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ABSTRACT

A Pairwise Comparison Matrix (PCM) is used to compute for relative priorities of

criteria or alternatives and are integral components of widely applied decision making tools:

the Analytic Hierarchy Process (AHP) and its generalized form, the Analytic Network

Process (ANP). However, a PCM suffers from several issues limiting its application to

large-scale decision problems, specifically: (1) to the curse of dimensionality, that is, a

large number of pairwise comparisons need to be elicited from a decision maker (DM),

(2) inconsistent and (3) imprecise preferences maybe obtained due to the limited cognitive

power of DMs. This dissertation proposes a PCM Framework for Large-Scale Decisions to

address these limitations in three phases as follows.

The first phase proposes a binary integer program (BIP) to intelligently decompose

a PCM into several mutually exclusive subsets using interdependence scores. As a result,

the number of pairwise comparisons is reduced and the consistency of the PCM is improved.

Since the subsets are disjoint, the most independent pivot element is identified to connect

all subsets. This is done to derive the global weights of the elements from the original PCM.

The proposed BIP is applied to both AHP and ANP methodologies. However, it is noted

that the optimal number of subsets is provided subjectively by the DM and hence is subject

to biases and judgement errors.

The second phase proposes a trade-off PCM decomposition methodology to decom-

pose a PCM into a number of optimally identified subsets. A BIP is proposed to balance

the: (1) time savings by reducing pairwise comparisons, the level of PCM inconsistency,

and (2) the accuracy of the weights. The proposed methodology is applied to the AHP to

demonstrate its advantages and is compared to established methodologies.

In the third phase, a beta distribution is proposed to generalize a wide variety of

imprecise pairwise comparison distributions via a method of moments methodology. A Non-

Linear Programming model is then developed that calculates PCM element weights which

maximizes the preferences of the DM as well as minimizes the inconsistency simultaneously.
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Comparison experiments are conducted using datasets collected from literature to validate

the proposed methodology.
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Chapter 1

INTRODUCTION

1.1 Background and Rationale

Making a decision is one of the integral functions of management. The fast

changing business environment nowadays warrants managers to make swift decisions

without sacrificing quality. These managers deal with numerous types of decision making

problems: whether it would be strategic decisions on significant infrastructure

investments, tactical decisions like selecting the best supplier, and operational ones like

scheduling daily personnel. A majority of the decision problems have multiple decision

criteria. A simple example of a multiple criteria decision making (MCDM) tool is the

weighted sum method (WSM). However, according to Triantaphyllou (2000), the

estimation of criteria weights is highly subjective and thus would vary across different

decision makers (DM). One tool that addresses this weakness is called a Pairwise

Comparison Matrix (PCM). An m×m PCM denoted by A is a reciprocal matrix that is

composed of pairwise comparisons aij ∈ [1/9, 9] which represent the scaled relative

importance scores of element i as compared to element j. Typically, a PCM is generated

from repetitive pairwise comparisons elicited from a DM to estimate criteria or alternative

priorities. A widely applied MCDM methodology that uses PCMs is the Analytic

Hierarchy Process (AHP) developed by Saaty (1977). Since its development, the AHP has

been successfully implemented in a wide-range of MCDM problems specifically: supplier

selection (Gencer & Gurpinar, 2007; Ghodsypour & O’Brien, 1998), resource allocation

(Ramanathan & Ganesh, 1995), defense R&D selection (Greiner et al., 2003), information

systems outsourcing (Schniederjans & Wilson, 1991), marketing (Lu et al., 1994; Kwak et

al., 2005), facility location planning (Badri, 1999), product design (H. Wang et al., 1998),

the environment (Masozera et al., 2006) and education (Saaty et al., 1991) just to name a

few. Conversely, the AHP fails to account for the interdependencies of the criteria and

alternatives, and hence it assumes that all criteria and alternatives are independent. If left

unchecked, any DM using the AHP would then provide inaccurate decisions. To address
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this, the Analytic Network Process (ANP) has been developed by Saaty & Takizawa

(1986) as a generalization of the AHP. The ANP requires additional pairwise comparisons

to estimate the inner and outer dependencies of the criteria and alternatives. Although it

addresses the limitations of the AHP, the ANP still use PCMs which are faced with the

following issues: (1) numerous pairwise comparisons are required for decision making, (2)

inconsistent pairwise comparisons are obtained when numerous pairwise comparisons are

elicited from the DM and (3) pairwise comparisons may be imprecise due to the limited

cognitive powers of the DM. These limitations are explained in detail as follows.

To illustrate the issue of numerous pairwise comparisons, consider a PCM with m

elements. A total of m(m− 1)/2 pairwise comparisons are needed to obtain the weights of

the elements. Additionally, for the ANP, m2 comparisons are needed to estimate the inner

dependencies of the criteria. This could be a time consuming ordeal for any DM when m

is large. Saaty (1977) argues that the redundancy of the questioning process provides

weights which are much less sensitive to biases and judgement errors. As an example, in a

case study by Lin et al. (2008), it took two and a half hours on average to complete a

three-level AHP decision problem per DM and a total of 380 man-hours to complete all

pairwise comparisons. This could be greater for the case of the ANP. There are generally

three reasons why a decision maker (DM) is reluctant to complete the required

comparisons specifically: (1) there is insufficient time to complete all comparisons; (2) the

DM is unwilling to make direct comparisons of two alternatives and (3) the DM is unsure

of some of the comparisons (Harker, 1987a). In a Monte-Carlo simulation study (Carmone

et al., 1997), comparisons are deleted from large matrices and results show that at most

50% of the comparisons can be deleted without significantly affecting the weights of the

criteria. Furthermore, to obtain a reasonable and consistent PCM, Saaty (1977)

recommends that the number of criteria or alternatives within a PCM should only be at

most seven. Hence, any PCM with eight or more elements is considered large.

Unfortunately, lots of decision problems far exceed this maximum threshold. There exist

several articles that attempt to address the issue of numerous pairwise comparisons, one

2



of which are called decomposition methodologies (Shen et al., 1992; Islam et al., 1997a;

Triantaphyllou, 1995; Islam & Abdullah, 2006; Ishizaka, 2008, 2012). It is known that to

overcome the limited cognitive processing powers of a DM, a complex problem is

decomposed into smaller pieces to bring it within a DM’s cognitive ability (Wright, 1985).

When a PCM A of n alternatives is decomposed into k subsets, pairwise comparisons are

elicited only in those subsets. Since the dimensions of the decomposed matrices are

smaller than A, a reduction in the number of pairwise comparisons is realized.

Unfortunately, these methods are not without any disadvantages. Firstly, these

methodologies focus on decomposing PCMs for alternatives. Lots of pairwise comparisons

can be saved when these methodologies are extended to decompose the criteria PCMs

since both the AHP and ANP can have multiple criteria PCMs within the hierarchy or

network respectively. Secondly, when a PCM is decomposed into subsets, the obtained

relative weights of the elements are valid only within those subsets and the problem arises

when aggregating the results back to its global counterpart. As a result, a pivot element is

selected arbitrarily and assigned to all subsets and is used as a basis for comparing the

criteria across all disjoint subsets. The global weights can then be estimated as is done in

(Shen et al., 1992; Triantaphyllou, 2000; Ishizaka, 2012). Please note that pivot element

selection is a challenging issue as the decisions should consider reducing the number and

inconsistency of the pairwise comparisons. Thirdly, these methodologies lack guidelines to

assign PCM elements to respective subsets since they are done arbitrarily. This does not

guarantee that the elements within subsets are independent. Lastly, to the best of our

knowledge, the number of subsets is known as a prior and are subject to DM biases and

judgement errors.

The second weakness of using PCMs is attributed to the consistency of the

pairwise comparisons elicited from the DM when the number of elements within the PCM

is large. As the number of pairwise comparisons elicited from the DM increases, the

consistency of these comparisons is expected to be less reliable and results to inconsistent

decisions (Weiss & Rao, 1987). A performance metric called consistency index (CI) is

3



generally used to estimate the inconsistency of a PCM A (Saaty, 1977). The CI is

computed by obtaining the eigenvalue of the PCM using Eq. 1.1:

CI(A) =
λmax −m

m− 1
(1.1)

where m is the dimension of the PCM A and λmax is the maximal eigenvalue of matrix A.

The consistency ratio (CR) is the ratio of CI and RI and is computed using Eq. 1.2:

CR(A) =
CI(A)

RI(m)
(1.2)

where RI(m) is the random index obtained from the average CI of 500 randomly filled

matrices and is dependent on the value of the m. If a PCM A has CR < 10%, then A is

considered to have an acceptable level of consistency (Saaty, 1977). On the other hand,

the process of eliciting pairwise comparisons from the DM shall be repeated until a

consistent matrix is obtained. This limitation is evident in the same case study by Lin et

al. (2008) since it took 380 man-hours to complete all pairwise comparisons which included

repeats. There are extensive methodologies that focus on improving the consistency of a

PCM by changing pairwise comparison values individually (Zeshui & Cuiping, 1999; Cao

et al., 2008; Saaty, 2003; Beńıtez, Delgado-Galván, Gutiérrez, & Izquierdo, 2011; Beńıtez,

Delgado-Galván, Izquierdo, & Pérez-Garćıa, 2011). Upon executing these methodologies,

a more consistent PCM is obtained. Yet, these methods require a significant amount of

time to complete since a large PCM is required as input. Additionally, these

methodologies may alter the individual pairwise comparisons that greatly differ from the

original preferences of the DM. It is therefore evident that reducing the number of

pairwise comparisons and bringing it within the bounds of a DM’s cognitive ability would

be the only recourse to improve the overall consistency of the pairwise comparisons.

The third limitation of PCMs is attributed to the existence of uncertainty in the

elicitation process of the pairwise comparisons. Conventionally, crisp pairwise comparisons

are elicited from the DM to calculate the weights of the elements. Yet, these crisp values

may not be sufficient to model the presence of ambiguity (A. H. I. Lee et al., 2008) due to

the limited cognitive powers of DMs. To address this limitation, the concept of interval

4



judgements or interval pairwise comparisons is proposed in (Saaty & Vargas, 1987; Arbel,

1989). Upper and lower limit pairwise comparison values (LL,UL) are used to model the

imprecise pairwise comparisons. Essentially, these pairwise comparisons are treated as

random variables that follow a uniform probability distribution. Other stochastic

distributions have also been explored including the the triangular distribution (Banuelas

& Antony, 2006), binomial (Hahn, 2003) and the Cauchy distribution (Lipovetsky &

Tishler, 1999). Fuzzy sets are also proposed in studies done by (Mikhailov, 2000, 2004;

Dagdeviren & Yüksel, 2008; T. C. Wang & Chen, 2008). However, these methodologies

are not without any disadvantages. Firstly, in order to complete the decision making

process, weights need to be estimated from interval distributions. The conventional AHP

eigenvector method for calculating weights is no longer applicable when pairwise

comparisons are imprecise (Arbel, 1989). These stochastic AHP models need to explore

the use of methodologies like linear programming and simulation to calculate the weights.

Note, most stochastic AHP methodologies focus on either maximizing the preferences of

the DM only even if they may be inconsistent (Y. M. Wang & Elhag, 2007; Banuelas &

Antony, 2006), or minimizing the inconsistency only which may result the decision

deviated from the DM’s true preference (Y. M. Wang et al., 2005a; Mikhailov, 2000,

2004). A balanced consideration of both objectives is of necessity, especially, the use of

stochastic distributions may lead to increased inconsistency if the weights are not properly

derived from the pairwise comparisons. Another notable issue of existing literature is most

stochastic AHP methodologies employ one single type of pairwise comparison distribution.

Knowing DMs that use the AHP are faced with the issues on bounded rationality (Simon,

1955, 1972) that is, limited cognitive power to precisely depict the preferences over large

number of comparisons; it is desirable to provide DMs the flexibility to choose different

distributions for different pairwise comparisons during the elicitation process.

1.2 Research Contributions

To address these issues, this dissertation proposes a PCM framework which is

composed of three phases. The contributions of each phase is explained as follows:
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The first phase proposes a PCM decomposition methodology which addresses the

first two limitations of large-scale PCMs. To reduce the number and the inconsistency of

the pairwise comparisons of a large scale PCM, a binary integer programming (BIP)

model is developed to segment PCM elements into k mutually exclusive subsets. Since the

subsets are disjoint, a pivot element is selected that better connects all the disjoint

subsets. By assigning the pivot element to all subsets, all elements can then be compared

across all subsets. Then the global weights of the PCM elements can be estimated. The

methodology is applied to both AHP and ANP methodologies to demonstrate its

effectiveness.

However, the PCM decomposition methodology is limited in providing an

assignment of PCM elements into k subsets where k is elicited from the DM. Selecting a

specific value of k is subject to human bias and judgement error. Furthermore, the

proposed PCM decomposition methodology selects the pivot element greedily after

decomposition. This setup does not guarantee that the amount of dependence among

elements within a subset is minimized and in effect the number of pairwise comparisons

needed after decomposition. The second phase proposes a trade-off PCM decomposition

methodology by proposing a BIP model that is capable of: (1) solving for the optimal

number of subsets to segregate the PCM elements using the weighted preferences of the

DM, (2) optimally assigning all elements to all the PCM subsets and (3) selecting the

optimal pivot element for the calculation of the global element weights. The BIP

methodology is applied to AHP dataset and is compared to existing decomposition

methodologies.

The third phase addresses the third PCM limitation by proposing a stochastic

based decision making methodology that mainly addresses issue of imprecise pairwise

comparisons elicited from the DM. First, a beta distribution is proposed to model the

varying types of probability distributions for the different types of stochastic pairwise

comparisons elicited from the DM. The beta distribution has interesting properties, one of

which is its ability to model other probability distributions, and it is differentiable over its
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domain making it ideal for optimization algorithms. The method of moments

methodology is applied to fit any input pairwise comparison distribution into beta

distributed pairwise comparisons. Next, a Non-Linear programming (NLP) model is

developed to calculate crisp element weights that maximize the probability likelihood of

varying types of imprecise pairwise comparisons or in a sense the preferences of the DM

and at the same time minimizing the inconsistency of the pairwise comparisons.

1.3 Dissertation Organization

This dissertation is organized into six interrelated chapters that address the

aforementioned issues of the PCMs. The reader may encounter some level of redundancy

in the writing of this dissertation since chapters 3, 4 and 5 are written as standalone

papers for scholarly journals. Chapter 2 provides a generalized literature review on the

existing methodologies on large-scale PCMs. Chapter 3 presents the proposed PCM

decomposition methodology for large scale PCMs. The proposed methodology is applied

to both the AHP and the ANP methodologies. Furthermore, Chapter 4 presents the

trade-off BIP that addresses the limitations of the proposed PCM decomposition

methodology. Comparison experiments between the proposed methodology and existing

methodologies are conducted using datasets collected from literature. Chapter 5 presents

a stochastic decision making methodology that addresses the imprecise pairwise

comparison issue. Lastly, Chapter 6 presents the conclusions of this dissertation as well as

avenues for future research. The appendices summarize the proofs of propositions and

theorems and the Matlab code used to validate all methodologies.
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Chapter 2

REVIEW OF RELATED LITERATURE

This chapter provides a literature review on each of the PCM limitations.

Specifically, section 2.1 reviews existing literature that addresses the numerous number of

elicited pairwise comparisons. Section 2.2 reviews methodologies that address the

inconsistency component of PCMs while Section 2.3 summarizes existing literature on

imprecise pairwise comparisons. Additionally, Section 2.4 provides an analysis of the gaps

in literature.

2.1 The Curse of Dimensionality of PCMs

There exist methodologies that address the curse of dimensionality and can be

mainly classified as: (1) optimization methods and (2) heuristic methods. Each category

is reviewed as follows.

Optimization Methods

Optimization models start with a handful of pairwise comparisons only. The

remaining pairwise comparisons are estimated using optimization algorithms by taking

advantage of the matrix properties of A. Starting with a of minimum m− 1 comparisons,

a gradient descent method is proposed to select the next pairwise comparison that would

have the biggest information gain (Harker, 1987b). Additionally, stopping rules are

provided for terminating the pairwise comparison elicitation process. The methodology by

Bozoki et al. (2009) uses nonlinear optimization with exponential scaling to estimate the

missing pairwise comparisons from available ones. However, all possible combinations of

connecting paths must be considered. The number of combinations exponentially grows as

the number of missing comparisons increases and thus would be inefficient to solve. A

linear programming formulation by Triantaphyllou (1995) is used to estimate the missing

pairwise comparisons of A by considering two arbitrary subsets s1 and s2 of the criteria

PCM where s1 ∪ s2 6= ∅. By solving the linear programming problem, the global weights of
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the m criteria of the PCM can be estimated. Nevertheless, the algorithm only focuses on

dividing the PCM A into two subsets. If m is large, then the two subsets are still large.

Moreover, the error rates of estimating the missing comparisons are dependent on the

number of common elements of subsets s1 and s2. The smaller the s1 ∪ s2, the estimation

of the missing comparisons is expected to be less accurate and deviation error increases

significantly. In general, the challenge of optimization based approaches lies to the

scalability of the problem. That is, as most decision problems tend to have large number

of alternatives and criteria, these analytical approaches may suffer.

Heuristic Methods

There are several types of heuristic methodologies that propose to reduce the

number of pairwise comparisons elicited from the DM. Saaty (1990) proposes the idea to

group alternatives into subsets according to a common decision criterion. Islam et al.

(1997a) propose to assign the alternatives into k subsets based on a subjective absolute

scale in which alternatives that have close “magnitudes” are grouped together. By using

several pivot alternatives that is common to at most two subsets, the global priorities of

the alternatives are then obtained. Note, the definition of close “magnitudes” is not well

defined and is highly subjective. Furthermore, no guidelines are provided to determine

which alternatives are assigned to which subset. Shen et al. (1992) propose an arbitrary

decomposition of the alternative PCM into k subsets such that these k subsets have one

common pivot alternative. Pairwise comparisons are first performed on each subset and

local priorities are calculated. The global priority is then derived by using common pivot

alternative and local priorities of each subset. Ishizaka (2012) applies the same

decomposition algorithm on supplier selection. There exist models that use the concept of

a balanced incomplete block designs in which subsets of the PCM A are assigned to

different DMs treated as replicates in contrast to having all DMs focus on the large PCM

(Weiss & Rao, 1987; Takahashi, 1990). The computation of the global alternative weights

is done by using the geometric mean. To the best of our knowledge, no methodology has

tried to optimally assign PCM elements to subsets that minimize the number of pairwise
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comparisons, the amount of dependence among criteria and the consistency of the pairwise

comparisons. Any methodology that reduces the required number of pairwise comparisons

for a PCM is fruitful for wider adoption of the AHP and ANP methodologies (Ishizaka &

Labib, 2011). Triantaphyllou (2000) develops a method to reduce the number of pairwise

comparisons via the duality approach when the number of alternatives is greater than the

number of criteria plus one. The question asked to quantify a pairwise comparison is

“What is the relative importance of criterion C when it is compared with criterion C in

terms of alternative A?” Instead of pairwise comparisons on the alternatives, the criteria

are the subject of the questioning. This approach works due to the assumption that in a

given MCDM problem the criteria influence the perception of the alternatives and

vice-versa. On the other hand, it is only applicable for problems when the number of

alternatives is much greater than the number of criteria; otherwise the reduction on the

number of pairwise comparisons is not significant enough to warrant a change on the

classical method of questioning. Islam & Abdullah (2006) consider reducing the number

decision criteria by the nominal group technique. The decision criteria that have

insignificant weights are eliminated from future pairwise comparison elicitation process.

2.2 Inconsistencies of Large PCMs

There are several articles (Cao et al., 2008; Saaty, 2003; Beńıtez, Delgado-Galván,

Izquierdo, & Pérez-Garćıa, 2011) that focus on reducing the inconsistency of a given PCM

without reducing the number of pairwise comparisons. Beńıtez, Delgado-Galván,

Izquierdo, & Pérez-Garćıa (2011) propose a linearization heuristic that provides the

closest consistent PCM which is later extended to balance the consistency and the

preferences of the DM (Beńıtez, Delgado-Galván, Gutiérrez, & Izquierdo, 2011). Still,

upon applying these methodologies, the original pairwise comparisons significantly deviate

from the resulting consistent pairwise comparisons and thus would not reflect the actual

preferences of the DM. Ishizaka & Lusti (2004) implement an expert module that helps

the DM make a pairwise comparison one at a time within control limits. Decker et al.

(2008) suggest a method to identify erroneous pairwise comparisons using the geometric
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mean method and proposed changes to improve the consistency. Wu et al. (2010) present

to include scale and judgment errors into the PCM. By treating pairwise comparisons as

random variables, an estimator to calculate weights is proposed. However, these methods

focus on improving a given PCM which could be large. If the number of decision criteria

or alternatives is large, these heuristics would still take a lot of time to complete and are

more subject to human error when providing the initial pairwise comparisons.

Furthermore, due to their limited cognitive processing powers, the DMs are not expected

to provide consistent pairwise comparisons all throughout the pairwise comparison

elicitation process especially when the number of pairwise comparisons is large. Therefore,

a methodology that reduces the pairwise comparisons elicited from the DM would lead to

improved consistency levels since only a handful of pairwise comparisons are elicited and

would not be cognitively taxing to the DM.

2.3 Imprecise Pairwise Comparisons

The concept of interval pairwise comparisons or interval judgements is originally

proposed by Saaty & Vargas (1987). In this setup, instead of eliciting crisp pairwise

comparisons, the DM provides the minimum and maximum values that the unknown

pairwise comparison value can have. This elicitation process handles the ambiguity issue

of the pairwise comparison whenever the DM is unsure of its true value. In Saaty and

Vargas’s methodology, the calculation of global weights is done using a Monte Carlo

simulation methodology by sampling feasible crisp weights that satisfy all interval

judgements. However, this setup would not provide an optimal weight solution and is time

consuming. As such, Arbel (1989) proposes a linear programming model to estimate the

weights from interval judgements. However, Kress (1991) argues that the solution from

(Arbel, 1989) exists only in completely consistent interval judgements. To date, there

exist goal programming models to estimate global weights from interval pairwise

comparisons (Bryson, 1995; Xu, 2004; Y. M. Wang & Elhag, 2007; Z. J. Wang & Li,

2012). These methodologies seek an optimal set of satisficing weights which is calculated

by minimizing deviations of the optimal weights from all feasible interval judgements or in
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a sense maximizing preferences of the DM. Other similar goal programming variants

include min-max goal programming (Despotis & Derpanis, 2008), logarithmic goal

programming (Y. M. Wang et al., 2005b) and lexicographic programming (Islam et al.,

1997b). Unfortunately, the lexicographic programming model provides unreliable priority

estimates as shown in (Y. M. Wang, 2006). Hence, Y. M. Wang et al. (2005a) propose to

minimize the consistency ratio (CR) using a NLP approach. Salo & Hämäläinen (1995)

propose a preference programming approach with interactive decision support from the

DM. Guo & Tanaka (2010) suggest the use of subjective pairwise comparisons of the

likelihood of events for all possible alternative ranking outcomes. Quadratic programming

is applied to estimate the final weights. Guo & Wang (2011) extend the model of Guo &

Tanaka (2010) by using dual interval probabilities and linear programming. Please note

only one type of distribution is studied in these mathematical models which may limit its

application to large-scale decision problems where the DM tends to have different

preference knowledge over different pairwise comparisons.

In modeling uncertainty, the concept of fuzzy sets has also been applied.

Mikhailov (2000, 2004) applies fuzzy sets to model uncertainty and fuzzy preference

programming method to estimate crisp weights. A similar methodology is proposed in

(A. H. I. Lee et al., 2008, 2009). According to Y. M. Wang & Chin (2011), these

methodologies may produce conflicting priority vectors that lead to inaccurate decisions

as such they propose to use a logarithmic fuzzy preference programming methodology for

priority derivations. In 2006, Y. M. Wang & Chin (2006) propose a combination of the

eigenvector method and linear programming to estimate crisp priorities from fuzzy

comparison matrices. Additionally, Yang et al. (2012) propose a cloud Delphi hierarchical

analysis with fuzzy interval weights to model the uncertainty of the AHP. These models

also use a single type of fuzzy distribution (e.q. triangular fuzzy numbers) which may not

be applicable to model the varying preferences of the DM.

