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ABSTRACT

The rapid growth in the high-throughput technologies last few decades makes

the manual processing of the generated data to be impracticable. Even worse, the

machine learning and data mining techniques seemed to be paralyzed against these

massive datasets. High-dimensionality is one of the most common challenges for

machine learning and data mining tasks. Feature selection aims to reduce dimen-

sionality by selecting a small subset of the features that perform at least as good as

the full feature set. Generally, the learning performance, e.g. classification accuracy,

and algorithm complexity are used to measure the quality of the algorithm. Recently,

the stability of feature selection algorithms has gained an increasing attention as a

new indicator due to the necessity to select similar subsets of features each time when

the algorithm is run on the same dataset even in the presence of a small amount of

perturbation.

In order to cure the selection stability issue, we should understand the cause

of instability first. In this dissertation, we will investigate the causes of instability

in high-dimensional datasets using well-known feature selection algorithms. As a

result, we found that the stability mostly data-dependent. According to these find-

ings, we propose a framework to improve selection stability by solving these main

causes. In particular, we found that data noise greatly impacts the stability and

the learning performance as well. So, we proposed to reduce it in order to improve

both selection stability and learning performance. However, current noise reduction

approaches are not able to distinguish between data noise and variation in samples

from different classes. For this reason, we overcome this limitation by using Su-

pervised noise reduction via Low Rank Matrix Approximation, SLRMA for short.

The proposed framework has proved to be successful on different types of datasets
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with high-dimensionality, such as microarrays and images datasets. However, this

framework cannot handle unlabeled, hence, we propose Local SVD to overcome this

limitation.
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Chapter 1

INTRODUCTION

The growth of the high-throughput technologies nowadays has led to exponential

growth in the harvested data with respect to dimensionality and sample size. As a

sequence, storing and processing these data becomes more challenging. Figure (1.1)

shows the trend of this growth for UCI machine learning repository. This augmen-

tation made manual processing for these datasets to be impractical. Therefore, data

mining and machine learning tools were proposed to automating pattern recognition

and knowledge discovery process. However, using data mining techniques on an ore

data is mostly useless due to the high level of noise associated with collected samples.

Usually, data noise is either due to imperfection in the technologies that collected

the data or the nature of the source of this data itself. For instance, in medical

images domain, any deficiency in the imaging device will be reflected as noise in the

dataset later on. This kind of noise is caused by the device itself. On the other hand,

text datasets crawled from the internet, are noisy by nature because they are usually

informally written and suffer from grammatical mistakes, misspelling, and improper

punctuation. Undoubtedly, extracting useful knowledge from such huge and noisy

datasets is a painful task.

Dimensionality reduction is one popular technique to remove noisy (i.e. irrele-

vant) and redundant attributes (AKA features). Dimensionality reduction techniques

can be categorized mainly into feature extraction and feature selection. In feature

extraction approach, features are projected into a new space with lower dimensional-

ity. Examples of feature extraction technique include Principle Component Analysis

(PCA), Linear Discriminant Analysis (LDA), Singular Value Decomposition (SVD),

to name a few. On the other hand, the feature selection approach aims to select a

1



small subset of features that minimize redundancy and maximize relevance to the

target (i.e. class label). Popular feature selection techniques include: Information

Gain, Relief, Chi Squares, Fisher Score, and Lasso, to name a few.

Both dimensionality reduction approaches are capable of improving learn-

ing performance, lowering computational complexity, building better generalizable

models, and decreasing required storage. However, feature selection is superior in

terms of better readability and interpretability since it maintains the original feature

values in the reduced space while feature extraction transforms the data from the

original space into a new space with lower dimension, which cannot be linked to

the features in the original space. Therefore, further analysis of the new space is

problematic since there is no physical meaning for the transformed features obtained

from feature extraction technique.

Feature selection is broadly categorized into four models, namely: filter model,

wrapper model, embedded model and hybrid model. As we mentioned above, feature

selection selects subset of highly discriminant features. In other words, it selects

features that are capable of discriminating samples that belong to different classes.

Thus, we need to have labeled data as training samples in order to select these

features. This kind of learning is called supervised learning, which means that the

dataset is labeled. If the data were unlabled, this is called supervised learning. In

supervised learning, it is easy to define what relevant feature means. It simply refers

to the feature that is capable of distinguishing different classes. For example, a

feature fi is said to be relevant to a class label y if fi and y are highly correlated.

In the last three decades, a large number of feature selection algorithms has

been developed, and feature selection techniques have been successfully applied in

various domains including pattern recognition [40, 77, 62, 52], text categorization

2



(a)

(b)

Figure 1.1: Plot (a) shows the dimensionality growth trend in UCI Machine Learning
Repository from mid 80s to 2012 while (b) shows the growth in the sample size for
the same period.

Table 1.1: Nomenclature

X Dataset
n Sample size
m Number of features
xj the jth sample
xj the sample vector
fi the ith feature
fi the feature vector
y the class label vector
c number of classes
F the original feature set
F ′ Selected feature subset or result
k Number of selected features

3



[89, 43, 65, 26], Image processing [40, 72], bioinformatics [63, 74] and so on. The

high volume of existing feature selection approaches necessitates effective evaluation

techniques to compare algorithms, so that proper ones can be chosen to serve the

users’ requirements.

One metric that is widely use to evaluate the quality of the selected feature

is the classification accuracy. This metric demonstrates the ability of the selected

features to distinguish the class label of the data. High classification accuracy means

good selected features. Yet, it is noticed that there exists several subsets of fea-

tures that preform equally good in terms of classification accuracy. This observation

triggered an important questions especially for domain experts who are interested

to probe further in data analysis using the selected set of features. The selection

stability (i.e. inconsistency of the selected subsets) has drawn increasing attention

lately.

1.1 Problem Statement

Let F = {f1, f2, . . . , fm} be the feature set where m is the number of features and

X = {x1,x2, . . . ,xn} ∈ Rn×m be a given dataset with n data points where n ≤ m.

The supervised feature selection, illustrated in Figure 1.2, is formally stated as:

f(F ; X,y)→ {F ′}

where f(·) is the feature selection method, y is the class label and F ′ ⊂ F , where

|F ′| = k is the number of selected features, k � m.

The selected features in F ′ are assumed to be highly relevant to y and less

redundant to each other. Assuming, we are using a correlation metric Γ(·) to eval-

uate the relevance and the redundancy of F ′, feature selection goal is to satisfy the

4



Figure 1.2: Feature Selection

Figure 1.3: New samples may significantly impact the selection

following criteria:

|Γ(f′i,y)| ≥ γ̂, and

|Γ(f′i, f
′
j)| ≤ ˆ̂γ, ∀i, j = 1, . . . , k and i 6= j

where γ̂ and ˆ̂γ are two user-defined parameters or guided by the number of selected

features k.

Lets now introduce a perturbation on X in the form of new set of samples

Z ∈ RnZ×m that are drawn from the same distribution as X. Let X1 =

X

Z

 , see

Figure 1.3. The set of features of X1 is exactly the same as F ′. Intuitively, since X

and X1 belong to the same domain problem and have the same set of features, we

expect {F ′} ≈ {F ′1} to hold, where f(F ; X1,y)→ {F ′1}. To evaluate the similarity

of F ′ and F ′1, we utilize a similarity metric S(·, ·) that returns a value representing
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the similarity. S(·, ·) may evaluate the amount of overlap between F ′ and F ′1, the

correlation or other kind of similarity measure.

If S(F ′,F ′1) is large, the algorithm f(·) is said to be stable. Otherwise, it is

said to be unstable. The goal is this dissertation is to maximize S(·, ·) while improv-

ing or at least maintaining the learning performance (i.e. classification accuracy).

1.2 Motivation

We will motivate our work using a real-world example. Given a dataset X that

contains n microarrays corresponding to a certain disease, say Colon Cancer. y

contains binary classes [0,1], where 1 means the sample is cancerous and 0 otherwise.

If we apply a feature selection method f(·) on X to select the k-top relevant features,

F ′, we assume these features are strongly relevant to y. Therefore, adding a new

sample xi that was harvested for the same purpose to X should not significantly

impact the selection. In other words, the selected results with or without xi should

not change much. However, It is observed that with an amount of perturbation on X,

f(·) may select significantly different subset of features. This degrades the confidence

of domain experts in the selection algorithm and the selected subset. Also, it misleads

any further domain analysis.

Motivated from these observations, we investigate the selection stability and

attempt to improve it. One might say, an intuitive way to improve stability is to

randomly select the same subset of features always. However, this is meaningless

since the main goal behind the feature selection is select features that are relevant

to the class label and able to provide reasonable learning performance. Thus, this

approach is not desired. Our approach, instead, is to solve this problem by curing

the main reasons behind selection instability.
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1.3 Challenges

There are several challenges that we encountered throughout this dissertation:

1. The curse of dimensionality is the main reason that feature selection is

indispensable step in any data mining or machine learning task. For example,

one microarray that we use in this work has more than 20,000 features and

only 85 samples. The number of relevant features in such dataset usually is

very small, say around 100 features only, comparing to the huge m. The rest

of the features are irrelevant to the problem. This is known to be harmful if

we want to build the model on the dataset without selection. Furthermore,

feature selection methods themselves face great challenges dealing with such

huge dimensionality. These challenges include: scalability and efficiency. Yet,

one challenge that is very related to selection stability is the existence of several

subsets of features that preform equally good on terms of learning performance.

2. Small sample size is another challenge. As we mentioned above that the

number of samples n in most of the datasets utilized throughout this work is

mostly around 100 samples. That is normal to see in such domain since it is

hard to obtain more samples. In fact, this make feature selection to be NP-

hard problem. It is found that the number of samples is an important aspect

that is strongly connected to stability as well accuracy. If the sample set does

not cover the whole hypothesis area, the selected features may not generalize

to unseen data.

3. Data noise exists in such dataset in different forms. Irrelevant features may

be considered as noisy features. Misclassified samples can be considered as

noise, as well, since they misguide the selection search in the unsupervised
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feature selection. In addition, technologies that collect the data may introduce

some data noise. This is found to degrade the learning and the stability as we

will see later in this work.

4. The number of selected features imposes another challenge in this work.

In other words, the number of relevant features is unknown, thus the number

of selected features k is not known too. Similar to previous challenges, k is

found to impact selection stability.

1.4 The Contribution

Our contribution in this dissertation consists of several folds:

1. How to reasonably evaluate selection stability.

2. Find underlying causes or factors that may impact selection stability.

3. Improving stability by reducing data noise.

4. Local SVD for stable feature selection.

1.5 Thesis Structure

The remaining of this dissertation is divided into several chapters. Each chapter is

a natural flow of the previous one. Thus, it is strongly connected, yet, each one can

standalone. The following chapters are organized as follows:

Chapter 2: Literature Review:

In this chapter, we review feature selection models. We, also, review some proposed

methods and approaches that aim to stabilize selection results. In addition, the sta-

bility metrics are intensively reviewed in this chapter.
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Chapter 3: Dilemma of Stability Evaluation:

After reviewing the approaches to evaluate selection stability, we investigate whether

that is a reasonable way to estimate the stability of an algorithm. We found out that

in order to estimate the stability of an algorithm and to say if it is stable or not, we

need to take the variation between folds into consideration.

Chapter 4: The Cause of Selection Instability:

An important start to improve selection stability is to know the factors that affect

the stability. We found out that these factors include data noise, sample size, dimen-

sionality and others. Most of these factors found to be related to the dataset itself.

Thus, we conclude that the stability is mostly data-dependent.

Chapter 5: SLRMA Framework for Stable Feature Selection:

Since the stability is mostly data-dependent, we proposed a Supervised Low Rank

Matrix Approximation (SLRMA) framework in order to obtain lower ranked matrix

which known to be less noisy in order to select more stable sunsets. This framework

was fond to be effective in terms of stability and learning performance. Also, it was

found to be superior in the precision of selecting relevant features than baseline ap-

proaches. However, one limitation of this framework that it cannot handle unlabeled

data.

Chapter 6: LSVD for Stable Feature Selection for Clustering:

To overcome the shortcomings of the SLRMA, Local Singular Value Decomposition

(LSVD) was proposed to handle unlabel data and provide stable selection for clus-

tering.

Chapter 7: Conclusion and Future Directions:

Finally, we conclude the findings and the contribution and point out the limitations

and the possible future directions.
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Chapter 2

LITERATURE REVIEW

2.1 Feature Selection Algorithms

Dimensionality reduction can be either feature selection or feature extraction[29, 74,

84]. The latter, such as PCA, reduces data dimensionality by projecting the data into

lower dimensional space. Although feature extraction has been successfully utilized

to reduce dimensionality and improve learning performance, the new feature space

does not represent the original one[81, 84]. In other words, the new features are

not physically liked to the original features, hence, meaningless. Therefore, they

neither can be used to justify the reduction nor for further domain analysis. Feature

selection, on the other hand, does not suffer from this limitation. It selects a subset

of the original features without any kind of transformation [6, 8, 4]. Therefore, the

selected features keep their physical meaning, hence, justification and further domain

analysis is possible.

A huge number of feature selection methods have been proposed to handle

this problem differently. Feature selection methods can be broadly categorized with

respect to utilizing the data labels into supervised and unsupervised. These two cat-

egories can be further categorized with respect to the utilization of learning method

into: filter, wrapper and hybrid model. The following subsections briefly introduce

these different categories.

Supervised Feature Selection

Some datasets are collected according to some given labels. For example, harvesting

genome data for cancerous and non-cancerous or capturing photos of faces or objects

for object and face recognition tasks. In some cases, data samples are being manually

10



labeled by domain experts. These labels, or hypotheses, are very useful in machine

learning and data mining tasks. In fact, they become very useful in feature selection.

Feature selection methods utilize the given labels to guide the feature search. In

particular, with the existence of the class label, we can define the relevance measure.

The feature is relevant to the class if it correlates with the class. Class labels can

be used, also, to study the statistical relations and characteristics of samples that

affiliate to the same class [57, 29, 53]. This kind of feature selection is called super-

vised, since the space search and feature evaluation is supervised by the given labels.

There are enormous number of proposed supervised feature selection in the field so

far. Some of them will be briefly mentioned when we discuss the feature selection

model in the coming subsections.

Based on whether the feature selection process involves employing a learning

algorithm to guide the search, supervised feature selection can be categorized into

the following models:

Supervised Filter Model

Feature selection algorithms of filter model are independent of any classifier. The

selection depends totally on the characteristics of the dataset itself with respect

to the class label. For example, Fisher score evaluates each feature independently

using fisher criterion [27]. Other methods uses different criteria to evaluate features’

relevancy. Spectral feature selection SPEC [97] and Laplacian score [35] both select

feature based on the analysis of the eigensystem. Another family is lasso [82]. It

has attracted large number of researchers and shows significant success in feature

selection lately [58, 60, 99]. Lasso penalizes the estimator with `1 norm. Therefore, a

sparse weight will be produced where most of the features will be given zero weight. A

variety of lasso versions where proposed to handle different data structures including:
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Group Lasso[60], Overlapping Group Lasso[39, 94], Graph Lasso [39], and so on. A

recent review regarding lasso and its variations may be found here [90].

Filter model is known to be very efficient and mostly scalable and generaliz-

able since it is independent of any classifier. Due to these advantages most of the

proposed methods belong to this model. However, it might not be as accurate as

wrapper model especially if the classifier is known beforehand.

Well-known filter algorithms include: Information Gain [14], ReliefF [86], Chi

Square [57, 86], Gini Index, t-test, FCBF [93], CFS [31], MRMR, and so forth.

Supervised Wrapper Model

Unlike filter model, wrapper model utilizes a classifier to evaluate the quality of

the selected features [44, 50]. It start by selecting a subset of features, usually using

greedy search strategy. Then, the given classifier evaluates the quality of the selected

subset. If the quality is satisfactory, the selection stops. Otherwise, it searches for

another, perhaps, better subset. This is very expensive and time consuming approach

comparing to the filter model. Yet, the selected features using wrapper model are

more accurate with respect to the given classifier than the filter model.

Different search strategies could be combined with any classifier and produce

one possible wrapper feature selection method. For example, Recursive Feature

Elimination Support Vector Machine(RFE-SVM) is widely utilized wrapper approach

[30]. Also, `1 norm SVM could be considered as an embedded version of wrapper

approach [11] although it has better complexity than other wrapper methods [74].
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Supervised Hybrid Model

In order to overcome the limitations of the previous models, a hybrid model were

proposed to bridge the gab and to provide reasonably efficient and accurate selection

[16]. It follows filter model in the search step, where it selects small number of

candidate subsets of features. Thus, unlike wrapper approach, hybrid evaluates the

quality of small number of candidate subsets, which lead to less complex model. The

selected subset is the one that produces the best classification accuracy. Accordingly,

the hybrid model is more efficient than filter and less expensive than wrapper.

Similar to wrapper, different combinations of filter criteria and classifiers may

produce new hybrid techniques. For example, Improved F-score and Sequential

Forward Floating Search (IFSFFS) [87] combines F-score with Sequential Forward

Floating Search and SVM to achieve high accuracy efficient selection. Similarly,

Correlation-based Feature Selection with Taguchi-genetic algorithm (CFSTGA) achieved

very high classification accuracy with kNN [13]. Other hybrid techniques may be

found in [15, 67].

Unsupervised Feature Selection

In a vast majority of domains, collecting labeled data or manually labeling data is

intractable. Usually, in this case, we do not have domain knowledge to guide the

feature selection. Therefore, feature selection in the absence of class label is very

challenging problem. Assume, we collect text documents from different newswires

and our goal is to cluster them. Unlike labeled data, in this case each document may

belong to more than one cluster. In other words, each document may have more

than one underlying hypothesis. For example, a piece of news, say ”a smart chip

built by Intel to monitor athletes activities”, may belongs to technology, economy,
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health, and sport. If we do not have these topics at hand before trying to cluster

the documents, optimal clustering is almost impossible. Each one of these topics

has its own corresponding subset of features. In this example, the feature athletes

belong the topic sport, while technology has the features: chip and Intel and so on.

Therefore, if we do not have these topics or labels at hand when performing feature

selection, we cannot measure the relevancy score.

Different methods have been proposed to handle feature selection problem in

the absence of class label. One common approach is to automatically generate labels

for the given samples before selecting features. These generated labels, then, will

be utilized to guide the feature search similarly as the supervised feature selection.

Some methods employ k-means clustering to generate the labels [10, 37, 64, 42].

