usually a small component of the overall jacking force. 

Additionally, face pressures are highly dependent on the rate of advancement and the 

allowable machine torque. If the torque required to excavate the borehole increases to an 

undesirable level, advancement is slowed, essentially decreasing the face pressure to 

allow for easier excavation, and vice versa. This phenomenon occurred during jacking of 

casing on the Reid Drive Interceptor Project, as the operator would cyclically advance, 

pause, advance, and pause to relieve stress on the auger string. To calculate jacking force 

due to face pressure, consideration as to the earth pressure, groundwater pressure, and 

face area should be given. Bennett refers to methodology from Weber (1981) (Equation 
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5.13), as reported by Stein et al. (1989), to calculate the jacking force due to face pressure 

for auger type excavation methods in pipe jacking. It should be noted that the coefficient 

of load bearing capacity, λ, is equivalent to the bearing capacity reduction factor and 

increases as φ increases from 0.05 at φ = 0° to 0.20 at φ = 25°, to 0.75 at φ = 40°, and to 

1.00 at φ = 42°. For the silty clay soil with a peak friction angle of 31°, from the Reid 

Drive Interceptor Project, λ is approximately 0.42. 

        (   (   
  

 
)     ) (5.13) 

Where Fp = Jacking force due to face pressure 

 γ = Unit weight of soil 

 c = Cohesion 

 hc = Height of soil cover above pipe crown 

 db = Bore diameter 

 φ = Peak internal angle of soil friction 

 D = Auger screw diameter 

 t = Cutting edge thickness 

λ = Coefficient of load bearing capacity.  

Development of Equation 5.13 was spawned after it was realized that the 

mechanisms controlling face pressure during advancement of microtunneling machines is 

quite different from tip bearing during pile load tests. A pile tip creates a passive failure 

in the soil as it is advanced. Excavation at the face of a microtunneling machine, on the 

other hand, partially relieves the soil stresses and does not induce passive failure. Thus, 

Equation 5.13 results in a jacking force due to face pressure that is less than what would 
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be calculated using pile tip methodology. Jacking of pilot tubes, however, is more likely 

to follow pile tip methodology. Consequently, deviation from using Bennett’s frictional 

model with Weber’s face resistance model was necessary to predict jacking forces during 

pilot tube advancement. Chapman’s face resistance methodology for push-in type 

installations was adopted, resulting in a face resistance of 2.5 tons and 5.1 tons for 60% 

and 90% coverage of pilot tube jacking, respectively.   

Staheli’s work (1996) involved developing an analytical model to determine the 

jacking forces during microtunneling operations. She describes how the face pressure 

during these operations is between the active and passive lateral earth pressure, as the 

face pressure must remain within these bounds to prevent surface settlement and heave. 

Resultantly, she sets the face pressure equal to an average of the active and passive lateral 

earth pressures. In cohesionless or permeable soils, ground water pressure was added to 

the average lateral earth pressure to account for the added resistance due to ground water 

head. In clay soils, ground water head is not likely to permeate through the soil at a fast 

enough rate to increase the face pressure against the front of the microtunneling shield. 

Therefore, in clay soils the groundwater pressure was omitted from the face pressure 

formula. 

An average of the active and passive earth pressure will most likely accurately 

predict the face pressure during the second phase of PTMT, jacking of the casings. 

Although, the behavior of pilot tubes advancing through soil involves different 

mechanisms, as soil is displaced rather than excavated. Thus, the passive earth pressure is 

taken to represent face pressure during jacking of pilot tubes. Equations C.7 through C.10 

illustrate how the Rankine active and passive effective lateral earth pressures were 
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obtained.  Ground water pressure has been omitted as the monitored installations of this 

study proceed through clay soils. As previously mentioned, there is zero face pressure 

during phase three as the borehole has already been established. 

In Staheli (2006), extensive laboratory work was conducted to establish soil-pipe 

residual interface friction coefficients for various pipe materials sheared against two 

cohesionless soils with different residual friction angles (Table 2.1). Results were 

interpolated and extrapolated to estimate soil-pipe interface friction coefficients for soils 

with residual friction angles ranging from 25 to 40 degrees. Frictional jacking force was 

then determined to be equal to the product of the soil-pipe interface friction and the 

normal force, derived from Terzaghi’s Arching Theory. Thus, the frictional and total 

jacking force may be determined by implementing Equation 5.14 and Equation 5.15, 

respectively. Akin to the methodology of applying the jacking force models by Chapman 

and Ichioka (1999) and Bennett (1998) to model behavior intrinsic to PTMT installations, 

the friction jacking component from phases two and three transitions from that equated 

with an entire drive length of pilot tubes and casings to an entire drive of casings and 

VCP, respectively, when applying Equations 5.14 and 5.15. 

             

       (   
  

 )

     
       (5.14) 

where JFfrict = Frictional component of jacking (tons) 

 μint = Pipe-Soil residual interface friction coefficient (Table 2.1) 

 γ = Total unit weight of the soil (tons/ft
3
) 

φr = Residual friction angle of the soil (degrees) 

d = Pipe outside diameter (ft) 
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r = Pipe radius (ft) 

l = Length of pipe (ft) 

              
  

 
     

       (   
  

 )

     
       (5.15) 

where JFTotal = Total jacking force (tons) 

 FP = Effective lateral earth pressure (tons/ft
2
) 

5.3.1 Comparison of Select Jacking Force Predictive Models to Collected Data 

 The usefulness in adopting the microtunneling jacking force predictive models of 

Chapman and Ichioka (1999), Bennett (1998), and Staheli (2006) to predict jacking 

forces for the PTMT methodology varies depending on which phase of the PTMT 

process the model is being used to predict. One of the select predictive models may 

adequately predict pilot tube jacking forces while failing to capture the thrust force 

generating mechanisms of casing installation. Furthermore, one model may better 

represent the face resistance component of a PTMT phase, whereas the frictional jacking 

force component may be best represented by another. Accordingly, the predictive models 

need to be evaluated based on their face and frictional components on a phase by phase 

basis. Table 5.6 indicates the models that best represented each phase of the PTMT 

methodology. The following text describes the applicability of each model for each 

PTMT phase beginning with phase one, pilot tube jacking, and proceeding through 

phases two and three, casing and VCP installation. 
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Table 5.6 Most Applicable Models for Each PTMT Phase 

Phase Frictional Component Face Component 

Pilot Tube Staheli Chapman and Ichioka 60% 

21" Casing 
Staheli &  

Chapman and Ichioka 50% 
Staheli & Chapman and Ichioka 50% 

8" Casing Bennett Staheli 

21” VCP Staheli N/A 

8” VCP Bennett  N/A 

 

Figures A.57 to A.61 compare the gathered pilot tube thrust force data with the 

predictive models with respect to drive length for drives one through five. It was found 

that face resistance was most accurately predicted by Chapman and Ichioka’s 60% 

coverage model, in which the face pressure is estimated to be 200 tons/m
2
. The face 

pressure in the medium stiff silty clay soils from drives one through four were 250, 300, 

150, and 200 tons/m
2
, respectively, with an average of 225 tons/m

2
. Drive five, which 

mostly consisted of stiff silty clay soils, had a face pressure of 350 tons/m
2
 and was more 

accurately predicted by his 90% coverage model. The face pressure predicted based on 

Staheli’s model was consistently low. In traditional microtunneling an average of the 

passive and active lateral earth pressure is a valid estimate of the face pressure to be 

encountered during shield advancement, as the face pressure is kept within this range to 

prevent settlement and heave. With pilot tube jacking the soil undergoes passive failure 

as it is being displaced by the lead pilot tube, and therefore, the passive pressure is 

exceeded during pilot tube advancement. Bennett did not prescribe a specific face 

resistance prediction model, but like Staheli, he noted that the face pressure is generally 

between the active and passive lateral earth pressure for microtunneling installations. 