There are methodologies that handle the uncertainty of comparisons and weights

calculation by applying statistical modeling techniques. Moreno-Jimenez & Vargas (1993)
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develop a methodology to estimate the probability of all possible alternative preference

rankings from uniformly distributed interval judgements. These probabilities are

analytically calculated whenever perfect consistent judgements are obtained. On the other

hand, simulation is used for inconsistent cases. In (Haines, 1998), Haines proposes a

statistical based algorithm to study the effect of using uniform and convex distributions

on interval judgements. The mean of the distributions is used to rank the alternatives.

Lipovetsky & Tishler (1999) propose to model interval judgements in terms of a Cauchy

distribution and a non-linear approximation methodology to calculate priorities.

Lipovetsky & Tishler (1997) also propose several other distributions like the triangular,

normal, Laplace or Cauchy however they used it individually. In (Sugihara et al., 2004),

Sugihara et al. suggest an interval regression model to estimate interval priorities from

interval pairwise comparison judgements. Using uniform interval judgements, Stam &

Silva (1997) recommend multivariate statistical techniques to estimate points and

confidence intervals for rank reversal probabilities. When the rank reversal probability is

low, then the interval judgements are accepted. Hahn (2003) proposes a Bayesian

approach specifically, a weighted hierarchical multinomial logit model to obtain final

weights. Furthermore, inference on these weights is done using a Markov chain Monte

Carlo sampling method. Recently, Liu et al. (2011) suggest a probability distribution

aggregation and mathematical programming to combine pairwise comparisons modelled as

probability distributions.

2.4 Literature Gap Analysis

In summary, the following five gaps in literature can be gleaned from the review as

follows:

• Existing decomposition methodologies focus on decomposing the PCMs that contain

decision alternatives. Additional pairwise comparisons can be saved when

decomposing algorithms are extended to criteria PCMs.
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• These methodologies lack guidelines to assign PCM elements that minimize the

number of pairwise comparisons elicited, as well as the interdependence of elements

within each subset. There exist no guidelines to decompose a PCM into an

appropriate number of subsets.

• These methodologies select the pivot element arbitrarily and no rules are provided

in literature.

• Existing methodologies focus on modeling the imprecise pairwise comparisons using

a single distribution type. However, it is expected that the variability of the pairwise

comparisons would not be constant due to bounded rationality issues.

• Existing methodologies focus on either maximizing the preferences of the DM or

minimizing the consistency ratio for pairwise comparisons that follow a single type

of distribution. To the best of our knowledge, there exists no model that addresses

these two objectives simultaneously and efficiently.

This dissertation proposes a PCM framework for large-scale decision making that

address these gaps in succeeding sections.
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Chapter 3

INTELLIGENT DECOMPOSITION OF PAIRWISE COMPARISON MATRICES FOR

LARGE-SCALE DECISIONS

A Pairwise Comparison Matrix (PCM) has been used to compute for relative

priorities of elements and are integral components in widely applied decision making tools:

the Analytic Hierarchy Process (AHP) and its generalized form, the Analytic Network

Process (ANP). However, PCMs suffer from several issues limiting their applications to

large-scale decision problems. These can be attributed to the curse of dimensionality, that

is, a large number of pairwise comparisons need to be elicited from a decision maker. Due

to the limited cognitive power of decision makers, inconsistent preferences may be

obtained. To address these limitations, this research proposes a PCM decomposition

methodology. A binary integer program is proposed to intelligently decompose a PCM

into several smaller subsets using interdependence scores among elements. Since the

subsets are disjoint, the most independent pivot element is identified to connect all

subsets to derive the global weights of the elements from the original PCM. As a result,

the number of pairwise comparison is reduced. In addition, the consistency is improved.

The proposed decomposition methodology is applied to both AHP and ANP to

demonstrate its advantages.

3.1 Introduction

An m×m pairwise comparison matrix (PCM) denoted by A is a reciprocal matrix

which is composed of pairwise comparisons aij ∈ [1/9, 9] that represent the scaled relative

importance scores of element i as compared to element j. Typically, a PCM is generated

from pairwise comparisons elicited from a decision maker (DM) to estimate criteria or

alternative priorities for any decision problem. One of the most widely used multiple

criteria decision making (MCDM) methodology that use PCMs is the Analytic Hierarchy

Process (AHP) developed by Saaty (1977). Currently, there are several successful

applications of the AHP in a wide-range of MCDM problems (Ishizaka & Labib, 2011).
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Conversely, the AHP fails to account for the interdependencies of the criteria and

alternatives, and hence it assumes that all criteria and alternatives are independent. If left

unchecked, any DM using the AHP would then provide inaccurate decisions. To address

this, the Analytic Network Process (ANP) has been developed by Saaty & Takizawa

(1986) as a generalization of the AHP. The ANP requires additional pairwise comparisons

to estimate the inner and outer dependencies of the criteria and alternatives. Although it

addresses the limitations of the AHP, the ANP still use PCMs which are faced with the

following issues: (1) numerous pairwise comparisons are required for decision making and

(2) inconsistent pairwise comparisons are obtained when numerous pairwise comparisons

are elicited from the DM are large.

The first limitation is attributed to the fact that both methodologies suffer from

the curse of dimensionality. Consider a PCM of m criteria. A total of m(m− 1)/2

pairwise comparisons are needed to obtain the priorities. Additionally, for the ANP, m2

comparisons are needed to estimate the inner dependencies of the criteria. This would be

impractical when m is large. Saaty (1977) argues that the redundancy of the questioning

process provides weights which are much less sensitive to biases and judgement errors. In

a case study by Lin et al. (2008), it took two and a half hours on average to complete a

three-level AHP decision problem per DM and a total of 380 man-hours to complete all

pairwise comparisons. This could be greater for the case of the ANP. There are generally

three reasons why a DM is reluctant to complete the required comparisons specifically:

(1) there is insufficient time to complete all comparisons; (2) the DM is unwilling to make

direct comparisons of two alternatives and (3) the DM is unsure of some of the

comparisons (Harker, 1987a). In a Monte-Carlo simulation study (Carmone et al., 1997),

comparisons are deleted from large matrices and results show that at most 50% of the

comparisons can be deleted without significantly affecting the weights of the criteria.

Furthermore, to obtain a reasonable and consistent PCM, Saaty (1977) recommends that

the number of criteria or alternatives within a PCM should only be at most seven. Hence,

any PCM with eight or more elements is considered large. Unfortunately, lots of decision
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problems far exceed this maximum threshold. There exist several articles that attempt to

address the issue of numerous pairwise comparisons, one of which are called

decomposition methodologies (Shen et al., 1992; Islam et al., 1997a; Triantaphyllou, 1995;

Ishizaka, 2008, 2012). It is known that to overcome the limited cognitive processing

powers of a DM, a complex problem is decomposed into smaller pieces to bring it within a

DM’s cognitive ability (Wright, 1985). When a PCM A of n alternatives is decomposed

into k subsets, pairwise comparisons are elicited only in those subsets. Since the

dimensions of the decomposed matrices are smaller than A, a reduction in the number of

pairwise comparisons is realized. Unfortunately, these methods are not without any

disadvantages. Firstly, these methodologies focus on decomposing PCMs for alternatives.

Lots of pairwise comparisons can be saved when these methodologies are extended to

decompose the criteria PCMs since both the AHP and ANP can have multiple criteria

PCMs within the hierarchy or network respectively. Secondly, when a PCM is

decomposed into subsets, the obtained relative weights of the elements are valid only

within those subsets and the problem arises when aggregating the results back to its

global counterpart. As a result, a pivot element is selected arbitrarily and assigned to all

subsets and is used as a basis for comparing the elements across all disjoint subsets. The

global weights can then be estimated (Shen et al., 1992; Islam et al., 1997a; Ishizaka,

2008). Please note that pivot element selection is a challenging issue as the decisions

should consider reducing the number and inconsistency of the pairwise comparisons, as

well as reducing the amount of dependence present among elements within each subset.

Thirdly, these methodologies lack guidelines to assign criteria or alternatives to respective

subsets since they are done arbitrarily. This does not guarantee that the number of

pairwise comparisons is reduced optimally.

The second limitation related to the curse of dimensionality is attributed to the

consistency of the pairwise comparisons elicited from the DM when the number of

alternatives or criteria is large. As the number of pairwise comparisons increases, the

consistency of these comparisons is expected to be less reliable and results to inconsistent
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decisions (Weiss & Rao, 1987). A performance metric called consistency index (CI) is

generally used to estimate the inconsistency of a PCM A (Saaty, 1977). The CI is

computed by obtaining the eigenvalue of the PCM using Eq. 3.1:

CI(A) =
λmax −m

m− 1
(3.1)

where m is the dimension of the PCM A and λmax is the maximal eigenvalue of matrix A.

The consistency ratio (CR) is the ratio of CI and RI and is computed using Eq. 3.2:

CR(A) =
CI(A)

RI(m)
(3.2)

where RI(m) is the random index obtained from the average CI of 500 randomly filled

matrices and is dependent on the value of the m. According to Saaty (1977), if a PCM A

has CR < 10%, then A is considered to have an acceptable level of consistency.

Nevertheless, DMs that use the PCMs are faced with the issues on bounded rationality

(Simon, 1955, 1972). With this, due to their limited cognitive processing powers, the DMs

are not expected to provide consistent pairwise comparisons all throughout the pairwise

comparison elicitation process especially when the number of pairwise comparisons is

large. Therefore, a methodology that reduces the pairwise comparisons elicited from the

DM would lead to improved consistency levels since only a handful of pairwise

comparisons are elicited and would not be cognitively taxing to the DM.

This research proposes the PCM Decomposition Methodology (PDM) to address

the limitations of PCMs when used in either the AHP or the ANP methodology. The

contributions of the PDM are twofold: (1) The PDM seeks to reduce the number of

pairwise comparisons elicited from the DM thereby increasing its consistency. A binary

integer programming (BIP) model is proposed to accomplish this by intelligently

decomposing PCMs into smaller and manageable subsets. Only pairwise comparisons

within those subsets are elicited from the DM. The BIP uses the inner dependence

comparisons of the elements to assign these elements into mutually exclusive subsets.

Hence, interdependent elements are separated as much as possible thereby reducing the
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amount of interdependencies among subsets. (2) Since the subsets are disjoint, a pivot

element is optimally selected and is used to connect all pairwise comparison matrices

within each PCM. The pivot is selected that minimizes the interdependencies of the

elements. Using the pivot element and the local weights, the global weights of the

elements of the PCM are then calculated.

The rest of this paper is organized as follows. Section 3.2 reviews existing

literature that tries to solve the aforementioned problems. Section 3.3 illustrates the steps

of the proposed PDM, while Section 3.4 describes the application of the PDM in reducing

the number of pairwise comparisons in an AHP problem. On the other hand, section 3.5

presents the application of the PDM in reducing the number of pairwise comparisons in

an ANP problem. Finally, Section 3.6 concludes the paper and proposes further research

areas.

3.2 Review of Related Literature

There exist methodologies that address the limitations for the PCMs and can be

mainly classified as: (1) optimization methods and (2) heuristic methods. Each category

is reviewed as follows.

Optimization Methods

Optimization models start with a handful of pairwise comparisons only. The

remaining pairwise comparisons are estimated using optimization algorithms by taking

advantage of the matrix properties of A. Starting with a of minimum m− 1 comparisons,

a gradient descent method is proposed to select the next pairwise comparison that would

have the biggest information gain (Harker, 1987b). Additionally, stopping rules are

provided for terminating the pairwise comparison elicitation process. The methodology by

Bozoki et al. (2009) uses nonlinear optimization with exponential scaling to estimate the

missing pairwise comparisons from available ones. On the other hand, all possible

combinations of connecting paths must be considered. The number of combinations

exponentially grows as the number of missing comparisons increases and thus would be
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inefficient to solve. A linear programming formulation by Triantaphyllou (1995) is used to

estimate the missing pairwise comparisons of A by considering two arbitrary subsets s1

and s2 of the criteria PCM where s1 ∪ s2 6= ∅. By solving the linear programming problem,

the global weights of the m criteria of the PCM can be estimated. Nevertheless, the

algorithm only focuses on dividing the PCM A into two subsets. If m is large, then the

two subsets are still large. Moreover, the error rates of estimating the missing comparisons

are dependent on the number of common elements of subsets s1 and s2. The smaller the

s1 ∪ s2, the estimation of the missing comparisons is expected to be less accurate and

deviation error increases significantly. In general, the challenge of optimization based

approach lies to the scalability of the problem. That is, as most decision problems tend to

have large number of alternatives and criteria, these analytical approaches may suffer.

Heuristic Methods

There are several types of heuristic methodologies that propose to reduce the

number of pairwise comparisons elicited from the DM. Saaty (1990) proposes the idea to

group alternatives into subsets according to a common decision criterion. Islam et al.

(1997a) propose to assign the alternatives into k subsets based on a subjective absolute

scale in which alternatives that have close “magnitudes” are grouped together. By using

several pivot alternatives that is common to at most two subsets, the global priorities of

the alternatives are then obtained. Note, the definition of close “magnitudes” is not well

defined and is highly subjective. Furthermore, no guidelines are provided to determine

which alternatives are assigned to which subset. Shen et al. (1992) propose an arbitrary

decomposition of the alternative PCM into k subsets such that these k subsets have one

common pivot alternative. Pairwise comparisons are first performed on each subset and

local priorities are calculated. The global priority is then derived by using common pivot

alternative and local priorities of each subset. Ishizaka (2012) applies the same

decomposition algorithm on supplier selection. There exist models that use the concept of

a balanced incomplete block designs in which subsets of the PCM A are assigned to

different DMs treated as replicates in contrast to having all DMs focus on the large
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hierarchy (Weiss & Rao, 1987; Takahashi, 1990). The computation of the global

alternative weights is done by using the geometric mean. To the best of our knowledge, no

methodology has tried to optimally assign PCM elements to subsets that minimize the

number of pairwise comparisons, the amount of dependence among criteria and the

consistency of the pairwise comparisons. Any methodology that reduces the required

number of pairwise comparisons for a PCM is fruitful for wider adoption of the AHP and

ANP methodologies (Ishizaka & Labib, 2011). Triantaphyllou (2000) develops a method

to reduce the number of pairwise comparisons via the duality approach when the number

of alternatives is greater than the number of criteria plus one. The question asked to

quantify a pairwise comparison is “What is the relative importance of criterion C when it

is compared with criterion C in terms of alternative A?” Instead of pairwise comparisons

on the alternatives, the criteria are the subject of the questioning. This approach works

due to the assumption that in a given MCDM problem the criteria influence the

perception of the alternatives and vice-versa. On the other hand, it is only applicable for

problems when the number of alternatives is much greater than the number of criteria;

otherwise the reduction on the number of pairwise comparisons is not significant enough

to warrant a change on the classical method of questioning. Islam & Abdullah (2006)

consider reducing the number decision criteria by the nominal group technique. The

decision criteria that have insignificant weights are eliminated from future pairwise

comparison elicitation process.

There are several articles (Cao et al., 2008; Saaty, 2003; Beńıtez, Delgado-Galván,

Izquierdo, & Pérez-Garćıa, 2011) that focus on reducing the inconsistency of a given PCM

without reducing the number of pairwise comparisons. Beńıtez, Delgado-Galván,

Izquierdo, & Pérez-Garćıa (2011) propose a linearization heuristic that provides the

closest consistent PCM which is later extended to balance the consistency and the

preferences of the DM (Beńıtez, Delgado-Galván, Gutiérrez, & Izquierdo, 2011). Still,

upon applying these methodologies, the original pairwise comparisons significantly deviate

from the resulting consistent pairwise comparisons and thus would not reflect the actual
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preferences of the DM. Ishizaka & Lusti (2004) implement an expert module that helps

the DM make a pairwise comparison one at a time within control limits. Decker et al.

(2008) suggest a method to identify erroneous pairwise comparisons using the geometric

mean method and proposed changes to improve the consistency. Wu et al. (2010) propose

to include scale and judgment errors into the PCM. By treating pairwise comparisons as

random variables, an estimator to calculate weights is proposed. However, these methods

focus on improving a given PCM which could be large. If the number of decision criteria

or alternatives is large, these heuristics would still take a lot of time to complete and are

more subject to human error when providing the initial pairwise comparisons.

In summary, the following four gaps in literature can be gleaned from the review

as follows:(1) Existing decomposition methodologies focus on decomposing the PCMs with

alternative elements. Additional pairwise comparisons can be saved when decomposing

algorithms are extended to criteria PCMs. (2) These methodologies lack guidelines to

assign elements to subsets of the PCMs that minimize the number of pairwise

comparisons elicited, as well as the independence of elements within each subset. (3)

These methodologies select the pivot element arbitrarily and no rules are provided in

literature. (4) To the best of our knowledge, there is a lack of methodologies that try to

reduce the number of pairwise comparisons of a PCM for the AHP but not for the ANP.

Any methodology that can simplify the ANP would be beneficial for any decision with

interdependent criteria and alternatives.

3.3 Proposed PCM Decomposition Methodology

This section outlines the proposed PCM Decomposition Methodology (PDM).

Figure 3.1 presents a high level overview of the proposed PDM.

We illustrate the decomposition of a PCM A with m elements (criteria or

alternatives). In step 1, the m elements are collected and a value of the number of subsets

k ∈ [2,m− 1] is elicited from the DM. The pairwise comparisons that measure the inner

dependencies of the elements are qualitatively elicited or quantitatively gathered.
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Figure 3.1. The Proposed PCM Decomposition Methodology

Quantitative pairwise comparisons are direct observations from the attributes of

alternatives, while qualitative comparisons are elicited from the DM to quantify the

degree of preference between any two elements. This is completed in step 2 (see section

3.3.1). Let these comparisons be R = {rii′ |i, i′ = 1, 2, ..,m}. A symmetric interdependence

matrix for the elements is derived from the R scores. Using the obtained interdependence

matrices, the m elements are decomposed into k mutually exclusive subsets sl ∈ S using

the proposed BIP decomposition methodology (see section 3.3.1). Additionally, in step 4,

the pivot element is selected by choosing the most independent one and assigned to all

subsets (see section 3.3.2). In step 5, local pairwise comparisons aij are then elicited for all

subsets of S and local weights are calculated (see section 3.3.3). In step 6, global priorities

are estimated from the local pairwise comparisons for all elements (see section 3.3.4).

Decompose PCM into Subsets

We start with the elicited m2 inner dependence pairwise comparisons denoted by

matrix R as follows:

R =



















r11 r21 . . . rm1

r12 r22 . . .
...

...
...

. . .
...

r1m . . . . . . rmm



















(3.3)

According to Saaty & Takizawa (1986) if all elements are independent, then

R = Im where Im is an identity matrix of size m. Otherwise, a score rij is used to denote
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the dependence of element i to element j. Since it is unintuitive to partition the elements

using a directed graph, we transform the directed graph into a symmetric undirected

graph as follows:

R̃ =
R+RT

2
(3.4)

We then obtain a symmetric matrix R̃ with scores r̃ij ∈ R̃ where r̃ij = r̃ji. Given

this, independent elements are intelligently assigned into the k subsets using the proposed

BIP formulation as follows:

Let the decision variables be:

r̃ij := dependence of element i to i′

xil =

{

1 if element i is assigned to subset with index l

0 otherwise

yii′l := xilxi′l

{

1 if both elements i and i′ is assigned to l

0 otherwise
Objective Function:

max

k
∑

l=1

m
∑

i=1

∑

i′<i

r̃ii′yii′l (3.5)

Constraints:

xil − yii′l ≥ 0, i ∈ [1,m], l ∈ [1, k] (3.6)

xi′l − yii′l ≥ 0, i′ ∈ [1,m], l ∈ [1, k] (3.7)

xi′l + xil − yii′l ≤ 1, i, i′ ∈ [1,m], l ∈ [1, k] (3.8)

k
∑

l=1

xil = 1 i ∈ [1,m] (3.9)

m
∑

i=1

xil ≥ 1 l ∈ [1, k] (3.10)

yii′l ∈ B
mC2×k, xi′l ∈ B

m×k i, i′ ∈ [1,m], l ∈ [1, k] (3.11)

The output of the BIP is a mutually exclusive assignment of the m elements to subsets

S = {sl|l = 1, 2..k}. Equation 3.5 describes the objective function of minimizing the inner

dependencies of the elements to be assigned in each subset sl. The BIP formulation would

work hard to assign two elements to two different subsets if r̃ii′ > 0. Constraint sets 3.6 to
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3.8 are constraints that linearize the quadratic constraint yii′l := xilxi′l. Constraint set 3.9

forces each element to be a member of a subset while constraint set 3.10 forces all subsets

to have at least one element. Eq. 3.11 defines xil and yii′l as binary integer variables.

Given the BIP formulation, the following properties can be realized: (1) the

minimum number of elements assigned to a given subset is one and (2) the maximum

number of elements assigned to a given subset is m− k. The minimum number of

elements assigned follows from the BIP formulation; specifically constraint set 3.10 forces

the number of elements assigned to subsets to be at least 1. In terms of the maximum,

since the k − 1 subsets would have at least 1 element, then the kth subset has m− k

elements assigned.

Select Pivot Element

When the PCM elements are decomposed into k subsets, the elements are disjoint

since there are no pairwise comparisons across subsets. In order to determine the relative

priorities of the elements across subsets, a pivot element is selected and assigned to all

subsets and is used as a basis for the global weights. To select the best pivot element, we

select the element that minimizes the following function:

Pivot Element i = argmini

(

∑

i′

r̃ii′

)

(3.12)

Eq. 3.12 selects the least interdependent element as compared to all other

elements.

Elicit Local Pairwise Comparisons and Calculate Local Weights

After decomposition, local pairwise comparisons are elicited from the DM for all

subsets after the elements are assigned to subsets. The local pairwise comparisons for

elements subset sl are illustrated in matrix form Al as shown in Eq. 3.13 as follows:
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Al =



















1 a1,2 · · · a1,ml

1/a,2 1 · · · a2,ml

...
...

. . .
...

1/a1,ml
1/a2,ml

· · · 1



















, ∀sl ∈ S (3.13)

A new performance measure is proposed to keep track of the consistency of the

pairwise comparisons. The original definition of the CR of matrix A is no longer

applicable since the m elements are assigned into k subsets. With this, a new definition of

consistency is proposed as follows:

Definition 3.1. The Average Consistency Ratio (ACR) performance measure of an AHP

problem decomposed into k subsets is defined as:

ACR =
1

m+ k − 1

k
∑

l=1

mlCR(Al) (3.14)

where CR(Al) is the consistency ratio of the PCM Al of subset l.

In simple terms, the ACR is the weighted average of the CR of each of the local

pairwise comparison matrices. The ACR is used to estimate the overall CR of the

pairwise comparisons across all subsets.

Given the assignment of m elements into k subsets and the addition of the pivot

element in all subsets, we define a quantity to determine the reduction in the number of

pairwise comparisons elicited from the DM as follows:

Definition 3.2. Given the set of the assigned elements into the k subsets with one pivot

element, the total number of required pairwise comparisons needed to obtain the local

priorities of the elements denoted by d(Ak) is computed as:

d(Ak) =
k
∑

l=1







ml

2






=

k
∑

l=1

ml(ml − 1)

2
(3.15)
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Remark: The maximum number of elements assigned to k subsets after including the pivot

elements is:
k
∑

l=1

ml ≤ m+ k − 1 (3.16)

The total number of pairwise comparisons after decomposition is dependent on the

distribution of the assignment of elements to the k subsets and as such is shown using Eq.

3.16. If k = 1, no decomposition is performed, then all the required m(m− 1)/2 pairwise

comparisons are elicited. On the other hand when k = m− 1, then the pivot element is

compared to all other elements with a total of only m− 1 pairwise comparisons. The

following propositions can be drawn with regards to the number of pairwise comparisons.

Proposition 3.1. Given values of k, function d(Ak) is maximized when ml = m+ (k− 1)

for l ∈ S and ml′ = 2, ∀l ∈ S \ {l}

Proof. See Appendix.