While other methods use more complicated approaches such as harnessing spectral

analysis to extract the underlying clusters[97, 12, 54]. Spectral Feature Selection

(SPEC) [97] is an example of the latter, yet, it can handle supervised data as well

as unsupervised. Thus, it is a unified feature selection method.

Entropy Weighting K-Means (EWKM) was proposed for subspace clustering.

It simultaneously minimizes the within-cluster dispersion and maximizes the negative

weight entropy in the clustering process [42]. It utilizes k-means to find the clusters

before doing feature selection. This step is repeated several time until convergence.

Cai et al proposed Multi-Cluster Feature Selection (MCFS) [12] that used

spectral analysis to measure the correlation between different features without la-

bel information needed. Using the top eigenvectors of graph Laplacian, spectral

clustering can cluster data samples without utilizing label information.

Other methods evaluate feature’s weight independently of any clustering tech-

niques. Term Frequency (TF), Inverse Document Frequency (IDF) and TF-IDF are
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among the most popular feature weighting, (aka term selection) techniques especially

in text mining domain. Other methods cluster the features and select a representative

one of each cluster to be the selected features [62, 38].

Similar to feature selection for supervised learning, methods of feature selec-

tion for clustering are categorized into filter [17] wrapper [71], and hybrid models

[23]. A wrapper model evaluates the candidate feature subsets by the quality of

clustering while filter model is independent of clustering algorithm. Thus, the filter

model is still preferable in terms of computational time and unbiased toward any

clustering method, while the wrapper model produces better clustering if we know

the clustering method in advance. To alleviate the computational cost in the wrap-

per model, filtering criteria are utilized to select the candidate feature subsets in the

hybrid model.

In the following subsections, we will briefly discuss feature selection for clus-

tering methods that falls in the filter, wrapper and hybrid models. For more about

conventional methods, we refer the reader to [23].

Unsupervised Filter Model

Similar to supervised filter model, Methods that belong to unsupervised filter model

do not utilize any clustering algorithm to test the quality of the features [23]. They

evaluate the score of each feature according to certain criteria. Then, it selects the

features with the highest score. It is called the filter since it filters out the irrelevant

features using given criteria. Furthermore, feature evaluation could be either uni-

variate or multivariate. Univariate means each feature is evaluated independently

of the feature space. This approach is much faster and more efficient than the uni-

variate, which evaluates features with respect to the other features. Therefore, the
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multivariate, unlike the univariate approach, is capable of handling redundant fea-

tures. SPEC is an example of the univariate filter model, although it was extended

to multivariate approach [98]. Other examples of filter model criteria used in feature

selection for clustering include: feature dependency [80], entropy-based distance [17],

and laplacian score [35, 97].

Unsupervised Wrapper Model

The wrapper model utilizes a clustering algorithm to evaluate the quality of selected

features. It starts by (1) finding a subset of features. Then, (2) it evaluates the

clustering quality using the selected subset. Finally, it repeats (1) and (2) until the

desired quality is found. Evaluating all possible subsets of features is impossible in

high-dimensional datasets. Therefore, heuristic search strategy is adopted to reduce

the search space. The wrapper model is very computationally expensive compared

to filter model. Yet, it produces better clustering since we aim to select features

that maximize the quality. It is still biased toward the used clustering method.

Different wrapper feature selection methods for clustering were proposed by changing

the combination of search strategy and the utilized clustering algorithm. Feature

Subset Selection wrapped around EM Clustering (FSSEM) was proposed in [24]

to select a subset of features by first clustering using EM and then evaluate the

resulting clusters and feature subset using the chosen feature selection criterion.

In addition, the method proposed in [25] is another example of a wrapper that

involves maximum likelihood criteria and feature selection and mixture of Gaussians

as clustering method. Others use conventional clustering methods such as k-means

and any search strategy as feature selector [48].
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Unsupervised Hybrid Model

To overcome the drawback of filter and wrapper models a hybrid model is used

to benefit from the efficient filtering criteria and better clustering quality from the

wrapper model. A typical hybrid process goes through the following steps: (1) it

utilizes filtering criteria to select different candidate subsets. Then, (2) it evaluates

the quality of clustering of each candidate subsets. (3) The subset with highest

clustering quality will be selected. Algorithms belonging to the hybrid model usually

produce better clustering quality than those of filter model, yet, they are less efficient.

Compared to the wrapper model, the hybrid model is much more efficient.

2.2 Selection Stability

Generally, the selection stability is a desired characteristic for feature selection al-

gorithms. Since the target concept of a data is fixed, the relevant features should

not change across different samples of the data. In real-world applications, such as

genetic analysis, domain experts expect algorithms to select features that are always

consistent even if there are new samples introduced to the data, as unstable fea-

ture selection results will confuse them and lower their confidence with the results

[19, 28]. The topic of selection stability (this will be used interchangeably with sta-

bility of feature selection algorithms) has recently gained intensive attention in the

research community. It is defined as the sensitivity of a feature selection algorithm

to perturbation in the training data [47, 68, 91, 28, 36]. The perturbation of the data

could occur in different format. For example, a new sample can be considered as a

perturbation. Data noise or outlier samples are other perturbation format.

17



Stable Feature Selection Algorithms

Several methods have been proposed to improve stability of feature selection algo-

rithms [88, 28, 36, 91, 92, 32, 1, 34, 33, 61]. These methods can be broadly categorized

based on the used approach to handle selection stability to the following categories:

1. Ensemble approach

2. Data variance reduction approach

3. Density-based approach

4. Trade-off approach

In the following, I will review some feature selection algorithms that aim to

improve stability and discuss their advantages and disadvantages.

Ensemble approach

Intuitive approach for feature selection to improve learning performance is the en-

semble learning technique since more than one method are jointly supporting each

other to choose the best features. It was, also, found that using different feature

selection criteria that produce similar results to form an ensemble method will not

help to improve learning performance [88]. In other words, the more diverse methods,

the more likely they will complement each other. Using similar motivation, Saeys

et al. in [73] proposed to use ensemble feature selection to improve rank and subset

stability of four well-known methods, namely: Symmetrical Uncertainty, Relief, Sup-

port Vector Machine classifier with Recursive Feature Elimination (SVM-RFE), and

Random Forest. All these methods showed significant improvement in the stability

in both cases (i.e. rank and subset stability).
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Similarly, [1] introduced an ensemble technique to improve selection stability.

They utilized SVM-RFE to perform feature selection that, hopefully, leads to more

stable selection since the performance of such technique was proven to be effective. T.

Abeel et al. in [1] were able to improve selection stability of biomarker identification

of microarray dataset using ensemble approach. They started by ranking all features

using SVM classifier. Then, they eliminate features that correspond to the least

scored features. These two consecutive steps are iteratively repeated until all features

are removed. Finally, the final feature score is aggregated using a linear combination

of all scores in all iterations.

RFE-SVM was able to improve the stability of biomarker identification in all

used datasets. In addition, it is robust against both the number of selected features

and the number of eliminated features in RFE step. Furthermore, it was able to

eliminate irrelevant features.

There are several reasons that may have led to this improvement in the stabil-

ity when using ensemble technique. First, usually, there may exist different subsets

of features that perform equally good in terms of classification accuracy. Similarly,

each selection criterion may prefer a subset of features over the other. However, with

existence of perturbation, the selection criterion may give slightly different weight

for each feature, which lead to change in the selected subset. These new selected

features are most likely placed at the bottom of the list since the small amount of

perturbation should not cause a huge change in the selected subset. Therefore, select-

ing the most relevant features based on different criteria leads to selecting features

with the highest weight which are less effected by small amount of perturbation. In

fact, that is the essence of the ensemble approach. Thus, missing the remainder of

these potential result. Therefore, ensemble method reduces the risk of missing these
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results and, also, reduces the risk of choosing wrong result. Second, aggregating the

final result leads to diverse features that complement each other.

In contrast to these results, A.C. Haury et al. [33] have found that ensem-

ble methods, surprisingly, have no significant impact on the selection stability. The

empirical results shown in [33] were conducted using 9 different well-known selec-

tors including from different models. They found that simple filter methods simply

produced as good stability in average as the ensemble technique.

I believe that the contradiction in the conclusion between [1, 73] on one hand

and [33] on the other hand is due to the sampling technique not due to the ensem-

ble methods. It is observed that different sampling techniques may lead to different

stability results. For example, when we use 10-fold cross-validation to generate sam-

ples, we end up with around 80% overlap between folds, while the overlap will be

less when we use less than 10-folds, and so on. The amount of overlap between

samples has a significant impact on the stability where the amount of perturbation

will be less when larger overlap occurs. Another reason to inconsistent results could

be the aggregation technique. Different techniques may lead to different stability re-

sults. Thus, we need further analysis and empirical experiments to conclude whether

ensemble technique leads to better stability or not.

Some limitations of the ensemble technique include the choice of the feature

selectors. If the selectors produces similar results, the stability will be higher. How-

ever, the diversity, which is the main goal for ensemble technique, will be lost. On the

other hand, when the selectors generate diverse results, the stability will be lower.

Therefore, we may need to have a trade-off parameter between stability and diversity

in the ensemble techniques.
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In addition, the aggregation method and the sampling techniques, as we dis-

cussed earlier, may have significant impact of the stability. For example, the score

domination of one selector may has significant impact on the overall results. Hence,

a normalization technique should be selected carefully. Also, the small sample size

of the original dataset may be further reduced in the sampling process which leads

to in accurate feature scoring. All things considered, further studies for these factors

are required.

Sample weighting and variance reduction approach

Another way, yet, affective to improve stability is to train the model on samples from

desired region in the space. Since the stability is mostly impacted by perturbation

in the dataset, we may be able to improve stability by reducing this perturbation

(i.e. variance between samples). Han and Yu [32] proposed a general framework

for stable selection via variance reduction. Instead of refusing less desired samples,

this approach assigns higher weights to preferred samples. Thus, the algorithm may

benefit, also, from useful information gained from samples with less weights. The

proposed framework in [32] assigns sample weight by, first, transforming the original

sample x into a new sample x′ in the margin space. Projecting each sample according

to Eq(2.1) leads to capture the local feature relevance where the larger the value of

x′j the more the jth feature contributes to the margin of sample x.

x′j = |xj − xMj | − |xj − xHj | (2.1)

Where xMj and xHj are the nearest miss and hit respectively. This transfor-

mation is very sensitive to outliers and noise in the dataset. Therefore, [32] suggests

to use more than one nearest neighbor from each class.

x′j =

n1∑
l=1

|xj − xMl
j | −

n2∑
l=1

|xj − xHl
j |
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Where n1 +n2 equals the total number of instances in the training set excluding the

given instance. The second step is to weight each sample x’ based on the average

distance between x’ and x′i, where i = 1, . . . , n− 1 and x’ 6= x′i. This weight will be

used in any feature selection method that accept sample weighting.

One advantage of this algorithm is the computational efficiency, where the

running time will be dominated by the distance computation in the transformation

step, which is O(n2 ∗m), where n and m are the sample size and the dimensionality

respectively. In addition, this approach tackles the problem of selection instability

from the dataset prospective, which has the most significant impact of the stabil-

ity. Since the stability is mostly data dependent, curing this issue should start from

curing the dataset. One aspect that may cause instability is the variation in the

dataset, hence, reducing the variation in a class-wise approach (i.e. hypothesis mar-

gin) is meaningful approach to solve selection instability, which is nicely done in this

algorithm.

Yet, there is, always, room for improvement. For example, the weighting

scheme in this algorithm is not strongly resistant to outliers. Distance-based weight-

ing may not be the most appropriate method. For example, in the situation where

high level of data noise exists, this weighting scheme may assign equally high weight

to good and bad samples. This could be overcome via normalizing the summation

of the sample entities (i.e. the weight w(x) =
∑m

j x
′
j). Although this suggested

approach of weighting seems very simple, it is effective since the vector x’ will be

better if all its values are in the far positive corner of the space. Therefore, w(·) will

assign higher weights to samples in this desired region (i.e. positive corner) and the

lowest weights to these in the far negative corners.
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Density-based approach

In this approach, feature selection algorithm aims to group features into clusters of

similar densities. Then, it selects the representative feature(s) from each cluster. Yu

et al. in [91] proposed a Dense Group Finder (DGF) algorithm to find a number

of unique density peaks in the data using kernel density estimator, namely: Parzen

window. Then, DGF merges features to the closest peak if the distance is less

than the window size h. The density is evaluated using the mean shift procedure

according to Eq (2.2), which is proven to converge if the kernel K has a convex and

monotonically decreasing profile.

x′j+1 =

∑n
i=1 xiK(

x′j−xi
h

)∑n
i=1K(

x′j−xi
h

)
(2.2)

where x′j is always initialized with data vector xi ∀i = {1, . . . , n} and computed until

convergence. The dataset in this algorithm is transposed, so that the dimensionality

m in the new space is the number of samples in the original dataset and the number of

samples n became the dimensionality. This algorithm has a complexity of O(λn2m),

where λ is the number of iterations.

Not all generated groups are relevant to the problem. Thus, after finding

the dense feature groups, we need to evaluate the relevancy score for each group.

Dense Relevant Attribute Group Selector (DRAGS) were proposed to evaluate how

relevant each group is using F-statistic to identify differentially expressed genes.

Finally, DRAGS will select the top k representative features from the top k groups

according to the relevancy score.

One advantages of this algorithm is the simplicity, where it is very simple

to find the clusters and to evaluate their relevance score. Also, It is able to handle
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the redundancy among the features, which is desired property in feature selection

literature. In addition, the density estimator was found superior to the k-means in

finding robust clusters, which leads to better stability in feature selection step.

In addition to the previous advantages, DRAGS overcomes one important

cause of instability, which is the small sample size, by ensuring the stability of clus-

tering by evaluating density of features, which is very large number comparing to

the sample size.

On the other hand, there are several disadvantages for this approach. First,

this approach is built upon the claimed observation that the dense peak regions

measured by the density estimation are stable with respect to the sampling of the

dimension. This may be true, however, I cant see why this will lead to more stable

selection. Since the representative feature is very sensitive to sampling. In other

words, the representative feature is not necessarily to be the same across different

folds, which degrade the selection stability.

In addition, choosing the window size h is an open problem which could be a

limitation for this algorithm. If h is sufficiently small, each feature will form a group

by itself. On the other hand, extremely large h leads to group all features in one

cluster. Thus, carefully choosing h is necessary step toward successful clustering.

In [91], h is estimated by calculating the average distance between samples in the

space using k-Nearest Neighbors (kNN). This may capture the local density around

each sample. In addition, the number of generated groups is not controlled. In other

words, DGF may generate very small number of clusters that is way smaller than

the number of selected features, k, determined by the user.

Another limitation in this approach is the relevance measure where it is a

domain specific measure. In other words, F-statistic is used to identify differentially
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expressed genes. Therefore, F-statistic may not generalize to different domains, e.g.

images datasets. Thus, using a more general measure may overcome this limitation

with non-microarray datasets.

Trade Off Parameter α

The stability of Minimum Redundancy Maximum Relevance MRMR feature selec-

tion algorithm was theoretically analyzed [28] with two different mutual information

techniques that is used with MRMR. It was theoretically and empirically demon-

strated that MID (Mutual Information Difference) is more stable than MIQ (Mutual

Information Quotient). So, [28] proposed to trade off between stability and accuracy

by controlling the relevancy value V and the redundancy value W which is obtained

by adding a parameter α to MID as follows:

MIDα = αV − (1− α)W. (2.3)

Based on the results shown in [28], it was not clear how this approach improves the

stability. Also, different datasets prefer different α values. Thus, tuning α is another

issue in this approach. However, choosing α to be 1 seems to give good accuracy and

stability. This quite surprising since α = 1 means to get rid of the redundancy value

which will lead to more redundant features to be selected which also proven to be

useless in terms of prediction accuracy.

2.3 Stability Measurements

With the increase attention on the stability of feature selection methods, the neces-

sity of finding a good way to assess the stability increases too. Several methods have

been proposed to assess the stability with different results of feature selection process.

These measurements can be mainly categorized into three broad categories based on

25



the representation of the output of the selection method. These three categories

introduced in [47]. The first category, stability by index, deals with indices of the

selected features where the selected subset could be represented either as a subset of

features’ indices or as a full set of binary numbers where 1 means the corresponding

feature is selected and 0 otherwise. In this category, the selected features will have

no particular order or corresponding relevance weight. In contrast to stability by

index,the second category, stability by rank, is a ranked list where the features order

makes difference in the stability evaluation. In this category, each feature will be

given a rank from 1 to m, where 1 is the most relevant feature and m is the least

relevant one. Last category is stability by weight, where each feature is assigned a

weight according to the degree of relevance.

In fact, all these three output representations are generated from the features’ weights.

However, different domain will be interested in different output and thus will be in-

terested in the stability of that particular output. It is important to emphasize that

same rank does not necessary mean same wight and same selected subset. In this

work, we will follow this category when we investigate the stability measurements.

In spite of these three categories, [51] proposed three requirements that each stability

measurement should have:

1. Monotonicity: the larger the overlap between selected subsets, the larger the

stability result should be.

2. Limits: each stability assessment method’s result should be bounded between

constants; for instant [0,1] or [-1,1]. Where these bounds are independent of

any dataset factor such as the dimensionality of the dataset m or the number

of selected features k. These limits should be minimum when the sets are

completely unstable and maximum when they are identical or stable.
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3. Correction for chance: the measurement should have a constant that correct

the result in case of intersection by chance occur due to high dimensional

selected subset where it is proven that the larger the cardinality of selected

subsets the more chance for larger intersection between subsets.

We show in this work that these three desired properties were not taken in account

during the design of each measurement. The only measure that consider all these

requirements is the Kuncheva Index (KI) [51]. Most of the measurements will be

discussed here obey the first requirement, the monotonicity, while it is rare to find a

measurement that have correction for chance constant. Moreover, the limits varied

from [0,1], [-1,1], to unbounded measurements. Late in this chapter, we will mention

these requirements when we discuss the measurements.

In addition to these requirements, there are some important properties that, we be-

lieve, should be taken into consideration due to their impact on the stability result.