Since Chapman and Ichioka’s face pressure prediction was the most applicable to this 
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study, his 90% and 60% face pressure predictions were used as a baseline for predicting 

jacking forces with Bennett’s frictional model. 

 Staheli’s predictive model for friction development throughout the length of a 

drive best represented the pilot tube installation behavior. Frictional jacking stresses 

during the pilot tube installations were low and only noticeable during drives one and 

two, which had frictional jacking stresses of 4.5 and 9.5 lbs/ft
2
, respectively. Models 

based on Staheli (2006), Bennett (1998), and Chapman and Ichioka (1999) predicted 

frictional jacking stresses of 10, 17, and 270 lbs/ft
2
, respectively. The low friction stresses 

experienced during the Reid Drive Interceptor Project’s pilot tube installations may have 

been attributable to abundant use of lubrication.  

The soil-pipe interface friction coefficient used in adopting Staheli’s friction 

stress predictive model was 0.38, representing a steel pipe against a soil with a residual 

angle of friction of 25 degrees in a non-lubricated scenario. An internal angle of friction 

of 4 degrees is typical of Wyoming bentonite (Staheli 1996). In situations where 

bentonite mixes with the surrounding soil, which is likely during pilot tube jacking, the 

mobilized friction angle of the bentonite/soil mix can be estimated as one-third the 

internal angle of friction of the soil. This would result in a soil-pipe interface coefficient 

of tangent (φ/3), lowering the predicted frictional jacking stress from 10 lbs/ft
2
 to 4 

lbs/ft
2
.  

Chapman and Ichioka’s push-in predictive model was based on data from 49 

microtunneling installations, which were subdivided into drives through clay and drives 

through sand. The lack of abundant data relating frictional jacking stresses to machine 

diameter in clay soil, deficient documentation regarding the use of lubrication, and the 
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absence of other soil parameters from the predictive model may have led to the large 

overestimate of the frictional jacking force required. Bennett’s model takes lubrication 

into account through the use of his arching and friction reduction factors; however, his 

friction prediction slightly overestimates the collected data. If a smaller friction angle had 

been used, say 15 degrees, his frictional stress estimate would have been reduced from 17 

to 10 lbs/ft
2
. Staheli’s published soil-pipe interface friction coefficients did not extend to 

friction angles below 25 degrees. Being that 25 degrees is a reasonable estimate for the 

residual friction angle and for consistency of comparison between the models, Bennett 

and Staheli’s models were fitted with a 25 degree residual friction angle. 

 During 21-inch casing installations, frictional stress throughout the silty clay was 

rather minimal, due to abundant lubrication and the ¼ inch radial overcut provided by the 

reamer. Jacking force increases seemed to be largely affected by the cutting head and 

reamer passing through more resistive soil material, which was believed to be a cemented 

sandy soil. Upon exiting the more resistive soil, jacking forces would decrease to a level 

approximately equal to what they were before entering the cemented soil. Ignoring these 

isolated thrust force increases, the 61 lbs/ft
2
 frictional jacking stress predicted by Staheli 

was the most applicable for representing the frictional resistance of the 21-inch casings. 

Using a soil-pipe interface friction coefficient of tangent (φ/3), representative of a 

lubricated scenario, would have reduced the frictional jacking force from 11 lbs/ft and 

407 lbs/ft to 4 lbs/ft and 157 lbs/ft for the beginning and end of the phase two PTMT 

process, respectively, and would have better represented the field data.  

Although Staheli best predicted the frictional jacking stress for 21-inch casings, 

the transition from the frictional force due to a full drive length of pilot tubes to a full 
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drive length of casings was best represented by Chapman and Ichioka’s 50% coverage 

model, as there was less of a difference between their pilot tube frictional jacking force 

and casing frictional jacking force than the other models. The Chapman and Ichioka 

model predicts the jacking stress to decrease from 270 lbs/ft
2
 to 74 lbs/ft

2 
as the drive 

transitions from an entire span of pilot tubes to an entire span of casings. Incorporating 

pipe circumference, their frictional force increases linearly from 300 lbs/ft to 496 lbs/ft 

from the beginning to the end of casing installation. Bennett’s model based on the best fit 

arching and friction reduction factors for clay of medium stiffness overestimated the 

frictional jacking stress. Adjustment of the reduction factors to represent a stiffer and 

more stable borehole would have resulted in better representation of the frictional forces 

incurred throughout most of the installations.  

 Determining the correct model to represent face resistance during phase 

two operations was more difficult than for phase one. During phase one, the jacking force 

at the beginning of the installation is almost entirely due to resistance at the face, as there 

is limited soil-pipe interface surface area for friction to act on. In phase two, the jacking 

force at the beginning of jacking of the casing is representative of the face resistance to 

penetrate the larger diameter casing with auger flights and the friction resistance to push 

the pilot tubes into the reception shaft. The cumulative effect of the predicted pilot tube 

friction resistance and auger boring face resistance was generally over predicted by 

Chapman and Ichioka and under predicted by Bennett and Staheli. The high pilot tube 

frictional jacking stress predicted by Chapman and Ichioka allowed for a strong 

prediction of the starting jacking force during phase two of the 200-ft drive three. For 

longer drives, the high pilot tube frictional jacking stress led to an overestimate. Staheli’s 
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prediction was most suitable for the longer drive lengths due to the smaller frictional 

jacking stress her model predicts for the pilot tubes. It should be noted that the face 

pressure model (Weber 1981) used in conjunction with Bennett’s friction prediction 

model to predict jacking force for the PTMT methodology drastically under predicted the 

face pressure during casing and auger advancement. This face pressure model was 

derived from the shear strength of the soil at the depth of the center of the casing, the 

circumference of the augers, thickness of the cutting edge, and a bearing capacity factor 

that is based on the friction angle of the soil.  

Staheli’s frictional force model best represented the pilot tube behavior and thus 

provides a good baseline for estimating the penetration stress during casing advancement. 

From Figures A.62 to A.65, it can be seen that the starting jacking forces ranged from 25 

to 50 tons. Staheli predicted a frictional jacking force of 2 to 3 tons for a full drive length 

of pilot tubes. If this is subtracted from the starting jacking forces, the force due to face 

resistance may be obtained. This suggests that the face resistance during phase two 

operations ranged from 6 to 13 tons/ft
2
.  

A similar methodology was used to determine the face resistance during the 8-

inch casing installation during drive number five. From Figure A.61 it can be seen that 

the thrust force required to install pilot tubes remained relatively constant throughout the 

length of the drive. Bennett’s friction model predicted an increase of only 330 lbs from 

the beginning of the drive to its end, 120-ft later. Thus, the jacking force at the onset of 

jacking the 8-inch casings is mostly composed of face resistance at the front of the casing 

and auger. From Figure A.66 it can be seen that the face resistance is about 15 tons, or 26 

tons/ft
2
.  



139 

The combination of Staheli’s friction model for pilot tubes and her face pressure 

estimate for casing advancement best represented the thrust force at the beginning of the 

8-inch casing installation. Frictional stress, again, was minimal and best represented by 

Bennett’s model. Chapman and Ichioka’s model actually predicted a decreasing frictional 

resistance as the length of the drive increased. The predictive model he uses to estimate 

frictional stress was developed statistically through observations of push-in and auger 

type installations. The influence of the increased diameter of the 8-inch casings on 

increasing frictional forces did not outweigh the decrease in frictional forces due to the 

alternative advancement technique. Frictional stress during auger boring installations is 

typically less than that of push-in installations, due to the fact that a borehole slightly 

larger than the OD of the casings is excavated, whereas during pilot tube advancement 

the soil is being displaced to make room for the incoming pilot tubes. During 21-inch 

casing installations, the larger diameter proved to be more influential than the alternative 

installation method. 