Proposition 3.2. Given values of k, function d(Ak) is minimized when:

• ml =
m+(k−1)

k
for l ∈ S if m+(k−1)

k
∈ Z or

• ml =
⌊

m+(k−1)
k

⌋

for some l ∈ S and ml′ =
⌈

m+(k−1)
k

⌉

for some l′ if m+(k−1)
k

/∈ Z

Proof. See Appendix.

Definition 3.3 illustrates the difference between the original total number of

pairwise comparisons m(m− 1)/2 and the amount of pairwise comparisons needed, D(Ak)

when the elements are assigned to subsets.

Definition 3.3. The difference between the original number of pairwise comparisons of

matrix A and number of pairwise comparisons after decomposition into k subsets denoted

by D(Ak) is given by:

D(Ak) =







m

2






− d(Ak) =

m(m− 1)

2
−

k
∑

l=1







ml

2






(3.17)
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Given Proposition 3.1 and Proposition 3.2, the amount of time saved by the DM

in terms of the reduction of the number of pairwise comparisons can be generalized in

terms of Theorem 3.1.

Theorem 3.1. Given m elements grouped into k subsets, the total number of required

local pairwise comparison saved is bounded by:

⌈

(k − 1)

(

m− k + 2

2

)⌉

≤ D(Ak) ≤
⌊

(k − 1)(m− 1)2

2k

⌋

(3.18)

Proof. See Appendix.

Theorem 3.1 provides the pessimistic and the optimistic estimates of the reduction

of the required m(m− 1)/2 pairwise comparisons of A. This performance metric would be

a good yardstick to determine the amount time saved by the DM when making a complex

decision using the proposed PDM.

After eliciting local pairwise comparisons for all subsets Al we now define the local

element weights computed for each subset. Let w(Al) be the vector of local weights from

Al where w(i, l) ∈ w(Al) is the local weight of element i. The original eigenvector

methodology is used to calculate the local element weights as follows:

w(Al) =













∑ml
j=1

ã1j

ml

...
∑ml

j=1
ãmlj

ml













=



















w(1, l)

w(2, l)

...

w(ml, l)



















, l = 1, 2, · · · , k (3.19)

Calculate Global Weights of the PCM

This subsection describes the methodology to compute global weights of the

elements of the decomposed PCM from the local subsets using a pivot element. Given

values of k there will be m+ k − 1 instances of w(i, l). The local element weight in subset

l is divided by the weight of pivot element in that subset and is repeated for all subsets.
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To illustrate this, let w̃(Al) be the vector of normalized weights where each w̃(i, l) ∈ w̃(Al)

is computed using Eq. 3.20.

w̃(i, l) =
1

w(i = cp, l)
[w(i, l)], ∀i ∈ sl, ∀sl ∈ S (3.20)

Given this, the normalized pivot element weight in each subset has a value equal

to one. Since all normalized pivot element weights have a value equal to one, all the other

elements in the other subsets can be compared to the pivot elements. For the

computation of the global weights, let w′(A) be the vector of global weights where

w′(i) ∈ w′(A) is computed using Eq. 3.21.

w′(i) =
1

∑k
l=1

∑

i∈sl
w̃(i, l)− k + 1

w̃(i, l), ∀i ∈ [1,m] (3.21)

3.4 Decomposing PCMs for the AHP Methodology

This section illustrates the application of the PDM on an AHP problem. The

AHP assumes that the criteria and alternatives are independent and hence, we seek an

alternative way to measure the interdependence of the elements. Specifically, the

correlation of the alternative scores rij is used to estimate the inner dependencies of the

criteria. The correlation of the alternative scores could act as an alternative to estimate

inner dependencies of the criteria as is done by Yurdakul & Tansel (2009). The alternative

scores rij represent the raw rating score of alternative j on criterion i. We formally define

the correlation denoted by R(ci, ci′) as follows:

Definition 3.4. Let R(ci, ci′) be the correlation between criterion ci and criterion ci′

which is calculated using (4.22) as follows

R(ci, ci′) =

∣

∣

∣

∣

∑n
j=1

(rij−r̄ij)(ri′j−r̄i′j)√∑n
j=1

(rij−r̄ij)2
∑n

j=1
(ri′j−r̄i′j)

2

∣

∣

∣

∣

(3.22)

These correlation coefficients will be used in the proposed BIP to group

uncorrelated criteria. A value R(ci, ci′) = 1 means that the criterion ci is positively or
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negatively correlated to criterion ci′ . Hence, the PDM can be applied to decompose the

lowest level criteria PCM, directly above the alternatives within an AHP decision

problem. Otherwise, we decompose all other AHP PCMs arbitrarily as is done in existing

literature. Figure 3.2 illustrates the proposed PDM as applied to a 3-level AHP problem.

Figure 3.2. Application of the PDM for a 3-Level AHP Problem

In step 1, the DM decides on the m criteria and n alternatives and the three-level

decision hierarchy (see section 3.4.1). Step 2 is the alternative scores pairwise comparison

elicitation stage and the corresponding correlation matrix is computed (see section 3.4.2).

The PDM is applied to decompose the criteria PCM and the global weights of the m

criteria are calculated in step 3 (see section 3.4.3). Lastly, step 4 computes the weighted

scores of the n alternatives for decision making (see section 3.4.4). A peer reviewed AHP

dataset from existing literature is used to illustrate the application of the PDM for AHP.

Önüt et al. (2010) use a fuzzy AHP model for shopping center site selection and is

illustrated in this subsection.

Initialize AHP Hierarchy

The m criteria and n alternatives are identified and arranged into a three-level

decision hierarchy. In terms of the dataset from Önüt et al. (2010), the goal, eight criteria

and six alternatives are setup as a hierarchy as is done in the traditional AHP

methodology. Figure 3.3 illustrates the proposed three-level AHP hierarchy structure.
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Figure 3.3. AHP Hierarchy Structure for the Dataset of Önüt et al. (2010)

Compute Correlations of Criteria

Table 3.1 presents the most likely scores of the six site alternatives over the eight

selection criteria. Additionally, the corresponding 8× 8 correlation matrix is computed

and is presented in table 3.2.

Table 3.1. Raw Data of the Scores of Each Alternative on Each Criterion

Alternative
Criterion

1 2 3 4 5 6 7 8

A 5 7 5 9 5 5 3 3
B 7 7 5 7 7 7 5 5
C 5 5 7 5 5 5 9 7
D 5 5 8 3 5 5 9 5
E 7 9 5 5 7 7 3 3
F 5 5 7 3 5 5 9 5

Apply PCM to the Criteria PCM

This subsection illustrates the decomposition of the criteria PCM and the

calculation of the global weights of the eight decision criteria. Specifically, the criteria

PCM is decomposed into two subsets (k = 2), then a pivot criteria is selected.
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Table 3.2. Correlation Matrix Computed From Table 3.1

Criterion 1 2 3 4 5 6 7 8

1 1.000 0.791 0.680 0.221 1.000 1.000 0.600 0.343
2 0.791 1.000 0.860 0.489 0.791 0.791 0.922 0.759
3 0.680 0.860 1.000 0.794 0.680 0.680 0.933 0.633
4 0.221 0.489 0.794 1.000 0.221 0.221 0.758 0.417
5 1.000 0.791 0.680 0.221 1.000 1.000 0.600 0.343
6 1.000 0.791 0.680 0.221 1.000 1.000 0.600 0.343
7 0.600 0.922 0.933 0.758 0.600 0.600 1.000 0.824
8 0.343 0.759 0.633 0.417 0.343 0.343 0.824 1.000

Furthermore, the local pairwise comparisons are collected for each subset and the

corresponding global weights are calculated.

Decompose Criteria PCM

The proposed BIP methodology from section 3.3.1 is applied on the PCM using the

correlation scores from table 3.2. After executing the proposed BIP methodology, criteria

1, 4, 6 and 7 are assigned to subset s1 while criteria 2, 3, 5 and 8 are assigned to subset s2.

Select Pivot Element

The optimal pivot criterion is selected by applying equation 3.12 and table 3.3

presents the results of the sum of the individual correlations of criterion i to all other

criteria. It is evident from table 3.3 that criterion 4 is the least independent criterion.

Table 3.3. Sum of Correlation

Criterion
1 2 3 4 5 6 7 8

Correlation 5.6346 6.402 6.2592 4.1196 5.6346 5.6346 6.2365 4.6615

And thus criterion 4 is assigned to all subsets. Hence, subsets s1 and s2 now have 1, 4, 6

& 7 and 2, 3, 4, 5 & 8 criteria respectively.
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Elicit Local Pairwise Comparisons

To illustrate the eliciting of local pairwise comparisons, the original most likely

fuzzy values are used from the original 8× 8 fuzzy AHP criteria PCM. Table 3.4 and table

3.5 summarize the local pairwise comparison matrices for the two subsets respectively.

Table 3.4. PCM for Subset 1

1 4 6 7 Local Priority

1 1.00 0.33 0.14 1.50 10.31%
4 3.00 1.00 1.00 3.00 33.65%
6 7.00 1.00 1.00 5.00 46.99%
7 0.67 0.33 0.20 1.00 9.05%

Table 3.5. PCM for Subset 2

2 3 4 5 8 Local Priority

2 1.00 0.33 0.20 0.33 1.00 7.43%
3 3.00 1.00 3.00 0.33 3.00 26.39%
4 5.00 0.33 1.00 1.00 3.00 24.24%
5 3.00 3.00 1.00 1.00 5.00 34.94%
8 1.00 0.33 0.33 0.20 1.00 7.00%

A total of 4C2 + 5C2 = 16 pairwise comparisons are elicited in this setup, which is

a reduction of D(Ak) = 12, as compared to the original 28 required pairwise comparisons

when the original AHP methodology is used. The average consistency of these two

priority matrices is computed using Eq. 3.14 as follows:

ACR =
1

m+ k − 1

k
∑

l=1

mlCR(Al) =
4

9
0.0547 +

5

9
0.119 = 0.0904 (3.23)

The original 8× 8 AHP matrix has a CR of 12.96% which is highly inconsistent

while the decomposed matrix has an ACR of only 9.04%. Hence, in this setup, several

inconsistent pairwise comparisons are excluded from the decision making. Furthermore

the subset PCMs have a smaller dimensions (dim(s1) = 4, dim(s2) = 5) thus making the

elicitation of pairwise comparisons less taxing for the DM.
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Calculate Global Weights of the Criteria PCM

After calculating the priorities of the local criteria, the corresponding global

priorities of the criteria need to be calculated. Using the local weights from subset 1 and

subset 2 and equation 3.20, all local weights are divided by the local weight of pivot

criterion 4. And as such, we obtain normalized weights for subset 1:

w̃(A1) = [0.31, 1.00, 1.40, 0.27]T and subset 2: w̃(A2) = [0.31, 1.00, 1.00, 1.44, 0.29]T . Using

the normalized weights and using equation 3.21 we sum the normalized weights and we

obtain the following global weights as summarized in table 3.6.

Table 3.6. Results of the PDM as Compared to the Original AHP Criteria PCM

Criterion Original Criteria PCM Weights PDM Weights

5 26.09% 23.64%
6 21.95% 22.90%
4 15.69% 17.86%
3 15.36% 16.40%
1 7.52% 5.027%
2 5.24% 5.025%
8 4.46% 4.736%
7 3.69% 4.409%

D(A2) None 12
ACR 12.96% 9.63%

Based on the results, the weights obtained from the proposed PDM is relatively

similar to the value of the original weights with a lower average consistency ratio. We

observe from table 3.6 that we have saved 12 pairwise comparisons for the criteria PCM

while having similar weights. This savings is attributed to the decomposition of the PCM

into two subsets in which the pairwise comparisons of the criteria across subsets are not

elicited. Furthermore, a reduction of the CR is observed from 12.96% to 9.63%. In this

setup, lots of inconsistent pairwise comparisons are omitted. Furthermore, the PCMs for

the subsets are smaller well below Saaty’s threshold of seven elements.

However, the PDM can only be applied to the special case of a three-level AHP

problem. Furthermore, by definition of the correlation, we only measure the linear
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interdependencies of the criteria from the alternatives. Hence, the application of the PDM

for AHP problems is limited. Therefore, we illustrate the full potential of the PDM in

terms of an ANP network in section 3.5.

Calculate Weights of Alternatives

After computing for the global weights of the eight criteria, we now compute the

weights of the six alternatives. Table 3.7 presents the results of the weighted scores by

multiplying the scores from table 3.1 with the obtained global weights from table 3.6.

Hence, alternative B is selected since it has the highest weighted score followed by

alternative E, then A, C, D and E.

Table 3.7. Weighted Scores of the Six Alternatives

Alternative Weighted Score

A 5.6319
B 6.4889
C 5.5989
D 5.3110
E 6.0493
F 5.1470

3.5 Decomposing PCMs for the ANP Methodology

This section illustrates the application of the PDM on an ANP problem. Since all

PCMs that form clusters within the ANP network require inner dependencies to measure

the interdependence of elements, these inner dependencies are then used to decompose all

PCMs within the network. Hence, all PCMs in the network can be decomposed using the

PDM which leads to larger pairwise comparison savings. We illustrate the decomposition

of the eight decision criteria into three subsets using figure 3.4 as follows.

In step 1, the ANP network structure is developed with the n alternatives and m

criteria (see section 3.5.1). In Step 2, the inner dependencies of all the elements of each

PCM are elicited (see section 3.5.2). Furthermore, we apply the PDM to all PCMs of the

network in step 3 (see section 3.5.3). Finally, step 4, we calculate the limiting weights of

the alternatives for decision making (see section 3.5.4). A dataset from existing literature
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Figure 3.4. Application of the PDM for an ANP Problem

is used to demonstrate the application of the PDM for the ANP. Cheng & Li (2004)

propose an ANP methodology for contractor selection. This dataset is selected since the

eight decision criteria are considered simultaneously in a single cluster. Furthermore, the

decision focuses on three alternatives.

Initialize ANP Network

The goal, eight criteria and four alternatives are setup as a network as is done in

the traditional ANP methodology. Figure 3.5 illustrates the proposed three-cluster ANP

network structure.

Figure 3.5. The ANP Network Structure for the Dataset of Cheng & Li (2004)
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Elicit Inner Dependence

Inner dependencies are elicited from the DM to estimate the interdependencies of

the criteria. Table 3.8 summarizes the elicited inner dependency scores of all eight

decision criteria which are elicited from the DM from Cheng & Li (2004). We then

compute the corresponding symmetric matrix using equation 3.4. Table 3.9 presents the

symmetric matrix.

Table 3.8. Inner Dependency Scores for the Eight Criteria

Criterion 1 2 3 4 5 6 7 8

1 0.00 0.56 0.33 0.31 0.21 0.20 0.17 0.18
2 0.14 0.00 0.37 0.32 0.24 0.26 0.17 0.14
3 0.20 0.06 0.00 0.20 0.21 0.18 0.17 0.17
4 0.11 0.06 0.06 0.00 0.18 0.18 0.09 0.16
5 0.20 0.06 0.06 0.04 0.00 0.07 0.17 0.23
6 0.11 0.06 0.06 0.04 0.09 0.00 0.17 0.03
7 0.11 0.06 0.06 0.06 0.04 0.03 0.00 0.10
8 0.11 0.12 0.06 0.03 0.04 0.07 0.04 0.00

Table 3.9. Symmetric Inner Dependency Scores for the Eight Criteria

Criterion 1 2 3 4 5 6 7 8

1 0.00 0.35 0.27 0.21 0.21 0.16 0.14 0.15
2 0.35 0.00 0.22 0.19 0.15 0.16 0.12 0.13
3 0.27 0.22 0.00 0.13 0.14 0.12 0.12 0.12
4 0.21 0.19 0.13 0.00 0.11 0.11 0.08 0.10
5 0.21 0.15 0.14 0.11 0.00 0.08 0.11 0.14
6 0.16 0.16 0.12 0.11 0.08 0.00 0.10 0.05
7 0.14 0.12 0.12 0.08 0.11 0.10 0.00 0.07
8 0.15 0.13 0.12 0.10 0.14 0.05 0.07 0.00

Apply PDM to all PCMs

This subsection illustrates the application of the PDM to decompose all PCMs. In

our example, we illustrate the decomposition of the criteria cluster into three subsets.

Furthermore, the optimal pivot criterion is selected and is used to link all three subsets.

The local pairwise comparisons are then elicited and local weights are calculated. The
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corresponding global criteria PCM weights are computed from the local weights

illustrated as follows.

Decompose Criteria PCM

The proposed BIP methodology is applied from section 4.1 on the symmetric inner

dependency scores from table 3.9 . Hence, criteria 2, 5, and 7 are assigned to subset s1

while criteria 1, 6 and 8 are assigned to subset s2 and lastly criteria 3 and 4 are assigned

to subset s3.

Select Pivot Element

The optimal pivot criterion is selected by applying equation 3.12 and table 3.10

presents the results of the sum of the individual inner dependencies of criterion i to all

other criteria.

Table 3.10. Sum of Inner Dependencies

Criterion
1 2 3 4 5 6 7 8

Sum of Inner Dependence 1.47 1.31 1.095 0.92 0.92 0.775 0.72 0.74

It is evident from table 3.10 that criterion 7 is the least independent criterion.

And thus criterion 7 is assigned to all subsets. Hence, subset s1 has criteria 2, 5 and 7,

subset s2 has criteria 1, 6, 7 and 8 and subset s3 has 3, 4 and 7.

Elicit Local Pairwise Comparisons

Local pairwise comparisons are elicited for all subsets of the criteria cluster. Table

3.11 to table 3.13 show the local priorities of the decomposed AHP obtained from the

dataset of Cheng & Li (2004).

A total of 3C2 + 4C2 + 3C2 = 12 pairwise comparisons are elicited in this setup.

A reduction of D(Ak) = 16 pairwise comparisons is realized from the original 28 required

pairwise comparisons. The average consistency of these three PCMs is computed using
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Table 3.11. PCM for Subset 1

2 5 7 Local Priority

2 1 6 7 76.38%
5 1/6 1 1 12.11%
7 1/7 1 1 11.51%

Table 3.12. PCM for Subset 2

1 6 7 8 Local Priority

1 1 9 9 9 73.28%
6 1/9 1 1/2 1/2 6.01%
7 1/9 2 1 1/2 8.79%
8 1/9 2 2 1 11.93%

Table 3.13. PCM for Subset 3

3 4 7 Local Priority

3 1 3 3 58.89%
4 1/3 1 2 25.19%
7 1/3 1/2 1 15.93%

Eq. 3.14 as follows:

ACR =
1

m+ k − 1

k
∑

l=1

mlCR(Al) =
3

10
0.0042 +

4

10
0.0847 +

3

10
0.0607 = 0.05335 (3.24)

The original 8× 8 ANP cluster has a CR of 9.44% which is around the threshold of 10%

while the decomposed matrix has an ACR of only 5.335%. Again we observe a reduction

of the inconsistency of the PCMs. Several inconsistent pairwise comparisons are not

elicited in this setup and the dimensions of the three subsets are considerably less than

the original criteria PCM.

Calculate Global Weights of the Criteria PCM

Again using the local weights from subset 1, 2 and 3 and equation 3.20, all local

weights are divided by the local weight of pivot criterion 7. And as such we obtain

normalized weights for subset 1: w̃(A1) = [6.64, 1.00, 1.00]T , subset 2:

w̃(A2) = [8.64, 0.68, 1.00, 1.36]T and subset 3: w̃(A3) = [3.70, 1.58, 1.00]T Using the
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normalized weights and using equation 3.21 we sum the normalized weights and we obtain

the following global weights as summarized in table 3.14.

Table 3.14. Results of the PDM as compared to the original ANP Criteria PCM

Criterion Original Criteria PCM Weights PDM Weights

1 33.9% 33.3%
2 27.3% 27.3%
3 14.8% 15.2%
4 9.1% 6.5%
8 3.4% 5.6%
5 3.2% 4.3%
7 3.8% 4.1%
6 4.5% 2.8%

D(A3) None 16
ACR 9.44% 5.34%

The weights obtained from the proposed PDM is relatively similar to the value of

the original weights with a lower average consistency ratio. Additionally, we observe from

table 3.14 that a reduction of 18 pairwise comparisons is realized for the criteria PCM

while having similar weights. This savings is again attributed to the decomposition of the

criteria PCM into three subsets in which the pairwise comparisons of the criteria across

subsets are not elicited. Furthermore, a reduction of the CR is observed from 9.44% to

5.34%. In this setup, lots of inconsistent pairwise comparisons are omitted. Furthermore,

the three subset PCMs are smaller which are within Saaty’s threshold of seven elements.

We further test the PDM by changing the number of subsets. The same dataset

from Cheng & Li (2004) is used in terms of the decomposition of the 8 criteria into

k ∈ [2, 7] subsets. The traditional ANP is used and the results are presented in table 3.15.

Table 3.15. Performance of the PDM

Metric
Methodology

No Decomposition
Proposed PDM

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

D(Ak) 0 12 16 18 19 20 21
ACR 9.44% 8.99% 5.34% 5.24% 5.17% 4.82% 0.00%
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It is observed from table 3.15 that as the value of k increases, we generally observe

an increase in the number of pairwise comparisons saved. This is attributed to smaller

subset PCMs when we increase the number of subsets. Furthermore, we observe a gradual

decrease on the average CR of the PCMs. However, lots of pairwise comparisons are not

elicited for values of k ≥ 4 hence, the redundancy advantage of PCMs is reduced and thus

the preferences of the DM would be subject to more biases and judgement errors. A

trade-off mechanism must be developed to address this which is the subject of our future

research.

Calculate Weights of Alternatives

After computing the weights of the criteria cluster for the eight decision criteria,

we now calculate the weights of the three alternatives using the traditional ANP

methodology. Table 3.16 presents the results of the three alternatives. Hence, alternative

A is selected since it has the highest limiting score followed by alternative B then

alternative C.

Table 3.16. Weighted Scores of the Three Alternatives

Alternative Weighted Score

A 0.47
B 0.27
C 0.26

3.6 Conclusions and Future Work

A Pairwise Comparison Matrix (PCM) is an integral component of decision

making methodologies: Analytic Hierarchy Process (AHP) and Analytic Network Process

(ANP). These are used to determine relative weights of criteria and alternatives. However,

a PCM suffers from the curse of dimensionality and hence the issue of inconsistent

pairwise comparisons when elicited from a decision maker (DM). The proposed PCM

Decomposition Methodology (PDM) addresses these disadvantages. The PDM

decomposes all PCMs into smaller manageable subsets using binary integer programming
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with inner dependency scores. As a result, the number and the inconsistency of pairwise

comparisons elicited are reduced. Since the subsets are disjoint, the most independent

pivot element is selected to connect all disjoint subsets. Hence the inner dependencies of

the elements are minimized within each subset. Using local priorities and the pivot

element, global priorities are then estimated for the elements of the PCM.

The PDM is applied to a three-level AHP problem to decompose the criteria

PCM. Correlation of the criteria from alternative scores is used as an alternative to

estimate the interdependencies of the criteria. The proposed methodology does indeed

reduce the number of pairwise comparisons and the consistency ratio. Nevertheless, more

pairwise comparisons is saved when the PDM is applied to the ANP methodology. The

PDM can be applied to all cluster PCMs within the network since inner dependencies of

the elements are elicited for each PCM.

The authors plan to extend the framework by determining the optimal number of

subsets k for each ANP cluster by balancing the (1) time savings by reducing pairwise

comparisons, (2) the amount of inner dependency among criteria and alternatives (3) the

level of consistency, and (4) the accuracy of the global weights. Furthermore, multiple

pivot elements are to be studied to further improve the estimation of the global weights.

Although improvements in the average consistency of the local pairwise comparisons are

observed, the authors plan to implement the methodology proposed by Beńıtez,

Delgado-Galván, Gutiérrez, & Izquierdo (2011) to further improve consistency.

42



Chapter 4

OPTIMAL DECOMPOSITION OF AHP PAIRWISE COMPARISON MATRICES

A Pairwise Comparison Matrix (PCM) is a widely used tool to compute relative

priorities of elements and is an integral component of the Analytic Hierarchy Process

(AHP), a well-accepted multi-criteria decision making tool. However, a PCM suffers from

several issues limiting its application to large scale decision problems. The issues can be

attributed to the curse of dimensionality due to the large number of pairwise comparisons.