These properties include: (1) the dimensionality of the dataset m is an important

factor that may affect the stability of an algorithm. Also, (2) the number of selected

features k. These two factors implicitly mentioned in the correction for chance re-

quirement. However, they should be considered in other ways too. For example, in

order to rank two algorithms in terms of the stability, we should take in mind these

two factors, i.e. m and k. In addition, (3) the sample size n have a significant impact

on the stability as we shown in Chapter 4. Thus, considering these three factors may

help justifying the differences in the stability of one algorithm. Another important

factor that should be considered is (4) the data variance. It was demonstrated in

[32] that the data variance has a huge impact on the stability. Thus, it is not fair

to judge or compare algorithms in terms of stability without taking the variance of

the dataset and perhaps other important underlying characteristics of the dataset
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into consideration. Furthermore, (5) the symmetry of the measurement is another

desirable property so the stability value should not be sensitive to the order of the

results.

According to the definition of the stability of the feature selection methods that de-

fines the stability as the sensitivity of the selection to the variation (i.e. perturbation)

of the dataset. We may assess the stability simply by pairwise comparison between

the results. Therefore, the stability is higher if the similarity is greater. Since there

are three different representations of the output of the feature selection methods,

weighting, ranking, and indexing [47], different measures are used to fit different

representations. To the best of our knowledge, [47] is the first work to propose a

measurement for each kind of output. Here, we will go over these measurements and

others categorized by the output scheme.

Stability By Index

In this category, the selected subset of features is represented as either a vector of

indices that correspond to the selected features F ′ ⊂ F ; or as a binary vector f̃

with cardinality equals m, where f̃i = 1 means that the ith feature is selected. The

common property among these measurements is that they can handle number of

selected features k ≤ m which is not the case in the rank or weight measurements.

Otherwise, these measurements do not have any common result’s limits where some

in the interval [0,1] and others in [-1,1] while others are not bounded at all. However,

most measurements in this category attempt to assess the amount of overlap between

results in order to assess the stability. Follows, the stability by index measurements:

1. Average Normal Hamming Distance (ANHD)

Average Normal Hamming Distance measure was used in an early work in [22],
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to assess the stability of feature selection algorithm, which meant to be used

for subset of selected features. ANHD measures the amount of overlap between

two subsets. ANHD (Ĥ) works with binary representation that represent the

selected feature subset ~fik, 1 and 0 indicate whether the kth feature was selected

in the ith run or not, respectively.

Ĥ (̃fi, f̃j) =
1

m

m∑
k=1

|̃fik − f̃jk| (2.4)

The larger m is, the smaller Ĥ will be which indicates more stable algorithm.

In addition, when small number of features were selected, i.e. have values equal

to 1, and the rest are set to zero, then Ĥ will be small as well. This is due to

the fact that selected features across `-folds will be treated as unselected ones.

In other words, if a feature fi is selected in all ` or not selected, will have the

same impact on the stability result. This property of ANHD will lead in most

cases to wrong conclusion about the stability especially when k � m where

the majority of the features are not selected. In terms of the results, ANHD

is in the interval [0,1], where 0 is the most stable and 1 means not stable at

all. In terms of capability, ANHD cannot deal with different sizes of selected

features’ sets. Also, there is no correction for chance constant in ANHD, so,

the result will be misleading.

2. Dice’s Coefficient

Dice coefficient is a similarity measure related to the Jaccard index Eq(4.2).

It was used in [91] to calculate the overlap between two sets.

Dice(F ′1,F ′2) =
2|F ′1 ∩ F ′2|
|F ′1|+ |F ′2|

(2.5)
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Dice takes value between 0 and 1, where 0 means no overlap and 1 means the

two sets are identical. Due to the similarity between Dice and Tanimoto and

Jaccard, we will discuss it in more details when we discuss them.

3. Tanimoto Distance and Jaccard’s Index

Similarly, Tanimoto Eq(2.6) measures the amount of overlap between two data

sets and produces value in the same range as Dice does.

Tanimoto(F ′1,F ′2) = 1− |F
′
1|+ |F ′2| − 2|F ′1 ∩ F ′2|
|F ′1|+ |F ′2| − |F ′1 ∩ F ′2|

(2.6)

It is easy to proof that Tanimoto is equivalent to Jaccard’s index Eq(4.2) [73]:

Jaccard(F ′1,F ′2) =
|F ′1 ∩ F ′2|
|F ′1 ∪ F ′2|

(2.7)

In general, Dice, Tanimoto, and Jaccard behave similarly in all cases although

it is noticeable that Dice sometimes give slightly higher and more meaningful

stability results with respect to the intersection between the two subsets. For

instance, assume we have two selected subsets with equal length, k = 10, and

they intersect in 5 features, which is exactly 50% of total number of features

for each set. Dice, in this case, is going to give a stability equals to this exact

amount of overlap (namely: 0.5), yet, Tanimoto and Jaccard are going to be

0.33 for each of them due the fact that they divide by the length of union of the

two selected sets. Another issue with these three measurements that they give

higher values when the subsets cardinalities get closer to m, where the chance

for more overlap by chance is higher. Thus, they don’t have constant to correct

in case of intersection by chance. An advantage of these measurements, unlike

ANHD, they can deal with sets of different cardinalities. Beside that, they do

not take the dimensionality m in account, yet, they comprise the number of

selected features k in the measurement.
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4. Kuncheva Index KI

The drawback of most stability measurements is that the larger the cardinality

of the selected features’ lists, the more overlap between lists due to chance.

Therefore, [51] proposed Kuncheva Index KI that contains correction term to

avoid intersection by chance between the two subsets of the features which

overcome the drawback of the previous measurements.

KI(F ′1,F ′2) =
|F ′1 ∩ F ′2| ·m− k2

k(m− k)
. (2.8)

KI’s results ranges [-1,1], where 1 means that F ′1 and F ′2 are identical which

means the cardinality of the intersection set equals k. KI achieves -1 when

there is no intersection between the lists and k = m
2

. KI assumes values close

to zero for independently drown lists. Furthermore, KI is the only measure-

ments that obeys the requirements appeared in [51]. The correction for chance

term that was introduced in [51] makes KI desirable. In other measurements,

the larger the cardinality is, the higher the stability will be. However, this is

not the case with KI where the larger the cardinality will not affect the stabil-

ity value. Figure 2.1 shows the impact of the number of selected features k on

the stability in Jaccard Index where it gives higher stability values when k gets

larger and closer to m. However, KI does not suffer from the same drawback

where the correction term gives negative weight to k.

5. Percentage of Overlapping Gene (POG)

POG is used to measure the consistency of the feature subsets by counting

the amount of overlap between them. Therefore, it is similar in a sense to

the Tanimoto and Jaccard measures. However, POG is not symmetric and

thus POG(F ′1,F ′2) is not necessary equal to POG(F ′2,F ′1), which is undesirable
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Figure 2.1: The effect of the number of selected feature on KI vs. Jaccard. This
demonstrates the importance of correction for chance in the measurement.

property in general. However, it will be symmetric if |F ′1| = |F ′2| [95] proposed a

matrix that introduced a new variable z into POG that consider the correlated

molecular changes in a biological data set. [95] defined POGR percentage

of overlapping genes, or features, related matrix to evaluate the consistence

between two differentially expressed genes lists.

POG(F ′1,F ′2) =
|F ′1 ∩ F ′2|
|F ′1|

(2.9)

POGR(F ′1,F ′2) =
|F ′1 ∩ F ′2|+ z

|F ′1|
(2.10)

Where z represents the number of genes in F ′1 that are not in F ′2 but they

are significantly positively correlated to at least one gene in F ′2. By having z

we are overcoming one drawback of the previous measurements. All previous

measurements ignore the redundancy or the correlation between the values of
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the features. For illustration, assume fi ∈ F ′1 and fj ∈ F ′2 but fi, fj /∈ (R =

F ′1 ∩ F ′2). In pervious measures, including POG, these two features no way

to be counted positively toward the stability. In other words, fi and fj won’t

be considered as one feature even if they are redundant or positively highly

correlated. However, by introducing z, we are able to capture the correlation

between the feature and, thus, consider such features as one single feature.

[95], also, introduced a new matrix normalized version for POG and POGR,

or nPOG and nPOGR for short, to overcome the dependency between the

result and the list length by introducing the expected of the shared features

E(|F ′1 ∩ F ′2|) . In addition, they introduced the expected number of z, E(z)

onto the POGR, as follow:

nPOG(F ′1,F ′2) =
|F ′1 ∩ F ′2| − E(|F ′1 ∩ F ′2|)
|F ′1| − E(|F ′1 ∩ F ′2|)

(2.11)

nPOGR(F ′1,F ′2) =
|F ′1 ∩ F ′2|+ z − E(|F ′1 ∩ F ′2|)− E(z)

|F ′1| − E(|F ′1 ∩ F ′2|)− E(z)
(2.12)

Where E(|F ′1 ∩ F ′2|) can be simply estimated by the average of the scores for

arbitrary number of pairs of random lists of length |F ′1| and |F ′2| respectively.

Similarly, E(z) can be estimated as the average number of features in the list F ′1

which are not shared but significantly positively correlated with features in the

other list F ′2. These two parameters are the correction for chance terms in these

two measurements. Finally, the limits of the results in POG measures family

varies. POG and POGR are bounded by 0 and 1 while nPOG and nPOGR

are in the interval [-1,1] which make the latter obey Kuncheva requirements.

6. Consistency Measures

The previous measures’ main idea is to assess the overlap between the subsets
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by comparing the subsets pairwise. So the complexity is usually equal to or

greater than O(k·(`
2−` )
2

), where ` is the number of subsets of selected features.

To overcome such shortcomings, [78] proposed three consistency measures that

will be superior to these in complexity time. These measures take the frequency

of each selected feature in mind when calculating the stability. So, each subset

is processed only once to count the frequency of each selected feature which

makes the complexity to be O(k · `). The following three consistency measures

take S as an input where S = f̃1, f̃2, ..., f̃`. In addition, x̃ is the union of all

subsets in S and t is the total frequency in S.

a) Consistency Measure C

C(S) =
1

˜|x|

˜|x|∑
i

ri − 1

`− 1
(2.13)

b) Weighted Consistency Measure CW

CW (S) =

˜|x|∑
i

ri
t
· ri − 1

`− 1
(2.14)

c) Relative Weighted Consistency Measure CWrel

CWrel(S,m) =
m(t− z +

∑m
i ri(ri − 1))− t2 + z2

m(h2 + `(t− h)− z)− t2 + z2
, (2.15)

where ri is the rate of occurrence, i.e. frequency, of feature fi and z and h are

t mod m and t mod ` respectively. CWrel, unlike the others, neither evaluates

the amount of overlap between the subsets nor the frequency of the features but

it, in fact, shows the amount of randomness in the feature selection process.

If CWrel gives small number and the others give higher numbers that may

indicate drawback in the process of selecting the features; such as: there are

no preferable features or the methods overfit...etc. see [78] for more details.
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On the other hand, the consistency measure C can be rewritten in a less com-

plex way that show some hidden properties of this measure. Since, we know

that t =
∑ ˜|x|

i ri. Then, by subtracting ˜|x| from both sides, we obtain:

t− ˜|x| =
˜|x|∑
i

ri − 1. (2.16)

Also, we can say that:

∑
i

˜|x|(k − 1) = (k − 1) ˜|x|. (2.17)

Since W is a constant, we can rewrite C(S) from 2.16 and 2.17 as follow:

C(S) =
t− ˜|x|

(k − 1) ˜|x|
. (2.18)

Equation 2.18 seems less complicated than 2.13, yet, they have the same time

complexity, which is O(k ·`). However, 2.18 shows us clearly that this measure

does not get use of the frequency of each feature in the system S. For instance,

if we have two different systems f̃1 and f̃2 with the same characteristics of t, k,

and ˜|x|, we will get the same consistency result for both systems regard less of

the occurred features.

7. Symmetrical Uncertainty SU

L. Yu et al in [91] and G. Gulgenzen et al in [28] used an entropy based nonlinear

correlation, the so-called Symmetrical Uncertainty SU. This similarity measure

is quite different from the previous ones where it considers the similarity of the

feature values instead of features indices. Therefore, it satisfies nice and desir-

able property when evaluating the stability which is the correlation between the

values of the selected features across different selected subsets. For example,

assume that fi and fj to be duplicated feature and they where selected in F ′1

and F ′2 respectively. Thus, they will be consider as two different features when
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evaluating the stability although they are the same. However, SU will treat

them as one single feature by considering the values of the features. SU is sym-

metric too since the information gain IG(fi|fj) = IG(fj|fi). One undesirable

property of SU is the the result is not bounded by any constants. Accordingly,

we normalize the stability results by the number of selected features k.

Moreover, the differences between [91] and [28] in term of using this measure is

that the first one used it to calculate the similarity between two sets of feature

groups. [28], on the other hand, used it as similarity measure between two sets

of individual features. We, in this paper, will follow the notion of the latter.

SU(fi, fj) = 2[
IG(fi|fj)

H(fi) +H(fj)
]. (2.19)

Where fi and fj are ith and jth selected features and IG and H are the infor-

mation gain and the entropy, respectively, given by:

IG(fi|fj) = H(fi −H(fi|fj)) (2.20)

H(fi) =
∑
x∈ fi

p(x) · lg2(p(x)) (2.21)

H(fi|fj) =
∑
y∈ fj

p(y)
∑
x∈ fi

p(x|y) · lg2(p(x|y)). (2.22)

Finally, the similarity between two sets will be the average of SU for all unique

pairs of i and j. The SU is the most expensive measure among all measure-

ments in this paper. This complexity is due to the expensive computations

of IG for each unique pairs of selected features. It depends on the number

of selected features k, where the worst case is when k = m. Also, we had to
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normalize, discretize, and center the datasets before computing the SU which

make it even more expensive.

Stability By Weight

The second category is the measurements that deal with the weight of the feature set

w. In this category there is only one measurement which is the Pearson’s Correlation

Coefficient PCC that takes two sets of weights wi and wj for the entire feature set

in the dataset and return the correlation between them to be the stability. Unlike

the stability by index, this category cannot deal with a subset of features or with

different subsets size.

1. Pearson’s Correlation Coefficient PCC

The authors in [47] proposed three types of stability measures depend on the

presentation, i.e. output, of the selected features, as we mentioned earlier. One

way to represent the selected features is by assigning weight-scores to them. [47]

uses Pearson’s to measure the correlation between the weights of the features

that returned from more than one run. Thus, the stability will be as following:

PCC(w,w′) =

∑
i(wi − µw)(w′i − µw′)√∑

i(wi − µw)2
∑

i(w
′
i − µw′)2

(2.23)

Where µ is the mean. PCC takes values between -1 and 1, where 1 means the

weight vector are perfectly correlated, -1 means they are anti-correlated while 0

means no correlation. It is noticeable that when the weight is equal to zero for

big number of features, which is true some of the feature selection algorithms,

the stability will be shown higher. Noteworthy, this will not be an issue in
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situations where the algorithm assigns weight between 1 and -1. Finally, PCC

is symmetrical measure.

To best of our knowledge, PCC is the only stability measure that handle feature

weights.

Stability By Rank

Similar to the stability by weighting score, stability by rank evaluate the correlation

between the ranking vectors. They, also, deal with full set of features. In other words,

they cannot handle vectors with different cardinality or vector that correspond to

different set of features.

1. Spearman’s Rank Correlation Coefficient SRCC

To evaluate the stability of two ranked features’ sets r and r′, A. Kalousis et

al. in [47] adapted Spearman’s Rank Correlation Coefficient.

SRCC(r, r′) = 1− 6
∑
i

(ri − r′i)2

m(m2 − 1)
(2.24)

Similar to Pearson’s, the result of Spearman’s will be in the range of [-1,1].

The maximum will be achieved when the two ranks are identical while the

minimum is when they exactly in inverse order and 0 means no correlation at

all between r and r′.

2. Canberra Distance CD

Canberra Distance is the absolute difference between two rank sets. The gen-

eralized form is given by:

CD(r, r′) =
N∑
i

|ri − r′i|
ri + r′i

. (2.25)

CD does not have an upper bound. The result depends on the number of

features. The higher m is, the larger CD will be. Therefore, we normalized by
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dividing by m in order to obtain results between 0 and 1. A weighted version

of Eq(2.25) was proposed in [45] WCD:

WCD(k+1)(r, r′) =
N∑
i=1

|min{ri, k + 1} −min{r′i, k + 1}|
min{ri, k + 1}+ min{r′i, k + 1}

(2.26)

This specialized version of CD is due to the fact that the most important

features are located in the top-k positions of the ranked list. Thus, the variation

in the lower position of the list should be less relevant than those in the top

part [45]. Similar to CD,WCD is normalized by the number of features.

Measurements Categories

We categorized the stability measurements based on the 4 criteria we introduced

early in this work.

Measures
Results Capability

Index Rank Weight Different Size Complexity Symmetrical Bounds Reference

ANHD F Yes O(m· (`2−` )
2 ) Yes [1,0] [22]

Spearman′s F No O(m· (`2−` )
2 ) Yes [-1,1] [47]

Pearson′s F No O(m· (`2−` )
2 ) Yes [-1,1] [47]

CD F No O(m· (`2−` )
2 ) Yes [0,∞] [45]

WCD F No O(m· (`2−` )
2 ) Yes [0,∞] [45]

Dice F Yes O(k· (`2−` )
2 ) Yes [0,1] [91]

Jaccard F Yes O(k· (`2−` )
2 ) Yes [0,1] [73]

KI F Yes O(k· (`2−` )
2 ) Yes [-1,1] [51]

Tanimoto F Yes O(k· (`2−` )
2 ) Yes [0,1] [73]

Consistency F Yes O(k·`
2 ) Yes [0,1] [78]

CW F Yes O(k·`
2 ) Yes [0,1] [78]

CWrel F Yes O(k·`
2 ) Yes [0,1] [78]

POG F Yes O(k· (`2−` )
2 ) No [0,1] [95]

nPOG F Yes O(k· (`2−` )
2 ) + O(c)† No [-1,1] [95]

POGR F Yes O(k· (`2−` )
2 ) + O(c)† No [0,1] [95]

nPOGR F Yes O(k· (`2−` )
2 ) + O(c)† No [-1,1] [95]

SU F Yes O(n·(k2−k)
2 ) Yes [0,∞] [91]

Table 2.1: The categories of the current stability measurements.