Staheli’s model tended to better predict thrust force during installation of the final 

21-inch nominal ID VCP product, however, since her estimate of the friction force 

resulting from pushing a full drive length of casings was over predicted, the thrust force 

at the beginning of phase three was also over predicted. This over prediction was present 

in all of the authors’ jacking force models. As the total jacking force for phase three 

transitions from the friction force required to push an entire drive of casings to an entire 

drive of VCP pipe, face pressures are non-existent. A strong comparison of the frictional 

forces for pushing the 25.5-in outside diameter casing to that of pushing the 24-in outside 

diameter VCP is not able to be confidently obtained, due to the problems experienced 
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with the L1 pressure transducer, as described in Appendix D. Even though a sound 

conclusion cannot be ascertained, it is hypothesized that the decrease in friction 

resistance due to the smaller pipe diameter is offset by the increased roughness of the 

vitrified clay over the steel, and a jacking force between 25 and 30 tons is to be expected. 

When comparing recorded thrust data to the predictive models for jacking of the 

8-inch VCP, jacking forces due to advancement of the casing and VCP was over 

predicted by Chapman and Ichioka and Staheli and slightly under predicted by Bennett. 

Staheli’s model was the only one to account for increased frictional resistance due to the 

transition of the pipe material. Although this behavior was expected as the pipe string 

transitions from steel to VCP of a constant OD, the jacking force data did not indicate a 

jacking force increase from the beginning to the end of the drive. Adjustment to Staheli’s 

interface friction coefficient to account for lubrication would have resulted in a well fit 

model by reducing the jacking load at the beginning to 1.8 tons, about 0.2 tons less than 

what was recorded. Increasing the arching and friction reduction factors used in Bennett’s 

model to be representative of the upper bound for a stiff to hard clay as opposed to his 

best fit factors would yield a jacking force at the beginning of phase three of 2 tons as 

opposed to 1.2 tons and would fit the data very well. In this case, his model indicates that 

the soil consistency is on the soft side of the stiff to hard clay classification. 
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CHAPTER 6:  CONCLUSIONS AND RECOMMENDATIONS 

PTMT is a trenchless technology ideal for the installation of gravity fed sewers in 

urban environments. Appropriate application of this technology can aid with repairing 

and expanding the deteriorating U.S. underground infrastructure system in an efficient 

and cost effective manner. Maximizing cost effectiveness is crucial, as capital investment 

needs over the next twenty years for wastewater and storm water pipelines alone is 

estimated to $224 billion (ASCE 2013). Understanding PTMT installation behavior in 

terms of the factors affecting productivity and jacking forces will allow engineers, 

manufacturers, and contractors to fine tune the PTMT methodology to minimize costs 

and risks.  

To gain insight towards PTMT installation behavior, jacking frames were fitted 

with hydraulic pressure transducers to monitor hydraulic pressures during seven distinct 

PTMT installations from the Reid Drive Interceptor Project in Appleton, WI. Knowledge 

of the jacking ram dimensional specifications enabled conversion between the recorded 

ram hydraulic pressures and the jacking or pull-back force output from the jacking frame. 

Rotational torque was able to be determined through linear interpolation between 

minimum and maximum jacking frame hydraulic pressures and rotational torques, as 

specified by the manufacturer. Recorded data was time stamped, which allowed for the 

data to be analyzed with respect to time, paving the way for productivity analysis. 

6.1 Productivity Conclusions 

 Identifying expected pipe installation cycle durations, average installation rates, 

and the factors that influence productivity for all three phases of the PTMT methodology 

were the objectives of this productivity analysis. Fundamental to achieving this goal was 
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being able to detect cyclic patterns within the time series data representative of the 

installation of a single pilot tube, casing, or product VCP. The typical pattern of 

installation cycles from each phase are detailed in Section 4.1.  

 Once the cycle patterns are identified for each PTMT phase, valuable information 

pertaining to the factors that affect productivity may be obtained through analysis of the 

distribution of the cycle durations. It was found that when graphing the number of cycles 

that occurred within specific duration intervals, most phases exhibited a skewed 

exponential distribution about the median cycle duration, with more cycles beyond the 

median duration than quicker than the median duration. The cycle duration frequency 

distributions for each PTMT phase may be found in Section 4.2. General cycle duration 

characteristics for each PTMT phase are outlined in Table 6.1. 

Table 6.1 Cycle Duration Characteristics for PTMT Installations 

Phase 

Number of 

Cycles 

Observed 

Reasonable 

Minimum  

(min) 

Median  

(min) 

Mean  

(min) 

Mean +  Standard 

Deviation (min) 

Pilot Tube 605 0.7 1.1 1.3 2.3 

8-in VCP 37 2.5 3.0 3.9 6.4 

21-in VCP 95 4.0 6.8 7.5 10.6 

8-in Casing 37 5.0 12.6 14.8 24.5 

21-in Casing 176 20.0 29.0 33.0 45.6 

 

 Since the length of pilot tubes, casings, and product VCPs are known, installed 

distance with respect to time may be observed once each cycle is identified within the 

data stream.  It was noticed that as drive length increases productivity tends to decrease. 

This may be attributable to fatigue or due to the increased jacking forces due to higher 

frictional resistance. Towards the end of all installations, there was a substantial reduction 

in productivity observed. As a PTMT phase approaches completion, communication 
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between crew members in the jacking and reception shafts increases to make sure there is 

appropriate clearance for the pilot tube, casing, or product VCP to be jacked into the 

reception shaft and to make sure it is jacked to sufficient distance.  

Average installation rates for each PTMT phase are shown in Table 6.2. If delays 

are able to be kept to a minimum and high project efficiency can be maintained, the 

average installation rate should approach the median installation rate. The percent change 

from the average to median installation rates are also shown in Table 6.2. Greatest 

efficiency gains may be realized during jacking of the pilot tubes, where the added time 

due to delay is significant in proportion to the average cycle time. In general, as the 

average cycle time of a phase increases a delay of a specific duration has less of an effect 

on the overall efficiency. However, minimizing delays during operations with slow 

installation rates will result in the greatest time savings over the length of a drive.  

Table 6.2 Comparison of Average and Median Installation Rates 

Phase 
Installation Rate (ft/hr) 

% Increase 
Time Saved Per 400 FT Drive 

(hours) Average Median 

Pilot Tube 102 136 34% 1.0 

21-in VCP  63 71 12% 0.7 

8-in VCP 51 67 31% 1.9 

21-in Casing 15 17 13% 3.2 

8-in Casing 13 16 17% 4.4 

 

 Ground conditions are ranked as the highest factor that affects PTMT productivity 

(Gottipati 2011). Ground conditions were relatively constant throughout the Reid Drive 

Interceptor Project, although there were a few instances where the operator experienced 

high resistance to installation and hypothesized that the installation was proceeding 

through a section of hardpan, or cemented soil.  Decreases in productivity were observed 

in these instances. This may have been due to a combination of the higher soil resistance 
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and the operator proceeding at a slightly slower rate to ensure adequate lubrication and 

stabilization of the borehole. 

 Another factor that played an influence on productivity was that of the pipe 

dimensions. Cycle times for the 8-in casings and VCPs were considerably shorter than 

those for the 21-in casings and VCPs; however, the pipes were also 4.5 feet shorter. The 

smaller pipes were easier to load onto the jacking frames and connect to the previously 

installed sections, leading to quicker and more efficient readying of the pipe for 

installation. On the other hand, drives with shorter pipes require more pipes to complete 

the installation, causing a greater proportion of cycle time being apportioned to non-

advancement operations. All in all, it was found that installation rates were slower with 

shorter pipes, even though they were easier to ready for installation.  

