
Sparse Methods in Image Understanding and Computer Vision

by

Jayaraman Jayaraman Thiagarajan

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved March 2013 by the
Graduate Supervisory Committee:

Andreas Spanias, Chair
David Frakes

Cihan Tepedelenlioglu
Pavan Turaga

ARIZONA STATE UNIVERSITY

May 2013

ABSTRACT

Image understanding has been playing an increasingly crucial role in vision

applications. Sparse models form an important component in image understanding,

since the statistics of natural images reveal the presence of sparse structure. By

representing data as a sparse linear combination of atoms from a “dictionary” matrix,

these methods lead to parsimonious models, in addition to being efficient for large

scale learning.

This dissertation focuses on understanding different aspects of sparse learning,

and enhancing sparse methods by incorporating tools from machine learning. With

the growing need to adapt models for large scale data, it is important to design dictio-

naries that can generalize to the entire probability space of data using a finite training

set. By exploring the relation between dictionary learning and one-dimensional sub-

space clustering, a multilevel dictionary learning algorithm is developed, and it is

shown to outperform conventional sparse models in compressed recovery, and image

denoising. Theoretical aspects of learning such as algorithmic stability and gener-

alization are considered, and ensemble methods are incorporated for effective large

scale learning. In addition to building strategies for efficiently implementing one-

dimensional subspace clustering, a discriminative clustering approach is designed to

estimate the unknown mixing process in blind source separation.

By exploiting the non-linear relation between the image descriptors, and al-

lowing the use of multiple features, sparse methods can be made more effective in

recognition problems. The idea of multiple kernel sparse representations is developed,

and algorithms for learning dictionaries in the feature space are presented. Using

object recognition experiments on standard datasets it is shown that the proposed

approaches outperform other sparse coding-based recognition frameworks. Further-

more, a segmentation technique based on multiple kernel sparse representations is

developed, and successfully applied for automated brain tumor identification. Using
i

sparse codes to define the relation between data samples can lead to a more robust

graph embedding for unsupervised clustering. By performing discriminative embed-

ding using sparse coding-based graphs, an algorithm for measuring the glomerular

number in kidney MRI images is developed. Finally, approaches to build dictionar-

ies for local sparse coding of image descriptors are presented, and applied to object

recognition and image retrieval.

ii

To

my dearest family and friends for

their unconditional love ...

iii

ACKNOWLEDGEMENTS

I would like to express the deepest appreciation to my PhD advisor, Professor

Andreas Spanias, for his unending support and trust. Over the years, he has con-

tinually enriched my graduate studies, and nurtured my passion towards scientific

research. My fortuitous collaborations and a diverse research experience would not

have been possible, if not for the immense support from Prof. Spanias.

I would also extend my gratitude to my committee members, Dr. Cihan Te-

pedelenlioglu, Dr. Pavan Turaga, and Dr. David Frakes, for their constant support,

and their insightful feedback on my research. My collaborations with Dr. Turaga

and Dr. Frakes have been very exciting, and both of them have been sources of in-

spiration for my research pursuits. Special thanks to Professor Antonia Papandreou-

Suppappola for her help and support. I would like to thank all professors who have

taught me courses at ASU. I am grateful to Dr. Darin Taverna, my mentor at

Translational Genomics Research Institute, for his guidance and continual support.

I sincerely thank Professor P.P. Vaidyanathan (Caltech) for the “inspiring” discus-

sion with him at the 2011 Asilomar conference. Special thanks to Darleen, Cynthia,

Merri, Donna, Ginger, and Jenna for all their help over the years. I thank all my

lab colleagues at ASU for their camaraderie, support and more than anything, for

inspiring me with their passion towards research.

The seeds for my interest in research were planted as an undergraduate student

in India, and I owe that largely to Prof. Vetrivel and his adventurous spirit towards

science and engineering. I would also like to thank Mr. Madhusudan Shekar, my

project manager at IBM (India), for his support and enthusiasm.

My heartfelt gratitude to my family, for their unrelenting support and uncon-

ditional love towards me. If not for their determination, I would not have been to

able to pursue graduate studies in the first place. I cannot thank them enough for

their patience, and enthusiasm towards any of my tiniest accomplishments.
iv

My dearest friends deserve my gratitude for continually making me a better

person with their care and support. I feel fortunate to have had my friends Karthi,

Harini, and Vivek, who have made me an integral part of their lives. Special thanks

to Deepta, Balamurugan, Angel, Deepan, Navaneethakrishnan, Dilip, Harish, Omar,

Prathap, Deborah, Mahesh, Suhas, and Prasanna for their unconditional support.

Finally, I thank every single person in my life who has inspired me to follow

my heart, beyond the odds.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . xiii

LIST OF FIGURES . xvi

CHAPTER 1

1 INTRODUCTION . 1

1.1 Natural Image Statistics . 1

1.2 Sparseness in Biological Vision . 3

1.3 The Generative Model for Sparse Coding 7

1.4 Sparse Models for Image Reconstruction 8

1.4.1 Dictionary Design . 9

1.4.2 Data Clustering . 9

1.5 Sparse Models for Recognition . 10

1.6 Problem Statement . 12

1.6.1 Analysis and Implementation of 1-D Subspace Clustering . . . 12

1.6.2 Discriminative Clustering for Mixing Matrix Estimation . . . 12

1.6.3 Learning Stable and Generalizable Dictionaries 13

1.6.4 Multiple Kernel Sparse Representations 13

1.6.5 Tumor Segmentation using Kernel Sparse Models 14

1.6.6 Discriminative Embedding using `1 Graphs 14

1.6.7 Local Sparse Models for Object Recognition and Image Retrieval 14

1.7 Contributions . 15

2 SPARSE REPRESENTATIONS AND DICTIONARY LEARNING 19

2.1 Sparsity Regularization . 20

2.2 Uniqueness of `0 and its Equivalence to `1 Solution 21

2.3 Numerical Methods for Sparse Coding 23

vi

CHAPTER Page

2.3.1 Optimality conditions . 24

2.3.2 Basis Pursuit . 24

2.3.3 Greedy Pursuit Methods . 25

Matching Pursuit (MP) . 26

Orthogonal Matching Pursuit (OMP) 27

Least Angle Regression (LARS) 28

2.3.4 Feature-Sign Search . 30

2.4 The Art of Dictionary Design . 32

2.5 Dictionary Learning Algorithms . 34

2.5.1 Method of Optimal Directions 34

2.5.2 K-SVD . 35

2.5.3 Online Dictionary Learning 38

2.5.4 Learning Structured Sparse Models 39

Dictionaries for Piecewise Linear Approximation 41

2.6 Use of Sparse Models in Discrimination Tasks 44

2.6.1 Discriminative Dictionary Learning 45

2.6.2 Sparse Coding based Subspace Identification 46

2.6.3 Using Unlabeled Data in Supervised Learning 47

2.6.4 Generalizing Spatial Pyramids 49

Supervised Dictionary Optimization 53

3 CHARACTERISTICS AND IMPLEMENTATIONOF 1-D SUBSPACE CLUS-

TERING . 55

3.1 The K-lines Clustering Algorithm . 55

3.1.1 Computation of Cluster Centroids 56

3.1.2 Distortion Function for Clustering 57

3.1.3 Covering Number for the Distortion Function Class 57
vii

CHAPTER Page

3.1.4 Voronoi Tessellation by K lines 60

3.2 Local Optimality . 61

3.3 Stability . 62

3.4 Relationship to Dictionary Learning 65

3.5 Efficient Implementation using Random Projections 68

3.5.1 Random Projections . 68

3.5.2 Computation of SVD using Random Projections 69

3.5.3 Gaussian Mixture Models for Clustering 69

3.5.4 Application: Video Clustering 71

3.5.5 Simulation Results . 75

3.6 Kernel K-lines Clustering . 75

3.6.1 Linear Iterative Procedure for K-lines Clustering 75

Membership Set Update . 76

3.6.2 Clustering Procedure using Matrix Operations 78

3.6.3 Algorithm . 78

4 DISCRIMINATIVE CLUSTERING FOR MIXING MATRIX ESTIMATION 81

4.1 Problem Statement . 81

4.2 Need for Discriminative Clustering 84

4.3 Background . 85

4.3.1 Identification of SSPs . 86

4.3.2 Linear Discriminant Based Clustering 88

4.4 Mixing Matrix Estimation in Overdetermined BSS 88

4.4.1 Linear Discrimination using Similarity Measures 89

4.4.2 Khyp-LDA Algorithm . 90

4.5 Mixing Matrix Estimation in Underdetermined BSS 92

4.5.1 GDA using Similarity Measures 92
viii

CHAPTER Page

4.5.2 Khyp-GDA Algorithm . 95

4.6 Simulation Results . 96

4.6.1 Synthetic Data . 97

Effect of Sparsity on Estimation Performance 97

Effect of Disjoint Orthogonality on Estimation Performance . 99

4.6.2 Mixing Matrix Estimation for Speech Mixtures 99

5 MULTILEVEL DICTIONARY LEARNING FOR SPARSE REPRESEN-

TATIONS . 102

5.1 Problem Statement . 102

5.2 Multilevel Dictionary Learning . 104

5.2.1 Motivation for Multilevel Learning 104

5.2.2 Proposed MLD Learning Algorithm 106

5.2.3 Convergence . 109

5.2.4 Sparse Approximation using an MLD 109

5.2.5 Dictionaries from the BSDS Dataset 111

5.3 Learning Dictionaries with Noisy Training Data 112

5.4 Stability and Generalization . 113

5.4.1 Stability Analysis of K-lines Clustering 114

5.4.2 Level-wise Stability for MLD Learning 117

5.4.3 Distance between Cluster Centers for a Stable Clustering . . . 118

5.4.4 Stability of the MLD Algorithm 120

5.4.5 Generalization Analysis . 123

5.4.6 Simulations . 125

5.5 Robust Multilevel Dictionaries . 126

5.6 Application: Compressed Recovery 131

5.6.1 Variation of Recovery Performance with the Training Set . . . 133
ix

CHAPTER Page

5.7 Application: Denoising . 134

5.8 Application: Image Compression . 135

6 MULTIPLE KERNEL SPARSE REPRESENTATIONS 139

6.1 Problem Statement . 139

6.2 Kernel Sparse Representations and Dictionary Learning 141

6.2.1 Radial Basis Function Kernel 143

6.3 Multiple Kernel Sparse Representations 144

6.4 Proposed Method 1 . 146

6.4.1 Updating the Dictionaries . 148

6.4.2 Computing Sparse Codes for Test Data 149

6.5 Proposed Method 2 . 149

6.5.1 Multilevel Dictionary Learning 150

6.5.2 Kernel Multilevel Dictionary Learning Algorithm 151

6.5.3 Computing Sparse Codes for Test Data 152

6.6 Object Recognition and Unsupervised Clustering 155

6.6.1 Image Descriptors and Kernels 155

6.6.2 Simulation Results . 157

Caltech-101 . 157

Caltech-256 . 162

7 AUTOMATED TUMOR SEGMENTATION USING KERNEL SPARSE

REPRESENTATIONS . 163

7.1 Problem Statement . 163

7.1.1 Sparsity in Tumor Segmentation 164

7.2 Kernel Sparse Coding for Tumor Segmentation 166

7.2.1 Kernel Sparse Coding . 168

7.3 Kernel Dictionary Design . 168
x

CHAPTER Page

7.3.1 Representation . 170

7.3.2 Discrimination . 171

7.4 Proposed Automated Tumor Segmentation Algorithm 172

7.4.1 Combining Multiple Features 172

7.4.2 Algorithm . 173

7.5 Complexity Reduction using a Semi-Automated Approach 174

7.6 Experiments . 176

7.6.1 Dataset . 176

7.6.2 Benchmark Algorithm - Active Contour Method 177

7.6.3 Results . 178

8 MEASURING GLOMERULAR COUNT FROM KIDNEY MR IMAGES . 182

8.1 Problem Statement . 182

8.2 Background . 183

8.3 Supervised Graph Embedding . 186

8.4 Proposed Algorithm . 189

8.4.1 Constructing `1 Graphs . 190

8.4.2 Incorporating Supervisory Information 192

8.4.3 Obtaining Glomerular Count 194

8.5 Experimental Results . 195

8.5.1 Dataset . 195

8.5.2 Benchmark Method . 196

8.5.3 Results . 196

9 LOCAL SPARSE CODING IN OBJECT RECOGNITION AND IMAGE

RETRIEVAL . 199

9.1 Locality in Sparse Models . 200

9.2 Local Sparse Coding . 202
xi

CHAPTER Page

9.2.1 Dictionary Learning . 203

9.3 Kernel Local Sparse Coding . 205

9.3.1 Dictionary Learning . 206

9.4 Object Recognition Experiments . 207

9.4.1 Caltech-256 . 208

9.4.2 Corel-10 Dataset . 208

9.4.3 Scene-15 Dataset . 209

9.4.4 UIUC Sports Dataset . 209

9.5 Image Retrieval . 209

9.5.1 Extracting Sub-image Features 210

9.5.2 Supervised Local Sparse Coding 211

9.5.3 Simulations . 213

10 SUMMARY AND FUTURE WORK . 216

10.1 Summary . 216

10.2 Future Work . 221

REFERENCES . 224

xii

LIST OF TABLES

Table Page

2.1 Matching pursuit algorithm. 26

2.2 Orthogonal matching pursuit algorithm. 27

2.3 K-SVD Algorithm. 36

2.4 Online Dictionary Learning. 40

3.1 Algorithm to cluster video data and identify keyframes. 73

3.2 Comparison of running time for the different clustering approaches in

MATLAB. The results for the first and the second data sets are sepa-

rated by a slash (/). The third approach could not run for the first data

set owing to memory issues because of high dimensionality. 76

3.3 The Kernel K-lines Clustering Algorithm. 79

4.1 Khyp-LDA clustering for mixing matrix estimation in overdetermined BSS. 91

4.2 Khyp-GDA clustering for mixing matrix estimation in underdetermined

BSS. 95

5.1 Algorithm for building a multilevel dictionary. 107

5.2 PSNR (dB) of the images recovered from compressed measurements ob-

tained using Gaussian random measurement matrices. Results obtained

using the proposed MLD, RMLD-Ex and RMLD dictionaries, along with

K-SVD, are shown for different measurement noise conditions and number

of measurements. Higher PSNR for each case is indicated in bold font. . 127

5.3 Average Time(seconds) taken in MATLAB for training dictionaries, with

50, 000 samples, and recovering images of size 512 × 512 using different

number of random measurements. 128

xiii

Table Page

5.4 PSNR (dB) of the images recovered from compressed measurements ob-

tained using optimized measurement matrices. The performance of the

proposed MLD dictionary is compared with that of K-SVD for differ-

ent measurement noise conditions and number of measurements. Higher

PSNR for each case is indicated in bold font. 130

5.5 PSNR (dB) of the denoised standard images corrupted with AWGN of

standard deviation σ. In each case, the average of 5 trials is provided.

Higher performance is shown in bold font. 135

5.6 Average Time(seconds) taken in MATLAB for denoising images of size

512× 512 under different noise conditions. 135

6.1 Kernel Multilevel Dictionary Learning algorithm. 153

6.2 Comparison of the classification accuracies on the Caltech-101 dataset.

For the proposed algorithms, results were obtained by averaging over 10

different train and test datasets chosen at random. 158

6.3 Comparison of the clustering performance obtained using graphs, con-

structed from the kernel sparse codes, on a subset of Caltech-101. In each

case, the results were obtained by averaging over 50 trials. 161

6.4 Comparison of the classification accuracies on the Caltech-256 dataset.

For the two proposed algorithms, the reported results were obtained by

averaging over 10 different train and test datasets chosen at random. . . 162

xiv

Table Page

7.1 Comparison of the tumor segmentation performance obtained using (a)

Active contour method (ACM), (b) Kernel sparse coding-based automated

segmentation algorithm (KSCA), and (c) Kernel sparse coding-based semi-

automated segmentation algorithm (KSCSA). For each patient, results for

a few sample images (pre- and post-treatment) are shown. In each case,

the accuracy and correspondence ratio of the segmentation in comparison

to expert-marked ground truth are presented. 181

8.1 Glomerular count obtained using acid maceration, stereology, and the MRI

techniques, for three different datasets. Each dataset consisted of 192

images and total glomerular count is shown. In addition, the total time

taken, in seconds, to process each dataset using the proposed algorithm is

shown. 198

9.1 Comparison of the classification accuracies on the Caltech-256 dataset. . 208

9.2 Comparison of the classification accuracies on the Corel-10, Scene-15, and

UIUC sports datasets. 209

xv

LIST OF FIGURES

Figure Page

1.1 Examples of natural images obtained from the Berkeley segmentation

dataset (BSDS) [1]. 2

1.2 (a) Lena image (b) histogram of the wavelet coefficients in scale 3. 3

1.3 (a) The Barbara image, (b) log-Gabor coefficient statistics at scale 1 and

orientation 1 for the image. 4

1.4 A biologically inspired standard object recognition architecture based on

sparse representations. 11

2.1 Unit `p balls for p = 0.3, 0.5, 1, 2. Note that the only `p ball that is sparsity

promoting and convex is the `1 . 21

2.2 Deterministic sparsity threshold with respect to the coherence of the dic-

tionary. 23

2.3 An example dictionary learned using the algorithm proposed by Olshausen

and Field [2]. 32

2.4 An overcomplete DCT dictionary (left) is shown along with the activity

measures of its atoms (right), which is low for geometric atoms and high

for texture-like atoms. 36

2.5 An example K-SVD dictionary (left) is shown along with the activity

measures of its atoms (right), which is low for geometric atoms and high

for texture-like atoms. 37

2.6 Sparse coding with dictionaries (left) and piecewise linear approximation

using multiple PCA bases (right). 42

2.7 Examples for directional PCA basis. 44

xvi

Figure Page

2.8 Machine learning formalisms to include unlabeled data in supervised learn-

ing. The supervised task is to classify lamps and cameras and the self-

taught learning framework uses randomly chosen unlabeled data. 48

2.9 Illustration of the process of constructing the spatial pyramid feature for

an image. Local descriptors obtained from the patches in the image are

used to learn the codebook. Using the codebook, we perform vector quan-

tization of the local descriptors to exploit the redundancy. Finally, we

construct the bag of features model at multiple spatial scales. The result-

ing spatial pyramid feature is the concatenation of histograms from all

scales. 50

2.10 Demonstration of linear spatial pyramid matching based on sparse coding.

Note that the vector quantization step in the conventional non-linear SPM

is replaced by sparse coding, and the underlying spatial pooling process is

max pooling. 51

3.1 Illustration of the geometry for finding the covering number of GK with

respect to the supremum norm. 58

3.2 Tessellation of the 2-D space by the lines ψ1 and ψ2 into four convex

Voronoi regions. 61

3.3 Illustration used to show the stability of the cluster centroid from the

stability of the distortion function. 65

3.4 Keyframes obtained by clustering the test data using the algorithm in

Table 3.1. 74

3.5 Performance of Kernel K-lines clustering algorithm with two different

datasets over multiple iterations. In each case, the performance of K-lines

clustering algorithm is also shown. 80

xvii

Figure Page

4.1 Distribution of the observed samples for mixing matrix estimation in un-

derdetermined BSS, with P = 3 and R = 5: (a) All STFT coefficients,

(b) SSPs identified, with ∆θ = 0.8, using the algorithm proposed in [3]. . 87

4.2 Mixing matrix estimation performance for different levels of sparsity in

the source signals: (a) Overdetermined case (number of sources R = 5,

number of sensors P = 7), (b) Underdetermined case (R = 5, P = 3). . . 98

4.3 Mixing matrix estimation performance for different levels of disjoint or-

thogonality between the sources: (a) Overdetermined case (R = 5, P = 7),

(b) Underdetermined case (R = 5, P = 3). 98

4.4 Performance of mixing matrix estimation from speech mixtures, at differ-

ent configurations of R and P : (a) Overdetermined BSS, (b) Underdeter-

mined BSS. 100

4.5 Performance of mixing matrix estimation from speech mixtures, under dif-

ferent observation noise conditions: (a) Overdetermined case (R = 3, P =

4), (b) Underdetermined case (R = 5, P = 3). 100

5.1 Features learned at two levels from non-overlapping patches (8 × 8) of a

128 × 96 image. In each level, the patches that are highlighted in the

image share similar information and hence jointly correspond to a learned

pattern (also highlighted). 103

5.2 Multilevel dictionary, with 16 levels of 16 atoms each, comprises of geo-

metric patterns in the first few levels, stochastic textures in the last few

levels and a combination of both in the middle levels. 109

5.3 (a) Levelwise representation energy for the learned MLD with the BSDS

training data set, (b) Comparison of the MSE obtained with the BSDS

test dataset using the K-SVD and the MLD dictionaries at different levels

of sparsity. 110
xviii

Figure Page

5.4 Comparison of the MSE obtained with the BSDS test dataset using (a)

MLD dictionaries trained at different noise levels (σtr), (b) K-SVD dictio-

naries trained at different noise levels (σtr). 112

5.5 Illustration for showing the stability of cluster centroids from the stability

of distortion function. 118

5.6 The residual set {Ψ̄l,j(β + dβ)}, for the 1-D subspace ψl,j, lying in its

orthogonal complement subspace ψ⊥l,j. 120

5.7 (a) Demonstration of the stability behavior of the proposed MLD learning

algorithm. The minimum Frobenius norm between difference of two dic-

tionaries with respect to permutation of their columns and signs is shown.

The second dictionary is obtained by replacing different number of sam-

ples in the training set, used for training the original dictionary, with new

data samples. (b) Demonstration of the generalization characteristics of

the proposed algorithm compared to K-SVD. We plot the MSE obtained

by representing patches from the BSDS test dataset, using dictionaries

learned with different number of training patches. For comparison, we

show the training error obtained in each case. 123

5.8 Compressed recovery of images from random measurements (N = 16, SNR

of measurement process = 15dB) using the different dictionaries. In each

case the PSNR of the recovered image is also shown. 129

5.9 Compressed recovery of images using optimized measurements (N = 16,

SNR of measurement process = 15dB). Only small portions of the images

are displayed for visualizing the differences in the quality of recovery. . . 131

xix

Figure Page

5.10 Compressed recovery performance of the Boat image with K-SVD and

MLD dictionaries learned using different number of training patches ran-

domly chosen from different standard datasets for, (a) random measure-

ments and (b) optimized measurements. 134

5.11 Original, noisy and denoised Lena and Fingerprint images with their re-

spective PSNRs. Reconstructed images for global K-SVD dictionaries are

obtained using the K-SVD toolbox [4]. 136

5.12 (a) Test image from the UCID dataset for compression, (b) Rate-Distortion

curves obtained using the MLD and K-SVD global dictionaries of 512 atoms.137

6.1 Proposed Method 1 for obtaining multiple kernel sparse representations.

In this approach, we alternatively optimize the individual dictionaries

{Ψr}Rr=1 and obtain the unified sparse codes {ai}Ni=1. Note that r =

{1, . . . , R} denotes the index of the descriptor. The ensemble kernel ma-

trices for both the data samples and the dictionary atoms are obtained as

given in (7.10). 147

6.2 Proposed Method 2 for obtaining multiple kernel sparse representations.

In this approach, we evaluate the ensemble kernel matrix by fusing the base

kernel matrices of the different image descriptors and perform dictionary

learning in the unified feature space directly. The sparse code for a test

sample is evaluated in the multiple kernel feature space using the learned

dictionary. 150

6.3 Classification performance obtained by using each base kernel separately

with Method 2 on the Caltech-101 dataset. In each case, we report the

results obtained by using different number of training images per class. For

comparison, we show the classification accuracies achieved with multiple

kernels using the two proposed algorithms. 159
xx

Figure Page

6.4 Classification accuracies of the proposed MKSR algorithms on the Caltech-

101 dataset using dictionaries of different sizes. In each case, we report

the mean accuracy obtained by using 30 images per class for training, for

10 different train and test sets chosen at random. 161

7.1 Similarity between grayscale pixel intensities (0 to 255): (a) linear simi-

larity (yiyj) and (b) non-linear similarity (K(yi, yj)) using an RBF kernel. 167

7.2 (a) Reconstruction error for a novel test sample using kernel sparse coding,

for different values of sparsity. (b) Similarity between the kernel sparse

codes of samples drawn from 3 different classes in the USPS dataset. Since

the kernel codes of samples belonging to the same class are highly similar,

we observe a block-wise structure in the normalized correlation plot. . . . 171

7.3 Illustration of the proposed algorithm for automated tumor segmentation.

For a set of training samples, the ensemble kernel dictionary is obtained

using Kernel K-lines clustering procedure, and a 2-class linear SVM is

used to classify the pixels. 173

7.4 Illustration of the approach for complexity reduction in the proposed al-

gorithm. By allowing the user to initialize the tumor region in a test

image, the need for incorporating locality information is eliminated. Fur-

thermore, the SVM classifier can be replaced by a simple reconstruction

error-based classifier. 175

7.5 Choosing the threshold ε for the KSCSA segmentation algorithm. The

Accuracy and Correspondence Ratio are plotted against different values of

the error threshold ε for two example images. An appropriate threshold,

that results in high Acc and CR, can be chosen using a validation dataset. 178

xxi

Figure Page

7.6 Tumor segmentation results. (Left-Right) Original image, Ground Truth

(GT) marked by an expert radiologist, Segmentation obtained using the

active contour method, Segmentation obtained using the KSCA algorithm,

and Segmentation obtained using the KSCSA algorithm. In all cases,

the proposed algorithms provide superior quality segmentation when com-

pared to the benchmark algorithm. 180

8.1 An example axial slice from the 3D MRI image obtained from a CF in-

jected rat. The MRI signal is comparatively weak at the locations of the

glomerlus. 183

8.2 Demonstration of the robustness of an `1 graph. The set of training sam-

ples used for this simulation are obtained from the USPS dataset [5]. For

an example data sample (Digit 3), its similarities to all data samples in

the case of a K-Nearest Neighbor graph (left) and an `1 graph (right) are

shown. As the data sample is corrupted by noise, the K-NN graph changes

significantly while the `1 is robust to the noise. 189

8.3 Proposed algorithm for computing an embedding that discriminates im-

age patches containing glomeruli from the rest. This method works by

constructing `1 graphs to model inter-class and intra-class relationships,

and performing local discriminant embedding. 190

8.4 An example demonstration for the proposed supervised graph embedding

approach. This simulation uses 2 classes of digits from the USPS dataset,

and divides them into train/test sets. Using the training images, we com-

pute the discriminant mapping and obtain the low-dimensional features

for both the training and test images. The compactness of the classes ob-

served in the test images reflects the discrimination power of the proposed

embedding. 191
xxii

Figure Page

8.5 A low-complexity procedure for obtaining the glomerular count in a test

image. The discriminant mapping determined in the training stage is used

with the test image patches directly, and hence there is no need to obtain

the sparse codes. 195

8.6 Segmentation results for a sample set of MRI images obtained using the

proposed algorithm. (Left-Right) Original kidney image with reduced in-

tensities at glomeruli locations; Ground truth image with manually labeled

glomeruli regions; Segmentation obtained using the approach described in

Section 8.4.3. 197

9.1 Sample images from the Microsoft Research Cambridge database [6] (left)

and their aggregated sub-image features (right). 211

9.2 Proposed supervised local sparse coding algorithm for image retrieval us-

ing sub-image heterogeneous features. 213

9.3 Precision vs Recall curves for different classes from the Microsoft Research

Cambridge image database [6]. In each case, a sample set of test images

are shown. The images are best viewed in color and 300% zoom-in. . . . 215

xxiii

Chapter 1

INTRODUCTION

Natural images are pervasive entities that have been studied over the past five decades.

The term natural images encompasses a general class that includes scenes and ob-

jects present in nature as well as man-made entities. Natural images have interested

scientists from a wide range of fields due to the fact that their local regions possess

substantial similarities, in spite of their rich variability when looked as a whole. Some

examples of natural images are illustrated in Figure 1.1. Several proposed models for

representing natural images have tried to mimic the processing of the human visual

system. In general, image representation is concerned with low-level vision. There-

fore, using local regions or patches from images and exploiting the local similarities in

order to build features has resulted in efficient representation. The representative fea-

tures that are extracted from local image regions are referred to as low-level features.

It is imperative that we understand and incorporate our knowledge of the human

visual processing as well as the local image statistics when building such systems for

representation of images.

1.1 Natural Image Statistics

A digital image denoted using the symbol I is represented using pixel values between

0 and 255, for grayscale. Image statistics refer to the various statistical information

of the raw pixel values, or their transformed versions. By incorporating natural

image statistics as prior information in a Bayesian inference scheme, one can hope to

learn features that are adapted to the image data rather than trying to use classical

transform methods that may not be adapted well to the data.

Since analyzing raw pixel statistics hardly produces any useful information,

analysis of natural image statistics has been performed in Fourier [7] and Wavelet

domains [8]. It is observed that the power spectrum changes as 1/f 2, where f is

1

Figure 1.1: Examples of natural images obtained from the Berkeley segmentation
dataset (BSDS) [1].

the frequency, and this has been one of the earliest proofs of redundancy in natural

images. The marginal statistics of wavelet coefficients in a subband show that the

distributions are more peaky and heavily tailed when compared to a Gaussian dis-

tribution. Furthermore, the joint statistics indicate strong dependence between the

coefficients in different subbands. The marginal statistics of wavelet coefficients for

a subband shown in Figure 1.2 demonstrates this behavior. The coefficient statistics

obtained using log-Gabor filters on natural images also reveal a peaked distribution.

Figure 1.3 shows the output distribution at scale 1 and orientation 1 for the Barbara

image.

Though the statistics of full natural images convey useful information, it is

also helpful to consider the distribution of natural image patches in space. It has

been shown that high contrast image patches lie in clusters and near low-dimensional

manifolds [9, 10]. Patches of size 3× 3 were chosen from natural images and prepro-

cessed in the logarithm scale to remove the mean and normalize the contrast values.

They were then projected using the discrete cosine transform (DCT) basis, and nor-

malized to unit norm, which makes the processed data lie in a 7−sphere in R8. By

computing the fraction of the data points that near the dense sampling of the surface

of the sphere, the empirical distribution of the data can be determined. It has been

observed that a majority of the data points are concentrated in a few high density re-

gions of the sphere. The sample points corresponding to the high density regions are

2

Figure 1.2: (a) Lena image (b) histogram of the wavelet coefficients in scale 3.

similar to blurred step edges for natural image patches. Further topological analysis

of natural image patches has been performed in [10], which suggests that features

that can efficiently represent a large portion of natural images can be extracted by

computing topological equivalents to the space of natural image patches.

1.2 Sparseness in Biological Vision

Most of our cognitive functions and perceptual processes are carried out in the neo-

cortex, which is the largest part of the human brain. The primary visual cortex,

also referred to as V1, is the part of the neocortex that receives visual input from

the retina. The nobel prize winning discoveries of Hubel and Weisel showed that

the primary visual cortex consists of cells responsive to simple and complex features

in the input. V1 has receptive fields that are characterized as being spatially local-

ized, oriented and bandpass. In other words, they are selective to structure of the

visual input at different spatial scales. One approach to understanding the response

properties of visual neurons has been to consider their relationship to the statistical

structure of natural images in terms of efficient coding.

A generative model that constructs random noise intensities typically results in

images with equal probability. However, the statistics of natural image patches have

been shown to contain a variety of regularities. Hence, the probability of generating
3

Figure 1.3: (a) The Barbara image, (b) log-Gabor coefficient statistics at scale 1 and
orientation 1 for the image.

a natural image using the random noise model is extremely low. In other words, the

amount of redundancy in natural images allows the design of a visual system that

can efficiently represent the natural scenes. Extending this argument, understanding

the behavior of the visual system in exploiting redundancy, will enable to us to build

a plausible explanation for the coding behavior of visual neurons [11].

The optimality of the visual coding process can be addressed with respect to

different metrics of efficiency. One of the most commonly used metrics is the represen-

tation efficiency. Several approaches have been developed to explore the properties

of neurons involved in image representation. In [12], it was first reported that the

neurons found in the V1 showed similarities to Gabor filters, and hence different

computational models were developed based on this relation [13, 14]. Furthermore,

the 1/fk fall off observed in the Fourier spectra of natural images demonstrated the

redundancy in the images. The 1/f structure arises because of the pairwise correla-

tions in the data, and the observation that natural images are approximately scale

invariant. The pairwise correlations account for about 40% of the total redundancy

in natural scenes. Any representation with significant correlations implies that most
4

of the signal lies in a subspace within the larger space of possible representations [15]

and hence data can be represented with much reduced dimensionality. Though pair-

wise correlations have been an important form of redundancy, studies have shown

that there exists a number of other forms of redundancy. Two images with similar

1/f spectra can be described in terms of differences in their sparse structure.

For example, for a noise image with 1/f structure, all linear representations

will result in a Gaussian response distribution. However, with natural images, the

histogram of the responses will be non-Gaussian for a suitable choice of linear filters

(Figure 1.3). A visual system that generates such response distributions, with high

kurtosis (fourth statistical moment), can produce a representation with visual neurons

that are maximally independent. In other words, codes with maximal independence

will activate neurons with maximal unique information. This is the principal idea

behind sparse coding algorithms. With respect to biological vision, sparsity implies

that a small proportion of the neurons are active, and the rest of the population is

inactive with high probability. Olshausen and Field showed that by designing a neural

network that attempts to find sparse linear codes for natural scenes, we can obtain

a family of localized, oriented and bandpass basis functions similar to those found

in the primary visual cortex. This evidenced that at the level of V1, visual system

representations can efficiently match the sparseness of natural scenes. However, it

must be emphasized that the sparse outputs of these models result from the sparse

structure of the data. For example, similar arguments cannot be made for white noise

images. Further studies have shown that the visual neurons produce sparse responses

in higher stages of cortical processing such as inferotemporal cortex, in addition to

the primary visual cortex. However, there is no biological evidence that shows that

the sparse responses imply efficient representation of the environment by the neurons.

5

Measuring the efficiency of neural systems is very complicated compared to

engineered visual systems. In addition to characterizing the visual representations,

there is a need to understand its dependency on efficient learning and development.

A learning algorithm must address a number of problems pertinent to generaliza-

tion. For example, invariance is an important property that the learning algorithm

must possess. In this case, efficient learning is determined by its ability to balance

between the selection of suitable neurons and achieving invariance across examples

with features that vary. In other words, it is critical for the algorithm to generalize

to multiple instances of an object in the images. In one end, this problem can be

addressed by building a neuron for every object. Simpler tasks such as distinguishing

between different faces can be efficiently performed using this approach. However,

the number of object detectors in such a system would be exorbitantly high. On the

other end, sparse codes with more neurons are necessary for visually challenging tasks

such as object categorization. Hence, the general task of object recognition requires

different strategies with varying degrees of sparseness.

Another important property of the representations in biological vision is that

they are highly overcomplete. As expected, these overcomplete codes involve signifi-

cant redundancy. Overcompleteness has been suggested as an efficient way to model

the redundancy in images [16]. Furthermore, overcompleteness can result in highly

sparse representations, when compared to using complete codes, and this property is

very crucial for generalization during learning. Though a complete theory to describe

the human visual processing still eludes the neuro-scientists, it has been found that

considering the different metrics of efficiency together is crucial while addressing this

problem.

6

1.3 The Generative Model for Sparse Coding

The linear generative model for sparse representation of a data sample x ∈ RM is

given by,

x = Da (1.1)

where D ∈ RM×K is the set of K elementary features and a ∈ RK is the coefficient

vector. If we assume that the coefficient vector is sparse and has statistically in-

dependent components, the elements of the dictionary D can be inferred from the

generative model using appropriate constraints 8.9. The reason for assuming a sparse

prior on the elements of a is the intuition that natural signals and images allow for

their efficient representation as a sparse linear combination of patterns such as edges,

lines and other elementary features [17]. In addition, the experiments given in Section

1.1 that analyze the statistics of wavelet and log-Gabor coefficients are an evidence

for sparseness of the coefficient vector. Let us assume that all the T patches extracted

from the image I are given by the matrix X ∈ RM×T , and the coefficient vectors for

all the T patches are given by the matrix A ∈ RK×T . The likelihood for the image

I, which is represented by X is given by

log p(X|D) =
∫
p(X|D,A)p(A)dA. (1.2)

p(X|D,A) can be computed using the linear generative model assumed in (8.9) and

p(A) is the prior that enforces sparsity constraints on the entries of the coefficient

vectors. The dictionary now can be inferred as

D̂ = argmax
D

log p(X|D). (1.3)

The strategy proposed by Olshausen and Field [18] to determine the dictionary D

is to use the generative model (8.9) and an approximation of (1.3) along with the

constraint that the columns of D are of unit `2 norm. The dictionary D here is over-

complete (i.e.) the number of dictionary elements is greater than the dimensionality
7

of the image patch, K > M . This leads to infinite solutions for the coefficent vector

in (8.9) and hence the assumption on sparsity of a can be used to choose the most

appropriate dictionary elements that represent x. Our strategy for computing sparse

representations and learning dictionaries will also be based on this generative model.

Though the generative model assumes that the distribution of coefficients are inde-

pendent, there will still be statistical dependence between the inferred coefficients.

This is because the elementary features corresponding to the non-zero coefficients

occlude partially each other.

It should be noted that using a model such as (8.9) along with sparsity con-

straints on a deviates from the linear representation framework. Assume that we have

a representation that is S−sparse, (i.e.), only S out of K coefficients are non-zero at

any time in a. There are totally
(
K
S

)
such combinations possible, each representing

an S−dimensional subspace assuming that each set of S chosen dictionary elements

are independent. This model leads to a union of S−dimensional subspaces where the

signal to be represented can possibly reside. It is clearly not a linear model as the sum

of signals lying in two S−dimensional subspaces can possibly lie in a 2S−dimensional

subspace.

1.4 Sparse Models for Image Reconstruction

Images can be modeled using sparse representations on predefined dictionaries as

well as dictionaries learned from the image data. Widely used predefined dictionaries

include the discrete cosine transform (DCT), wavelet, wedgelet, and curvelet dictio-

naries. Since a single predefined dictionary cannot completely represent the patterns

in an image, using a combination of predefined dictionaries is helpful in some appli-

cations.

8

1.4.1 Dictionary Design

DCT dictionaries were one of the earliest dictionaries for patch-based image repre-

sentation and still used as initial dictionaries in a variety of dictionary learning tasks.

Overcomplete DCT dictionaries can be easily constructed and have been used with

sparse representations, performing substantially better than orthonormal DCT dic-

tionaries. The set of predefined dictionaries that have probably found the widest

applications in multiscale image representation are the wavelet dictionaries. Wavelet

coefficients have strong inter- and intra-scale dependencies and modeling them can

be helpful in applications that exploit this additional redundancy. Many successful

image coders consider either implicit or explicit statistical dependencies between the

wavelet coefficients. For example, the JPEG-2000 standard [19] considers the neigh-

boring coefficients in the adjacent subbands of the same scale jointly while coding.

Using sparsity models with learned dictionaries have been very successful.

The simplest model that assumes the coefficients are independent gives rise to the

K-SVD learning algorithm [20]. If the sparsity patterns appear in groups or blocks,

block based sparse representations can be performed [21]. Additional structure can

be imposed on group sparsity and each sparse pattern can be penalized accordingly.

This gives rise to the structured sparsity frameworks and they are an area of ongoing

research [22].

1.4.2 Data Clustering

The problem of dictionary optimization is a generalization of data clustering. In

particular, the K-means and K-lines clustering algorithms are special cases of the

general joint optimization problem of sparse coding and dictionary learning. K-means

clustering seeks to cluster the data samples by minimizing the sum of intracluster

distances across all clusters and K-lines clustering performs a least squares fit of

K 1-D subspaces, referred to as hyperlines, to the training data [23]. In the K-

9

means clustering problem, it is assumed that each coefficient vector is 1-sparse (i.e.)

has exactly one non-zero coefficient and the coefficient value is 1. In the K-lines

clustering problem, 1 sparsity is still assumed for the coefficient vector, but the value

of the non-zero coefficient itself is unconstrained.

In addition to computing the clustering accuracy, the behavior of clustering

algorithms can be understood by analyzing the algorithmic stability. The general

idea behind stability of a clustering algorithm is that the algorithm should produce

clusters that are not too different when different i.i.d. training sets from the same

probability space are used for training [24–26]. In [24], the authors show that a clus-

tering algorithm is stable if there is a unique minimizer to the objective function. This

notion is used in [25] to characterize the stability of K-means clustering algorithm.

It is shown in [26] that when there is no unique global minimizer to the objective

function, K-means is stable with respect to a change in o(
√
T) samples between two

i.i.d. training sets of T samples each, where T →∞.

1.5 Sparse Models for Recognition

In addition to constraining overcomplete linear representations, sparse coding can

be interpreted as learning the underlying data distribution with a sparsity prior.