This leads to inconsistencies and inaccurate decisions. It is noted that the extensive

research that address these limitations decompose PCMs into smaller sized subsets

arbitrarily and no guidelines are provided to segment the elements. Additionally, the

optimal number of subsets is not identified. This research explores the interdependencies

among elements and thus proposes a trade-off decomposition methodology to decompose

the PCM elements into an optimal number of mutually exclusive subsets. As a result, the

number and the inconsistencies of the pairwise comparisons are reduced. Furthermore, the

model identifies a pivot element which is used to obtain the appropriate global weights for

all elements across all subsets. The proposed methodology is applied to the AHP to

demonstrate its advantages.

4.1 Introduction

An m×m pairwise comparison matrix (PCM) denoted by A is a reciprocal matrix

that is composed of pairwise comparisons aij ∈ [1/9, 9] that represent the scaled relative

importance scores of element i as compared to element j. Typically, a PCM is generated

from pairwise comparisons elicited from a decision maker (DM) to estimate criteria or

alternative priorities. A widely applied multiple criteria decision making (MCDM)

methodology that uses PCMs is the Analytic Hierarchy Process (AHP) developed by

Saaty (1977). Currently, there are several successful applications of the AHP in a

wide-range of MCDM problems (Ishizaka & Labib, 2011). On the other hand, the AHP

that uses PCMs has two interrelated limitations, specifically: (1) a large number of
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pairwise comparisons need to be elicited from the DM and (2) the inconsistency obtained

during the elicitation of these pairwise comparisons.

To illustrate the issue of the large number of required pairwise comparisons, let us

consider a PCM with m elements. A total of m(m− 1)/2 pairwise comparisons are needed

to obtain the weights of the elements. In a case study by Lin et al. (2008), it took two and

a half hours on average to complete a three-level AHP decision problem per decision

maker (DM) and a total of 380 man-hours to complete all pairwise comparisons. Due to

the limited cognitive powers of DMs, Saaty (1990) recommends that the number of

elements within a PCM should be at most seven. Any decision that has exceeded this

threshold is considered large. Methodologies are proposed to decompose large AHP PCMs

into smaller subsets to minimize the number of pairwise comparisons at the alternative

level (Shen et al., 1992; Islam et al., 1997a; Triantaphyllou, 1995; Islam & Abdullah, 2006;

Ishizaka, 2008, 2012). For example, the alternatives are subjectively assigned into

k ∈ [2,m− 1] mutually exclusive subsets. Pairwise comparisons are elicited from the DM

only in those local PCMs. In effect, a reduction in the number of pairwise comparisons is

realized since the dimensions of the decomposed matrices are much smaller than the

original PCM. On the other hand, when the PCM is decomposed into subsets, the

obtained relative weights are valid only within those subsets and the problem arises when

aggregating the local weights back to its global counterpart. To address this issue, these

methodologies propose the use of a pivot element. The pivot element is a common AHP

element assigned to all subsets and is used as a basis for comparing the elements across all

the disjoint subsets. The global weights of the elements are then calculated for decision

making. However, the decomposition methodologies reviewed above are not without any

disadvantages. Firstly, to the best of our knowledge, the number of subsets is known as a

prior and the assignments of the elements to each subset are done arbitrarily which are

subject to DM biases and judgement errors. Secondly, most methods lack a methodology

to identify an appropriate pivot element to be used as shown in (Shen et al., 1992;

Triantaphyllou, 2000; Ishizaka, 2012). Please note that pivot selection is a challenging
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issue as the decisions should consider reducing the number and inconsistency of the

pairwise comparisons simultaneously.

The second limitation of the PCMs, which is related to the curse of dimensionality,

is attributed to the consistency of the pairwise comparisons. When the number of

required pairwise comparisons increases, the consistency of these comparisons is expected

to plummet and would result to inconsistent decisions (Weiss & Rao, 1987). To

analytically measure the amount of inconsistency of a PCM A, Saaty (1980) proposed the

consistency index (CI). The CI is computed by obtaining the eigenvalue of the PCM using

Eq. (4.1) as follows:

CI(A) =
λmax −m

m− 1
(4.1)

where m is the dimension of the PCM A and λmax is its maximum eigenvalue. The

consistency ratio (CR) is the ratio of CI and RI and is computed using Eq. (4.2) as

follows:

CR(A) =
CI(A)

RI(m)
(4.2)

where RI(m) is the random index obtained from the average CI of 500 randomly filled

matrices and is a function of m. If matrix A has CR < 10%, then A is considered to have

an acceptable level of consistency. The DM can then use the matrix A for decision

making. On the other hand if CR ≥ 10%, the process of eliciting pairwise comparisons

from the DM is repeated until a consistent matrix is obtained. Extensive research focus on

improving the consistency of a PCM by changing pairwise comparison values individually

(Zeshui & Cuiping, 1999; Cao et al., 2008; Saaty, 2003; Beńıtez, Delgado-Galván,

Gutiérrez, & Izquierdo, 2011; Beńıtez, Delgado-Galván, Izquierdo, & Pérez-Garćıa, 2011).

Upon executing these methodologies, a more consistent PCM is obtained. Yet, these

methods require a significant amount of time to complete since a large PCM is required as

input. With this, due to their limited cognitive processing powers, the DMs are not

expected to provide consistent pairwise comparisons all throughout the pairwise

comparison elicitation process especially when the number of pairwise comparisons is

large. Therefore, a methodology that reduces the pairwise comparisons elicited from the
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DM would lead to improved consistency levels since only a handful of pairwise

comparisons are elicited and would not be cognitively taxing to the DM.

Noting the limitations are interrelated, however, most research attempts to

address these limitations individually. In this paper, a novel trade-off PCM decomposition

methodology is proposed that aims to tackle the aforementioned limitations and thus

improve the applicability of the PCMs for large scale MCDM problems. A binary integer

program (BIP) is developed to (1) identify the optimal number of subsets (k), (2) to

assign each element to the appropriate subset, and (3) to identify the appropriate element

to be the pivot element. The BIP balances the number of pairwise comparisons saved, the

inconsistency of the PCM as well as the accuracy of the global PCM element weights. A

number of comparison experiments are conducted to validate the proposed model using

datasets from existing literature.

The rest of this paper is organized as follows. Section 4.2 provides a literature

review on related articles that address the limitations of the AHP. Section 4.3 illustrates

the steps of the proposed decomposition methodology. Section 4.4 describes the

computational experiments done to validate the proposed methodology. Finally, section

4.5 concludes the paper and proposes further research areas.

4.2 Review of Related Literature

Saaty (1990) proposes the idea to group alternatives into subsets according to the

attributes of the alternatives to reduce the number of pairwise comparisons. Using this

concept, Shen et al. (1992) propose an arbitrary assignment of alternatives into k subsets

such that these k subsets have one common pivot alternative. Pairwise comparisons are

first elicited on each subset and local priorities are calculated using the standard AHP

methodology. The global priority is then derived by using a common pivot criterion and

local priorities of each subset. Additional guidelines to segment alternatives into k subsets

based on a subjective scale are provided in (Islam et al., 1997a). According to the model,

alternatives that have close magnitudes are grouped together. To link all the subsets
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together, a single linkage method in which the largest alternative within a given subset is

assigned to the next closest subset. Then the largest alternative from that subset is

assigned to the next and so on. On the other hand, take note that the definition of

magnitudes is highly subjective since it is provided by the DM. Ishizaka (2012) applies the

same methodology on supplier selection by extending the close magnitude concept on

alternatives. However, these methods do not consider grouping the decision criteria

together to further minimize the number of pairwise comparisons. Islam & Abdullah

(2006) consider reducing the number of decision criteria by the nominal group technique.

The decision criteria that have insignificant weights are eliminated from future pairwise

comparison elicitation process. A similar methodology is proposed in (Malakooti, 2000)

where the final weights are obtained using partial information on the preferences elicited

from the DM. Beńıtez et al. (2012) on the other hand proposed a methodology that uses

partial and/or incomplete DM preferences at multiple points within the decision making

process. Weiss & Rao (1987) and Takahashi (1990) develop models that use balanced

incomplete block designs where arbitrary subsets of a PCM A are assigned to different

DMs for elicitation. The multiple assignments are treated as replicates in contrast when

all DMs focus on the large PCM. The geometric mean is used to consolidate the weights.

However, the total number of pairwise comparisons has increased considerably and the

decision problem would take too long to solve. Rating scales methodologies also address

the issue of numerous pairwise comparisons (Liberatore, 1987; Singh et al., 2007;

Chamodrakas et al., 2010; Önüt et al., 2010). These methodologies focus on the

alternative level in which a five-point scale (outstanding, good, average, fair and poor)

scores are elicited for each alternative for each criterion. Instead of providing mn(n− 1)/2

comparisons, only nm are provided at the alternative level. Triantaphyllou (1995) and

Triantaphyllou (2000) develop a linear programming model to estimate the missing

pairwise comparisons of A by selecting two arbitrary subsets of the criteria s1 and s2,

where s1 ∪ s2 = C and s1 ∩ s2. The proposed linear programming problem, calculates the

missing comparisons and the global weights can then be estimated. However, the

algorithm only focused on dividing the PCM A into two subsets. If m is large, then the
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subsets are still large. Moreover, the deviation error is dependent on the number of

common elements of subsets s1 and s2. The smaller the s1 ∩ s2, the estimation of the

missing comparisons is expected to be less accurate and deviation error rates increase

significantly.

Methodologies are developed to individually change pairwise comparison values

that have the greatest effect in improving consistency (Zeshui & Cuiping, 1999; Cao et al.,

2008; Saaty, 2003; Beńıtez, Delgado-Galván, Gutiérrez, & Izquierdo, 2011; Beńıtez,

Delgado-Galván, Izquierdo, & Pérez-Garćıa, 2011). These methodologies identify the most

inconsistent entry in the PCM and seek to change its value towards a more consistent

matrix. This is done in an iterative fashion until a certain level of consistency is reached.

There are methods that start with the minimum m− 1 pairwise comparisons and seek to

estimate the missing comparisons to preserve consistency. Zhang & Chen (2009) use a

combination of nonlinear programming and genetic simulated annealing while Bozoki et

al. (2009) use nonlinear optimization with exponential scaling to estimate the missing

pairwise comparisons from available ones. However, these methods are found to be

ineffective for problems with large number of criteria. This is due to the fact that all

possible combinations of connecting paths must be considered (Fedrizzi & Giove, 2007,

2009). The number of connecting paths exponentially grows as the number of missing

comparisons increases and thus would be inefficient to solve.

In summary, the existing methodologies focus on reducing the number of pairwise

comparisons. We conclude most methods suffer from being subjective, considering

alternative level decomposition and tend to have large deviation errors. We also find

research that concentrates on improving the consistency of a PCM by changing individual

pairwise comparisons. However, these methodologies provide final pairwise comparisons

may not reflect the original preference of a DM since individual pairwise comparisons are

changed. It is also noted most research attempts to address the limitations of the AHP

individually. Knowing the issues are interrelated, this research proposes a methodology for

PCM decomposition considering element interdependencies to reduce the number of
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pairwise comparisons as well as the inconsistency of the PCM. The next section presents

the proposed PCM decomposition methodology.

4.3 Proposed Decomposition Methodology

We illustrate a decomposition of a PCM A with m elements. Figure 4.1 illustrates

an overview of the proposed decomposition methodology.

Figure 4.1. High Level Overview of Proposed Decomposition Methodology for PCMs

In step 1, the m elements of the PCM are collected as well as the λ ∈ R
+ trade-off

parameter is elicited from the DM. In step 2, inner dependency scores rij are elicited from

the DM to measure the interdependence of between element i and j. The rii′ rating scores

are elicited from the DM qualitatively or gathered by observing the actual alternative

quantitative attributes in step 2. Using the rii′ scores, step 3 decomposes the m elements

into k mutually exclusive subsets S = {sl|l = 1, 2, · · · , k} in which each subset

sl = {sli|i = 1, 2, · · · ,ml}, where
∑k

l=1ml = m+ k − 1 using a BIP (see section 4.3.1).

Additionally, the pivot element is identified. Local pairwise comparisons for all elements

assigned to their respective subsets are elicited and local global weights are calculated

using the original AHP methodology in step 5 (see section 4.3.2). Finally in step 6, with

the use of a pivot element, the global weight of each element is calculated (see section

4.3.3).
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Binary Integer Programming Model

Applying the concept of correlation, the linear interdependencies of the elements

can be analytically estimated as is done in (Yurdakul & Tansel, 2009). To compute for the

dependencies of the elements we define the following value:

Definition 4.1. Let rii′ be the correlation between element i and element i′ which is

calculated using (4.3) as follows

rii′ =

∣

∣

∣

∣

cov(i,i′)
σiσi′

∣

∣

∣

∣

(4.3)

The correlation coefficients are tabulated in an m×m correlation matrix where

rii = 1 and rii′ = ri′i. These correlation coefficients will be used in a BIP decomposition

algorithm to group uncorrelated elements. A value rii′ = 1 indicates strong positive or

negative correlation between elements i and i′.

The proposed PCM decomposition model is based on the amount of

interdependence among the elements with the objective being to group the most

dissimilar elements together into smaller subsets. In this research, we propose a BIP

model with the objective function being: (1) based on the independency in which the

model aims to minimize the amount of dependency among elements in a subset and (2)

the deviation error when the weights of the decomposed matrix is compared to the

weights of original complete PCM.

Interdependencies Component of the Objective Function

Based on the obtained correlation matrix in Eq. (4.3) we seek to minimize the

amount of dependence or correlation among elements assigned to subsets and as such Eq.

(4.4) is proposed as an objective function to satisfy this requirement.

min Z =
k
∑

l=1

m
∑

i=1

∑

i′<i

rii′yii′l (4.4)
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Where variable yii′l = 1 if both element i and i′ are assigned to subset l and

yii′l = 0 otherwise. The objective is to assign dependent elements to different subsets

appropriately. Additionally, we seek to determine the optimal value of the number of

subsets k with feasible values k ∈ [2,m− 1]. However, treating k as a variable leads to

another problem in which an erroneous optimal solution is solved. It is intuitive from the

objective function in Eq. (4.4) that the optimal solution will always have large values of k

(e.g. k = m− 1). Since the elements are assigned to more subsets, the less pairwise

comparisons will be needed. In this setup, significant deviation errors are obtained which

may result in inaccurate decisions. This is discussed by Saaty (1980) in which the

provision of repetitive pairwise comparisons would result to weights that are less sensitive

to biases and judgement errors and a higher risk of erroneous global weights can be

realized when only m− 1 pairwise comparisons are used to calculate the global weights.

To address this issue, a second component is introduced in the next subsection to reduce

the deviation error by penalizing large values of k.

Deviation Error Component of the Objective Function

To analytically measure Saaty’s claim on the deviation error of the global weights,

we define the following performance metric:

Definition 4.2. The accuracy of the decomposition of A into k subsets is estimated using

the weight difference error (WDE) performance metric which is calculated using Eq. (4.5)

as follows:

WDE(Ak) =

m
∑

i=1

(

w(i)− w′(i)

)2

(4.5)

where w(i) are the weights of the undecomposed PCM and while w′(i) are the priorities of

the elements obtained using the proposed decomposition methodology.

Yet, the WDE is not measured beforehand since the true global values of the

elements are unknown and only the local pairwise comparisons for the decomposed

matrices are elicited in the decomposition methodology. In this regard, we investigate
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other measurable parameters as a surrogate to be included in the objective function to

mirror the behavior of the WDE for different values of k.

Consider the case when m elements are decomposed into k subsets. Let

d(Ak) =
∑k

l=1C(ml, 2) be the number of pairwise comparisons needed after

decomposition. It is observed when the elements are assigned to k = m− 1 subsets, the

number of pairwise comparisons needed after decomposing would only be m− 1 and large

values of the WDE are obtained. On the other hand, when k = 2, then lots of pairwise

comparisons are needed since the m elements are distributed evenly into two subsets. This

would result into smaller WDE values since more redundant pairwise comparisons are

used. As such the number of pairwise comparisons after decomposition is proposed to

estimate the value of the WDE given the number of subsets k. We define the number of

pairwise comparisons after decomposition as follows:

Definition 4.3. The difference between the original number of pairwise comparisons of

matrix A and number of pairwise comparisons after decomposition into k subsets denoted

by D(Ak) is given by:

D(Ak) = C(m, 2)− d(Ak) =
m(m− 1)

m
−

k
∑

l=1

C(ml, 2) (4.6)

It is easy to show that function D(Ak) is minimized when: ml =
m−1
k

+ 1, ∀l ∈ S if

m−1
k

+ 1 ∈ Z or bml =
m−1
k

+ 1c for some l ∈ S and bml =
m−1
k

+ 1c+ 1 for some

l′ ∈ S\{l} if m−1
k

+ 1 6∈ Z.

To quantify and illustrate the relationship between D(Ak) and the WDE, the

following propositions are presented to support our claim that the number of pairwise

comparisons after decomposition affects the WDE. Consider an arbitrary decomposition

of an m×m PCM A into k subsets with corresponding decomposed matrices

Ak = {Ak
l = {aij}|l = 1, 2, · · · , k, ∀(i, j) ∈ sl}. It is easy to show that if A is perfectly

consistent (CR(A) = 0) then the global weights of the decomposed matrices Ak are equal

to the original weights of the PCM A and thus WDE(Ak) = 0. Now we consider the case

when A is inconsistent.
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Proposition 4.1. If A is inconsistent (CR(A) > 0), then WDE(Ak) > 0 for any

k ∈ [2,m− 1].

Proof. See Appendix.

Proposition 4.1 states that if A is inconsistent (CR(A) > 0), then there exist at

least one inconsistent pairwise comparison in A. We can conclude that the global weights

of the decomposed matrices Ak are not equal to the original weights of the PCM A and

thus WDE(Ak) > 0. Now we consider the relationship of the WDE for different k values.

Proposition 4.2. If A is inconsistent then WDE(Ak+1) ≥WDE(Ak)

Proof. See Appendix.

Proposition 4.2 states that by comparing the decompositions of A into Ak+1 or

Ak, one can expect that WDE(Ak+1) ≥WDE(Ak) if A is inconsistent. We generalize

this relationship for any value of k ∈ [2,m− 1] in theorems 4.1 and 4.2 as follows:

Theorem 4.1. If A is inconsistent then a decomposition of A into Ak+1 or Ak will result

in D(Ak+1) > D(Ak) and WDE(Ak+1) ≥WDE(Ak)

Proof. Consider an inconsistent matrix A with decompositions Ak and Ak+1. Calculating

the number of pairwise comparisons after decomposition, by definition, we have:

D(Ak) = C(m, 2)− k

(

m−1
k

+ 1

)

D(Ak) = C(m, 2)−m− k + 1 (4.7)

Computing for Ak+1 we have:

D(Ak+1) = C(m, 2)− (k + 1)

(

m−1
k+1 + 1

)

D(Ak+1) = C(m, 2)−m− k (4.8)

53



Therefore, for any k ∈ [1,m− 1], we have

D(Ak+1) ≥ D(Ak) (4.9)

Since WDE(Ak+1) ≥WDE(Ak) by proposition 4.2, therefore larger pairwise comparison

losses result to larger WDE. For any D(Ak) and D(Ak′) where k > k′ we have

WDE(Ak) ≥WDE(Ak′)

Theorem 4.2. WDE(Ak) is monotone increasing as the values of k is increased.

Proof. Based on theorem 4.1 since, D(Ak+1) > D(Ak) then WDE(Ak+1) ≥WDE(Ak).

Consider D(Ak+2). Then we have D(Ak+2) > D(Ak+1) and D(Ak+2) > D(Ak), by

theorem 1, then WDE(Ak+2) ≥WDE(Ak+1) ≥WDE(Ak)

Since the proofs are based on a single erroneous pairwise comparison, a Monte

Carlo simulation is performed on a peer reviewed AHP dataset (Önüt et al., 2010) from

existing literature to further illustrate the relationship between D(Ak) and the

WDE(Ak). In (Önüt et al., 2010), Önüt et al. propose a fuzzy AHP model for shopping

center site selection. The row scores of the alternatives over elements are presented in

Table 4.1. These scores represent the most likely scores of the fuzzy pairwise comparison

using a 10-point rating scale. The 8× 8 correlation matrix is then obtained and is

presented in Table 4.2.

Table 4.1. Raw data of the Scores of Each Alternative on Each Element

Alternative 1 2 3 4 5 6 7 8

A 5 7 5 9 5 5 3 3
B 7 7 5 7 7 7 5 5
C 5 5 7 5 5 5 9 7
D 5 5 8 3 5 5 9 5
E 7 9 5 5 7 7 3 3
F 5 5 7 3 5 5 9 5

By varying the raw scores and the most likely local pairwise comparisons by

±10%, the response of the D(Ak) and the WDE performance metrics are tracked to
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Table 4.2. Correlation Matrix Computed from Table 4.1

Element 1 2 3 4 5 6 7 8

1 1.00 0.79 0.68 0.22 1.00 1.00 0.60 0.34
2 0.79 1.00 0.86 0.49 0.79 0.79 0.92 0.76
3 0.68 0.86 1.00 0.79 0.68 0.68 0.93 0.63
4 0.22 0.49 0.79 1.00 0.22 0.22 0.76 0.42
5 1.00 0.79 0.68 0.22 1.00 1.00 0.60 0.34
6 1.00 0.79 0.68 0.22 1.00 1.00 0.60 0.34
7 0.60 0.92 0.93 0.76 0.60 0.60 1.00 0.82
8 0.34 0.76 0.63 0.42 0.34 0.34 0.82 1.00

determine their relationship. The decomposition is done on values of k ∈ [2,m− 1] using a

MATLAB 2011b programming environment. The simulation is run with 10,000

replications and a 95% confidence interval plot on the mean of the WDE(Ak) plotted over

values of k ∈ [1, 7] with D(Ak) is presented in Figure 4.2.

Figure 4.2. The Simulated Effect of different k values with mean of D(Ak) on the mean of
the WDE

The effect of increasing the values of D(Ak) on the WDE is clearly presented. A

monotone increase of the WDE is observed as the values of D(Ak) is increased which

supports the findings of theorem 4.2. Based on theorem 4.2 and the results presented in

figure 4.2, we seek to minimize D(Ak) or equivalently by definition of D(Ak) to maximize

the number of pairwise comparisons
∑k

l=1C(ml, 2). This is done to obtain small values of

the WDE which is consistent with the recommendation of Saaty (1980).
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BIP Formulation

The proposed trade-off objective function is presented in Eq. (4.10).

min Z =
k
∑

l=1

m
∑

i=1

∑

i′<i

rii′yii′l + λD(Ak) (4.10)

The trade-off parameter λ is included as a scaling factor that control the optimal

solution of the BIP which is elicited from the DM. Small values of λ provide an optimal

solution that minimizes the interdependencies among elements and seeks to assign all m

elements to at most m− 1 subsets. On the other hand, large values of λ provide an

optimal solution that prioritizes the WDE and assigns the m elements into at least 2

subsets. Furthermore, since D(Ak) = C(m, 2)−∑k
l=1C(ml, 2) and C(m, 2) is a constant,

then only the
∑k

l=1C(ml, 2) term is included in the revised objective function presented

in equation 4.11.