 The largest and most well defined change in productivity was observed when 

comparing 21-inch VCP installation rates between the first and second drive. Phase three 

productivity is largely dependent on the efficiency of the reception shaft crew in 

dismantling and removing the casings, as jacking of the next product pipe must be stalled 

until the casing is removed. The veteran crew used on drive two was able to optimize 

their technique in dislodging the casings and augers in the reception shaft to a point 

where the jacking shaft crew did not have to wait to proceed with product pipe jacking. 

For this reason, the greater experience of the crew on drive two results in a time savings 

of two hours for completing a phase three installation for a drive length equal to the 

average length of drives one and two (398 feet). 

The above analysis was completed through manual interpretation of the collected 

data. Automatic pattern recognition through the use of ANN, BP ANN, and anomaly 
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detection algorithms was explored as an alternative approach to understanding typical 

installation cycle behavior and productivity for each phase of the PTMT methodology. It 

was found that these algorithms were successful in identifying which pressure transducer 

was responsible for monitoring each phase, detecting the installation cycles within each 

phase, and pinpointing the distinct operations with the typical installation cycles. Use of 

the algorithms for this study was namely to demonstrate their ability in obtaining quality 

productivity and workflow behavioral characteristics and to present preliminary 

productivity results in a more time efficient manner than manual interpretation.  

6.2 Jacking Force Conclusions 

 Knowledge of how jacking forces are influenced by ground conditions and 

installation characteristics is essential towards reducing risks due to uncertain jacking 

forces, designing thrust reaction walls in the jacking shaft, and selecting appropriate 

product pipe specifications. The required jacking force to advance pipe sections through 

the soil is due to penetration resistance at the lead pipe and friction resistance developed 

along the soil-pipe interface. In pipe jacking and microtunneling installations, jacking 

resistance due to frictional development largely controls the maximum jacking force 

throughout a drive. Since the frictional forces are cumulative, the maximum force is 

observed towards the end of the drive. In this study, methodology for determining the 

jacking force throughout PTMT installations by instrumenting the jacking frames with 

hydraulic pressure transducers was explored. General trends relating factors such as pipe 

diameter, installation depth, soil type, stoppages, lubrication, and operator technique to 

jacking force were identified. Jacking force predictive models by Chapman and Ichioka 
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(1999), Bennett (1998), and Staheli (2006) were utilized to decipher their applicability in 

predicting jacking forces for the PTMT methodology. 

6.2.1 General Trends 

 Table 5.3 outlines the hierarchy of PTMT phases with regards to jacking force. 

Jacking of the 21-inch casings resulted in the highest forces, commonly between 35 and 

60 tons. Forces were high during this phase due to the large casing circumference of 

which the friction acts upon and the penetration resistance due to enlarging the borehole. 

Maximum jacking forces during advancement of the 8-inch casings were about 15 tons. 

Complete isolation of the effect of pipe diameter on jacking forces between the 21-inch 

and 8-inch drives was not possible, as the 8-inch installation was through slightly stiffer 

silty clay at a shallower depth, but it is highly likely that the lower jacking force for the 8-

inch pipe was due to the smaller diameter. Comparison of the 21-inch and 8-inch VCP 

installations produced similar results. The larger product pipes required about 35 tons, 

whereas the smaller product pipes required about 3 tons. Forces during jacking of the 8-

inch VCP were actually the lowest of all PTMT phases, most likely due to the absence of 

penetration resistance.  

 Contrary to pipe diameter, installation depth was not strongly correlated with 

jacking force. This may be attributable to Terzaghi’s Arching Theory. Furthermore, the 

stiffness of the silty clay varied between the deep and shallow installations, shadowing 

the influence of depth of cover.  

As previously mentioned, the consistent soil borings from the Reid Drive 

Interceptor Project did not allow for examination of the jacking force through a wide 

range of soil types, nor were the borings frequent enough to identify localized sections of 



147 

more resistive soil. Thrust force variance between silty clay soils of stiff and medium 

consistency was insignificant. However, there were several locations where hydraulic 

pressure in the jacking rams substantially increased and then decreased at a short distance 

afterwards. These locations likely were composed of cemented soil particles, or hardpan. 

Drive two is a prime example of how jacking forces respond to this soil type. Another 

example of the effect of hardpan on jacking forces is that of drive six (PT/HDD), where 

high pull-back forces overstressed the HDPE pipe and caused pipe failure. Jacking force 

behavior throughout these drives is discussed in detail in Section 5.2.2.  

Consequence to the pipe failure during drive six, drive seven (PT/HDD) was 

completed with a pre-reaming phase to limit pull-back forces. It was found that pull-back 

force reductions of 44% at the start and 27% at the end between the pre-ream and pull-

back operations were realized. Actual benefits of pre-reaming are likely to be higher, as 

the pre-ream forces would have been higher had the reamer been trailing a continuous 

string of HDPE pipe. 

In addition to more resistive soils, delays or stoppages during an installation can 

result in increased jacking forces due to relaxing of the soil around the borehole causing 

increased normal force against the pipe string. Soils on this project were mainly medium 

stiff silty clay of low plasticity, which is an ideal soil for tunneling due to its high 

stability and low volume change characteristics. When comparing jacking forces between 

delays of varying duration, slight thrust force increases were observed. However, longer 

durations did not always result in higher increases in thrust force. Consequently, a strong 

correlation between delay and increased jacking forces was not attainable. There was one 

instance, on the other hand, where the impact to delay was substantial and caused 
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significant project setback. Data logging equipment was not available to capture this 

behavior, although this example is discussed in detail in Section 5.2.3 based on 

documented field notes. 

Substantial friction development throughout the length of most of the PTMT 

drives on the Reid Drive Interceptor Project was not observed. Adequate lubrication 

during phases one and two may have attributed to the minimal frictional forces. However, 

direct correlation between thrust forces for drives using higher concentrations of 

bentonite to water and a higher volume application to those with less applied lubrication 

of a lower concentration was not noticeable. Regardless, there were two instances where 

the beneficial effect of lubrication on lowering frictional forces could be observed. These 

examples are discussed in Section 5.2.4. 

 Lubricant application and attention to detail, with regards to the project specified 

slopes, can influence jacking forces and project productivity. These factors are highly 

controlled by the jacking frame operator. In addition to these factors, the rate and style of 

advancement adopted by the operator to jack pilot tubes, casings, or product VCPs has an 

influence as well. An instance where three different operators were used to install 21-inch 

casings highlighted the variability in productivity and jacking forces with installation 

technique. Detailed description of this phenomenon is discussed in Section 5.2.5. In 

short, consistent advancement promotes kinetic friction at the soil-pipe interface, 

lowering jacking forces. If difficulties with transporting spoil from the face to the jacking 

shaft transpire, or if jacking forces are high, a slower advancement rate may be adopted 

to reduce pressure at the face and ease the auguring operation. 
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6.2.2 Applicability of Existing Jacking Force Predictive Models 

 Existing models from Chapman and Ichioka (1999), Bennett (1998), and Staheli 

(2006) were adopted for use in predicting jacking forces during each phase of the PTMT 

process. Since these models were developed for microtunneling and pipe jacking 

methodologies, alteration to their equations was necessary to capture the distinct behavior 

of PTMT installations. Pilot tube jacking displaces the soil, which causes the face 

penetration resistance to exceed the passive lateral earth pressure of the soil. Furthermore, 

the limited radial overcut provided by the steering head on the lead pilot tube, 0.375 

inches, is generally less than the overcut provided by the tunnel boring machine used in 

microtunneling or pipe jacking operations. Penetration resistance during casing 

advancement needs to be applied to the difference in area between the casing reamer and 

the pilot tube, as the pilot tubes are advanced in front of the casings. Frictional resistance 

during casing advancement transitions between an entire drive length of pilot tubes, at the 

onset of installation, to an entire drive length of casings upon completion. Face resistance 

is non-existent during product VCP jacking as the borehole size was already enlarged to a 

diameter greater than the VCPs during phase two. Consequently, jacking forces 

experienced during phase three transition from the friction resistance of an entire drive 

length of casings to an entire drive length of VCPs from the beginning to the end of the 

phase.  