†The complexity of evaluating z and/or E

Table2.1 shows clearly that most existing stability assessment methods calcu-

late the stability for results returned in an index format. This emphasis the necessity
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to more measurements that handle stability of features’ weights and ranks to over-

come the limitations of the existing ones. Also, there is no existing measure that

deals with two or more different output schemes. It is also shown that measures

from the second and the third category, i.e. by rank and by weight, are not able to

handle different subset sizes. However, this property is common among all measure-

ments belonging to the first category, i.e. by index. In addition, the running time

complexity of these methods is quite similar yet the evaluation of the E(z) in the

POG family and discretizing and normalizing in features’ value in SU make them

more expensive than others.

2.4 Summary

In this chapter, we reviewed the literature of feature selection for clustering and

classification and discussed the different feature selection models. In addition, this

chapter includes the first comprehensive survey about stability measurements.

40



Chapter 3

DILEMMA OF STABILITY EVALUATION

3.1 Introduction

Stability of a feature selection algorithm refers to the insensitivity of an algorithm to

various data perturbations, which are usually caused by noise. The existence of noise

is ubiquitous; therefore, a good feature selection algorithm should be robust to noise,

and can return stable results, obtaining only relevant features. Given two sample

sets generated by perturbing the original data, the stability of a feature selection

algorithm can be measured by evaluating the similarity of the feature lists obtained

by applying the algorithm on the two sample sets [46]. Fig. 3.1 shows a representative

process for feature selection stability assessment that contains four key steps. (1)

Given a data set X, one first generates l sample sets, X = {X1, ..., Xl}, either

by random sampling or l-fold cross-validation. (2) A feature selection algorithm is

applied to each sample set and selects features that result in l feature list, F′ =

{F ′1, . . . ,F ′l}. (3) Various similarity measures are applied to evaluate the pairwised

similarity between the obtained features lists, which results in a similarity matrix

S. (4) The final stability estimation is computed by averaging overall obtained

pairwised similarity. Among the four steps, step (3) is the pivot component of the

process. And currently, most existing work on feature selection stability assessment

is devoted to designing effective measurements to evaluate the similarity of two given

feature lists [51, 9, 73, 78].

Unlike most existing work, in this chapter, we focus on step (2) of the process,

and study how to generate sample sets in a sensible way, so that the thereafter steps

of the process can produce meaningful results. The motivation of this work can be
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shown by the following example. Assume the original data is X. And based on X,

we generate two data sets X1 and X2. Among the two newly generated data sets,

X1 is very similar to X, while X2 is very different to X. Given a feature selection

algorithm f(·), whose stability is unknown, we can apply the algorithm on X, X1

and X2, generating three feature lists F ′, F ′1 and F ′2. Let S(·) be a measurement

assessing the similarity of two feature lists. Using S(·), we can generate two results:

S(F ′,F ′1), and S(F ′,F ′2). Let us further assume that S(·) returns a small value in

both cases, which means, neither F ′1, nor F ′2 is similar to F ′. Our question is that,

should we draw the same conclusion no matter if we are given S(F ′,F ′1) or S(F ′,F ′2)?

The answer is obviously “no”.

When S(F ′,F ′1) is small, we know that f(·) is unstable. Since the difference

between X and X1 is small, in this case it is reasonable for us to require a stable

feature selection algorithm to generate similar results. However, if we are only given

S(F ′,F ′2), it is hard for us to draw any conclusion. Since X2 is very different to X, in

this case, even a stale feature selection algorithm may generate very different feature

list, due to the fact that the target concept contained by the two data sets may be

completely different.

Most existing work implicitly assumes the sample sets generated in step (2)

are of little difference. However, this assumption may not hold in many real-world

applications. As mentioned above, given a data X, the l-folds, X1, ..., Xl, are usu-

ally generated via either random sampling or l-folds cross-validation. However, we

noticed that neither of the two methods can guarantee the l sample sets are of small

difference. And when the differences among X1, ..., Xl are actually big, any conclu-

sion drawn based on the output of the process loses its foundation and may no longer

correct.
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In this paper we urge the importance of considering data variance in the

process of stability assessment for feature selection algorithms and study how to

effectively measure and control the variance of the generated sample sets. To the

best of our knowledge, this paper forms the first attempt that jointly considers both

sample sets’ similarity and feature list similarity in stability assessment for feature

selection algorithms. The remaining content of the paper is organized as follows. In

Section 2, we review related work. In Section 3, we develop effective methods to

measure and control the variance of the samples sets generated for stability assess-

ment. We discuss our extensive experiments in Section 4. Finally, draw conclusion

in Section 5.

Figure 3.1: The process for assessing the stability of a feature selection algorithm.

3.2 Related Work

Most existing work for feature selection stability assessment focuses on designing

effective measurements to evaluate the similarity of two given feature lists. In gen-

eral, different similarity measurements fall into four categories: index based meth-

ods, weight based methods, rank based methods, and feature similarity based meth-

ods [47, 91]. In [47], three measurements are used to measure the similarity between

two feature lists, which include Jaccard indx, Pearson’s correlation, and Spearman’s

correlation. The formulations for the three measurements are defined as below:
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SJ(F ′i ,F ′j) =
|F ′i ∩ F ′j|
|F ′i ∪ F ′j|

,

SP (F ′i ,F ′j) =

∑
k

(wk,F ′
i
− µw,F ′

i
)(wk,F ′

j
− µw,F ′

j
)√∑

k

(wk,F ′
i
− µw,F ′

i
)2
∑
k

(wk,F ′
j
− µw,F ′

j
)2
,

SS(F ′i ,F ′j) = 1− 6
∑

k
(rk,F ′

i
− rk,F ′

j
)2

m(m2 − 1)
,

In the above equations, F ′i and F ′j are the two feature lists, SJ , SP , and SS

are similarity measures derived from the Jaccard index, Pearson’s correlation and

Spearman correlation, respectively. wk,F ′
i

denotes the feature weight of the k-th

feature in feature list F ′i , µw,F ′
i

denotes the feature weight mean of the features in

F ′i , rk,F ′
i

denotes the rank of the k-th feature in feature list F ′i , and m is the total

number of features. Among the three measurements, the Jaccard index deals with

an index of selected features, and is an index based method. The other two deal

with a feature’s weight and rank, and are weight-based and rank-based methods,

respectively. Jaccard index, aims to evaluate the amount of overlap between two

set of feature indices, while Pearson’s and Spearman’s correlations aim to measure

the consistency of weights or ranks of the features in the two lists. When l feature

lists are given, the stability of a feature selection algorithm can be inferred from all

feature list similarities via the following equation:

S(J,P,S)(F) =
2

l(l − 1)

l−1∑
i=1

l∑
j=i+1

S(J,P,S)(F ′i ,F ′j)

In [22], the authors propose average normal hamming distance (ANHD) to

assess stability. Similar to Jaccard index, ANHD evaluates stability based on the
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indices of the selected features. In [78], the authors proposed the consistency family

measurements, which aim to evaluate the stability by considering the frequency of

the features in the feature lists. Other index based similarity measurements, such as

Dice-Sorensen’s index and Tanimoto distance metric, have also been used to evaluate

the similarity of two feature lists [100, 73]. Feature similarity based methods have

also been developed by researchers. In [91, 28, 59], Symmetrical Uncertainty (SU)

is used to evaluate the similarity of features in the two feature lists and has been

reported to be effective for evaluating feature list similarity. Current approaches do

not consider data variance when assessing feature selection stability, and this may

cause serious problems, when data variance is big. In the next section, we develop

effective methods to measure and control the variance of the sampled data. This

ensures that sensible results can be generated from existing stability measurements.

3.3 The Dilemma of Stability Assessment

As we described in section 3.2, current stability measurements do not consider the

influence of the variance on the results. In this paper, we first demonstrate the influ-

ence of the variation of the training datasets on the stability results by conducting

an experiment using two extreme cases. The first scenario is the typical process of

assessing stability that existing methods perform. We start by randomly sampling

l = 10 different training datasets, X1 = {X11, . . . , X1l}, from the original dataset X,

where each subsample is 25% of the total number of samples m in X. We use 5 differ-

ent datasets that vary in the number of samples m in dimensionality n; see Table 5.1.

Next, we run the algorithm f(·) on X1 which will generate l different results, F ′. Fi-

nally, we assess stability using Jaccard index exactly as current methodology does.

The second scenario is created by generating l = 10 training samples X2. In contrast

to the first scenario, X21, . . . , X2l are exactly the same. In other words, we randomly
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Figure 3.2: Stability S(J)(R) of the five methods across different datasets with two
extreme cases in terms of the training samples’s similarity where α = 1 is the first
scenario and α = 0 is the second scenario.
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sample 25% of m and duplicate this subsample l times. Then, we similarly run the

same algorithm f(·) on X2 as we did in the first scenario. To summarize these two

scenarios, we first assumed that the datasets suffer from very huge variation between

the data samples, while in the second scenario, we assumed that there is no variance

between the datasets at all. Five well-known feature selection algorithms are used

in this experiment to demonstrate the consistency of the drawn conclusion. These

algorithms are: ReliefF [86], ChiSquared [86], Information Gain [14], Fisher [21],

and L1SVM [11]. An important question at this stage should be: which of these

two scenarios’ stability results should be the ground truth stability of the algorithm?

In other words, there will be, for sure, two different stability results S(J)(R1) and

S(J)(R2) corresponding to the first and second scenarios, respectively. Which should

we consider to be the stability of the algorithm f(·)?.

Figure 3.2 illustrates the stability of the above scenarios. S(J)(R1) is represented as

α = 1 and S(J)(R2) as α = 0. As a result of the huge variance in the training samples

in the first scenario, we obtained small stability in all algorithms and across different

datasets with no exceptions. On the other hand, we got completely stable results in

the second scenario, which means that all the generated results are always the same.

Although this is an intuitive result, it provides strong evidence for the influence of

the variance of the dataset on the stability results.

As a result, we can see that current measuring methods provide the assessment

results that are heavily influenced by the sample variance. Now, we would like to

establish the relationship between the stability measure and data variance.

The Impact of the Perturbation in X on the Stability

As we empirically prove in Section 3.3, the results of current stability assessment

methods reflect the variance of the dataset, not the exact stability of the algorithm.
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Table 3.1: Datasets statistics

Dataset Name Number of Samples m Dimensionality n

CLL-SUB 111 11340
GLA-BRA 180 49151
TOX 171 5748
GLI 85 22283
PRO-CAN 171 11302

Here, we go further in investigating the impact of the variance by controlling the dif-

ference between the training samples X = {X1, . . . , Xl}. We apply different amounts

of perturbation α = {10, 20, 30, 40, 90}% into X . In order to do this, we randomly

sample X1 from the original dataset X. Then, we generate X2, . . . , Xl by perturbing

α% of the number of samples of X1. So, there are at least 1 − α% out of the total

number of data samples are the same in X1 through Xl. Figure 3.3 shows the stabil-

ity of each algorithm across the datasets, and it clearly tends to be higher with less

amount of perturbation. In this experiment, we selected 1% of the original number

of features in order to get a reasonable number of relevant features.

These empirical results suggest the dependency of the stability results on the

variation of the training samples. In other words, it shows the relation between the

repeatability, i.e. the stability S(J)(R), of the results R and the similarity between

the training samples SX . We found that S(J)(R) is higher when α is smaller. Hence,

by taking the similarity of the data samples into account, we can mitigate the effect

of the data samples in the assessment of stability. This proposed methodology helps

to justify and to understand the stability results.
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3.4 Ranking vs. Classification

After we demonstrate the influence of dataset variance on the stability results in

Section 3.3, we find that existing stability measures cannot assess the exact stability

of a given algorithm without considering factors that influence the result. In fact,

current methods do not assess stability, but they can only rank the algorithms ac-

cording to the repeatability of the results. For illustration, Figure 3.4(a) shows the

stability using the Jaccard index for ChiSquare, ReliefF, Information Gain, Fisher,

and L1SVM. These results can only rank the algorithms according to their stability.

For example, we can infer from Figure 3.4(a) that L1SVM is the most stable, and

Fisher is the second, and so on. However, we cannot tell whether they are, in fact,

stable or not since we have no clue about the variation or the similarity between

training samples. For instance, the training samples might be very similar to each

other, thus, we cannot classify the algorithm as stable, owing to the fact that the

cause of stability could be the the small variation in the dataset. Furthermore, the

training samples might be very dissimilar. Thus, we cannot classify the algorithm to

be instable as well. Similar to the first case, the instability might be caused by the

huge variation in the dataset, and as a sequence, algorithms should not be expected

to generate similar results. This example shows us the necessity of evaluating the

similarity between training samples, in order to be able to classify the algorithms as

stable or instable.

In order to infer whether a given algorithm is stable, we need to consider an impor-

tant factor, which is the average pairwise similarity between the training samples.

Thus, we need first to find an appropriate method to evaluate this similarity. Assume

we are given X contains two folds X1 and X2, and let X1cr and X2ck to be the rth

and the kth data point that belongs to the class c in X1 and X2 respectively. Then
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the average distance Sim(X1c, X2c) between the samples in X1 and X2 that belong

to class c is given by:

Sim(X1c, X2c) =
1

|X1c||X2c|

|X1c|∑
r=1

|X2c|∑
k=1

‖X1cr −X2ck‖,

and the average pairwise similarity, SX , between l-folds in X is given by:

SX =
2

l(l − 1)

l−1∑
i=1

l∑
j=i+1

1

|Ci,j|
∑
c∈ Ci,j

Sim(Xic, Xjc),

where Ci,j is the intersection between the classes in Xi and Xj and |Ci,j| is

the cardinality of Ci,j. By evaluating the similarity of the training samples and the

similarity of the results, we can tell whether a given algorithm is stable or not. We

propose a novel approach that could simply compare the similarity of the training

samples SX against the similarity of the results S(J)(R). Then we derive the result

based on this comparison. For more illustration, let X1 and X2 be the training

samples, where l = 2 in this case. And let F ′1 and F ′2 be the generated result by

the algorithm f(·). f(·) is said to be stable if S(J)(R) ≥ SX and unstable otherwise.

As a result for this approach, the similarity values of the training samples, SX , are

connected by the red line in Figure 3.4(b). With these threshold values, we can

determine if an algorithm is stable or not. In other words, if S(J)(R) exceeds or

equals SX , then that particular algorithm is said to be stable.

As a result, Table 3.2 illustrates which algorithm is stable or not with which

dataset. According to the values (SX ) in the last row in Table 3.2, we check if

S(J)(R) ≥ SX and determine whether an algorithm is stable or not. The stability

values that are in Bold are the ones exceeding the threshold (SX ) and thus are

classified as stable. Therefore, L1SVM is always stable. Similarly, Fisher is almost
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always stable except for GLI. In addition, ReliefF is considered stable with GLA-

BRA, TOX, and PRO-CAN. While ChiSquare is stable with TOX and PRO-CAN

only. Finally, Information Gain is always unstable except with TOX dataset. In

short, we empirically show that existing methods can only rank algorithms, but

using the average pairwise similarity of training samples enables us to distinguish

stable and instable algorithms.

CLL-SUB GLA-BRA TOX GLI PRO-CAN
ChiSquare 0.1145 0.0638 0.0993 0.0284 0.0960
ReliefF 0.0559 0.1535 0.1240 0.0853 0.1362
InfoGain 0.0186 0.0491 0.1055 0.0401 0.0636
Fisher 0.1468 0.1745 0.1970 0.0861 0.2129
L1SVM 0.3915 0.3342 0.2141 0.2373 0.3435
The threshold SX 0.1325 0.0648 0.0380 0.1041 0.0902

Table 3.2: The stability of each algorithm with each dataset compared against the
threshold with the training sample similarities SX in Italic. Algorithms’ stability in
Boldface are considered stable since they exceeded the threshold.

3.5 Discussion

The assessment of the stability of the feature selection algorithms happens to be

influenced by the dataset variation. The literature also suggests that there are other

factors that may impact the stability such as sample size [91] and the number of se-

lected features k [47]. These factors can be investigated independently. For example,

it was shown in [47] that the stability measures can increase proportionally with the

number of selected features. However, this kind of influence can be mitigated by a

good estimation of k relevant features. As Kalousis et al. found, the increase of the

stability that associated with the increase of k is mainly due to a large number of se-

lected features that are irrelevant to the learning problem. In other words, choosing

features with weight w = 0 to evaluate the stability is going to give higher stability

since the features are added to the selected list by their sequential order. As a result
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of our experiment, we notice that the number of features that have w ≥ 0 happened

to be around 1% of the dimensionality. Thus, we selected 1% of features to alleviate

the influence k has on the results.

Future work is to develop a feature selection method that improves selection robust-

ness by reducing the data variance across different distributed datasets.

3.6 Summary

In this chapter, we demonstrated the dilemma of evaluating the stability of fea-

ture selection algorithms. We empirically prove that current stability assessment

methodology can be heavily influenced by the variance of data samples. Therefore,

the existing methods can only compare between the feature selection algorithms and

rank them using stability values and cannot tell if an algorithm is stable or not, in

presence of data variance. We proposed to take the training samples’ similarity into

account when assessing the stability. Thus, we could easily determine that the algo-

rithm is stable or not by comparing the stability of the results with the similarity of

the dataset. The stability assessment results given by our method show that some

algorithms that were considered stable are actually not stable. To the best of our

knowledge, this is the first work that considers the influence of the dataset variation

in assessing the stability of feature selection algorithms and can provide an objective

stability assessment in critical data mining and machine learning applications.
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Figure 3.3: The stability using different amount of perturbation α. It shows the
decreasing trend of the stability as α increases.
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(a) (b)

Figure 3.4: (a) The stability S(J)(R) of the algorithms using existing approach. (b)
The pairwise similarity between training samples SX , the red line, compared with
S(J)(R), the marks, where SX is the threshold that classifies the algorithm as either
stable or not .

Figure 3.5: The proposed selection stability approach.
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Chapter 4

THE CAUSE OF SELECTION INSTABILITY

Most of the existing work studies the stability from the algorithm prospective. They

mostly propose new feature selection methods that claimed to be stable. We fun-

damentally disagree with this approach, as we believe that the underlying charac-

teristics of the dataset have a significant impact on the stability. If this is true, we

should, instead, propose a framework to handle these factors and has the ability to

utilize any current feature selection algorithm.

In this work, we will discuss several factors that may effect selection stabil-

ity. We are going to empirically demonstrate the effect of the dimensionality, the

absolute sample size, and the variation of the underlying distribution of the dataset

on stability. In addition, we study the effect of the number of selected features on

the stability. Finally, we discuss the stability behavior of several well-known feature

selection algorithms with a variety of datasets.