The proposed BIP formulation is a modification of the quadratic clustering

formulation of Song and Hitomi (Song & Hitomi, 1992). A linearization technique is

applied to linearize the quadratic elements to obtain a linear binary integer formulation

with additional decision variables. The definition of all the decision variables as well as

the formulation is presented as follows:

Let:
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rii′ := correlation(dependence) bet. element i and i′

xil =

{

1 if element i is assigned to subset with index l

0 otherwise

yii′l := xilxi′l

{

1 if both elements i and i′ are assigned to l

0 otherwise

zi :=

{

1 if element i is a pivot element

0 otherwise

sfl :=

{

1 if subset with index l can be assigned elements

0 otherwise

kL :=

{

1 if there are L = 2, 3, · · · ,m− 1 subsets

0 otherwise

mil :=

{

1 if there are ml elements in subset l

0 otherwise

wiL := zikL :=

{

1 if k = L and zi = 1

0 otherwise
Objective Function:

min Z =

k
∑

l=1

m
∑

i=1

∑

i′<i

rii′yii′l + λ

k
∑

i=1

∑

i∈[0,2,··· ,m−1]

C(i, 2)mil (4.11)

s.t.
xil − yii′l ≥ 0, i ∈ [1,m], l ∈ [1,m− 1] (4.12)

xi′l − yii′l ≥ 0, i ∈ [1,m], l ∈ [1,m− 1] (4.13)

xi′l + xil − yii′l ≤ 1, i ∈ [1,m], l ∈ [1,m− 1] (4.14)
m
∑

i=1

xil ≥ 2sfl , l ∈ [1,m− 1] (4.15)

m
∑

i=1

xil ≤ msfl , l ∈ [1,m− 1] (4.16)

k
∑

l=1

xil ≥ 1, i ∈ [1,m], l ∈ [1,m− 1] (4.17)

kl − wiL ≥ 0, L ∈ [2,m− 1], i ∈ [1,m] (4.18)

zi − wiL ≥ 0, L ∈ [2,m− 1], i ∈ [1,m] (4.19)

kL + zi − wiL ≤ 1, L ∈ [2,m− 1], i ∈ [1,m] (4.20)

m
∑

i=1

xil ≤
m−1
∑

L=2

⌈

m− 1

L
− 1

⌉

kL, L ∈ [2,m− 1], i ∈ [1,m] (4.21)

k
∑

l=1

xil ≤
k
∑

l=1

lwiL − zi + 1, L ∈ [2,m− 1], i ∈ [1,m] (4.22)
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k
∑

i=1

zi = 1, (4.23)

k
∑

l=1

sfl = LkL, L ∈ [2,m− 1] (4.24)

k
∑

l=1

kl = 1 (4.25)

m
∑

i=1

xil =
∑

I∈[0,2,··· ,m−1]

ImIl l ∈ [1,m− 1] (4.26)

m
∑

i=1

mil = 1, l ∈ [1,m− 1] (4.27)

xil, yii′l ∈ B
m×(m−1), zi ∈ B

m, sfL ∈ B
m−1

kL ∈ B
m−2, wiL ∈ B

m×(m−2),mIl ∈ B
(m−1)×(m−1) (4.28)

Equation 4.11 shows the revised objective function. Equations sets 4.12 to 4.14

linearize the quadratic relationship (yii′l := xilxi′l). Equation set 4.15 forces each subset

with index l, (sfl = 1) to have at least 2 elements and at least zero assignments otherwise.

Equation set 4.16 provides an upper bound for the number of elements assigned to subset

with index l if l is feasible (sfl = 1) and zero assignments otherwise. Equation set 4.17

forces each element i to be assigned to at least a single subset. Equations 4.18 to 4.20

linearize the quadratic relationship wiL := zikL. Equation set 4.21 serves as an upper

bound ((m+ (l − 1)/l)) for the number of elements assigned to subset l based on the

number of subsets kl. Equation set 4.22 assigns element i to all feasible subsets if element

i is a pivot element (zi = 1) and subset l is feasible (sfl = 1). Equation 4.23 sets the

number of pivot elements to 1. Equation set 4.24 calculates the number of feasible subsets

sfl to the number of subsets kL. Equation 4.25 ensures that there is at least 1 kl = 1

option. Equation set 4.26 counts the number of elements assigned to a subset and relating

it to mil. Equation set 4.27 ensures that there is at least one mil = 1. Equation set 4.28

declares all variables as binary variables.

The optimal output solution of the proposed BIP is an assignment of the m

elements into optimally selected k subsets denoted by xil = 1 if element i is assigned to
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subset sl. Additionally, the optimal pivot element p is selected and assigned to all subsets.

Furthermore, the BIP also provides a listing of the feasible subsets sfl that have elements

assigned to it where
∑m−1

l=1 sfl = k.

Elicit Local Pairwise Comparisons and Calculate Local Weights

After decomposition, local pairwise comparisons are elicited from the DM for all

subsets after the elements are assigned to subsets. The local pairwise comparisons for

elements subset sl are illustrated in matrix form Al as shown in Eq. 4.29:

Al =



















1 a1,2 · · · a1,ml

1/a,2 1 · · · a2,ml

...
...

. . .
...

1/a1,ml
1/a2,ml

· · · 1



















, ∀sl ∈ S (4.29)

Let w(Al) be the vector of local weights from Al where w(i, l) ∈ w(Al) is the local

weight of elements i. The original eigenvector methodology is used to calculate the local

element weights as follows:

w(Al) =













∑ml
j=1

ã1j

ml

...
∑ml

j=1
ãmlj

ml













=



















w(1, l)

w(2, l)

...

w(ml, l)



















, l = 1, 2, · · · , k (4.30)

A new performance measure is needed to keep track of the consistency of the

pairwise comparisons. The original definition of the CR of matrix A is no longer

applicable since the m elements are assigned into k subsets. With this, a new definition of

consistency is proposed as follows:
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Definition 4.4. The Average Consistency Ratio (ACR) performance measure of an PCM

decomposed into k subsets is defined by:

ACR =
1

m+ k − 1

k
∑

l=1

mlCR(Al) (4.31)

where CR(Al) is the consistency ratio of the PCM subset Al.

In simple terms, the ACR is the weighted average of the CR of each of the local

PCM. The ACR is used to estimate the overall CR of the pairwise comparisons across all

subsets.

Calculate Global Weights

Given values of k there will be m+ k − 1 instances of w(i, l). The local elements

weight in subset l is divided by the weight of pivot element p in that subset and is

repeated for all subsets. To illustrate this, let w̃(Al) be the vector of normalized weights

where each w̃(i, l) ∈ w̃(Al) is computed using Eq. 4.32.

w̃(i, l) =
1

w(i = p, l)
[w(i, l)], ∀i ∈ sl, ∀sl ∈ S (4.32)

Given this, the normalized pivot element weight in each subset has a value equal

to one. Since all normalized pivot element weight has a value equal to one, all the other

elements in the other subsets can be compared to the pivot elements. For the

computation of the global weights, let w′(A) be the vector of global weights where

w′(i) ∈ w′(A) is computed using Eq. 4.33.

w′(i) =
1

∑k
l=1

∑

i∈sl
w̃(i, l)−K + 1

w̃(i, l), ∀i ∈ C (4.33)

Illustrative Examples

This section presents an example that illustrate the capability of the proposed

methodology in decomposing a criteria PCM. Consider the same dataset specifically the
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fuzzy AHP site selection data from Önüt et al. (2010). Consider a scenario where the DM

chooses to have a solution that have equal priorities for the dependence and the amount of

deviation error
(
∑m

i=1

∑

i′<i rii′yii′l = λD(Ak)
)

. Equal weights are given to the

independence and deviation error component of the objective function. Four performance

metrics are considered, specifically: the ACR, D(Ak),WDE and the amount of

dependence after decomposition: TDS=
∑m

i=1

∑

i′<i rii′yii′l. Table 4.3 summarizes the

results of the proposed model for a balanced objective function.

Table 4.3. Proposed Model Optimal Results for Balanced Dependence and WDE

Subset Index 1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 1 0 1 1 0 0 0 1
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 1 0 1 0 1 0 0
6 0 0 0 1 1 0 1 0
7 0 0 0 0 0 0 0 0

Criterion 4 is chosen as a pivot criterion and is assigned to three feasible subsets.

Criteria 1, 3, 4 and 8 are assigned to subset with index 2, criteria 2, 4 and 6 are assigned

to subset with index 5, and criteria 4, 5 and 7 are assigned to subset index with 6. The

total amount of dependence after decomposition is
∑k

l=1

∑m
i=1

∑

i′<i rii′yii′l = 6.1663,

while the total number of pairwise comparisons after decomposition is 28− 12 = 16. Table

4.4 to Table 4.6 show the local priorities of the decomposed AHP obtained from the

original 8× 8 PCM.

Table 4.4. Subset 1 Local Priorities

Criteria 1 3 4 8 Priority

1 1 0.33 0.33 1 12.20%
3 3 1 3 3 47.32%
4 3 0.33 1 3 28.27%
8 1 0.33 0.33 1 12.20%

The average consistency ratio (ACR) is computed by obtaining the weighted

average of the individual priorities of the 3 subsets as:
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Table 4.5. Subset 2 Local Priorities

Criteria 4 5 7 Priority

4 1 1 3 40.55%
5 1 1 5 47.96%
7 0.33 0.2 1 11.50%

Table 4.6. Subset 3 Local Priorities

Criteria 2 4 6 Priority

2 1 0.2 0.2 9.09%
4 5 1 1 45.45%
6 5 1 1 45.45%

ACR =
1

m+ k − 1

k
∑

l=1

mlCR(Al) (4.34)

=
4

10
8.08% +

3

10
3.09% +

3

10
0.00% = 4.16%

Using the pivot criterion 4, the global weights are as follows:

w′ = [0.07, 0.12, 0.28, 0.16, 0.19, 0.04, 0.05, 0.07]T (4.35)

Two other scenarios are considered in which the DM chooses to have a solution

that minimizes the amount of dependence among criteria (λ = 0) and the DM chooses to

have a solution that minimizes the WDE, (λ� 0). A summary of the results for all three

scenarios including the results of the performance measures for the original AHP

methodology is presented in Table 4.7.

Table 4.7. Summary of Results on Each Performance Metric

Performance Original Balanced Independence WDE
Metric Priority Priority Priority

ACR 12.96% 4.16% 0.00% 7.11%
D(Ak) 0 16 21 12
WDE 0 5.599E-02 9.24E-02 8.03E-03
TDS 18.29 6.166 3.120 9.4814
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It is evident from Table 4.7 that the proposed decomposition methodology

illustrate a trade-off relationship between different λ values. For the undecomposed PCM,

we can observe an inconsistent PCM (12.96%), with no reductions on the number of

pairwise comparisons (time consuming), zero WDE due to complete comparisons and lots

of interdependence (18.29). On the other hand, a balanced priority objective function

provides a trade-off solution with acceptable inconsistency (4.16%), 16 pairwise

comparison reductions, some deviation error (5.99E-02) and a 67% reduction in the

amount of dependence (6.166). Extreme solutions are obtained for both independence and

WDE priority settings. If the priority is independence, we have consistent matrices

(0.00%) and lowest amount of dependence (3.120). Conversely, if the priority is the

WDE, we obtain some error (8.30E-03) at a cost of 12 pairwise comparison reductions

and more consistent local pairwise comparisons (7.11%).

4.4 Validation of the Proposed Methodology

Although preliminary results performed on established AHP data are promising,

further validation of the proposed decomposition methodology is done using Monte Carlo

simulation on a MATLAB 2011b environment. By varying the similarity coefficients and

the local pairwise comparisons by ±10%, the sensitivity of the four performance metrics

are measured. The continuity assumption of the pairwise comparisons is believed to be

reasonable since the variation can be viewed as a degree of belonging to a fuzzy set

(Emblemsvg & Tonning, 2003; Triantaphyllou, 1995). This section presents the results of

the two validation phases. The first phase tests the validity of the proposed decomposition

methodology as compared an undecomposed PCM. Likewise, the second phase compares

the model to three other decomposition models, specifically the methodologies of Ishizaka

(2012), Shen et al. (1992) and Triantaphyllou (1995). Table 4.8 summarizes the

methodologies and their corresponding settings. The same dataset from (A) Önüt et al.

(2010) is used to validate the methodology including two other datasets from peer

reviewed papers specifically the ones of (B) Al-Harbi (2001) and (C) Y. Lee & Kozar

(2006).
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Table 4.8. Validation Parameters

Parameters
Methodology

Proposed
Model

Undecomposed Ishizaka
(2012)

Shen et al.
(1992)

Triantaphyllou
(1995)

Number of
Subsets

BIP 1 Unknown
Brute Force

Unknown
Brute Force

2

Assignment
of Criteria

BIP N/A Attribute
Magnitudes

Random Random

Selection of
Pivot Crite-
rion

BIP N/A Random Random Random

Calculation
of Global
Weights

Pivot Crite-
rion

N/A Single Link-
age

Pivot Crite-
rion

LP

Comparison with the Original AHP Methodology

This section presents the results of the first phase of the validation in which the

main performance metric is the weighted objective function value sum computed by Eq.

4.11. In this phase, the optimal Z value of the BIP is compared to the solution when the

original AHP PCM is used where k = 1. A paired t-test on the mean is used to determine

if there is significant difference between the optimal solution provided by the proposed

model(µP ) and the optimal solution provided by the original AHP methodology (µA) on

the objective function value obtained. The null hypothesis tested is: µA = µP and

alternative hypothesis: µA 6= µP at a 95% confidence level. Each simulation is run with

10,000 iterations. Table 4.9 shows the simulation results when the optimal Z value of the

proposed model is compared to Z value when the original AHP is used.

It is observed in Table 4.9, that the proposed methodology outperforms the

original AHP PCM in terms of the weighted objective function value Z when the WDE

and dependence are equally prioritized and when dependence is solely prioritized. On the

other hand, the original methodology outperforms the proposed methodology when the

WDE is prioritized. This can be attributed to the fact that the undecomposed PCM

would lead to zero deviations since all original pairwise comparisons are used.
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Table 4.9. Comparison of Z Value Results From the Original AHP and the Proposed Model

Settings DataSet
AHP Proposed Model

t-test p-Val
Mean Std.Dev. Mean Std.Dev.

Balanced
A 6.82 2.10 3.99 1.21 µA > µP 0.00
B -0.13 0.38 -2.77 0.51 µA > µP 0.00
C 7.48 2.25 -0.64 2.21 µA > µP 0.00

Dependence
A 146.17 10.30 24.59 3.18 µA > µP 0.00
B 34.75 1.116 1.69 0.90 µA > µP 0.00
C 168.62 13.28 14.01 3.74 µA > µP 0.00

WDE
A -10.78 0.92 -3.51 0.58 µA < µP 0.00
B -10.04 0.11 -4.89 0.10 µA < µP 0.00
C -8.40 1.29 -2.91 0.63 µA < µP 0.00

Comparison with other Decomposition Models

The second validation stage extends the first validation stage by considering

k ∈ [2,m− 1] subsets. Therefore, an extension of Ishizaka (2012)’s model for PCM

decomposition is used as a comparison. The purpose of Ishizaka’s model is similar to the

purpose of the proposed decomposition model and as such we compare the two models in

terms of four performance metrics. A brute force approach is done where the optimal Z

value of the proposed model is compared to the Z values when Ishizaka’s methodology is

applied for all possible k ∈ [2,m− 1] values.

Furthermore, this section compares the four performance metrics of the model,

when the value of k is solved optimally, to that of the original decomposition methodology

by Shen et al. (1992) with the same k value. Whatever k value is provided by the BIP, the

same k is run through the methodology proposed by Shen for decomposition at the

criteria level.

Additionally, a comparison of the proposed decomposition methodology on the one

proposed by Triantaphyllou (1995) on all four performance metrics is also done. Since

Triantaphyllou’s model is limited to only two subsets, we compare the performance of the

proposed model with the D(Ak) prioritized. Since larger weights are placed on D(Ak),

solutions of k = 2 subsets are obtained. The proposed model is now comparable to the
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methodology of Triantaphyllou when we chose the number of criteria for subset 1 to be

n1 = m/2 + 1 and subset 2 to be n2 = m/2.

A paired t-test on the mean is used to determine if there is significant difference

on each performance metric D(Ak), WDE, ACR and TDS. The null hypothesis tested is

µ∗ = µP and alternative hypothesis: µ∗ 6= µBIP at a 95% confidence level. Each

simulation is run with 10,000 iterations. Table 4.10 summarizes the results of the

simulation for all methodologies in terms of wins, ties and loses. A win (W) is defined as

statistical significant improvement of a performance metric, a tie (T) denotes not that

there is not enough evidence to reject µ∗ = µP and a lose(L) denotes a statistical

significant degradation of a performance metric when the proposed model is compared to

each of the decomposition methodologies.

Table 4.10. Comparison of other Decomposition Methodologies and the Proposed Model

Settings DataSet
Ishizaka et al. Shen et al. Triantaphyllou

W T L W T L W T L

Balanced
A 5 1 0 2 2 0 N/A N/A N/A
B 4 0 0 3 0 1 N/A N/A N/A
C 6 0 0 3 1 0 N/A N/A N/A

Dependence
A 6 0 0 2 1 1 N/A N/A N/A
B 4 0 0 3 0 1 N/A N/A N/A
C 6 0 0 2 0 2 N/A N/A N/A

WDE
A 6 0 0 3 1 0 3 1 0
B 4 0 0 4 0 0 3 1 0
C 6 0 0 2 2 0 3 1 0

Totals 47 1 0 24 7 5 9 3 0

Based on Table 4.10 it is observed that the optimal trade-off objective function

value of the proposed model dominates all possible objective function values for

k ∈ [2,m− 1] provided by the methodology of Ishizaka. The weighted optimal solution

provided by the model generally provides a better solution on all performance metrics

since the proposed model selects the best number of subsets, provides optimal assignment

of criteria to all subsets and selects the least independent pivot criterion as compared to
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Ishizaka’s methodology that does not have any capability of doing it. Therefore, given the

preferences of the DM, the best number of subsets k can be determined thus eliminating

the DM’s judgement error and bias.

Furthermore, the proposed decomposition methodology improves on the

methodology proposed by Shen specifically on 24 out of 36 tests. The wins are mainly

attributed to the D(Ak) and TDS performance metrics. This means that the proposed

model has lesser required pairwise comparisons after decomposition as compared the

methodology proposed by Shen. This translates to faster decision making and lesser time

for the DM to setup the AHP model. Furthermore, the proposed model clearly segregates

uncorrelated criteria into the same subsets. A reduction in the amount of dependence in

criteria means that the criteria assigned to subsets are much more independent and thus

the provision of pairwise comparisons would not be subject to biases and error.

Comparable performance is generally obtained when comparing the proposed model and

Shen’s methodology on the ACR and WDE.

It is also observed in Table 4.10 that the proposed model improves on the

methodology proposed by Triantaphyllou on 9 out of 12 tests while the three ties can be

attributed to the no significant difference result on the D(Ak) performance metric. The

proposed model improves on the ACR, which means that the proposed model has

generally more consistent comparisons. Furthermore, statistically lesser deviations are

observed when the global weights calculation methodology using a pivot criterion is used

as compared to the linear programming estimation methodology proposed by

Triantaphyllou. In terms of the TDS, the proposed model has statistically lesser amount

of dependence among criteria as compared to the model of Triantaphyllou on all three

datasets.

4.5 Conclusions and Future Work

Due to the inherent limitations of large PCMs and the existing methodologies on

PCM decomposition, this paper proposes a novel decomposition methodology to
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decompose the elements of a PCM into smaller subsets. The decomposition methodology

which consists of a Binary Integer Program (BIP) which uses a trade-off objective

function that balances the deviation error between the original undecomposed PCM

weights and the decomposed PCM weights (WDE) and the amount of dependence among

elements (TDS). The proposed model is capable of (1) solving for the optimal number of

PCM subsets, (2) assigning the PCM elements to all subsets, and (3) selecting the best

pivot element to be assigned to all subsets. These three contributions address the

limitations of the existing methodologies. Based on the experimental results, the following

specific conclusions can be drawn:

The proposed methodology improves on the AHP methodology when the issue of

independence is given priority over the deviations of the global weights. Additionally, the

proposed model surpasses the methodology proposed by Ishizaka (2012) in a majority of

the statistical t-tests performed on the optimal objective function Z values. This implies

that the proposed model determines the best the number of PCM subsets (k) thus

avoiding judgement and bias error from the DM. The proposed decomposition

methodology can be used as a decision support tool for DMs to determine the optimal k

value given weighting preferences on the amount of dependence present among elements in

a subset and the deviations of the global weights as well. Furthermore, it can be used if

the DM’s preference is to balance the two performance metrics as well as prioritizing only

the dependence among elements. On the other hand, DM can use the original AHP

methodology if his preference is solely the accuracy of the weights and the time to provide

the comparisons is not an issue.

Additionally, the proposed model outperforms the decomposition model proposed

by Shen et al. (1992) on the TDS and number of pairwise comparisons after

decomposition (D(Ak)) performance metrics. Additionally, the BIP improves on the

methodology proposed by Triantaphyllou (1995) on the average consistency ratio (ACR),

WDE and TDS performance metrics. This shows that a reduction on the amount of

dependencies among elements is obtained which can lead to more accurate decisions since
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the elements in the local subsets are more independent. Likewise, a statistically significant

decrease on the required number of pairwise comparisons is obtained thus saving the DM

time in making a large scale decision. Consequently, we can infer from this that the

optimal assignment of criteria is an effective means to balance the amount of dependence

among elements and number of pairwise comparisons after decomposition.

The authors plan to extend the model by considering more AHP levels and

applying it in the ANP methodology. An extension of using multiple pivot criteria in the

BIP formulation is also being considered to further reduce the deviation errors as well as

inclusion of interval and fuzzy pairwise comparisons that handle imprecise pairwise

comparisons.
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Chapter 5

A GENERALIZED STOCHASTIC AHP DECISION MAKING METHODOLOGY

Existing methodologies address imprecise Analytic Hierarchy Process (AHP)

pairwise comparisons by modeling crisp pairwise comparisons as fuzzy sets or a single

type of probability distribution (e.g., uniform, triangular). However, one common issue

faced by decision makers (DM) is bounded rationality, that is, DMs have limited cognitive

powers in specifying their preferences over multiple pairwise comparisons. Hence, there is

a need of presenting the imprecise comparisons in a generalized form which can be used to

represent different types of distributions. In addition, given the ultimate goal of imprecise

AHP is to make the decision, computing appropriate weights for the alternatives and

criteria from the imprecise comparisons is a must. Therefore, a second advantage in using

a generalized distribution function is it can represent the varied distributions making the

computation of the weights simplified. In this research, a beta distribution is proposed

which can represent a wide variety of distributions based on the information available via

method-of-moments methodology. A Non-Linear Programming model is then developed

that calculates weights which maximizes the preferences of the DM as well as minimizes

the inconsistency simultaneously. Comparison experiments are conducted using datasets

collected from literature to validate the proposed methodology.

5.1 Introduction

The Analytic Hierarchy Process (AHP), developed by Saaty (1977) is a practical

and useful multiple criteria decision making (MCDM) tool. It has been widely accepted

by industries and applied in various MCDM problems (Ishizaka & Labib, 2011). The AHP

methodology uses pairwise comparisons aij between criteria or alternative i and j to

calculate their respective weights for decision making. These pairwise comparisons usually

are quantitative or qualitative in nature. Quantitative pairwise comparisons are direct

observations from the attributes of alternatives while qualitative comparisons are elicited

from the decision maker (DM) to quantify the degree of preference. Conventionally,
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pairwise comparisons are modelled as crisp values aij ∈ [1/9, 9]. Yet, these crisp values

may not be sufficient to model the presence of ambiguity (A. H. I. Lee et al., 2008). To

address this limitation, the concept of interval judgements or interval pairwise

comparisons is proposed in (Saaty & Vargas, 1987; Arbel, 1989). Upper and lower limit

pairwise comparison values (LL,UL) are used to model the imprecise pairwise

comparisons. Essentially, these pairwise comparisons are treated as random variables that

follow a uniform probability distribution. Other stochastic distributions have also been

explored including the triangular distribution (Banuelas & Antony, 2006), binomial

(Hahn, 2003) and the Cauchy distribution (Lipovetsky & Tishler, 1999). Fuzzy sets are

also proposed in various studies (Mikhailov, 2000, 2004; Dagdeviren & Yüksel, 2008;

T. C. Wang & Chen, 2008).

However, these methodologies are not without any disadvantages. Firstly, in order

to complete the decision making process, weights need to be estimated from interval

distributions. The conventional AHP eigenvector method for calculating weights is no

longer applicable when pairwise comparisons are imprecise (Arbel, 1989). Existing

stochastic AHP models need to explore the use of methodologies like linear programming

and simulation to calculate the weights. Note, most stochastic AHP methodologies focus

on either maximizing the preferences of the DM only even if they may be inconsistent

(Y. M. Wang & Elhag, 2007; Banuelas & Antony, 2006), or minimizing the inconsistency

only which may result the decision deviated from the DM’s true preference (Y. M. Wang

et al., 2005a; Mikhailov, 2000, 2004). A balanced consideration of both objectives is of

necessity, especially, the use of stochastic distributions may lead to increased inconsistency

if the weights are not properly derived from the pairwise comparisons.