Note that, Deep Belief Networks (DBNs) have also been used to effectively infer the

data distribution and extract features in an unsupervised fashion [27]. By imposing

sparsity constraints on DBNs for natural images will result in features that closely

resemble their biological counterparts [28]. The relevance of sparsity in machine

learning systems has been studied extensively over the last decade. Sparse features

have been known to be more likely separable in high-dimensional spaces [29], and

hence helpful in classification tasks. However, empirical studies designed to evaluate

the importance of sparsity in feature extraction for image classification argue that

no performance improvement is gained by imposing sparsity, unless this sparsity

10

Figure 1.4: A biologically inspired standard object recognition architecture based on
sparse representations.

is tailored for discrimination [30]. Let us consider a standard object recognition

architecture based on sparse features, similar to the ones developed in [31,32]. Given

a known set of filters (dictionary atoms), sparse features are extracted by coding

local regions in an image. Note that, if sparsity does not result in an improved

performance, the computationally intensive sparse coding process can be replaced by

a simple convolution of the patches with the linear filters.

The image filters can be learned using dictionary learning procedures, or can

be pre-determined based on knowledge about the data. The architecture illustrated

in 1.4 has a pre-processing step where operations such as conversion of color images

to grayscale, whitening, and dimensionality reduction can be carried out. Sparse

feature extraction is followed by the application a non-linear function, such as taking

the absolute values of the coefficients, and pooling. Note that, this procedure is

common in biologically inspired multi-layer architectures for recognition. Additional

operations such as downsampling can also be carried out. Since the dimension of

the descriptors is too high for practical applications, downsampling is very crucial

11

for subsequent operations. Some of the commonly used pooling functions include

Gaussian pooling, average pooling, and maximum value pooling (max-pooling) in

the neighborhood. The final step in the architecture is to learn a classifier that

discriminates the pooled features belonging to the different classes.

1.6 Problem Statement

This dissertation focuses on understanding different aspects of sparse coding and dic-

tionary learning for effective image modeling. Furthermore, approaches that incor-

porate machine learning principles to augment sparse methods, for use in supervised

and unsupervised learning problems, are developed.

1.6.1 Analysis and Implementation of 1-D Subspace Clustering

In the paradigm of sparse representations, analysis of 1-D subspace (K-lines) clus-

tering is very important due to the intriguing relation it exhibits to the problem of

dictionary learning. Though, K-lines clustering has been successfully used in sparse

component analysis [23], its characteristics have not been studied in literature. For

any clustering algorithm, it is essential to analyze its local optimality and convergence

for a given set of training data. Furthermore, analyzing the stability characteristics

of K-lines clustering will be beneficial in understanding the behavior of dictionary

learning. Since the complexity of computing 1-D subspaces in higher dimensions is

high, there is a need to build dimensionality reduction schemes that preserve the 1-D

subspaces representing the underlying clusters. When the separability between the

classes is inadequate, clustering performance can be improved by mapping the input

data into a feature space using a non-linear transformation such that the clusters

become more separable [33].

1.6.2 Discriminative Clustering for Mixing Matrix Estimation

Clustering algorithms can be combined with dimensionality reduction strategies such

as linear discriminant analysis (LDA), in order to improve the separability of the

12

data belonging to different classes. This motivates the design of discriminative 1-D

subspace clustering algorithms in both the input space and the feature space. In

addition to providing improved clusterings, these methods will be particularly useful

for mixing matrix estimation in blind source separation. Blind source separation

(BSS) is the problem of estimating the original source signals from their mixtures,

when the mixing process is unknown. All source separation techniques require a

reliable estimate of the mixing process, and this can be efficiently performed using

discriminative 1-D subspace clustering.

1.6.3 Learning Stable and Generalizable Dictionaries

Inferring data-driven sparse models from a set of training data requires the under-

standing of stability and generalization characteristics of the learning algorithm. Since

learning is performed only with a finite number of samples, the asymptotic conver-

gence of approximation error obtained with these empirical methods to the expected

error is crucial for their performance on novel test samples. Furthermore, for the

learning to be asymptotically stable, it must depend only on the underlying proba-

bility distribution of the sample space, and not on the training samples considered.

To design such an a algorithm, the relation between dictionary optimization and 1-D

subspace clustering needs to be exploited. In addition, the use of ensemble learning

methods, that combine multiple weak hypotheses to sparsely approximate the data

samples, can improve the generalization performance.

1.6.4 Multiple Kernel Sparse Representations

The inability of sparse methods to model non-linear relationship between samples,

and to combine multiple diverse image descriptors have challenged their use in com-

plex visual recognition. Kernel methods provide a flexible way to learn non-linear

models by performing a non-linear transformation (implicit) of the data samples to

a feature space, and learning linear models in the resulting space. By building kernel

13

sparse models, the use of multiple features and incorporation of appropriate distance

functions (possibly non-linear) for each feature becomes feasible.

1.6.5 Tumor Segmentation using Kernel Sparse Models

Since kernel sparse models allow the use of diverse features, they are suitable for

image segmentation. As an important application, kernel sparse codes can be used to

perform brain tumor detection and segmentation. A robust method to automatically

segment and identify tumor regions in medical images is extremely valuable for clinical

diagnosis and disease modeling. Hence, there is a need to develop an algorithm

using kernel sparse models that can work without user intervention, and at moderate

computational complexity.

1.6.6 Discriminative Embedding using `1 Graphs

Several linear and non-linear dimensionality reduction schemes can be unified under

the framework of graph embedding. Though classical graph construction approaches

have been successful, it has been shown that using sparse codes to establish relation

between data samples (`1 graphs) leads to more robust graphs [34]. This graph

construction procedure is unsupervised, and hence cannot be applied to obtain a

discriminative embedding. Developing an algorithm that uses `1 graphs to compute

an embedding, which discriminates different classes, will be very useful in medical

image segmentation. In particular, this method can be applied for obtaining the

glomerular count in kidney MRI images.

1.6.7 Local Sparse Models for Object Recognition and Image Retrieval

An important class of models, referred to as local sparse models, incorporate locality

constraints to encourage the code to have non-zero coefficients for dictionary atoms in

the neighborhood of the encoded data. Though dictionaries constructed using simple

clustering procedures have been used in practice, building data-adapted dictionaries

will improve the performance of local sparse coding in object recognition. Further-

14

more, incorporating supervisory label information into the local sparse model will

enable its use in applications such as image retrieval.

1.7 Contributions

In Chapter 3, the theoretical characteristics and implementation aspects of 1-D sub-

space clustering are analyzed. The convergence of the 1-D subspace clustering algo-

rithm is shown, and it is proved that the algorithm provides a locally optimal solution

for a given set of training data, based on Lloyd’s optimality conditions. Furthermore,

the local optimality is shown by developing an Expectation-Maximization procedure

for learning dictionaries to be used in sparse representations, and by deriving the

clustering algorithm as its special case. The cluster centroids obtained from the algo-

rithm are proved to tessellate the space into convex Voronoi regions. The stability of

clustering is shown by posing the problem as an empirical risk minimization procedure

over a function class. It is proved that, under certain conditions, the cluster centroids

learned from two sets of i.i.d. training samples drawn from the same probability space

become arbitrarily close to each other, as the number of training samples increase

asymptotically. A dimensionality reduction procedure, based on random projections

and Gaussian Mixture Model (GMM) assumptions, that preserves the 1-D subspaces

is developed. Finally, the kernel K-lines clustering algorithm is proposed to perform

1-D subspace clustering in a feature space using kernel methods. Method and results

of the analysis described in this chapter have been published in [35], [36].

In Chapter 4, the problem of estimating the mixing matrix in instantaneous

blind source separation (BSS) is considered. A novel discriminative 1-D subspace clus-

tering method is proposed for estimating the mixing matrix. The proposed method

works by iteratively identifying projections to discriminate the observations from dif-

ferent sources, and computing the mixing parameters using 1-D subspace clustering.

In addition to relaxing the key conditions on source sparsity and disjointedness, this

15

technique can work consistently across different mixing conditions: (a) overdeter-

mined (# sensors > # sources), (b) fully determined (# sensors = # sources), and

(c) underdetermined (# sensors < # sources). For cases (a) and (b), the algorithm

combines linear discriminant analysis based on similarity measures and 1-D subspace

clustering to accurately estimate the mixing matrix. For case (c), estimation is per-

formed in a feature space using kernel methods. Robust estimation of the number of

sources is also performed using the proposed technique. Finally, it is demonstrated

that the proposed algorithm achieves improved estimation performance when com-

pared to other baseline algorithms. Algorithms and experiments reported in this

chapter can be found in [37], [38].

In Chapter 5, the multilevel dictionary (MLD) learning algorithm to design

global dictionaries for representing image patches is described. It is shown that, for

a sufficient number of levels, the proposed algorithm converges and for a sufficient

number of atoms per level the multilevel dictionary captures the energy hierarchy in

image patches. Furthermore, a Regularized Multilevel OMP (RM-OMP) procedure is

developed for computing the sparse codes of test data using the proposed dictionary.

Using the fact that the K-lines clustering algorithm is stable, stability analysis of the

MLD algorithm is carried out. It is experimentally demonstrated that, the stability

of multilevel learning improves as the difference between their corresponding training

sets becomes small and as the number of training samples increases. In addition, it

is shown that the error in sparse approximation for the training and test data sets

become comparable as the size of the training set increases. In order to improve the

generalization of MLD, multiple dictionaries are constructed in each level using ran-

dom subsets of the training data and the individual approximations are aggregated.

Finally, the proposed dictionaries are evaluated in compressed recovery and image

compression. Parts of this work have been published in [39], [40].

16

In Chapter 6, the idea of multiple kernel sparse representations (MKSRs) is in-

troduced and their use in object recognition and unsupervised clustering is described.

Two different approaches are developed for obtaining sparse codes and optimizing

dictionaries in the unified feature space obtained using multiple kernels. Both the

approaches require the extraction of appropriate features, and computation of their

corresponding base kernels. The first approach works by building separate dictionar-

ies to sparsely code each descriptor set, and fusing the corresponding kernel matrices

to obtain multiple kernel sparse representations. Though the fused kernel matri-

ces are used for evaluating MKSRs, each dictionary is optimized separately using a

fixed point algorithm. In the second approach for obtaining MKSRs, kernel dictio-

nary learning is directly performed using the ensemble kernel matrix, constructed

by fusing the kernel similarities of all descriptors. In order to obtain kernel dictio-

naries, we present the kernel multilevel dictionary learning (KMLD) algorithm and

design a greedy procedure to obtain sparse codes using the learned dictionary. Fi-

nally, the improved recognition and clustering performances of the proposed methods

are demonstrated using standard databases. The contents of this chapter have been

reported in [41].

In Chapter 7, the use of multiple kernel sparse models in tumor segmentation

is addressed. Approaches to automatically segment enhancing/active and necrotic tu-

mor components from T1-weighted contrast-enhanced MR images are developed. By

computing kernel sparse codes for the pixels in the image, pixel-based segmentation

is performed. The proposed algorithm for localizing the active tumor regions uses an

ensemble kernel constructed using pixel intensities and their spatial locations. Each

pixel is classified as belonging to a tumor or a non-tumor region using a linear SVM

on the kernel sparse codes. In addition, a semi-automated segmentation technique

is developed for improved computational efficiency, wherein the user can initialize

the tumor region. The proposed algorithms are evaluated on a set of T1-weighted
17

contrast-enhanced MR images and the results are compared with manual segmenta-

tion performed by an expert radiologist. The algorithms and experimental results in

this chapter can be found in [42], [43].

In Chapter 8, the problem of computing an discriminative embedding for data

samples, using graphs constructed with sparse codes is considered. In particular, this

algorithm can be effective for measuring glomerular number in kidney MRI images.

Though the general problem of image segmentation can be unsupervised, some prior

knowledge about the MRI image intensities at glomeruli locations can be incorpo-

rated. This prior knowledge is obtained by manually marking glomeruli regions in a

few ground truth images. By learning a suitable discriminative model from labelled

training data, the complexity of segmenting a test image is also reduced significantly,

in addition to producing accurate results. The proposed approach works by extracting

small image patches, and computing a low-dimensional embedding for the patches,

such that glomeruli regions are discriminated from the other regions in the MRI. For

a test image, the extracted patches are projected onto the discriminant directions

and passed to a clustering algorithm to identify the glomeruli. Description of the

proposed method and simulation results have been reported in [44].

In Chapter 9, the application of local sparse models in object recognition and

image retrieval is explored. An algorithm to design dictionaries for local sparse cod-

ing of image descriptors is proposed. In addition, the local sparse coding models are

learned in the feature space using the kernel trick. Simulation results for object recog-

nition demonstrate that the two proposed algorithms achieve higher classification

accuracies. In order to perform image retrieval using sparse methods, a supervised

local sparse coding approach using sub-image heterogeneous features is presented.

By performing image retrieval on standard datasets, it is shown that incorporating

supervised information into local sparse coding results in improved precision-recall

rates. Parts of this work have been reported in [45], [46], and [47].
18

Chapter 2

SPARSE REPRESENTATIONS AND DICTIONARY LEARNING

Analysis-Synthesis applications in signal and image processing aim to represent data

(signals/images) in the most parsimonious terms. In signal analysis, linear models

that represent the signals sparsely in a transform domain, such as the Fourier [48] or

the wavelet domain [49], have been considered. The general problem of sparse repre-

sentation is to approximate an input signal using a linear combination of elementary

signals. A common metric considered for measuring sparsity of the linear combina-

tion is to use the number of elementary signals that participate in the approximation.

The nature of the signal determines the suitable transform to be applied, such that

a sparse representation could be obtained. For example, the wavelet transform has

been successfully used for 1-D signals [49] and curvelets have been found to be op-

timal for representing the edges in an image [50]. However, analysis of the diverse

phenomena that generate signals in practice show that, a single transform cannot be

used to describe the signals effectively. As a result, models that use combinations of

elementary signals from several different transforms have been considered [51], [52].

In many modern applications, the elementary signals are drawn from a large, lin-

early dependent collection of signals [53]. These linear models are often referred to

as redundant or overcomplete.

The strategy proposed by Olshausen and Field [18] to reduce higher-order

redundancy in images is based on using a probabilistic model to capture the im-

age structure. They demonstrated that, learning sparse linear codes for natural

images develops a family of localized, oriented and bandpass features, similar to

those found in the primary visual cortex. In this model, images are described in

terms of a linear superposition of basis functions and these functions are adapted

in terms of a collection of statistically independent events. The statistical structure

19

of naturally occurring signals and images allows for their efficient representation as

a sparse linear combination of patterns such as edges, lines and other elementary

features [17]. A finite collection of normalized features is referred to as a dictionary.

In redundant/overcomplete models, the number of basis functions is greater than the

dimensionality of the input signals. It has been shown that, approximation power of

the model is significantly improved when an overcomplete set of basis functions are

used [54], [55]. The other advantages of using redundant representations are that,

they are well behaved in presence of noise and they aid in obtaining shift-invariant

representations [56].

2.1 Sparsity Regularization

Considering the generative model for sparse coding (8.9), the codes can be obtained

either by minimizing the exact `0 penalty or its convex surrogate `1 penalty as,

(PL0) â = argmin
a
‖a‖0 subj. to y = Φa, (2.1)

(PL1) â = argmin
a
‖a‖1 subj. to y = Φa, (2.2)

where ‖.‖0 is the `0 norm and ‖.‖1 is the `1 norm. Since real-world data cannot be

expressed exactly using the generative model in (8.9), usually the equality constraints

in (8.10) and (8.11) are replaced using the constraint ‖y −Φa‖2
2 ≤ ε, where ε is the

error goal of the representation. The exact `0 minimization given in (8.10) is a

combinatorial problem and that is the major reason why its convex surrogate is often

used. In fact, any penalty function from the set {‖a‖p | 0 < p ≤ 1}, can be shown to

be promote sparsity. The shape of the unit `p balls which are level sets defined by
(

K∑
i=1
|a[i]|p

)1/p

= 1 (2.3)

are shown in Figure 2.1 for various values of p. Note that the p = 0 cannot be

used in (2.3), since the `0 norm, that counts the number of non-zero coefficients,

is only a pseudonorm. The optimization given in (8.11) can be visualized as the
20

Figure 2.1: Unit `p balls for p = 0.3, 0.5, 1, 2. Note that the only `p ball that is
sparsity promoting and convex is the `1

expansion the `1 ball until it touches the affine feasible set y = Φa. Considering the

various unit balls in Figure 2.1, it can be shown that all points in the `2 ball have an

equal probability of touching an arbitrary affine feasible set, and hence the solution

is almost always dense. However, the balls with p ≤ 1 have a high probability of

touching the feasible set at points where most of the coordinates are zero, leading

to sparse solutions with high probability. In the rest of this chapter, we restrict our

discussion to `0 and `1 norms.

The generative model indicated in (8.9) with sparsity constraints is a non-

linear model, because set of all S−sparse vectors is not closed under addition. The

sum of two S− sparse vectors generally results in a 2S−sparse vector. Furthermore,

sparse models are generalizations of linear subspace models since they each sparse

pattern represents a subspace, and the union of all patterns represent a union of

subspaces. Considering S−sparse coefficient vectors obtained from a dictionary of

size M ×K, the data samples y obtained using the model (8.9) lie in a union of
(
K
S

)
S−dimensional subspaces.

2.2 Uniqueness of `0 and its Equivalence to `1 Solution

So far, we have discussed in length about sparse representations and obtaining rep-

resentations using the `0 minimization. However, it is also important to ensure that

for a given dictionary D such a representation obtained is unique, both the `0 and `1

solutions obtained using (8.10) and (8.11) are equivalent to each other [51,57].
21

To analyze the uniqueness of the solution for an arbitrary (in this case over-

complete) dictionary Φ, assume that there are two suitable representations for the

input signal y,

∃a1 6= a2 such that y = Φa1 = Φa2. (2.4)

Hence the difference of the representations a1 − a2, must be in the null space of

the representation, Φ(a1 − a2) = 0. This implies that some group of elements in the

dictionary should be linearly dependent. To quantify the relation, we define the spark

of a matrix. Given a matrix, the spark is defined as the smallest number of columns

that are linearly dependent. This is quite different from rank of a matrix, which is the

largest number of columns that are linearly independent. If a signal has two different

representations as in (2.4), we must have ‖a1‖0 + ‖a2‖0 ≥ Spark(Φ). From this

argument, if any representation exists satisfying the relation ‖a1‖0 < Spark(Φ)/2,

then any other representation for the signal ‖a2‖0 > Spark(Φ)/2. This indicates

that the sparsest representation is a1. To conclude, a representation is the sparsest

possible if ‖a‖0 < Spark(Φ)/2. Assuming that the dictionary atoms are normalized

to unit `2 norm, let us define the Gram matrix for the dictionary as G = DTD and

denote the coherence as the maximum magnitude of the off-diagonal elements

µ = max
i 6=j
|gi,j|. (2.5)

Then we have the bound Spark(Φ) > 1/M [51, Thm. 5], and hence it can be inferred

that the representation obtained from `0 minimization is unique and equivalent to `1

minimization if

‖a‖0 ≤
1
2

(
1 + 1

µ

)
. (2.6)

This is referred to as the deterministic sparsity threshold, since it holds true

for all sparsity patterns and non-zero values in the coefficient vectors. This threshold

is illustrated in Figure 2.2 for various values of µ. Tthe threshold is the same for `1

22

Figure 2.2: Deterministic sparsity threshold with respect to the coherence of the
dictionary.

minimization as well as greedy recovery algorithms such as the Orthogonal Matching

Pursuit (OMP). The deterministic sparsity threshold scale at best as sqrtM as M

increases. Probabilistic or Robust sparsity thresholds, on the other hand scale in the

order ofM/ logK [58] and break the square-root bottleneck. However, the trade-off is

that the unique recovery using `1 minimization is only assured with high probability,

and robust sparsity thresholds for unique recovery using OMP are also unknown.

2.3 Numerical Methods for Sparse Coding

When `0 norm is used as the cost function, exact determination of the sparsest repre-

sentation is a NP-hard problem [59], and complexity of the search grows exponentially

with the dictionary size. Hence, a number of numerical algorithms that use `1 approx-

imation and greedy procedures have been developed to solve these problems. Note

that most of these algorithms have a non-negative counterpart and it is straightfor-

ward to develop them by appropriately placing the non-negativity constraint.

Some of the widely used methods for computing sparse representations include

greedy sequential methods such as the Matching Pursuit (MP) [60] and Orthogonal

Matching Pursuit (OMP) [61], Basis Pursuit (BP) [62], FOCUSS [63], Feature Sign

23

Search (FSS) [64], Least Angle Regression (LARS) [65], and iterated shrinkage algo-

rithms [66, 67]. Before describing the sparse coding algorithms, we will present an

overview of the optimality conditions used by the procedures.

2.3.1 Optimality conditions

Considering the `0 optimization problem in (8.10), it can be shown that a unique and

hence an optimal solution can be obtained using BP, MP, and OMP algorithms [68]

if the condition given in (2.6) is satisfied. For algorithms that use the penalized

`1 formulation given in (8.11), the optimality condition is obtained computing the

following sub-gradient set

2ΦT (Φa − y) + λr, (2.7)

and ensuring that it contains the zero vector. Here r is the sub-gradient of ‖a‖1 and

is defined as

r[i] =

+1 a[i] > 0

[−1,+1] a[i] = 0.

−1 a[i] < 0

(2.8)

Hence the optimality conditions can be simplified as [69]

2φTi (y−Φa) = λsign(a[i]) if a[i] 6= 0, (2.9)

2|φTi (y−Φa)| < λ otherwise. (2.10)

These conditions are used as criterion for optimality and coefficient selection by LARS

and FSS algorithms.

2.3.2 Basis Pursuit

Basis Pursuit (BP) is a Linear Programming (LP) approach [70] that solves (8.11) to

find the minimum `1 norm representation of the signal [62].

A standard linear program is a constrained optimization problem with affine

objective and constraints. We can convert the problem in (8.11) to an LP, by adding
24

an auxiliary variable u ∈ RK as

min
u

1Tu subject to Ax = b, u ≥ 0, − u ≤ x ≤ u. (2.11)

Relating the problem in (8.11) to the linear program, the problem is to identify which

variables in x should be zero. To solve this LP, both simplex methods and interior

point methods have been used [62]. Geometrically, the collection of feasible points

is a convex polyhedron or a simplex. The simplex method works by moving around

the boundary of the simplex, jumping from one vertex of the polyhedron to another

at which the objective is better. On the contrary, interior point methods start from

the interior of the simplex. Since, the solution of LP is at an extreme point of the

simplex, as the algorithm converges, the estimate moves towards the boundary. When

the representation is not exact and the error goal ε is known, the sparse code can be

computed by solving the quadratically constrained problem

â = argmin
a
‖a‖1 subj. to ‖y−Φa‖2 ≤ ε. (2.12)

This problem is referred to as Basis Pursuit Denoising (BPDN) and several efficient

procedures exist for solving this [62]. For a data vector y of dimensionality M ,

corrupted with additive white Gaussian noise (AWGN) of variance σ2, the squared

error goal ε2 is fixed at (1.15σ2)M . This is because with a probability of 0.75, each

component in the AWGN noise vector will lie within the range [−1.15σ, 1.15σ]. By

setting this error goal, we will have a very low chance of picking noise as a part of

the representation.

2.3.3 Greedy Pursuit Methods

Greedy procedures for computing sparse representations operate by choose the atom

that is most strongly correlated to the current target, remove its contribution from

it and iterate. Hence, they make a sequence of locally optimal choices in an effort

to obtain a global optimal solution. There are several versions of such greedy algo-

rithms, some of which are aggressive and remove all the contribution of the particular
25

Table 2.1: Matching pursuit algorithm.

Input:
Input signal, y ∈ RN , Dictionary, Φ = {φk}k∈Ω.

Output:
Coefficient vector, a ∈ RK .

Initialization:
Initial residual: r(0) = y,
Initial coefficient vector: a(0) = 0 .
Loop index: J = 1.

while convergence not reached
- Determine an index λ(J): λ(J) ∈ argmax

k
|〈r(J−1), φk〉|.

- Update the coefficient vector: a(λ(J)) = a(λ(J)) + 〈r(J−1), φλ(J)〉.
- Compute the new residual: r(J) = r(J−1) − 〈r(J−1), φλ(J)〉φλ(J) .
- Update the loop counter: J = J + 1.

end

atom from the target, and some which are less aggressive and remove only a part of

the contribution. For orthonormal dictionaries, even the most aggressive greedy algo-

rithms perform well whereas for overcomplete dictionaries, algorithms that are more

careful in fixing the coefficient result in a better approximation. The greedy methods

for solving sparse approximation problems generalize this simple idea to the case of

any arbitrary dictionary. A clear advantage with greedy algorithms is that there is

a flexibility to fix the number of non-zero coefficients, and/or the error goal ε, which

with not the case with BP or BPDN.

Matching Pursuit (MP)

This is the simplest of greedy pursuit algorithms and was proposed by Mallat and

Zhang [60]. The steps involved in the MP algorithm are shown in Table 2.1. The

algorithm begins by setting the initial residual to the input signal y and making a

trivial initial approximation. It then iteratively chooses the best correlating atom

to the residual and updates the residual correspondingly. In every iteration, the

algorithm takes into account only the current residual and not the previously selected
26

Table 2.2: Orthogonal matching pursuit algorithm.
Input:
Input signal, y ∈ RN , Dictionary, Φ = {φk}k∈Ω.

Output:
Coefficient vector, a ∈ RK .

Initialization:
Initial residual, r(0) = y,
Index set, Λ(0) = ∅ .
Loop index, J = 1.

while convergence not reached
- Determine an index λ(J): λ(J) ∈ argmaxk |〈r(J−1), φk〉|.
- Update the index set: Λ(J) = Λ(J−1)⋃λ(J).
- Compute the coefficient a: mina

∥∥∥y−∑J
j=1 a(λ(j))φλ(j)

∥∥∥
2
.

- Compute the new residual: r(J) = y−
∑J
j=1a(λ(j))φλ(j) .

- Update the loop counter: J = J + 1.
end

atoms, thereby making this step greedy. It is important to note that, MP might select

the same dictionary atom many times, when the dictionary is not orthogonal. The

contribution of an atom to the approximation is the inner product itself as in the case

of an orthogonal expansion. The residual is updated by removing the contribution

of the component in the direction of the atom φλ(J) . At each step of the algorithm a

new approximant of the target signal, c(J), is calculated based on the relationship

c(J) = y− r(J). (2.13)

When the dictionary is orthonormal, the representation c(S) is always an optimal and

unique S-term representation of the signal [61]. It has been shown that, for general

dictionaries the norm of the residual converges to zero [71].

Orthogonal Matching Pursuit (OMP)

This algorithm introduces a least squares minimization to each step of the MP al-

gorithm, in order to ensure that the best approximation is obtained over the atoms

that have already been chosen [72–74]. This is also referred to as forward selection
27

algorithm [75] and the steps involved in this algorithm are provided in Table 2.2. The

initialization of OMP is similar to that of MP, with a difference that an index set

is initialized to hold the indices of atoms chosen at every step. The atom selection

procedure of this algorithm is also greedy as in MP. The index set is updated by

adding the index of currently chosen atom, to the list of atoms that have already

been chosen. Unlike the MP algorithm, where the correlations themselves were the

coefficients, OMP computes the coefficients by solving a least squares problem. The

most important behavior of OMP is that the greedy selection always picks an atom

that is linearly independent from the atoms already chosen. In other words,

〈r(J), φλ(j)〉 = 0 for j = 1, ..., J. (2.14)

As a result, the residual must be equal to zero in N steps. Further, the index set Λ

is of full-rank and hence the least squares solution is unique. Since, the residual is

orthogonal to the atoms already chosen, OMP ensures that an atom is not chosen

more than once in the approximation. The solution of the least squares problem

determines the approximant,

c(J) =
J∑
j=1

a(λ(j))φλ(j) . (2.15)

A non-negative version of the OMP algorithm, has been proposed in [76] as a greedy

procedure for recovering non-negative sparse representations. Several sophisticated

pursuit methods have been proposed recently in order to improve the performance

of OMP. One such procedure, the compressive sampling matching pursuit (CoSaMP)

[77], follows a procedure similar to the OMP, but selects multiple columns of the

dictionary and prunes the set of active columns in each step.

Least Angle Regression (LARS)

The LARS procedure computes the solution to penalized `1 optimization in (8.11) by

selecting the active coefficients one at a time and performing a least squares procedure
28

at every step to re-estimate them. This method is closely related to the OMP or the

forward selection algorithm, but it is less greedy in reducing the residual error. A

closely related method to OMP and LARS is the forward stagewise algorithm, which

takes thousands of tiny steps as it moves towards the solution. All these algorithms

update their current approximant of the signal by taking a step in the direction of

the largest correlation of the dictionary atom with the current approximant

c(J+1) = c(J) + εsign(〈r(J),ψĵ〉) where ĵ = argmax |〈r(J),ψj〉|. (2.16)

For MP, the step size ε is the same as |〈r(J),ψĵ〉|, whereas for OMP the current

approximant is re-estimated using a least squares method. The Forward Stagewise

procedure is overly careful and fixes ε as a small fraction of the MP step size. LARS

is a method that strikes a balance in step-size selection.

The idea behind the LARS algorithm can be described as follows. The coef-

ficients are initialized as zero and the dictionary atom ψj1 that is most correlated

with the signal y is chosen. The largest step possible is taken in the direction of ψj1

until another dictionary atom ψj2 has as much correlation with the current residual.

Then the algorithm proceeds in the equiangular direction between ψj1 and ψj2 until

a new dictionary atom ψj3 has as much correlation with the residual as the other

two. Therefore, at any step in the process LARS proceeds equiangularly between

the currently chosen atoms. The difference between MP and LARS is that in the

former case, a step is taken in the direction of the atom with maximum correlation

with the residual, whereas in the latter case the step taken is in the direction that is

equiangular to all the atoms that are most correlated with the residual. Note that

the LARS algorithm always adds coefficients to the active set and never removes any.

This could lead us to think that it may not result in an optimal solution for (8.11) and

that is true. Considering the optimality constraints in (2.9) and (2.10), the LARS

algorithm implictly checks for the all the conditions except the sign condition in (2.9).
29

Hence, in order to make the LARS solution the same as optimal solution for (8.11),

a small modification that provides a way for deletion of coefficients from the current

non-zero coefficient set has to be included.

The LARS algorithm can produce a whole set of solutions for (8.11) for λ

varying between 0, whenM dictionary atoms are chosen and a least squares solution is

obtained, to its original value, where a sparse solution is obtained. If the computations

are arranged properly, LARS is a computationally cheap procedure with complexity

of the same order as that of least squares. The dictionary is of size 10 × 100 whose

entries are obtained from N (0, 1), and the non-zero entries in the coefficient vector

are obtained from a uniform random distribution.

2.3.4 Feature-Sign Search

Feature sign search is an efficient sparse coding method that solves the penalized

`1 optimization in (8.11) by maintaining an active set of non-zero coefficients and

corresponding signs, and searches for the optimal active set and coefficient signs. In

each feature-sign step, given an active set, an analytical solution is computed for

the resulting quadratic program. Then, the active set and the signs are updated

using a discrete line search and by selecting coefficients that promote optimality

of the objective. The sign vector is denoted by θ and its entries are defined as

θ[i] = sign(x[i]), which is one of the elements from {−1, 0,+1}. The algorithm

consists of the following steps.

Step 1: An element of the non-active set that results in the maximum change

in the error term is chosen as

i = argmax
i

∣∣∣∣∣∂‖x−Ψa‖
∂a[i]

∣∣∣∣∣ , (2.17)

and add i to the active set if it improves the objective locally. This is obtained when

the sub-gradient given by (2.7) is less than 0 for a given index i. Hence we append i

to A, if ∂‖x−Ψa‖
∂a[i] > λ/2 setting θ[i] = −1, or if ∂‖x−Ψa‖

∂a[i] < −λ/2 setting θ[i] = 1.
30

Step 2: Using coefficients only from the active set, let Φ̂ be the sub-dictionary

corresponding to the active set, and let â, θ̂ be the active coefficient and sign vectors.

The strategy used in this Feature-Sign step is to find the new set of coefficients that

have the sign pattern consistent with the sign vector. In order to do this, we first

solve the unconstrained optimization,

min
â
‖x− Ψ̂â‖2

2 + λ

2 θ̂
T
â (2.18)

and obtain ânew. Denoting the objective in (2.18) as f(â, θ̂), it is easy to see that

f(ânew, θ̂) < f(â, θ̂) since ânew is the optimal solution of (2.18). If sign(ânew) = θ̂,

ânew is the updated solution. Else, a line search will be performed between â and

ânew, and the points where at least one coefficient in the vector becomes zero are

noted. Among these, the one with the lowest objective value, âl is chosen as the

new coefficient vector. Because of the convexity of f , we have f(âl, θ̂) < f(â, θ̂),

and hence the objective value decreases. In this case, elements are removed from the

active set since at least one of the coefficients in the active set has become zero, and

θ = sign(a).

Step 3: Optimality conditions need to be checked for both non-zero and zero

coefficients. For non-zero coefficients belonging to the set A, the condition is given

by (2.9). If this does not hold true, Step 2 is repeated without any new activation.

For zero coefficients, the condition is given by (2.10) is checked and if this is not true,

the algorithm proceeds to Step 1. However, if both optimality conditions are satisfied

the algorithm exits with the current solution as optimal.

It can be seen that the feature sign step (Step 2) of the algorithm strictly

reduces the objective, and Step 3 of the algorithm mandates that the iterative pro-

cedure stops only when optimal solution is attained. It can be shown using a simple

proof that the FSS algorithm produces a globally optimal solution and more details

on this can be found in [64].
31

Figure 2.3: An example dictionary learned using the algorithm proposed by Olshausen
and Field [2].

2.4 The Art of Dictionary Design

Dictionaries used for sparse representations can be constructed based on the mathe-

matical model that generates the data. There are also methods available to tune the

parameters of a pre-defined dictionary, such that the performance over the given set

of data is optimized. However, dictionaries that are learned directly from the data

result in an improved performance compared to both pre-defined as well as tuned

dictionaries. This chapter will focus exclusively on learned dictionaries and their

applications in various image processing tasks.

Pre-defined dictionaries can be constructed using bases from transforms such

as the discrete cosine transform (DCT), wavelet, curvelet [78] and they have been

successfully in various image reconstruction applications. In addition, pre-defined

dictionaries can also be constituted as a union of multiple basis, where each basis

represents certain features in the image well [79, 80], and this generally results in

improved performances compared to using a single basis. A well-known example

32

for tunable dictionaries are wavelet packets, which generates a library of bases for

a given wavelet function, and the basis that results in the optimal performance for

the data can be chosen [81]. In their celebrated work, Olshausen and Field proposed

a framework to learn an overcomplete set of individual vectors optimized to the

training data for sparse coding [18]. Since then, a wide range of dictionary learning

algorithms for sparse coding have been proposed in the literature, some of which are

tailored for specific applications. In addition to optimizing dictionaries for the data,

some applications have directly used training examples as the dictionary. Such models

are referred to as example-based sparse models [82]. A few important algorithms for

learned dictionaries that are useful in general signal and image processing applications

are discussed in this chapter.

Assume that the training data x is obtained from a probability space obeying

the generative model posed in (8.9), the dictionary learning problem can be expressed

as minimizing the objective

g(D) = Ex[h(x,D)] (2.19)

where the columns of D, referred to as dictionary atoms, are constrained as ‖dj‖2 ≤

1,∀j. The cost of the penalized `1 minimization given in (8.11) is denoted as h(x,D).

If the continuous probability distribution is unknown and we only have T training

samples {xi}Li=1, equiprobable with a mass of 1
T
, (2.19) can be modified as the em-

pirical cost function,

ĝ(D) = 1
T

T∑
i=1

h(xi,D). (2.20)

Typically dictionary learning algorithms solve for the sparse codes and obtain the

dictionary by minimizing ĝ(D), repeating the steps until convergence [83–85].

Given the sparse codes dictionary learning can be posed as the convex problem

min
D

T∑
i=1
‖xi −Dai‖2

2 subj. to ‖dj‖2 ≤ 1,∀j, (2.21)

33

where D = [d1 d2 . . . dK] is the dictionary matrix and S is the sparsity of the

coefficient vector. Denoting X = [x1 x2 . . . xT] as the collection of T training vectors

and A = [a1 a2 . . . aT] as the coefficient matrix, the objective in (2.21) can be re-

written as ‖X−DA‖2
F where ‖.‖F denotes the Frobenius norm. Learned dictionaries

have been successfully applied in image deblurring, compression, denoising, inpainting

and super-resolution [20].

2.5 Dictionary Learning Algorithms

2.5.1 Method of Optimal Directions

This algorithm was proposed by Engan et.al. [84], [85], and is one of the early efforts

for building learned dictionaries. The procedure optimizes (2.20) using alternating

minimization, and in the first step, the current estimate of the dictionary is used to

solve for the sparse codes using the `0 optimization

min
ai
‖xi −Dai‖2

2 subject to ∀i, ‖ai‖0 ≤ S, i = {1, 2, . . . , T}, (2.22)

which can be solved using algorithms such as OMP or FOCUSS [86], [87].

In the second step, the dictionary in the optimization is updated assuming

that the sparse codes are known. For the dictionary update step, we define the errors

ei = xi −Dai. Hence the MSE of the overall representation is given by

MSE = 1
T
‖X−DA‖2

F . (2.23)

The algorithm attempts to update D such that the above error is minimized. Dif-

ferentiating (2.23) with respect to D, we obtain (X −DA)AT = 0. The dictionary

update step can be expressed as

D(l+1) = XA(l)T

(A(l)A(l)T

)−1, (2.24)

where the superscript indicates the iteration number. The columns of the updated

dictionary D(l+1) are then normalized. Note that this is the best possible dictionary
34

that can be obtained for the known coefficient matrix. Using other update schemes

such as iterative steepest descent will result in a much slower learning procedure.

2.5.2 K-SVD

The next algorithm that we will consider is the K-SVD, proposed by Aharon et.

al. [83], which is also an alternating optimization procedure that attempts to minimize

the objective in (2.20). Similar to the MOD, the dictionary D is fixed and the best

coefficient matrix A is computed using a pursuit method, during the sparse coding

step. The K-SVD algorithm has a markedly different dictionary update step, where it

updates one column at a time fixing all columns in the dictionary except one, dk, and

updating it along with its corresponding coefficients such that the MSE is reduced.

Modifying the coefficients during the dictionary update step imparts a significant

acceleration in learning.

During the dictionary update, we assume that both D and A are fixed, except

for one column in the dictionary, dk, and the coefficients corresponding to it, i.e., the

ith row in A denoted by aiT . Now, the primary objective function can be simplified

as,

‖X−DA‖2
F =

∥∥∥∥∥∥X−
K∑
j=1

djajT

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥X−
∑
j 6=k

djajT

− dkakT

∥∥∥∥∥∥
2

F

=
∥∥∥Ek − dkakT

∥∥∥2

F
. (2.25)

It can be seen from (2.25) that the product term DA has been decomposed into

K rank-1 matrices among which K − 1 terms are fixed. The matrix Ek indicates

the errors for all the T examples when the contribution of the kth atom is removed.

The natural idea will be to use the SVD to find the new dk and the corresponding

akT . The SVD finds the closest rank-1 matrix, in terms of Frobenius norm, that

35

Table 2.3: K-SVD Algorithm.
Initialization:
Initial dictionary, D(0), with normalized columns, l = 1.

while convergence not reached
Sparse Coding Step:

minai{‖xi −Dai‖22} subject to ‖ai‖0 ≤ S, for i = {1, . . . , N}
Dictionary Update Step: For each column k in D(l−1), update it by
- Define ωk = {i|1 ≤ i ≤ K,akT 6= 0}.

- Compute Ek = X−

∑
j 6=k

djajT

.
- Compute Ek

R, by selecting only the columns corresponding to ωk from Ek.
- Apply SVD decomposition Ek

R = U∆VT .
- Choose the updated dictionary atom, dk, as the first column of U.
- Updated coefficient vector as the product of first column of V and ∆(1, 1).
- Update the loop counter, l = l + 1.

end

will approximate Ek and thereby minimizes the expression in (2.25). However, this

ignores the sparsity in akT and will result in a dense representation.

Figure 2.4: An overcomplete DCT dictionary (left) is shown along with the activity
measures of its atoms (right), which is low for geometric atoms and high for texture-
like atoms.