 Each of the selected existing models were developed based on different 

methodologies. Fundamentals to each model and the models’ general suitability for 

predicting jacking forces during PTMT operations are discussed in this Chapter. Detailed 

methodology and applicability of the models can be found in Section 5.3. 
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Chapman and Ichioka’s models are based off of the dimensions of the pipe, 

whether the soil is clay or sand, and whether slurry, auger, or push-in type 

microtunneling was used. They developed predictive models based on statistical analysis 

of an extensive database of microtunneling jacking forces to estimate the maximum 

jacking force expected to cover various percentages of the collected data. It was found 

that Chapman and Ichioka most accurately predicted the face component of jacking force 

during pilot tube and 21-inch casing advancement and the jacking force transition 

between a full drive length of pilot tubes to a full drive length of 21-inch casings during 

phase two.  

Bennett’s model was based on an extensive field experiment where the effect of 

soil type, lubrication, and de-watering on jacking force was able to be isolated and from 

review of 39 microtunneling case studies in sand, silt, and clay soils. He related the 

frictional jacking force to the effective unit weight of the soil, the residual angle of 

friction of the soil, pipe diameter, and arching and friction reduction factors to account 

for stress reduction due to Terzaghi’s Arching Theory. Upper bound, best fit, and lower 

bound estimates of the friction resistance were established. He describes how jacking 

force due to penetration resistance is largely controlled by the torque required to excavate 

the borehole, but explains how face resistance is kept between the active and passive 

lateral earth pressure to prevent surface settlement or heave. He outlines work from 

Weber (1981), in which a face resistance formula was developed for auger-boring 

installations. When adopting Bennett’s methodology for use in PTMT jacking force 

prediction, his frictional jacking force relationship was utilized in conjunction with face 

resistance methodologies from Chapman and Ichioka for phase one and Weber for phase 
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two. Chapman, Ichioka, and Weber’s face resistance methodologies were used due to 

their direct application to the push-in and auger-boring methodologies. It was found that 

Bennett most accurately predicted the frictional component of jacking force for 8-inch 

casing and VCP installation. 

Akin to Bennett’s methodology for determining face resistance, Staheli 

documented how face pressures were maintained between active and passive lateral earth 

pressure to prevent settlement and heave. She suggested that an average of the two may 

be used to estimate the face pressure. This approach was utilized in phase two, where the 

auger-boring methodology was believed to be between the active and passive lateral earth 

pressure. Although during phase one, the face resistance was set equal to the passive 

lateral earth pressure to simulate the displacement behavior of the soil inherent to pilot 

tube advancement. Her frictional resistance model operates based on the residual angle of 

friction of the soil, the soil unit weight, pipe radius, and the coefficient of pipe-soil 

interface friction based on extensive laboratory testing between numerous pipe materials 

and sand of two different friction angles. It was found that her model best represented the 

face component of jacking force during phase two and the frictional component for 

advancement of pilot tubes and 21-inch casing and VCP. 

6.3 Recommendations for Further Research 

 To date, monitoring of PTMT operations for use in productivity and jacking force 

analysis has yet to be completed. This study was conducted to explore these behavioral 

characteristics of the PTMT methodology through means and methods that have been 

used to study behavior of other trenchless technologies. Data recorded for this study was 

entirely from seven PTMT, PTMT/Auger Boring, and PT/HDD installations from the 
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Reid Drive Interceptor Project in Appleton, WI. Acquiring a more extensive database 

with recorded installations from numerous projects with varying operational parameters 

would be beneficial towards determining the effect of which those parameters affect 

productivity and jacking force. These factors may include, but are not limited to, soil 

type, depth of cover, pipe diameter, lubricant type and application rate, contractor 

technique, and pipe material. Additional monitoring of product pipe installations is 

especially desired, as problems with the L1 pressure transducer for this project resulted in 

only two recorded drives. Ideally, further monitoring would be supplemented with 

detailed field notes documenting any relevant events, contractor techniques, or change in 

soil type. Real-time monitoring of drilling fluid application would provide the means to 

accurately link thrust force and productivity variation with drilling fluid use. 

Instrumenting a pipe during each PTMT phase, with either jacking load cells placed 

between pipe joints or contact stress transducers placed on the outer pipe wall, and 

comparing the outputs to the jacking force output of the jacking frames could provide 

further insight toward frictional development along the pipe string and aid in isolating 

penetration stresses from frictional stresses. 

 In addition to obtaining a more elaborate database of installation behavior, a more 

in depth productivity and jacking force analysis is possible. Further implementation of 

automatic data recognition with ANN, BP ANN, and anomaly detection algorithms to 

identify pipe installation behavior and perform productivity analysis can further pinpoint 

the factors that affect productivity and the degree of their influence. These algorithms 

may also be used to link thrust force data with productivity to further conclude upon the 

effect of high jacking forces on installation rates and crew productivity.  
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The scope of this study involved comparing existing predictive models developed 

for the microtunneling and pipe jacking methodologies to the PTMT methodology. 

Fundamental differences between the installation procedures of these technologies results 

in misrepresentation of jacking forces predicted with the existing models to those 

observed during PTMT. Further alteration to the existing models could be performed to 

better suit their applicability to the PTMT methodology.  

All three jacking force models applied in this study were not directly dependent 

upon soil suction. Bennett’s model did distinguish between dewatered and non-dewatered 

zones in clay and sand, although the effect of soil suction could not be directly identified 

as the arching and friction reduction factors were developed for dewatered non-lubricated 

and non-dewatered lubricated zones. In clays above the water table, large capillary 

stresses may develop causing the effective stress to exceed the total stress. This 

phenomenon is likely to increase borehole stability as the capillary stresses act like a 

vacuum, providing suction between the clay particles. Exploration into the effect of soil 

suction on jacking forces, and more specifically, the normal stress imposed on the pipe 

wall, may increase the precision of existing jacking force models. 

With the addition of a more extensive database to isolate the effects of jacking 

force parameters and alteration of the existing models, jacking force predictive models 

for PTMT applications may be developed. Accurate and precise estimation of jacking 

forces along with detailed understanding of the productivity factors would allow for 

valuable PTMT simulation models to be created. These models could aid engineers and 

contractors with developing project schedules, reducing project risk, and evaluating the 

feasibility of PTMT methods for various proposed installations. 
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Figure A.2 Photograph of Make-Up Tool Used in Phase One Operations 

 

 
Figure A.3 Thrust Force vs. Time for Phase One of Drive One 

 

0

2

4

6

8

10

12

14

16

18

8:24 9:36 10:48 12:00

T
h
ru

st
 F

o
rc

e 
(T

o
n
s)

 

Time (hh:mm) 

Make-Up 

Tool 
Slot 



163 

Figure A.4 Rotational Torque vs. Time for Phase One of Drive One 

 

Figure A.5 Thrust Force vs. Length of Drive for Phase One of Drive One 
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Figure A.6 Rotational Torque vs. Length of Drive for Phase One of Drive One 

 

a) Day One, June 15
th
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b) Day Two, June 16
th

  

c) Day Three, June 17
th

  

Figure A.7 Thrust Force vs. Time for Phase Two of Drive One:                                        

a) Day One, b) Day Two, c) Day Three 
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Figure A.8 Thrust Force vs. Length of Drive for Phase Two of Drive One 

 

Figure A.9 Thrust Force vs. Time for Phase Three of Drive One 
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Figure A.10 Thrust Force vs. Length for Phase Three of Drive One 