Another notable issue of existing literature is most stochastic AHP methodologies

employ one single type of pairwise comparison distribution. Knowing DMs that use the

AHP are faced with the issues on bounded rationality (Simon, 1955, 1972) that is, limited

cognitive power to precisely depict the preferences over large number of comparisons; it is

desirable to provide DMs the flexibility to choose different distributions for different
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pairwise comparisons during the elicitation process. For example, a crisp comparison may

be used in the cases the DM are sure of the comparisons; a uniform distribution may

apply in the cases the DM is totally unsure; and a triangular distribution may be used if

it is the case in between. The underline challenge imposed by this idea though is it is

difficult if not impossible for optimization methodologies such as LP to solve for crisp

pairwise comparisons from varying pairwise comparison distributions. The only

alternative maybe simulation as is done in (Saaty & Vargas, 1987; Banuelas & Antony,

2006; Lipovetsky & Tishler, 1997), which may not locate the global optimum and suffers

from expensive computational costs. As such, a methodology that efficiently computes for

weights that maximizes the preferences of the DM and at the same time computes for

consistent crisp pairwise comparisons from varying types of imprecise pairwise comparison

preferences is of urgent need.

In this paper, a Generalized Stochastic AHP decision making methodology is

proposed. First, a beta distribution is developed to model the varying types of probability

distributions for the different pairwise comparisons elicited from the DM. The beta

distribution has interesting properties, one of which is its ability to model other

probability distributions, and it is differentiable over its domain making it ideal for

optimization algorithms. The method of moments methodology is applied to fit any input

pairwise comparison distribution into beta distributed pairwise comparisons. Next, a

Non-Linear programming (NLP) model is developed to calculate crisp criteria or

alternative weights that maximize the probability likelihood of varying types of imprecise

pairwise comparisons or in a sense the preferences of the DM and at the same time

minimizing the inconsistency of the pairwise comparisons.

The rest of this paper is organized as follows. Section 5.2 reviews existing

literature that attempts to solve the aforementioned problems. Section 5.3 illustrates the

steps of the proposed methodology, while Section 5.4 describes the computational

experiments done to validate and address the research questions. Finally, Section 5.5

concludes the paper and proposes further research areas.
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5.2 Review of Related Literature

The concept of interval pairwise comparisons or interval judgements is originally

proposed by Saaty & Vargas (1987). In this setup, instead of eliciting crisp pairwise

comparisons, the DM provides the minimum and maximum values that the unknown

pairwise comparison value can have. This elicitation process handles the ambiguity issue

of the pairwise comparison whenever the DM is unsure of its true value. In Saaty and

Vargas’s methodology, the calculation of global weights is done using a Monte Carlo

simulation methodology by sampling feasible crisp weights that satisfy all interval

judgements. However, this setup would not provide an optimal weight solution and is time

consuming. As such, Arbel (1989) proposes a linear programming model to estimate the

weights from interval judgements. However, Kress (1991) argues that the solution from

(Arbel, 1989) exists only in completely consistent interval judgements. To date, there

exist goal programming models to estimate global weights from interval pairwise

comparisons (Bryson, 1995; Xu, 2004; Y. M. Wang & Elhag, 2007; Z. J. Wang & Li,

2012). These methodologies seek an optimal set of satisficing weights which is calculated

by minimizing deviations of the optimal weights from all feasible interval judgements or in

a sense maximizing preferences of the DM. Other similar goal programming variants

include min-max goal programming (Despotis & Derpanis, 2008), logarithmic goal

programming (Y. M. Wang et al., 2005b) and lexicographic programming (Islam et al.,

1997b). Unfortunately, the lexicographic programming model provides unreliable priority

estimates as shown in (Y. M. Wang, 2006). Hence, Y. M. Wang et al. (2005a) propose to

minimize the consistency ratio (CR) using a NLP approach. Salo & Hämäläinen (1995)

propose a preference programming approach with interactive decision support from the

DM. Guo & Tanaka (2010) suggest the use of subjective pairwise comparisons of the

likelihood of events for all possible alternative ranking outcomes. Quadratic programming

is applied to estimate the final weights. Guo & Wang (2011) extend the model of Guo &

Tanaka (2010) by using dual interval probabilities and linear programming. Please note
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only one type of distribution is studied in these mathematical models which may limit its

application to large-scale decision problems where the DM tends to have different

preference knowledge over different pairwise comparisons.

In modeling uncertainty, the concept of fuzzy sets has also been applied.

Mikhailov (2000, 2004) applies fuzzy sets to model uncertainty and fuzzy preference

programming method to estimate crisp weights. A similar methodology is proposed in

(A. H. I. Lee et al., 2008, 2009). According to Y. M. Wang & Chin (2011), these

methodologies may produce conflicting priority vectors that lead to inaccurate decisions

as such they propose to use a logarithmic fuzzy preference programming methodology for

priority derivations. In 2006, Y. M. Wang & Chin (2006) propose a combination of the

eigenvector method and linear programming to estimate crisp priorities from fuzzy

comparison matrices. Additionally, Yang et al. (2012) propose a cloud Delphi hierarchical

analysis with fuzzy interval weights to model the uncertainty of the AHP. These models

also use a single type of fuzzy distribution (e.q. triangular fuzzy numbers) which may not

be applicable to model the varying preferences of the DM.

There are methodologies that handle the uncertainty of comparisons and weights

calculation by applying statistical modeling techniques. Moreno-Jimenez & Vargas (1993)

develop a methodology to estimate the probability of all possible alternative preference

rankings from uniformly distributed interval judgements. These probabilities are

analytically calculated whenever perfect consistent judgements are obtained. On the other

hand, simulation is used for inconsistent cases. In (Haines, 1998), Haines proposes a

statistical based algorithm to study the effect of using uniform and convex distributions

on interval judgements. The mean of the distributions is used to rank the alternatives.

Lipovetsky & Tishler (1999) propose to model interval judgements in terms of a Cauchy

distribution and a non-linear approximation methodology to calculate priorities.

Lipovetsky & Tishler (1997) also propose several other distributions like the triangular,

normal, Laplace or Cauchy however they used it individually. In (Sugihara et al., 2004),

Sugihara et al. suggest an interval regression model to estimate interval priorities from
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interval pairwise comparison judgements. Using uniform interval judgements, Stam &

Silva (1997) recommend multivariate statistical techniques to estimate points and

confidence intervals for rank reversal probabilities. When the rank reversal probability is

low, then the interval judgements are accepted. Hahn (2003) proposes a Bayesian

approach specifically, a weighted hierarchical multinomial logit model to obtain final

weights. Furthermore, inference on these weights is done using a Markov chain Monte

Carlo sampling method. Recently, Liu et al. (2011) suggest a probability distribution

aggregation and mathematical programming to combine pairwise comparisons modelled as

probability distributions.

Though extensive research has been proposed, it is observed that firstly: existing

methodologies focus on either maximizing the preferences of the DM or minimizing the

consistency ratio for pairwise comparisons that follow a single type of distribution. To the

best of our knowledge, there exists no model that addresses these two objectives

simultaneously and efficiently in terms of varying pairwise comparisons. Secondly, existing

methodologies focus on modeling imprecise pairwise comparisons using a single

distribution type. However, it is expected that the amount of imprecision of the pairwise

comparisons would not be constant due to bounded rationality issues. This research

proposes a generalized stochastic AHP to address these gaps which is explained in the

following section.

5.3 Proposed Model Framework

Figure 5.1 presents an overview of the proposed Generalized Stochastic AHP

methodology for decision making. In step 1, the DM decides on the n criteria and m

alternatives for the decision making problem. In step 2, the criteria are decomposed to

appropriate sublevels and a hierarchy is proposed as is done in the traditional AHP

methodology. Step 3 is the elicitation of the stochastic pairwise comparisons for all n

criteria and m alternatives while Step 4 transforms these random variables into beta

distributed pairwise comparisons (see section 5.3.1). Using the beta distributed pairwise

comparisons; the priority weights for all PCMs are estimated using the proposed NLP
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methodology in Step 5 (see section 5.3.2). Finally in step 6, the global priority of each

alternative is calculated for decision making.

Figure 5.1. Proposed Generalized Stochastic AHP Methodology

Stochastic Pairwise Comparison Elicitation and Transformation

After identifying n criteria and m alternatives as well as the AHP decision

hierarchy, this subsection presents the proposed modeling of the stochastic pairwise

comparisons as beta distributions. We first formally define a stochastic pairwise

comparison as follows:

Definition 5.1. A stochastic pairwise comparison aij is a random variable that can take

a set of possible crisp values that occur according to probability density function (PDF)

fij(aij |θij) with parameters θij

These stochastic pairwise comparisons are observed from quantitative attribute

data or qualitatively elicited from the DM. Furthermore, as shown in Eq. 5.1 these

distributions are tabulated in a stochastic reciprocal pairwise comparison matrix (PCM)

A as follows.

A =



















1 f12(a12|θ12) · · · fij(a1n|θ1n)
1

f12(a12|θ12)
1 · · · f2n(a2n|θ2n)

...
...

. . .
...

1
f1n(a1n|θ1n)

1
f2n(a2n|θ2n)

· · · 1



















(5.1)
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Given any stochastic pairwise comparison aij a transformation algorithm which

converts the probability distribution to a generalized Beta distribution is developed. Let

us define a Beta distributed pairwise comparison ãij as follows:

Definition 5.2. A stochastic pairwise comparison ãij is said to follow a beta distribution

if its PDF (Probability Density Function) is defined as follows (Gupta & Nadarajah, 2004):

B(ã|α, β, LL,UL) =
Γ(α+ β)

Γ(α)Γ(β)

(ã− LL)α−1(UL− ã)β−1

(UL− LL)α+β
(5.2)

where LL ≤ ã ≤ UL, α, β ≥ 1, and Γ(z) =
∫∞
0 e−ttz−1dt is a gamma function.

The beta distribution can generally be used to model other probability

distributions due to the flexibility of the shape (α, β) and location (LL,UL) parameters.

For example:

• in the case when aij ∼ U(LLij , ULij), then aij can be modelled using the beta

distribution with parameters aij ∼ Bij(ãij |1, 1, LLij , ULij)

• the triangular distribution and beta distribution can also be substituted for each

other as seen in (Johnson, 2002) when α > 1,β > 1,and α > β or α < β for skewed

triangular distributions or α = β for symmetric triangular distributions.

Furthermore, the PDF of a beta distribution is differentiable over [LL,UL] which

would be beneficial for optimization (as compared to a triangular distribution) in

succeeding sections. Additionally, the beta distribution has advantages in terms of

Bayesian statistics which has closed form solutions. This benefit will come in handy when

group decision making is considered in future research extensions of the methodology.

To explicitly model all aij as beta random variables ãij , the shape (αij , βij) and

location (LLij , ULij) parameters need to be estimated. One of the commonly used

methods to estimate distribution parameters is by the use of the maximum likelihood

estimation methodology. However, for the beta distribution, there exists no closed form

solution and as such the estimation of these parameters is difficult (Beckman & Jen,
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1978). On the other hand, the method of moments (MOM) estimation methodology as is

done in (AbouRizk et al., 1994; Owen, 2008) equates the first and second moments of the

beta distribution to the sample mean and variance of the data sample. To illustrate this,

given that if ãij is beta distributed with PDF and parameters B(ãij |α, β, LL,UL) then

the first moment of ãij is calculated as:

E[ãij ] = LL+
α

α+ β
(UL− LL) (5.3)

and the variance of ãij is calculated as:

V ar(ãij) = (UL− LL)
αβ

(α+ β)2(α+ β + 1)
(5.4)

Equating equations 5.3 and 5.4 to the sample mean a āij and sample variance S
2
ij

respectively, and solving for α and β, we obtain the following closed form estimates of the

shape parameters:

α̂ij =

(

āij − LL

UL− LL

)





(

āij−LL
UL−LL

)(

1−
(

āij−LL
UL−LL

))

S2
ij

(UL−LL)2

− 1



 (5.5)

β̂ij =

(

1− āij − LL

UL− LL

)





(

āij−LL
UL−LL

)(

1−
(

āij−LL
UL−LL

))

S2
ij

(UL−LL)2

− 1



 (5.6)

Algorithm 1 summarizes the MOM methodology when applied to transforming

stochastic pairwise comparisons in an algorithm. The outputs of algorithm 1 are beta

distributed pairwise comparisons.
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Data:

(i) aij ∼ fij(aij |θij)

Result: ãij ∼ B(α̂ij , β̂ij , LLij , ULij)
for all aij ∼ fij(aij |θij) do

if aij is crisp then

return ãij = aij ;
else if aij ∼ U(LLij , ULij) then

return ãij ∼ B(α̂ij = 1, β̂ij = 1, LLij , ULij);
else if aij ∼ T (LLij ,MLij , ULij) then

āij = (LLij +MLij + ULij)/3 ;
S̄2
ij = (LL2

ij +ML2
ij + UL2

ij − LLijMLij − LLijULij −MLijULij)/18 ;

Compute α̂ij and β̂ij using equations 5.5 and 5.6 ;

return ãij ∼ B(α̂ij , β̂ij , LLij , ULij);

else

for l = 1, 2, · · · , 10, 000 do

Generate a random variate xl ∼ fij(aij |θij) ;
end

Compute for āij =
∑10,000

l=1 xl/10, 000 ;

Compute for S̄2
ij =

∑10,000
l=1 (xl − āij)

2/9, 999 ;

Compute α̂ij and β̂ij using equations 5.5 and 5.6 ;

return ãij ∼ B(α̂ij , β̂ij , LLij , ULij);

end

end

Algorithm 1: Transformation of Stochastic Pairwise Comparisons to Beta Distributed
Pairwise Comparisons Methodology

Computation of Weights for all Pairwise Comparison Matrices

To estimate the crisp weights for each beta distributed PCM with n criteria or

alternatives, we seek to find crisp pairwise comparison values x̃ij =
wi

wj
that maximize each

beta likelihood probabilities B(ãij = x̃ij |α, β, LL,UL) and at the same time minimizes the

inconsistency of the optimal crisp pairwise reciprocal comparison n× n matrix Ã.

Conventionally, to analytically measure whether a crisp PCM Ã is consistent, Saaty

(1980) proposes the consistency index (CI). The CI is computed by obtaining the

eigenvalue of Ã using Eq. 5.7 as follows:

CI(Ã) =
λmax − n

n− 1
(5.7)
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where n is the dimension of the PCM Ã and λmax is its maximum eigenvalue. The

consistency ratio (CR) is the ratio of CI and RI and is computed using Eq. 5.8 as follows:

CR(Ã) =
CI(Ã)

RI(n)
(5.8)

where RI(n) is the random index obtained from the average CI of 500 randomly filled

matrices and is a function of n.

In this research, the CR is used as the measure of inconsistency. A quantifiable

relationship is developed to relate the weights wi, the crisp pairwise comparisons x̃ij , and

the CR of Ã. Following the logic of Y. M. Wang et al. (2005a) and by using the

conventional AHP methodology for computing weights, the weights of the crisp PCM Ã is

computed as follows:

Ãw = λmaxw (5.9)

where the vector of weights w corresponds to the eigenvector corresponding to the largest

eigenvalue of Ã. Rewriting equations 5.7 and 5.8 we have:

λmax = n+ (n− 1)RI(n)CR(Ã) (5.10)

and substituting 5.9 and 5.10 we have:

Ãw =
[

n+ (n− 1)RI(n)CR(Ã)
]

w

Ãw =
[

n+ kCR(Ã)
]

w (5.11)

Where k = (n− 1)RI(n). Given this, we obtain a relationship between the crisp pairwise

comparisons x̃ij , the weights wi and the CR(Ã) of PCM Ã. Thus an NLP formulation is

proposed as follows:

Let the decision variables be:

x̃ij (i, j) ∈ Ã be the observed PC value from distribution ãij

wi i ∈ Ã weight of element i

CR(Ã) be the CR of Ã
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Objective Function:

max
n
∑

i=1

n
∑

j>1

f(x̃ij |αij , βij , LLij , ULij)− λCR(Ã) (5.12)

Constraints:

i−1
∑

j=1

wi

x̃ij
−
[

n+ kCR(Ã)
]

wi +
n
∑

j=i+1

x̃ijwj = 0 ∀i ∈ Ã (5.13)

n
∑

i=1

wi = 1 (5.14)

LLij ≤ x̃ij ∀(i, j), (i < j) ∈ Ã (5.15)

ULij ≥ x̃ij ∀(i, j), (i < j) ∈ Ã (5.16)

CR(Ã) ≥ 0 (5.17)

wi ≥ 0 ∀i ∈ Ã (5.18)

where Eq. 5.12 seeks to find crisp x̃ij pairwise comparison values that maximize the

probability of the distribution of the ijth beta distributed pairwise comparison ãij and

minimizing the corresponding CR(Ã) of PCM Ã. The λ parameter serves as a weighting

parameter to obtain a consistent crisp pairwise comparison matrix. Equations sets 5.13

are a direct extension of equation 5.11 and relates all x̃ij to the weights of wi and wj and

CR(Ã). Equation 5.14 ensures that all weights sum to unity while equation sets 5.15 and

5.16 forces all crisp pairwise comparisons to be within the limits of the distributions.

Equation 5.17 forces the inconsistency of Ã to be ≥ 0 and equation sets 5.18 sets all

weights to be non-negative.

The outputs of the NLP methodology are crisp pairwise comparisons and weights

from the stochastic PCM. The NLP methodology is repeated for all beta distributed

pairwise comparison matrices of a given decision hierarchy. The final weights of all

decision alternatives are then obtained by calculating for the weighted scores of all

alternatives as is done in the traditional AHP methodology.
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Illustrative Example

To illustrate the proposed methodology, consider a three-level MCDM problem

adapted from Islam et al. (1997b). The decision problem is composed of a single goal G,

four decision criteria (1, 2, 3 and 4) and four alternatives (A, B, C and D). A total of 30

interval pairwise comparisons are elicited and as such the hierarchy is summarized in

Figure 5.2.

Figure 5.2. Example Hierarchy Adapted from Islam et al. (1997b)

Since all pairwise comparisons are interval based (uniformly distributed), we

convert some of the pairwise comparisons to triangular distributions with the same lower

limits and upper limits and some into crisp comparisons. These modified comparisons are

summarized in Eqs. 5.19 to 5.23. Specifically, stochastic pairwise comparison matrices of

all four alternatives for each criterion is summarized in Eqs. 5.19 to 5.22 while the

stochastic PCM for all four criteria is presented in Eq. 5.23.

A1 =



















1 U(1/4, 1/3) U(3, 4) U(1/6, 1/5)

1 T (6, 6.75, 7) U(1/5, 1/4)

1 U(1/7, 1/6)

1



















(5.19)
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A2 =



















1 T (3, 3.5, 4) U(4, 5) U(6, 7)

1 T (3, 3.5, 4) U(5, 6)

1 U(4, 5)

1



















(5.20)

A3 =



















1 1 T (1/6, 1/5.5, 1/5) U(1/4, 1/3)

1 U(1/6, 1/5) U(1/4, 1/3)

1 U(4, 5)

1



















(5.21)

A4 =



















1 U(3, 4) 6 U(6, 7)

1 T (3, 3.75, 4) U(3, 4)

1 U(3, 4)

1



















(5.22)

AC =



















1 T (3, 3.5, 4) U(5, 6) U(6, 7)

1 T (4, 4.5, 5) U(5, 6)

1 3.5

1



















(5.23)

Transformation procedure from section 5.3.1, specifically algorithm 1 is applied to

transform all stochastic pairwise comparisons that are summarized in Eqs. 5.19 to 5.23 to

beta distributed pairwise comparisons. The converted distributions are summarized in

Eqs. 5.24 to 5.28. The transformed beta distributed pairwise comparison matrices of all

four alternatives for each criterion is summarized in Eqs. 5.24 to 5.27 while the

transformed beta PCM for all four criteria is presented in Eq. 5.28.

Ã1 =



















1 B(1, 1, 1/4, 1/3) B(1, 1, 3, 4) B(1, 1, 1/6, 1/5)

1 B(2.56, 1.83, 6, 7) B(1, 1, 1/5, 1/4)

1 B(1, 1, 1/7, 1/6)

1



















(5.24)
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Ã2 =



















1 B(2.5, 2.5, 3, 4) B(1, 1, 4, 5) B(1, 1, 6, 7)

1 B(2.5, 2.5, 3, 4) B(1, 1, 5, 6)

1 B(1, 1, 4, 5)

1



















(5.25)

Ã3 =



















1 1 B(2.5, 2.5, 1/6, 1/5) B(1, 1, 1/4, 1/3)

1 B(1, 1, 1/6, 1/5)1.1 B(1, 1, 1/4, 1/3)

1 B(1, 1, 4, 5)

1



















(5.26)

Ã4 =



















1 B(1, 1, 3, 4) 6 B(1, 1, 6, 7)

1 B(2.56, 1.87, 3, 4) B(1, 1, 3, 4)

1 B(1, 1, 3, 4)

1



















(5.27)

ÃC =



















1 B(2.5, 2.5, 3, 4) B(1, 1, 5, 6) B(1, 1, 6, 7)

1 B(2.5, 2.5, 4, 5) B(1, 1, 5, 6)

1 3.5

1



















(5.28)

Next, we illustrate the application of the NLP methodology from section 5.3.2.

The appropriate λ value is first determined for each stochastic pairwise comparison

matrix. Here, we start the illustration of the NLP on matrix ÃC with λ = 0. This implies

that only the preferences of the DM is maximized. However, upon solving the NLP, we

obtain an inconsistent crisp pairwise comparison matrix with CR(Ã) = 20.38% which is

way above the threshold of 10 %. Hence, we increase the value of λ incrementally and

figure 5.3 presents the results of the CR(Ã) for different values of λ.

Hence, it is observed from figure 5.3 that for a value of λ = 1e− 2, we obtain a

consistent matrix with CR(ÃC) = 9.49%. Therefore, we can keep on increasing the value
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Figure 5.3. Matrix ÃC CR(Ã) values on Different λ Values

of λ until a target CR for the crisp pairwise comparison matrix Ã is obtained. By

applying the NLP methodology on all stochastic pairwise comparison matrices with their

corresponding λ values, we obtain the optimal weights for each stochastic pairwise

comparison matrix, and the corresponding weighted average scores. The results are

presented in table 5.1.

Table 5.1. Crisp Weights Obtained Using the Proposed NLP Methodology

Criteria ÃC
Alternative

CR
A B C D

Ã1 55.10% 10.63% 25.13% 4.86% 59.37% 7.92%

Ã2 30.01% 53.56% 29.32% 12.42% 4.70% 8.73%

Ã3 10.05% 9.28% 8.78% 58.54% 23.40% 1.92%

Ã4 4.85% 57.20% 26.49% 10.55% 5.75% 6.75%

Weighted Average: 25.64% 24.81% 12.80% 36.75%

In this regard, the proposed methodology solves for consistent weights for each

PCM since all CR < 10%. Furthermore, alternative D is chosen to be the best alternative,

followed by alternative A, B and lastly C.
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5.4 Comparison Experiments

In this section we compare the proposed methodology to established stochastic

AHP methodologies. The first phase compares the proposed methodology to the

simulation methodology of Banuelas & Antony (2004). This is done to determine the

capability of modeling varying types of imprecise pairwise comparisons as beta

distributions. The second phase compares the proposed NLP methodology to the goal

programming methodology which maximizes the DM’s preferences as proposed by

Y. M. Wang & Elhag (2007).

Comparison Experiment on the Use of Beta Distributions

This phase is done to determine if there is significant difference when the

untransformed stochastic pairwise comparison distribution is used as is done in (Banuelas

& Antony, 2004) to the proposed transformed beta distributions. The validation is done

by sampling 10,000 crisp pairwise comparison sets from the dataset adapted from the

complete AHP problem hierarchy of Islam et al. (1997b), specifically from Eqs. 5.19 to

5.23. These comparisons are compared to the corresponding 10,000 sampled crisp pairwise

comparison sets obtained from the transformed beta distributions, specifically from Eqs.