The K-SVD algorithm handles this issue by defining a set ωi containing the

group of indices, pointing to the columns xi of the input signal matrix, that use the

atom dk. In effect,

ωk = {i|1 ≤ i ≤ K, akT [i] 6= 0}. (2.26)

Now, define a matrix Ωk with ones on the (ωk[i], i)th entries and zeros elsewhere. The
36

Figure 2.5: An example K-SVD dictionary (left) is shown along with the activity
measures of its atoms (right), which is low for geometric atoms and high for texture-
like atoms.

vector akR = akTΩk contains only the non-zero entries in akT . Similarly, multiplying

Xk
R = XΩk creates a matrix with the subset of the training examples that use the

atom dk. The same happens in Ek
R = EkΩk. This penalty in (2.25) is simplified as,

∥∥∥EkΩk − dkakTΩk

∥∥∥2

F
=
∥∥∥Ek

R − dkakR
∥∥∥2

F
(2.27)

and the minimum of this expression is obtained by updating the dictionary atom

dk and the coefficient vector akR using the SVD of Ek
R. The steps involved in this

algorithm are formally summarized in Table 2.3. It is shown in [83] that convergence

of this algorithm to a local minimum is always guaranteed with a behavior similar to

Gauss-Seidel methods in optimization. The predefined DCT and the learned K-SVD

dictionaries are compared in Figure 2.4 and Figure 2.5 respectively. The K-SVD

dictionary is learned from 50, 000 grayscale patches of size 8 × 8 extracted from

250 training images of the Berkeley segmentation dataset (BSDS) [1]. Besides the

dictionary atoms, a total-variation-like activity measure [20] is also shown for both

the dictionaries. The measure for the atom d organized as a patch of size
√
M ×

√
M

is defined as

M∑
m=2

M∑
n=1
|d[m,n]− d[m− 1, n]|+

M∑
m=1

M∑
n=2
|d[m,n]− d[m,n− 1]| (2.28)

37

The measure is high for texture-like patches and low if the patches have a regular

geometric structure. The measure is normalized such that its maximum value is 1

and shown for both DCT and K-SVD atoms in Figures 2.4 and 2.5. It can be seen

that the DCT dictionary is more regular with respect to this measure compared to

the K-SVD dictionary.

2.5.3 Online Dictionary Learning

The dictionary learning algorithms described so far are batch procedures, since they

require access to the whole training set in order to minimize the cost function. Hence,

the size of the data set that can be used for training is limited. In order for the learning

procedure to scale up to millions of training samples, we need an online algorithm

that is both efficient both in terms of memory and computations. We will discuss one

such procedure proposed by Mairal et. al. [88], based on stochastic approximations.

Although dictionary learning results in a solution that minimizes the empirical

cost g given in (2.20), it will approach the solution that minimizes the expected cost

ĝ given in (2.19), as the number of samples T → ∞. The idea of online learning

is to use a well-designed stochastic gradient algorithm that can result in a lower

expected cost, when compared to an accurate empirical minimization procedure [89].

Furthermore, for large values of T , empirical minimization of (2.20) using a batch

algorithm becomes computationally infeasible and it is necessary to use an online

algorithm.

The online algorithm alternates between computing sparse code for the tth

training sample, xt, with the current estimate of the dictionary Dt−1, and updating

the new dictionary Dt by minimizing the objective

ĝt(D) ≡ 1
t

t∑
i=1

(1
2‖xi −Dai‖2

2 + λ‖ai‖1

)
, (2.29)

along with the constraint that the columns of D are of unit `2 norm. The sparse codes

for the samples i < t are used from the previous steps of the algorithm. The online
38

algorithm for dictionary learning is given in Table 2.4. The dictionary update using

warm restart is performed by updating each column of it separately. The detailed

algorithm for this update procedure is available in [88]. The algorithm is quite general

and can be tuned to certain special cases. For example, when a fixed-size dataset

is used, we can randomly cycle through the data multiple times and also remove

the contribution of the previous cycles. When the dataset is huge, the computations

can be speeded up by processing in mini-batches instead of one sample at a time.

In addition, to improve the robustness of the algorithm, unused dictionary atoms

must be removed and replaced with a randomly chosen sample from the training set,

in a manner similar to clustering procedures. Since the reliability of the dictionary

improves over iterations, the initial iterations may be slowed by adjusting the step

size, and down-weighting the contributions of the previous data.

In [88], it is proved that this algorithm converges to a stationary point of the

objective function. This is shown by proving that under the assumptions of compact

support for the data, convexity of the functions ĝt and uniqueness of the sparse coding

solution, ĝt acts as a converging surrogate of g, as the total number of training samples

T →∞.

2.5.4 Learning Structured Sparse Models

The generative model in (8.9) assumes that the data is generated as a sparse linear

combination of dictionary atoms. When solving an inverse problem, the observations

are usually a degraded version of the data denoted as

z = Ux + n, (2.30)

where U ∈ RN×M is the degradation operator with N ≤ M , and n ∼ N (0, σ2IN).

Considering the case of images, x usually denotes an image patch having the sparse

representation Da, the matrix U performs operations such as downsampling, mask-

ing, or convolution. Restoration of original images corrupted by these degradations
39

Table 2.4: Online Dictionary Learning.
Initialization:

- T training samples drawn from the random distribution p(x).
- Initial dictionary, D(0) ∈ RM×K , with normalized columns.
- λ, regularization parameter.
- Set B ∈ RK×K and C ∈ RM×K to zero matrices.

for t = 1 to T
- Draw the training sample xt from p(x).
- Sparse Coding:

at = argmina
1
2‖xi −Dt−1a‖22 + λ‖a‖1

- Bt = Bt−1 + ataTt
- Ct = Ct−1 + xtaTt
- Compute Dt using Dt−1 as warm restart,

Dt = 1
t

∑t
i=1

(
1
2‖xi −Dai‖22 + λ‖ai‖1

)
= 1

t

∑t
i=1

(
1
2Tr(D

TDAt)− Tr(DTDAt)
)

end for
- Return learned dictionary DT .

correspond to the inverse problems of single-image superresolution, inpainting and

deblurring respectively. The straighforward method of restoring these images, using

sparse representations, is to consider UD as the dictionary and compute the sparse

coefficient vector a using the observation z. The restored data is then given as Da.

Apart from the obvious necessity that x should be sparsely decomposable in D, the

conditions to be satisfied in order to get a good reconstruction are [90]: (a) the norms

of any column in the dictionary UD should not become close to zero, as in this case

it is not possible to recover the corresponding coefficient with any confidence, and (b)

the columns of UD should be incoherent, since coherent atoms lead to ambiguity in

coefficient support. For uniform degradations such as downsampling and convolution,

even an orthonormal D could result in UD that violate these two conditions. For ex-

ample, consider that U is an operator that downsamples by a factor of two, in which

case the DC atom {1, 1, 1, 1, . . .} and the highest frequency atom {1,−1, 1,−1, . . .}

will become identical after downsampling. If the dictionary D contains directional

filters, an isotropic degradation operator U will not lead to a complete loss in the

40

incoherence property for UD. In order to overcome these issues, and obtain a stable

representation for inverse problems, it is necessary to consider the fact that similar

data admit similar representations and design dictionaries accordingly. This corre-

sponds to the simultaneous sparse approximation (SSA) problem where a set of data

will be represented by a set of dictionary atoms. In the section, we will discuss briefly

the formulations by Yu et. al. [90] and Mairal et. al. [91] that are specifically designed

for inverse problems in imaging.

Dictionaries for Piecewise Linear Approximation

The main idea in building these dictionaries is to design a set of directional bases,

and represent each cluster of image patches linearly using a basis set. Linear mod-

eling using directional basis and simultaneous approximation impart stability to the

representation and hence ensures that the restoration performance is high for the de-

graded data given by (2.30). The patches themselves are modeled as a mixture of C

Gaussians, each representing a linear model, i.e., p(xi) = N (µci
,Σci

). An EM-MAP

procedure computes the Maximum-a-Posteriori (MAP) estimates for the restored

patches using an Expectation-Maximization (EM) algorithm, by performing the fol-

lowing steps iteratively: (a) given a set of degraded patches {zi}Ti=1, the parameters

of the C Gaussians are obtained using maximum likelihood estimation, (b) for each

patch i, identify the Gaussian that generates it, and (c) estimate each non-degraded

patch xi from its corresponding Gaussian. Without loss of generality, we can assume

that the means {µc}Cc=1 are zero, and hence the only parameter to be estimated for

each Gaussian is its covariance Σj. In order to compute the non-degraded patch and

its membership with respect to a cluster, we perform the following MAP estimation

(xi, ci) = argmax
x,c

log p(x|zi,Σc).

41

Figure 2.6: Sparse coding with dictionaries (left) and piecewise linear approximation
using multiple PCA bases (right).

Using Bayes rule and realizing that n ∼ N (0, σ2IM), we have

(xi, ci) = argmax
x,c

(log p(zi|x,Σc) + log p(x|Σc)) , (2.31)

= argmin
x,c

(
‖Uix− zi‖2

2 + σ2xTΣ−1
c x + σ2 log |Σc|

)
. (2.32)

This joint estimation can be divided into computation of per-cluster data xci and the

cluster membership ci as follows,

xci = argmin
x

(
‖Uix− zi‖2

2 + σ2xTΣ−1
c x

)
, (2.33)

ci = argmin
c

(
‖Uixci − zi‖2

2 + σ2(xci)TΣ−1
c xci + σ2 log |Σc|

)
, (2.34)

and finally assigning xi = xci . Since Σc could become rank-deficient, a small constant

is added to it in order to regularize it. This procedure is also referred to as Piecewise

Linear Estimation (PLE) since each Gaussian in the mixture corresponds to a linear

model.

In order to provided a structured sparse model interpretation and to overcome

the issue of rank deficiency in Σc, we perform the eigen decomposition, Σc = BcΛcBT
c ,

where Λc is a diagonal matrix with the decreasing eigenvalues {λc1, . . . λcM}. The patch

belonging to that Gaussian can be conveniently represented using the obtained PCA

basis as

xci = Bcaci . (2.35)

Hence (2.33) transforms to

aci = argmin
a

(
‖UiBca − zi‖2

2 + σ2
M∑
m=1

|a(m)|2
λcm

)
(2.36)

42

which is a linear estimation problem on the basis Bc. Note that this is similar to

a SSA problem, assuming that the group of dictionary atoms that represent the

data are known. The selection of optimal basis for the data xi is equivalent to the

selection of the best cluster in (2.34). Therefore, the EM-MAP procedure can be

implemented by iteratively performing: (a) linear estimation in the C basis sets, each

of which corresponds to a cluster, (b) selection of the best basis set for each patch,

and (c) estimating the basis sets using the associated patches. The eigenvalues for any

cluster fall rapidly, and hence (2.36) leads to a very sparse representation. In actual

implementation, (2.36) is never used to estimate the non-degraded patch. Instead,

(2.33) and (2.34) are used to perform recovery of the degraded patches.

Since the PLE procedure is non-convex, the algorithm can only converge to a

local minimum. Therefore, initialization of the model plays a key role in the ensuring

a good estimate of x. The initialization also depends on the degradation operator U,

since the recoverability condition that the norms of columns of UD be greater than

zero has to be satisfied. For operators such as downsampling and random masking,

the initialization is performed with directional PCA basis as follows. Images with

oriented edges at different angles are chosen and patches are extracted from different

positions in the edge regions. PCA is performed on the extracted patches to compute

the basis and the eigen values. They are shown in Figure 2.7, and correspond to Diracs

in Fourier space. In practice, the eigen values are computed only once and the eigen

vectors are computed using a Gram Schmidt procedure to initialize the covariance

matrices. When U is a blur operator, directional PCA basis cannot be used for

initialization since they will not satisfy the recoverability condition. Therefore, we

compute the position PCA basis, that are spread in Fourier space, by blurring the

edge image of a specific orientation with various amounts of blur and extracting the

patches from the same positions. After initialization, the multiple iterations of the

MAP-EM procedure is used to compute the restored image.
43

Figure 2.7: Examples for directional PCA basis.

2.6 Use of Sparse Models in Discrimination Tasks

Sparse learning, in addition to providing interpretable and meaningful models, is

efficient for large scale learning. Though the paradigm of sparse coding has been very

effective in modeling natural signals, its ability to discriminate different classes of data

is not inherent. Since sparse coding algorithms aim to reduce only the reconstruction

error, they do not explicitly consider the correlation between the codes, which is

crucial for classification tasks. As a result, the codes obtained for similar signals

or features (extracted from the signals) may be quite different in traditional sparse

coding. In addition, the overcomplete nature of the dictionary makes the sparse

coding process highly sensitive to the variance in the features. Hence, adapting this

representative model to perform discriminative tasks requires the incorporation of

supervisory information into the sparse coding and dictionary learning problems. By

introducing the prior knowledge on the sparsity of signals into the traditional machine

learning algorithms, novel discriminative frameworks can be developed.

44

2.6.1 Discriminative Dictionary Learning

Sparse representations using predefined and learned dictionaries have been extremely

successful in representation of images. However, in order for them to be successful

in classification, explicit constraints for discrimination need to be incorporated while

adapting the dictionary. It is well known that the traditional linear discriminant

analysis (LDA) approach can aid in supervised classification by projecting the data

on to a lower dimensional space where the inter-class separation is maximized while

the intra-class separation is minimized [92]. If the sparse representation is constrained

such that a discriminatory effect can be introduced in the coefficient vectors of differ-

ent classes, the computed representation can be used in classification or recognition

tasks.

Assume that the sparse codes of the T training vectors {xi}Ti=1 are given by

{ai}Ti=1 and the indices of the training vectors belonging to class p are given by Cp.

Each training vector belongs to one of the P classes. Denoting the mean and variance

for each class as mi and σ2
i respectively, they can be computed the sample mean

and variance estimates of coefficient vectors corresponding to a class. The Fisher’s

discriminant is defined as

F (A) =
‖∑P

p=1 Tp(mp −m)(mp −m)T‖2
F∑P

p=1 σ
2
p

, (2.37)

where m is the sample mean estimate of all coefficient vectors and Tp is the number

of training vectors that belong to class p. Incorporating the Fisher’s discriminant,

the objective function that focuses only on discrimination can be written as

argmax
A

F (A)− λ
T∑
i=1
‖ai‖0, (2.38)

whereas the objective function that combines both representation on a dictionary D

and discrimination can be posed as

argmax
A

F (A)− λ1

T∑
i=1
‖xi −Dai‖2

2 − λ2

T∑
i=1
‖ai‖0. (2.39)

45

This was one of the first models that included explicit discrimination constraints

in sparse representation based classification [93]. Models that perform supervised

dictionary learning using supervised sparse coding [94], and by directly incorporating

the SVM model parameters [95] have also been proposed.

2.6.2 Sparse Coding based Subspace Identification

The sparse representation of signals, though not developed for classification tasks, can

be discriminative since it selects the most compact set of dictionary elements. Sparse

representations can be effectively used for classification, if the overcomplete dictionary

is constructed using the training samples itself [96], [97]. If a sufficient number of

samples are available from each class, it is possible to represent a test sample using a

small subset of training samples from the same class. Loosely speaking, by computing

the sparsest representation automatically discriminates between the different classes.

It can be clearly observed that this approach is a generalization of the nearest neighbor

and the nearest subspace algorithms.

The important challenge in performing feature-based recognition of objects

and faces is in deciding a suitable low-dimensional image level feature that is in-

formative and still discriminative between classes. Several approaches such as the

Eigenfaces, the Fisherfaces and the Laplacianfaces have been very successfully used

to efficiently project high-dimensional data to low-dimensional feature spaces. How-

ever, the theory of compressed sensing suggests that even random projections can

be employed and hence the choice of the suitable feature space in no longer critical

in sparse representation frameworks. Formally stating the problem, we are provided

with a set of face images from k different classes and the images are vectorized and

stacked as columns in the input matrix X = [X1,X2, ...,XP]. Here, the matrix

Xp = [xp,1,xp,2, ...,xp,Tp] contains the vectorized images from class p.

46

Several models have been proposed for exploiting the structure of X for recog-

nition. An effective model for face recognition is to model samples from a single class

to be lying on a linear subspace. Face images with varying lighting and expression

have been shown to lie in a low-dimensional subspace, referred to as the face subspace.

Given a sufficient number of images in each class, a test sample z from class p will

approximately lie in the linear span of the training samples from the same class.

z =
Tp∑
i=1

ap,ixp,i. (2.40)

However, the underlying class of the test sample is unknown to begin with and hence

we evaluate a linear representation using all images in X. The approximation can

be obtained by picking the nearest neighbors to the test sample and computing the

coefficients by solving a least squares problem. However, it has been found in [96]

that using sparse coding is superior to using nearest neighbor based approaches.

This is because, when there are a large number of samples in each class the resulting

coefficient vector is naturally sparse. In fact, more sparse the coefficient vector a,

easier it is to identify the class membership of z. For the test sample, we compute

the coefficient vector and evaluate the residual error with respect to every class. For

the pth class we compute the residual error as

rp(z) = ‖z−Xδp(a)‖, (2.41)

where δp(a) is a new vector with only non-zero coefficients from a corresponding to

the class p. Finally, the test sample is assigned to the class with the least residual

error.

2.6.3 Using Unlabeled Data in Supervised Learning

Supervised classification in machine learning often require labeled data that are ex-

pensive and difficult to obtain in practice. However, the abundance of unlabelled

data motivates design of frameworks that can exploit this information to perform
47

(a) Semi-supervised learning.

(b) Self-taught transfer learning.

Figure 2.8: Machine learning formalisms to include unlabeled data in supervised
learning. The supervised task is to classify lamps and cameras and the self-taught
learning framework uses randomly chosen unlabeled data.

supervised tasks. Self-taught transfer learning is a recent machine learning formalism

based on sparse coding that provides a principled approach to use unlabeled data.

Though semi-supervised learning allows unlabeled data, it makes an additional as-

sumption that the labels of the data are just unobserved and can be labled with

the same labels as the supervised task. Figure 2.8 illustrates the two formalisms to

include unlabeled data in supervised classification.

Self-taught learning is motivated by the observation that local regions of natu-

ral images demonstrate redundancy. In other words, even random images downloaded

from the Internet will contain elementary features that are similar to those in the im-

ages we want to classify. To formally state the problem, we are provided with a

labeled set of training examples {(x1
l , y

1), (x2
l , y

2), (x3
l , y

3), ..., , (xTl
l , y

Tl)}, where xil

denotes the ith training example and yi is its corresponding label. In addition, we

are provided with a set of unlabeled examples, x1
u,x2

u, ...,xTu
u . No assumptions are

made regarding the underlying distribution of the unlabeled examples. However, it is

assumed that the examples are of the same type as the labeled examples, Eg. images,

audio. The algorithm proposed in [98] uses the raw pixel intensities in {xiu}Tu
i=1 to

learn the elementary features that comprise an image. As a result, it learns to repre-
48

sent images in terms of the features rather than in terms of the raw pixel intensities.

These learned features are used to obtain an abstract or higher level representation

for the labeled data {xil}
Tl
i=1 as well.

The representative features are learned using a modified version of the sparse

coding algorithm proposed by Olshausen and Field, which modeled the processing in

the primary visual cortex of the humans. Given the set of unlabeled data,

min
D,a

∑
i

‖xiu −
∑
j

aijdj‖2
2 + β‖ai‖1 subj. to ‖dj‖2 ≤ 1, ∀j. (2.42)

In other words, the algorithm learns an overcomplete dictionary using the patches

from the unlabeled images. This optimization problem, though not convex jointly, is

convex over the subset of variables D and a = {a1, . . . , aTu}. The optimization over

the coefficients is an `1 regularized least squares problem, while the optimization over

the dictionary is an `2 constrained least squares problem. This iterative optimization

can be performed using the dictionary learning approaches.

In general, it is often easy to obtain large amounts of unlabeled data from the

internet that shares important features with the labeled data of interest. Hence, the

dictionary learned using the unlabeled can generalize well to represent data in the

classification task. For each training input from the classification task, we evaluate

sparse codes with D using error-constrained `1 minimization. Finally, these features

can be used to train standard supervised classifiers such as the SVM.

2.6.4 Generalizing Spatial Pyramids

In complex visual recognition tasks, it is common to extract relevant local or global

image descriptors instead of using the raw image pixels directly. Scene understanding

is typically carried out by building a Bag of Words (BoW) model that collectively

represents the set of local features in an image. However, the spatial information

about the features is ignored when considering the orderless BoW model. The spatial

information can also be exploited by aggregating the features (using histograms)
49

Figure 2.9: Illustration of the process of constructing the spatial pyramid feature
for an image. Local descriptors obtained from the patches in the image are used to
learn the codebook. Using the codebook, we perform vector quantization of the local
descriptors to exploit the redundancy. Finally, we construct the bag of features model
at multiple spatial scales. The resulting spatial pyramid feature is the concatenation
of histograms from all scales.

at multiple spatial scales, and this process is referred to as constructing a spatial

pyramid. Several state-of-the-art object recognition systems involve the construction

of spatial pyramid features to achieve improved recognition performance.

The algorithm proposed in [99] partitions the image into increasingly finer re-

gions and evaluates features in the local regions. Typically, local features such as the

Scale Invariant Feature Transform (SIFT) or the Histogram of Oriented Gradients

(HOG) descriptors are evaluated for small image patches, and the descriptors are

coded using vector quantization. Since the local features demonstrate redundancy

across multiple images, the descriptors can be efficiently coded using codebooks gen-

erated by standard procedures such as the K-means clustering. In a given spatial

scale, all code vectors in each sub-region can be aggregated by building histograms.

As we move from a coarser to a finer spatial scale, the number of sub-regions in-

crease. The aggregated feature provides a trade-off between translation invariance

50

Figure 2.10: Demonstration of linear spatial pyramid matching based on sparse cod-
ing. Note that the vector quantization step in the conventional non-linear SPM is
replaced by sparse coding, and the underlying spatial pooling process is max pooling.

and spatial locality. In the coarsest spatial scale where the whole image is consid-

ered, the max pooling feature achieves translation invariance of the local patterns.

On the other hand, as we proceed towards finer spatial scales, spatial information is

efficiently captured. By concatenating the set of histograms obtained at all spatial

scales, we can construct the spatial pyramid. Figure 2.9 illustrates the steps involved

in the spatial pyramid matching algorithm.

The spatial pyramid feature, when combined with a non-linear classifier, has

been shown to achieve high recognition accuracies. Though, this approach has been

very effective, the complexity of using a non-linear classifier is quite high. Using linear

kernels with histogram features often leads to substantially worse results, partially

51

due to the high quantization error in vector quantization. However, when using non-

linear kernels, the computational cost of computing the kernel (O(T 3)) and storage

requirements (O(T 2)) are quite high, particular for large values of T (total number

of training features) [100]. Furthermore, as the number of support vectors scales to

the number of training samples, testing cost also increases. As a result, there is a

need to employ a different feature extraction mechanism such that the classification

can be efficiently performed using only linear classifiers.

The ScSPM algorithm proposed in [100] addresses this problem by computing

sparse codes of the local image descriptors, and performing non-linear aggregation

(or pooling). Given a pre-defined dictionary D and the set of descriptors X, we

can obtain the sparse codes using any algorithm described earlier in this chapter.

A suitable image feature can be constructed by applying a pre-defined aggregation

function to the coefficient matrix A. In the coefficient matrix, each row corresponds

to the response of all descriptors to a particular dictionary atom. Though a number

of pooling functions can be used, the max pooling function has been found to perform

the best. By performing max pooling on A, we can obtain obtain the feature vector

z ∈ RK as follows

zk = max{|ak,1|, |ak,2|, . . . , |ak,T |}, for k = 1 to K. (2.43)

Here |ak,i| denotes the element in the kth row, ith column of the coefficient matrix,

T and K denote the total number of descriptors in the image and dictionary atoms

respectively. The max pooling process has been commonly employed in mathematical

models for the visual cortex (V1) and empirically justified by many algorithms. Simi-

lar to the construction of the spatial pyramid feature, max pooling is performed across

multiple locations, and different spatial scales of the image. Hence, the aggregated

feature is more robust to local transformations when compared to using histograms.

Figure 2.10 illustrates the steps involved in the ScSPM algorithm. Though the con-
52

ventional spatial pyramid feature leads to very poor performances with a linear kernel,

linear SPM kernel based on sparse coding statistics can achieve high classification ac-

curacy. This behavior can be attributed to the better approximation power of sparse

coding in natural images and the discrimination power of the aggregated spatial pyra-

mid feature. In addition to object recognition, ScSPM features have been used for

SAR target recognition [101], and efficient image retrieval [102].

Supervised Dictionary Optimization

In applications such as face recognition, evaluating sparse representation of a test

sample in terms of its training examples and allowing some error for occlusion, fails

to effectively handle variations such as pose and alignment. As a result, extracting

image-level features that are invariant to global misalignment can result in improved

recognition performance [103]. As described earlier, the ScSPM feature provides a

trade-off between translation invariance and spatial locality. The efficiency of these

features can be improved further by optimizing the dictionary D to obtain ScSPM

features with higher discrimination.

For a training image Xt, we can obtain the coefficient matrix At by performing

sparse coding using a known dictionary D. In order to construct the ScSPM feature,

we perform max pooling of the coefficients in all cells of each spatial scale. We denote

the set-level max pooled feature in the cth spatial cell of the sth spatial scale by zsc.

Assuming that there are R spatial scales, in each scale the image is divided into

2s−1 × 2s−1 non-overlapping cells. The hierarchical ScSPM is feature is constructed

by concatenating all set-level features.

zt = ηmax(At) =
R⋃
s=1

2s−1⋃
c=1

zsc

 . (2.44)

For classification, let us assume a predictive model f(zt,w), a loss function

`(yt, f(zt,w)), where yk denotes the class label and w indicates the predictive model

parameters. The objective function for obtaining the ScSPM features, dictionary, and
53

the predictive model parameters can be expressed as

E(D,w, {Xt}Tt=1) =
T∑
t=1

`(yt, f(zt,w)) + λ‖w‖2
2. (2.45)

This optimization can be performed alternatively with respect to D and w. Give the

dictionary, solving for w is equivalent to training a classifier, and hence any standard

algorithm can be used. However, in order to optimize E over D, we compute the

gradient as
∂E

∂D
=

T∑
t=1

∂`

∂D
=

T∑
t=1

∂`

∂f

∂f

∂zt
∂zt
∂At

∂At

∂D
. (2.46)

This gradient is evaluated using implicit differentiation [103], and finally the dictio-

nary is updated iteratively such that the different classes are separable.

54

Chapter 3

CHARACTERISTICS AND IMPLEMENTATION OF 1-D SUBSPACE

CLUSTERING

The K-lines clustering algorithm is an iterative procedure that performs a least

squares fit of K 1-D subspaces to the training data [23, 35]. When contrasted with

K-means clustering, it allows each data sample to have an arbitrary coefficient value

corresponding to the associated cluster centroid and the cluster centroids are normal-

ized to unit `2 norm.

3.1 The K-lines Clustering Algorithm

Let us assume that the data Y lies in RM and define the probability space (Y ,Σ, P),

where P is an unknown probability measure. The training samples, {yi}Ti=1, are T

i.i.d. realizations from the probability space. We also define an empirical probability

measure PT that assigns the mass T−1 to each of the T training samples [104]. The

goal of the clustering is to find K partitions of the training data that results in

minimum total distortion.

The K-lines clustering algorithm is similar to the K-means algorithm and

it is an alternating minimization problem that proceeds in two stages after ini-

tialization: the cluster assignment and the cluster centroid update stages. In the

cluster assignment stage, the training vector yi is assigned to a cluster j based on

the minimum distortion criteria, H(yi) = argminj d(yi,ψj), which is equivalent to

H(yi) = argmaxj |yTi ψj|. Here, H(.) is the membership function that returns the

cluster index of a training vector and the distortion measure is

d(y,ψ) = ‖y−ψ(yTψ)‖2
2, (3.1)

where ψ is assumed to be normalized. The set Cj = {i|H(yi) = j} contains training

vector indices corresponding to the cluster j. Ties in the cluster assignment stage are

55

broken arbitrarily. Based on the cluster assignment, the updated cluster centroids

can be obtained as described in Section 3.1.1.

3.1.1 Computation of Cluster Centroids

Given the set Cj, the jth cluster centroid is updated as ψj = argminψ

EPT
[d(y,ψ)|H(y) = j]. This can also be expressed using the following equation.

ψj = argmin
ψ

∑
i∈Cj

‖yi −ψ(yTi ψ)‖2
2. (3.2)

Consider the matrix Yj = [yi]i∈Cj
and the Singular Value Decomposition (SVD)

of Yj = UjΥjVT
j , where Υj is a diagonal matrix with singular values arranged

in descending order. The solution to (3.2) is obtained by taking ψj as the first

column of Uj. Note that the K-lines clustering is not a Bregman divergence based

clustering scheme since the centroid is not the conditional expectation of the training

vectors [105].

Let us assume a generative model for the training vectors {yi}i∈Cj
in cluster

j as, yi = ajiψj + ni, where ni are i.i.d. realizations from N (0, σ2I) and aji are

arbitrary coefficients. For this model, the Maximum Likelihood (ML) estimate of the

cluster centroid ψj is obtained using SVD as described earlier and aji = yTi ψj. If

we constrain aji = 1, the ML estimate of ψj is the mean of {yi}i∈Cj
, which is similar

to the case of K-means clustering. This illustrates an important difference between

K-means and K-lines clustering, as the latter is invariant to arbitrary scaling of the

underlying representative pattern. This also motivates the use of SVD based learning

algorithms such as the ones proposed in [83] and [106], for sparse representations.

56

3.1.2 Distortion Function for Clustering

Mathematically, the K-lines clustering is a problem of finding normalized centroids

that minimize the total distortion,

D(H) = 1
T

K∑
j=1

∑
i∈Cj

d(yi,ψj),

= 1
T

K∑
j=1

∑
i∈Cj

yTi
(
I−ψjψ

T
j

)
yi. (3.3)

Note that since ‖ψj‖2 = 1, ψjψ
T
j has only one non-zero eigen value which is 1. Hence(

I−ψjψ
T
j

)
is positive semi-definite and yTi

(
I−ψjψ

T
j

)
yi is a positive semidefinite

quadratic form. Therefore, d(y,ψ) is convex in y. If we denote ∠(., .) as the smallest

angle between two vectors and ‖ψ‖2 = 1, then

d(y,ψ) = ‖y‖2
2 sin2(∠(y,ψ)). (3.4)

K-lines clustering can be posed as a problem of empirical risk minimization

over the distortion function class [107]

GK =
{
gΨ(y) = d(y,ψj), j = argmax

l∈{1,··· ,K}
|yTψl|

}
, (3.5)

where Ψ = {ψj}Kj=1. The class GK is obtained by taking functions corresponding to

all possible combinations of K lines from the RM space for the set Ψ. Minimizing

the distortion for the training samples {yi}Ti=1 is equivalent to finding

gΨ̂ = argmin
g∈GK

1
T

T∑
i=1

gΨ(yi). (3.6)

This is the same as finding the function g corresponding to minimum expected risk

of learning (i.e.), gΨ̂ = argming∈GK
EPT

[gΨ], for the probability measure PT [108].

3.1.3 Covering Number for the Distortion Function Class

Similar to [26], we will show that the covering number for the function class GK with

respect to the supremum norm, N∞(ε,GK), is polynomial.
57

Figure 3.1: Illustration of the geometry for finding the covering number of GK with
respect to the supremum norm.

Lemma 3.1.1 For the data lying in an M-dimensional `2 ball of radius R centered

at the origin, the covering number for the distortion function class GK, with respect

to the supremum norm, is upper bounded for ε > 0 as

N∞(ε,GK) ≤
(

8R3K + ε

ε

)MK

.

Proof Let us assume that the radius of the `2 ball R > 1, without loss of generality.

This is required to cover the cluster centroids (Ψ = {ψj}Kj=1) which are normalized

to lie on the surface of the unit ball. In case of R ≤ 1, we can renormalize the cluster

centroids to a norm less than R and the clustering performance will be unaffected.

Let Q be the number of `2 balls with radius δ that cover the ball of radius R.

We know that

Q =
(

4R + δ

δ

)M
, (3.7)

inM dimensions [104]. The centers of the δ−balls are given by the set Ω = {ω1,ω2, ...,ωQ}.

To find the upper bound on N∞(ε,GK), we will successively move each cluster centroid

ψj to the center of the nearest δ−ball denoted by ωij , such that ‖ψj − ωij‖2 ≤ δ.

The cluster centroid that replaces ψj is given by ω̃ij = ωij/‖ωij‖2.

For the case of j = 1, let us assume ∠(ω̃i1 ,ψ1) = θ and ∠(y,ψ1) = α,

where y is any data vector. This setup is illustrated in Figure 3.1. Assuming that
58

‖ψj − ω̃ij‖2 ≤ lδ, and using the fact that any line segment contained in a δ−ball has

a length less than 2δ, we have 0 ≤ l ≤ 2. The updated set of centroids for j = 1 is

given by Ψ1 = {ω̃i1 ,ψ2, · · · ,ψK} and this is obtained by replacing ψ1 with ω̃i1 .

The supremum of |gΨ − gΨ1 | can occur only when ‖y‖2 = R and when y, ψ1

and ω̃i1 are co-planar. For a particular θ, using (3.4), the supremum can be bounded

as

‖gΨ − gΨ1‖∞ ≤ max
α

[
R2 sin2 α−R2 sin2(α− θ)

]
,

= R2 sin θ, (3.8)

and this is obtained when α = π/4 + θ/2. We also know from Figure 3.1 that

sin θ/2 = lδ/2 and hence,

‖gΨ − gΨ1‖∞ ≤ R2lδ
√

(1− l2δ2/4),

≤ R2lδ. (3.9)

Performing this operation for all the K centroids, we obtain,

‖gΨ − gΨK
‖∞ ≤ R2Klδ. (3.10)

From (3.10), we obtain ε = R2Klδ and hence δ = ε/KlR2. There are at most

QK combinations of cluster centroids that cover gΨ within an L∞ distance, ε. Hence

the upper bound on N∞(ε,GK) is obtained by substituting for δ in QK and replacing

l with its upper bound value.

It can be observed from Lemma 3.1.1 that the covering number grows poly-

nomially. Hence, the class of functions GK is uniform Donsker [26]. Being uniform

Donsker, the empirical average of functions g ∈ GK uniformly converge to their ex-

pected value EP [g] as T →∞, with respect to the measure P [108].

59

3.1.4 Voronoi Tessellation by K lines

The Voronoi regions obtained from a set of points in RM with respect to the Euclidean

distance measure are convex, whereas a Voronoi construction obtained from a set of

lines is not convex in general [109]. However, we will show that for any set of K lines,

convex Voronoi regions are obtained with respect to the distortion measure defined

in (3.1). This implies that the K centroids tessellate the space into convex Voronoi

regions.

Lemma 3.1.2 Let {ψj}Kj=1 represent a set of K lines in the RM space. With respect

to the distortion measure defined in (3.1), the set of K lines tessellate the RM space

into 2K convex Voronoi regions.

Proof To show this, we prove that the K lines form 2K convex polytopes that

tessellate the RM space. Assume that the lines are of unit norm and they are indexed

by the set K = {1, 2, ..., K}, using the index variable j ∈ K. The index of the closest

line to each vector y ∈ RM is given by H(y) = argmaxj |yTψj|. The region for

the line ψj contains the vectors given by the set Rj = {y | H(y) = j}. We form an

extended set of 2K unit vectors {+ψj,−ψj}Kj=1 and define ω2j−1 = +ψj,ω2j = −ψj.

The set Ω = {ωl}2K
l=1 and its elements are indexed by the set K̂ = {1, 2, ..., 2K}, using

the index variable l ∈ K̂. For any vector y in RM , we can find the closest vector

in Ω using Ĥ(y) = argmaxl 〈y,ωl〉. The region for ωl contains the vectors given by

R̂l = {y | Ĥ(y) = l}. Note that R̂2j−1 contains the negative of the vectors in R̂2j

and Rj = R̂2j−1∪R̂2j, for j ∈ K. The union of all the regions ⋃2K
l=1 R̂l contains all the

vectors in RM , if we break the ties when computing Ĥ(y) based on the magnitude

of the region index l. Hence we prove that the set of K lines tessellate the RM space

into 2K regions.

60

Figure 3.2: Tessellation of the 2-D space by the lines ψ1 and ψ2 into four convex
Voronoi regions.

To prove that the regions R̂l are convex, we consider the boundary that sepa-

rates the two adjacent regions R̂l and R̂m, yl,m = {y | yTωl = yTωm}. The boundary

is an M − 1 dimensional subspace that partitions the RM space into two halfspaces.

Similarly, we can find a boundary subspace for each of the adjacent regions of R̂l.

Therefore the region R̂l is a polytope formed by the intersection of halfspaces defined

by the boundary subspaces and hence convex. Because of our tie-breaking condition

some regions may contain the boundary subspaces as well, but the regions will be

still convex.

The Voronoi tessellation of 2 lines, ψ1 and ψ2, of a 2-dimensional space is

illustrated in Figure 3.2. The boundary hyperplanes (shown by dotted lines) rep-

resented by yTψ1 = yTψ2 and yTψ1 = −yTψ2 separate the space into 4 convex

regions.

3.2 Local Optimality

We show the optimality of the clustering algorithm using the Lloyd’s optimality

conditions. The optimality is also ensured by showing that K-lines clustering is a

special case of the general dictionary learning problem for sparse representations

61

using an EM formulation. The K-lines clustering algorithm is optimal with respect

to the probability measure PT defined in Section 3.1. This can also be shown using

the Lloyd’s optimality conditions [110], as learning the cluster centroids is similar to

learning a shape-gain vector quantizer with unquantized gain values. Note that the

Lloyd’s conditions used here are the conditions for optimality of a shape quantizer.

However, we can use it for our clustering scheme as we do not quantize the gains and

given the shape ψ, the gain a = yTψ is uniquely defined. Any vector quantizer is

locally optimal, if it satisfies the following conditions:

1. Nearest Neighbor Condition: The clustering satisfies the nearest neighbor con-

dition, as each vector in the RM space is assigned to the nearest cluster centroid

using the distance metric given in (3.1).

2. Centroid Condition: The T training vectors lie in a probability space with the

probability measure PT . The centroid update stage in the clustering algorithm

computes the centroid ψj = argminψ EPT
[d(y,ψ)|H(y) = j], as given in Section

3.1.1. This satisfies one of the sufficient conditions for optimality.

3. Zero Probability on Boundary Condition: This condition is satisfied for the K-

lines clustering algorithm with a tie-breaking scheme. In this case, the algorithm

never assigns any training vector to more than one cluster centroid and hence

the probability of finding a training vector in the cluster boundary is always

zero.

Since the K-lines algorithm satisfies the sufficient conditions for optimality, it is locally

optimal [110].

3.3 Stability

It was shown in Section 3.1.3 that the distortion function of K-lines clustering be-

longs to the uniform Donsker class. Therefore, assuming the existence of a unique
62

minimizer, the distortion functions corresponding to two different clusterings Ψ and

Λ become arbitrarily close, ‖gΨ − gΛ‖L1(P)
P−→ 0, as the number of training samples

T → ∞. Here we assume that the clusterings are trained with different sets of i.i.d.

training samples drawn from the probability space (Y ,Σ, P). If a unique minimizer

does not exist, then the distortion function is stable with respect to a change in

o(
√
T) points [26]. We will follow a line of reasoning similar to [26] in showing that

the cluster centroids are also stable, given that the distortion functions are stable.

The distortion function gΨ can also be expressed as

gΨ(y) =
K∑
j=1

d(y,ψj) I
(
y closest to ψj

)
, (3.11)

where I is the indicator function. Let us denote the two cluster centroids as Ψ =

{ψ1, ...,ψK} and Λ = {λ1, ...,λK} and define the distance between the cluster cen-

troids [26] as

∆(Ψ,Λ) = max
1≤j≤K

min
1≤l≤K

[
(d(ψj,λl))1/2 + (d(ψl,λj))1/2

]
. (3.12)

Theorem 3.3.1 If the L1 distance between the distortion functions for the clusterings

Ψ and Λ is bounded as ‖gΨ − gΛ‖L1(P) < ε and dP (y)/dy > C, then ∆(Ψ,Λ) ≤

2 sin(ρ) where

ρ ≤ 2 sin−1

1
r

(
ε

ĈC,M

) 1
M+1

 , (3.13)

when the training data lies outside an M-dimensional `2 ball of radius r centered at

the origin. Here ε > 0 and the constant ĈC,M depends only on C and M .

Proof The distance between the cluster centroids given in (5.14) can be bounded as

Lambda∆(Ψ,Λ) ≤ 2 max
[

max
1≤j≤K

min
1≤l≤K

(d(ψj ,λl))1/2, max
1≤j≤K

min
1≤l≤K

(d(ψl,λj))1/2
]
.