 

Figure A.11 Thrust Force vs. Time for Phase One of Drive Two 
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Figure A.12 Rotational Torque vs. Time for Phase One of Drive Two 

 

Figure A.13 Thrust Force vs. Length of Drive for Phase One of Drive Two 
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Figure A.14 Rotational Torque vs. Length of Drive for Phase One of Drive Two 

 

a) Day One, June 24
th
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b) Day Two, June 27
th

  

 

c) Day Three, June 28
th
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d) Day Four, June 29
th

  

Figure A.15 Thrust Force vs. Time for Phase Two of Drive Two:                                     

a) Day One, b) Day Two, c) Day Three, b) Day Four 

 

Figure A.16 Thrust Force vs. Length of Drive for Phase Two of Drive Two 
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Figure A.17 Thrust Force vs. Time for Phase Three of Drive Two 

 

Figure A.18 Thrust Force vs. Length of Drive for Phase Three of Drive Two 
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Figure A.19 Thrust Force vs. Time for Phase One of Drive Three 

 

Figure A.20 Rotational Torque vs. Time for Phase One of Drive Three 
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Figure A.21 Thrust Force vs. Length of Drive for Phase One of Drive Three 

 

Figure A.22 Rotational Torque vs. Length of Drive for Phase One of Drive Three 
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a) Day One, July 26th 

b) Day Two, July 28th 

Figure A.23 Thrust Force vs. Time for Phase Two of Drive Three:                                   

a) Day One, b) Day Two 
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Figure A.24 Thrust Force vs. Length of Drive for Phase Two of Drive Three 

 

Figure A.25 Thrust Force vs. Time for Phase One of Drive Four 
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Figure A.26 Rotational Torque vs. Time for Phase One of Drive Four 

 

Figure A.27 Thrust Force vs. Length of Drive for Phase One of Drive Four 
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Figure A.28 Rotational Torque vs. Length of Drive for Phase One of Drive Four 
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b) Day Two, August 12
th

  

c) Day Three, August 15
th

  

Figure A.29 Thrust Force vs. Time for Phase Two of Drive Four:                                     

a) Day One, b) Day Two, c) Day Three 
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Figure A.30 Thrust Force vs. Length of Drive for Phase Two of Drive Four 

 

Figure A.31 Thrust Force vs. Time for Phase One of Drive Five 

 

0

50

100

150

200

250

0 100 200 300 400

T
h
ru

st
 F

o
rc

e 
(T

o
n
s)

 

Length of Drive (ft) 

11-Aug

12-Aug

15-Aug

0

1

2

3

4

5

6

7

8

9

10

10:33 10:48 11:02 11:16 11:31 11:45

T
h
ru

st
 F

o
rc

e 
(T

o
n
s)

 

Time of Day (hh:mm) 



181 

Figure A.32 Rotational Torque vs. Time for Phase One of Drive Five 

 

Figure A.33 Thrust Force vs. Length of Drive for Phase One of Drive Five 
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Figure A.34 Rotational Torque vs. Length of Drive for Phase One of Drive Five 

 

Figure A.35 Thrust Force vs. Time for Phase Two of Drive Five 
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Figure A.36 Rotational Torque vs. Time for Phase Two of Drive Five 

 

Figure A.37 Thrust Force vs. Length of Drive for Phase Two of Drive Five 
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Figure A.38 Rotational Torque vs. Length of Drive for Phase Two of Drive Five 

 

Figure A.39 Thrust Force vs. Time for Phase Three of Drive Five 
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Figure A.40 Thrust Force vs. Length of Drive for Phase Three of Drive Five 

 

Figure A.41 July 8
th

 Thrust and Pull Force vs. Time for Drive Six 
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Figure A.42 July 8
th

 Rotational Torque during PT Jacking and HDPE Pull-back             

vs. Time for Drive Six 

 

Figure A.43 July 12
th

 Thrust and Pull Force vs. Time for Drive Six 
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Figure A.44 July 12
th

 Rotational Torque During PT Jacking and HDPE Pull-back          

vs. Time for Drive Six 

 

 

Figure A.45 July 8
th

 Thrust and Pull Force vs. Length of Drive for Drive Six 
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Figure A.46 July 8

th
 Rotational Torque During PT Jacking and HDPE Pull-back            

vs. Length of Drive for Drive Six 

 

 

Figure A.47 July 12
th

 Thrust and Pull Force vs. Length of Drive for Drive Six 
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Figure A.48 July 12
th

 Rotational Torque During PT Jacking and HDPE Pull-back          

vs. Length of Drive for Drive Six 

 

 

Figure A.49 July 19
th

 Thrust and Pull Force vs. Time for Drive Seven 
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Figure A.50 July 19
th

 Rotational Torque During PT Jacking and Pre-reaming                 

vs. Time for Drive Seven 

 

 

Figure A.51 July 20
th

 HDPE Pull-back Force vs. Time for Drive Seven 
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Figure A.52 July 20
th

 Rotational Torque During HDPE Pull-back                                    

vs. Time for Drive Seven 

 

 

Figure A.53 Thrust Force vs. Length of Drive for Drive Seven 
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Figure A.54 Rotational Torque During PT Jacking vs. Length of Drive for Drive Seven 

 

Figure A.55 Pull Force During Pre-ream and HDPE Pull-back                                         

vs. Length of Drive for Drive Seven 
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Figure A.56 Rotational Torque During Pre-ream and HDPE Pull-back                            

vs. Length of Drive for Drive Seven 

 

 

Figure A.57 Jacking Force Predictive Model Comparison: Pilot Tube, Drive One 
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Figure A.58 Jacking Force Predictive Model Comparison: Pilot Tube, Drive Two 

 

Figure A.59 Jacking Force Predictive Model Comparison: Pilot Tube, Drive Three 
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Figure A.60 Jacking Force Predictive Model Comparison: Pilot Tube, Drive Four 

 

Figure A.61 Jacking Force Predictive Model Comparison: Pilot Tube, Drive Five 
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Figure A.62 Jacking Force Predictive Model Comparison: 21-Inch Casing, Drive One 

 

Figure A.63 Jacking Force Predictive Model Comparison: 21-Inch Casing, Drive Two 
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Figure A.64 Jacking Force Predictive Model Comparison: 21-Inch Casing, Drive Three 

 

Figure A.65 Jacking Force Predictive Model Comparison: 21-Inch Casing, Drive Four 

 

0

50

100

150

200

250

0 50 100 150 200

T
h
ru

st
 F

o
rc

e 
(T

o
n
s)

 

Length of Drive (ft) 

26-Jul

28-Jul

Linear (Chapman 50%)

Linear (Chapman 80%)

Linear (Bennett)

Linear (Staheli)

0

50

100

150

200

250

0 100 200 300 400

T
h
ru

st
 F

o
rc

e 
(T

o
n
s)

 

Length of Drive (ft) 

11-Aug

12-Aug

15-Aug

Linear (Chapman 50%)

Linear (Chapman 80%)

Linear (Bennett)

Linear (Staheli)



198 

Figure A.66 Jacking Force Predictive Model Comparison: 8-Inch Casing, Drive Five 

 

Figure A.67 Jacking Force Predictive Model Comparison: 21-Inch VCP, Drive One 
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Figure A.68 Jacking Force Predictive Model Comparison: 21-Inch VCP, Drive Two 

 

Figure A.69 Jacking Force Predictive Model Comparison: 8-Inch VCP, Drive Five 
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APPENDIX B  

SUPPLEMENTAL TABLES 
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Table B.1 Existing Models for Predicting the Frictional Component of Jacking Force 

(Modified from Staheli 2006) 

 

Author Frictional Component of Jacking Force (kN) Variables and Notes 

Helm (1964) 
Circular Cross Section:       

    

 
 

Rectangular Cross Section:       
        

     
 

Ka = Active earth pressure 

coefficient 

ba = External width of the 

microtunneling shield 

da = External height or 

diameter of the 

microtunneling shield 

Walendky and 

Möncke 

(1970) 
    √

  
   

 
      

   φɜ/2, wall friction angle 

K0 = At rest earth pressure 

coefficient 

H = Cover depth 

Szentandrasi 

(1981), 

Scherle (1977) 
 (   

  

 
 
                

 
 

     

   

) 

Hw = Effective cover depth 

Ws = Weight of pipe 

Fa = Buoyancy 

Solomo 

(1979) 

Circular Cross Section:   (  
  

 
)  √       

Rectangular Cross Section: 

      (        )  
  

  

  
     

 

Use with very dense 

compacted sand. 