5.24 to 5.27. The corresponding alternative weights for each are calculated using the

traditional AHP eigenvector method. The Monte Carlo simulation is done in a Matlab

2012a environment. Table 5.2 summarizes the results of this validation phase.

Table 5.2. Simulation Results on Alternatives Weights Using the Raw and Beta Distribu-
tions

Alternative
Raw Distribution Beta Distribution

Difference
Mean Std. Dev. Mean Std. Dev.

A 25.44% 5.58E-04 25.46% 4.52E-04 -4.01E-4
B 24.21% 5.02E-04 24.11% 4.72E-04 9.63E-4
C 13.86% 2.51E-04 13.87% 2.43E-04 -4.41E-4
D 36.44% 5.97E-04 36.46% 5.61E-04 -2.47E-4

Based on Table 5.2, the weights obtained from the original stochastic pairwise
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comparisons are similar to the weights obtained from beta distributed pairwise

comparisons. Additionally, the ranks of the alternatives have not changed across

methodologies. We conclude that the beta distribution generalizes the raw stochastic

pairwise comparisons well and can henceforth be used as a generalizing distribution.

Comparison with Goal Programming Methodology of Y. M. Wang & Elhag (2007)

This subsection presents the results when the proposed methodology is compared

to the goal programming methodology proposed by Y. M. Wang & Elhag (2007). The

purpose of this phase is to determine the effectiveness of the proposed NLP methodology

in estimating crisp weights. To do this, we define a new performance metric that measures

accuracy of the weights.

Definition 5.3. The accuracy of the weights is measured by the Weight Deviation Error

(WDE):

WDE = ‖w(i)− w′(i)‖22 (5.29)

where w′(i) is the mean weight vector obtained from the proposed stochastic algorithm and

w(i) is the weight vector obtained by using the traditional AHP eigenvector methodology

on the crisp mean values of the stochastic pairwise comparisons.

We can interpret the WDE as the distance of the weights obtained from the mean

of the optimally computed distribution to weights computed using the mean of the

original preferences of the DM. A small WDE is desired which implies that the optimally

computed weights are similar to the most likely weights of the stochastic PCM. The three

datasets that are used in this subsection are: (1) a consistent uniformly distributed

interval matrix from Sugihara et al. (2004), (2) an inconsistent interval matrix from Islam

et al. (1997b), and (3) the triangular dataset from Banuelas & Antony (2004). Since the

dataset from Banuelas & Antony (2004) has triangular distributions, only the upper limit

and lower limit parameters are used as input to the methodology proposed by

Y. M. Wang & Elhag (2007) which take only uniformly distributed comparisons. The
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resulting weights are then compared to the proposed methodology weights which converts

the triangular distributions to beta distributions.

The parameters of the raw stochastic pairwise comparisons from the datasets are

varied ±10% of their original value. The WDE is computed for all replications using the

proposed methodology of Y. M. Wang & Elhag (2007) and the proposed methodology.

Ten thousand replicates are simulated in a Matlab 2012a environment. Furthermore, we

define µw as the mean WDE when the goal programming methodology is used while µg is

the mean when the NLP methodology is used. A paired t-test is applied to determine if

there is significant difference between the methodologies with null hypothesis

H0 : µw = µg and alternative hypothesis H1 : µw 6= µg at α = 0.05. Table 5.3 summarizes

the WDE and t-test results of this validation phase.

Table 5.3. Simulation Results of the Proposed Methodology and Y. M. Wang & Elhag
(2007)

Dataset
Wang et al. Proposed t-Test

Mean Std. Dev. Mean Std. Dev. Result p-Value

Sugihara et al. (2004) 8.24E-4 2.56E-4 1.50E-5 2.00E-5 µw ≥ µg 0
Islam et al. (1997b) 3.92E-3 3.93E-4 3.16E-3 5.72E-4 µw ≥ µg 0

Banuelas & Antony (2004) 1.09E-2 3.29E-4 8.43E-3 5.08E-4 µw ≥ µg 0

It is observed from table 5.3 that the proposed methodology has lower WDE for

all datasets. This implies that the proposed methodology provides weights that are more

accurate and adhere to the most likely preferences of the DM. This can be attributed to

the proposed objective function in Eq. 5.12 in which the probability likelihood of each

realized pairwise comparison is maximized and at the same time minimizing the CR.

5.5 Conclusions and Future Work

One of the inherent limitations of the AHP when applied to multi criteria decision

making problems is the issue of bounded rationality present with the decision maker

(DM). Given this, the DM might provide varying types of pairwise comparison preferences

modelled as different types of probability distributions. Existing methodologies focus on

modeling this uncertainty with a single type of probability distribution which is not
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enough to model the varying preferences of the DM. Furthermore, existing methodologies

are inefficient in calculating weights. These methodologies focus on maximizing the

preferences of the DM or minimizing inconsistency but not simultaneously from a single

type of pairwise comparison distribution. In this regard, this paper proposes the

Generalized Stochastic AHP methodology to address these limitations by proposing to

model the different stochastic pairwise comparisons as beta distributed pairwise

comparisons. Moreover, a Non-Linear Programming (NLP) methodology is proposed to

maximize the likelihood probability of pairwise comparisons and at the same time

minimizing the inconsistency.

It is observed that the proposed methodology which uses beta distributions is

comparable to the methodology proposed by Banuelas & Antony (2004). Moreover, the

proposed methodology provides better weight estimates using the proposed NLP

methodology that maximizes the preferences of the DM as compared to the methodology

of Y. M. Wang & Elhag (2007) which uses a goal programming approach.

While promising, there are several future directions to further improve the model.

The first one is to extend the model for group DMs. The beta distribution has interesting

properties especially for Bayesian analysis in which additional information from multiple

DMs to update a prior beta distribution to a posterior beta distribution. Secondly, a

known issue of AHP is order effect, that is, when comparing two elements A and B, and

there are conflicting preferences when the order A then B is used as compared to when

the order of B then A (Hogarth & Einhorn, 1992). In the context of the pairwise

comparison elicitation process, variability could be observed when the DM is asked to

provide pairwise comparison values. It is our intention to explore the application of the

Generalized Stochastic AHP methodology to address this effect.
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Chapter 6

CONCLUSIONS AND FUTURE RESEARCH

A Pairwise Comparison Matrix (PCM) is an integral component of decision

making methodologies: the Analytic Hierarchy Process (AHP) and the Analytic Network

Process (ANP). These are used to determine relative weights of criteria and alternatives.

However, PCMs suffer from several issues limiting their applications to large-scale decision

problems, specifically: (1) the curse of dimensionality due to a large number of pairwise

comparisons elicited from the decision maker (DM), (2) the issue of inconsistent pairwise

comparisons and (3) the existence of uncertainty and limited cognition of DMs results to

imprecise pairwise comparisons. This dissertation proposes a PCM framework for

large-scale decision making to address these limitations in three phases as follows.

The PCM Decomposition Methodology (PDM) proposed in the first phase

addresses the first two limitations. The PDM decomposes a PCM into smaller manageable

subsets using binary integer programming (BIP) with inner dependency scores of elements.

As a result, the number and the inconsistency of pairwise comparisons elicited are

reduced. Since the subsets are disjoint, the most independent pivot element is selected to

connect all disjoint subsets. Hence the inner dependencies of the elements are minimized

within each subset. Using local priorities and the pivot element, global priorities are then

estimated for the elements of the PCM. The PDM is applied to a three-level AHP

problem to decompose the criteria PCM. Correlation of the criteria from alternative

scores is used as an alternative to estimate the interdependencies of the criteria. The

proposed methodology does indeed reduce the number of pairwise comparisons and the

consistency ratio. Nevertheless, more pairwise comparisons is saved when the PDM is

applied to the ANP methodology. The PDM can be applied to all cluster PCMs within

the network since inner dependencies of the elements are elicited for each PCM.

The PDM suffers from a major limitation in which the number of subsets elicited

from the DM is subjectively elicited. Hence, the second phase of this dissertation proposes
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a methodology to address this limitation. A BIP is proposed which consists of a trade-off

objective function balances the deviation error between the original PCM weights and the

decomposed weights and the amount of dependence among elements. The proposed

methodology is capable of (1) solving for the optimal number of PCM subsets, (2)

assigning the PCM elements to all subsets, and (3) selecting the best pivot element to be

assigned to all subsets. The BIP is applied to an AHP decision to demonstrate its

effectiveness.

The third phase of this dissertation addresses imprecise pairwise comparisons.

Existing methodologies address this by modeling crisp pairwise comparisons as fuzzy sets

or a single type of probability distribution (e.g., uniform, triangular). However, one

common issue faced by DMs is bounded rationality, that is, DMs have limited cognitive

powers in specifying their preferences over multiple pairwise comparisons. Hence, the DM

might be sure of some comparisons and unsure with others. In addition, computing

appropriate weights for the alternatives and criteria from the imprecise comparisons is a

must since the original PCM eigenvector methodology is no longer applicable. The third

phase proposes a Generalized Stochastic AHP Decision Making methodology that uses

beta distributions to represent a wide variety of distributions via a method-of-moments

methodology. Furthermore, a Non-Linear Programming model is then developed that

calculates weights which maximizes the preferences of the DM as well as minimizes the

inconsistency simultaneously. Comparison experiments with established stochastic AHP

methodologies are conducted using datasets collected from literature and results shows

that the proposed stochastic methodology outperforms existing methodologies.

While promising, there are several future research directions that arise from this

dissertation. One could explore an extension of using multiple pivot elements. This is

done to further reduce the deviation errors when computing for global weights. Secondly,

these three phases can be extended to model the dynamics of group decision making or

multiple DMs. The beta distribution has interesting properties especially for Bayesian

analysis in which additional information from multiple DMs to update a prior beta
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distribution to a posterior beta distribution. Thirdly, another known issue of PCM

elicitation is order effect, that is, when comparing two elements A and B, and there are

conflicting preferences when the order A then B is used as compared to when the order of

B then A (Hogarth & Einhorn, 1992). In the context of the pairwise comparison

elicitation process, variability could be observed when the DM is asked to provide pairwise

comparison values. An extension of the third phase could be of worthwile importance to

address this limitation.
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Proof of Proposition 3.1

Maximizing the value of d(Ak) is determined by solving the following IP problem:

max d(Ak) =

k
∑

l=1

(

ml

2

)

=

k
∑

l=1

ml(ml − 1)

2
(A.1)

Constraints:

k
∑

l=1

ml ≤ m+ (k − 1), l ∈ [1, k] (A.2)

ml ≥ 2, l ∈ [1, k] (A.3)

ml ∈ Z
k, l ∈ [1, k] (A.4)

It is obvious that the integer program tends to assign all elements to a single
subset while minimizing the assignment to other subsets. Therefore, Eq. A.3 would be a
binding lower bound. And thus, the solution is ml = m+ (k − 1) for l ∈ S and
ml′ = 2, ∀l′ ∈ S \ {l} maximizes d(Ak) where:

d(Ak) =
(m− k + 1)(m− k)

2
+ k − 1 (A.5)

Proof of Proposition 3.2

The proof for proposition 3.2 is similar to the proof of proposition 3.1 but the IP
problem is set to minimize and the other extreme point is obtained. However, by solving
the IP problem, if m+(k−1)

k
∈ Z, then the solution of the IP problem would be equal to the

LP relaxation problem where ml =
m+(k−1)

k
in which all elements are equally distributed

among the k subsets. However, when m+(k−1)
k

/∈ Z, then the solution of the LP relation of
the IP problem is different and thus the solution would require round off values of

ml =
⌊

m+(k−1)
k

⌋

for some l ∈ S and ml′ =
⌈

m+(k−1)
k

⌉

for all l′ ∈ S \ {l}

Proof of Theorem 3.1

Part 1 (Lower Limit): Given that there are m(m− 1)/2 required pairwise
comparisons for an original PCM, the minimum number of pairwise comparisons reduced
is bounded by:

D(Ak) ≥ m(m− 1)

2
−max d(Ak) (A.6)

Based on proposition 3.1, by substituting the values ml = m+ (k − 1) for l ∈ S and
ml′ = 2, ∀l′ ∈ S \ {l} that maximizes d(Ak), we have:

D(Ak) ≥ m(m− 1)

2
−
[

(m− k + 1)(m− k)

2
+ k − 1

]

(A.7)
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Simplifying Eq A.7 we have:

D(Ak) ≥
⌈

(k − 1)

(

m− k + 2

2

)⌉

(A.8)

Part 2 (Upper Limit): Given that there are m(m− 1)/2 required pairwise comparisons for
the original PCM, the maximum number of pairwise comparisons reduced is bounded by:

D(Ak) ≥ m(m− 1)

2
−min d(Ak) (A.9)

Based on proposition 3.1, by substituting the values ml =
m+(k−1)

k
if m+(k−1)

k
∈ Z, we

have:

D(Ak) ≤ m(m− 1)

2
− k

2

[(

m+ (k − 1)

k

)(

m+ (k − 1)

k
− 1

)]

(A.10)

Simplifying Eq A.10 we have:

D(Ak) ≤
⌊

(k − 1)(m− 1)2

2k

⌋

(A.11)

Proof of Proposition 4.1

Proof : Since A is inconsistent, then there exists at least one inconsistent pairwise
comparison ãij ∈ A where, ãij = aij + ε and ε > 0. Without loss of generality, consider cp
as pivot, where p 6= i′. The weights of A computed using the standard AHP methodology
would be as follows:

w(A) =
[

w(1)′ w(2)′ · · · w(m)′
]T

(A.12)

Since only criteria ci′ and cj′ are affected by the inconsistent comparison, the relative
comparisons of the other criteria remain the same and by using criteria cp as pivot,
dividing all weights by w(i = cp) we have:

w(A) =
[

w(1)
w(i=cp)

· · · w(i′)
w(i=cp)

+ εicp · · · w(m)
w(i=cp)

]T

(A.13)

Where εicp is the resulting deviation due to the inconsistency To compute for the global
weights of the decomposed matrices using pivot criterion cp we consider two possible cases:

(i.) Consider the case where ãij 6∈ Ak. Since ãij 6∈ Ak, then all Ak
l are perfectly

consistent, we have:

w(A) =
[

w(1)
w(i=cp)

· · · w(i′)
w(i=cp)

· · · w(m′)
w(i=cp)

]T

∴ WDE(Ak) =
m
∑

i=1

(w(i)− w′(i))2 = (εicp + εjcp)
2 (A.14)

(ii.) Consider the case where ãij ∈ Ak. Since ãij ∈ Ak, then all Ak
l except one local

matrix is perfectly consistent. Suppose ãij ∈ Ak
l then the local weights are as follows:

w(Ak
1) =

[

w(1,1)
w(i=cp)

w(2,1)
w(i=cp)

· · · 1 · · · w(m1,1)
w(i=cp)

]T
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w(Ak
l ) =

[

w(i′,l)
w(i=cp)

+ εi′ph · · · 1 · · · w(m1,1)
w(i=cp)

]T

w(Ak
k) =

[

w(1,k)
w(i=cp)

w(2,k)
w(i=cp)

· · · 1 · · · w(m1,k)
w(i=cp)

]T

(A.15)

Using criterion cp as pivot, we have:

w′(A) =
[

w(1)
w(i=cp)

w(2)
w(i=cp)

+ εi′ph · · · 1 · · · w(m1

w(i=cp)

]T

(A.16)

Since the dim(Ak
l ) < dim(A), ∀l ∈ C, then εi′ph 6= εi′ph , ∀i, j ∈ C then:

∴ WDE(Ak) =

m
∑

i=1

(w(i)− w′(i))2

= (εicp + εjcp − εi′ph − εj′ph)
2 > 0� (A.17)

Proof of Proposition 4.2

Proof : Based on proposition 4.1, we have:

w(A) =
[

w(1)
w(i=cp)

· · · w(i′)
w(i=cp)

+ εicp · · · w(m)
w(i=cp)

]T

(A.18)

(i.) Consider the case where ãij 6∈ Ak and ãij 6∈ Ak+1 . Since ãij 6∈ Ak and
ãij 6∈ Ak+1 then all Ak

l and Ak+1
l are perfectly consistent. For Ak we have:

w(A) =
[

w(1)
w(i=cp)

· · · w(i′)
w(i=cp)

· · · w(m)
w(i=cp)

]T

∴ WDE(Ak) =
m
∑

i=1

(w(i)− w′(i))2 = (εicp + εjcp)
2 (A.19)

Additionally the weights for Ak+1 are:

w(A) =
[

w(1)
w(i=cp)

· · · w(i′)
w(i=cp)

· · · w(m)
w(i=cp)

]T

∴ WDE(Ak+1) =
m
∑

i=1

(w(i)− w′(i))2 = (εicp + εjcp)
2

∴ WDE(Ak) =WDE(Ak+1) (A.20)

(ii.) Consider the case where ãij ∈ Ak and ãij 6∈ Ak+1 . Since ãij ∈ Ak then all Ak

except one is perfectly consistent and all Ak+1
l are perfectly consistent. Suppose ãij ∈ Ak

l ,
we have:

w(A) =
[

w(1)
w(i=cp)

· · · w(i′)
w(i=cp)

εi′cp · · · w(m)
w(i=cp)

]T

∴ WDE(Ak) =

m
∑

i=1

(w(i)− w′(i))2

= (εicp + εjcp − εi′cp − εj′cp)
2 (A.21)
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Additionally the weights for Ak+1 are:

w(A) =
[

w(1)′

w(i=cp)
· · · w(i′)

w(i=cp)
· · · w(m′)

w(i=cp)

]T

∴ WDE(Ak+1) =

m
∑

i=1

(w(i)− w′(i))2 = (εicp + εjcp)
2

∴ WDE(Ak) =WDE(Ak+1) (A.22)

(iii.) Consider the case where ãij ∈ Ak and ãij ∈ Ak+1 . Since ãij ∈ Ak and
ãij ∈ Ak+1 then all except one from Ak and one from Ak+1 are perfectly consistent.
Suppose ãij ∈ Ak

l and ãij ∈ Ak+1
l , then from proposition 1 we have:

w(A) =
[

w(1)
w(i=cp)

· · · w(i′)
w(i=cp)

+ εi′cp · · · w(m)
w(i=cp)

]T

∴ WDE(Ak) =

m
∑

i=1

(w(i)− w′(i))2

= (εicp + εjcp − εi′cp − εj′cp)
2 (A.23)

Additionally the weights for Ak+1 are:

w(A) =
[

w(1)
w(i=cp)

· · · w(i′)
w(i=cp)

+ ε′i′cp · · · w(m)
w(i=cp)

]T

∴ WDE(Ak) =
m
∑

i=1

(w(i)− w′(i))2

= (εicp + εjcp − ε′i′cp − ε′j′cp)
2 (A.24)

To compare εi′cp − εj′cp and ε′i′cp − ε′j′cp we study the dimensions of all the matrices

of Ak
l and Ak+1

l . Since dim(Ak
l ) > dim(Ak+1

l ), ∀l ∈ S and since the weights are computed
as (

∑ml

i=1 aij)/dim(A
k
l ), then

ε
dim(Ak

l
)
≤ ε

dim(Ak+1

l
)
then εi′cp − εj′cp ≤ ε′i′cp − ε′j′cp . Then:

∴ WDE(Ak) ≤WDE(Ak+1)� (A.25)
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APPENDIX B

Matlab Code
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1 function [S ] = Set( ...

A,R,k,q,d,numiter,alpha,beta,gamma,pivotassign,lpdeviation, opttype,c)

2 S.A = A;

3 S.R = R;

4 S.k = k;

5 S.q = q;

6 S.d = d;

7 S.numiter = numiter;

8 S.alpha = alpha;

9 S.beta = beta;

10 S.gamma = gamma;

11 S.pivotassign = pivotassign;

12 S.lpdeviation = lpdeviation;

13 S.opttype = opttype;

14 S.c = c

15 end

16

17 function [ R] = IterateCMACD3(S)

18 numiter=S.numiter;

19 i=1;

20 R.SDEP=numiter:1;

21 R.ACRP=numiter:1;

22 R.PSP=numiter:1;

23 R.TDSP=numiter:1;

24 R.SDEO=numiter:1;

25 R.ACRO=numiter:1;

26 R.PSO=numiter:1;

27 R.TDSO=numiter:1;

28

29 while i ≤ numiter

30 [ R.ACRP(i,1),R.ACRO(i,1), R.PSP(i,1), R.PSO(i,1),R.SDEP(i,1), ...