Without loss of generality, we assume that the maximum occurs at (ψ1,λ1)

and hence we have ∆(Ψ,Λ) ≤ 2(d(ψ1,λ1))1/2. Denoting ∠(ψ1,λ1) = ρ, we have
63

∆(Ψ,Λ) ≤ 2 sin(ρ), using (3.4). Let us define a region S(ψ1, ρ/2) = {y|∠(ψ1,y1) ≤

ρ/2, ‖y‖2 ≥ r}. If y ∈ S(ψ1, ρ/2), then yT
(
I−ψ1ψ

T
1

)
y ≤ yT

(
I− λ1λ

T
1

)
y. An

illustration of this setup for a two dimensional case is given in Figure 3.3. It can

be seen from the figure that ∠(q1,ψ1) = ∠(q2,ψ1) = ∠(q2,λ1) = ρ/2. The arc

q̂1q̂2 with radius r, represents the minimum `2 norm possible for the data y. We

also define the following: r̂ = r sin(ρ/2), r̄ = r cos(ρ/2), S̄(ψ1, ρ/2) = {y|∠(ψ1,y) ≤

ρ/2, ‖y‖2 = r} (shown as the arc q̂1q̂2 in Figure 3.3) and Ŝ(ψ1, ρ/2) = {y|yTψ1 =

r̄, ‖y‖2 ≤ r} (shown as the segment q̂1q̂2). For any y ∈ Y ,

yT
(
I−ψ1ψ

T
1

)
y ≥

K∑
j=1

yT
(
I−ψjψ

T
j

)
y I

(
y closest to ψj

)
(3.14)

The distance between the distortion functions is

‖gΨ − gΛ‖L1(P) =
∫
|gΨ(y)− gΛ(y)|dP (y), (3.15)

≥
∫
S(ψ1,ρ/2)

|gΨ(y)− gΛ(y)|dP (y), (3.16)

=
∫
S(ψ1,ρ/2)

[
yT
(
I− λ1λ

T
1

)
y

−
K∑
j=1

yT
(
I−ψjψ

T
j

)
y I

(
y closest to ψj

)]
dP (y), (3.17)

≥
∫
S(ψ1,ρ/2)

[
yT
(
I− λ1λ

T
1

)
y− yT

(
I−ψ1ψ

T
1

)
y
]
dP (y), (3.18)

≥ C
∫
S̄(ψ1,ρ/2)

[
ȳT
(
I− λ1λ

T
1

)
ȳ− ȳT

(
I−ψ1ψ

T
1

)
ȳ
]
dȳ, (3.19)

≥ C
∫
Ŝ(ψ1,ρ/2)

[
ŷT
(
I− λ1λ

T
1

)
ŷ− ŷT

(
I−ψ1ψ

T
1

)
ŷ
]
dŷ, (3.20)

≥ C
∫
Ŝ(ψ1,ρ/2)

[
r2 sin2 ρ/2− ŷT

(
I−ψ1ψ

T
1

)
ŷ
]
dŷ. (3.21)

Here, C < dP (y)/dy for y ∈ S(ψ1, ρ/2). (3.19) and (3.20) hold because ȳ ∈

S̄(ψ1, ρ/2), ŷ ∈ Ŝ(ψ1, ρ/2) and hence ‖ȳ‖2 ≤ ‖y‖2, ‖ŷ‖2 ≤ ‖ȳ‖2. Assuming

β = ∠(y,ψ1), the distortion ŷT
(
I−ψ1ψ

T
1

)
ŷ = r̄2 tan2 β. Denoting γ = r̄ tan β, the

differential element for the region Ŝ(ψ1, ρ/2) is given by dŷ = (M−1)F(M−1)γ
(M−2)dγ.

64

Figure 3.3: Illustration used to show the stability of the cluster centroid from the
stability of the distortion function.

This is because dŷ is the differential volume element of a (M−1)−sphere, whose vol-

ume is given by F(M−1)γ
(M−1) for radius γ [111]. Here F(M) = πM/2/Γ(M/2 + 1), Γ(.)

being the gamma function. Now (3.21) can be expressed as

C
∫ r sin ρ/2

0

[
r2 sin2 ρ/2− γ2

]
(M − 1)F(M−1)γ

(M−2)dγ, (3.22)

= ĈC,Mr
M+1 sinM+1(ρ/2) ≤ ε, (3.23)

where ĈC,M = 2CF(M−1)/(M + 1). Hence the angle, ρ, between ψ1 and λ1 can be

bounded as given in (5.15). The bound on angle ρ exists only when r > (ε/Ĉ)1/(M+1).

From Theorem 5.4.1, it can be observed that for admissible values of r, the

cluster centroids become arbitrarily close to each other, ∆(Ψ,Λ) P−→ 0, as ε → 0.

This means that the stability of distortion functions implies the stability of cluster

centroids. The K-lines clustering cannot be stable if some training vectors have a

norm close enough to 0, (i.e.) r → 0 . This occurs because the cluster centroids,

which are 1-dimensional subspaces, become arbitrarily close to each other near the

origin.

3.4 Relationship to Dictionary Learning

We formulate the problem of dictionary learning from a set of training observations

using an EM procedure [112]. By placing appropriate constraints, we then show that
65

the K-lines clustering algorithm is a special case of this process. This also shows that

the K-lines clustering algorithm converges to a locally optimal solution. We note here

that a similar formulation for learning orthonormal dictionaries has been proposed

in [113], although our formulation is more general.

The probabilistic source model for the EM formulation is assumed to be, ỹ =

Ψã + ñ, and the T independent realizations from the random vector are given by

Y = [yi]Ti=1. The random vector ñ ∼ N (0, σ2IM), where σ2 is the noise variance and

IM is an identity matrix of size M ×M . The dictionary is denoted by the matrix

Ψ =
[
ψj

]K
j=1

. The observation matrix Y and σ2 are assumed to be known. A sparsity

prior is placed on each coefficient vector ai. The only parameter to be estimated by

the EM algorithm is Ψ and the parameter set Θ = {Ψ}. The likelihood for yi at the

iteration l of the EM algorithm is given by

p(yi|ai,Θ(l)) = N (Ψ(l)ai, σ2IM). (3.24)

The posterior probability of the coefficient vector for the current iteration is computed

as

p
(
ai|yi,Θ(l)

)
=
p
(
ai,yi|Θ(l)

)
p
(
yi|Θ(l)

) =
p (ai) p

(
yi|ai,Θ(l)

)
∫
ai
p
(
yi, ai|Θ(l)

)
dai

. (3.25)

The expectation that needs to be maximized to find the parameters Θ for the next

iteration l + 1 is given by

Q(Θ|Θ(l)) = Ep({ai}T
i=1|{yi}T

i=1,Θ
(l))
[
log p

(
{yi}Ti=1, {ai}Ti=1|Θ

)]
. (3.26)

By independence assumptions we know that

log p
(
{yi}Ti=1, {ai}Ti=1|Θ

)
=

T∑
i=1

log p (yi, ai|Θ) , (3.27)

p
(
{ai}Ti=1|{yi}Ti=1,Θ(l)

)
=

T∏
i=1

p
(
ai|yi,Θ(l)

)
. (3.28)

66

From (3.26), (3.27) and (3.28) we have

Q(Θ|Θ(l)) =
T∑
i=1

∫
ai

log p (yi, ai|Θ) p
(
ai|yi,Θ(l)

)
dai,

=
T∑
i=1

∫
ai

[
logN

(
yi|Ψai, σ2

)
+ log p(ai)

]
p
(
ai|yi,Θ(l)

)
dai.

The dictionary is updated in the M-step as

Ψ(l+1) = argmax
Ψ

Q(Θ|Θ(l)),

= argmin
Ψ

T∑
i=1

∫
ai

[
‖yi −Ψai‖2

2 − log p(ai)
]
p
(
ai|yi,Θ(l)

)
dai.

This is the general solution to a dictionary learning problem. In order to obtain the

K-lines learning as a special case of this dictionary learning problem, we constrain the

posterior density p(ai|yi,Θ(l)), such that the coefficient vector is 1-sparse. Assuming

that p(ai) is the same for all i and noting that

p
(
ai|yi,Θ(l)

)
∝ p

(
yi|ai,Θ(l)

)
, (3.29)

we obtain best the 1-sparse vector by finding

âi = argmax
ai

p
(
yi|ai,Θ(l)

)
s.t. ‖ai‖0 = 1. (3.30)

Using âi, the posterior in (3.25) is constrained as

p
(
ai|yi,Θ(l)

)
=

1, if ai = âi,

0, if ai 6= âi.
(3.31)

We define the membership sets C(l)
j = {i|âji 6= 0} for each dictionary atom ψj, where

âji is the jth element of the vector âi. The dictionary can be updated in the M-step

as follows.

Ψ(l+1) = argmin
Ψ

T∑
i=1

(
‖yi −Ψâi‖2

2 − log p(âi)
)
. (3.32)

67

This can be decoupled for learning each cluster centroid (dictionary atom) as

ψ
(l+1)
j = argmin

ψj

∑
i∈C(l)

j

‖yi −ψj âji‖2
2, (3.33)

and this equation represents the centroid update stage in the K-lines clustering prob-

lem. Because the EM algorithm always converges to a locally optimal solution, K-lines

clustering is also locally optimal.

3.5 Efficient Implementation using Random Projections

The very high spatial and temporal dimensionality of the video data makes l2 norm

based clustering intractable in the absence of tremendous computational power. There-

fore, it becomes essential to reduce the dimensionality of the video data in order to

perform clustering with low complexity. This problem is highly significant in scenarios

where fast summarization of video needs to be performed at a reduced computational

cost. In this chapter, we propose a framework for dimensionality reduction to cluster

video frames having similar background structure. The framework is based on non-

adaptive dimensionality reduction using the theory of random projections [114] and

assumption of Gaussian mixture (GM) models for data.

3.5.1 Random Projections

Consider a high dimensional data matrix, X, with dimensions M × T , where each

column represents a single data observation. In order to project this onto a random

low dimensional space, we define a matrix R of dimensionsM×N withN < M , whose

entries are chosen independently from the standard normal distribution N (0, 1). The

Random Projection (RP) of the data vectors is,

Y = 1√
N

RTX. (3.34)

RP reduces the dimensionality of the data fromM to N while approximately preserv-

ing pair-wise distances with high probability [114]. This is formalized by the Johnson-

Lindenstrauss (JL) lemma, which states that for a large enough N (N ≥ C lnT
ε2

) (3.35)
68

holds with high probability.

(1− ε) ‖yi‖2 ≤ 1
N
‖RTxi‖2 ≤ (1 + ε) ‖yi‖2, (3.35)

where yi and xi represent the columns of the matrices Y and X respectively and

0 < ε < 1. It is important to note that the JL lemma does not depend on the actual

dimensionality of the data and depends only on the number of data vectors. The K-

means clustering defines the cluster centroid as the mean of data vectors in a cluster.

It is easy to observe from JL lemma that the distances between the cluster centroid

and the data vectors will be approximately preserved even after random projections.

Hence we can use the JL lemma to reduce the dimensionality of the data matrix for

use in K-means clustering.

3.5.2 Computation of SVD using Random Projections

The computation of SVD can also be performed using the reduced dimensional ma-

trix from random projections [114]. It can be shown that for the same low rank

approximations of Y and X, the Frobenius norms will be approximately preserved

with high probability. This can be mathematically expressed as,
s∑
i=1

λ2
i ≥ (1− ε)

s∑
i=1

σ2
i , (3.36)

where λi and σi are the singular values of Y and X respectively and s is the desired

rank of the approximation [114]. In particular, considering a rank-1 approximation,

it can be shown that, with high probability [114,115]

(1− ε)σ2
1 ≤ λ2

1 ≤ σ2
1. (3.37)

The existence of such upper and lower bounds motivates the use of K-lines clustering

on Y instead of X.

3.5.3 Gaussian Mixture Models for Clustering

Statistical clustering algorithms assume that the data is a realization from a mixture

of probability distributions. In the case of mixture of K arbitrary distributions, the
69

overall probability density is given by,

f =
K∑
i=1

wifi s.t. wi ≥ 0 and
K∑
i=1

wi = 1, (3.38)

where fi is the probability distribution function (pdf) and wi is the non-negative

weight of the ith distribution.

The best SVD subspace for a spherical Gaussian distribution is any subspace

through its mean [116]. More importantly, the best K-dimensional SVD subspace for

a mixture of K Gaussians whose covariance is a scalar multiple of identity, contains

the span of the means of the component distributions. This can also be extended to

a mixture of arbitrary distributions. In general, we do not have the exact statistics

of a GM and we have only the samples of realizations. The covariance matrix is also

not a scalar multiple of identity. Even under these conditions, it has been proved

that the SVD subspace of the sample matrix is not far from the subspace spanned by

the actual component means [116].

Two spherical Gaussians N (µ1, σ
2
1I) and N (µ2, σ

2
2I) are considered to be c-

separated if ‖µ1−µ2‖2
2 ≥ c2M max(σ2

1, σ
2
2), whereM is the dimension of the Gaussian

[115]. A 2-separated mixture corresponds to almost completely separated Gaussians,

whereas a 1- or 1/2-separated mixture contains Gaussians which overlap significantly.

By projecting the Gaussian mixtures on to a K-dimensional subspace spanned by the

means of K Gaussians, we are equivalently projecting the Gaussian mixtures onto

their best rank-K SVD subspace. This preserves the distance between the means

(intercluster distance), whereas the intracluster distance reduces drastically [116].

Therefore, the separation between the Gaussians in the mixture increases and the

clustering performance improves. Similar results can also be shown for mixtures of

Gaussians with arbitrary covariances [116].

70

3.5.4 Application: Video Clustering

Clustering of video frames is more than just a generalization of clustering of images.

This is because the video frames that convey meaning as a group are both statistically

and semantically related. One of the popular approaches to video clustering involves

extracting the keyframes by shot boundary detection and clustering the keyframes

together to derive a semantic interpretation [117]. However, it is important to un-

derstand that extraction of the keyframes by detecting the shot boundaries itself is

a fundamental clustering problem which we address in this chapter. Video frames of

a single shot have similar background structure and they can be clustered together

using color histograms or distance measures.

Using the fact that the video frames that have similar backgrounds are close

together in terms of the Euclidean distance measure (l2 norm), we perform distance

based clustering. It is important to clarify the notion of background in this prob-

lem. Background is the region in a frame that remains relatively motionless. Even if

some objects in the foreground are relatively motionless they can be treated as back-

ground. We use both the K-means and the K-lines clustering algorithms for clustering

the video data. We consider four different approaches: a) basic K-means/K-lines clus-

tering on the high dimensional data, b) reducing the dimensions of the data using

random projections prior to clustering, c) reducing the dimensions of the data assum-

ing it as a mixture of Gaussians prior to clustering and d) reducing the dimensions,

first using RP and then under the mixture of Gaussians assumption, prior to clus-

tering. Both centroid and left singular vector of a group of video frames retrieve the

background information effectively. This motivates the use of both K-means/K-lines

clustering in the proposed approaches. We will assume that we have K clusters of

the T video frames and we vectorize each video frame into a M dimensional vector

thereby generating theM×T matrix X. The K index sets of the clusters are given by

71

{Λi}Ki=1 and Ti = |Λi|. In the remaining part of this section, we describe the different

approaches for clustering.

The RP method can be used to reduce the dimensionality of the data matrix

X according to (3.34), preserving the length of the data vectors, pairwise distances

and angles with high probability. We have also seen in Section 3.5.1 that the centroid

and SVD of a set of data vectors are approximately preserved with a high probability,

given a sufficiently large number of measurements N .

Assuming that K = 1, the centroid and the first singular vector of Y are

approximately equal to that of X for a sufficiently large N . If K > 1, the centroid

and first singular vector of each cluster will still be approximately preserved because

Ti < T . Therefore, the RP method will be useful regardless of the number of clusters,

provided we choose N based on the assumption of single cluster. The linear increase

in the number of data vectors T will not change N significantly because N ∝ lnT .

Therefore, in order to perform RP based clustering, we use either the K-means or the

K-lines clustering algorithm on the reduced dimensional data.

We know from Section 3.5.3 that the rank-K SVD subspace of the sample

matrix is not far from the space spanned by the K component means even when

the Gaussians are not spherical. In this approach for clustering, we assume that X

contains realizations from a mixture of K Gaussians, not necessarily spherical, where

each Gaussian represents a cluster. We compute the best rank-K subspace of X

using SVD and denote the basis vectors of the rank-K subspace (first K left singular

vectors of X) by UK . The projection to the rank-K subspace is given by,

W = UT
KX, (3.39)

where W contains the K dimensional data vectors after projection. Because of the

reasoning provided in Section 3.5.3, the clusters in the K dimensional space are more

separated than the clusters in the M dimensional space. Therefore, we perform K-
72

Table 3.1: Algorithm to cluster video data and identify keyframes.

Goal: To perform clustering of high-dimensional long video sequences using
the approach given in Section 3.5.4

Variables
High-dimensional data matrix, X of size M × T .
Intermediate data matrix after RP, Y of size N × T .
Final data matrix used for clustering, Z of size K × T .
Initial number of clusters, J .
Actual number of clusters, K.
Cluster centroid matrix (J Clusters), B of size K × J .
Cluster centroid matrix (K Clusters), A of size K ×K.
Index set for the ith cluster, Λi.
Gaussian i.i.d. random matrix, R of size M ×N .

Algorithm
1. Compute the RP, Y = (1/

√
N)RTX.

2. Compute rank-K SVD, [UK ,SK ,VK] = SVD(Y, K) .
3. Project on to the K-dimensional SVD space, Z = UT

KY.
4. Initialize B with J randomly chosen columns of Z.
5. Perform K-means/K-lines clustering for J clusters.
6. Using greedy combinations of columns of B, create A.
7. Perform K-means/K-lines clustering for K clusters using A as initial
centroids.
8. Using the index sets Λi obtained from clustering, identify the keyframes.

means or K-lines clustering on W and identify the index sets of the clusters. Similar

to the previous case, in this approach we assume X to be a set of T realizations of K

Gaussians. Furthermore, as RP approximately preserves the pairwise distances of the

samples, realizations from a mixture of K Gaussians in M dimensions preserve their

structure in N dimensions. This fact is used to further reduce the computational

complexity of the framework.

In this approach, we first project X to obtain Y according to (3.34). The

elements of Y are treated as realizations of a mixture of K Gaussians in N dimen-

sions. From the arguments in Section 3.5.3, we project Y onto a K dimensional SVD

subspace to obtain Z. K-means or K-lines clustering can be performed on Z to iden-

73

Figure 3.4: Keyframes obtained by clustering the test data using the algorithm in
Table 3.1.

tify the index sets of the clusters. Note that in this case, we first perform an initial

level of dimensionality reduction using RP, which aids in a faster computation of the

SVD subspace. In the second stage, we reduce the dimensionality further using the

GM assumption. Hence, this approach combines the advantages of both the previous

approaches in terms of a much reduced computational complexity due to RP and

improved clustering performance along with further reduction in computational com-

plexity due to the assumption of Gaussian mixtures. The outline of the algorithm to

perform video clustering and identify the keyframes is shown in Table 3.1.

To improve the clustering performance, we adopt a two stage approach to

clustering. This reduces the possibility of the clustering algorithm being stuck in a

local minima. Initially, we solve the clustering problem for a number of clusters J

that is larger than the actual number K. Then, we greedily combine the columns of

the cluster centroid matrix B in order to obtain the matrix A (step 6 of Table 3.1).

In this greedy combination method we first choose the two most similar vectors of B

and combine them. We repeat this procedure for two columns at a time until we are

left with only K columns. In the K-means method two most similar vectors are the

ones that have the minimum pairwise Euclidean distance and the combined vector

is the mean of the two. In K-lines clustering two most similar vectors are the ones
74

that have the maximum correlation and the combined vector is principal left singular

vector of the matrix of the two vectors.

3.5.5 Simulation Results

The video sequences in QCIF format, used for evaluating the performance of the

algorithms, were obtained from [118] and the spatial resolution was changed to 128×

128. The first test data set was generated by stitching 10 different video sequences

and it contains 1900 frames in total. The second test data set has a total of 550

frames obtained from 3 different video sequences.The initial number of clusters J is

set to 3 times the actual number of clusters K. For the first data set K = 10 and for

the second data set K = 3. The keyframes are identified using all the four approaches

for both K-means and K-lines clustering. The keyframes obtained for the first data

set are shown in Figure 3.4. The keyframes identified are similar with the all the four

approaches and we also obtain 100% clustering performance.

The running times for the different approaches in MATLAB (version R2007b)

to cluster the test data are listed in Table 3.2. It can be seen that the approach

based on RP and GM is of least computational complexity. The running time for

the K-means and the K-lines clustering algorithm are close to each other except for

the case of the basic approach, which however is not the choice when clustering high

dimensional data.

3.6 Kernel K-lines Clustering

3.6.1 Linear Iterative Procedure for K-lines Clustering

Since direct computation of SVDs in feature space is computationally expensive and

sometimes not even possible, we will provide a solution for cluster update using an

iterative procedure which does not require computation of SVDs. For a cluster k,

we will compute the set of non-zero coefficients {ank}, where n ∈ Ck, and the cluster

center ψk in an alternating manner. In the first step, we fix ψk and compute {ank}

75

Table 3.2: Comparison of running time for the different clustering approaches in
MATLAB. The results for the first and the second data sets are separated by a slash
(/). The third approach could not run for the first data set owing to memory issues
because of high dimensionality.

Running time(s) Number of
Approach K-means K-lines Dimensions

Basic 696.51/37.69 774.23/102.22 16384/16384
RP 33.87/7.59 32.17/10.15 400/400
GM -/10.18 -/10.30 10/3

RP and GM 29.41/7.36 26.84/7.45 10/3

as its least squares estimate, ank = yTnψk,∀n ∈ Ck. Incorporating the constraint

‖ψk‖2 = 1 and assuming {ank} to be known, in the second step, we compute

ψk =
∑
n∈Ck

ankyn/

∥∥∥∥∥∥
∑
n∈Ck

ankyn

∥∥∥∥∥∥
2

. (3.40)

This is equivalent to computing the normalized weighted mean of data samples in a

cluster. Repeating these two steps for a sufficient number of iterations will result in

a good estimate for ψk and ank.

Membership Set Update

The optimization problem to compute the coefficients, membership sets, and cluster

centers is expressed as

{Ψ, {Ck}, {ank}} = argmin
Ψ,{Ck},{ank}

K∑
k=1

∑
n∈Ck

‖yn − ankψk‖2
2

subject to ‖ψk‖2
2 = 1, ∀k, (3.41)

where {Ck} denotes the collection of membership sets, and {ank} indicates the col-

lection of non-zero coefficients. In order to estimate the cluster membership sets, we

note that ‖ψk‖2
2 = 1 and expand

‖yn − ankψk‖2
2 = yTnyn + a2

nk − ankyTnψk. (3.42)

76

Substituting this in (3.41) and neglecting yTnyn, since it does not affect the compu-

tation of the collection of membership sets {Ck}, where k = {1, . . . , K}, we obtain

{Ck} = argmax
{Ck}

K∑
k=1

∑
n∈Ck

(yTnψk)2, (3.43)

where the cluster centers Ψ are fixed and using the least squares estimates for the

coefficients {ank}, where n ∈ Ck, is used. Eqn. (3.43) can be recast according to

Lemma 3.6.1.

Lemma 3.6.1 In K-hyperline clustering, when the cluster centers are fixed, comput-

ing the collection of membership sets using (3.43) can be rewritten as

{Ck} = argmax
{Ck}

K∑
k=1

∑
n∈Ck

|yTnψk|. (3.44)

Proof Eqn. (3.43) can be expressed as,

{Ck} = argmax
{Ck}

N∑
n=1

K∑
k=1

I(n ∈ Ck)(yTnψk)2, (3.45)

where I is the indicator function that returns the value 1 when its argument is true

and zero otherwise. From (3.45), the cluster membership for a single data sample yn

is given by the index

k = argmax
t

(yTnψt)2. (3.46)

The function yTnψt evaluated for t = {1, . . . , K} results in K discrete values for a

given yn. Note that the index k that results in the maximum squared value of the

function, (yTnψk)2, will be the same as the one that results in the maximum absolute

value, |yTnψk|. Hence, replacing (yTnψk)2 with |yTnψk| in (3.45) and subsequently in

(3.43), will not change the membership sets computed. Therefore, (3.44) holds true.

Based on Lemma (3.6.1), the collection of membership sets {Ck}, where k =

{1, . . . , K} can be updated using (3.44).

77

3.6.2 Clustering Procedure using Matrix Operations

Expressing the K-hyperline clustering in terms of matrix operations, will allow us to

conveniently formulate the feature space version of the problem. Let us first define

the membership matrix of the data samples by Z ∈ RN×K , where znk = 1 if and

only if n ∈ Ck. The coefficient matrix is denoted as A ∈ RN×K , where each element

ank = yTnψk. Therefore, cluster assignment is performed by computing A = YTΨ,

and then setting Z = g(A), where g(.) returns 1 at the location of absolute maximum

of each row of the argument matrix and zero elsewhere. Note that this membership

update step is the same as that described in Section 3.6.1, except that it is defined

using matrices here. Denoting H = Z �A, the centroid is updated as Ψ = YHD,

where � indicates the Hadamard product and D is a diagonal matrix that normalizes

the columns of Ψ.

3.6.3 Algorithm

The kernel K-hyperline clustering performs clustering in the feature space using Mer-

cer kernels. Let us define the non-linear transformation to a feature space F as

Φ : RM 7→ F . Since the Hilbert space F may be very high-dimensional (even infinite),

all the operations in the space will be carried out exclusively using inner products de-

fined by the kernel functionK(yi,yj) = Φ(yi)TΦ(yj). Note that the possibility of pro-

viding closed form expressions for Φ depends on the form of the kernel used. For exam-

ple, in the case of a third degree polynomial kernel expressed as K(yi,yj) = (yTi yj)3,

if we assume yi = [yi,1 yi,2]T , then we have Φ(yi) = [y3
i,1
√

3y2
i,1yi,2

√
3yi,1y2

i,2 y
3
i,2]T . It

is clear that the dimension of F will increase rapidly as the dimension of the data

vector yi increases. The transformation Φ(.) results in an infinite dimensional Hilbert

space in the case of radial basis function (RBF) kernel defined as

K(yi,yj) = exp(−0.5‖yi − yj‖2
2). (3.47)

78

Table 3.3: The Kernel K-lines Clustering Algorithm.

Input
Y = [yi]Ni=1, M ×N matrix of data samples.
KYY, N ×N kernel matrix.
K, desired number of clusters.

Initialization
- Randomly group data samples into K clusters and initialize the membership
matrix Z.
- Based on Z, obtain the rank-1 SVD for each cluster to initialize Ψ.
- Compute the initial coefficients, A = YTΨ.

Algorithm
Loop until convergence
Loop for L iterations
- Compute H = Z�A.
- Compute A = KYYHΓ(Φ(Y)H)−1.

end
- Update the membership matrix Z by identifying the index of absolute
maximum in each row of A.

end

Let Φ(Y) and Φ(Ψ) denote the N transformed feature vectors and K trans-

formed cluster centroid matrices respectively. The kernel similarity matrix of inner

products is constructed as K = Φ(Y)TΦ(Y) and K(yi,yj) is its (i, j)th element. The

coefficient matrix α in the feature space can be computed as α = Φ(Y)TΦ(Ψ) and

the membership matrix in the feature space is Z = g(α). Hence, the cluster centers

in the feature space are computed as

Φ(Ψ) = Φ(Y)HNΨ, (3.48)

where H = Z�α. The normalization term can be obtained as

NΨ = [diag((Φ(Y)H)TΦ(Y)H)]−1/2 = [diag(HTKH)]−1/2, (3.49)

where diag(.) returns a diagonal matrix with the diagonal elements same as that of

79

(a) Pendigits dataset. (b) USPS dataset.

Figure 3.5: Performance of Kernel K-lines clustering algorithm with two different
datasets over multiple iterations. In each case, the performance of K-lines clustering
algorithm is also shown.

the argument. Combining α = Φ(Y)TΦ(Ψ) and (3.48), we obtain

α = Φ(Y)TΦ(Y)HNΨ = KHNΨ. (3.50)

Hence, kernel K-hyperline clustering can be performed by updating α using (3.50)

and H = Z � α in every iteration whereas the membership matrix Z = g(α) is

updated once every L iterations. The steps of the algorithm are presented in Table

3.3.

In order to demonstrate the behavior of the proposed kernel K-lines clustering

procedure, we performed clustering of the data samples from two benchmark datasets:

USPS and Pendigits obtained from the UCI database [119]. No preprocessing was

performed on the datasets and we chose the RBF kernel with γ = 1
32 to evaluate

the similarities between the samples. It can be clearly seen from Figure 3.5 that the

kernel K-lines clustering approach achieves higher clustering accuracies in comparison

to using K-lines clustering on both the datasets.

80

Chapter 4

DISCRIMINATIVE CLUSTERING FOR MIXING MATRIX ESTIMATION

4.1 Problem Statement

Blind source separation (BSS) is the problem of estimating the original source signals

from their mixtures, when the mixing process is unknown. In instantaneous blind

source separation, we typically observe P -channel sensor signals given by the rows of

the observation matrix C ∈ RP×N . Here, C is obtained as the linear combination of

R unknown sources as

C = GS + N, (4.1)

where S ∈ RR×N is the set of R source signals given by the rows of the matrix,

G ∈ RP×R is the mixing matrix and N ∈ RP×N is the matrix denoting the corruption

by additive Gaussian noise.

Several algorithms have been proposed to estimate the mixing matrix and the

source signals using only the knowledge of the noisy observations [120]. When the

source signals are sparse either in the measured domain or some parametric domain,

the columns of the observed data matrix C will be concentrated along the directions

of the columns of the unknown mixing matrix G [121]. Hence, the columns of C can

be clustered using standard clustering algorithms and the set of cluster centers will

form the estimate of G. Given the mixing matrix, the set of unknown sources can be

estimated using two different approaches. When the number of sensors is greater than

the total number of sources (P > R), the problem of estimating the sources is referred

to as overdetermined BSS and Independent Component Analysis (ICA) can be used

to estimate the sources. However in underdetermined BSS, i.e., when there are more

sources than the number of sensors (R > P), the performance of ICA based methods

is often affected adversely. In this case, sparse component analysis (SCA) methods

that exploit the sparse representability of the sources, instead of their independence,

81

can be used for separating the mixture components. Sparsity of a vector means that

only a small number of its elements differ significantly from zero. For SCA methods

to work, the observation vectors should be a sparse linear combination of the columns

of the mixing matrix. This implies that the columns of the source matrix must be

sparse, with respect to some linear transformation. Note that, the source/observed

signals can be sparsely decomposed either into a pre-defined signal dictionary, such as

the Fourier transform, or overcomplete dictionaries can be adapted to the data [83].

Hence it is clear that sparsity of sources in some known domain is necessary for both

mixing matrix estimation and subsequently source separation using SCA methods.

In this work, we consider the problem of estimating G in both overdetermined

and underdetermined mixing conditions. Though the methods proposed in this work

are general in application, we demonstrate their use in mixing matrix estimation from

speech mixtures. Typically separation of speech sources is performed in the time-

frequency (TF) domain or a parameteric domain, since speech is not sparse in the

time domain [122], [123], [124]. The DUET-type (Degenerate Unmixing Estimation

Technique) methods reported in [125], [126] can be used to estimate the mixing matrix

effectively when the W-disjoint orthogonality condition is approximately satisfied

across the whole TF region. The TIFROM-type (Time-frequency Ratio of Mixtures)

methods proposed in [127], [128] allow overlapping of sources to a certain degree in

the TF regions, but still require adjacent regions where only one source is active.

In practical situations, the conditions required by these methods are not satisfied.

Hence, the authors in [129] relaxed these requirements and proposed an estimation

method based on TF ratios. Mixing matrix estimation can also be performed using

standard clustering algorithms and the K-lines clustering algorithm proposed in [23]

performs significantly better than other procedures. However, the complexity of

clustering increases significantly when the number of data samples increases.

82

The mixing matrix estimation is performed by applying clustering algorithms

on a subset of observations in the TF domain where only one source is active. These

points are referred to as single source points (SSPs) [130]. The source matrix column

corresponding to an SSP will have only one non-zero element, i.e., it will be 1−sparse.

Using SSPs allows us to obtain high mixing matrix estimation performance just us-

ing clustering based approaches. Restating the model in (4.1) such that it represents

the sources and mixtures in the TF domain, we have c(t, k) = Gs(t, k), under zero

noise conditions. Here, s(t, k) and c(t, k) respectively denote the complex source and

observation vectors at the time index t and the frequency index k. The direction of

the modulus of the observation vectors, c(t, k), in the SSPs where only one of the

sources is active, will be same as those of the columns of G [130]. However, the

probability of identifying such TF points is extremely low, particularly when there

are multiple sources and non-negligible noise. Hence, the authors in [3] developed

an algorithm that identifies approximate SSPs and employs a hierarchical clustering

procedure to estimate the columns of G. This method achieved high mixing matrix

estimation performance, with multiple speech sources, under different mixing condi-

tions. However, it is possible to replace the hierarchical clustering procedure [3] with

more suitable clustering algorithms to improve the performance.

In this work, we develop two algorithms to perform discriminative clustering

of the SSPs in underdetermined and overdetermined mixing conditions respectively.

Both the proposed methods iteratively project the SSPs onto a subspace optimized

for discrimination and perform K-lines clustering in that subspace. In overdetermined

mixing conditions, we have P > R, and a low-dimensional linear subspace of R − 1

dimensions can be identified for performing discriminative clustering. However, in

underdetermined mixing, we have R > P and hence it is not possible to identify such

a subspace. Therefore, we propose to project the SSPs onto a high-dimensional feature

space prior to performing discriminative clustering in this case. Using the proposed
83

algorithms, we demonstrate improvements in mixing matrix estimation performance

when compared to the methods in [129], [23] and [3].

4.2 Need for Discriminative Clustering

The performance of a clustering algorithm depends on (a) the suitability of the clus-

tering cost to the data and, (b) the separability of the classes with respect to the

distortion function. The clustering performance can be improved by increasing the

linear separability between the classes prior to clustering data. In supervised clas-

sification it is typical to learn a linear discriminant function, that maps the data

samples to a subspace, in order to improve the linear separability between classes.

For some types of data, it may not be possible to improve the class separability using

a linear discriminant function. Non-linearly mapping the data to a feature space and

identifying a discriminant subspace of the feature space is necessary in such cases.

Usually, the feature space is of very high dimensions but since it is equipped with

a reproducing kernel, it is possible to use the kernel trick to perform computations

efficiently in that space [131].

Since clustering is unsupervised, determining a discriminant function is not

straightforward. The discriminative clustering frameworks for K-means proposed

in [132], [133], [134], [135] iteratively perform clustering to evaluate the class labels for

the data samples and linear discriminant analyis (LDA) to identify the discriminant

function for maximal linear separability. Though discriminative K-means clustering

has achieved high clustering accuracies with standard datasets, it is not well suited

for mixing matrix estimation in blind source separation. In this work, we propose

the K-lines-LDA (Khyp-LDA) algorithm to perform discriminative K-lines clustering

by iteratively computing the linear mapping for maximal discrimination. We employ

a modified LDA procedure that considers the between-class and within-class simi-

larities, instead of the scatter measures traditionally used in LDA. The Khyp-LDA

84

algorithm can be employed only in overdetermined mixing conditions as it projects

the P−dimensional data onto R− 1 dimensions (P > R) and performs clustering to

estimate the columns of the mixing matrix.

In order to extend this to underdetermined BSS, we propose to non-linearly

map the data onto a feature space prior to performing discriminative K-lines cluster-

ing. The generalized discriminant analysis (GDA) proposed in [136] can be used to

identify the linear subspace of the feature space obtained by a non-linear mapping,

for maximal discrimination. We develop the K-lines-GDA (Khyp-GDA) algorithm

that iterates between the modified GDA with similarity measures, and kernel K-lines

clustering, that works with the feature space data projected onto the linear subspace

identified by GDA.

Simulations with synthetic data show that the proposed approaches achieve

improved mixing matrix estimation performance at different levels of source spar-

sity and disjoint orthogonality in the source matrix. Furthermore, we employed the

proposed discriminative K-lines clustering algorithms in order to estimate the mix-

ing matrix columns from the SSPs obtained using the algorithm in [3]. Results

for estimation of G from mixtures of multiple speech sources show that the pro-

posed algorithms achieve much improved estimation performance in comparison to

the approaches in [129], [23], and [3]. The improvements were observed for both

underdetermined and overdetermined mixing, under different noise conditions.

4.3 Background

In this section, we describe the estimation of SSPs from the TF representation of

the mixtures [3] and briefly review linear discriminant based clustering algorithms.

Throughout this chapter, we will denote matrices using bold upper case, vectors using

bold lower case and scalars using upper or lower case.

85

4.3.1 Identification of SSPs

We are interested in performing mixing matrix estimation from the time-frequency

representation of the mixtures. As described earlier, SSPs are TF points at which

only one of the sources is active. As an example scenario, let us consider the case

with 2 sources and 2 sensors. Let g1 and g2 denote the columns of the mixing matrix

G ∈ R2×2. At an SSP (t1, k1) in the TF domain where only the first source is active,

i.e., s1(t1, k1) 6= 0 and s2(t1, k1) = 0, we have

c(t1, k1) = g1s1(t1, k1). (4.2)

This implies that the real and imaginary parts can be equated as

Re{c(t1, k1)} = g1Re{s1(t1, k1)}, (4.3)

Im{c(t1, k1)} = g1Im{s1(t1, k1)}. (4.4)

Here, it can be easily seen that the absolute directions of the real and imaginary

components of c(t1, k1) are the same as that of g1. Now, consider another time-

frequency point (t2, k2) where both the sources are active.

Re{c(t2, k2)} = g1Re{s1(t2, k2)}+ g2Re{s2(t2, k2)}, (4.5)

Im{c(t2, k2)} = g1Im{s1(t2, k2)}+ g2Im{s2(t2, k2)}. (4.6)

For the absolute directions of the real and imaginary components to be same in this

case, the following relation needs to be satisfied,

Re{s1(t2, k2)}
Im{s1(t2, k2)} = Re{s2(t2, k2)}

Im{s2(t2, k2)} . (4.7)

Extending this to the case of multiple sources, for the absolute directions of

Re{c(t, k)} and Im{c(t, k)} at any TF point (t, k) to be the same, it should be a

single source point or the ratios of the real and imaginary components of the short-

term Fourier transform (STFT) of all source signals must be the same. However, the
86

(a) (b)

Figure 4.1: Distribution of the observed samples for mixing matrix estimation in
underdetermined BSS, with P = 3 and R = 5: (a) All STFT coefficients, (b) SSPs
identified, with ∆θ = 0.8, using the algorithm proposed in [3].

probability of finding such time frequency points will be extremely low, particularly

when there are multiple sources. Hence, the authors in [3] developed an algorithm

that relaxes the condition for identifying SSPs. The points in the TF domain where

the angle between the absolute directions of Re{c(t, k)} and Im{c(t, k)} is less than

a pre-defined threshold ∆θ is considered as an SSP. This condition is expressed as∣∣∣∣∣ Re{c(t, k)}T Im{c(t, k)}
‖Re{c(t, k)}‖2‖Im{c(t, k)}‖2

∣∣∣∣∣ > cos(∆θ). (4.8)

Typically, both the real and the imaginary parts of the SSPs, identified using the

condition (4.8), are stacked together in order to estimate the mixing matrix. Figure

4.1 illustrates an example case of 5 sources and 3 sensors, where the entire set of time-

frequency coefficients (both real and imaginary components) for the observations is

shown in Figure 4.1(a) and those of the SSPs identified using (4.8) are shown in Figure

4.1(b). As it can be obviously seen, clustering the SSPs to identify the columns of

G will be comparatively easier. Furthermore, the complexity of clustering is reduced

since the number of data samples to be used for clustering is significantly reduced.

87

4.3.2 Linear Discriminant Based Clustering

Clustering algorithms can be combined with linear discriminant analysis (LDA) in

order to improve the separability of the data belonging to different classes, thereby

improving the clustering performance. The LDA algorithm computes a set of dis-

criminant directions W ∈ RM×d, so that the class separability of the projected data

X = WTY is improved. In order to find W, the within-class and between-class

scatter matrices are computed. The within-class scatter matrix,

Sw =
K∑
k=1

∑
n∈Ck

(yn − µk) (yn − µk)
T , (4.9)

computes the scatter of data samples around their respective class mean vectors

denoted by µk for classes k = {1, . . . , K}. Assuming that all data samples are

centered to zero mean, the between-class scatter is

Sb =
K∑
k=1

Nkµkµ
T
k , (4.10)

where Nk denotes the total number of samples in the class K. Here, d = K − 1 and

the objective is expressed as

max
W

Tr
WTSbW
WTSwW

. (4.11)

Note that the K-means clustering algorithm minimizes the distortion metric Tr(Sw)

or equivalently maximizes Tr(Sb), where Tr(.) is the trace of the argument matrix.

The algorithm proposed in [132] combines K-means and LDA, by iterating between

generation of class labels using K-means on the projected data X, and computation

of discriminant directions W based on the class labels and the M−dimensional data

Y.

4.4 Mixing Matrix Estimation in Overdetermined BSS

In this section, we develop the modified linear discriminant analysis using similarity

measures and describe the proposed Khyp-LDA algorithm for estimating the mixing

matrix in overdetermined BSS.
88

4.4.1 Linear Discrimination using Similarity Measures

In order to incorporate LDA into K-lines clustering, we have to modify the classical

LDA procedure described in Section 4.3.2 so that similarity measures are used instead

of scatter matrices.

We will consider only the computation of membership sets as given in (3.44).

In order to represent this without using absolute values, we define a new set of cluster

centroids given by Ω = {ωl}2K
l=1, where

ω2k−1 = +ψk and ω2k = −ψk, (4.12)

for k = {1, . . . , K}. Any data sample yn that results in the maximum correlation

yTnωl, is associated to the cluster center ωl. The membership setMl, l = {1, . . . , 2K}

contains the indices of training vectors associated to ωl. Now, computation of the

membership sets can be obtained by modifying (3.44) as

{Ml}2K
l=1 = argmax

{Ml}

2K∑
l=1

∑
n∈Ml

yTnωl. (4.13)

Note that the membership sets for Ψ can be obtained from the membership sets

of Ω as Ck = M2k−1 ∪ M2k, for k = {1, . . . , K}. During actual implementation,

the membership sets {Ck}Kk=1 are computed using (3.44) and the membership sets

{Ml}2K
l=1 are computed as follows: the element n ∈ Ck is appended to the setM2k−1

if yTnψk is positive, else n is appended toM2k.