Km = Effective earth pressure 

coefficient 

Weber (1981) 

Circular Cross Section:   √      

Rectangular Cross Section: 

 [(    )  (     )     

  
 

  
⁄

     

] 

Slurry Boring Method 

μ = 0.46 

pv = Vertical earth pressure 

ph = Horizontal earth 

pressure 

Weber (1981) 

     
   

  

 

With Stiffness Modulus from Ohde: 

     (
 

  

)
 

 

Auger Boring Method w/ 

Steel Pipes (318, 508, and 

711 mm diameter): 

ν,w = Stiffness coefficients 

∆da = Deformation 

dimension of the pipe string 
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Table B.1 Continued (Modified from Staheli 2006) 

 

Hasan (1985) 

     [     
 

 
 (  

  

 
     )]  

 

   

 

 

Jacking 

Method 

 

  

 
Overcut No 

Cohesion 

Cohesive 

Open 

Shield 

≤ 2 N/A km = 1 km = 1 

≥ 2 N/A km = 

(1+κ)/2 

km = 1 

Closed 

Shield 

≤ 2 With km = 1 km = 

(1+κ)/2 

≤ 2 Without km = 1 km = 1 

≥ 2 With km = 

(1+κ)/2 

km = 

(1+κ)/2 
 

tanδ = Coefficient of friction 

κm = Reduction factor 

ATV-A 161E 

(1990) 

Circular Cross Section: 

        [   (     )]     

  
 

  
⁄

(     )
 

  
       (    )   ⁄

    (    )   
 ⁄

 

   
   

√ 
 

Elbert (1990)      [      ( {  
  

 
}    )      ]

  

  

 

γ = Soil density 

a = Active load coefficient 

P0 = Surface loads 

K0 = At rest earth pressure 

coefficient 

LR = Pipe length 

Herzog (1996)     (  
  

 
)  

    

 
  

Bennett (1998)             (    )    

γ
’
 = Effective soil unit 

weight 

dp = Pipe diameter 

φr = Residual soil friction 

angle 

Ap = Pipe circumference 

L = Length of bore 

Chapman and 

Ichioka (1999) 
          

Statistical evaluation of 198 

slurry microtunneling 

projects. 

a = 1.53 for clay, 2.43 for 

sand, 3.43 for sand/gravel 

Osumi (2000) 

     (      )       
  

 

C’ = Pipe and soil adhesion  

(8 kPa for N<10 & 5 kPa for N>10) 

β = Jacking force reduction 

factor 

Bc = Diameter of the pipe 

q = Normal force 

w = Pipe weight 

Paul (Stein 

2005) 
  [ (  

 

  

    )]  (    )      

Iseki (Stein 

2005) 
  (    )    

q = Loading vertical to pipe 

axis (kPa) 

μ = tan(φ/2) 
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Table B.2 Overview of Forces and Torques Present on Each Drive 

21 Inch Drives Thrust Force (Tons) Rotational Torque (ft-lbs) 

Drive Phase High Typical High  Typical Low  High Typical High  Typical Low  

1 1 6 6 3 3500 2500 1500 

  2 45 35 25  - -  -  

  3 50 35 22  - -  -  

2 1 13 5 3.5 8000 3000 2000 

  2 225 40 16  -  - -  

  3 50 30 25  - -  -  

3 1 6 2.5 1.75 2300 2000 1000 

  2 75 50 25 - - - 

  3 - - - - - - 

4 1 10 9 3 7000 6000 1500 

  2 150 60 30 - - - 

  3 - - - - - - 

8 Inch Drive Thrust Force (Tons) Rotational Torque (ft-lbs) 

Drive Phase High Typical High  Typical Low  High Typical High  Typical Low  

5 1 8 6 3.5 2000 1500 750 

  2 25 15 7 4000 3000 1750 

  3 5 2.5 1.5 - - - 

4 Inch Laterals Thrust or Pull Force (Tons) Rotational Torque (ft-lbs) 

Drive Phase High Typical High  Typical Low  High Typical High  Typical Low  

6 PT 25 9 4 6000 3000 1000 

  Pull-Back 45 35 19 7000 2000 800 

  PT2 5 4 3 2100 2100 1500 

  Pull-Back 2 14.5 13 12.5 1750 1400 1100 

7 PT 34 22 4 6000 1750 1000 

  Pre-Ream 27 25 15 8000 5500 1500 

  PT 2 6 3 3 6000 1750 1000 

  Pull-Back 16 13.5 11 4500 2500 1000 
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Table B.3 PTMT and PT/HDD Phase Specific Force and Torque Behavior 

Phase of 

Interest 

# of 

Drives 

Used 

Initial or 

Subsequent 

Pass 

Force (Tons) Torque (ft-lbs) 

Max 
Typical 

High 
Min Max 

Typical 

High 
Min 

Pilot Tube 7 1
st
 34 9 2 7000 2800 750 

Pilot Tube 2 2
nd

 6 4 3 6000 1950 1000 

Pull Back 2 1
st
 45 30 15 8000 3750 800 

Pull Back 2 2
nd

 16 13 11 4500 1950 1000 

8" Casing 1 N/A 25 15 7 4000 3000 1750 

21" 

Casing 

4 
N/A 225 46 16 N/A N/A N/A 

8" VCP 1 N/A 5 3 1 N/A N/A N/A 

21" VCP 2 N/A 50 33 22 N/A N/A N/A 

 

Table B.4 Drives Inclusive of Maximum and Minimum Forces and Torques 

Phase of 

Interest 

Initial or 

Subsequent Pass 

Drive # 

Force (Tons) Torque (ft-lbs) 

Max Min Max Min 

Pilot Tubes 1
st
 7 3 4 5 

Pilot Tubes 2
nd

 7 6 & 7 7 7 

Pull Back 1
st
 6 7 7 6 

Pull Back 2
nd

 7 7 7 7 

8" Casings N/A 5 5 5 5 

21" Casings N/A 2 2 N/A N/A 

8" VCP N/A 5 5 N/A N/A 

21" VCP N/A 1 & 2 1 N/A N/A 
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Table B.5 Reid Drive Interceptor Project Pipe Dimensions 

Pipe or Tooling Outside Circumference (ft) 
Diameter (in) 

Length (ft) 
Outside Inside 

Pilot Tube Spoon 1.31 5.0 - - 

Pilot Tubes 1.11 4.3 - 2.5 

21" Reamer Assembly 6.81 26.0 - 8.0 

21" Steel Casing 6.68 25.5 23.5 8.0 

21" VCP 6.28 24.0 20.4 8.0 

8" Reamer Assembly 3.32 12.7 - 3.5 

8" Steel Casing 2.93 11.2 9.8 3.5 

8" VCP 2.93 11.2 8.0 3.5 

HDPE Reamer 1.57 6.0 - - 

4" HDPE 1.26 4.8 3.9 - 
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APPENDIX C  

SUPPLEMENTAL EQUATIONS 
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To determine the saturated unit weights of the soil from the dry unit weights provided in 

the geotechnical report, Equation C.1 was used. 