4.1 Literature Review

The stability of feature selection algorithms is the sensitivity of the selection to

variation in the data set [47, 91]. The data variance is usually caused by noise. The

existence of noise is ubiquitous; therefore, a good feature selection algorithm should

be sufficiently robust to handle noise and can return stable results that contain only

relevant features. Stability has gained increasing attention, becoming a hot topic

in the feature selection. Furthermore, stability is an important criterion to evaluate

the goodness of a feature selection method. One motivation behind this increasing

attention to stability is the fact that in domains like bioinformatics, the domain

experts would like to see the same or at least similar set of genes, i.e. features to
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be selected, each time they obtain new samples in the presence of a small amount of

perturbation. Otherwise, they will not trust the algorithm when they get different

sets of features while the datasets are drown for the same problem.

Several stability measures have been proposed to evaluate the similarity among

the selected feature subsets [47, 51, 91, 22]. These measures can be broadly catego-

rized into three categories based on their inputs. The first category contains those

methods that take the indices of the selected features as an input. A Jaccard In-

dex is a representative stability measure in this category [47]. It assesses stability

by evaluating the amount of overlap between the results that contains the selected

features’ indices. Besides Jaccard Index, KI [51], Dice Index [91], and ANHD [22]

are other proposed measures. For the measures in the second category, the input

is the rank of the selected features. These measurers assess stability by evaluating

the similarity between two sets of features that are ranked based on their relevance.

Spearman’s Rank Correlation Coefficient [47] is a representative measure for stability

by rank that evaluates the correlations between the ranked lists. The third category

contains measures that take features’ weight as an input. Pearson’s Correlation Co-

efficient [47], which assesses the correlation between the weighted results, is a good

example.

Given differen results R = {R1, R2, · · · , Rl} corresponding to l runs of algo-

rithm f(·) on l different folds of the data set X, its stability can be assessed simply

by assessing the amount of overlap between the sets in R. The evaluation of the

stability of an algorithm can be summarized as the following four key steps: (1) gen-

erating l different folds of X either by random sampling or cross-validation. Then,

(2) a feature selection algorithm is applied to each fold which (3) produces the l

different results shown in R. Finally, (4) an average pairwise similarity is calculated
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from the selection result to obtain the stability using a suitable stability measure.

Most of the existing work has used Jaccard Index to evaluate stability [47]. In this

work, we focus on this representative measure to conduct our experimental study.

The Jaccard Index was introduced in [47] to evaluate the stability for subsets

of results that contain selected features’ indices by evaluating the amount of overlap

between the subsets. Equation(4.2) shows a Jaccard Index for two selected subsets.

SJ(Ri, Rj) =
|Ri ∩Rj|
|Ri ∪Rj|

. (4.1)

Now, we can evaluate its stability by evaluating SJ in a pairwise manner:

SJ(R) =
2

l(l − 1)

l−1∑
i=1

l∑
j=i+1

SJ(Ri, Rj) (4.2)

The Jaccard Index SJ returns a value in the interval of [0,1] where 0 means the

feature selection results are not stable and 1 means the results are identical, hence

very stable.

4.2 Problem Statement

Let X ∈ Rn×m be a dataset. Also, let Z ∈ RnZ×mZ be another dataset with different

characteristics and other hypotheses. Without lose of generality, assume the stability

of algorithm f(·) on X and Z to be given by SX and SZ respectively.

Do SX and SZ have any correlation or any relationship? Most likely, no! It

is found that given different datasets with different characteristics, the stability of

each dataset is independent of the stability of another even though the algorithm is

the same. In this chapter, we are going to investigate the underlying characteristics

that influence the selection stability.
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4.3 Motivation

In order to stabilize the selection process, we need to understand the causes of in-

stability first. It is reasonable for one algorithm to have different stability results

as we explained above. Therefore, we believe that stability is not totally algorithm-

dependent. In contrast, it is mostly data-dependent. Thus, for an in-depth un-

derstanding of the stability issue, we should investigate the factors that affect it.

Consequently, we will be able to cure by reducing the impact of these factors.

4.4 Our Contribution

As we mentioned above, the recent work in stability focuses on step (4) in the process:

how to estimate the stability of an algorithm. Although this is an important step in

order to give a reasonable estimation of how robust an algorithm is, the recent work

does not answer some important questions. In this work, we are going to investigate

the following questions: (1) what are the factors that may effect the stability of a

feature selection algorithm? (2) Are the factors algorithm-related or dataset-related?

In addition, we will investigate, given a dataset X, (3) what is the most suitable

feature selection algorithm to select robust, highly predictive and relevant features?

To the best of our knowledge, these important questions have not been sufficiently

addressed in the literature. In this paper, we are going to present an empirical study

of these questions for better understanding of the stability.

The Effect of The Number of Selected Features k

In most real world datasets, e.g. microarrays, the number of truly relevant features

kopt is usually small compared with the dimensionality m. In general, it is often

difficult to know what kopt exactly is in advance, and the problem of identifying the
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value of kopt is not trivial. In practice, there are three possibilities when choosing k.

(1) The first scenario is choosing k as kopt. This case is rare in real world problems.

Even if kopt can be known beforehand, it cannot be guaranteed that the optimal

feature subset can always be selected due to the noise and outliers in the data sets

and due to the fact that finding the optimal subset is NP-hard problem. Thus,

the selection is not guaranteed to be stable. The second scenario (2) is choosing

k < kopt. Even with an effective feature selection method, choosing a small k will

make the selected features vary in the presence of small variations in the data set.

As a result, the selection is not guaranteed to be robust. The third scenario (3)

selects more features than the number of relevant features, that is, k > kopt. Similar

to the previous two, this scenario does not guarantee selection stability even in case

of selecting all relevant features.

To illustrate the three scenarios, we assume that, for a given data set, features

f1 to f10 are relevant features while f11 to f100 are the irrelevant ones. First, we

assume k = 10. When we run algorithm f(·) on l different folds, we may get different

weights for the features each time due to variation across the folds, which may lead

to slightly different subset of selected features. In the second scenario, we assume

k = 5. Similarly, a small variation in the data set may result in different relevance

weights for the relevant features, which in turn leads to selecting slightly different

features at each fold. The last scenario, we assume k = 15. In this case, even if

we select all the 10 relevant features, the other 5 features will be irrelevant and the

order of these irrelevant features may vary significantly at each fold, which decreases

stability. Evidently, the analysis is tightly related to the characteristics of the data

set. We are going to recall this when we talk about the characteristics of the datasets

later in this work.
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Another observation is that the larger the value for k, the higher the stability

will be. This is due to several reasons. First, with large k, the chance of selecting

all relevant features becomes high. In addition, the probability that two selected

feature subsects intersect with each other by chance will become higher too. Assume

that Ri and Rj are the ith and the jth selected feature sets, respectively. The prior

probability of selecting any feature f is given by:

p(f) =
1

m

Thus, the probability of selecting k features in any R is:

p(Ri) = p(Rj) =
1 m

k


The probability of selecting at least one common feature in Ri and Rj is:

p(|Ri ∩ Rj| > 1) =

 m

m− k


 m

k


(4.3)

It is obvious that the larger k is, the larger p(|Ri ∩ Rj| > 1) will be.

The Effect of The Dataset Characteristics

Most existing works study the stability from an algorithm prospective while ignoring

the effects the dataset exerts on it. Intuitively, following this approach only will not

effectively solve the challenging questions on the feature selection stability such as:

what are the factors that impact stability and how may we consider these factors in

the selection process in order to improve selection stability. Also, observing the be-

havior of different algorithms on different datasets may help to answer the questions
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regarding how to choose the most appropriate feature selection algorithm for a given

dataset. We believe, as we will empirically demonstrate later, that the underlying

characteristics of the dataset X can have a significant impact on the stability. Thus,

studying the stability from the dataset perspective is necessary.

Let X1 and X2 denote two different datasets with the number of instances,

n1 and n2, and the number of features, m1 and m2, respectively. Also, let k1 and k2

denote the number of selected features for the two datasets. We apply the algorithm,

f(·) to each of the l-folds of X1 and X2, respectively. Then, we assess the stability

SJ(R1) and SJ(R2). Do we expect to have the same stability, although we use the

same algorithm f(·)? Intuitively, the answer is that the stability is not always the

same. The important questions now is why f(·) does not behave similarly, in terms

of stability, on these two datasets? There must be certain characteristics in X1 and

X2 that may be affecting the stability. In the following, we are going to analyze some

of these factors and discuss their potential influences on stability.

The Effect of Dimensionality m

The larger the dimensionality m, the lower the probability p(Ri = Rj), where p(Ri =

Rj) is the prior probability of selecting the same set of features in Ri and Rj by

chance. Furthermore, the number of combinations of k features chosen from m is

known as m choose k,

 m

k

 = m!
k!(m−k)! . Hence, the prior probability of choosing

the same set of features twice is:

p(Ri = Rj) =
1 m

k


=
k!(m− k)!

m!
, (4.4)
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According to Equation(4.4), when k is close to m, p(Ri, Rj) approaches 1, and equals

1 when k = m. This, also, gives the same conclusion drawn from Equation(4.3).

The Effect of Sample Size n

The effect of sample size on the learning process has been well studied in the liter-

ature. It is proven that when a limited number of training samples is available, the

potential for overtraining is high, and the learning performance may not generalize

to a larger populations reducing learning quality [85, 41]. Unsurprisingly, this fact

holds for selection stability too, as we will empirically prove in the experiment.

The Effect of the Underlying Data Distribution

In addition to the dimensionality and sample size, the underlying distribution of

the data has a significant impact on stability. For example, when the lth fold is

significantly different from other folds, this may lead to selecting different subsets of

features, which means lowering stability. This is related to the theory of important

sampling, which suggests an increasing in the number of samples from regions that

contribute more to better performance and decrease the number of samples from less

attractive regions [32]. Although this approach will lead to reducing data variance, it

may cause the loss of important information in the ignored samples. Therefore, [32]

suggests, alternatively, to assign less weight to these undesired samples and higher

weights to samples from attractive regions.

4.5 Experiment

In this experimental study, we aim to investigate several important questions regard-

ing the impact of a dataset’s characteristics and the number of selected features k to

a feature selection algorithm. Also, we aim to highlight the importance of choosing
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a feature selection method that can work well on a given dataset. In this section, we

are going to empirically study these issues to gain better understanding of stability.

In order to achieve this goal, we conduct the following experiments from 23 different

datasets, five feature selection algorithms and a Jaccard Index to assess the stability.

Datasets

In this experiment, we use the 32 datasets listed in Table5.1, which are publicly

available online. We divide these datasets to three different groups. The first group

contains 5 microarrays, which can be downloaded from ASU Feature Selection Repos-

itory1. The datasets in this group share similar characteristics in terms of the number

of features m and the number of samples n. They have a large number of features

ranging from 5748 to 49151. In addition, the number of samples is also relatively

large for a microarray, ranging from 85 to 180 samples. The second group contains

14 different datasets. Similar to the first group, the second group has a large number

of features, yet, a small number of samples n ≤ 40. Finally, the third group has

generally a large number of samples and small dimensionality.

Feature Selection Algorithms

We chose five well-known feature selection algorithms to conduct this experiment.

These algorithms are: ReliefF [86], ChiSquared [86], Information Gain [14], Fisher [21],

and L1SVM [11]. All algorithms except L1SVM are publicly available at ASU Fea-

ture Selection Repository. All algorithms, except L1SVM, are filter-based, so they

do not involve any classifier during the selection process. ReliefF and L1SVM both

attempt to maximize the margin where the former is related to hypothesis margin

1http://featureselection.asu.edu/
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maximization, and the latter is sample margin maximization [70]. Yet, Fisher score

assigns higher scores to the features that are able to better discriminate the samples

from different classes. ChiSquare assesses whether a particular feature is independent

of the class label. Similar to ChiSquare, Information Gain assesses the independence

between a feature and the class label by the difference between the entropy of the

feature and the conditional entropy given the class label.

Experiment Methodology

In order to demonstrate the effect of different factors, mentioned above, we run the

algorithms on the datasets using 10 cross-validation, that is, l = 10. At each run,

each algorithm assigns weights to all the features, then, we select the features with

the higher weights to be the feature selection results at the ith fold, denoted by Ri.

All Rs from the l runs will form the set R. Finally, we calculate the average pairwise

Jaccard Index based on Equation(4.2) for R.

Results

We empirically evaluate the effect of the underlying characteristics of the dataset on

the stability of the feature selection algorithm. We use 32 datasets that are grouped

to three different sets. The datasets in each group share common characteristics in

terms of dimensionality m and sample size n. For a clearer illustration, we will divide

the results based on the observations.

The Effect of k

Figure 4.1 shows the stability of six datasets with different values of k. If the

number of features in the datasets is less than 1000, we evaluate the stability for

k = {1, . . . ,m}, otherwise, k = {1, . . . , 1000}. Here, we chose only 6 representative
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datasets because the rest of the datasets behave similarly almost all the time. Figure

4.1 shows that the larger the value of k is, the higher the stability will be. Further-

more, the stability on the microarrays, CLL-SUB, GLI, and PRO-CAN, will increase

with the increase of k until reaching the maximum, where k = m. Nevertheless, this

increase of stability does not necessarily reflect the real robustness of the selection

due to the small number of the relevant feature krel compared with k.

Another interesting observation is noticed when a small number of features

are selected, as we can obtain high stability during the selection of the first a few

numbers of features, especially for the microarrays when m is very large. This might

indicate that these features are significantly relevant to the problem. Accordingly,

the stability here could be taken as a criterion to select a suitable k. Figure 4.3

shows CLL-SUB, GLI, and PRO-CAN with k = {1, . . . , 100} where the peaks of

the stability, indicated by the black arrows mean that the features from 1 to the

peak are more frequently selected in all folds than in others. These three plots show

different behaviors. For example, GLI shows only one peak, which makes it easy to

pick an appropriate k according to this criterion, while CLL-SUB has two and PRO-

CAN has several peaks that make it more complicated to pick the best one. In this

case, more constrains are needed. For example, k should be greater than a certain

minimum value. The stability plot of CLL-SUB in Figure 4.3 shows the first peak

at k = 10 with stability around 0.73. This means that the algorithms running at

each fold agree with each other on a subset of features 73% of the time, which makes

these features more frequent to occur at the top of the list. For features beyond the

tenth, stability starts to degrade rapidly, which indicates the algorithms running on

each fold become less agreeable.
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The Effect of Sample Size n

First of all, it is important to mention that this study focuses on the absolute sample

size. Figure 4.4 shows the stability of all 32 datasets. Figure 4.4(a) shows the stability

of the first group where the number of samples is relatively large for microarrays.

The red denotes average stability. Figure 4.4(b), on the other hand, corresponds to

the second group of the datasets. Similarly, Figure 4.4(c) shows the stability of the

third group, where the number of samples n is very large. From these figures, we can

observe the significant difference between the average stability of each group. We

can conclude from this observation that the sample size correlates positively with

selection stability.

The Effect of the Dimensionality m

In contrast to the sample size, large dimensionality adversely affects stability. Figure

4.4(a)(b)(c) clearly shows the impact of the huge dimensionality of the microarrays

in (a) and (b) compared with that of (c). However, Figure 4.4 does not show which

factor has more impact on the stability: the sample size or the dimensionality. To

answer this question, we run another experiment using a TOX dataset because it

has large m and n. We first run each algorithm on the whole dataset to obtain

the weight assigned to each feature. By sorting the weight values, we observe a

long tail which corresponds to very low weights or simply zero weights, as shown in

Figure4.6. We found that the first 100 features have the largest weights; hence, we

consider them as the relevant features. Yet, the features from 1,465 to the end are

assigned weights equal to zero, so they are considered as the irrelevant features here.

The 1,365 remaining features in between that are moderately relevant are not used

in the following experiment. Then, we partition the new version of TOX dataset
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into different partitions, varying both the number of samples and features. The first

partition contains 11 samples and 1,100 features. Where the relevant features are

always included and 1,000 features are randomly selected from the irrelevant features.

Then, we run each of the five feature selection algorithms on the first partition and

assess the stability. Next, we increase the number of samples by 10 for the second

partition and run the algorithms and evaluate the stability again. When the total

number of samples is approached, we add 100 more irrelevant features and start

again with 11 samples and so on until we reach the total number of features and

samples. Figure 4.2 shows stability as a surface where each sub-figure represents the

stability of one algorithm. It is observed that the stability becomes weakened, or

lower, when the number of samples is smaller and the number of features is larger.

This experiment also shows that the the number of samples impact is more significant

than the impact of the number of features. Furthermore, the impact of the number

of features vanishes when the sample size is significantly large. As the figure shows,

the difference in stability between the full set of features and the partition with 1,100

features is at maximum with the smaller sample size, decreasing as larger sample size

increases.

The Effect of the Underlying Distribution

To demonstrate the effect of the underlying distribution of the dataset, we perform

a controlled experiment as follows. We sample 11 folds of each dataset. Among

the 11 folds sampled from the original training set, ten are allowed to overlap each

other, whereas the 11th fold (called last fold or D11) has no overlapping with any of

the ten folds. In this case, we can expect that the difference among the underlying

distribution represented by each of the ten folds (denoted as D1, D2, , D10) is smaller,

while the difference between the underlying distribution represented by the 11th fold
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(denoted as D11) and any of D1, D2, , D10is larger. By examining the results in

Figure4.7, it is found that the feature selection results on the first ten folds agree

more with each other, but the result on the 11th fold is quite different. This shows the

affect of variation of underlying distribution to feature selection. We show this only

with CLL-SUB dataset due to page constraints. All other datasets behave similarly.

Thus, we believe that the underlying distribution is an important factor that may

effect the stability; consequently, sampling techniques may improve it.

Algorithms Behaviors

It is not easy to predict the performance of an algorithm on a given dataset. In

this section we attempt to observe the behavior of the five feature selection methods

on the datasets. Figure4.4 shows how the performance of the algorithms varies in

terms of stability. Each algorithm behaves differently on different datasets, and

with respect to the datasets’ groups. In addition, the algorithms behave differently

on a single dataset. For example, we find that with microarray datasets, i.e. the

first and the second groups, where the dimensionality is huge, the stability difference

between algorithms is much larger than the third group of datasets. We find that the

algorithms give almost equally good stability results with datasets in the third group.