In order to formulate an LDA procedure using similarity measures, let us

define the total symmetric within-class similarity measure as

Dw =
2K∑
l=1

∑
n∈Ml

(
ynωTl + ωlyTn

)
. (4.14)

Note that the double summation in (4.13) can be replaced using Tr(Dw). The overall

cluster center, ψ, is computed as the left singular vector corresponding to the largest

singular value of Y and let us also define ωp = +ψ and ωm = −ψ. Let the setMp

89

contain the indices of the cluster centers ψk that have positive correlations with ωp

and the set Mm contain the indices of the remaining cluster centers. Analogous to

the within-class similarity, we define the symmetric between-class similarity as

Db =
∑
k∈Mp

(ψkω
T
p + ωpψT

k) +
∑

k∈Mm

(ψkω
T
m + ωmψT

k). (4.15)

In order to compute the linear discriminant, we consider the linear transformation

W that projects the training data y and cluster center ω to the lower dimensional

Rd space, as WTy and WTω respectively. From (4.14) and (4.15), the similarity

measures in the Rd space can be written as

DW
w = WTDwW, DW

b = WTDbW. (4.16)

Since we are interested in maximizing the within-class similarity and minimizing the

between-class similarity, the objective for computing W is

max
W

Tr
(
(WTDbW)−1WTDwW

)
. (4.17)

Using the procedure in [137], it can be shown that the LDA directions can be updated

with the eigenvectors corresponding to the d largest eigenvalues of the matrix D−1
b Dw.

Note that the total within- and between-class similarities in (4.14) and (4.15) can also

be expressed as

Dw = YMΩT + ΩMTY, (4.18)

Db = (ΨMpω
T
p + ωpMT

p ΨT) + (ΨMmω
T
m + ωmMT

mΨT). (4.19)

The membership matrix M ∈ RN×2K is defined for the set of cluster centers Ω,

such that if n ∈ Ml, we have mnl = 1, else mnl = 0. Similarly, Mp ∈ RK×1 and

Mm ∈ RK×1 are defined for the membership setsMp andMm respectively.

4.4.2 Khyp-LDA Algorithm

The Khyp-LDA algorithm, presented in Table 4.1, is an iterative discriminative clus-

tering procedure that combines the K-lines clustering along with the discriminant
90

Table 4.1: Khyp-LDA clustering for mixing matrix estimation in overdetermined BSS.

Input
Y = [yi]Ni=1, M ×N matrix of data samples.
K, desired number of clusters.
Initialization
- Assign d = R− 1.
- Initialize the M × d matrix W using PCA.

Algorithm
Loop until convergence
- Compute the d−dimensional data samples X = WTY.
- Perform K-lines clustering on X and evaluate the membership
sets {Ck}Kk=1.
- From the memberships {Ck}Kk=1, compute the sets {Ml}2K

l=1,
using the procedure described in Section 4.4.1.
- Compute each cluster center ψk in Ψ as left singular vector
corresponding to the largest singular value in the SVD of Yk = [yn]n∈Ck

.
- Using Ψ, obtain the columns in Ω from (4.12).
- Evaluate the between-class and within-class similarity measures, Dw

and Db using (4.14) and (4.15) respectively.
- Update W using the eigenvectors corresponding to the d largest
eigenvalues of D−1

b Dw.
end

analysis proposed in the previous section, in order to evaluate the cluster member-

ships and the linear discriminant W. As the first step, we perform K-lines clustering

on the projected data X = WTY in Rd space. The number of reduced of dimensions

is set at R− 1 where R is the number of columns of the mixing matrix, whereas the

number of clusters is set at K > R, i.e., we typically overestimate the number of clus-

ters. The cluster memberships computed in the Rd space are given by {Ml}2K
l=1. The

memberships are carried over from Rd space to RM space. Using the relation between

the membership sets {Ml}2K
l=1 and {Ck}Kk=1, the cluster centers Ψ and hence Ω are

computed. The cluster center ψk corresponding to a membership set Ck will be the

left singular vector corresponding to the largest singular value of the training vectors

belonging to the set. The discriminant W is computed using the similarity measures

91

Dw and Db that are obtained using the updated Ω. The Khyp-LDA algorithm pro-

ceeds until the memberships do not change over subsequent iterations. Finally, out

of the K clusters, only the most significant R clusters are chosen as the columns of

the mixing matrix based on their confidence indices as described in Section 4.6.1.

4.5 Mixing Matrix Estimation in Underdetermined BSS

The Khyp-LDA algorithm cannot be used to estimate G in underdetermined mixing

conditions, since it projects the data onto R−1 dimensions for computing the cluster

memberships and in underdetermined conditions we have R > M , where M is the

ambient dimension of the data. This can be overcome by first projecting the data

onto a feature space F whose dimensions are much higher than M , prior to perform-

ing discriminative clustering. Since F is equipped with a reproducing kernel, both

linear discriminant analysis and K-lines clustering can be performed using the ker-

nel trick. The generalized discriminant analysis (GDA) proposed in [136] performs

discriminant analysis in the feature space using kernel similarity matrices and ele-

mentary matrix techniques. In this section, we begin by extending the discriminant

analysis procedure, performed using similarity measures, described in Section 4.4.1

to the feature space and develop the modified GDA algorithm. We then propose the

Khyp-GDA algorithm that performs K-lines clustering using the data projected onto

the subspace of F identified by GDA.

4.5.1 GDA using Similarity Measures

The cluster centroids Ψ and Ω can be defined in the feature space as Φ(Ψ) and Φ(Ω).

We denote the overall cluster center ω in the feature space by Φ(ω). Let NΨ, NΩ

and Nω be the matrices that normalize the cluster centroids Φ(Ψ), Φ(Ω) and Φ(ω)

respectively. They are computed similar to the normalization matrix in (3.49). The

within-class and between-class similarity measures are computed similar to (4.18) and

(4.19), although in the feature space. The non-symmetric within-class similarity is

92

obtained by performing the feature space substitutions Φ(Y) and Φ(Ω)NΩ in place

of Y and Ω in the first RHS term of (4.18) and is given as

Vu = Φ(Y)M(Φ(Ω)NΩ)T = Φ(Y)MNT
Ω(Φ(Y)E)T (4.20)

= Φ(Y)T1Φ(Y)T , (4.21)

where E = M�γ and γ = Φ(Y)TΦ(Ω). The non-symmetric between-class similarity

is now obtained using feature space substitutions in (4.19) as

Bu = Φ(Ψ)NΨMp(Φ(ωp)Nω)T + Φ(Ψ)NΨMm(Φ(ωm)Nω)T , (4.22)

= Φ(Y)HNΨMpNω(Φ(Y)Ep)T + Φ(Y)HNΨMmNω(Φ(Y)Em)T ,

= Φ(Y)T2Φ(Y)T , (4.23)

where

Ep = Mp �αp, αp = Φ(Ψ)TΦ(ωp) = NT
ΨHTΦ(Y)TΦ(Y)α̂p, (4.24)

Em = Mm �αm, and αm = Φ(Ψ)TΦ(ωm) = NT
ΨHTΦ(Y)TΦ(Y)α̂m. (4.25)

When computing (4.24) and (4.25), we express Φ(Ψ) = Φ(Y)HNΨ, Φ(ωp) = Φ(Y)α̂p

and Φ(ωm) = Φ(Y)α̂m, where α̂p and α̂m are the weights obtained when computing

the left singular vector of Φ(Y) iteratively, and H is the matrix corresponding to the

membership sets {Ck}. In order to compute the discriminant directions in the feature

space, we perform GDA using the symmetric within- and between-class similarity

matrices

V = Vu + VT
u , (4.26)

B = Bu + BT
u . (4.27)

Denoting U = [u1 u2 . . . ud] as set of directions of maximal discrimination

in F , any discriminant direction u can be expressed as

λBu = Vu. (4.28)
93

Since, every vector from U lies in the span of Φ(Y),

u = Φ(Y)δ. (4.29)

Now, we premultiply Φ(Y)T on both sides of (4.28)

λΦ(Y)TBu = Φ(Y)TVu, (4.30)

From (4.21), (4.26), and (4.29), we can write

Φ(Y)TVu = Φ(Y)TΦ(Y)(T1 + TT
1)Φ(Y)TΦ(Y)δ,

= K(T1 + TT
1)Kδ. (4.31)

Similarly, using (4.23), (4.27), and (4.29), we obtain

λΦ(Y)TBu = λK(T2 + TT
2)Kδ.

Hence, we can compute λ in (4.30) as

λ = δTK(T1 + TT
1)Kδ

δTK(T2 + TT
2)Kδ

. (4.32)

We employ an approach similar to the one used in [136] and perform the eigen de-

composition of K = PFPT . Substituting the eigen decomposition of K in (4.32) and

assigning β = FPTδ, we obtain

λ = βTPT (T1 + TT
1)Pβ

βTPT (T2 + TT
2)Pβ

. (4.33)

This is equivalent to solving [136, App. A]

λPT (T1 + TT
1)Pβ = PT (T2 + TT

2)Pβ, (4.34)

where β is obtained as a generalized eigenvector of the system. Generalized eigen

decomposition does not have a closed-form expression, but can be robustly obtained

using numerical techniques [138]. Note that β is a representative variable for a gen-

eralized eigenvector and multiple eigenvectors, [βi]di=1, corresponding to the d largest
94

Table 4.2: Khyp-GDA clustering for mixing matrix estimation in underdetermined
BSS.

Input
Y = [yi]Ni=1, M ×N matrix of data samples.
K, N ×N kernel matrix.
K, desired number of clusters.
Initialization
- Assign d = R− 1.
- Initialize the cluster membership matrix Z and H using Kernel K-lines
clustering (Section 3.6.3).
- Compute Ep and Em using (4.24) and (4.25).
Loop until convergence

GDA step:
- Perform eigen decomposition of K = PFPT .
- Evaluate T1 = MNT

ΩET and T2 = HNΨ
(
MpET

p + MmET
m

)
Nω.

- Compute the d generalized eigenvectors [βi]di=1 (see (4.34) and
the description provided therein).
- Evaluate δi = PF−1βi and divide by

√
δTi Kδi to ensure that uTi ui = 1.

Kernel K-lines clustering step:
Loop until convergence
Loop for L iterations
- Compute α using (4.39).
- Compute H = Z�α.

end
- Update Z by identifying the index of absolute maximum in each row of α.

end
end

generalized eigenvalues can also be obtained using the generalized eigen decomposi-

tion. δ will be obtained from β as δ = PF−1β. In order to ensure that uTu = 1, δ

is normalized by dividing it using
√
δTKδ, according to (4.29). Now, we can project

any vector Φ(r) in F onto the direction u as

uTΦ(r) = δTK(Y, r). (4.35)

4.5.2 Khyp-GDA Algorithm

Similar to the Khyp-LDA algorithm, we identify the directions of maximum discrim-

ination U and project Φ(Y) to the subspace FU identified by U. Kernel K-lines
95

clustering will be performed on UTΦ(Y). Table 4.2 shows the steps involved in the

Khyp-GDA algorithm. We begin by initializing the cluster membership matrix Z and

computing the kernel matrix K. Using the class membership, we perform GDA and

compute ∆ = [δ1 δ2 . . . δd]. The next step is to project the feature space data onto

the subspace FU as

UTΦ(Y) = ∆TK. (4.36)

The normalized cluster centroids after projection can be expressed as

Φ(Ψ̂) = UTΦ(Ψ)NΨ̂ = UTΦ(Y)HNΨ̂, (4.37)

= ∆TKHNΨ̂. (4.38)

where NΨ̂ =
[
diag(HTKT∆∆TKH)

]−1/2
. The coefficients α in kernel K-lines clus-

tering are computed as

α = (UTΦ(Y))TΦ(Ψ̂) = KT∆∆TKHNΨ̂. (4.39)

In the algorithm described in Table 4.2, the outer loop of the kernel K-lines clustering

step iteratively updates the clustering and the inner loop computes the coefficients.

4.6 Simulation Results

In this section, we study the behavior of the proposed clustering approaches under

different levels of sparsity and disjoint orthogonality [126] in the sources. Further-

more, we employ the proposed algorithms for clustering SSPs obtained from speech

mixtures, as described in Section 4.3.1, and demonstrate performance improvements

in mixing matrix estimation. In all the simulations presented, the performance of

estimation is evaluated using signal to interference ratio (SIR) between the original

mixing matrix G and its estimate Ĝ,

SIR(G, Ĝ) = 20 log10

(
‖G‖F

‖G− Ĝ‖F

)
, (4.40)

where ‖.‖F denotes the Frobenius norm of the argument matrix.
96

4.6.1 Synthetic Data

The simulations in this section are performed using randomly generated source and

mixing matrices. We demonstrate the effect of sparsity in the sources and the level

of disjoint orthogonality in the source matrix, on mixing matrix estimation using the

proposed clustering algorithms.

Effect of Sparsity on Estimation Performance

In this experiment, five source signals of 1000 samples were realized from a uniform

distribution in [−2, 2] and made β-sparse by forcing only β randomly chosen samples

to be non-zero. The signals were stacked in the source matrix S ∈ R5×1000. The

sparsity level was varied across different values in the range 100 to 350. The number of

sensors P was fixed at 3 and 7 for the underdetermined and the overdetermined mixing

scenarios respectively. In both cases, the entries of the mixing matrix G ∈ RP×5 were

realized from a zero mean, unit variance Gaussian distribution and each column of

G was rescaled to unit norm. As described earlier, the Khyp-GDA algorithm was

used for underdetermined mixing matrix estimation and the Khyp-LDA algorithm

was employed for the overdetermined estimation.

In both the mixing conditions, we followed the approach described in [23],

where the number of cluster centers was overestimated and the outliers were rejected

based on a confidence index for each cluster center. Though the original number

of sources was R = 5, we chose K = 25. Note that we fixed d = 4 for the Khyp-

LDA (Table 4.1) and the Khyp-GDA (Table 4.2) algorithms based on the original

number of sources, and not on the overestimated number of clusters. The singular

value corresponding to each cluster center was used as its confidence measure and

they were sorted to identify the dominant directions. For Khyp-GDA, we employed

the RBF kernel defined in (3.47) to perform the feature space operations. Figures

4.2(a) and 4.2(b) show the SIR of the mixing matrix estimation for source signals

97

(a) (b)

Figure 4.2: Mixing matrix estimation performance for different levels of sparsity in
the source signals: (a) Overdetermined case (number of sources R = 5, number of
sensors P = 7), (b) Underdetermined case (R = 5, P = 3).

(a) (b)

Figure 4.3: Mixing matrix estimation performance for different levels of disjoint or-
thogonality between the sources: (a) Overdetermined case (R = 5, P = 7), (b)
Underdetermined case (R = 5, P = 3).

with different levels of sparsity. The results obtained were averaged over 50 iterations

and for each iteration a different mixing matrix G was randomly generated. In

addition to the proposed approaches, we performed estimation using the hierarchical

clustering approach proposed in [3] and the K-lines clustering proposed in [23]. As

it can be easily observed, the proposed algorithms outperformed the other clustering

procedures in all cases of sparsity.
98

Effect of Disjoint Orthogonality on Estimation Performance

In order to study the effect of disjoint orthogonality among the sources on the estima-

tion performance, we generated a random dataset using an approach similar to [129].

The entries in S ∈ R5×10000, were realized from a uniform distribution in the range

[−5, 5]. We performed simulations with 5% to 25% of samples in the source matrix

satisfying the disjoint orthogonality condition. For example, in the case of 10% dis-

joint orthogonality, we chose 5 disjoint sets of 200 column indices in the source matrix

and made only one entry in each of those columns to be non-zero. The ith set of 200

columns had their ith entry to be non-zero (i = 1, · · · , 5). Similar to the previous

experiment, the number of sensors were fixed at 3 and 7 respectively. The mixing

matrix G was randomly generated as described in Section 4.6.1 and the results were

averaged over 50 iterations. In this case, the number of cluster centers was overesti-

mated as K = 250. The improvement in the estimation performance obtained using

the proposed discriminative clustering approaches when compared to the K-lines [23]

and the hierarchical clustering [3] methods is evident in both the cases, as seen in

Figures 4.3(a) and 4.3(b).

4.6.2 Mixing Matrix Estimation for Speech Mixtures

In this section, we describe the results obtained using the proposed algorithms to

cluster the SSPs from the TF representation of speech mixtures. The dataset used

for the experiments contained a set of 6 speech utterances of 10 seconds each, sam-

pled at 16 kHz [3]. We compared the estimation performances obtained using: (a)

Hierarchical clustering of the SSPs [3], (b) K-lines clustering [23] of the SSPs, (c)

Proposed discriminative clustering of the SSPs and (d) Time-frequency ratio based

method proposed in [129].

We performed multiple simulations with different configurations of R and P

and we report the results obtained by averaging 100 trials. Mixing matrix estimation

99

(a) (b)

Figure 4.4: Performance of mixing matrix estimation from speech mixtures, at dif-
ferent configurations of R and P : (a) Overdetermined BSS, (b) Underdetermined
BSS.

(a) (b)

Figure 4.5: Performance of mixing matrix estimation from speech mixtures, under
different observation noise conditions: (a) Overdetermined case (R = 3, P = 4), (b)
Underdetermined case (R = 5, P = 3).

was performed in the STFT domain and the same number of frequency bins was

used for all the algorithms. For each speech signal, the STFT was obtained using

a Hann window of 1024 samples with 12.5% overlap. For the methods (a)-(c), we

identify the SSPs by fixing ∆θ and we sorted the frequency bins in descending order

of their variance such that very few frequency bins can be used to estimate the mixing

matrix [3]. In our experiments, we observed that for an appropriate choice of ∆θ,

100

a good estimate of the mixing matrix is obtained using only 10% of the bins. Both

the real and imaginary components of the SSPs were stacked together to perform the

clustering. For the method (d), we used the parameters specified in [129] and the

hierarchical clustering method used in [3] to estimate G.

Figure 4.4 illustrates the estimation performance (SIR) of the four methods

in different underdetermined and overdetermined mixing conditions. The parameter

∆θ was fixed at 0.8 degrees and the SSPs were identified using the top 10% of the

frequency bins, sorted by decreasing variance. As it can be observed, the proposed

algorithms outperformed the other baseline methods in all cases of mixing. The effect

of observation noise on the estimation was also analyzed by fixing the target SNR

between 10 dB and 50 dB and evaluating the performance. Under noisy conditions,

we tested different values of ∆θ, between 0.8 and 10 degrees, for identifying the SSPs

and chose the one that resulted in the best SIR. Figure 4.5 shows the SIR obtained

at different noise levels for the cases with {R = 3, P = 4} and {R = 5, P = 3}. This

simulation clearly demonstrates the performance improvement obtained by using the

proposed algorithms under noisy conditions.

101

Chapter 5

MULTILEVEL DICTIONARY LEARNING FOR SPARSE REPRESENTATIONS

5.1 Problem Statement

The goal is to construct stable and generalizable dictionaries for sparse approxima-

tion of natural image patches. A simple example of learning a dictionary with two

levels is demonstrated in Figure 5.1. The properties and performance of this learning

algorithm will be analyzed in detail in this chapter. The multilevel dictionary (MLD)

learning algorithm is a hierarchical procedure where the dictionary atoms in each level

are obtained using a 1-D subspace clustering algorithm, which we refer to as K-lines

clustering [23]. Note that in the papers [23, 35, 39] the procedure has been referred

to as K-hyperline clustering. But in this chapter, we prefer to use the term K-lines

clustering, since a 1-D subspace in any number of dimensions is referred only to as a

line, and not as a hyperline. The proposed algorithm builds global dictionaries using

a set of randomly chosen training patches obtained from a large collection of natural

images that can generalize well to any test set of patches. For a learned dictionary to

provide a good approximation, the test data must be similar to the data samples used

for training. Since local regions of natural images have high redundancy and consis-

tent statistical properties [7], learning global dictionaries from a random collection of

natural image patches will provide a good representation for patches from images not

in the training set. The effectiveness of such dictionaries have been demonstrated in

denoising [139] and compressed recovery [140].

A learning algorithm is a map from the space of training examples to the hy-

pothesis space of functional solutions. Algorithmic stability characterizes the behavior

of a learning algorithm with respect to the perturbations of its training set [108], and

generalization ensures that the expected error of the learned function with respect

to the novel test data will be close to the average empirical training error [141]. In

clustering, the learned function is completely characterized by the cluster centers.
102

Figure 5.1: Features learned at two levels from non-overlapping patches (8× 8) of a
128×96 image. In each level, the patches that are highlighted in the image share sim-
ilar information and hence jointly correspond to a learned pattern (also highlighted).

Stability of a clustering algorithm implies that the cluster centroids learned by the

algorithm are not significantly different when different sets of i.i.d. samples from the

same probability space are used for training [26]. When there is a unique minimizer to

the clustering objective with respect to the underlying data distribution, stability of

a clustering algorithm is guaranteed [24] and this analysis has been extended to char-

acterize the stability of K-means clustering in terms of the number of minimizers [25].

In [35], the stability properties of the K-lines clustering algorithm have been analyzed

and they have been shown to be similar to those of K-means clustering. Note that all

the stability characterizations depend only on the underlying data distribution and

the number of clusters, and not on the actual training data itself. Generalization

implies that the average empirical training error becomes asymptotically close to the

expected error with respect to the probability space of data, as the number of training

samples T →∞. In [142], the generalization bound for sparse coding in terms of the

number of samples T , also referred to as sample complexity, is derived and in [143]

the bound is improved by assuming a class of dictionaries that are nearly orthogonal.

The algorithmic stability of dictionary learning methods has not been dis-

cussed in the literature until now, to the best of our knowledge. Given a sufficiently
103

large training set, a stable learning algorithm will result in global dictionaries that

will depend only on the probability space to which the training samples belong and

not on the actual samples themselves. Generalization ensures that such global dic-

tionaries learned result in a good performance with test data. In other words, the

asymptotic stability and generalization of a dictionary learning algorithm provides

the theoretical justification for the uniformly good performance of global dictionaries

learned from an arbitrary training set. We study the stability properties of the pro-

posed MLD learning algorithm and prove that it is asymptotically stable. We also

show that the proposed algorithm generalizes asymptotically.

5.2 Multilevel Dictionary Learning

In this section, we motivate and develop a multilevel dictionary learning approach for

sparse representations, whose algorithmic stability and generalizability will be proved

in Section 5.4. Furthermore, we propose the RM-OMP algorithm, that can be used

to obtain sparse codes for a test image using the multilevel dictionary.

5.2.1 Motivation for Multilevel Learning

Our motivation for learning an MLD is two-fold. Firstly we require a global dictionary

that can exploit, (a) the redundancy observed across local regions in natural images

and, (b) the hierarchy of patterns found in training image patches. Secondly, the

learning procedure must be provably stable, with respect to the notion of algorithmic

stability, and generalizable.

The generative model for sparse coding is well suited for natural signals and

images as they can be represented using a sparse linear combination of elementary

features chosen from a dictionary [18]. The redundancy in the local regions of natu-

ral images [7] allows for the design of global dictionaries that can generalize well to

a wide range of images. Global dictionaries learned from a set of randomly chosen

patches from natural images have been successfully used for denoising [139], com-

104

pressed sensing [140] and classification [98]. In addition to exhibiting redundancy,

the natural image patches typically contain either geometric patterns or stochastic

textures or a combination of both. This fact is demonstrated in [144], where the

authors define two types of atomic subspaces to model image patches: subspaces of

low dimensions (explicit manifolds) for primitive geometric patterns and subspaces of

high dimensions (implicit manifolds) for stochastic textures. Since the image patches

can contain both geometric and stochastic structures, a hybrid combination of ex-

plicit and implicit manifolds can be used for modeling them [144]. The proposed

MLD algorithm learns global representative patterns in multiple levels, according to

the order of their energy contribution. Since the geometric patterns usually are of

higher energy when compared to stochastic textures in images, geometric patterns

are learned in the first few levels and stochastic textures are learned in the last few

levels.

Considering the dictionary learning formulation, it can be seen that clustering

algorithms such as the K-means and the K-lines can be obtained by constraining the

desired sparsity to be 1. Since the stability characteristics of clustering algorithms

are well understood, employing similar tools to analyze the more general dictionary

learning can be beneficial. Note that the proposed algorithm poses dictionary learning

as performing K-lines clustering in multiple levels and hence in this case we can use the

stability characteristics of the clustering algorithm to study the stability of multilevel

learning. Furthermore, by exploiting the fact that the distortion function class for

each level of learning is uniform Donsker, the generalizability of the algorithm can

also be proved. Note that multilevel learning is different from the work in [145], where

multiple sub-dictionaries are designed and one of them is chosen for representing a

group of patches.

105

5.2.2 Proposed MLD Learning Algorithm

We denote the MLD as Ψ = [Ψ1Ψ2...ΨL], and the coefficient matrix as A =

[AT
1 AT

2 ...AT
L]T . Here, Ψl is the sub-dictionary and Al is the coefficient matrix for

level l. The approximation in level l is expressed as

Rl−1 = ΨlAl + Rl, for l = 1, ..., L, (5.1)

where Rl−1, Rl are the residuals for the levels l − 1 and l respectively and R0 = Y,

the matrix of training image patches. This implies that the residual matrix in level

l−1 serves as the training data for level l. Note that the sparsity of the representation

in each level is fixed at 1. Hence, the overall approximation for all levels is

Y =
L∑
l=1

ΨlAl + RL. (5.2)

MLD learning can be interpreted as a block-based dictionary learning problem with

unit sparsity per block, where the sub-dictionary in each block can allow only a 1-

sparse representation and each block corresponds to a level. The sub-dictionary for

level l, Ψl, is the set of cluster centroids learned from the training matrix for that

level, Rl−1, using K-lines clustering. MLD learning can be formally stated as an

optimization problem that proceeds from the first level until the stopping criteria is

reached. For level l, the optimization problem is

argmin
Ψl,Al

‖Rl−1 −ΨlAl‖2
F subject to ‖al,i‖0 ≤ 1,

for i = {1, ..., T}, (5.3)

along with the constraint that the columns of Ψl have unit `2 norm, where al,i is

the ith column of Al and T is the number of columns in Al. We adopt the notation

{Ψl,Al} = KLC(Rl−1, Kl) to denote the problem in (5.3) where Kl is the number of

atoms in the sub-dictionary Ψl. The stopping criteria is provided either by imposing
106

Table 5.1: Algorithm for building a multilevel dictionary.

Input
Y = [yi]Ti=1, M × T matrix of training vectors.
L, maximum number of levels of the dictionary.
Kl, number of dictionary elements in level l, l = {1, 2, ..., L}.
ε, error goal of the representation.

Output
Ψl, adapted sub-dictionary for level l.

Algorithm
Initialize: l = 1 and R0 = Y.
Λ0 = {i | ‖r0,i‖2

2 > ε, 1 ≤ i ≤ T}, index of training vectors with
squared norm greater than error goal.
R̂0 = [r0,i]i∈Λ0

.

while Λl−1 6= ∅ and l ≤ L
Initialize:

Al, coefficient matrix, size Kl ×M , all zeros.
Rl, residual matrix for level l, size M × T , all zeros.
{Ψl, Âl} = KLC(R̂l−1, Kl).
Rt
l = R̂l−1 −ΨlÂl.

rl,i = rtl,j where i = Λl−1(j), ∀j = 1, ..., |Λl−1|.
al,i = âl,j where i = Λl−1(j), ∀j = 1, ..., |Λl−1|.
Λl = {i | ‖rl,i‖2

2 > ε, 1 ≤ i ≤ T}.
R̂l = [rl,i]i∈Λl

.
l← l + 1.

end

a limit on the residual representation error or the maximum number of levels (L).

Note that the total number of levels is the same as the maximum number of non-zero

coefficients (sparsity) of the representation. The error constraint can be stated as,

‖rl,i‖2
2 ≤ ε,∀i = 1, ..., T for some level l, where ε is the error goal.

Table 5.1 lists the MLD learning algorithm with sparsity and error constraints.

We use the notation Λl(j) to denote the jth element of the set Λl and rl,i denotes the

ith column vector in the matrix Rl. The set Λl contains the indices of the residual

vectors of level l whose norm is greater than the error goal. The residual vectors

107

indexed by Λl are stacked in the matrix, R̂l, which in turn serves as the training

matrix for the next level, l + 1. In MLD learning, for a given level l, the residual rl,i

is orthogonal to the representation Ψlal,i. This implies that

‖rl−1,i‖2
2 = ‖Ψlal,i‖2

2 + ‖rl,i‖2
2. (5.4)

Combining this with the fact that yi = ∑L
l=1 Ψlal,i + rL,i, al,i is 1−sparse, and the

columns of Ψl are of unit `2 norm, we obtain the relation

‖yi‖2
2 =

L∑
l=1
‖al,i‖2

2 + ‖rL,i‖2
2. (5.5)

Equation (5.5) states that the energy of any training vector is equal to the sum of

squares of its coefficients and the energy of its residual. From (5.4), we also have

that,

‖Rl−1‖2
F = ‖ΨlAl‖2

F + ‖Rl‖2
F . (5.6)

In our implementation of MLD learning, we include an additional step where the

residual at each level is orthogonalized to the dictionary atoms chosen so far, and the

coefficients are recomputed. Note that this does not affect any other behavior of the

algorithm that is discussed in this section.

The training vectors for the first level of the algorithm, r0,i lie in the ambient

RM space and the residuals, r1,i, lie in a finite union of RM−1 subspaces. This is

because, for each dictionary atom in the first level, its residual lies in an M − 1

dimensional space orthogonal to it. In the second level, the dictionary atoms can

possibly lie anywhere in RM , and hence the residuals can lie in a finite union of RM−1

and RM−2 dimensional subspaces. Hence, we can generalize that the dictionary atoms

for all levels lie in RM , whereas the training vectors of level l ≥ 2, lie in finite unions

of RM−1, . . . ,RM−l+1 dimensional subspaces of the RM space.

108

Figure 5.2: Multilevel dictionary, with 16 levels of 16 atoms each, comprises of geo-
metric patterns in the first few levels, stochastic textures in the last few levels and a
combination of both in the middle levels.

5.2.3 Convergence

The convergence of MLD learning and the energy hierarchy in the representation

obtained using an MLD can be shown by providing two guarantees. The first guar-

antee is that for a fixed number of atoms per level, the algorithm will converge to

the required error within a sufficient number of levels. This is because the K-lines

clustering makes the residual energy of the representation smaller than the energy of

the training matrix at each level (i.e.) ‖Rl‖2
F < ‖Rl−1‖2

F . This follows from (5.6)

and the fact that ‖ΨlAl‖2
F > 0.

The second guarantee is that for a sufficient number of atoms per level, the

representation energy in level l−1 will be less than the representation energy in level

l. To show this, we first state that for a sufficient number of dictionary atoms per

level, ‖ΨlAl‖2
F > ‖Rl‖2

F . This means that for every l

‖Rl‖2
F < ‖ΨlAl‖2

F < ‖Rl−1‖2
F , (5.7)

because of (5.6). This implies that ‖ΨlAl‖2
F < ‖Ψl−1Al−1‖2

F , i.e., the energy of the

representation in each level reduces progressively from l = 1 to l = L.

5.2.4 Sparse Approximation using an MLD

In order to compute sparse codes for novel test data using a multilevel dictionary, we

propose to perform reconstruction using a Multilevel Orthogonal Matching Pursuit

(M-OMP) procedure which evaluates a 1-sparse representation for each level using
109

(a) (b)

Figure 5.3: (a) Levelwise representation energy for the learned MLD with the BSDS
training data set, (b) Comparison of the MSE obtained with the BSDS test dataset
using the K-SVD and the MLD dictionaries at different levels of sparsity.

the dictionary atoms from that level, and orthogonalizes the residual to the dictionary

atoms chosen so far. Though asymptotic generalization of the M-OMP method will

be shown in Section 5.4.5, imposing the energy hierarchy observed in the training

process to any test data might result in poor generalization. Hence, there is a need

to regularize this procedure such that there is more flexibility in choosing dictionary

atoms for representing the test data. Hence, we propose to build a sub-dictionary

with atoms selected from the current level as well as the u immediately preceding

and following levels, Φ̃l =
[
Φl−uΦl−(u−1) . . .Φl . . .Φl+(u−1)Φl+u

]
, in every step of the

pursuit algorithm. In our implementation, we fix u = 2 and also reduce the size of the

sub-dictionary appropriately when l ≤ u and l > L− u. The dictionary Φ̃l is used to

compute a 1-sparse representation for that step of the pursuit. It was observed from

simulations that the RM-OMP scheme performs better than M-OMP, particularly

when the training set is small.

110

5.2.5 Dictionaries from the BSDS Dataset

All simulation results presented in this chapter were obtained with dictionaries learned

using randomly chosen patches of size 8× 8, extracted from the grayscale images in

the training set of the Berkeley segmentation dataset (BSDS) [1]. The number of

grayscale patches used for training will be clearly stated for each simulation. As

a preprocessing step, the mean value of each training patch was removed. In this

section, we will demonstrate the characteristics of MLD learning using an example

dictionary learned using 50, 000 patches. Note that, the number of atoms was fixed

at 16 per level and the number of levels was fixed at 16, which leads to a total of

256 atoms. For comparison, a global K-SVD dictionary of size 64 × 256 atoms was

learned, with the same training set, using the MATLAB toolbox available online [4].

In this case, the desired sparsity, which refers to the number of non-zero coefficients

(S), was fixed at 16. Initial dictionary atoms for the K-SVD algorithm and for each

level of MLD learning were obtained using the K-means clustering procedure.

Figure 5.2 illustrates the multilevel dictionary designed using the algorithm in

Table 5.1. Note that no noise was added to the image patches during learning. As it

can be observed, the learned MLD contains geometric patterns in the first few levels,

stochastic textures in the last few levels and a combination of both in the middle

levels. The representation energy, ‖ΨlAl‖2
F , captured across all the levels in MLD is

shown in Figure 5.3(a), where the energy hierarchy in learning can be clearly seen.

Given a multilevel dictionary, an S−sparse representation for a test sample

can be evaluated using the M-OMP or the RM-OMP procedures described in Section

5.2.4. For the learned K-SVD and multilevel dictionaries, we computed the sparse

codes for patches from a test dataset, by varying the desired sparsity. The test dataset

consisted of 120, 000 non-overlapping 8×8 patches extracted from images in the BSDS

test images. The illustration in Figure 5.3(b) shows the mean squared error (MSE) of

111

(a) (b)

Figure 5.4: Comparison of the MSE obtained with the BSDS test dataset using
(a) MLD dictionaries trained at different noise levels (σtr), (b) K-SVD dictionaries
trained at different noise levels (σtr).

the representation as a function of the number of non-zero coefficients. For the case

of MLD, the results obtained using both the M-OMP and the RM-OMP schemes are

shown. The OMP algorithm was employed to compute the sparse coefficients with

the K-SVD dictionary. It can be observed that the MSE obtained using the M-OMP

procedure is higher in all cases of sparsity, when compared to RM-OMP. Since the

RM-OMP procedure considers dictionary atoms from the neighboring levels when

computing a coefficient, it results in an improved generalization. When compared

to K-SVD, multilevel dictionaries lead to a more accurate reconstruction when the

sparsity level S ≥ 4, which is the range typically used in several applications.

5.3 Learning Dictionaries with Noisy Training Data

In this section, we demonstrate that the proposed multilevel dictionary and the K-

SVD dictionary exhibit similar behavior, under noisy training conditions.

The training data consisted of 50, 000 randomly chosen patches, of size 8× 8,

extracted from the grayscale images of the Berkeley segmentation dataset (BSDS)

training dataset [1]. The mean value of each training patch was removed as a

112

preprocessing step. In order to analyze the performance of the MLD learning un-

der noisy conditions, additive white Gaussian noise (AWGN) of standard deviation

σtr = {0, 15, 25} was added to the training data. The number of levels for learning

the MLD was fixed at 16 and the error goal was fixed at (1.15σtr)2M [139], where M

is the dimensionality of the training data. The reason for this is that with a proba-

bility of 0.75, the AWGN noise with a standard deviation σtr will lie within a range

[−1.15σtr, 1.15σtr]. By setting the error goal as (1.15σtr)2M , on an average we will

have a very low chance of choosing noise as a part of the representation. For compar-

ison, we designed K-SVD dictionaries of size 64 × 256 at different noise levels with

the same error goal and a maximum sparsity of 16. For testing, AWGN of standard

deviation σte = {0, 5, 10, 15, 20, 25} was added to the test patches. Note that we did

not perform any denoising here and only used the global dictionaries to generate rep-

resentations for the noisy test data. For the case of MLD, we report only the results

obtained using RM-OMP. The illustration in Figures 5.4(a) and 5.4(b) demonstrate

that the performance degradation, with respect to noise level in the training data,

for both K-SVD and MLD dictionaries are similar.

5.4 Stability and Generalization

In this section, the behavior of the proposed dictionary learning algorithm is consid-

ered from the viewpoint of algorithmic stability: the behavior of the algorithm with

respect to the perturbations in the training set. It will be shown that the dictionary

atoms learned by the algorithm from two different training sets whose samples are

realized from the same probability space, become arbitrarily close to each other, as

the number of training samples T →∞. Since the proposed MLD learning is equiv-

alent to learning K-lines cluster centroids in multiple levels, the stability analysis of

K-lines clustering [35] will be utilized in order to prove its stability. For each level of

learning, the cases of single and multiple minimizers to the clustering objective will

113

be considered. Proving that the learning algorithm is stable will show that the global

dictionaries learned from the data depend only on the probability space to which

the training samples belong and not on the actual samples themselves, as T → ∞.

We also show that the MLD learning generalizes asymptotically, i.e., the difference

between expected error and average empirical error in training approaches zero, as

T → ∞. Therefore, the expected error for novel test data, drawn from the same

distribution as the training data, will be close to the average empirical training error.

The stability analysis of the MLD algorithm will be performed by considering

two different dictionaries Ψ and Λ with L levels each. Each level consists of Kl

dictionary atoms and the sub-dictionaries in each level are indicated by Ψl and Λl

respectively. Note that the sub-dictionaries Ψl and Λl are the cluster centers learned

using K-lines clustering on the training data for level l. The steps involved in proving

the overall stability of the algorithm are: (a) showing that each level of the algorithm

is stable in terms of L1(P) distance between the distortion functions, defined in (5.12),

as the number of training samples T →∞ (Section 5.4.2), (b) proving that stability

in terms of L1(P) distances indicates closeness of the centers of the two clusterings

(Section 5.4.3), in terms of the metric defined in (5.14), and (c) showing that level-

wise stability leads to overall stability of the dictionary learning algorithm (Section

5.4.4).

5.4.1 Stability Analysis of K-lines Clustering

Analyzing the stability of unsupervised clustering algorithms can be valuable in terms

of understanding their behavior with respect to perturbations in the training set.

These algorithms extract the underlying structure in the training data and the qual-

ity of clustering is determined by an accompanying cost function. As a result, any

clustering algorithm can be posed as a Empirical Risk Minimization (ERM) proce-

dure, by defining a hypothesis class of loss functions to evaluate the possible cluster

114

configurations and to measure their quality [107]. For example, K-lines clustering can

be posed as an ERM problem over the distortion function class

GK =
{
gΨ(y) = d(y,ψj), j = argmax

l∈{1,··· ,K}
|yTψl|

}
. (5.8)

The class GK is obtained by taking functions gΨ corresponding to all possible combi-

nations of K unit length vectors from the RM space for the set Ψ. Let us define the

probability space for the data in RM as (Y ,Σ, P), where Y is the sample space and Σ

is a sigma-algebra on Y , i.e., the collection of subsets of Y over which the probability

measure P is defined. The training samples, {yi}Ti=1, are T i.i.d. realizations from

the probability space.

Ideally, we are interested in computing the cluster centroids Ψ̂ that minimize

the expected distortion E[gΨ] with respect to the probability measure P . However,

the underlying distribution of the data samples is not known and hence we resort

to minimizing the average empirical distortion with respect to the training samples

{yi}Ti=1 as

gΨ̂ = argmin
g∈GK

1
T

T∑
i=1

gΨ(yi). (5.9)

When the empirical averages of the distortion functions in GK uniformly converge to

the expected values over all probability measures P ,

lim
T→∞

sup
P

P
(

sup
gΨ∈GK

∣∣∣∣∣E[gΨ]− 1
T

T∑
i=1

gΨ(yi)
∣∣∣∣∣ > δ

)
= 0, (5.10)

for any δ > 0, we refer to the class GK as uniform Glivenko-Cantelli (uGC). In

addition to being uGC, if the class also satisfies a version of the central limit theo-

rem, it is defined as uniform Donsker [108]. In order to determine if GK is uniform

Donsker, we have to verify if the covering number of GK with respect to the supremum

norm, N∞(γ,GK), grows polynomially in the dimensions M [26]. Here, γ denotes the

maximum L∞ distance between an arbitrary distortion function in GK , and the func-

tion that covers it. For K-lines clustering, the covering number is upper bounded
115

by [35, Lemma 2.1]

N∞(γ,GK) ≤
(

8R3K + γ

γ

)MK

, (5.11)

where we assume that the data lies in an M -dimensional `2 ball of radius R centered

at the origin. Therefore, GK belongs to the uniform Donsker class.