 

         (   
   ⁄ ) (C.1) 

The simplification process for Equation 5.8 for pilot tube jacking resistance: 

        (       )   (    )(       )  (C.2) 

           (    )(        )  (5.8) 

The simplification process for Equation 5.9 for 21-inch casing frictional jacking 

resistance: 

          (    ) (C.3) 

 

    [(
(       )(       )       (        )      

      
)  

 (        )      ] 

(C.4) 

 

          (    ) [(
(         )       (        )      

      
)  

 (        )      ] 

(5.9) 

The simplification process for Equation 5.10 for 21-inch VCP frictional jacking 

resistance: 

 

    [(
(       )(       )       (         )      

      
)  

 (         )      ] 

(C.5) 
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          (    ) [(
(         )       (         )      

      
)  

 (         )      ] 

(5.10) 

The simplification process for Equation 5.11 for 8-inch casing frictional jacking 

resistance: 

 

    [(
(       )(       )       (        )      

      
)  

 (        )      ] 

(C.6) 

 

          (    ) [(
(        )       (        )      

      
)  

 (        )      ] 

(5.11) 

Methodology for determining the active and passive Rankine lateral earth pressure is 

shown by the following equations: 

        (   
 

 ⁄ ) (C.7) 

        (   
 

 ⁄ ) (C.8) 

where Kp = Passive lateral earth pressure coefficient 

 Ka = Active lateral earth pressure coefficient 

   
    

       √   (C.9) 

   
    

       √   (C.10) 

where σ’a = Active effective lateral earth pressure 

 σ’p = Passive effective lateral earth pressure  

 σ’o = Vertical effective stress 

 c’ = Effective cohesion 
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APPENDIX D  

L1 PRESSURE TRANSDUCER COMPLICATIONS 
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The L1 transducer exhibited complications during its operation. Unfortunately, 

these issues remained undetected until analysis of the voltage outputs was performed, 

after the completion of the Reid Drive Interceptor project. The BM pusher was monitored 

using the L1 transducer for three 21-inch VCP installations. There was another 21-inch 

installation of which the Data Dolphin logging system was available and used for phase 

one and two. This installation took place in August, 2011, and the author of this thesis 

had already moved to Arizona to begin his graduate study. Workers left in charge of 

collecting data for this installation felt that use of the Data Dolphin for phase three 

recording was unnecessary due to the lack of movement on the BM pusher’s pressure 

gauge during previous phase three installations. In spite of the lack of activity in the 

pressure gauge, data from the first two monitored phase three installations indicated 

fluctuations in hydraulic pressure indicative of phase three operations and were useful in 

analysis of jacking forces and productivity.  Although the data from the first two 

installations exhibited operational hydraulic pressure variations, peculiarities were 

observed with the data. Furthermore, the third monitored phase three installation did not 

yield usable results. Table D.1 outlines the above passage. 

Table D.1 List of 21” Installations and Transducer Operational Results 

Manhole Span Date L1 Transducer L2 Transducer L3 Transducer 

26.100 to 26.99B 20-Jun 
Monitored 

Useable Results 

Monitored 

Valuable Results 

Monitored 

Valuable Results 

26.100 to 26.101 30-Jun 
Monitored 

Useable Results 

Monitored 

Valuable Results 

Monitored 

Valuable Results 

26.102 to 26.101 29-Jul 
Monitored 

Poor Results 

Monitored 

Valuable Results 

Monitored 

Valuable Results 

26.102 to 27.3 15-Aug Not Monitored 
Monitored 

Valuable Results 

Monitored 

Valuable Results 
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 In both June installations, valuable patterns in voltage output could be seen, 

depicting typical installation cycles for a VCP section. However, there was an 

instantaneous jump in voltage magnitudes during the June 20
th

 (Figure D.1) and June 30
th

 

(Figure D.2) installations at 13:00 and 8:25, respectively. The cyclical installation pattern 

did not vary, but the magnitude of the maximum and minimum voltage outputs were 

shifted up, almost as if a second gear was being used. The foreman on the job confirmed 

that the second gear on the machine was never employed due to low jacking forces and 

the relative ease of installation. Additionally, the generator supplying power to the power 

pack was always operated at constant amps. This leads one to believe the reason for the 

voltage shift is due to malfunctions with the reducer used to scale down the voltage 

output from the L1 transducer to a level of which the data logger could record.  

 
Figure D.1 Voltage vs. Time for the June 20

th
 Installation 
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Figure D.2 Voltage vs. Time for the June 30

th
 Installation 

Besides the odd voltage shift, the bottom end voltage, or ambient voltage, varies 

throughout each installation. Ambient voltage for the June 20
th

 installation experienced a 

negative correlation with time until the voltage shift and then experienced a steady 

positive correlation with time for the remainder of the day. The ambient voltage for the 

June 30
th

 installation is slightly more consistent than the June 20
th

 installation. An odd 

behavior that should be noted is that at 8:06, when the transducer was attached to the 

machine hydraulics, the ambient voltage fell from 0.034 to 0.000. This is the opposite of 

what one would expect, as hydraulic pressures from the machine should have caused the 

ambient voltage to increase. 

 One month passed between the last June installation and the July 29
th

 installation, 

which may explain the increased irregularities in the recorded voltage. Within the first 

nineteen seconds of data recording, voltage outputs rose from 0.71 to 0.73. Voltage 

outputs of this magnitude should be indicative of the maximum outputs expected during a 
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phase three installation, as realized from the two June installations, yet the transducer was 

not even hooked up to the BM pusher at this time. Upon fixing the transducer to the BM 

Pusher, voltage outputs remained at 0.73 and did not vary for the remainder of the day, 

despite operation of the machine during the installation. 

 These oddities posed the need to investigate further into the behavior of the L1 

transducer. It was thought that viewing the mean, median, mode, maximum, and 

minimum voltage outputs for the transducer throughout the summer would provide an 

understanding of the transducer’s atypical behavior (Figure D.3).   

 
Figure D.3 Voltage Outputs for the L1 Transducer Throughout Summer 

It can be seen that minimum voltage values fluctuated erratically in the beginning 
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operations, voltage outputs varied, almost as if the transducer was exposed to hydraulic 

pressures. Through in-depth field observations, it is known that the L1 transducer was 

only fixed to equipment hydraulic lines during phase three operations. Thus, voltage 

outputs from the L1 transducer during phases one and two should have been constant.  

Investigation into the behavior of the other transducers, L2 and L3, was carried 

out to identify whether the variation in voltage outputs for L1 during periods of non-

operation were unique. Figure D.4 illustrates the behavior of the L3 transducer in a 

similar fashion as Figure D.3 does for transducer L1. It should be noted that during 

periods of non-operation, voltage outputs do not vary and equal a constant 0.5 volts, 

corresponding to zero hydraulic pressure. This is what is to be expected. Transducer L2 

exhibits similar results. 

 
Figure D.4 Voltage Outputs for the L3 Transducer Throughout Summer 
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 In November of 2012, communication was established with the Data Dolphin and 

the user’s computer. The status of the Data Dolphin was loaded onto the computer and it 

was observed that voltage outputs for the L1 transducer remained near 0.73 volts. This 

provided further evidence of malfunctioning in either the L1 transducer or its reducer. 

Due to the irregularities in the recorded voltage in transducer L1 throughout the summer, 

recorded data for the July 29
th

 installation is invalid. Recorded data for the June 20
th

 and 

June 30
th

 installation exhibit certain behavioral patterns expected of product VCP 

installation and may be used in jacking force and productivity analysis. However, 

modifications to the base, or ambient, voltage corresponding to zero thrust force must be 

made, as detailed in Chapter 5. 

 