However, the difference is higher with the first and second groups. In addition, we find

that L1SVM selects stable results compared with other methods when dimensionality

is high, L1SVM beats all other methods in having a high dimensionality and a small

sample size, in the second group of datasets. However, L1SVM is a clear loser

with the third group. It is obvious that ChiSquare and Information Gain are not the

preferred methods when the dimensionality is high but they become more competitive

in the third group which has no clear winner. Finally, Fisher and ReliefF are almost

equally good with the three groups of the dataset. Based on these results, we prefer
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Figure 4.1: The effect of large k.

L1SVM in case of higher dimensionalities and smaller numbers of samples, although,

it becomes less preferred in other cases. Still yet, we prefer either Fisher or ReliefF

in other cases, or in case of a lack of information about the datasets.

4.6 Conclusion and Future Work

The researcher in the realm of feature selection should pay more attention to the un-

derlying characteristics of the dataset for better understanding of selection stability.

As the distribution of the dataset is not always known, we believe more attention to

sampling techniques should be strengthened . In addition, choosing the appropriate

method to perform selection on a given dataset is an interesting problem where algo-

rithms do not perform equally well on different datasets. An algorithm that perform

the best on a dataset may not perform good on another one.
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Figure 4.2: The effect of large k.

Figure 4.3: Demonstration of the stability as a potential criterion to choose the
appropriate k.
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Figure 4.4: Jaccard Index stability for all algorithms and all datasets. (a) shows
the stability on the first group of the datasets. (b) shows the stability on the second
group of datasets. And (c) shows the stability on the datasets in the third group. For
the detail of each dataset, see Table 5.1. Note: the x-axis numbering corresponds to
the numbering in Table 5.1.

Figure 4.5: Jaccard Index stability for Fisher Score and all datasets. Similar to
Figure except that this shows stability over different results cardinality ranges from
1 to min (m, 500). We show results of Fisher Score only while the rest are omitted
duo to similar behaivor.
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Figure 4.6: Features’ relevance weight of TOX dataset using ChiSquare (sorted in
an descending order).

Figure 4.7: The frequency of selected features shows the impact of the sample vari-
ance on the selection, where the last fold has huge variation which leads to different
sets of selected features. All these subplots show the same dataset, CLL-SUB.Note:
We show all features that were selected at least once in all folds.
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Figure 4.8: The stability after removing one fold each time. The stability is higher
when we remove the last fold. The dataset is GLI.

In the future, we are going to investigate in more depth the above issues to

propose a framework for a feature selection process that takes into account the factors

mentioned above in effort to improve selection stability methods. We are going to

study different forms of sample variation on the dataset, i.e. different distribution of

the samples.

To conclude this paper, we studied several factors that affect the stability

of selecting a subset of features. We empirically prove that the stability is dataset

dependent, yet not completely algorithm independent. We found that the dimen-

sionality and the sample size of the dataset have significant impact on the selection

stability. The larger sample size has a positive impact while a larger dimensionality

negatively impacts stability. We found that with a large enough sample size, the

impact of dimensionality vanishes. Sample size and dimensionality, aside, the un-

derlying distribution of the dataset plays an important role in stability. We found

that the fold, with no overlap with other folds, tends to have different relevant fea-

tures even when this fold is sampled from the same dataset. In addition, we studied
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the impact of the number of selected features k on the stability. We found that

determining k that is close to the optimal number is an important key to reflect the

ultimate stability of the algorithm. Finally, we discuss the different behaviors of the

feature selection algorithms on datasets with different characteristics. We showed

that Fisher is less sensitive to the characteristics of the dataset when it provides

good stability with the three groups of the datasets.
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Table 4.1: Datasets statistics

Dataset Name #Samples n Dimensionality m #Classes

first group

1 CLL-SUB 111 11340 3
2 GLA-BRA 180 49151 4
3 TOX 171 5748 4
4 GLI 85 22283 2
5 PRO-CAN 171 11302 4

second group

1 ovarian-gilks 23 36534 2
2 headneck-pyeon-2 23 54675 2
3 oral-odonnell 27 22283 2
4 leukemia-wei 27 21481 2
5 renal-williams 29 17776 2
6 colon-watanabe 30 54675 2
7 colon-laiho 31 22283 2
8 lung-bild 33 54675 2
9 pancreas-ishikawa 36 22645 2
10 breast-farmer 37 22215 3
11 lung-barret 39 22283 2
12 sarcoma-detwiller 40 22283 2
13 prostate-true-2 40 12783 2
14 lymphoma-booman 40 14362 2

third group

1 breasttissue 106 9 6
2 dermatology 358 34 6
3 ecoli 336 7 8
4 glass 214 9 6
5 heart 270 13 2
6 iris 150 4 3
7 liver-disorders 345 6 2
8 post-operative 87 8 2
9 soybean 47 35 4
10 swissbank 200 6 2
11 wdbc 569 30 2
12 wine 178 13 3
13 yeast 205 20 4
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Table 4.2: The stability of the five feature selection algorithms vs. the sample size
and the dimensionality
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Chapter 5

SUPERVISED LOW RANK MATRIX APPROXIMATION FRAMEWORK FOR

STABLE FEATURE SELECTION

As it was shown earlier, the stability of feature selection algorithms is mostly affected

by certain dataset’s characteristics. These characteristics include dimensionality m,

sample size n and different data distribution across different folds. Thus the stability

issue tends to be data dependent. This fact motivated this work to cure the instability

of the algorithm by preprocessing the dataset rather than proposing a new selection

technique.

Data noise is one of these undesired characteristics of the datasets. Unfortu-

nately, most of high dimensional datasets, e.g. microarray, are extremely noisy [49]

which degrades both the stability and the learning performance of the method [66,

49]. Therefore, reducing the level of noise is indispensable step toward more stable

and accurate algorithms. However, noise reduction may lead to information lose if

Figure 5.1: Supervised vs. unsupervised noise reduction.

Plot (a) is the original synthetic data Dsyn1, plot (b) shows D̂syn1 which is the
dataset Dsyn1 after adding random noise, plots (c) shows the SVD low rank

approximation for D̂syn1 without considering the class label, and plots (d) shows

our contribution of supervised low rank matrix approximation of D̂syn1. Instances
in plot (d) is linearly separable while (c) is not.
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Figure 5.2: The proposed framework for supervised low rank matrix approximation
SLRMA . g(·) is a low rank approximation method and f (·) is a feature selection
algorithm that selects subset of features F’.

we ignore the class label in case of labelled data. In order to improve stability and

learning performance, we should reduce the noise in a supervised manner. In this

work, we propose a supervised noise reduction framework using low rank approxima-

tion techniques prior to feature selection step which proved to significantly improve

stability and classification accuracy with different kind of datasets. To reduce data

noise, we used two well-known low rank approximation techniques: Singular Value

Decomposition SVD and Non-negative Matrix Factorization NMF.

5.1 Data Noise

Usually real-world datasets are corrupted by noise. Data noise is defined as the

undesired data that interfere with the desired data[7]. The existence of noise is ubiq-

uitous; therefore, reducing the noise level in the data is an essential preprocessing

step in many domains including speech recognition, bioinformatics, image processing,

signal processing. In addition, it reduces the space needed to store the data, reduces

processing time, and improves learning performance etc. Thus, noise reduction not

only maintains the current amount of information but also benefits from cleaning

the data and discovers the hidden patterns.
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Data noise differ from one case to another. Some noise is due to imperfection inherent

in current technologies that collected the data. This kind of noise is known as techni-

cal noise. Technical noise was found to greatly degrade learning performance which

makes eliminating noise is one important step toward improving performance [66, 49].

Attribute noise is another type of noise that alters the values of the component of

the samples. It, also, could be due to irrelevant features within the data. According

to the definition above, the irrelevant features can be interpreted as noise. However,

in typical situations a feature can be partially relevant. In other words, a feature

that is relevant to certain classes is not necessarily relevant to others. Figure 5.11

illustrates the notion of the relevance and irrelevance. In that figure, features f1, f2

and f3 are relevant to Class 1 but irrelevant to Class 2 and 3. Similarly, f4, f5and f6

are only relevant to Class 2. Likewise, f7 and f8 only are relevant to Class 3. While f9

and f10 are irrelevant to all classes. Since these features are mostly irrelevant to most

classes they could be considered as noise associated to that class. Thus, reducing the

noise of a dataset while ignoring the class leads to information loss.

5.2 Low Rank Matrix Approximation

Low rank matrix approximation aims to find a low rank matrix X̂σr that approximate

the matrix X ∈ Rn×m. Using the Forbenius norm, it minimizes the difference between

these matrices as follows:

min ||X− X̂σr ||F ,

where r ≤ {n,m} is the rank of X̂σr . The subject of matrix approximation is

extensively studied [76, 2, 79]. There are different goals for those who apply matrix

approximation to their domains. These goals include storage reduction, improving

learning performance, improving computation efficiency, noise reduction, etc. For

these purposes different methods were used including Singular Value Decomposition

79



(SVD), Non-negative Matrix Factorization (NMF), and so on. In this work, we will

use these two well-known and widely used approaches as a noise reduction techniques

in order to improve feature selection stability and maintain classification accuracy.

Singular Value Decomposition

SVD aims to decompose the original matrix X as following:

X = UΣV T ,

where U is an n-by-n matrix, Σ is n-by-m diagonal matrix with non-negative values in

the diagonal, and V is an m-by-m matrix. The columns of U and V are called the left

and right singular vectors respectively, while the diagonal entries of Σ, {σ1, · · · , σr},

is called the singular values of X.

In the case of noise, the singular values of X are shifted uniformly [69]:

σ2
i = σ̂2

i + ξ2.

This causes the singular values of the matrix to be non-zero. So, it is quite popular

to reduce noise by eliminating lower singular values [5].

X̂σr = UrΣrV
T
r

Non-negative Matrix Factorization

NMF is unsupervised learning method in which non-negative matrix X is decomposed

into two non-negative matrices W and H.

X = WH

In order to find the optimal factorization for X, the following cost function is used:

min ||X−WH||F ,
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Although this cost function is widely used, it is not the only cost function. KL

divergence is widely used too. NMF is successfully applied in different domains

including text mining, natural language processing, image processing, information

retrieval, speech recognition, molecular pattern discovery, etc. Similar to SVD, NMF

reduces the noise and technological variation in the data [20].

5.3 Supervised Low Rank Matrix Approximation

As we discussed earlier, data noise can degrade learning performance and paralyze

even highly powerful methods. In microarrys, for instance, the noise found in different

gene arrays led biologists to false conclusions after much effort pursuing what they

believed to be an “Array of Hope”. This noise when discovered in 2003, the array

became “An Array of Problems” instead [49]. Thus, getting the noise out of gene

arrays [66] is a fundamental step toward more accurate and stable learning.

Different noise reduction techniques have been proposed as a preprocessing

step to clean the dataset in order to improve learning performance and minimize

the storage requirements without much loss of desired information. These reduction

techniques aim to reduce variation in the dataset but usually they ignore the class

label. A feature fi may contain high variation in its values. This variation maybe

considered noise if it is between instances from the same class. However, it will be a

useful variation if it is between instances belonging to different classes. In Figure5.11,

feature f1 has a large variation between instances belonging to Class 1 and others

that belong to Class 2 or 3. Existing noise reduction technique do not consider the

class label leading to huge transformations in the feature and thus loses essential

information embedded in the dataset. To overcome this shortcoming, we propose

to use two popular low rank matrix approximation techniques for supervised noise

reduction. In the experiment section we will show the benefit of using supervised
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technique compared to approximating the whole matrix without considering the class

information or approximating randomly partitioned matrix.

Supervised Approximation Framework - SLRMA

To formulate the problem, we assume X ∈ Rn×m and Y is a k − mode matrix

representation of the class label, where k is the number of classes. Yj,i = 1 if the

instance xj belongs to ith class and 0 otherwise. Also, we assume f (·) to be a feature

selection algorithm:

f (X,Y)→ {F′},

where F′ is a selected features subset. A typical low rank approximation method

g(·) is usually defined:

g(X, r)→ {X̂σr}, (5.1)

where r ≤ min{m,n} is a predefined lower rank and X̂σr is a low rank matrix that

approximate X. Although this approach is effective in terms of noise reduction to

some extent, it does not take class label into consideration which causes information

loss. It can not distinguish between features’ high variation due to noise or class

affiliation. Thus, we propose to reduce matrix noise by utilizing the class informa-

tion, see Figue5.2. This approach consists of two main steps. First, the dataset is

partitioned into k partitions, {X1, · · · ,Xk}. Xi contains instances, {x1 , · · · , xni},

that belongs to the ith class and ni is the sample size belong to that class. Then,

each Xi is passed to g(·) to reduce the rank to a predefined rank r generating X̂i,σr .

Thus, the proposed method becomes:

SLRMA(X,Y, g(·), r)→ {X̂σr},

instead of Equation5.1, which preserves the class information. Second step, we pass

the generated lower rank matrix to the feature selection method, f (X̂σr). Algorithm1
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shows how to generate the low rank matrix of X in a supervised manner. It iterates

from 1 through k. For each single iteration i, it generates ni-by-n matrix Yi, where

Yi
j equals 1 if xj belongs to the ith class and 0 otherwise. Next, it creates X̂i, a

ni-by-m matrix that contains the samples that belong to the ith class. Then, we use

g(·) to approximate X̂i. Finally, we combine all these sub-matrices approximations

to create a matrix X̂σr , where the operator ⊗ in Algorithm1 is a simple operator

that put each data sample in its original position as it was in original dataset X.

Algorithm 1: Supervised Low Rank Matrix Approximation SLRMA

input : X,Y, g(·), and rank r
output: X̂σr : Low Rank Matrix

for i← 1 to k do
Generate: Yi ∈ Rni×n, where

Yi
j =

{
1, xj belongs to ith class.

0, otherwise.

% Low rank approximation using instances
% that belong to ith class:
X̂i = Yi · X
X̂i,σr = g(X̂i)
% Rejoin the whole matrix
X̂σr = ⊗ X̂i,σr

Table 5.1: Datasets statistics

Dataset Name Type #Samples n Dimensionality m #Classes

1 BLOOD-89 Microarray 89 2759 2
2 SMK-CAN-192 Microarray 192 19993 3
3 warpAR10P Image 130 2400 10
4 warpPIE10P Image 210 2420 10

83



5.4 Experiments and Results

In this section, we conduct several experiments to demonstrate the effectiveness of the

proposed method in improving selection stability, maintaining classification accuracy

and selecting relevant features. The first experiment is conducted using synthetic

datasets to compare conventional, i.e. global, matrix approximation approach to the

proposed approach, i.e. supervised matrix approximation. The second experiment is

conducted on four real-world datasets; the first two are microarrays and the others

are face images datasets , see Table5.1 for datasets’ characteristics.

In real-world datasets, the relevant features are not given. Therefore, we are

not able to guarantee that this method is capable of selecting relevant features. So,

we conducted another extensive experiment using synthetic datasets. We generated

500 synthetic datasets with given relevant set of features Frel that is 25% of m. We

used five well-known feature selection algorithms: ChiSquare, ReleifF, Information

Gain, Fisher Score, and `1SVM. Also, we used Support Vector Machine (SVM) as a

classifier and Jaccard Index to assess the stability of the selection methods.

In this experiment, we utilized Singular Value Decomposition (SVD) and

Non-negative Matrix Factorization (NMF) to approximate the dataset in order to

reduce data noise. In our proposed approach(SLRMA(X,Y, g(·), r)), we chose g(·) =

{SVD,NMF}. Although we chose r = {1, 2, · · · , 6}, we show the results of r = {1, 2}

in this work because the higher the rank, the more similar the approximated matrix

to the original matrix. Thus, the stability tends to be either lower or no significant

improvement with higher ranks. It was found that the proposed approach signifi-

cantly improves selection stability and maintains classification accuracy compared

to the baseline method, the original matrix, and existing matrix approximation ap-
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proach where the class label is not taken into consideration. Also, we used the

synthetic datasets to elucidate the deficiency of the current approach with respect

to selection stability.

Model Selection Selecting an optimal rank r is an open problem. A higher r

makes the approximated matrix closer to the original matrix, while a smaller r

results in a larger reduction in noise. Thus we tried variety of r ranging from r = 1

to r = min{nc} where nc is the smallest number of samples that belong to one class

in that dataset. For example, the dataset BLOOD-89 has two classes the min{nc}

in this case is 42, which is the number of samples belonging to class 2. According to

the stability results shown in Table 5.2, we obtain the highest stability with r = 1

and r = 2. The rest of the results are omitted because they expectedly get closer

and closer to the original dataset due to higher r.

In terms of SVD, choosing r is usually based on the singular values σi. Where

σi = 0 is associated to data noise, thus, they are removed. In contrast, largest

singular values capture the desired information in the original dataset. Keeping

the largest singular values leads to aggressively cleaning the data. We plotted the

singular values and found that the difference between the first singular value σ1 and

σ2 is great, while the differences between any other consecutive values, for example σ2

and σ3, are slim. Thus, theoretically, choosing r = 2 is enough to capture significant

amount of desired information in X.

On the other hand, NMF groups the samples into r clusters. Accordingly,

choosing r = 1 will be optimal for supervised NMF since we assume that samples

from the same class belong to one cluster only.
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Supervised Approximation Framework - SLRMA

Using four real-world datasets shown in Table 5.1, we generated four approximated

matrices out of the original dataset X using SVD and NMF each with rank r = 1

and r = 2, producing X̂σ1 and X̂σ2 for each method. Then, we run each of the

subject algorithms, using 10-fold-Cross-Validation technique holding one fold each

time as a validation set and the rest as the training set. Our proposed approach, as

illustrated in Table 5.2, significantly improves the stability compared to using the

original dataset in all cases except in one case, where the difference between our best

result and the original is 0.01%. In addition, regardless of which reduction technique

is used, supervised noise reduction was able to improve the stability by an average

range from 46% to 61.54%. In addition, the proposed method maintains the the av-

erage accuracy as the baseline method which indicates that the selected features were

informative as well which gives the superiority to the supervised approach because

it select stable and accurate features, see Table5.3.

It is found that both SVD and NMF improve selection stability while main-

taining classification accuracy, yet, SVD outperforms NMF on average. Thus, if a

practitioner aims to improve stability and maintain accuracy, SVD can be the first

option. On the other hand, aggressive rank reduction tends to give better results in

terms of stability.