The general idea behind stability of a clustering algorithm is that the algo-

rithm should produce cluster centroids that are not significantly different when differ-

ent i.i.d. training sets from the same probability space are used for training [24–26].

Stability is characterized based on the number of minimizers to the clustering objec-

tive with respect to the underlying data distribution. A minimizer corresponds to

a function gΨ ∈ GK with the minimum expectation E[gΨ]. Stability analysis of the

K-means algorithm has been reported in [25,26].

Though the geometry of K-lines clustering is different from that of K-means,

the stability characteristics of the two clustering algorithms have been found to

be similar [35]. Given two sets of cluster centroids Ψ = {ψ1, . . . ,ψK} and Λ =

{λ1, . . . ,λK} learned from training sets of T i.i.d. samples each realized from the

same probability space, let us define the L1(P) distance between the corresponding

clusterings as

‖gΨ − gΛ‖L1(P) =
∫
|gΨ(y)− gΛ(y)|dP (y). (5.12)

When T → ∞, and GK is uniform Donsker, stability in terms of the distortion

functions is expressed as

‖gΨ − gΛ‖L1(P)
P−→ 0, (5.13)

where P−→ denotes convergence in probability. This holds true even for Ψ and Λ

learned from completely disjoint training sets, when there is a unique minimizer to

the clustering objective. When there are multiple minimizers, (5.13) holds true with

respect to a change in o(
√
T) samples between two training sets and fails to hold

with respect to a change in Ω(
√
T) samples [35]. The distance between the cluster

116

centroids themselves is defined as [26]

∆(Ψ,Λ) = max
1≤j≤K

min
1≤l≤K

[
(d(ψj,λl))1/2 + (d(ψl,λj))1/2

]
. (5.14)

Lemma 5.4.1 ([35]) If the L1(P) distance between the distortion functions for the

clusterings Ψ and Λ is bounded as ‖gΨ − gΛ‖L1(P) < µ, for some µ > 0, and

dP (y)/dy > C, for some C > 0, then ∆(Ψ,Λ) ≤ 2 sin(ρ) where

ρ ≤ 2 sin−1

1
r

(
µ

ĈC,M

) 1
M+1

 . (5.15)

Here the training data is assumed to lie outside an M-dimensional `2 ball of radius r

centered at the origin, and the constant ĈC,M depends only on C and M .

When the clustering algorithm is stable according to (5.13), for admissible

values of r, Lemma 5.4.1 indicates that the cluster centroids become arbitrarily close

to each other, ∆(Ψ,Λ) P−→ 0, which implies stability in terms of cluster centroids.

From (5.15), it is also clear that the K-lines clustering cannot be stable if some

training vectors have a norm close enough to 0, (i.e.) r → 0.

5.4.2 Level-wise Stability for MLD Learning

Let us define a probability space (Yl,Σl, Pl) where Yl is the data that lies in RM , and

Pl is the probability measure. The training samples for the sub-dictionaries Ψl and

Λl are two different sets of T i.i.d. realizations from the probability space. We also

assume that the `2 norm of the training samples is bounded from above and below

(i.e.), 0 < r ≤ ‖y‖2 ≤ R < ∞. Note that, in a general case, the data will lie in

RM for the first level of dictionary learning and in a finite union of lower-dimensional

subspaces of RM for the subsequent levels. In both cases, the following argument on

stability will hold. This is because when the training data lies in a union of lower

dimensional subspaces of RM , we can assume it to be still lying in RM , but assign

the probabilities outside the union of subspaces to be zero.

117

Figure 5.5: Illustration for showing the stability of cluster centroids from the stability
of distortion function.

In each level, Ψl and Λl are learned using the K-lines clustering algorithm

on two different i.i.d. sets of training data. The distortion function class for the

clusterings, defined similar to (5.8), is uniform Donsker because the covering num-

ber with respect to the supremum norm grows polynomially, according to (5.11).

When a unique minimizer exists for the clustering objective, the distortion func-

tions corresponding to the different clusterings Ψl and Λl become arbitrarily close,

‖gΨl
−gΛl

‖L1(Pl)
P−→ 0, even for completely disjoint training sets, as T →∞. However,

in the case of multiple minimizers, ‖gΨl
− gΛl

‖L1(Pl)
P−→ 0 holds only with respect to

a change of o(
√
T) training samples between the two clusterings, and fails to hold

when there is a change of Ω(
√
T) samples [26, 35].

5.4.3 Distance between Cluster Centers for a Stable Clustering

For each cluster center in the clustering Ψl, we pick the closest cluster center from

Λl, in terms of the distortion measure (3.1), and form pairs. Let us indicate the jth

pair of cluster centers by ψl,j and λl,j. Let us define τ disjoint sets {Ai}τi=1, in which

the training data for the clusterings exist, such that Pl(∪τi=1Ai) = 1. By defining

such disjoint sets, we can formalize the notion of training data lying in a union of

subspaces of RM . The intuitive fact that the cluster centers of two clusterings are
118

close to each other in RM space, given that their distortion functions are close, is

proved in the lemma below.

Lemma 5.4.2 Consider two sub-dictionaries (clusterings) Ψl and Λl with Kl atoms

each obtained using the T training samples that exist in the τ disjoint sets {Ai}τi=1

in the RM space, with 0 < r ≤ ‖y‖2 ≤ R < ∞, and dPl(y)/dy > C in each

of the sets. When the distortion functions become arbitrarily close to each other,

‖gΨl
− gΛl

‖L1(Pl)
P−→ 0 as T → ∞, the smallest angle between the subspaces spanned

by the cluster centers becomes arbitrarily close to zero, i.e.,

∠(ψl,j,λl,j)
P−→ 0, ,∀j ∈ 1, . . . , Kl. (5.16)

Proof Denote the smallest angle between the subspaces represented by ψl,j and Λl,j

as ∠(ψl,j,Λl,j) = ρl,j and define a region S(ψl,j, ρl,j/2) = {y|∠(ψl,j,y) ≤ ρl,j/2, 0 <

r ≤ ‖y‖2 ≤ R <∞}. If y ∈ S(ψl,j, ρl,j/2), then yT (I−ψl,jψ
T
l,j)y ≤ yT (I−λl,jλTl,j)y.

An illustration of this setup for a 2-D case is given in Figure 5.5. In this figure, the

arc q̂1q̂2 is of radius r and represents the minimum value of ‖y‖2. By definition,

the L1(Pl) distance between the distortion functions of the clusterings for data that

exists in the disjoint sets {Ai}τi=1 is

‖gΨl
− gΛl

‖L1(Pl) =
τ∑
i=1

∫
Ai

|gΨl
(y)− gΛl

(y)|dPl(y). (5.17)

For any j and i with a non-empty Bl,i,j = S(ψl,j, ρl,j/2) ∩ Ai we have,

‖gΨl
− gΛl

‖L1(Pl) ≥
∫
Bl,i,j

|gΨl
(y)− gΛl

(y)|dPl(y), (5.18)

=
∫
Bl,i,j

[
yT
(
I− λl,jλTl,j

)
y−

K∑
k=1

yT
(
I−ψl,kψTl,k

)
y

I
(
y closest to ψl,k

)]
dPl(y), (5.19)

≥
∫
Bl,i,j

[
yT
(
I− λl,jλTl,j

)
y− yT

(
I−ψl,jψTl,j

)
y
]
dPl(y), (5.20)

≥ C
∫
Bl,i,j

[(
yTψl,j

)2
−
(
yTλl,j

)2
]
dy. (5.21)

119

Figure 5.6: The residual set {Ψ̄l,j(β + dβ)}, for the 1-D subspace ψl,j, lying in its
orthogonal complement subspace ψ⊥l,j.

We have gΛl
(y) = yT

(
I− λl,jλTl,j

)
y in (5.19), since λl,j is the closest cluster center

to the data in S(ψl,j, ρl,j/2) ∩Ai in terms of the distortion measure (3.1). Note that

I is the indicator function and (5.21) follows from (5.20) because dPl(y)/dy > C.

Since by assumption, ‖gΨl
− gΛl

‖L1(Pl)
P−→ 0, from (5.21), we have

(
yTψl,j

)2
−
(
yTλl,j

)2 P−→ 0, (5.22)

because the integrand in (5.21) is a continuous non-negative function in the region of

integration.

Denoting the smallest angles between y and the subspaces spanned by ψl,j and

λl,j to be θψl,j
and θλl,j

respectively, from (5.22), we have ‖y‖2
2(cos2 θψl,j

−cos2 θλl,j
) P−→

0, for all y. By definition of the region Bl,i,j, we have θψl,j
≤ θλl,j

. Since ‖y‖2

is bounded away from zero and infinity, if (cos2 θψl,j
− cos2 θλl,j

) P−→ 0 holds for all

y ∈ Bl,i,j, then we have ∠(ψl,j,λl,j)
P−→ 0. This is true for all cluster center pairs as

we have shown this for an arbitrary i and j.

5.4.4 Stability of the MLD Algorithm

The stability of the MLD algorithm as a whole, is proved in Theorem 5.4.4 from its

levelwise stability by using an induction argument. The proof will depend on the
120

following lemma which shows that the residuals from two stable clusterings belong to

the same probability space.

Lemma 5.4.3 When the training vectors for the sub-dictionaries (clusterings) Ψl

and Λl are obtained from the probability space (Yl,Σl, Pl), and the cluster center

pairs become arbitrarily close to each other as T →∞, the residual vectors from both

the clusterings belong to an identical probability space (Yl+1,Σl+1, Pl+1).

Proof For the jth cluster center pair ψl,j, λl,j, define Ψ̄l,j and Λ̄l,j as the projection

matrices for their respective orthogonal complement subspaces ψ⊥l,j and λ⊥l,j. Define

the sets Dψl,j
= {y ∈ Ψ̄l,j(β + dβ) +ψl,jα} and Dλl,j

= {y ∈ Λ̄l,j(β + dβ) + λl,jα},

where −∞ < α <∞, β is an arbitrary fixed vector, not orthogonal to both ψl,j and

λl,j, and dβ is a differential element. The residual vector set for the cluster ψl,j, when

y ∈ Dψl,j
is given by, rψl,j

∈ {Ψ̄l,jy|y ∈ Dψl,j
}, or equivalently rψl,j

∈ {Ψ̄l,j(β+dβ)}.

Similarly for the cluster λl,j, we have rλl,j
∈ {Λ̄l,j(β + dβ)}. For a 2-D case, Figure

5.6 shows the 1-D subspace ψl,j, its orthogonal complement ψ⊥l,j, the set Dψl,j
and

the residual set {Ψ̄l,j(β + dβ)}.

In terms of probabilities, we also have that Pl(y ∈ Dψl,j
) = Pl+1(rψl,j

∈

{Ψ̄l,j(β + dβ)}), because the residual set {Ψ̄l,j(β + dβ)} is obtained by a linear

transformation of Dψl,j
. Here Pl and Pl+1 are probability measures defined on the

training data for levels l and l+ 1 respectively. Similarly, Pl(y ∈ Dλl,j
) = Pl+1(rλl,j

∈

{Λ̄l,j(β + dβ)}). When T → ∞, the cluster center pairs become arbitrarily close to

each other, i.e., ∠(ψl,j,λl,j)
P−→ 0, by assumption. Therefore, the symmetric difference

between the sets Dψl,j
and Dλl,j

approaches the null set, which implies that Pl(y ∈

Dψl,j
)− Pl(y ∈ Dλl,j

)→ 0. This implies,

Pl+1(rψl,j
∈ {Ψ̄l,j(β + dβ)})−

Pl+1(rλl,j
∈ {Λ̄l,j(β + dβ)})→ 0, (5.23)

121

for an arbitrary β and dβ, as T → ∞. This means that the residuals of ψl,j and

λl,j belong to a unique but identical probability space. Since we proved this for an

arbitrary l and j, we can say that the residuals of clusterings Ψl and Λl belong to an

identical probability space given by (Yl+1,Σl+1, Pl+1).

Theorem 5.4.4 Given that the training vectors for the first level are generated from

the probability space (Y1,Σ1, P1), and the norms of training vectors for each level are

bounded as 0 < r ≤ ‖y‖2 ≤ R <∞, the MLD learning algorithm is stable as a whole.

Proof The level-wise stability of MLD was shown in Section 5.4.2, for two cases: (a)

when a unique minimizer exists for the distortion function and (b) when a unique

minimizer does not exist. Lemma 5.4.2 proved that the stability in terms of close-

ness of distortion functions implied stability in terms of learned cluster centers. For

showing the level-wise stability, we assumed that the training vectors in level l for

clusterings Ψl and Λl belonged to the same probability space. However, when learn-

ing the dictionary, this is true only for the first level, as we supply the algorithm with

training vectors from the probability space (Y1,Σ1, P1).

We note that the training vectors for level l+ 1 are residuals of the clusterings

Ψl and Λl. Lemma 5.4.3 showed that the residuals of level l for both the clusterings

belong to an identical probability space (Yl+1,Σl+1, Pl+1), given that the training

vectors of level l are realizations from the probability space (Yl,Σl, Pl) and T →∞.

By induction, this along with the fact that the training vectors for level 1 belong

to the same probability space (Y1,Σ1, P1), shows that all the training vectors of

both the dictionaries for any level l indeed belong to a probability space (Yl,Σl, Pl)

corresponding to that level. Hence all the levels of the dictionary learning are stable

and the MLD learning is stable as a whole.

122

(a) (b)

Figure 5.7: (a) Demonstration of the stability behavior of the proposed MLD learning
algorithm. The minimum Frobenius norm between difference of two dictionaries with
respect to permutation of their columns and signs is shown. The second dictionary
is obtained by replacing different number of samples in the training set, used for
training the original dictionary, with new data samples. (b) Demonstration of the
generalization characteristics of the proposed algorithm compared to K-SVD. We
plot the MSE obtained by representing patches from the BSDS test dataset, using
dictionaries learned with different number of training patches. For comparison, we
show the training error obtained in each case.

If there is a unique minimizer to the clustering objective in all levels of MLD

learning, then the MLD algorithm is stable even for completely disjoint training sets,

as T → ∞. However, if there are multiple minimizers in at least one level, the

algorithm is stable only with respect to a change of o(
√
T) training samples between

the two clusterings. In particular, a change in Ω(
√
T) samples makes the algorithm

unstable.

5.4.5 Generalization Analysis

Since our learning algorithm consists of multiple levels, and cannot be expressed as

an ERM on a whole, the algorithm can be said to generalize asymptotically if the

sum of empirical errors for all levels converge to the sum of expected errors, as the

123

number of training samples T →∞. This can be expressed as∣∣∣∣∣ 1T
L∑
l=1

T∑
i=1

gΨl
(yl,i)−

L∑
l=1

EPl
[gΨl

]
∣∣∣∣∣ P−→ 0, (5.24)

where the training samples for level l given by {yl,i}Ti=1 are obtained from the prob-

ability space (Yl,Σl, Pl). When (5.24) holds and the learning algorithm generalizes,

it can be seen that the expected error for test data which is drawn from the same

probability space as that of the training data, is close to the average empirical error.

Therefore, when the cluster centers for each level are obtained by minimizing the

empirical error, we are guaranteed that the expected test error will also be small.

In order to show that (5.24) holds, we use the fact that each level of MLD

learning is obtained using K-lines clustering. Hence, from (5.10), the average empir-

ical distortion in each level converges to the expected distortion as T →∞,∣∣∣∣∣ 1T
T∑
i=1

gΨl
(yl,i)− EPl

[gΨl
]
∣∣∣∣∣ P−→ 0. (5.25)

The validity of the condition in (5.24) follows directly from the triangle inequality,∣∣∣∣∣ 1T
L∑
l=1

T∑
i=1

gΨl
(yl,i)−

L∑
l=1

EPl
[gΨl

]
∣∣∣∣∣

≤
L∑
l=1

∣∣∣∣∣ 1T
T∑
i=1

gΨl
(yl,i)− EPl

[gΨl
]
∣∣∣∣∣ . (5.26)

If the M-OMP coding scheme is used for test data, and the training and test

data for level 1 are obtained from the probability space (Y1,Σ1, P1), the probability

space for both training and test data in level l will be (Yl,Σl, Pl). This is because, both

the M-OMP coding scheme and the MLD learning associate the data to a dictionary

atom using the maximum absolute correlation measure and create a residual that is

orthogonal to the atoms chosen so far. Hence, the assumption that training and test

data are drawn from the same probability space in all levels hold and the expected

test error will be similar to the average empirical training error.

124

5.4.6 Simulations

Both stability and generalization are crucial for building effective global dictionaries

to model natural image patches. Although it is not possible to demonstrate the

asymptotic behavior experimentally, we study the changes in the behavior of the

learning algorithm with increase in the number of samples used for training.

In order to illustrate the stability characteristics of MLD learning, we setup

an experiment where we consider a multilevel dictionary of 4 levels, with 8 atoms in

each level. We extracted patches of size 8 × 8 from the BSDS training images and

trained multilevel dictionaries using different number of training patches T . As we

showed in Section 5.4, asymptotic stability is guaranteed when the training set is

changed by not more than o(
√
T) samples. In other words, the inferred dictionary

atoms will not vary significantly, if this condition is satisfied.

We fixed the size of the training set at different values T = {1000, 5000,

10000, 50000, 100000} and learned an initial set of dictionaries using the proposed

algorithm. The second set of dictionaries were obtained by replacing different number

of samples from the original training set. For each case of T , the number of replaced

samples was varied between 100 and T . For example, when T = 10000, the number of

replaced training samples were 100, 1000, 5000, and 10000. The amount of change be-

tween the initial and the second set of dictionaries was quantified using the minimum

Frobenius norm of their difference with respect to permutations of their columns and

sign changes. In Figure 5.7(a), we plot this quantity for different values of T as a

function of the number of samples replaced in the training set. For each case of T ,

the difference between the dictionaries increases as we increase the replaced number

of training samples. Furthermore, for a fixed number of replaced samples (say 100),

the difference reduces with the increase in the number of training samples, since it

becomes closer to asymptotic behavior.

125

In order to demonstrate the generalization characteristics of MLD learning, we

designed dictionaries using different number of training image patches, of size 8× 8,

from the BSDS training dataset and evaluated the sparse codes for patches in the

BSDS test dataset (Section 5.2.5). The dictionaries were learned at 16 levels with

16 atoms per level. Figure 5.7(b) shows the approximation error (MSE) for both the

training and test datasets obtained using multilevel dictionaries. Furthermore, the

corresponding MSE for the case of similarly designed K-SVD dictionaries are included

for comparison. In all cases, the sparsity in training and testing was fixed at S = 16.

As it can be observed, with MLD, the difference between the MSE for training and

test data is small even for a small training set. However, the K-SVD dictionaries

resulted in much higher MSE difference for a small training set, although the MSE

with training data is similar for both MLD and KSVD. Note that, in both cases,

the approximation error for the test data reduces with the increase in the size of the

training set.

5.5 Robust Multilevel Dictionaries

The finite size of the training set and the lack of robustness in the initialization of

K-lines clustering can affect the generalization of multilevel dictionaries to novel test

patches. This is evidenced by the improved performance of RM-OMP over level-wise

approximation (M-OMP). A common approach to achieving robustness in learning

is to build an ensemble of multiple models inferred using different random subsets of

the training data. Bagging (bootstrap aggregating) is a well known machine learn-

ing techniqdietterich2000experimentalue [146] that uses bootstrapping (equiprobable

selection of samples with replacement) on the training data to create many varied

training sets with overlapping samples. It then evaluates the hypothesis for each

bootstrap sample, and creates an ensemble by averaging the different hypotheses.

This has been successfully used in several classification and regression problems.

126

Ta
bl
e5

.2
:P

SN
R
(d
B)

of
th
ei
m
ag
es

re
co
ve
re
d
fro

m
co
m
pr
es
se
d
m
ea
su
re
m
en
ts

ob
ta
in
ed

us
in
g
G
au

ss
ia
n
ra
nd

om
m
ea
su
re
m
en
t

m
at
ric

es
.
R
es
ul
ts

ob
ta
in
ed

us
in
g
th
e
pr
op

os
ed

M
LD

,R
M
LD

-E
x
an

d
R
M
LD

di
ct
io
na

rie
s,

al
on

g
w
ith

K
-S
V
D
,a

re
sh
ow

n
fo
r

di
ffe

re
nt

m
ea
su
re
m
en
t
no

ise
co
nd

iti
on

s
an

d
nu

m
be

r
of

m
ea
su
re
m
en
ts
.
H
ig
he
r
PS

N
R

fo
r
ea
ch

ca
se

is
in
di
ca
te
d
in

bo
ld

fo
nt
.

M
ea

su
re

m
en

t
Im

ag
e

SN
R

M
et

ho
d

B
ar

ba
ra

B
oa

t
H

ou
se

L
en

a
M

an
(d
B
)

N
=

16
N

=
32

N
=

16
N

=
32

N
=

16
N

=
32

N
=

16
N

=
32

N
=

16
N

=
32

0
K
-S
V
D

(O
M
P)

20
.5
4

21
.5
1

22
.0
7

23
.4
2

23
.9
1

25
.4
8

24
.2
3

26
.1
6

23
.2

24
.9

M
LD

(R
M
-O

M
P)

20
.6
3

21
.9

22
.3
8

23
.5
6

23
.9
8

25
.5
4

24
.5
1

26
.4
3

23
.5
9

25
.1
8

R
M
LD

-E
x
(M

-O
M
P)

21
.9
9

22
.5
6

23
.7
6

24
.1
9

24
.9
3

26
.4

25
.3
5

26
.0
3

25
.1
4

25
.6
1

R
M
LD

(M
-O

M
P)

22
.0

2
22

.6
23

.7
6

24
.2

5
24

.9
7

26
.4

4
25

.3
8

26
.1

1
25

.1
5

25
.6

6

15
K
-S
V
D

(O
M
P)

21
.8
9

24
.3
4

25
.0
2

27
.3
9

26
.8
7

31
.0
1

28
.0
8

31
.4
2

26
.0
2

28
.5
4

M
LD

(R
M
-O

M
P)

22
.4
1

24
.9
5

25
.2
6

27
.8
3

27
.1
5

31
.3
7

28
.2
9

31
.5
5

26
.1
9

28
.8
2

R
M
LD

-E
x
(M

-O
M
P)

24
.0
9

26
.1
2

26
.3
7

29
.1
7

28
.3
2

31
.1
3

28
.9
4

31
.2
7

27
.4
7

29
.7
5

R
M
LD

(M
-O

M
P)

24
.1

6
26

.1
7

26
.6

9
29

.4
8

28
.7

9
31

.3
8

29
.1

1
31

.4
27

.6
2

30
.0

4

25
K
-S
V
D

(O
M
P)

22
.0
9

24
.9
9

25
.8
8

28
.7

27
.1

31
.6

29
.0
3

31
.8
3

26
.5
9

29
.3
6

M
LD

(R
M
-O

M
P)

22
.6
2

25
.2
6

25
.2
7

28
.8
2

27
.3
1

31
.7
8

28
.6
4

32
26

.7
1

29
.5
9

R
-M

LD
-E

x
(M

-O
M
P)

24
.1
4

26
.5
7

26
.5
7

29
.5
2

28
.4
4

32
.1
8

29
.1
2

32
.1
9

27
.6
1

30
R
-M

LD
(M

-O
M
P)

24
.3

3
26

.7
2

27
.0

7
29

.6
8

29
.0

4
32

.3
8

29
.5

5
32

.3
6

27
.7

9
30

.3
8

127

Table 5.3: Average Time(seconds) taken in MATLAB for training dictionaries, with
50, 000 samples, and recovering images of size 512 × 512 using different number of
random measurements.

Method Training N = 16 N = 32

MLD 502 0.11 0.19
RMLD-Ex 90 2.6 5.6
RMLD 1980 1.05 2.31

We propose to employ bagging to reduce overfitting in multilevel dictionary

learning and thereby improve the accuracy of the dictionaries in representing novel

test samples. Though it is typical to aggregate categorical values or numerical out-

puts, we propose to aggregate the signal approximation in each level of an MLD.

Instead of employing K-lines clustering on the training set (T samples), we draw D

bootstrap samples, i.e., we construct D training subsets each containing TD samples

(TD << T). For each subset, we learn K dictionary atoms using K-lines cluster-

ing. Note that, we allow overlap between the different bootstrap samples. For each

training sample in that level, we compute 1−sparse representations using all the D

dictionaries. The signal approximation in level 1 of the MLD is computed as the av-

erage of approximations using all D dictionaries, 1
D

∑
d Ψd

1Ad
1. Here, the superscript

d denotes the dictionary and coefficient matrices corresponding to round d in level 1

of the MLD. The general idea of learning atoms at multiple levels, with varying levels

of complexity, can be extended to this case as well. The ensemble representations are

used to compute the set of residuals and this process is repeated for a desired number

of levels. We refer to this dictionary as a Robust MLD (RMLD).

Since we employ bagging, the 1−sparse approximation in each level is more

robust and can generalize well to novel test samples. Hence, by adopting a simple

level-wise approximation scheme, Robust MLD can perform better than the RM-

128

(a) K-SVD (26.25 dB) (b) MLD (26.59 dB)

(c) BMLD-Ex (27.26 dB) (d) BMLD (27.81 dB)

Figure 5.8: Compressed recovery of images from random measurements (N = 16,
SNR of measurement process = 15dB) using the different dictionaries. In each case
the PSNR of the recovered image is also shown.

OMP scheme with an MLD. The robustness in performance comes at the price of

increased complexity for computing D 1−sparse representations in each level (Table

5.3). Furthermore, the ensemble coefficient vector will not be 1−sparse as in MLD

and hence cannot be efficient for storage-constrained applications such as compres-

sion. However, the significant improvement in approximation achieved by bagged

multilevel dictionaries merits their use in several image recovery problems. Though

it is beyond the scope of this work, we note that more efficient schemes to construct

the multiple dictionaries from the training set can be designed, and stability of the

resulting ensemble sparse codes can be analyzed.

129

Ta
bl
e
5.
4:

PS
N
R

(d
B)

of
th
e
im

ag
es

re
co
ve
re
d

fro
m

co
m
pr
es
se
d

m
ea
su
re
m
en
ts

ob
ta
in
ed

us
in
g
op

tim
iz
ed

m
ea
su
re
m
en
t

m
at
ric

es
.
T
he

pe
rfo

rm
an

ce
of

th
e
pr
op

os
ed

M
LD

di
ct
io
na

ry
is

co
m
pa

re
d
w
ith

th
at

of
K
-S
V
D

fo
r
di
ffe

re
nt

m
ea
su
re
m
en
t

no
ise

co
nd

iti
on

s
an

d
nu

m
be

r
of

m
ea
su
re
m
en
ts
.
H
ig
he
r
PS

N
R

fo
r
ea
ch

ca
se

is
in
di
ca
te
d
in

bo
ld

fo
nt
.

M
ea

su
re

m
en

t
Im

ag
e

SN
R

M
et

ho
d

B
ar

ba
ra

B
oa

t
H

ou
se

Le
na

M
an

(d
B)

N
=

16
N

=
32

N
=

16
N

=
32

N
=

16
N

=
32

N
=

16
N

=
32

N
=

16
N

=
32

0
K
-S
V
D

(O
M
P)

21
.5
2

22
.2
8

22
.2
5

24
.4
8

23
.3
3

25
.8
9

24
.0
4

26
.6
7

22
.8
7

25
.2

M
LD

(R
M
-O

M
P)

22
.1

22
.6

1
23

.4
7

24
.7

5
24

.8
2

26
.3

1
25

.5
5

27
.0

3
24

.4
8

25
.5

6

15
K
-S
V
D

(O
M
P)

24
.3
9

28
.1
8

27
.9
3

31
.7
1

30
.2

35
.1
1

30
.4
5

35
.1
2

28
.4
8

31
.9
5

M
LD

(R
M
-O

M
P)

25
.1

7
28

.3
5

29
.5

4
32

.6
3

32
.0

7
35

.3
8

32
.5

9
35

.6
1

30
.3

3
33

.3
6

25
K
-S
V
D

(O
M
P)

24
.7
9

29
.1
8

28
.5
4

33
.0
1

31
.1

35
.9
8

31
.3
2

36
.2

29
.1
7

33
.6

M
LD

(R
M
-O

M
P)

25
.4

3
29

.2
30

.3
8

34
.5

6
33

.3
38

.6
7

33
.8

9
38

.2
9

31
.1

6
35

.2
3

130

(a) K-SVD recovery (PSNR = 28.47 dB) (b) MLD recovery (PSNR = 30.31 dB)

(c) K-SVD recovery (PSNR = 30.43 dB) (d) MLD recovery (PSNR = 32.6 dB)

Figure 5.9: Compressed recovery of images using optimized measurements (N =
16, SNR of measurement process = 15dB). Only small portions of the images are
displayed for visualizing the differences in the quality of recovery.

Furthermore, the complexity of performing K-lines clustering for D rounds in

each level is quite high. This can be simplified by constructing simple dictionaries

using the training samples directly. In each level, we randomly choose K samples

from the training set as the dictionary atoms and normalize them to unit `2 norm.

We refer to this dictionary as BMLD-Ex. For a fixed value of D, the complexity

of approximating a test sample is the same for RMLD and RMLD-Ex dictionaries.

More details about ensemble dictionary learning and its use in MLD design can be

found in [147,148].

5.6 Application: Compressed Recovery

In this section, we demonstrate the performance of multilevel dictionaries in com-

pressed sensing of images using the BSDS dataset and a set of standard images, with

random and optimized measurement systems. Sensing and recovery were performed

on a patch-by-patch basis, on non-overlapping patches of size 8×8. MLD and K-SVD

dictionaries were learned with 50000 BSDS patches as described in Section 5.2.5. For

131

learning the BMLD, we fix K = 16 and learn D = 20 rounds of K-lines dictionaries in

each level (L = 16) using random sets of training data. We also observed the BMLD-

Ex needed more rounds of dictionaries in each level when compared to BMLD and

hence we fixed D at 50 in that case. The measurement process can be expressed as

x = ΦΨa + η, (5.27)

where Ψ is the dictionary (MLD or K-SVD in our case), Φ is the measurement or

projection matrix, η is the AWGN vector added to the measurement process, x is

the output of the measurement process and a is the sparse coefficient vector such

that y = Ψa. The size of the data vector y is M × 1, that of Ψ is M × K, that

of the measurement matrix Φ is N ×M , where N < M , and that of the measured

vector x is N×1. The entries in the random measurement matrices were independent

realizations from a standard normal distribution. We recover the underlying image

from its compressed measurements, using the K-SVD, MLD, and BMLD dictionaries.

For each case, we present average results from 100 trial runs, each time with a different

measurement matrix.

We evaluated the recovery performance for the following set of standard im-

ages: Barbara, Boat, House, Lena, and Man. Table 5.2 shows the PSNR (peak

signal-to-noise ratio) obtained using different number of measurements, and at vary-

ing measurement noise levels. As it can be observed, the proposed multilevel dictio-

naries outperform the K-SVD dictionaries in all cases. Furthermore, the proposed

Bagged MLD algorithm results in much improved recovery, for a slight increase in

complexity. The average time taken for recovering an image of size 512 × 512 us-

ing the three proposed dictionaries are listed in Table 5.3. Figure 5.9 illustrates the

recovered images obtained using different dictionaries with random measurements.

Besides performing sensing with random measurement matrices, that are used

extensively in compressed sensing, we also used measurement matrices optimized to
132

dictionaries that can provide much better performance than random matrices [140,

149]. We adopt the strategy proposed in [140], and compute optimized measurement

matrices for the pre-existing K-SVD and multilevel dictionaries. Note that, we did

not compute optimized measurements for the Bagged MLD since it is not feasible to

compute the measurements for the several dictionaries in each level. Similar to the

previous case, multilevel dictionaries achieve superior recovery results in comparison

to K-SVD dictionaries (Table 5.4).

5.6.1 Variation of Recovery Performance with the Training Set

In order to demonstrate the dependence of the proposed MLD learning on the size

and type of the training set, we performed compressed recovery of the Boat image

using dictionaries learned using different number of training patches obtained from

two different standard image databases: the BSDS [1] and the UCID [150]. The

number of training image patches, obtained from each of the datasets, was varied

between 5, 000 and 50, 000. For each case, we learned an MLD with 16 levels and

16 atoms per level, and a K-SVD dictionary of size 64 × 256 with the number of

non-zero coefficients (S) fixed at 16. We performed compressed recovery using 16

random and optimized measurements at a measurement SNR of 15 dB. For random

measurements the results were averaged over 100 iterations. Figures 5.10(a) and

5.10(b) show the recovery performance obtained for each dataset using both the

dictionaries, for random and optimized projections respectively. As it can be observed,

the performance is fairly independent of the dataset used for training. Furthermore,

the proposed learning scheme achieves a better performance, as well as a much smaller

performance variations, across dictionaries obtained using different number of training

samples.

133

(a) (b)

Figure 5.10: Compressed recovery performance of the Boat image with K-SVD and
MLD dictionaries learned using different number of training patches randomly chosen
from different standard datasets for, (a) random measurements and (b) optimized
measurements.

5.7 Application: Denoising

Our goal in denoising is to recover the clean image Y from the noisy observed imageX.

The image X is divided into patches of size 8×8 with an overlap of 1 pixel, and these

patches are vectorized and stacked in the matrix X. A noisy observation x (a column

in X), can be represented as a corrupted version of its corresponding clean patch, x =

y + η, where η is the AWGN vector with standard deviation σ. Patchwise recovery

was performed using RM-OMP with the global MLD dictionary learned with 50, 000

patches as described in Section 5.2.5. Patchwise error goal was fixed and image-

level reconstruction constraints were posed as described in [139]. All results were

averaged over 5 iterations. Note that, under low-noise conditions dictionaries learned

from the noisy test image itself perform better than global dictionaries. However,

under high-noise conditions, global dictionaries perform comparably to image-specific

dictionaries. This results in a significant computational advantage since it is not

necessary to train a separate dictionary for each noisy image. Furthermore, we focus

on global dictionary learning in this chapter and hence we compare the results of

134

Table 5.5: PSNR (dB) of the denoised standard images corrupted with AWGN of
standard deviation σ. In each case, the average of 5 trials is provided. Higher
performance is shown in bold font.

Image
Noise Barbara Boat Fingerprint House Lena

K-SVD MLD K-SVD MLD K-SVD MLD K-SVD MLD K-SVD MLD

20 28.87 29.15 30.24 30.31 28.21 28.37 32.88 32.93 32.27 32.44
25 27.57 27.91 29.17 29.26 26.94 27.22 31.82 31.99 31.2 31.37
50 24.06 24.15 25.91 25.97 22.68 23.36 27.91 27.98 27.77 27.89
75 22.54 22.57 24.02 24.06 19.73 20.24 25.33 25.42 25.81 25.92
100 21.73 21.72 22.83 22.92 18.23 18.72 23.86 24.06 24.45 24.51

Table 5.6: Average Time(seconds) taken in MATLAB for denoising images of size
512× 512 under different noise conditions.

Method σ = 20 σ = 25 σ = 50 σ = 75 σ = 100

K-SVD [4] 16.47 14.93 11.43 9.58 8.61
MLD 8.79 8.52 7.96 7.54 7.11

global MLD and K-SVD dictionaries in Table 5.5 for high-noise conditions (σ ≥ 20).

For global K-SVD dictionary, the results reported in [139] were used. It can be

seen that, in almost all the cases, global MLD performs better than global K-SVD

dictionaries. The denoised Lena and Fingerprint images are shown in Figure 5.11,

for σ = 20 and sigma = 50 respectively, where a clear improvement in reconstruction

performance is observed. Computationally, denoising using MLD is less expensive

compared to using K-SVD as seen from Table 5.6. All the times reported in this

chapter are obtained using MATLAB 2012a on a 2.8 GHz, 8-core Intel i7 Linux

machine.

5.8 Application: Image Compression

In this section, we report the performance of multilevel dictionaries in image com-

pression. MLD and K-SVD dictionaries of size 64× 512 learned under zero training

noise conditions were employed for compression of a test image. The test image illus-

135

(a) Original (b) Noisy (c) K-SVD (d) MLD

(a) Original (b) Noisy (c) K-SVD (d) MLD

Figure 5.11: Original, noisy and denoised Lena and Fingerprint images with their
respective PSNRs. Reconstructed images for global K-SVD dictionaries are obtained
using the K-SVD toolbox [4].

trated in Figure 5.12(a) was obtained from the Uncompressed Color Image Database

(UCID) [150] and converted to grayscale. The multilevel dictionary was obtained

from the BSDS training set (50, 000 patches) with 16 atoms per level and 32 levels.

A K-SVD dictionary of size 64×512 was learned from the training set, with the max-

imum sparsity fixed at 32. The simulation setup used is similar to the one presented

in [83]. The rate of compression in bits per pixel is given by,

R = a1B + F (a2 +Q)
P

, (5.28)

where a1 is the number of bits required to code the number of coefficients per patch,

B is the total number of patches coded, F is the total number of coefficients to be

coded for the full test dataset, a2 is the number of bits required to code the index

of each coefficient, Q is the number of bits required to code a single coefficient and

P is the total number of pixels in the test set. Assuming entropy coding, the values

136

(a)
(b)

Figure 5.12: (a) Test image from the UCID dataset for compression, (b) Rate-
Distortion curves obtained using the MLD and K-SVD global dictionaries of 512
atoms.

of a1 and a2 are log2 32 and log2 512 as there could be a maximum of 32 coefficients

per patch and the total number of indices for the coefficients are 512. In this case,

we removed the mean value from each patch and then coded the patches. However,

coding the mean values will not affect our performance comparison, as the extra rate

required to code the mean will only shift the RD curves to the right.

In order to obtain different rates, the maximum possible sparsity was fixed at

32 and the error goals for the pursuit algorithms were varied. The coefficients obtained

for each error goal were then quantized using uniform quantization for different values

of Q. For quantization purposes, a single upper and lower bound for the coefficients

was obtained using the training set. The MSE and hence the PSNR of reconstruction

using the quantized coefficients were then collected. From the scatter plot of rate

versus PSNR, the best values were then chosen and plotted as the RD curve. The

curves thus obtained are given in Figure 5.12(b). As expected, performing M-OMP

based reconstruction using MLD provides the worst results at all bit-rates. At low

bit-rates, the performance of the K-SVD and the MLD dictionaries (RM-OMP) are
137

quite similar. However, at moderate to high bit rates MLD performs consistently

better. Hence, it is clear that the MLD is well suited for compression at all bit rates.

138

Chapter 6

MULTIPLE KERNEL SPARSE REPRESENTATIONS

6.1 Problem Statement

Sparse models have been effective in several image recovery applications, and this

has motivated their use in computer vision problems. One of the first sparse coding

based object recognition frameworks used codes obtained from raw image patches [98].

However, since then several frameworks have been proposed that use sparse codes of

local descriptors, such as the Scale Invariant Feature Transform (SIFT), extracted

from images. In order to construct image level descriptors, the codes are aggregated

in an orderless bag-of-features approach [151] or using the spatial pyramid matching

(SPM) approach [99] that partially preserves the spatial ordering. Methods that use

sparse codes of local descriptors in spatial pyramids have achieved better performance

[100,152–154], in comparison to the original SPM approach which is based on vector

quantization. Furthermore, the authors in [100] demonstrated that spatial pyramid

aggregation of sparse codes can lead to high object recognition accuracies with just

linear classifiers.

Though sparsity can lead to improved separability in high-dimensional spaces

[29], it has been experimentally shown that incorporating sparse coding for feature ex-

traction does not guarantee an improvement in object recognition performance [155].

Hence, there is a need to promote discrimination implicitly or explicitly while per-

forming sparse coding and dictionary learning for recognition tasks. For this reason,

some algorithms explicitly incorporate class-specific discriminatory information when

learning the dictionary, and this is applied for digit recognition and image classifi-

cation [91, 152, 156, 157]. Furthermore, improved discrimination among classes have

been obtained by performing simultaneous sparse coding to enforce similar non-zero

coefficient support for all samples in a class [46,158,159], and coding the descriptors

using dictionary atoms in their neighborhood [153]. Other approaches that lead to
139

discriminative sparse codes are those that constrain the sparse codes to obey the

constraints induced by the neighborhood graphs of the training data [160,161].

In addition to their widespread applicability in supervised learning frame-

works, sparsity has also been shown to be useful in unsupervised clustering appli-

cations. In [162], the authors show that clustering graph-regularized sparse codes

with K-means results in better clustering performance when compared to using the

data directly. The relation between data samples can be inferred by representing

each data sample as a sparse linear combination of all the others. These sparse codes

can be then used to build an `1 graph, and spectral clustering can be performed on

the graph [34]. However, if there are a large number of training examples, comput-

ing sparse codes in this manner can be quite expensive in terms of computations.

In [163], the authors show that this can be avoided by using a fixed size dictionary

with appropriate constraints. This dictionary can be then used to obtain sparse codes

and they can be subsequently used to perform spectral clustering.