R.SDEO(i,1),R.TDSP(i,1), R.TDSO(i,1)] = CMACD3(S);

31 disp(i);

32 i=i+1;

33 end

34 end

35

36 function [ACRP,ACRO, PSP, PSO,SEP, SEO,TDSP, TDSO] = CMACD3(S)

37 p=0.1;

38 A = GenerateRMatrix(S.A,p,1);

39 R = GenerateRMatrix(S.R,0.1,2);

40 pivotassign = S.pivotassign;

41 I = abs(corrcoef(R'))−eye(size(corrcoef(R'),1));

42 q=S.q;

43

44 %compute AHP Weights

45 [WOI,¬]=ComputeWeights(A,[],1,1);

46 %WOI = I*WO;

47

48 %Solve the BIP Formulation and Select Pivot

49 %Solve Optimal BIp Formulation

50 [SolRev,PivotSetRev ] = SolveBIPRev7(I,S.q,S.alpha,S.beta,S.gamma);

51 % SolRev = [1,0,0,1,1,0,1,1;0,0,1,1,0,1,0,0;0,1,0,1,0,0,0,0];

52 % PivotSetRev = 4;

53 k = size(SolRev,1);

54 %Solve Original BIP Formulation

55 [SolOrig ] = SolveBIP( I, k );
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56 [SolOrig,PivotSetOrig] = SelectPivot( I, k,S.q,pivotassign,SolOrig );

57

58 [ TDSP ] = ComputeTDS( I, SolRev );

59 [ TDSO ] = ComputeTDS( I, SolOrig );

60

61 i=1;

62 WP=zeros(k,size(A,1));

63 CRP=zeros(k,1);

64 SRev=SolRev

65 while i≤k

66 Temp=GenerateMatrix(A,SolRev,i);

67 [WP(i,:),CRP(i,1)]=ComputeWeights(Temp,SolRev,i,2);

68 i=i+1;

69 end

70

71 i=1;

72 WO=zeros(k,size(A,1));

73 SOrigp=SolOrig

74 CRO=zeros(k,1);

75 while i≤k

76 Temp=GenerateMatrix(A,SolOrig,i);

77 [WO(i,:),CRO(i,1)]=ComputeWeights(Temp,SolOrig,i,2);

78 i=i+1;

79 end

80

81 WP=CombinePType3Clusters(WP,PivotSetRev');

82 WO=CombinePType3Clusters(WO,PivotSetOrig);

83 WP = WP';

84 WO =WO';

85

86 %Compute SSE

87 SEP=sum((WOI−WP).ˆ2);

88 SEO=sum((WOI−WO).ˆ2);

89 if isnan(SEP)==1

90 Test=1;

91 end

92 %Compute ACR

93 ACRP=sum(CRP.*sum(SolRev,2)./sum(sum(SolRev,2)));

94 ACRO=sum(CRP.*sum(SolOrig,2)./sum(sum(SolOrig,2)));

95

96 %Compute P(S)

97 ps=size(A,1)*(size(A,1)−1)/2;

98 PSP=ps−((sum(SolRev,2)−ones(k,1))')*sum(SolRev,2)/2 + q*(q−1)*(k−1)/2;

99 PSO=ps−((sum(SolOrig,2)−ones(k,1))')*sum(SolOrig,2)/2 + q*(q−1)*(k−1)/2;

100 end

101

102 function [ RN ] = GenerateRMatrix( A, p, type )

103 %Upper Random Triangular Matrix

104 if type == 1

105 RN= triu(rand(size(A,1),size(A,2)),1)+ eye(size(A,1)) ;

106 %Compute New Values

107 j=2;

108 i=1;

109 while j≤size(A,1)

110 while i<j

111 RN(i,j)=A(i,j)*(1−p)+(A(i,j)*(1+p)−A(i,j)*(1−p))*RN(i,j);

112 i=i+1;

113 end
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114 j=j+1;

115 i=1;

116 end;

117 %Compute Reciprocals

118 i=2;

119 j=1;

120 while i≤size(A,1)

121 while j<i

122 RN(i,j)=1/RN(j,i);

123 j=j+1;

124 end

125 i=i+1;

126 j=1;

127 end;

128 else

129 RN= rand(size(A,1),size(A,2));

130 j=1;

131 i=1;

132 while i≤size(A,1)

133 while j≤size(A,2)

134 RN(i,j)=A(i,j)*(1−p)+(A(i,j)*(1+p)−A(i,j)*(1−p))*RN(i,j);

135 j=j+1;

136 end

137 i=i+1;

138 j=1;

139 end;

140 end

141 end

142

143 function [W,CR] = ComputeWeights(A,S,r,type)

144 %Type=1 Compute weights of generic matrix

145 if type==1

146 W=mean((A.*(repmat(sum(A),size(A,1),1).ˆ−1)),2);

147 RI=[0,0,0.58,0.9,1.12,1.24,1.32,1.41,1.45,1.49,1.51,1.53,1.55,1.57,1.58];

148 if size(A,1)==2

149 CR=0;

150 else

151 CR=(((dot(W,sum(A))−size(A,1)))/(size(A,1)−1))/RI(size(A,1));

152 end

153 else

154 %Type = 2 Compute Weights

155 W1=mean((A.*(repmat(sum(A),size(A,1),1).ˆ−1)),2);

156 RI=[0,0,0.58,0.9,1.12,1.24,1.32,1.41,1.45,1.49,1.51,1.53,1.55,1.57,1.58];

157 if size(A,1)≤2

158 CR=0;

159 else

160 CR=(((dot(W1,sum(A))−size(A,1)))/(size(A,1)−1))/RI(size(A,1));

161 end

162 W=zeros(1,size(S,2));

163 i=1;

164 j=1;

165 while i ≤ size(S,2)

166 if S(r,i)==1

167 W(1,i)=W1(j,1);

168 j=j+1;

169 end

170 i=i+1;

171 end
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172 end

173 end

174

175 function [ Sol,PivotSet ] = SolveBIPRev7(I,q,alpha,beta,gamma)

176 m = size(I,1);

177 k=m−1;

178 mtaken2 = m*(m−1)/2;

179 %−−−−−−−−−−−−Generate F

180

181 H=I;

182 H=(H+H')/2;

183 H=H−tril(H,0);

184 %H=H*−1;

185 i=1;

186 %Xcoefficients

187 F = zeros(1,m*k);

188

189 %Y Coefficients Distribute Upper Traig B into 1−d F

190 Ftemp=H(i,i+1:size(H,1));

191 i=i+1;

192 while i<m

193 Ftemp=[Ftemp H(i,i+1:size(H,1))];

194 i=i+1;

195 end;

196 Ycoef = Ftemp*alpha;

197 Ftemp = repmat(Ftemp*alpha,1,k);

198 F=[F Ftemp];

199

200 %SˆF and Z Coefficients

201 F=[F zeros(1,k+m)];

202

203 %kˆl Coefficients

204 ktemp = zeros(1,m−2);

205 i=2;

206 while i ≤ k

207 ktemp(1,i−1) = (i−1)*((m−q)ˆ2)/(2*i);

208 i=i+1;

209 end

210

211 %Coeff 0.7= onut, 0.9 = lee, 0.6 alharbi

212 ktemp = ktemp*beta*0.7;

213 F=[F ktemp];

214

215 %Wil coefficients

216 F=[F zeros(1,(k−1)*m)];

217

218 %mil coefficients

219 ftempgamma=0;

220 i=2;

221 while i ≤ k

222 ftempgamma = [ftempgamma i*(i−1)/2];

223 i=i+1;

224 end

225 ftempgamma = ftempgamma*gamma*−.75;

226 ftemp = ftempgamma;

227

228 F=[F repmat(ftemp,1,k)];

229
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230 %Transpose row vector to columns vector

231 F=F';

232

233 %−−−−−−−−−−−−Generate A

234 %yii'l constraints xi(1)

235 A = GenerateXCoefficients1(m);

236 A = [A eye(mtaken2*k)];

237 A = [A zeros(mtaken2*k,k+m+k−1+(k−1)*m+k*(m−1))];

238

239 %yii'l constraints xi' (2)

240 Atemp = GenerateXCoefficients2(m);

241 Atemp = [Atemp eye(mtaken2*k)];

242 Atemp = [Atemp zeros(mtaken2*k,k+m+k−1+(k−1)*m+(k)*(m−1))];

243 A=[A;Atemp];

244

245 %yii'l constraints xi and xi' (3)

246 Atemp = GenerateXCoefficients3(m);

247 Atemp = [Atemp eye(mtaken2*k)*−1];

248 Atemp = [Atemp zeros(mtaken2*k,k+m+k−1+(k−1)*m+(k)*(m−1))];

249 A=[A;Atemp];

250

251

252 %constraint (4) Xsum accros i for all l ≥ q*kopen

253 Atemp=[];

254 Atempdiag=ones(1,m);

255 i=2;

256 while i≤k

257 Atempdiag =blkdiag(Atempdiag, ones(1,m));

258 i=i+1;

259 end

260 Atemp=[Atemp Atempdiag*−1];

261 Atemp=[Atemp zeros(k,mtaken2*k)];

262 Atemp=[Atemp eye(k)*(1+q)];

263 Atemp=[Atemp zeros(k,m+k−1+(k−1)*m+(k)*(m−1))];

264 A=[A;Atemp];

265

266 %constraint (5) Xsum accros i for all l ≤ m*kopen

267 Atemp=[];

268 Atemp=[Atemp Atempdiag];

269 Atemp=[Atemp zeros(k,mtaken2*k)];

270 Atemp=[Atemp eye(k)*−m];

271 Atemp=[Atemp zeros(k,m+k−1+(k−1)*m+(k)*(m−1))];

272 A=[A;Atemp];

273

274 %constraint (6) Xsum accros l for all i ≥1

275 Atemp=[];

276 Atemp=[Atemp repmat(eye(m),1,k)*−1];

277 Atemp=[Atemp zeros(m,mtaken2*k+k+m+k−1+(k−1)*m+(k)*(m−1))];

278 A=[A;Atemp];

279

280 % wil constraints, (8)

281 Atemp = zeros(m*(k−1),m*k+mtaken2*k+k);

282 Atemp = [Atemp repmat(eye(m),k−1,1)*−1];

283 Atemp = [Atemp zeros(m*(k−1),k−1)];

284 Atemp = [Atemp eye((k−1)*m)];

285 Atemp = [Atemp zeros(m*(k−1),(k)*(m−1))];

286 A=[A;Atemp];

287
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288 % wil constraints, (7)

289 Atemp = zeros(m*(k−1),m*k+mtaken2*k+k+m);

290 Atemp1=ones(m,1)*−1;

291 i=1;

292 while i < k−1

293 Atemp1 = blkdiag(Atemp1, ones(m,1)*−1);

294 i=i+1;

295 end

296 Atemp = [Atemp Atemp1];

297 Atemp = [Atemp eye(m*(k−1))];

298 Atemp = [Atemp zeros(m*(k−1),(k)*(m−1))];

299 A=[A;Atemp];

300

301 % wil constraints, (9)

302 Atemp = zeros(m*(k−1),m*k+mtaken2*k+k);

303 Atemp = [Atemp repmat(eye(m),k−1,1)];

304 Atemp = [Atemp Atemp1*−1];

305 Atemp = [Atemp eye(m*(k−1))*−1];

306 Atemp = [Atemp zeros(m*(k−1),(k)*(m−1))];

307 A=[A;Atemp];

308

309 Atemp = Atempdiag;

310 Atemp = [Atemp zeros(k,mtaken2*k+k+m)];

311 i=1;

312 while i ≤ k−1

313 Atemp10(1,i)=(m+q*i)/(i+1);

314 i=i+1;

315 end

316 Atemp10 = repmat((ceil( Atemp10))*−1,k,1);

317 Atemp = [Atemp Atemp10];

318 Atemp = [Atemp zeros(k,(k−1)*m+k*k)];

319 A=[A;Atemp];

320

321 %−−−−−−−−−−−−Generate Aeq

322

323 %Constaint (11) − relate X and Z and wil

324 Aeq=[];

325 Aeqtemp=[];

326 Aeqtemp=[Aeqtemp repmat(eye(m),1,k)];

327 Aeqtemp=[Aeqtemp zeros(m,mtaken2*k+k)];

328 Aeqtemp=[Aeqtemp eye(m)];

329 Aeqtemp=[Aeqtemp zeros(m,k−1)];

330 %−−−−−Generate coefficients of wil

331 i=3;

332 Aeqtemp1=eye(m)*−2;

333 while i ≤k

334 Aeqtemp1 =[Aeqtemp1 eye(m)*−i];

335 i=i+1;

336 end

337 Aeqtemp=[Aeqtemp Aeqtemp1];

338 Aeqtemp=[Aeqtemp zeros(m,(k)*(m−1))];

339 Aeq = [Aeq; Aeqtemp];

340

341 %Constaint (12) sum of zi = q

342 Aeqtemp=zeros(1,m*k+mtaken2*k+k);

343 Aeqtemp=[Aeqtemp ones(1,m)];

344 Aeqtemp=[Aeqtemp zeros(1,k−1+(k−1)*m +(k)*(m−1))];

345 Aeq = [Aeq; Aeqtemp];
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346

347 %Constaint (13) sum of kopen = l*kl

348 Aeqtemp=zeros(1,m*k+mtaken2*k);

349 Aeqtemp=[Aeqtemp ones(1,k)];

350 Aeqtemp=[Aeqtemp zeros(1,m)];

351 Aeqtemp=[Aeqtemp (2:k)*−1];

352 Aeqtemp=[Aeqtemp zeros(1,m*(k−1)+(k)*(m−1))];

353 Aeq = [Aeq; Aeqtemp];

354

355 %Constaint (14) sum of k= 1

356 Aeqtemp=zeros(1,m*k+mtaken2*k+k+m);

357 Aeqtemp=[Aeqtemp ones(1,k−1)];

358 Aeqtemp=[Aeqtemp zeros(1,m*(k−1)+(k)*(m−1))];

359 Aeq = [Aeq; Aeqtemp];

360

361 %Constaint (15) sum of xil = imil

362 Aeqtemp=Atempdiag;

363 Aeqtemp=[Aeqtemp zeros(k,mtaken2*k+k+m+k−1+m*(k−1))];

364 Aeqtemp1=[];

365 i=1;

366 Aeqtemp2 = [0 (2:m−1)*−1];

367 while i ≤ k

368 Aeqtemp1 = blkdiag(Aeqtemp1, Aeqtemp2);

369 i=i+1;

370 end

371 Aeqtemp=[Aeqtemp Aeqtemp1];

372 Aeq = [Aeq; Aeqtemp];

373

374 %Constaint (16) sum of xil = 1

375 Aeqtemp=[];

376 Aeqtemp=[Aeqtemp zeros(k,m*k+mtaken2*k+k+m+k−1+m*(k−1))];

377 Aeqtemp1=[];

378 i=1;

379 while i ≤ k

380 Aeqtemp1 = blkdiag(Aeqtemp1, ones(1,k));

381 i=i+1;

382 end

383 Aeqtemp=[Aeqtemp Aeqtemp1];

384 Aeq = [Aeq; Aeqtemp];

385 %−−−−−−−−−−−−−−−generate Beq

386 Beq=[];

387 Beq = [Beq; ones(m,1)];

388 Beq = [Beq; q];

389 Beq = [Beq; 0];

390 Beq = [Beq; 1];

391 Beq = [Beq; zeros(k,1)];

392 Beq = [Beq; ones(k,1)];

393 %Beq = [Beq; 1];

394 %−−−−−−−−−−−−−−−−−−−−−Generate B

395 B=zeros(mtaken2*k*2,1);

396 B=[B;ones(mtaken2*k,1)];

397 B=[B;zeros(k*2,1)];

398 B=[B;ones(m,1)*−1];

399 B=[B;zeros((k−1)*m*2,1)];

400 B=[B;ones((k−1)*m,1)];

401 B=[B;zeros(k,1)];

402

403 [x,fval] = cplexbilp(F,A,B,Aeq,Beq);

112



404 Soltemp =reshape(x(1:m*k),m,k)';

405

406 %Clean Up Solution

407 i=1;

408 j=1;

409 while i ≤ size(Soltemp,1)

410 while j ≤ size(Soltemp,2)

411 if Soltemp(i,j) < 0.5

412 Soltemp(i,j)=0;

413 else

414 Soltemp(i,j)=1;

415 end

416 j=j+1;

417 end

418 j=1;

419 i=i+1;

420 end

421

422 Z = x(m*k+mtaken2*k+k+1:m*k+mtaken2*k+k+m,1)';

423 Sol = Soltemp;

424 Sol(¬any(Soltemp,2),:)=[];

425

426 %Clean Z

427 i=1;

428 while i ≤ size(Z,2)

429 if Z(1,i) <0.5

430 Z(1,i)=0;

431 else

432 Z(1,i)=1;

433 end

434 i=i+1;

435 end

436 i=1;

437

438 PivotSet = find(Z);

439

440 if size(PivotSet, 2) >1

441 test=1;

442 end

443

444 yiil = x(m*k+1:m*k+mtaken2*k,1);

445 yiil = reshape(x(m*k+1:m*k+mtaken2*k,1),k,mtaken2);

446 Ycoef = repmat(Ycoef,k,1);

447 fvalyiil = sum(sum(yiil.*Ycoef));

448

449 kopen = x(m*k+mtaken2*k+1:m*k+mtaken2*k+k,1)';

450

451 kval = x(m*k+mtaken2*k+k+m+1:m*k+mtaken2*k+k+m+k−1,1)';

452 kfval = kval*ktemp';

453 mil = reshape(x(m*k+mtaken2*k+k+m+k−1+(k−1)*
454 m+1:m*k+mtaken2*k+k+m+k−1+(k−1)*m+k*(m−1),1)',k,k)';

455 cmilcoeff = repmat(ftemp, k,1);

456 fvalmil = sum(sum(mil.*cmilcoeff));

457 end

458

459 function [A] = GenerateXCoefficients1(m)

460 mcurr = m−1;

461 Atemp =[];
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462 while mcurr ≥ 0

463 Atemp = blkdiag(Atemp,ones(mcurr,1)*−1);

464 mcurr = mcurr−1;

465 end

466 A=Atemp;

467 i=2;

468 while i < m

469 A = blkdiag(A,Atemp);

470 i=i+1;

471 end

472 end

473

474 function [A] = GenerateXCoefficients2(m)

475 mcurr = m−1;

476 A=[];

477 Atemp =[];

478 while mcurr ≥ 0

479 Atemp = zeros(mcurr,m−mcurr);

480 Atemp = [Atemp eye(mcurr)*−1];

481 A = [A; Atemp];

482 mcurr = mcurr − 1;

483 end

484 Atemp=A;

485 i=2;

486 while i < m

487 A = blkdiag(A,Atemp);

488 i=i+1;

489 end

490 end

491

492 function [ A ] = GenerateXCoefficients3(m)

493 mcurr = m−1;

494 A =[];

495 while mcurr > 0

496

497 Atemp = zeros(mcurr,m−1−mcurr);

498 Atemp = [Atemp ones(mcurr,1)];

499 Atemp = [Atemp eye(mcurr)];

500 A = [A;Atemp];

501 mcurr = mcurr − 1;

502 end

503 Atemp = A;

504 i=2;

505 while i < m

506 A = blkdiag(A,Atemp);

507 i=i+1;

508 end

509 end

510

511 function [ Sol ] = SolveBIP(I,k)

512 %Preprare Interdependence Metrix

513 I = I + I';

514 I = I − diag(diag(I,0));

515

516 %Generate Hessian

517 H=I;

518 i=1;

519 while i<k
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520 H=blkdiag(H,I);

521 i=i+1;

522 end

523 H=(H+H')/2;

524

525 %Generate F

526 F=zeros(size(I,1)*k,1);

527

528 %Generate First Set Constraint (Assign Criteria to only 1 Cluster)

529 Aeq = eye(size(I,1));

530 i=1;

531 while i<k

532 Aeq=[Aeq eye(size(I,1))];

533 i=i+1;

534 end

535 Beq = ones(size(I,1),1);

536 lb = zeros(size(I,1)*k,1);

537 ub = ones(size(I,1)*k,1);

538

539 %Solve BIP Formulation

540 opts = optimset('Algorithm','active−set','Display','off');

541 X =quadprog(H,F,[],[],Aeq,Beq,lb,ub,[], opts);

542 m=size(I,1);

543

544 %Generate Matrix Solution Sol

545 Sol=zeros(k,m);

546 i=1;

547 while i≤k

548 Sol(i,1:m)=(X(1+m*(i−1):m+m*(i−1),1))';

549 i=i+1;

550 end

551

552 %Clean Soluton for 0.0000

553 i=1;

554 j=1;

555 while i ≤ size(Sol, 1)

556 while j ≤ size(Sol,2)

557 if Sol(i,j) >0.5

558 Sol(i,j) = 1;

559 else

560 Sol(i,j) = 0;

561 end

562 j=j+1;

563 end

564 j=1;

565 i=i+1;

566 end

567 end

568

569 function [NewSol,PivotSet ] = SelectPivot( I, k,q,pivotassign,Sol )

570 %Include Pivot Element in Sol

571 %Type 1 = CMACD, Type 2 = CMACD2

572 if pivotassign == 1

573 i=1;

574 j=1;

575 l=1;

576 m=1;

577 n=1;
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578 NewSol = Sol;

579 DS=zeros(1,size(I,1));

580 %Generate Criteria Set

581 CSet = 1:size(I,1);

582 PivotSet = zeros(q,1);

583 while l ≤q

584 while i ≤ k

585 while j≤size(I,1)

586 if Sol(i,j)==1

587 DS(1,j)= CalculateDS(i,j,Sol,I);

588 end

589 j=j+1;

590 end

591 j=1;

592 i=i+1;

593 end

594 %Generate Temporary Variables

595 TempDS = 1:size(I,1);

596 TempDS(2,:) = DS;

597 TempDS2 = TempDS;

598 %Remove Pivot Criteria Option

599 while n ≤ q

600 while m ≤size(TempDS2,2)

601 if PivotSet(n,1)==TempDS2(1,m)

602 TempDS2(:,m)=[];

603 end

604 m=m+1;

605 end

606 m=1;

607 n=n+1;

608 end

609 n=1;

610 m=1;

611 %Get Index of Minimum

612 [¬,Index] = min(TempDS2(2,:));

613 %Insert Minimum Criterion Using Index to Pivot Set

614 PivotSet(l,1)= TempDS2(1,Index);

615 %Assign to all Clusters

616 while m ≤k

617 Sol(m,TempDS2(1,Index))=1;

618 m=m+1;

619 end

620 m=1;

621 i=1;

622 l=l+1;

623 end

624 NewSol = Sol;

625 elseif pivotassign == 2

626 %Determine First Cluster to Select Pivot

627 NewSol = Sol;

628 MaxSolution = DetermineBiggestMat(NewSol);

629 PivotSet = zeros(q,1);

630 j=1;

631 while j≤q

632 %Initialize

633 Dist = zeros(size(MaxSolution,1),1);

634 MinimumCriterion = zeros(size(MaxSolution,1),1);

635
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636 %Compute Distances and Find Minimum Distance of Similar Sized ...

Clusters

637 i=1;

638 while i≤size(MaxSolution,1)

639 [ Dist(i,1), MinimumCriterion(i,1)] = FindMinimumCriteria( ...

Sol,i,MaxSolution,I,PivotSet);

640 i=i+1;

641 end

642 [¬,temp] = min(Dist);

643 PivotSet(j,1) = MinimumCriterion(temp,1);

644

645 %Assign Pivot Criterion to Clusters

646 i=1;

647 while i≤k

648 NewSol(i,PivotSet(j,1)) = 1;

649 i=i+1;

650 end

651 %Select jth Cluster to SelectPivot

652 MaxSolution = DetermineBiggestMat(NewSol);

653 j=j+1;

654 end

655 end

656 end

657

658 function [DS ] = CalculateDS( x,y,Sol,I )

659 DS=0;

660 i=1;

661 j=1;

662 m = size(Sol, 2);

663 k = size(Sol, 1);

664 while i≤k

665 if x 6= i

666 while j≤ m

667 if Sol(i,j) == 1

668 DS =DS+ I(y,j);

669 end

670 j=j+1;

671 end

672

673 end

674

675 j=1;

676 i=i+1;

677 end

678 end

679

680 function [ TDS ] = ComputeTDS( B, Sol )

681 TDS=0;

682 k=size(Sol,1);

683 K=1;

684 m=1;

685 while K≤k

686 while m≤ size(B,1)

687 if Sol(K,m)6=0

688 i=m;

689 j=m+1;

690 while j≤ size(B,1)

691 if Sol(K,j)6=0
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692 TDS= TDS+ B(i,j);

693 end

694 j=j+1;

695 end

696 end

697

698 m=m+1;

699 end

700 m=1;

701 K=K+1;

702 end

703 end

704

705 function [ Acomp ] = GenerateMatrix(A,CiC,r)

706 %Generate Matrix from solution CiC query from A with row number r)

707 %Return all Non Zero Elements of CiC on Row r

708 indeces=find(CiC(r,1:size(A,1)));

709 %Generate Blank

710 Ainc=ones(size(indeces,2),size(indeces,2));

711 i=1;

712 j=1;

713

714 %Copy Values from A to Ci

715 while i≤size(indeces,2)

716 while j≤size(indeces,2)

717 Ainc(i,j)=A(indeces(1,i),indeces(1,j));

718 j=j+1;

719 end

720 j=1;

721 i=i+1;

722 end

723 Acomp = Ainc;

724 end

725

726 function [ W ] = CombinePType3Clusters( WP,P2 )

727 i=1;

728 while i ≤size(P2,1);

729 GMean(i,:)=CombineClusters3(WP,P2(i,1));

730

731 i=i+1;

732 end

733 W = geomean(GMean,1);

734 End

735

736 function [ W] = CombineClusters3( WP,Pivot )

737 i=1;

738 wtemp = WP;

739 while i ≤ size(WP, 1)

740 wtemp(i,:)= WP(i,:)./WP(i,Pivot);

741 i=i+1;

742 end

743

744 i=1;

745 j=1;

746 ws=0;

747 W = zeros(1,size(WP,2));

748 while i ≤size(WP,2)

749 if nnz(WP(:,i))== 1
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750 while j ≤size(WP,1);

751 if WP(j,i)6=0

752 ws=ws+wtemp(j,i);

753 W(1,i)=wtemp(j,i);

754 end

755 j=j+1;

756 end

757 j=1;

758 else

759 W(1,i)=geomean(wtemp(:,i));

760 ws=ws+W(1,i);

761 end

762 i=i+1;

763 end

764 W = W ./ ws;

765 W = W ./ sum(W);

766 end

767

768 function [ Results ] = CompleteCompare( R1,R2 )

769 Results.ACR = Compare( R1.ACR,R2.ACR);

770 Results.PS = Compare( R1.PS,R2.PS);

771 Results.SDE = Compare( R1.SDE,R2.SDE);

772 Results.TDS = Compare( R1.TDS,R2.TDS);

773 end

774

775 function [ Results] = Compare( X1,X2)

776 Results = zeros(size(X1,2),6);

777 i=1;

778 while i ≤ size(X1,2)

779 %Perform T−Test

780 Results(i,1) = mean(X1(:,i));

781 Results(i,2) = std(X1(:,i));

782 Results(i,3) = mean(X2(:,i));

783 Results(i,4) = std(X2(:,i));

784 [h,p,ci] = ttest(X1(:,i),X2(:,i));

785 Results(i,5) = h;

786 Results(i,6) = p;

787 i=i+1;

788 end

789 end
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