The Precision of Selecting Relevant Features

It is a known fact that there might be different subsets of features that are equally

good in terms of classification accuracy. However, these subsets might not be as

equally relevant. Therefore, we might select a particular subset over and the overs
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but it is not the most relevant one. In this case, we improve stability and maintain

reasonable accuracy, yet, we are not choosing the most relevant subset. This degrades

the quality of further domain analysis. Thus, it is important to show that SLRMA

framework selects not only a stable but also relevant subset of features.

In this experiment, we conducted another extensive experiment using syn-

thetic datasets. We generated synthetic data with dimensionality m = {10, 20, 30,

. . . , 500}, fixed sample size n = 100 and binary class label. Of each dimensionality,

we generated 10 datasets. Thus, the total number of datasets is 500. We chose

mrel = 0.25 · m. In other words, the number of relevant features is 25% of the

total number of features m. Also, to simulate the real-world situations, we intro-

duced random noise to each data sample Xα
i = Xi + αN (µ, σ), where µ = 0 and

σ = |max(X)|. The level of noise α = {0, 0.3, 0.7, 1}. α = 0 means there is no

introduced noise, hence, we use the original data. In addition, we introduced class

noise η = {5, 10, 20, 30, 40, 50}%. This means, we randomly misclassify η% of the

class labels. Here, η = 50% is equivalent to random labeling. Since we are given the

relevant feature set Frel, we evaluate the precision of selecting relevant features using

Eq(5.2), where Fsel is the set of selected features and |Frel| = |Fsel| = mrel.

P =
|Frel ∩ Fsel|

mrel

(5.2)

Since the results are very consistent across different dimensionalities, we

show only results corresponding to η = 5% and η = 30% and dimensionality

m = {10, 220, 430, 500}. Other results with different m and η values are omitted

since the shown ones are representative. The figures from Figure 5.3 to Figure 5.10

illustrates the results for Fisher score, Chi Square, Information Gain and ReliefF

respectively. `1SVM was omitted here since it failed miserably in selecting relevant
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Figure 5.3: Fihsher Score, misclassification Rate η = 5%

Figure 5.4: Fihsher Score, misclassification Rate η = 30%

Figure 5.5: Chi Square, misclassification Rate η = 5%

Figure 5.6: Chi Square, misclassification Rate η = 30%
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Figure 5.7: Information Gain, misclassification Rate η = 5%

Figure 5.8: Information Gain, misclassification Rate η = 30%

Figure 5.9: ReliefF, misclassification Rate η = 5%

Figure 5.10: ReliefF, misclassification Rate η = 30%
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features in all cases. I show results correspond to misclassification rate, η equals

5% and 30% respectively.Each figure contains four plots that correspond to the di-

mensionality. The y-axes of each plot is the precision of selecting relevant features

Eq(5.2). the x-axes, on the other hand, contains four groups of bars correspond to

the sample noise α. The black bar represents the original dataset. The gray bar

represents the our method, SLRMA. And the white bar represent the unsupervised

noise reduction.

The results shown in the Figures (5.3-5.10) demonstrate the superiority of the

proposed method over the baseline methods (i.e. without reduction or unsupervised

reduction) in selecting relevant features. Unsupervised noise reduction was not better

than random selection since it is always around 20% or less precision, which is similar

to the ratio of mrel to m. Chi Square and Information Gain behaved similarly,

they could not perform selection in case of unsupervised noise reduction since the

reduction significantly reduced variance between classes.

It is noticeable that when η equals 30%, the algorithms failed to select relevant

features in the baseline approach. Unlike SLRMA where it was able to retrieve very

large portion of the relevant features comparing to the baseline method even with

the existence of high level of misclassification and data noise, Figures (5.6,5.8).

Each algorithm, on the other hand, was able to select more relevant features

when η = 5% than η = 30%. Expectedly, the precision was gradually reduced from

η = 5% to η = 40%, while η = 50% was almost random due to random labeling.

Chi Square and Information Gain behaved similar to each other in precision. It

was noticed that these algorithms with SLRMA framework was able to significantly

improve precision when high level of class noise η exists comparing to both no or

unsupervised noise reduction. From the results, we observe that Fisher Score is resis-
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tant to both sample noise and class noise, Figures (5.3and 5.4). ReliefF, Figure 5.9

is similar to Fisher Score when η is low. However, when η is high and with α ≥ 30%,

ReliefF with SLRMA framework did not perform any better than no or unsupervised

noise reduction, Figure 5.10. Yet, ReliefF still can distinguish relevant features if the

sample noise is small even with existence of high level of misclassification.

From these results we can draw interesting conclusions. First, the accuracy

of these selected subsets were comparable but why this is the case if the sets were

not equally relevant? The answer could be due the argument that all we need to

achieve high accuracy is few relevant features, not all or even large number. Although

it is desired to perform good even with existence of irrelevant features, this will

degrade the quality of further domain analysis. Also, we can say that Fisher score

is trustworthy methods comparing to others since it shows strong resistance against

sample and class noise.

Further Experiments and Discussion

We would like probe further what are the determining factors attributed to selection

stability and performance improvement. Since supervised approximation divides the

training data into partitions based on class labels, we naturally question (1) if the

use of the label information would make any significant difference with respect to

unsupervised approximation, and (2) if partitioning the training data into smaller

sizes would make any difference.

Supervised vs. Unsupervised Approximation To answer the first question,

we conducted controlled experiments using synthetic data Dsyn1, Figure 5.11, which

has two features and two classes. Figure 5.11(a) shows that these two classes could

be linearly separable with some outliers. f1 is relevant while f2 is not. Then, we
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applied data noise on Dsyn1 to generate D̂syn1 as shown in Figure 5.11(b). Now, our

goal is to reduce the introduced noise to D̂syn1 whilst maintaining the same level

of class separability as in the original dataset Dsyn1. We approximate D̂syn1 using

SVD, Figure 5.11(c). The approximated matrix is not linearly separable. Similarly,

we apply our SLRMA to D̂syn1. Figure 5.11(d) shows the approximated data that

reveals separability inherited from Dsyn1. Therefore, utilizing the label information

significantly helps clean the data, leading to better separable classes.

We generated another synthetic data Dsyn2, Figure 5.12, with similar charac-

teristics to Dsyn1. The two classes in Dsyn2, Figure 5.12(a), are linearly separable. f1

is relevant, i.e., it could linearly separate the two classes, while f2 is not. Most feature

selection algorithms can distinguish the relevant feature easily in such clean data.

The question is whether a relevant feature is distinguishable after noise reduction.

To verify this, we applied SVD on Dsyn2 with r = 1 in supervised and unsupervised

manner. Figure 5.12(b) shows the approximated matrix using the unsupervised ap-

proach. The two classes are linearly separable, and the two features are equally good

in terms of class separation. In other words, f1 and f2 became equally relevant after

we applied unsupervised SVD, which is not the case in Dsyn2. Figure 5.12(c) shows

the resulting data from applying supervised SVD on Dsyn2. The approximated ma-

trix using the supervised approach has the same identity as the original matrix in

terms of feature relevancy. f1 is relevant, thus can linearly separate the classes, while

f2 remains irrelevant. This significantly degrades the selection stability.

We conducted another experiment with unsupervised noise reduction on real-

world datasets in Table 5.1, and the five feature selection methods explained earlier.

Because existing approximation approaches do not consider samples’ affiliation, they

do not preserve the class information and do not preserve the relevance score for
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Figure 5.11: Plot (a) is the original synthetic data Dsyn1, plot (b) shows D̂syn1 which
is the dataset Dsyn1 after adding random noise, plots (c) shows the SVD low rank

approximation for D̂syn1 without considering the class label, and plots (d) shows our

contribution of supervised low rank matrix approximation of D̂syn1. Instances in
plot (d) is linearly separable while (c) is not.

each feature that can cause instability in the feature selection process. Hence, the

unsupervised approach either significantly degrades the selection stability, or worse,

it was not able to distinguish the relevant features and thus did not assign any score

to the features. The results are not presented due to the page limit.

Partitioning One might argue that this improvement of selection stability is due

to lower rank inherited in each fold of the dataset. Hence, we conducted another

experiment to show that the improvement is from the supervised noise reduction. In

this experiment, we randomly selected the folds regardless of their class affiliation. In

a supervised manner, we partition the dataset using the class label Y but in this case

we replace Y with a randomly generated target, Y′. So, the partitioning is random,

while keeping the original class label Y for feature selection and validation steps.

We find that random partitioning performs worse than using the original dataset in

all cases, and almost as poorly as the unsupervised matrix approximation. We thus

conclude that the proposed approach is a promising way to preprocess the dataset

to improve selection stability.
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Figure 5.12: Plot (a) is the original synthetic data Dsyn2, plot (b) shows Supervised
SVD for Dsyn2, and plots (c) shows supervised SVD of Dsyn2

Table 5.2: Jaccard index stability results

Algorithm Datasets X
SVD NMF

X̂σ1 X̂σ2 X̂σ1 X̂σ2

ChiSquare

BLOOD-89 0.476 0.662 0.673 0.422 0.620
SMK-CAN-192 0.221 0.604 0.741 0.619 0.577
warpAR10P 0.230 0.435 0.238 0.382 0.351
warpPIE10P 0.466 0.273 0.248 0.546 0.326

ReliefF

BLOOD-89 0.286 0.874 0.750 0.982 0.801
SMK-CAN-192 0.439 0.893 0.843 0.978 0.841
warpAR10P 0.426 0.690 0.831 0.549 0.800
warpPIE10P 0.695 0.520 0.686 0.461 0.565

InfoGain

BLOOD-89 0.475 0.662 0.656 0.478 0.599
SMK-CAN-192 0.256 0.896 0.719 0.610 0.676
warpAR10P 0.237 0.336 0.261 0.331 0.383
warpPIE10P 0.545 0.330 0.442 0.584 0.429

Fisher

BLOOD-89 0.300 0.903 0.799 1 0.721
SMK-CAN-192 0.374 0.825 0.812 0.956 0.728
warpAR10P 0.615 0.893 0.832 0.358 0.757
warpPIE10P 0.686 0.794 0.815 0.471 0.831

`1SVM

BLOOD-89 0.311 0.997 0.987 0.815 0.996
SMK-CAN-192 0.460 0.993 0.638 0.821 0.355
warpAR10P 0.820 1 0.907 0.989 0.904
warpPIE10P 0.703 0.993 0.928 0.800 0.911

Average 0.451 0.728 0.690 0.657 0.658
Average Improvement 61.54% 53.04% 45.79% 46%

Number of Max 1 8 3 6 2
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Table 5.3: kNN accuracy results

Algorithm Datasets X
SVD NMF

X̂σ1 X̂σ2 X̂σ1 X̂σ2

ChiSquare

BLOOD-89 0.42 0.51 0.59 0.55 0.6
SMK-CAN-192 0.65 0.63 0.59 0.63 0.65
warpAR10P 0.79 0.71 0.74 0.69 0.7
warpPIE10P 0.89 0.95 0.87 0.88 0.86

ReliefF

BLOOD-89 0.49 0.54 0.58 0.51 0.52
SMK-CAN-192 0.61 0.64 0.65 0.6 0.63
warpAR10P 0.82 0.66 0.67 0.57 0.68
warpPIE10P 0.93 0.93 0.92 0.9 0.92

InfoGain

BLOOD-89 0.42 0.51 0.59 0.51 0.59
SMK-CAN-192 0.59 0.61 0.67 0.63 0.65
warpAR10P 0.8 0.7 0.74 0.7 0.74
warpPIE10P 0.84 0.89 0.9 0.88 0.91

Fisher

BLOOD-89 0.51 0.59 0.65 0.53 0.59
SMK-CAN-192 0.57 0.64 0.6 0.62 0.7
warpAR10P 0.8 0.64 0.63 0.6 0.69
warpPIE10P 0.93 0.8 0.93 0.82 0.94

`1SVM

BLOOD-89 0.51 0.54 0.55 0.57 0.56
SMK-CAN-192 0.64 0.65 0.66 0.66 0.68
warpAR10P 0.7 0.67 0.69 0.68 0.69
warpPIE10P 0.81 0.87 0.89 0.8 0.88

Average 0.69 0.69 0.71 0.67 0.71

95



Chapter 6

LOCAL SVD FOR STABLE FEATURE SELECTION FOR CLUSTERING

6.1 Introduction

Data clustering is a challenging problem especially with the presence of huge dimen-

sionality. Usually, the number of relevant features to given clusters is very small

while the rest of the features are irrelevant. This problem (a.k.a. the curse-of-

dimensionality) not only degrades the clustering quality but also increases computa-

tional complexity. Therefore, feature selection for clustering is an indispensable step

to select relevant and eliminate redundant and irrelevant features [17, 25, 10]. The

goal of feature selection for clustering is to find the set of features that are relevant

to the underlying clusters in the dataset. One common approach, demonstrated in

Figure 6.1, is to (1) utilize a clustering method to generate clusters, then, (2) apply

feature selection method that guided by the generated clusters to select the relevant

features [64, 12].

To evaluate the quality of the selected features, most existing literature uses

the learning performance, i.e., accuracy of clustering unseen data. If the selected

subset is able to generalize on unseen data, the selection is considered to be good.

However, it is noticed recently that there might be several candidate subsets of fea-

tures, which might or might not overlap with each other, perform equally good on

unseen data [47, 73, 91, 1, 3]. This raises the following question: which subset we

should select? This problem is even more concerning in real-world applications due

to the existence of data perturbation and noise by nature. The data perturbation

might be in the form of new sample(s) introduced to the dataset. This leads to se-

lecting significantly different features each time we apply the same feature selection

algorithm on different sub-sampling of the dataset. In fact, selected features can

96



Figure 6.1: Conventional feature selection for clustering framework

define and interpret clusters[18, 97, 96]. If the selection is unstable, this infers dif-

ferent interpretations for the clusters. Each interpretation will correspond to one set

of features. Consequently, domain expert confidence in the feature selection method

degrades. Assume, for example, a microarray with high dimensionality m and n

samples, usually, n � m. Domain experts, biologists in this case, believe that the

number of genes (i.e. features) related to a certain disease is very small. Also, this

set of relevant genes should not change dramatically from patient to another [92, 1].

What is noticed is that when we apply feature selection on samples randomly drawn

from the same dataset, the selected feature subsets are very inconsistent even if the

overlap of the sub-samples is as high as 80%. This is called selection stability or sta-

bility of feature selection algorithms. The selection stability has drawn an increasing

attention lately [47, 73, 91, 1, 92, 3, 88]. It is defined as the sensitivity of the selected

subset to perturbation on the dataset. It is important to note that improving stability

without considering the learning performance is not desired. For example, we can

just select the same set of features each time. This will be very stable selection,

but the performance will be bad. Thus, the goal is to stabilize the selection while

maintaining reasonable performance.
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Challenges and Contributions

The existing work that tackles the selection stability problem mostly studies the

stability of feature selection for classification. To the best of our knowledge, this is

the first work that investigates the stability of feature selection for clustering. In the

case of unsupervised learning [17, 25], it is even more challenging to decide whether

the selection stability is desired property. In other words, we don’t know how many

underlying hypotheses in the data. Therefore, any set of features may produce good

clustering that satisfies a hypothesis. The evaluation of the selected features, in this

case, totally depends on the hypothesis of the clusters. For example, a microarray

that was harvested for a Colon cancer may contain other human characteristics or

diseases that are characterized by different sets of features. In case of supervised

learning, we are given the hypothesis, say Colon Cancer. Thus, the selected set

of features must satisfy Colon cancer hypothesis, although this hypothesis may not

be the only or even the dominant one. In unsupervised learning, this is even more

challenging due to (1) the potential existence of several hypotheses embedded in the

huge dimensionality of the dataset and (2) the lack of domain knowledge regarding

these hypotheses which might be helpful to guide the search of the relevant features

to this exact hypothesis.

Motivated by the aforementioned facts, we investigate the selection stability

for clustering. Noteworthy, we do not aim to improve clustering quality in this work.

Instead, we assume we obtain good clusters and we want to stabilize the selection

that maintains the quality of clusters. In this paper, we propose a framework that

can help the a family of feature selection algorithms for clustering, demonstrated

in Figure 6.1, to obtain stable and relevant features to a certain hypothesis. This

framework involves low rank matrix approximation and approximates each cluster
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separately. We call this framework Local Singular Value Decomposition (LSVD).

The idea behind the local approximation is that each cluster should be independently

dealt with in the preprocessing step. SVD is known to reduce data noise by reducing

the variation of the samples. However, when we have more than one cluster in the

data, we want to reduce the variation within the cluster while elevating the variation

between clusters. The empirical results demonstrate the effectiveness of the proposed

method. LSVD was able to significantly improve the stability while maintaining the

clustering quality.

The remaining of this paper is organized as follows: we introduce the notion

of stability for feature selection for clustering. Then, we define and formulate the

problem. Next, the proposed LSVD framework is introduced. Finally, we empirically

prove the effectiveness of LSVD in stable and accurate selection.

6.2 Selection Stability for Clustering

Feature selection consists of two steps: (1) feature space search and (2) feature

evaluation [55, 56]. The goal is to find a small subset of features that is relevant

to the defined hypothesis while removing irrelevant or redundant ones. The feature

evaluation is quite straight forward when the class label is available. For example,

the correlation matrix between the features and the class label could be one possible

way to guide the feature selection. However, for the clustering problem, we do not

have the class label, which making feature evaluation be a challenging problem.

A widely used way to do feature selection for clustering is to first extract

clusters then apply feature selection that is guided by the extracted clusters [10,

64, 83]. Approaches in this family have several drawbacks. First, there might be

more than one hypothesis embedded in the high dimensional dataset. The desired
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or dominant hypothesis is not known, hence, it is not easy to be evaluated without

domain knowledge. Second, for each hypothesis there could be several candidate sets

of features that seem equally good in terms of clustering performance, arising the

issue of selection stability. If the feature selection method is able to select similar

sets each time with the existence of data perturbation, the method is called stable.

Otherwise, it is unstable, which degrades confidence in the selected features because

the method selects different set each time.

Accordingly, the selection stability of unsupervised learning has one more

aspect than that of supervised learning. This aspect is the potential of existence of

different unknown hypotheses while lack of knowledge about the desired one(s). For

example, in subspace clustering, we aim to find all existing clusters in the dataset

even if the clusters belong to different hypotheses and defined by different sets of

features [4]. However, in this work we do not consider this case since our focus is

the stability of feature selection. Therefore we aim to find only one hypothesis and

select the set of features that form the clusters belong to this hypothesis. We extract

k clusters then we need to select features that are able to accurately assign unseen

samples. In addition, we aim to stabilize the selection of the features that form the

extracted clusters.