Despite its great applicability, the use of sparse models in image classification

presents two main challenges. Firstly, in recognition application, no single descriptor

can efficiently represent the various aspects of the data. Hence, there is a need to

integrate multiple descriptors extracted from images into the sparse coding paradigm.

The other challenge is that each descriptor could potentially belong to a different

space and the similarity measure for each descriptor could be defined as a non-linear

function. For example, descriptors can be expressed as vectors, matrices, scalar

values, or tensors. The proper way to combine them hence would be to fuse the

information that each descriptor provides about the data and not the raw descriptors

themselves. This can be efficiently performed by using appropriate kernel functions,

which measures the possible non-linear similarity between each set of descriptors [33],

and combining the kernel similarities to perform sparse coding in the unified feature

space. The non-linear similarities between descriptors in the input space transforms
140

to linear similarities in the unified feature space. The advantage of using multiple

diverse features in object recognition has been demonstrated in a number of research

efforts [164].

The sparse models learned in the unified feature space will lead to discrimina-

tory codes that can be used with linear classifiers. This is because, in this space, the

similarity measure between the features is linear and hence those that belong to the

same class will be grouped in the same low-dimensional subspaces. Furthermore, since

it is appropriate to use linear similarities linear classifiers are sufficient. Greedy ap-

proaches to obtain sparse codes using the kernel trick have been proposed [165], [166].

In [167], Guo et.al. proposed to perform kernel sparse coding of image descriptors,

and design dictionaries for object recognition, when the Radial Basis Function (RBF)

kernel is used. Furthermore, the authors of [168] designed a kernel dictionary learning

algorithm for digit recognition and demonstrated improved discrimination, particu-

larly in presence of noise.

6.2 Kernel Sparse Representations and Dictionary Learning

The kernel function maps the non-linearly separable features into a high dimensional

feature space, in which similar features are grouped together, hence improving the

linear separability [33]. The authors of [167] showed that sparse representations can

be efficiently performed in a high dimensional feature space using kernel methods.

In this section, we review the problem of kernel sparse representations, and describe

the procedure to optimize dictionaries using a fixed point iteration method when the

RBF kernel is used.

Let us define a function Φ : RM 7→ F , that maps the data samples from the

input space to a high dimensional feature space. The data sample in the input space

y transforms to Φ(y) in the feature space and the N training examples given by

Y = [y1 . . .yN] transform to Φ(Y) = [Φ(y1) . . .Φ(yN)]. The feature space similarity

141

or the kernel similarity between the training examples yi and yj are defined using

the pre-defined kernel function as K(yi,yj) := Φ(yi)TΦ(yj). The dictionary in the

feature space is denoted by the matrix by Φ(Ψ) = [Φ(ψ1),Φ(ψ2), ...,Φ(ψK)], where

each column indicates a dictionary element. The similarities between dictionary el-

ements and the training examples can also be computed using the kernel function

as Φ(ψk)TΦ(y) = K(ψk,yk) and Φ(ψk)TΦ(ψl) = K(ψk,ψl). Since all similarities

can be computed exclusively using the kernel function, it is not necessary to know

the transformation Φ. This greatly simplifies the computations in the feature space

when the similarities are pre-computed and is referred to as the kernel trick. We use

the notation KYY ∈ RN×N to represent the matrix Φ(Y)TΦ(Y) and it contains the

kernel similarities between all training examples. The similarity between two training

examples given by K(yi,yj) is the (i, j)th element of KYY, also denoted as Kyiyj
.

The problem of sparse coding in the feature space can be posed as the penalized

`1 minimization

min
a
‖Φ(y)− Φ(Ψ)a‖2

2 + λ‖a‖1, (6.1)

and the objective can be expanded as

Φ(y)TΦ(y)− 2aTΦ(Ψ)TΦ(y) + aTΦ(Ψ)TΦ(Ψ)a + λ‖a‖1,

= Kyy − 2aTKΨy + aTKΨΨa + λ‖a‖1. (6.2)

Note that we have used the kernel trick here to simplify the computations. Following

our notation, Kyy is the element K(y,y), KΨy is a K × 1 vector containing the

elements K(ψk,y), for k = {1, . . . , K} and KΨΨ is a K ×K matrix containing the

kernel similarities between all the dictionary atoms. As it can be easily observed,

the modified objective function is similar to the sparse coding problem, except for

the use of the kernel similarities. Hence, as noted in [167], the Feature-Sign Search

algorithm can be employed to solve for the sparse codes. However, it is important

to note that the computation of kernel matrices incurs additional complexity. Since
142

the dictionary is fixed in (7.3), KΨΨ is computed only once and the complexity of

computing KΨy grows as O(MK). When the kernel sparse codes for all N training

samples are computed, the dictionary can be obtained by minimizing
N∑
i=1
‖Φ(yi)− Φ(Ψ)ai‖2

2, (6.3)

with respect to the constraint that they are normalized in the feature space, Φ(ψk)TΦ(ψk) =

1, ∀k = {1, . . . , K}. Since dictionary update is performed in the feature space, it is

not straightforward to use standard procedures such as the K-SVD or Lagrangian

dual based methods [64], and hence the authors in [167] employed a fixed point algo-

rithm. In this section, we derive expressions for dictionary update using fixed point

iteration method for the case of the RBF kernel. Note that, when the kernel func-

tion does not have a closed form or the function is not differentiable, this procedure

cannot be used to update the dictionary. In Section 6.5, we describe a method that

is suitable for dictionary learning with any arbitrary kernel matrix.

6.2.1 Radial Basis Function Kernel

The radial basis function (RBF) is a well-known kernel that has wide applicability

and it is defined as

K(yi,yj) = exp(−γ‖yi − yj‖2
2), (6.4)

where γ is a positive constant. Note that, K(ψk,ψk) = 1 and hence there is no need to

enforce the normalization constraint Φ(ψk)TΦ(ψk) = 1 when updating the dictionary

atoms. The objective function for dictionary update in (6.3) can be simplified as
N∑
i=1

[
1− 2

K∑
l=1

al,iK(ψl,yi) +
K∑
l=1

K∑
t=1

al,iat,iK(ψl,ψt)
]
, (6.5)

where al,i represents the ith element in the coefficient vector al. In order to update

the dictionary atom ψk, we compute the derivative of (6.5) using the definition of

RBF kernel given in (6.4), and set the derivative to zero as follows,

− 4γ
N∑
i=1

[
−ak,iK(ψk,yi)(ψk − yi) +

K∑
t=1

ak,iat,iK(ψk,ψt)(ψk −ψt)
]

= 0. (6.6)

143

Since no closed-form expression can be obtained for updating the dictionary atom

ψk, we use the fixed point algorithm similar to the one proposed in [167]. In this

procedure, the dictionary atom ψk from the (n− 1)th is used to compute the kernel

similarities for the nth of the update. Denoting the kth atom in the nth iteration by

ψ
(n)
k , we can rewrite the expression in (6.6) as

− 4γ
N∑
i=1

[
−ak,iK(ψ(n−1)

k ,yi)(ψ(n)
k − yi) +

K∑
t=1

ak,iat,iK(ψ(n−1)
k ,ψt)(ψ

(n)
k −ψt)

]
= 0.

(6.7)

By solving (6.7), we obtain

ψ
(n)
k =

Ψdiag[K(n−1)
ψkΨ]AaTk,row −Ydiag[K(n−1)

ψkY]aTk,row
K(n−1)
ψkΨ AaTk,row −K(n−1)

ψkY aTk,row
, (6.8)

Here ak,row is a row vector containing the set of coefficients of all training vectors

corresponding to the dictionary atom ψk, and diag[.] creates a diagonal matrix using

the argument vector as its diagonal. The 1 × K kernel matrix K(n−1)
ψkΨ contains the

elements K(ψ(n−1)
k ,ψl), for l = {1 . . . K} and the 1 × N matrix K(n−1)

ψkY contains the

elements K(ψ(n−1)
k ,yi), for i = {1 . . . N} respectively.

6.3 Multiple Kernel Sparse Representations

The use of multiple descriptors to characterize images has been a very successful

approach for complex visual recognition tasks. Though this method provides the

flexibility of choosing features to describe different aspects of the underlying data, the

resulting representations are high-dimensional and the descriptors can be very diverse.

Hence, in order to facilitate recognition tasks, there is a need to transform these

features to a unified space, and construct low dimensional compact representations

for the images in the unified space. Multiple Kernel Learning (MKL) provides a

convenient way of fusing multiple descriptors by combining multiple base kernels,

each of which is created based on an image descriptor [164]. In this work we develop

the Multiple Kernel Sparse Representations (MKSR) model that aims to compute
144

the sparse representation for an image in the unified feature space obtained using

multiple kernels. In addition to building a compact representation for the data in the

high-dimensional feature space, MKSR can provide highly discriminative codes.

Suppose there are R descriptors extracted from each data sample. Let us de-

note the set of descriptors obtained from the data sample as yi = {yi,r}Rr=1, where i

is the sample index, and r is the descriptor index. Let the set of R base kernel func-

tions, each corresponding to a descriptor be denoted as {Kr}Rr=1, and the base kernel

matrices be denoted as {Kr}Rr=1. The ensemble kernel function and the ensemble

kernel matrix can be constructed as the non-negative linear combination,

K(yi,yj) =
R∑
r=1

βrKr(yi,r,yj,r), ∀βr ≥ 0, (6.9)

K =
R∑
r=1

βrKr, ∀βr ≥ 0. (6.10)

As described earlier, the ensemble kernel matrix contains the similarities between the

data samples in the unified feature space obtained using multiple kernels. Various

types of descriptors such as raw pixel values, histograms, feature vectors, and spatial

pyramids can be successfully combined by considering only the kernel matrices cor-

responding to the descriptors. In order to obtain the kernel matrix for a descriptor,

we can either employ a pre-defined kernel function such as the RBF or create a user-

defined kernel matrix using the pairwise distances between the descriptors. Given

a distance function ρr, that measures the distance between the descriptors obtained

from two samples, we can construct the kernel matrix as

Kr(i, j) = Kr(yi,r,yj,r) = exp(−γρ2
r(yi,r,yj,r)), (6.11)

where γ is a positive constant. Computing this kernel function is convenient, since

several useful image descriptors and their corresponding distance functions have been

proposed in the literature. Note that the kernel matrix in (7.9) is not guaranteed to

be positive semidefinite, which is a required characteristic for a proper kernel matrix.
145

In this case, we can follow the approach in [169] where we compute the smallest

eigenvalue of Kr and if it is negative, we add its absolute value to the diagonal of Kr.

Given a dictionary Ψ and a kernel function K, sparse codes can be obtained as

described in Section 6.2. However in the MKSR model we have R different descriptors

for each image. In order to obtain sparse codes using an ensemble kernel matrix,

we need to optimize the dictionaries for the unified feature space. In this chapter,

we consider two different approaches for obtaining multiple kernel sparse codes and

designing dictionaries using the kernel trick, that will be described in Sections 6.4 and

6.5 respectively. The first approach uses alternating optimization to compute separate

dictionaries for each descriptor and obtains sparse codes in the unified feature space

using ensemble kernel matrices. The second approach starts from the ensemble kernel

matrix for data and directly builds a multi-level dictionary along with a multi-level

representation in the unified feature space. This approach does not require knowledge

of the mathematical form of the individual kernels. In contrast, the first approach

needs a mathematical form of the kernel for each descriptor. The advantage with

the first approach is that optimized dictionaries for each descriptor, if previously

available, can be readily used to initialize the learning algorithm and hence better

performances can be obtained.

6.4 Proposed Method 1

In this section, we present the Method 1, that alternatively optimizes separate dictio-

naries for each image descriptor and obtains MKSRs by fusing the individual kernels.

Consider a dataset ofN data samples and R different descriptors to characterize them.

The kernel function Kr for descriptor r can be pre-defined kernel or constructed using

the distance function dr. For the rth descriptor, we use its corresponding samples,

{yi,r}Ni=1, to learn the dictionary Ψr = [ψ1,r,ψ2,r, . . . ,ψK,r] that can sparsely repre-

sent the descriptor set in its feature space. Given the descriptors and the dictionaries,

146

Figure 6.1: Proposed Method 1 for obtaining multiple kernel sparse representations.
In this approach, we alternatively optimize the individual dictionaries {Ψr}Rr=1 and
obtain the unified sparse codes {ai}Ni=1. Note that r = {1, . . . , R} denotes the index
of the descriptor. The ensemble kernel matrices for both the data samples and the
dictionary atoms are obtained as given in (7.10).

we compute the individual kernel matrices,

KYY,r(i, j) = Kr(yi,r,yj,r) ∀r = 1, . . . , R, (6.12)

KΨY,r(k, i) = Kr(ψk,r,yi,r) ∀r = 1, . . . , R, (6.13)

KΨΨ,r(k, l) = Kr(ψk,r,ψl,r) ∀r = 1, . . . , R. (6.14)

Let us define the corresponding ensemble kernel matrices as

KYY(i, j) =
R∑
r=1

βrKYY,r(i, j),∀βr ≥ 0. (6.15)

KΨY(k, i) =
R∑
r=1

βrKΨY,r(i, j),∀βr ≥ 0. (6.16)

KΨΨ(k, l) =
R∑
r=1

βrKΨΨ,r(i, j),∀βr ≥ 0. (6.17)

Similar to the kernel sparse representations problem in (7.3), the objective function

to be minimized for MKSR can be expressed as

min
a
‖Φ(y)− Φ(Ψ)a‖2

2 + λ‖a‖1,

= Kyy − 2aTKΨy + aTKΨΨa + λ‖a‖1. (6.18)

147

Here Φ(y) and Φ(Ψ) denote the data sample and the dictionary in the multiple

kernel domain. Given the ensemble kernel matrices, multiple kernel sparse codes

can be efficiently obtained using the Feature-Sign search algorithm. The dictionaries

and the MKSRs are hence computed in an alternating fashion until the objective is

minimized.

6.4.1 Updating the Dictionaries

As illustrated in Figure 6.1, the proposed Method 1 fuses the multiple dictionaries,

using kernel matrices, to perform sparse coding in the unified feature space. Opti-

mization of the dictionaries for efficient coding needs to be carried out using a fixed

point algorithm as described in Section 6.2. Rewriting the objective function in (6.3)

for dictionary update,

N∑
i=1
‖Φ(yi)− Φ(Ψ)ai‖2

2 (6.19)

=
N∑
i=1

[
K(yi,yi)− 2

K∑
l=1

al,iK(ψl,yi) +
K∑
l=1

K∑
t=1

al,iat,iK(ψl,ψt)
]
, (6.20)

=
N∑
i=1

[
R∑
r=1

βrKr(yi,r,yi,r)− 2
K∑
l=1

al,i
R∑
r=1

βrKr(ψl,r,yi,r) +
K∑
l=1

K∑
t=1

al,iat,i
R∑
r=1

βrKr(ψl,r,ψt,r)
]
.

(6.21)

As it can be observed in (6.21), we have expanded the ensemble kernel function in

terms of its individual base kernels. Since there are R different dictionaries with K

atoms each, the fixed point algorithm needs to update the atoms of one dictionary

at a time, fixing the other R − 1 dictionaries. Hence, to update the kth atom of the

Ψr, we need to compute the derivative of (6.18) with respect to ψk,r. Excluding all

terms in (6.18) that do not depend on the current dictionary atom being updated,

the objective can be simplified as

=
N∑
i=1

[
−2

K∑
l=1

al,iβrKr(ψl,r,yi,r) +
K∑
l=1

K∑
t=1

al,iat,iβrKr(ψl,r,ψt,r)
]
. (6.22)

148

The objective in (6.19) is equivalent to updating the dictionary atoms for kernel sparse

coding, with the kernel function Kr. Note that the same set of coefficients {ai}Ni=1, are

used for updating all the R dictionaries, since the representation is computed in the

unified feature space. In order to obtain dictionary update expressions as shown in

Section 6.2, the kernel function should be differentiable. Furthermore, the ensemble

kernel weights {βr}Rr=1 balance the relative importance of each feature and hence they

are chosen empirically such that best classification performance is obtained.

6.4.2 Computing Sparse Codes for Test Data

Given the test data sample x, we extract the R different descriptors {xr}Rr=1 and

evaluate the ensemble kernel matrix KΨx of size K × 1 where

KΨx(k) =
R∑
r=1

βrKr(ψk,r,xr). (6.23)

The kernel weights {βr}Rr=1 evaluated empirically during the training stage are used

with the test data. The sparse code ax is then obtained by optimizing the objective

−2aTx KΨx + aTx KΨΨax + λ‖ax‖1. (6.24)

6.5 Proposed Method 2

An alternative approach to optimizing the dictionary for sparse coding in the unified

feature space is to perform dictionary learning directly using the ensemble kernel ma-

trix of descriptors obtained from the training data. We learn a hierarchical dictionary

in multiple levels and refer to this as kernel multilevel dictionary (MLD) learning.

This algorithm is a generalization of the MLD algorithm proposed in [39] to kernel

space. Such an approach eliminates the need to explicitly optimize separate dictio-

naries and hence provides the flexibility to choose any kernel function. The proposed

framework, referred to as Method 2, is illustrated in Figure 6.2. In order to develop

the kernel MLD algorithm, we first note that the problem of dictionary learning is

a generalization of K-lines clustering [23], which fits K 1−D subspaces to the set of
149

Figure 6.2: Proposed Method 2 for obtaining multiple kernel sparse representations.
In this approach, we evaluate the ensemble kernel matrix by fusing the base kernel
matrices of the different image descriptors and perform dictionary learning in the
unified feature space directly. The sparse code for a test sample is evaluated in the
multiple kernel feature space using the learned dictionary.

data samples. In [39], it is shown that hierarchical dictionaries obtained by perform-

ing K-lines clustering in multiple levels are effective for sparse approximation. We

begin by briefly discussing the K-lines clustering procedure and the multilevel dictio-

nary (MLD) learning algorithm. We then present the kernelized version of the K-lines

clustering algorithm [37] with some demonstrative results to show its superior clus-

tering performance. Following this, we develop the kernel MLD learning algorithm

for designing dictionaries using multiple kernels. Finally, we describe the procedure

to compute the sparse code for a test sample using the kernel MLD.

6.5.1 Multilevel Dictionary Learning

The MLD learning algorithm proposed in [39] uses a hierarchical approach by em-

ploying K-lines clustering to adapt atoms in each level of the dictionary. We de-

note the multilevel dictionary as Ψ = [Ψ1Ψ2 . . .ΨL], and the coefficient matrix as

A = [AT
1 AT

2 . . .AT
L]T . Here, Ψl is the sub-dictionary in level l and Al is corresponding

150

the coefficient matrix in level l. The approximation in level l is expressed as

Rl−1 = ΨlAl + Rl, for l = 1, ..., L, (6.25)

where Rl−1, Rl are the residuals for the levels l − 1 and l respectively and R0 = Y.

This implies that the residuals in level l−1 serve as the training data for level l. Note

that the sparsity of the representation in each level is fixed at 1. K-lines clustering

is employed to learn Ψl from the training matrix, Rl−1, for that level. Detailed

discussion of the convergence and algorithmic stability of MLD learning along with

its applications are reported in [40].

6.5.2 Kernel Multilevel Dictionary Learning Algorithm

Given a set of training samples, our goal is to design multilevel dictionaries in the

unified feature space obtained using multiple kernels. The kernel K-lines clustering

procedure developed in the previous section can be used to learn the atoms in ev-

ery level of the dictionary. In level l, we denote the sub-dictionary by Φ(Ψl), the

membership matrix by Zl, the coefficient matrix by Al, the input and the residual

matrices by Φ(Yl) and Φ(Rl) respectively. Note that the training set for the first

level Y1 = Y. Given the N training images, we build the R descriptors and compute

the ensemble kernel matrix KYY as given in (6.15).

KYY(i, j) = K(yi,yj) =
R∑
r=1

βrKr(yi,ryj,r). (6.26)

As described in the previous section, we can compute Hl = Zl�Al. Performing

kernel K-lines clustering in level 1 will yield the coefficients A1 = KYYH1D1, where

D1 = Γ(Φ(Y1)H1)−1 = diag(HT
1 KYYH1)−1/2 indicates the diagonal matrix that

normalizes the dictionary atoms of level 1 in the feature space. In kernel MLD

learning, the residual vectors in a level are used as the training set to the next level.

151

Hence, we compute the residuals of the training vectors as

Φ(R1) = Φ(Y1)− Φ(Ψ1)HT
1 (6.27)

= Φ(Y1)− Φ(Y1)H1D1HT
1 , (6.28)

= Φ(Y1)
[
I−H1D1HT

1

]
= Φ(Y2). (6.29)

Note that we used the expression in (3.48) to obtain (6.28). Given the residuals from

level 1, the dictionary atoms in level 2 can be computed as

Φ(Ψ2) = Φ(Y2)H2D2, (6.30)

where

D2 = diag
(
(Φ(Y2)H2)T (Φ(Y2)H2)

)−1/2
, (6.31)

= diag[HT
2

(
Φ(Y1)[I−H1D1HT

1]
)T (

Φ(Y1)[I−H1D1HT
1]
)

H2]−1/2, (6.32)

= diag[HT
2

(
I−H1D1HT

1

)T
KYY

(
I−H1D1HT

1

)
H2]−1/2. (6.33)

Similar to the previous level, the coefficients can be evaluated as

A2 = Φ(Y2)TΦ(Ψ2), (6.34)

=
(
I−H1D1HT

1

)T
KYY

(
I−H1D1HT

1

)
H2D2. (6.35)

Table 6.1 shows the detailed algorithm to learn a kernel MLD by generalizing the

procedure for S levels. Note that the innermost loop in the algorithm computes the

cluster centroids using the linearized SVD procedure (Chapter 3). The middle loop

performs the kernel K-lines clustering for a particular level. Similar to Method 1, the

weights {βr}Rr=1 are tuned empirically to provide the best classification performance.

6.5.3 Computing Sparse Codes for Test Data

In this section, we describe a procedure to evaluate the sparse code for a test sample

using the kernel MLD. Using the R descriptors {xr}Rr=1 extracted from test sample,
152

Table 6.1: Kernel Multilevel Dictionary Learning algorithm.
Input
Y1 = [y1,i]Ni=1, D ×N matrix of training image patches.
KYY, N ×N kernel matrix.
K, desired number of atoms per level.
S, total number of levels.

Initialization
- Randomly initialize the membership Z1 and compute the initial coefficients, A1.

Algorithm
For s = 1 to S

Loop until convergence
- Loop for L iterations
- Compute Hs = Zs �As.

- Compute Ds = diag

HT
s

(
s−1∏
t=1

(I−HtDtHT
t)
)T

KYY

(
s−1∏
t=1

(I−HtDtHT
t)
)

Hs

−1/2

.

- Evaluate As =

(s−1∏
t=1

(I−HtDtHT
t)
)T

KYY

(
s−1∏
t=1

(I−HtDtHT
t)
)HsDs.

end
- Update Zs by identifying the index of absolute maximum in each row of As.

end
end

we evaluate the ensemble kernel matrix KxY ∈ R1×N where

KxY(i) = K(x,yi) =
R∑
r=1

βrKr(xr,yi,r). (6.36)

The weights, {βr}Rr=1, used for computing the ensemble kernel were obtained empiri-

cally during training. In order to perform a sparse approximation of the test sample

using the kernel MLD, we compute a sparse coefficient for each level using the dictio-

nary atoms from that level. Similar to the training procedure, we first compute the

correlations between the test sample and all dictionary elements in level 1 as

α1 = Φ(x)TΦ(Ψ1) = Φ(x)TΦ(Y1)H1D1 (6.37)

= KxYH1D1. (6.38)

153

Following this, we determine the 1 × K membership vector z1 = g(α1) and the

coefficient vector h1 = z1 � α1. The residual vector of the test sample can be

computed as

Φ(r1) = Φ(x)− Φ(Ψ1)hT1 , (6.39)

= Φ(x)− Φ(Y1)H1D1hT1 . (6.40)

To determine a sparse coefficient in level 2, the residual vector r1 needs to be corre-

lated with the dictionary atoms Φ(Ψ2). Generalizing this to any level s, we can eval-

uate the correlations between the residual Φ(rs−1) and the dictionary atoms Φ(Ψs)

as

αs = MsHsDs, (6.41)

where

Ms =

KxY −
s−1∑
t=1

htDtHT
t

t−1∏
p=1

(I−HpDpHT
p)
T KYY

 [(s−1∏
t=1

(I−HtDtHT
t)
)]

.

(6.42)

The coefficient vector corresponding to level s can then be obtained as hs = zs�αs,

where zs = g(αs). The overall sparse code for the test sample x can be constructed

by stacking hs’s from all levels, h = [h1h2 . . .hS]T .

Note that, the complexity of evaluating sparse codes for a test sample with

Method 1 and Method 2 cannot be compared directly since Method 1 uses `1 min-

imization for obtaining sparse codes, and Method 2 uses a customized multilevel

procedure. Therefore, we compare the dominant complexity for obtaining ensemble

kernel matrices in both the approaches. For Method 1 the complexity of computing

an ensemble kernel matrix KΨx, of O(MK). Whereas, Method 2 requires the com-

putation of KxY and hence incurs a higher complexity of O(MN), since typically

N > K. However, as mentioned before, Method 2 has the important advantage that

154

it does not place any restriction on the choice of the kernel function or the distance

function for building the kernel matrix.

6.6 Object Recognition and Unsupervised Clustering

In this section, we describe the set of image descriptors and the corresponding kernel

functions considered for our simulations and present discussions on the recognition

performance using the Caltech-101 and Caltech-256 datasets. The same set of features

were used to compute sparse codes that were subsequently used to obtain coefficient

graphs for clustering.

6.6.1 Image Descriptors and Kernels

SIFT-ScSPM: For a given image, we extracted SIFT features [170] with three scales

on a dense grid and used a K-means dictionary to obtain sparse codes for the local

features. The number of dictionary elements was fixed at 1024. For each image,

we generated the ScSPM feature using the algorithm in [100] and aggregated sparse

codes using max-pooling at spatial scales 1, 2 and 4 respectively. The kernel matrix

was constructed based on Euclidean distance between the features.

SS-ScSPM: The base kernel was constructed in the same way as the SIFT-ScSPM,

except that the local SIFT descriptor was replaced by the self-similarity descrip-

tor [171]. The size of the patch and the radius of the window were fixed at 5× 5 and

40 respectively.

LBP-ScSPM: Another image descriptor was constructed using the ScSPM pro-

cedure, for Local Binary Pattern (LBP) [172] features extracted from overlapping

patches in an image.

Gist: The images were resized to 128×128 and the gist descriptor was extracted from

each image [173]. The kernel matrix was constructed based on Euclidean distance

between the features.

PHOG: We extracted the PHOG descriptor from each image using the procedure

155

described in [174], by fixing the number of pyramid levels at 2. We used the Eu-

clidean distance, and the χ2 distance between the features for Method 1 and Method

2 respectively.

Biologically inspired features (C2-SWP, C2-ML): Biologically inspired C2 fea-

tures proposed in [175] and [176] aim to mimic the simple and complex features in

the human visual system. We extracted C2-SWP and C2-ML features, and used the

Euclidean distance for both cases.

Geometric blur: For each image, we randomly sampled 400 edge pixels and applied

the geometric blur descriptor [177] to them. We used the distance function proposed

in [169] with these descriptors. Note that, because of the form of the distance func-

tion, this feature cannot be used in a fixed point dictionary update scheme. Therefore,

when using this feature with Method 1, we use the initial dictionary obtained in the

input space and refrain from updating it in the kernel space.

In order the initialize the algorithms to obtain MKSRs, the parameters in the

descriptors and the distance functions were tuned independently. The criteria for

tuning is that the resulting sparse codes with the base kernels individually achieved

their best performances in classification using a linear SVM. When optimizing dic-

tionaries and computing MKSRs, the ensemble kernel weights {βr}Rr=1 need to be

empirically tuned, again to ensure high classification accuracies with a test set. To

achieve this, we repeated the algorithms by the randomly splitting the data samples

into train and test sets and determined the weights using cross-validation. We used

the MATLAB interface of LIBLINEAR, a fast implementation of linear SVM for all

our simulations [178]. The performance metric used is the percentage classification

accuracy.

In addition to object recognition, spectral clustering can be performed using

the graph created from the kernel sparse codes. Using the coefficient matrix A, we

constructed the non-negative graph weight matrix W = |ATA|. The normalized
156

Table 6.2: Comparison of the classification accuracies on the Caltech-101 dataset.
For the proposed algorithms, results were obtained by averaging over 10 different
train and test datasets chosen at random.

Method # Training samples per class
5 10 15 20 25 30

Zhang et.al. [169] 46.6 55.8 59.1 62 - 66.2
Lazebnik et.al. [99] - - 56.4 - - 64.6
Griffin et.al. [179] 44.2 54.5 59 63.3 65.8 67.6
Jain et.al. [180] - 65 - - 70.4

Boiman et.al. [181] - - 61 - - 69.1
Pham et.al. [182] - - 42 - - -
Gemert et.al. [183] - - - - - 64.16
Yang et.al. [100] - - 67 - - 73.2
Wang et.al. [154] 51.15 59.77 65.43 67.74 70.16 73.44
Aharon et.al. [83] 49.8 59.8 65.2 68.7 71 73.2
Zhang et.al. [157] 49.6 59.5 65.1 68.6 71.1 73
Jiang et.al. [152] 54 63.1 67.7 70.5 72.3 73.6

MKSR (Method 1) 58.34 66.81 70.83 74.02 76.1 77.8
MKSR (Method 2) 58.9 67.3 71.44 74.7 76.83 78.01

weight matrix is given as L = D−1/2WD−1/2, where D is a diagonal matrix with

the ith diagonal element containing the sum of the all the elements in the ith row or

column of W. Assuming that there are C clusters, the eigenvectors corresponding to

the C largest eigenvalues are stacked in the matrix U = [u1u2 . . .uC]. The rows of

the matrix are then clustered to obtain the cluster labels. The standard metrics, the

accuracy and the normalized mutual information, are used to quantify the clustering

performance [34].

6.6.2 Simulation Results

Caltech-101

The Caltech-101 dataset [184] consists of 9144 images belonging to 101 object cate-

gories and an additional class of background images. The number of images in each

category varies roughly between 40 and 800. Although the target object often appears

in the central region of the images, the large number of categories and the intraclass

157

variations makes this dataset challenging. This dataset has been often used as a

benchmark for evaluating the performance of supervised classifiers. Note that, we

resized all images to be no larger than 300×300 with the aspect ratio preserved. Fol-

lowing the common evaluation procedure, we trained the classifiers on 5, 10, 15, 20, 25

and 30 images per class and evaluated the performance by testing on the rest.

For the proposed Method 1, we extracted the different image descriptors and

constructed the corresponding base kernels as described in Section 6.6.1. As discussed

in Section 6.4, we need to obtain separate dictionaries for each descriptor in the

original input space. Hence, we generated a K-means dictionary containing 2048

elements for each descriptor set to perform sparse coding of the descriptors. Following

this, we computed the ensemble kernel matrices using the expressions in (6.15), (6.16)

and (6.17) respectively. The parameter γ for computing the kernel sparse codes

using the Feature-Sign search algorithm was fixed at 0.3. We also performed kernel

dictionary learning using the proposed Method 2 described in Section 6.5.2 fixing the

number of levels at 16 and the number of atoms per level at 128, resulting in a total

of 2048 atoms.

The quantitative results of the proposed multiple kernel sparse representations

frameworks are presented in Table 6.2. The recognition rates presented are averaged

over 10 iterations with train and test datasets chosen at random. As it can be

observed, the proposed approaches achieve higher classification rates in comparison

to other sparse coding based approaches. For example, consider the case when the

number of training samples Ntrain = 15. Lazebnik et.al. [99] reported a recognition

rate of 56.4 percent by considering the spatial pyramid matching kernel. In [169],

Zhang et.al. combined the geometric blur descriptor with the spatial information to

achieve an improved recognition rate of 59.1 percent. By replacing the bag-of-words

procedure in SPM by sparse coding, the ScSPM algorithm proposed in [100] improves

the classification performance to 67 percent. The LC-KSVD algorithm developed
158

Figure 6.3: Classification performance obtained by using each base kernel separately
with Method 2 on the Caltech-101 dataset. In each case, we report the results ob-
tained by using different number of training images per class. For comparison, we
show the classification accuracies achieved with multiple kernels using the two pro-
posed algorithms.

in [152], performed label consistent coding to further improve the recognition to 67.7

percent. By incorporating multiple kernels into the sparse coding procedure, we

obtained the classification accuracies of 70.56 and 70.94 percent using the proposed

Method 1 and Method 2 respectively.

In order to demonstrate the importance of fusing the multiple kernels, we

performed object recognition by considering each base kernel separately. In each case,

we tuned the kernel parameter to yield the best recognition performance with the

proposed Method 2. Figure 6.3 illustrates the classification accuracies obtained, with

each base kernel, for different number of training images per class. For comparison,

we show the accuracies obtained for the two proposed multiple kernel methods as

well. The improvement in recognition by using multiple kernels is apparent in all

cases. For example, when Ntrain = 15 the SIFT-ScSPM and the geometric blur

descriptors provide the best accuracies of 61.65% and 59.29% respectively, while the

C2-SWP descriptor achieves a very low recognition rate of 25.8%. However, when all
159

Figure 6.4: Classification accuracies of the proposed MKSR algorithms on the
Caltech-101 dataset using dictionaries of different sizes. In each case, we report
the mean accuracy obtained by using 30 images per class for training, for 10 different
train and test sets chosen at random.

the kernels are combined using the proposed methods we achieve improvements of

8.91% and 9.29% in the mean recognition performance, when compared to using just

SIFT-ScSPM descriptors.

Finally, we demonstrate the effect of dictionary size on the classification perfor-

mance for both the proposed methods. We varied the number of dictionary elements

between 256 and 4096 and repeated the simulations with 30 training samples per

class, using 10 different random train and test sets in each case. Figure 6.4 plots the

mean percentage classification accuracy for different dictionary sizes. We observed

that beyond K = 1024, the classification rate does not improve significantly with the

size of the dictionary.

As described earlier we can construct graphs, with the multiple kernel sparse

codes obtained using the proposed algorithms, for spectral clustering. We evaluate the

clustering performance of these graphs using a benchmark subset of the Caltech-101

dataset [164]. Images from the following 20 classes were used to learn dictionaries

and obtain multiple kernel sparse codes: faces, motorbikes, dollar bill, GarïňĄeld,

Snoopy, stop sign, windsor chair, leopards, binocular, brain, camera, car side, ferry,
160

Table 6.3: Comparison of the clustering performance obtained using graphs, con-
structed from the kernel sparse codes, on a subset of Caltech-101. In each case, the
results were obtained by averaging over 50 trials.

Feature % Accuracy NMI
Ave. Max. Ave. Max.

SIFT-ScSPM 60.6 61.3 0.63 0.66
SS-ScSPM 52.8 54.31 0.52 0.59
PHOG 45.4 46.1 0.47 0.51
Gist 44.6 46.9 0.41 0.48

C2-SWP 38.31 39.6 0.33 0.36
C2-ML 31.8 33.1 0.29 0.35
GB 49.6 50.2 0.5 0.53

MKSR (Method 1) 69.8 74.7 0.74 0.81
MKSR (Method 2) 70.4 75.13 0.79 0.83

Table 6.4: Comparison of the classification accuracies on the Caltech-256 dataset.
For the two proposed algorithms, the reported results were obtained by averaging
over 10 different train and test datasets chosen at random.

Method # Training samples per class
15 30 45 60

Gemert et.al. [183] - 27.17 - -
Griffin et.al. [179] 28.3 34.1 - -
Yang et.al. [100] 27.73 34.02 37.46 40.14
Guo et.al. [167] 29.77 35.67 38.61 40.3
Wang et.al. [154] 34.46 41.19 45.31 47.68

MKSR (Method 1) 38.72 45.12 48.65 50.27
MKSR (Method 2) 39.22 45.61 49.02 50.51

hedgehog, pagoda, rhino, stapler, water Lilly, wrench, and yin yang. Similar to the

object recognition simulations, we constructed graphs using kernel sparse codes of

the individual features for comparison. The dictionary size was fixed at 2048 for all

cases. Table 6.3 shows the clustering accuracy and normalized mutual information

obtained using the different graphs. In each case, both the average and maximum

values obtained over 50 trials are reported. As it can be observed, the ensemble

features perform significantly better than the individual features similar to the object

recognition simulation.

161

Caltech-256

The Caltech-256 dataset [179] contains 30, 607 images in 256 categories and its vari-

ability makes it extremely challenging in comparison to the Caltech-101 dataset. The

intraclass variance is quite high and the objects of interest are not necessarily in

the center of the images. The experimental setup is similar to the previous section

and we evaluated the recognition performance with Ntrain fixed at 15, 30, 45, and 60

images per class respectively. The number of dictionary elements are fixed at 4096

for both the algorithms. Table 6.4 shows the recognition rates obtained with the

different methods and similar to the previous case, the proposed MKSR algorithms

outperform other baseline methods.

162

Chapter 7

AUTOMATED TUMOR SEGMENTATION USING KERNEL SPARSE

REPRESENTATIONS

7.1 Problem Statement

A robust method to automatically segment a medical image into its constituent het-

erogeneous regions can be an extremely valuable tool for clinical diagnosis and disease

modeling. Given a reasonably large data set, performing manual segmentation is not

a practical approach. Brain tumor detection and segmentation have been of interest

to researchers over recent years and currently, there exists no comprehensive algo-

rithm built and adopted in the clinical setting [185]. Although patient scans can

be obtained using different imaging modalities, Magnetic Resonance Imaging (MRI)

has been commonly preferred for brain imaging over other modalities because of its

non-invasive and non-ionizing nature, and because it allows for direct multi-plane

imaging.

Tumors may be malignant or benign as determined by a biopsy, and are known

to affect brain symmetry and cause damage to the surrounding brain tissues. Auto-

mated tumor segmentation approaches are often challenged by the variability in size,

shape and location of the tumor, the high degree of similarity in the pixel intensities

between normal and abnormal brain tissue regions, and the intensity variations among

identical tissues across volumes. As a result, unsupervised thresholding techniques

have not been very successful in accurate tumor segmentation [186]. Furthermore,

approaches that incorporate prior knowledge of the normal brain from atlases require

accurate non-rigid registration [187], [188], and hence generating adequate segmen-

tation results potentially calls for user-intervention and/or a patient specific training

system. In addition, these methods require elaborate pre-processing and they tend

to over-estimate the tumor volume.

163

Approaches for tumor segmentation can be either region-based or pixel-based.

The active contours method [189] is a widely adopted region-based approach that

is usually combined with a level-set evolution for convergence to a region of in-

terest [190]. However, it is sensitive to the contour initialization, and has a high

computational cost due to its iterative nature. Model-based approaches [191] em-

ploy geometric priors to extend the Expectation Maximization (EM) algorithm to

augment statistical classification. In relatively homogeneous cases such as low grade

gliomas, the outlier detection framework proposed by Prastawa et al. [186] [192] was

shown to perform well.

Pixel-based approaches such as Fuzzy C-Means (FCM) using neighborhood la-

bels [193], Conditional Random Fields [194], Bayesian model-aware affinities extend-

ing the SWA algorithm [185], and the more recent graph-based techniques combined

with the Cellular-Automata (CA) algorithm [195] have also achieved some success in

tumor segmentation. However, processing issues with respect to contour initializa-

tion, noise reduction, intensity standardization, cluster selection, spatial registration,

and the need for accurate manual seed-selection leaves substantial room for improve-

ment. In addition, building a robust automated approach that does not require user

intervention is very important, particularly for processing large datasets.

7.1.1 Sparsity in Tumor Segmentation

Sparse models emulate the activity of neural receptors in the primary visual cortex

of the human brain. In [18], Olshausen and Field demonstrated that learning sparse

linear codes for natural images results in a family of localized, oriented, and band-

pass features, similar to those found in the primary visual cortex. Sparsity of the

coefficients has been exploited in a variety of signal, and image processing applica-

tions including compression [83], denoising [139], compressed sensing [196], source

separation [121], face classification [96], and object recognition [153].

164

Despite its great applicability, the use of sparse models in complex visual

recognition applications presents three main challenges: (i) linear generative model of

sparse coding can be insufficient for modeling the non-linear relationship between the

complex image features, (ii) in several visual recognition tasks, no single descriptor

can efficiently model the whole data set, i.e., there is a need to integrate multiple

image features into the sparse coding paradigm, and (iii) sparse models require data

samples to be represented in the form of feature vectors, and it is not straightforward

to extend them to the case of other forms such as pixel values, matrices or higher

order tensors. In order to circumvent the aforementioned challenges, kernel learning

methods can be incorporated in sparse coding [41]. The kernel methods map the data

samples into a high-dimensional feature space, using a non-linear transformation, in

which the relationship between the features can be represented using linear models.

By ensuring that the resulting feature space is a Hilbert space, kernel methods can

work by considering only the similarity between the features, and not the features

themselves. By developing approaches for sparse coding and dictionary learning in

the feature space, novel frameworks can be designed for computer vision tasks such

as recognition and segmentation.