6.3 Problem Statement

Let F = {f1, f2, . . . , fm} be the feature set where m is the number of features and

X = {x1,x2, . . . ,xn} ∈ Rn×m be a given data set with n data points where n ≤ m.

One significant data mining task involving X is data clustering. The goal is to

group similar samples in one cluster while dissimilar sample are in different clus-

ters. Formally, we need to maximize the within-cluster similarity and maximize the

between-clusters similarity.
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Most of existing clustering algorithms cannot handle high-dimensional data

effectively due to the curse of dimensionality and the presence of a large number

of irrelevant and redundant features can further mislead the clustering algorithms.

Therefore, feature selection is an indispensable step. For supervised problems, the

class label guides the selection since we have a way to measure the relevancy score.

Therefore supervised feature selection is formally stated as:

f(F ; X,y)→ {F ′} (6.1)

where f(·) is a feature selection criteria and y is the class label. However, for the

clustering problem, we don’t have the class label y. Thus, a clustering technique h(·)

is utilized to generate y with a predetermined number of clusters k:

h(X, k)→ y (6.2)

With the generated label, we can do unsupervised feature selection in a su-

pervised manner as demonstrated in Figure 1 and we can substitute the generated

clusters y from Eq(6.2) into Eq(6.1). Combining these two equations results in the

following formal equation for feature selection for clustering:

f(F ; X, h(·))→ {F ′} (6.3)

Eq(6.3) is likely to find many sets of features that seem equally good and

severely suffer from the selection instability problem. Therefore our goal is to develop

a framework to make Eq(6.3) more stable while maintaining the clustering quality.
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6.4 Framework for Stable Feature Selection for Clustering

The stability of supervised feature selection algorithms has gained an increasing

attention in last few years. It is defined as the sensitivity of the selection to data

perturbation. However, selection stability with the absence of the class label makes

this problem even more challenging. We propose a stable feature selection framework

that aims to provide more stable selected subsets.

A common feature selection for clustering approach first extracts class labels

for the data samples by clustering techniques, mostly k-means. Then, these labels,

i.e. clusters, would be used as class labels in the conventional supervised feature

selection.

The proposed framework is demonstrated in Figure 6.2. We begin by extract-

ing clusters using any desired clustering technique, k-means in this work. Then, local

matrix approximation using SVD is performed on the dataset using the generated

cluster affiliation. By local we mean that each set of samples that belong to one clus-

ter will be approximated independently. The approximated clusters will be combined

to obtain the new approximated dataset. To this end, we obtained an approximation

of the original dataset, yet, the clustering we have was obtained using the original

matrix which might do not hold accurately after the approximation. Therefore, one

more clustering of the samples based on the approximated matrix is performed. Fi-

nally, we perform feature selection using any appropriate algorithm. An experiment

we conducted indicates the importance of this step, otherwise, the clustering may not

be accurate. We discuss this more in the discussion section. Therefore, the proposed

framework can be formulated as follows:

f(F ; X, h(·), g(·))→ {F ′} (6.4)
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Figure 6.2: The proposed framework for stable feature selection for clustering.

where g(·) is the approximation method, which is SVD in this work and h(·) is

k-means.

Assume that these n data points can be assigned to k clusters and C =

{c1, c2, . . . , ck} is the cluster set. We use y ∈ Rn to represent clustering affiliation of

data points in X where y(i) = j if the i-th data point xi belongs to the j-th cluster

cj. Let Xj ∈ Rnj×m(1 ≤ j ≤ k) be the matrix including data points from the j-th

cluster cj where nj is the number of data points in cj. In this paper, we assume that

each data point only belongs to one cluster thus
∑k

j=1 nj = n.

The Singular Value Decomposition SVD of the matrix X is given by:

X = UΣV> (6.5)

103



where columns of U and V contain the left-singular vectors and right-singular vectors

of X respectively, and Σ is a diagonal matrix and the diagonal elements are singular

values of X.

While the truncated SVD with rank r ≤ min(n,m) is:

X̂ ≈ UrΣrV
>
r (6.6)

where rank(X̂) = r. Ur and Vr contain the first r columns of U and V respectively,

while Σr contains the first r columns and r rows of Σ.

The goal in data clustering is to group similar samples into one cluster while

dissimilar samples in different clusters. In other words, the within-cluster similarity

is maximized while minimizing the between-clusters similarity. It is very helpful

to keep this notion in mind when we preprocess and prepare dataset X for further

learning tasks, say feature selection. It is more meaningful to treat different clusters

separately. In this work, the ultimate goal is to select stable features with the absence

of class label, i.e. stable feature selection for clustering. Our proposed framework

begins by generating the cluster affiliation y for each sample using k-means. Then,

similar to [75], we approximate each cluster separately using SVD. We call this step

Local Singular Value Decomposition (LSVD). Next, we cluster the new approximated

matrix X̂r using k-means one more time to obtain a new clustering that will be

used as the label in the feature selection step. Figure 6.2 illustrates the proposed

framework. Using LSVD performs noise reduction on each cluster separately due to

keeping the largest singular values while eliminating small ones [5, 69].

In LSVD we compute the low rank approximation for each cluster matrix,

i.e., Xj(1 ≤ j ≤ m) and we further assume that the rank for the j-th cluster matrix

Xj is rj where rj should be less than or equal to min(nj,m). In this work, we will

make r1 = r2 = . . . = rk to avoid potential over-fitting. Then we denote the rj low
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rank approximate of the j-th cluster matrix Xj as,

Xj ≈ UjΣjV
>
j (6.7)

where Uj and Vj include the first rj left-singular vectors and right-singular vectors

of Xj respectively, and Σj is a diagonal matrix that contains the first rj singular

values of Xj.

After approximating each cluster, we can recombine the k approximated clus-

ters to form the new approximated matrix X. To distinguish between the original

matrix X and its truncated approximation with rank r =
∑k

j=1 rj, we call the latter

X̂r. The LSVD can be algebraically formulated as follows:

X̂r = ÛrΣ̂rV̂
>
r , (6.8)

where Ûr, Σ̂r and V̂r are defined as,

Ûr =



U1 0 · · · 0

0 U2 · · · 0

...
...

. . .
...

0 0 · · · Uk


(6.9)

Σ̂r =



Σ1 0 · · · 0

0 Σ2 · · · 0

...
...

. . .
...

0 0 · · · Σk


(6.10)

V̂r = [V1,V2, . . . ,Vk] (6.11)
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6.5 Experiment

In order to verify the effectiveness of the proposed framework, an extensive exper-

iment was conducted using four microarray datasets and five well-known feature

selection methods. The statistics of the datasets are shown in Table 6.1. Originally,

these datasets have binary class, y = {1, 2}. Although we don’t consider these classes

in our experiment since we are tackling a clustering problem, we consider this to be

domain knowledge about the given datasets only for the evaluation purpose. Based

on this knowledge, we know that there are at least two clusters in the dataset, which

facilitates the quantification of the clusters. Therefore we fix k=2 in this work.

Table 6.1: Datasets statistics

Dataset Name #Samples n Dimensionality m

1 BLOOD 89 2759
2 SMK-CAN 187 19993
3 Colon 62 2000
4 Leukemia 72 12582

We choose five well-known feature selection methods: Fisher Score [21], Infor-

mation Gain [14], Chi Square [86], ReliefF [86] and `1SVM [11]. The purpose of this

evaluation is to demonstrate that our proposed framework can improve the stability

of these chosen feature selection methods while maintain their performance.

The Evaluation: We apply the same feature selection algorithm several times, say

l times, on l−sub-sampling of the data. We used Cross-Validation (CV) to generate

the l-fold in this paper. The stability, then, will be the average pairwise similarity

of the selected subsets. The more similar these subsets are, the more stable the

algorithm is. There are different measurements to evaluate the stability. For more
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about stability evaluation we refer the reader to [47]. In this work we use Jaccard

Index (J(·)) to evaluate the overlap between the selected subsets. We generate l-

folds of X using cross-validation, where l=10. Then, l-1 folds are used as training

set 1 fold is kept for validation. f(·) selects l subsets of features from each training

set. We denote the l selected subsets of features F = {F ′1,F ′2, . . . ,F ′l}.

J(F ′i ,F ′j) =
|F ′i ∩ F ′j|
|F ′i ∪ F ′j|

S(F) =
2

l(l − 1)

l−1∑
i=1

l∑
j=i+1

J(F ′i ,F ′j)

S(·) is the average pairwise Jaccard Index which is the stability of the selec-

tion. In addition to the stability, the clustering quality is very important aspect. In

fact, high stability without reasonable clustering ability is not desired. Therefore,

we evaluate the ability of the selected feature subsets to cluster unseen samples. The

overall goal of the proposed framework is to improve stability while maintaining the

clustering quality. To ensure a fair comparison, X and y were only utilized in the

test stage. In other words, the approximated matrix X̂r and the second clustering

ŷ used only in the feature selection stage. This is due to the fact that the baseline

methods has neither X̂r nor ŷ.

The Baseline Methods: we compare our proposed framework against the existing

feature selection for clustering approach. Note that there are an iterative approaches

to do the generated clusters and feature selection in an EM manner. However we

do not consider them in this work since the stability of these methods is not well-

defined in the iteration process. Thus, we cannot fairly compare our method to these
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approaches. Also, iterative k-means is mostly randomized approach [10] which leads

to inconsistent clustering over iterations, hence, violating the essence of the stability.

Parameter Selection: There are several parameters that need to be selected in

this experiment. First, the number of selected features is still an open problem.In the

domain of genetic analysis (i.e. microarray), although the total number of features

is relatively large, the relevant features to certain hypothesis is usually small. Based

on preliminary experiment, we fixed the number of selected features to be 100 across

all the datasets.

Similar to the number of selected features, the matrix rank r = rank(X)

is another open problem. Keeping the largest singular values preserves most of the

information of the matrix while removing only a few of the very small singular values

generates an approximated matrix that is very close to the original one. Therefore,

the rank should be chosen carefully. To avoid of the rank selection problem, we select

rank that ranges from 2 to 40 in all datasets except Colon Cancer dataset where the

maximum rank is 32. We approximated each cluster separately. Hence, the rank

r1 and r2 for each cluster X1 and X2 will be ranging from 1 to 20. Accordingly,

rank(X) = r1 + r2.

Finally, the cluster quantification, k, is selected based on the assumption of

the domain knowledge since each dataset has originally two classes. Although we

do not consider the original classes neither in the training nor the testing stages, we

treat this as domain knowledge to choose the desired number of clusters. In this

experiment, we fix k=2. This is owing to the fact that we know that there exists at

least two clusters in each dataset.
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Results

It is important to state that this experiment aims to show that the proposed method

improves stability over the baseline methods whilst maintains the clustering perfor-

mance. Figure 6.3 to Figure 6.7 shows the results of the experiment where each row

of plots is an algorithm and each column is a dataset. Due to page constraints, we

omitted the results of Chi Square and Information gain since they are very similar to

the ones we show. The x-axis is the matrix rank r and the y-axis is the stability and

the clustering accuracy. The blue asterisked-line and the red plain-line represent the

stability of the proposed framework (LSVD) and the stability of the baseline method

respectively. On the other hand, the black circled-line and the black plain-line are

the accuracy of LSVD and baseline respectively.

In terms of clustering performance, we can see that proposed framework is

able to maintain the high accuracy of the traditional method or in most cases can

outperform it. The accuracy is not directly impacted by the matrix approximation

because we test the accuracy using the original dataset. However, it is indirectly

impacted due to the fact that the selection (i.e. the features were used in the test

phase) was done over the approximated matrix. In a few cases, as in Figure6.6

ReliefF with Leukemia, for example, LSVD accuracy was less than the baseline

accuracy. This is noticed a few times especially when the matrix rank is very small;

namely r ≤ 4. Yet, the proposed method outperforms the baseline method in most

cases.

On the other hand, the improvement of the stability can be clearly observed

in Figures (6.3 to 6.7). Particularly, we noticed the trend of the stability curve

in almost all cases. The stability is higher when the rank is small. This finding
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is reasonable owing to the fact that keeping only the largest singular values would

capture most of the useful information in the original dataset and would reduce the

data noise associated to the very small singular values. In most cases, the stability

improves significantly when r ≤ 10. The improvement rate is usually more than

50%. For example, Figure 6.3 with BLOOD dataset, the baseline stability is around

0.5 while stability of our method with r=2 is 1. This huge gain is consistent across

all the results.

In addition, we found the stability beyond r = 20 to settle around the stability

of the baseline method, which understandable since the approximated matrix became

closer to the full-ranked matrix X. With respect to each algorithm, `1SVM surpasses

the baseline method in all cases regardless of the value of r, yet, it is still generally

true that the smaller the r, the better the stability, Figure 6.3. Comparing to other

algorithms, `1SVM was mostly better in the stability gain even with very large rank

such as: r = 40. The remaining algorithms were comparable. We believe that the

reason behind the superior stability of `1SVM is the intrinsic of the `1SVM itself. It

basically aims to select features that are able to maximize the decision boundary be-

tween the two clusters using only a few samples; namely: support vectors. Although

these samples could differ with respect the folds, the sampling technique used in our

experiment has the ability to capture the underling distribution of the data which is

mainly characterized by the same or very similar subset of features.

To summarize the finding, our proposed method was very effective in terms

of both clustering performance and stable feature selection, Figure 6.3 to Figure 6.7.

These results indicate the significant contribution made to the feature selection for

clustering. In the discussion, we will explain other potentially interesting approaches

and their results.
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Figure 6.3: `1 SVM

Figure 6.4: Chi Square

Figure 6.5: Fisher Score

Figure 6.6: ReliefF

111



Figure 6.7: Information Gain

6.6 Discussion and Feature Directions

Anyone may argue that this framework could have been proposed differently. In fact,

that is totally true. We have tried different frameworks, yet, this one worked the

best. One possible framework could have been just ignoring the second clustering

(i.e. step (3) shown in Figure 6.2). Another way is to consider the iterative approxi-

mation and clustering instead of just one iteration 1. We evaluated both approaches

but neither one worked properly. The second clustering, which was done using k-

means over the approximated matrix, was necessary to guide the feature selection.

It was meaningless to select features from approximated matrix while the selection

guide is extracted from different matrix especially when we know that this was local

approximation. We found that the stability in the iterative clustering, on the other

hand, did not gain much after the second clustering (step (3)). This could be due to

inconsistency of k-means from one iteration to another.

Future directions include investigating subspace clustering stability. In ad-

dition, It is important to study and customize measurements to evaluate selection

stability for clustering. Stability measurements for clustering may consider the po-

1It is important to distinguish between this iterative approach and the other iterative approach
we mentioned the baseline method.
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tential existence of the unknown patterns in the data. This means, the evaluation is

not independent of the dataset as it is the case in existing measures including Jaccard

Index. In addition, it is important to define the stability with respect to the utilized

approach such as the iterative one.

6.7 Summary

In this work, we investigated the stability of feature selection for clustering. We

proposed a framework based on local low rank matrix approximation using SVD to

improve selection stability while maintaining clustering performance. The empirical

results demonstrated the effectiveness of the proposed method. We found that when

the matrix rank is smaller, the stability tends to be better and the accuracy mostly

maintained or improved over the traditional approach. The maximum stability gain

reaches 100% mostly when r=2 where it improved in some cases from 0.5 to 1. Also,

we found that when r is large enough, the stability does not gain much. Thus, to

insure stability gain, r should be small.
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Chapter 7

CONCLUSION

In this dissertation, I studied the stability of feature selection algorithms from data

perspective. Existing work tackles the stability from algorithm viewpoint. In order

to study the stability, we need first to evaluate the stability. We found that current

evaluation approach does not take data variance into consideration, thus, we pro-

posed a new approach that evaluates data similarity to perceive the relation between

data variation and selection stability. This awareness of the relationship gives us the

ability to fairly judge the stability of the algorithm.

In addition, we found the stability to be data-dependent. There are several

factors that were found to influence the selection stability. For example, data di-

mensionality, sample size, data noise, and so forth. Accordingly, these factors are

data dependent. Therefore, resolving the stability issue should begin by curing the

dataset itself.

We proposed a framework to reduce data noise before feature selection step.

It is known that reducing the matrix rank by decomposing the matrix while removing

the smallest singular values helps reducing data noise level. This reduces the vari-

ation between samples. Though, current approaches does not consider class label

which leads to reducing variation even between samples from different classes. This

is against the notion of the feature selection where we need to preserve the between-

classes variance at maximum possible level. We introduced SLRMA to reduce matrix

rank for each class independently. The empirical results demonstrated the effective-

ness this framework in three aspects. First, SLRMA was able to select very stable

feature subsets comparing to baseline methods. Second, the selected subsets were
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able to achieve even higher classification accuracy than baseline methods. Third,

it demonstrated high precision in selecting relevant features. Therefore, we known

concluded that the proposed framework was very effective in terms of preparing the

data for the feature selection task.

SLRMA, however, cannot handle unlabeled data. To overcome this limitation,

I proposed a framework that involves data clustering the applies local SVD on each

cluster independently. This framework called LSVD. Similar to SLRMA, LSVD

shows superiority in terms of stability and clustering accuracy. This is, to best of

our knowledge, is the first work that tackles the stability of feature selection for

clustering.

Discussion and Future Directions

With respect to the proposed methods, SLRMA and LSVD, theoretical justification

is necessary to explain why they in fact work. Also, these frameworks cannot handle

sparse datasets. They transform them into dense matrices. Thus, sparsefication step

is needed to maintain the sparsity level in the low ranked matrices.

There are still several approaches still need to be investigated in depth. For

example, the effect of different sampling strategies may vary in terms of stable results.

Leave-One-Out (LOO) sampling technique most likely produces more stable selected

subsets than Cross-Validation (CV), as the permutation level is larger in the latter

while the sample size is smaller. Another approach that requires more attention is

sample weighting which might be affective in terms of assigning samples from desired

regions more weight than those in undesired regions. Theoretically, it leads to less

variation in the training data.

As I mentioned earlier, I investigated the stability from data viewpoint. How-

ever, we can study the stability from slightly different perspective. For example,
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trading off between stability and accuracy. Although we believe there is know cor-

relation between them, it is possible to trade off after we acquire the selected subset

by replacing less frequent features with high frequent ones while the accuracy is not

greatly affected.
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