In this chapter, we develop a novel approach to automatically segment en-

hancing/active and necrotic tumor components from T1-weighted contrast-enhanced

MR images. We propose to compute kernel sparse codes for the pixels in the image

and perform pixel-based segmentation using those codes. Furthermore, we develop

the kernel K-lines clustering algorithm to learn kernel dictionaries for coding the pix-

els. The proposed algorithm for localizing the active tumor regions uses an ensemble

kernel constructed using pixel intensities and their spatial locations. Each pixel is

classified as belonging to a tumor or a non-tumor region using a linear SVM on the

kernel sparse codes. Finally, we propose a semi-automated segmentation technique for

improved computational efficiency, wherein the user can initialize the tumor region.
165

This approach eliminates the need to incorporate the spatial location information and

reduces the number of pixels to be processed. In addition, we show that the complex

linear SVM classifier can be replaced by a simple error-based classifier without com-

promising the segmentation quality. We evaluate the proposed algorithm on a set

of T1-weighted contrast-enhanced MR images and compare the results with manual

segmentation performed by an expert radiologist.

7.2 Kernel Sparse Coding for Tumor Segmentation

Sparse coding algorithms are typically employed for vectorized patches or feature

vectors extracted from the images, using an overcomplete dictionary. However, the

proposed tumor identification algorithm aims to obtain sparse codes for the pixel

values directly. This is trivial since M = 1 in this case. Furthermore, in order

to discriminate between the pixels belonging to multiple segments, we may need to

consider the non-linear similarity between them. Though the linear generative model

of sparse coding has been effective in several image understanding problems, it does

not consider the non-linear similarities between the training samples.

It is typical in machine learning methods to employ the Kernel Trick to learn

linear models in a feature space that captures the non-linear similarities. The Kernel

Trick maps the non-linear separable features into a feature space F using a transfor-

mation Φ(.), in which similar features are grouped together. By performing sparse

coding in the feature space F , we can obtain highly discriminative codes for samples

from different classes [167]. Note that the choice of the non-linear transformation is

crucial to ensure discrimination. The transformation Φ(.) is chosen such that F is

a Hilbert space with the reproducing kernel K(., .) and hence the non-linear similar-

ity between two samples in F can be measured as K(yi,yj) = Φ(yi)TΦ(yj). Note

that the feature space is usually high-dimensional (sometimes infinite) and the closed

form expression for the transformation Φ(.) may be intractable or unknown. There-

166

(a) (b)

Figure 7.1: Similarity between grayscale pixel intensities (0 to 255): (a) linear simi-
larity (yiyj) and (b) non-linear similarity (K(yi, yj)) using an RBF kernel.

fore, we simplify the computations by expressing them in terms of inner products

Φ(yi)TΦ(yj), which can then be replaced using K(yi,yj), the value of which is al-

ways known. This is referred to as the Kernel Trick. Note that in order for a kernel

to be valid, the kernel function or the kernel matrix should be symmetric positive

semidefinite according to Mercer’s theorem [197].

In this chapter, we use the Radial Basis Function (RBF) kernel of the form

K(yi, yj) = exp(−γ(yi−yj)2), which leads to discriminative sparse codes. As a simple

demonstration, the difference between linear similarity of grayscale pixel intensities

(0 to 255) and the non-linear similarities obtained using the RBF kernel (γ = 0.3) is

illustrated in Figure 7.1(a) and (b). The linear similarities depend predominantly on

the individual intensities of the pixels and not on the closeness of intensities. Whereas,

when the RBF kernel is used, the pixel intensities that are close to each other have

high non-linear similarity irrespective of the intensities. Pixels with intensities that

are far apart have zero non-linear similarity. Therefore, the pixelwise sparse codes

that we obtain using such a kernel will behave similarly.

167

7.2.1 Kernel Sparse Coding

Given the feature mapping function Φ : RM 7→ RG, the generative model in F for ker-

nel sparse coding is given by Φ(y) = Φ(D)x+n. We denote the data sample y in the

feature space as Φ(y) and the dictionary by Φ(D) = [Φ(d1),Φ(d2), ...,Φ(dK)]. The

kernel similarities K(yi,yj) = Φ(yi)TΦ(yj), K(dk,y) = Φ(dk)TΦ(y) and K(dk,dl) =

Φ(dk)TΦ(dl) can be computed using pre-defined kernel functions (RBF in our case).

All further computations in the feature space should be performed exclusively using

kernel similarities. The problem of sparse coding can be posed in the feature space

as

min
x
‖Φ(y)− Φ(D)x‖2

2 + λ‖x‖1. (7.1)

Expanding the objective in (7.1) we obtain

Φ(y)TΦ(y)− 2xTΦ(D)TΦ(y) + xTΦ(D)TΦ(D)x + λ‖x‖1,

= Kyy − 2xTKDy + xTKDDx + λ‖x‖1, (7.2)

= F (x) + λ‖x‖1. (7.3)

Here, Kyy is the element K(y,y), KDy is a K × 1 vector containing the elements

K(dk,y), ∀k = {1, . . . , K} and KDD is a K×K matrix containing the kernel similar-

ities between the dictionary atoms. Clearly, the modified objective function is similar

to the sparse coding problem, except for the use of the kernel similarities. Hence, the

kernel sparse coding problem can be efficiently solved using the feature-sign search

algorithm or LARS. However, it is important to note that the computation of kernel

matrices incurs additional complexity. Since the dictionary is fixed in (7.3), KDD is

computed only once and the complexity of computing KDy grows as O(MK).

7.3 Kernel Dictionary Design

Optimization of dictionaries in the feature space can be carried out by reposing the

dictionary learning procedures using only the kernel similarities. Such non-linear
168

dictionaries can be effective in yielding compact representations, when compared to

approaches such as the kernel PCA, and in modeling the non-linearity present in

the training samples. In this section, we will describe the formulation of a kernel

dictionary learning procedure, and demonstrate its effectiveness in representation

and discrimination.

In order to design the dictionary Φ(D), we will adapt dictionary learning to

the feature space, with the constraint that only one element in the sparse code can

be non-zero. This is a special case of the kernel dictionary learning proposed in [198].

This procedure is equivalent to the kernel version of K-lines clustering, which attempts

to fit K 1-D subspaces to the training data in F [35]. Though sophisticated kernel

dictionaries can be designed, employing dictionaries obtained using this clustering

procedure results in good performance for our tumor segmentation problem. The

clustering procedure can be solved using

min
A,X
‖Φ(Y)− Φ(Y)AX‖2

F such that ‖xi‖0 ≤ 1, ∀i. (7.4)

Each dictionary atom Φ(di) corresponds to a cluster center and each coefficient vector

xi encodes the cluster association as well as the weight corresponding to the ith pixel.

Let us define K membership sets {Ck}Kk=1, where Ck contains the indices of all training

vectors that belong to the cluster k. The alternating optimization for solving (7.4)

consists of two steps: (a) cluster assignment, which involves finding the association

and weight of each training vector and hence updating the sets {Ck}Kk=1, and (b)

cluster update, which involves updating the cluster center by finding the centroid of

training vectors corresponding to each set Ck.

In the cluster assignment step, we compute the correlations of a training sam-

ple, with the dictionary atoms as Φ(yi)TΦ(D) = KyiYA. If the kth dictionary atom

results in maximum absolute correlation, the index i is placed in set Ck, and the

corresponding non-zero coefficient is the correlation value itself. For the cluster k, let
169

Φ(Yk) = Φ(Y)Ek be the set of member vectors and xRk be the row of corresponding

non-zero weights. The cluster update involves solving

min
ak
‖Φ(Y)akxRk − Φ(Y)Ek‖2

F . (7.5)

Denoting the singular value decomposition of

Φ(Yk) = UkΣkVT
k , (7.6)

the rank-1 approximation, which also results in the optimal solution for (7.5), is given

by

Φ(Y)akxRk = uk1σk1vTk1, (7.7)

where σk1 is the largest singular value, and uk1 and vk1 are the columns of Uk and

Vk corresponding to that singular value. Eqn. (7.7) implies that Φ(Y)ak = uk1

and xRk = σk1vTk1. Let the eigen decomposition of KYkYk
be Vk∆kVT

k and hence

we have σk1 =
√

∆k(1, 1), assuming the eigen values are in descending order. From

(7.6), we also have Φ(Yk)vk1 = σk1uk1. Substituting for Φ(Yk) and uk1, we obtain

Φ(Y)Ekvk1 = σk1Φ(Y)ak, which results in

ak = σ−1
k1 Ekvk1. (7.8)

Note that ak completely defines dk. The cluster assignment and update steps are

repeated until convergence, i.e., when {Ck}Kk=1 does not change over iterations.

7.3.1 Representation

Kernel sparse coding can be used as an alternative to approaches such as kernel PCA

for efficient data representation. Though complete reconstruction of the underlying

data from the kernel sparse codes requires computation of pre-images [199], novel

test samples can be well approximated using the learned kernel dictionaries. As

a demonstration, we consider the class of digit 2 from the USPS dataset and use

a subset of images for training a kernel dictionary using kernel K-lines clustering.
170

Figure 7.2: (a) Reconstruction error for a novel test sample using kernel sparse coding,
for different values of sparsity. (b) Similarity between the kernel sparse codes of
samples drawn from 3 different classes in the USPS dataset. Since the kernel codes
of samples belonging to the same class are highly similar, we observe a block-wise
structure in the normalized correlation plot.

We then compute sparse code for a novel test sample z, different from the training

set, and compute the reconstruction error as ‖Φ(z)− Φ(D)a‖2
2. Figure 7.2(a) shows

the reconstruction error obtained for a test sample for different values of sparsity,

{1, . . . , 20}.

7.3.2 Discrimination

In addition to efficiently modeling data samples, kernel sparse coding is well suited

for supervised learning tasks. Since the non-linear similarities between the training

samples are considered while learning the dictionary, the resulting codes are highly

discriminative. As a demonstration, we consider 100 training samples each from 3

different classes in the USPS dataset (Digits 3, 4 and 7). We obtain the kernel sparse

codes for all the samples and compute the normalized cross correlation between the

sparse features. In cases of high discrimination, we expect the features belonging to a

class to be highly similar to each other compared to samples from other classes. The

block-wise structure in the normalized correlation plot in Figure 7.2(b) evidences the

discrimination power of the kernel sparse codes.

171

7.4 Proposed Automated Tumor Segmentation Algorithm

The proposed algorithm employs a pixel-based approach to determine tumor regions

in the MR image. In order to determine if a pixel belongs to a tumor region, adaptive

thresholding techniques can be used. However, building more sophisticated tools

can improve segmentation performance. In this section, we describe the proposed

algorithm for automated tumor segmentation based on kernel sparse codes.

To perform tumor segmentation, we need to identify pixels that can possibly

constitute a tumor region based on intensity. Though segmentation is as an unsuper-

vised learning problem, we can pose it is as a supervised learning problem since we

can easily obtain a at least a few training images with tumor regions marked by an

expert. Hence, we propose to obtain kernel dictionaries using the training samples

and learn a 2-class classifier (Tumor vs Non-tumor). Furthermore, in order to local-

ize the tumor regions in the image, we need to incorporate additional constraints to

ensure connectedness among pixels in a segment. This can be addressed by building

a spatial location kernel and fusing it with the intensity kernel.

7.4.1 Combining Multiple Features

The use of multiple features to more precisely characterize images has been a very

successful approach for several classification tasks. Though this method provides the

flexibility of choosing features to describe different aspects of the underlying data, the

resulting representations are high-dimensional and the descriptors can be very diverse.

Hence, there is a need to transform the features to a unified space that facilitates the

recognition tasks, and construct low dimensional compact representations for the

images in the unified space.

Let us assume that a set of R diverse descriptors are extracted from a given

image. Since the kernel similarities can be used to fuse the multiple descriptors, we

need to build the base kernel matrix for each descriptor. Given a suitable distance

172

Figure 7.3: Illustration of the proposed algorithm for automated tumor segmentation.
For a set of training samples, the ensemble kernel dictionary is obtained using Kernel
K-lines clustering procedure, and a 2-class linear SVM is used to classify the pixels.

function dr, which measures the distance between two samples for the feature r, we

can construct the kernel matrix as

Kr(i, j) = Kr(yi,yj) = exp(−γd2
r(yi,yj)), (7.9)

where γ is a positive constant. Given the R base kernel matrices, {Kr}Rr=1, we can

construct the ensemble kernel matrix as

K =
R∑
r=1

βrKr, ∀βr ≥ 0. (7.10)

Note that the ensemble matrix can be constructed in other ways also. Alternatively,

the descriptors can be fused as

K = K1 �K2 � . . .�KR, (7.11)

where � denotes the Hadamard product between two matrices. Performing sparse

coding using the ensemble kernel matrices will take the R features into account. Note

that when combining kernel matrices we need to ensure that the resulting kernel

matrix also satisfies the Mercer’s conditions.

7.4.2 Algorithm

The proposed algorithm for automated tumor segmentation is illustrated in Figure

7.3. In the rest of this chapter, we refer to this as the Kernel Sparse Coding-based
173

Automated (KSCA) segmentation algorithm. In the training stage, it is assumed that

the location of the tumor pixels are known in the ground truth training images. For

a subset of T pixels (both positive and negative examples) obtained from the training

images, we compute the intensity kernel matrix, KI ∈ RT×T , by employing an RBF

kernel on the pixel intensity values. In addition, the spatial location kernel matrix

KL is constructed as

KL(i, j) = KL(yi, yj) =

exp−γ‖Li−Lj‖2

2 , if j ∈ N (i),

0, otherwise.
(7.12)

Here, N (i) denotes the neighborhood of the pixel yi, and Li and Lj are the locations

of the pixels, yi and yj respectively. We fuse the intensity and spatial location kernel

matrices to obtain the ensemble kernel matrix, K = KI �KL.

The sparse codes obtained with a dictionary learned in the ensemble feature

space model the similarities with respect to both intensity and location of pixels. A

set of training images, with active tumor regions, are used to learn a kernel dictionary

with the kernel K-lines clustering procedure. Using the kernel sparse codes belonging

to tumor and non-tumor regions, we learn 2-class linear SVM to classify the pixel. For

a test image, we obtain the required ensemble kernel matrices and compute the kernel

sparse codes using the learned dictionary. Finally, the SVM classifier can be used to

identify the pixels belonging to an active tumor region. The impact of combining

diverse features using kernel sparse coding is evidenced by the accurate segmentation

results.

7.5 Complexity Reduction using a Semi-Automated Approach

The amount of training required and the computational complexity are two important

factors that can determine the efficiency of an automated segmentation algorithm.

Since the dictionary training is performed using pixels, the number of training im-

ages used is quite limited. Though the computational complexity of the automated
174

Figure 7.4: Illustration of the approach for complexity reduction in the proposed
algorithm. By allowing the user to initialize the tumor region in a test image, the
need for incorporating locality information is eliminated. Furthermore, the SVM
classifier can be replaced by a simple reconstruction error-based classifier.

segmentation algorithm described earlier is comparable to several existing methods,

its efficiency can be further improved by allowing the user to initialize the tumor

region. Computing the kernel sparse codes for all pixels in a test image incurs the

maximum complexity and hence initializing the tumor regions drastically reduces the

number of pixels to be processed. Furthermore, there is no need to explicitly include

the location information in the algorithm, since the tumor region has already been

localized by the user. Hence, the classification can be carried out by using a simple

error-based classifier on the kernel sparse codes. We refer to this as the Kernel Sparse

Coding-based Semi-Automated (KSCSA) segmentation approach. We observed from

our experiments that for an average sized tumor region, we achieve significant speedup

by using the semi-automated approach. However, the segmentations obtained using

the two methods are quite comparable, though the automated approach can poten-

tially generate more false positives when compared to the semi-automated approach.

Given a set of training images containing active tumor regions, we use the

tumor and non-tumor pixels to train two separate kernel dictionaries. We construct

two RBF kernel matrices on the pixel intensities and employ the kernel K-lines clus-

tering algorithm to learn the tumor and non-tumor dictionaries, Φ(DT) and Φ(DN),

175

respectively. Note that dictionary learning is performed only once, and as we will

show in our experimental results, the dictionaries generalize well to reasonably large

datasets.

For a test image, we obtain kernel sparse codes for each pixel yi using Φ(DT)

and Φ(DN), and denote the respective sparse codes as xTi and xNi . Since the dictio-

naries are optimized for two different classes of pixel intensities, we expect the tumor

pixels to be better modeled by the tumor dictionary. Hence we classify a pixel as

belonging to an active tumor region if the approximation error obtained with the

tumor dictionary is less than that obtained with the non-tumor dictionary:

J (yi) =

Tumor, if EN − ET ≥ ε,

Non-tumor, otherwise.
(7.13)

Here the approximation errors with respect to the two dictionaries are EN = ‖Φ(yi)−

Φ(DN)xNi ‖2 and ET = ‖Φ(yi) − Φ(DT)xTi ‖2, respectively. Note that the threshold

for the error difference, ε, can be tuned using a validation dataset before applying

the algorithm to the test data.

7.6 Experiments

In this section, we provide details about the datasets used to evaluate our algorithm

and present the segmentation results. The results are compared to manual segmen-

tations performed by a radio-oncology specialist, based on both the subjective visual

quality and quantitative standards such as Accuracy (Acc) and Correspondence Ratio

(CR).

7.6.1 Dataset

The algorithm was tested on a set of T1-weighted (spin echo) contrast-enhanced, 2-D

Dicom format images acquired with a 1.5T GE Genesis Signa MR scanner. Each

axial slice was 5 mm thick with a 7.5 mm gap between slices, and the size of the

image matrix was 256× 256. Patients were administered a 20cc Bolus of Gadolinum
176

contrast agent, and were already diagnosed with Glioblastoma Multiforme (GBM),

the most common and dangerous malignant primary brain tumor. These tumors are

characterized by jagged boundaries with a ring enhancement, possibly a dark core

necrotic component, and are accompanied by edema (swelling). The ground truth

(GT) images were obtained from the manual segmentation carried out by an expert

radiologist at the St. Joseph’s Hospital and Medical Center in Phoenix. We tested

our algorithm on the pre- and post-treatment images for 9 patients where all the

slices (approximately 175) showed the presence of GBM.

7.6.2 Benchmark Algorithm - Active Contour Method

We compare the segmentation results of our proposed algorithms to the widely used

Chan-Vese Active Contour Method (ACM) [189]. The main goal of this region based

method is to minimize the energy function defined by the means of the pixel intensities

inside and outside the initial level set curve. Note that this algorithm is not completely

automated. The initial level set formulation is conveyed to the algorithm by enabling

the user to draw a binary mask over the region of interest in the image. The binary

mask is converted to a Signed Distance Function (SDF), such that the region within

the curve is assigned positive values, increasing with distance, and the region outside

the curve is given increasing negative values, with the distance from the curve. The

SDF enables interaction with the energy function as it associates the modification and

movement of the initial level set formulation with the change in energy statistics in the

two regions. An update occurs with every iteration, wherein the curve evolves and a

new SDF is generated based on the previous iteration. The algorithm stops updating

the initial level set formulation when the energy is minimized, and further evolution

of the curve leads to an increase in the energy value achieved in the previous iteration.

Since this algorithm is not based on gradient methods, and deals with balancing the

energy on both sides of the curve, it achieves good results even when the image is

177

Figure 7.5: Choosing the threshold ε for the KSCSA segmentation algorithm. The
Accuracy and Correspondence Ratio are plotted against different values of the error
threshold ε for two example images. An appropriate threshold, that results in high
Acc and CR, can be chosen using a validation dataset.

blurred. One of the main advantages of this algorithm is that it relies on global

properties rather than just taking into account local properties, such as gradients.

Furthermore, it provides improved robustness in the presence of noise.

7.6.3 Results

Simulations were carried out independently for both the semi-automated and auto-

mated algorithms for every axial slice. For both of the proposed algorithms, the

parameter γ for the RBF kernel was set to 0.3, and the dictionary size was fixed at

256. In the automated approach, we computed the ensemble kernel for 15, 000 ran-

domly chosen pixels from the training set. In the reduced complexity semi-automated

case, the tumor and non-tumor dictionaries were learned using 10, 000 randomly cho-

sen pixels from tumor and non-tumor regions respectively. The parameter β = 0.1

was used for sparse coding using the feature sign search algorithm.

The resulting segmented images were compared to the ground truth and per-

formance was measured using the metrics Accuracy (Acc) and Correspondence Ratio

(CR) computed as [188]

Acc = TP
Total # tumor pixels in the GT image , (7.14)

178

and

CR = TP− 0.5FP
Total # tumor pixels in the GT image , (7.15)

where TP indicates the number of true positives (the pixels indicated as tumorous by

the ground truth and our algorithm), and FP denotes the number of false positives

(pixels indicated as non-tumorous by the ground truth, but tumorous by our algo-

rithm). The other unknown parameter in the KSCSA approach is the error threshold

ε, used for classifying the pixels. Figure 7.5 shows the relationship between Acc and

CR vs the error threshold (ε) for two example images. The ε value was fixed at an

appropriate value that resulted in high Acc and CR values on a validation dataset.

Figure 7.6 shows the original and segmented images for a few example cases. In

each case, the expert-marked ground truth is shown along with the results obtained

using the ACM and the proposed algorithms. Both the proposed semi-automated

and automated segmentation methods outperformed the benchmark method, and

obtained high Acc and CR values as demonstrated by the extensive results in Ta-

ble 7.1. We observed that the performance of the automated algorithm (KSCA)

is equivalent to that of the semi-automated algorithm (KSCSA) in many cases and

very closely comparable in the remaining cases. As expected, the semi-automated

algorithm is significantly faster when compared to the automated approach. On an

average, the proposed semi-automated algorithm takes about 8 seconds (measured

using MATLAB R2010b on a 2.8GHz, Intel i7 desktop) in comparison to 120 seconds

taken by the automated algorithm. Note that, the average time reported for the

semi-automated algorithm does not include the time taken by the user to initialize

the tumor region.

179

Figure 7.6: Tumor segmentation results. (Left-Right) Original image, Ground Truth
(GT) marked by an expert radiologist, Segmentation obtained using the active con-
tour method, Segmentation obtained using the KSCA algorithm, and Segmentation
obtained using the KSCSA algorithm. In all cases, the proposed algorithms provide
superior quality segmentation when compared to the benchmark algorithm.

180

Table 7.1: Comparison of the tumor segmentation performance obtained using (a) Ac-
tive contour method (ACM), (b) Kernel sparse coding-based automated segmentation
algorithm (KSCA), and (c) Kernel sparse coding-based semi-automated segmentation
algorithm (KSCSA). For each patient, results for a few sample images (pre- and post-
treatment) are shown. In each case, the accuracy and correspondence ratio of the
segmentation in comparison to expert-marked ground truth are presented.

Image ACM KSCA KSCSA Image ACM KSCA KSCSA
Set Acc CR Acc CR Acc CR Set Acc CR Acc CR Acc CR

Patient 1: Patient 6:
Pre 0.81 0.71 0.87 0.86 0.92 0.91 Pre 0.98 0.97 1 0.96 0.99 0.99
Pre 0.42 0.12 0.66 0.33 0.69 0.41 Pre 0.62 0.43 0.96 0.94 0.95 0.94
Pre 0.48 0.22 0.78 0.57 0.78 0.62 Pre 0.87 0.81 0.92 0.91 0.97 0.96
Pre 0.43 0.15 0.72 0.6 0.71 0.64 Post 0.91 0.87 0.92 0.87 0.93 0.91
Pre 0.42 0.13 0.67 0.48 0.68 0.47 Post 0.93 0.89 0.95 0.88 0.95 0.91

Patient 2: Patient 7:
Pre 0.22 0.16 0.46 0.40 0.49 0.43 Pre 0.44 0.16 0.7 0.62 0.71 0.66
Pre 0.95 0.93 0.96 0.92 0.97 0.93 Pre 0.61 0.41 0.90 0.73 0.90 0.82
Pre 1.00 0.99 1 0.98 0.99 0.99 Pre 0.82 0.73 0.91 0.86 0.90 0.88
Pre 0.87 0.80 0.95 0.81 0.97 0.82 Pre 0.83 0.74 0.90 0.81 0.90 0.79
Pre 0.95 0.93 0.97 0.94 0.98 0.91 Pre 0.94 0.91 0.94 0.92 0.95 0.91

Patient 3: Patient 8:
Pre 0.97 0.96 0.97 0.96 0.98 0.96 Pre 0.77 0.65 0.95 0.79 0.98 0.87
Pre 0.91 0.86 0.95 0.9 0.98 0.96 Pre 0.73 0.60 0.91 0.8 0.95 0.84
Post 1.00 1.00 0.99 0.97 1 0.99 Post 0.53 0.29 0.92 0.79 0.87 0.82
Post 0.76 0.64 0.98 0.81 0.97 0.85 Post 0.97 0.95 0.97 0.95 0.97 0.95
Post 0.81 0.71 0.83 0.73 0.86 0.72 Post 0.99 0.99 0.99 0.99 0.99 0.99

Patient 4: Patient 9:
Pre 0.50 0.25 0.64 0.57 0.7 0.65 Pre 0.94 0.91 0.95 0.93 0.95 0.94
Pre 0.53 0.29 0.98 0.84 0.97 0.88 Pre 0.95 0.93 0.98 0.96 0.99 0.94
Pre 0.93 0.90 0.91 0.88 0.92 0.9 Post 0.47 0.21 0.87 0.75 0.88 0.78
Pre 0.40 0.10 0.91 0.82 0.94 0.9 Post 0.63 0.44 0.85 0.84 0.87 0.82
Post 0.73 0.60 0.79 0.67 0.82 0.72 Post 0.82 0.72 0.91 0.88 0.94 0.86

Patient 5:
Pre 0.94 0.90 0.96 0.88 0.97 0.89
Pre 0.81 0.71 0.91 0.84 0.90 0.83
Pre 0.54 0.31 0.68 0.59 0.70 0.66
Pre 0.92 0.88 0.98 0.96 0.98 0.97
Pre 0.78 0.66 0.94 0.9 0.95 0.91

181

Chapter 8

MEASURING GLOMERULAR COUNT FROM KIDNEY MR IMAGES

8.1 Problem Statement

The variations in the number and size of glomeruli have been linked to several renal

and systemic diseases [200, 201]. Though approaches such as acid maceration [202]

and the dissector/fractionator stereology technique [203] are commonly used to mea-

sure the glomeruli number and size, they require the destruction of the entire kidney.

On the other hand, conventional histological methods determine the overall glomeruli

statistics by extrapolating the measurements obtained from a few isolated sections.

As a result, these methods do not perform direct measurements and cannot localize

the identified glomeruli to specific parts of the kidney. Hence, the authors in [204]

proposed a robust technique based on magnetic resonance imaging (MRI) to non-

destructively measure the glomeruli number and size. This method accurately iden-

tifies the glomerulus by injecting cationic ferritin (CF), which causes a decrease in

the MRI signal at the location of the glomerulus. The authors demonstrated that the

glomerular counts obtained from the 3D MRI images were consistent with the stan-

dard histological procedures, while making the measurements in the entire kidney.

A sample axial kidney image from a 3-dimensional (3D) magnetic resonance imaging

(MRI) data obtained from a cationic ferritin (CF)-injected rat is shown in Figure 8.1.

The goal of this work is to develop an automated algorithm for estimating the

glomerular count from a kidney MRI image. A typical solution to solving this problem

is to apply a 3D segmentation algorithm over the slices and identify isolated glomeruli,

and subsequently count the number of segmented regions. However, glomerular count

can also be obtained by considering each axial slice separately. Though the general

problem of image segmentation can be unsupervised, we are interested to incorporate

some prior knowledge about the MRI image intensities at glomeruli locations. This

prior knowledge can be obtained by manually marking glomeruli regions in a few
182

Figure 8.1: An example axial slice from the 3D MRI image obtained from a CF
injected rat. The MRI signal is comparatively weak at the locations of the glomerlus.

ground truth images. The other important challenge with unsupervised segmentation

algorithms is its computational complexity. By learning a suitable discriminative

model from labeled training data, the complexity of segmenting a test image can be

reduced significantly, in addition to producing accurate results. Though a variety of

segmentation approaches exist in the literature, we propose a novel method based

on sparse representations. The proposed approach works by extracting small image

patches (size 5 × 5), and computing a low-dimensional embedding for the patches,

such that glomeruli regions are discriminated from the other regions in the MRI

image. For a test image, the extracted patches are projected onto the discriminant

directions and passed to a clustering algorithm to identify the glomeruli. Extending

this approach to the 3D case is straightforward. Instead of extracting patches from

a 2D image, we will obtain voxels of size 5× 5× 5 by considering 5 consecutive axial

slices for each 5× 5 patch.

8.2 Background

Mapping data from high-dimensional input spaces to low-dimensional spaces is im-

perative in several computer vision problems. Several dimensionality reduction proce-

dures work by learning appropriate subspaces to efficiently represent the data. How-
183

ever, the traditional subspace methods are insufficient when Euclidean distance is in-

capable of describing the intrinsic similarities between the data samples. Furthermore,

the inherent geometry of data in several applications can be non-linear [205,206]. For

example, a set of images that vary in rotation or scale reside on a manifold in the

original space. When the data samples are densely distributed on a manifold, we can

employ manifold learning methods to infer the underlying inherent structure. A vari-

ety of methods that preserve either the global or local properties of the training data

have been proposed, and successfully used for dimensionality reduction and visual-

ization. However, mapping a novel test sample to the low-dimensional space is more

difficult, when compared to subspace methods. As a result, manifold learning meth-

ods are not commonly employed to learn embeddings that can discriminate different

classes of data. Some algorithms address this challenge by finding a mapping for the

whole data space, not just for the training samples [207–210]. However, these meth-

ods preserve data localities or similarities in the low-dimensional embedding space,

and hence does not result in class discrimination. As an alternative, the algorithm

in [211] considers the geodesic distances between the data samples to perform linear

discriminant analysis (LDA).

Another popular approach for describing the relation between training sam-

ples is to construct graphs. Several supervised, semi-supervised, and unsupervised

machine learning schemes can be unified under the general framework of graph em-

bedding. In addition, subspace approaches such as principal component analysis,

linear discriminant analysis, and locality preserving projections can all be posed as

graph embedding problems. Two approaches are commonly for graph construction:

(i) nearest-neighbor method, where, for each data sample, k nearest neighbors are

chosen, and (ii) ε-ball based method, where, for each data sample, the samples lying

in the ε ball surrounding it are chosen. In both cases, the graph edge weights can

be fixed as binary values, Gaussian kernel values or the Euclidean distances directly.
184

Graph embedding can also be applied to supervised and semi-supervised learning

problems. Local discriminant embedding (LDE) [212] is a supervised embedding

scheme that incorporates intra- and inter- class relationships by respectively defin-

ing two different graphs. Furthermore, when only a subset of the training data is

labeled, a semi-supervised graph embedding approach, referred to as semi-supervised

discriminant analysis (SDA) has been developed [213].

Though the classical graph construction methods have been successful, their

performance can be affected by the following reasons: (i) lack of robustness to noise

in the data samples. Since the neighbors are identified based on Euclidean distance,

noise in even a few data samples can change the graph structure significantly, (ii) in-

ability to identify distinct neighborhood structure for each data sample, when training

data is not equally well samples in different areas of the feature space. Since both

the graph construction approaches use a fixed global parameter (k or ε) to determine

the graph structure, they do not allow the use of data-adaptive neighborhoods.

To address the aforementioned challenges, the authors in [34, 163] proposed

to use graphs constructed based on sparse codes of the data samples. Sparse coding

aims to obtain a parsimonious representation for the data using the basis functions

in a given dictionary. When constructing the `1 graph, we use the set of training

samples as the dictionary directly, instead of inferring from the data. It has been

demonstrated that sparse coding is robust to noise, and does not include unrelated

inhomogeneous data since the choice of neighbors is data dependent. The sparse

codes are obtained using `1 minimization and hence the complexity of constructing

the graph is quite high when compared to the classical graph construction approaches.

Furthermore, the `1 graph construction approach is unsupervised and does not take

into account the label information of the training data.

In this paper, we propose to obtain discriminative embeddings for patches

from the kidney MRI images, using `1 graphs. Though our formulation is for a
185

2−class case, this can be generalized to multi-class problems as well. The proposed

method allows us to incorporate prior knowledge from the expert-marked ground

truth images and eliminates the need to construct the `1 graphs for the test images. As

a result, the process of identifying the glomeruli regions, and subsequently obtaining

the count, is computationally efficient and provides accurate results in comparison to

other segmentation approaches.

8.3 Supervised Graph Embedding

The inherent low dimensionality of data is usually exploited in order to achieve im-

proved performances in various computer vision and pattern recognition tasks. In

the recent years, the use of non linear dimensionality reduction (NLDR) techniques

has gained lot of interest. Their main aim is to identify a low dimensional mani-

fold onto which high dimensional data can be projected while preserving most of the

local and/or global structure. A class of approaches known as manifold clustering

and manifold learning algorithms such as Locally Linear Embedding [214], Hessian

LLE [215] and Laplacian Eigenmaps [216] preserve local information of the mani-

fold. Global methods such as Isomap [217] and semidefinite embedding [218] try to

preserve global and local relationships. In addition, approaches such as Locality Pre-

serving Projections (LPP) [219] explicitly learn mapping functions to project data

onto low-dimensional spaces. Although the learned embedding is applicable to novel

test samples, these algorithms are more appropriate for clustering problems wherein

no supervised information is available. Interestingly, several of these embedding al-

gorithms can be unified under the framework of graph embedding [220].

LPP is an unsupervised graph embedding approach that computes projection

directions, such that the pairwise distances of the projected training samples in the

neighborhood are preserved. Let us define the training data as {xi|xi ∈ RM}Ti=1. An

undirected graph G is defined, with the training samples as vertices, and the similarity

186

between the neighboring training samples coded in the affinity matrix W ∈ RT×T .

Let us denote the graph Laplacian as L = D−W, where D is a degree matrix with

each diagonal element containing the sum of the corresponding row or column of L.

The d projection directions for LPP, V ∈ RM×d, can be computed by optimizing

min
trace(VT XDXT V)=I

trace(VTXLXTV). (8.1)

Here X is a matrix obtained by stacking all data samples as its columns. The em-

bedding for any data sample x can be obtained by projecting onto the orthonormal

directions V as VTx. It can be shown that LPP computes the projection directions

by minimizing the objective

min
V

T∑
i,j=1
‖VTxi −VTxj‖2

2wij s.t.
T∑
i=1
‖VTxi‖2

2δij = 1. (8.2)

This optimization ensures that the embedding preserves the neighborhood structure

of the graph.

However, there is a need to incorporate class label information to learn an em-

bedding that can discriminate different classes of data. Linear Discriminant Analysis

(LDA) is such a supervised graph embedding framework that uses the within-class and

between-class scatter matrices to obtain discrimiantive projections. Let us assume

that the class labels corresponding to the set of training samples, {xi|xi ∈ RM}Ti=1,

are known and denoted by {yi|yi ∈ {1, 2, . . . , C}}Ti=1. Here C indicates the total

number of classes. In order to pose LDA as a graph embedding problem, we compute

the intra-class and inter-class graphs as follows.

wij =

1
Tyi

if yi = yj,

0 otherwise.
(8.3)

Here Tyi
denotes the total number of samples with the label yi.

w′ij = 1
T
. (8.4)

187

Using these affinity matrices, we construct the diagonal degree matrices D and D′,

whose elements are computed as dii = ∑
j wij and d′ii = ∑

j w
′
ij respectively. Finally,

the graph Laplacian matrices are obtained as L = D−W and L′ = D′−W′. Given

the two graph laplacian matrices, the low-dimensional embedding is computed as

max
V

Tr[VTL′V]
Tr[VTLV] . (8.5)

Note that, the reduced number of dimensions d is fixed at C−1. The above optimiza-

tion computes an embedding such that the between class scatter is maximized, while

minimizing the within-class scatter. LDA aims to solve a trace-ratio maximization

problem and this can be converted to an equivalent ratio-trace maximization prob-

lem, Tr[(VTLV)−1VTL′V]. A greedy solution for this problem can be obtained using

the generalized eigen value decomposition

XL′XT = λXLXT . (8.6)

The set of directions V is computed as the d top eigen vectors.

Alternatively, the affinity matrices can be constructed by considering both the

class label information and the local structure of the data samples. Let Nk(i) denote

the set of k−nearest neighbors for the data sample xi. The affinity matrices are then

constructed as

wij =

1 if yi = yj AND [i ∈ Nk(j) OR j ∈ Nk(i)],

0 otherwise.
(8.7)

w′ij =

1 if yi 6= yj AND [i ∈ N ′k(j) OR j ∈ N ′k(i)],

0 otherwise.
(8.8)

Given the affinity matrices, the embedding can be obtained as in the case of LDA.

This approach is referred to as local discriminant embedding (LDE).

188

Figure 8.2: Demonstration of the robustness of an `1 graph. The set of training
samples used for this simulation are obtained from the USPS dataset [5]. For an
example data sample (Digit 3), its similarities to all data samples in the case of a
K-Nearest Neighbor graph (left) and an `1 graph (right) are shown. As the data
sample is corrupted by noise, the K-NN graph changes significantly while the `1 is
robust to the noise.

8.4 Proposed Algorithm

In this section, the proposed algorithm for measuring the glomerular number is de-

scribed. By using sparse codes to define the relation between data samples, more

robust graphs can be constructed for unsupervised and supervised learning tasks.

In particular, we propose to perform discriminative embedding using `1 graphs. We

begin by discussing the construction of `1 graphs and subsequently the training and

testing stages of the proposed algorithm.

189

Figure 8.3: Proposed algorithm for computing an embedding that discriminates im-
age patches containing glomeruli from the rest. This method works by constructing
`1 graphs to model inter-class and intra-class relationships, and performing local dis-
criminant embedding.

8.4.1 Constructing `1 Graphs

In sparse modeling, data is represented as a sparse linear combination of atoms from

a “dictionary” matrix. The dictionary is typically overcomplete, i.e., the number of

basis functions exceeds the data dimension and hence we need to solve an underde-

termined system of linear equations. The linear generative model for sparse modeling

of a data sample x ∈ RM is given by,

x = Ψa (8.9)

where Ψ ∈ RM×K is the set of K elementary features and a ∈ RK is the coefficient

vector. Though different forms of regularization can be applied to this problem, a
190

(a) Training Images (b) Test Images

Figure 8.4: An example demonstration for the proposed supervised graph embed-
ding approach. This simulation uses 2 classes of digits from the USPS dataset, and
divides them into train/test sets. Using the training images, we compute the dis-
criminant mapping and obtain the low-dimensional features for both the training
and test images. The compactness of the classes observed in the test images reflects
the discrimination power of the proposed embedding.

sparse solution is more robust and can be effective for recovering the data sample x.

If we assume that the coefficient vector is sparse and has statistically independent

components, the elements of the dictionary Ψ can be inferred from the generative

model using appropriate constraints. Considering the generative model for sparse

coding (8.9), the codes can be obtained either by minimizing the exact `0 penalty or

its convex surrogate `1 penalty as,

(PL0) â = argmin
a
‖a‖0 subj. to x = Ψa, (8.10)

(PL1) â = argmin
a
‖a‖1 subj. to x = Ψa, (8.11)

where ‖.‖0 is the `0 norm and ‖.‖1 is the `1 norm. Since real-world data cannot be

expressed exactly using the generative model in (8.9), usually the equality constraints

in (8.10) and (8.11) are replaced using the constraint ‖x −Ψa‖2
2 ≤ ε, where ε is the

error goal of the representation. The exact `0 minimization given in (8.10) is a

combinatorial problem and that is the major reason why its convex surrogate is often

used.
191

Given a set of unlabeled training samples X = {xi}Ti=1, the `1 graph can be

constructed as follows. For each data sample xi, we solve the `1 optimization problem

to obtain the sparse codes,

min
ai
‖ai‖1, s.t. xi = Ψiai. (8.12)

Here the dictionary Ψi = [x1, . . . ,xi,xi+1, . . . ,xT] is designed as the set of training

samples, leaving out the sample xi. The importance of a training sample in represent-

ing another sample is used as the indicator for similarity between these two samples.

Hence, representation coefficients can be used to build the similarity matrix for the

graph. Since the entries of this weight matrix represent the similarities between data

samples, we can assume them to be non-negative. Hence, the `1 minimization can

be solved with non-negative constraints on the coefficient values. Let us denote this

process of computing the sparse coefficient matrix as A = SC(X,X), where the first

argument is the data matrix, and the second argument is the dictionary matrix. Using

the sparse coefficient matrix, A ∈ RT×T , as the similarity matrix, we construct the

laplacian for the graph as L = (I−A)T (I−A). Here, I denotes the identity matrix of

size T ×T . This laplacian matrix can be subsequently used to perform spectral clus-

tering. In order to demonstrate the robustness of sparse representations, we consider

a subset of images from the USPS handwritten digit dataset. Figure 8.2 shows the

similarities between one of the training samples and the rest, obtained using nearest

neighbors and sparse representations. Clearly, using sparse coding provides a more

robust graph even when the data sample is noisy. In addition to building `1 graphs,

graph embedded sparse codes can be obtained as described in [161].

8.4.2 Incorporating Supervisory Information

The `1 graph construction is unsupervised, and hence supervisory information cannot

be incorporated. The problem of identifying glomeruli in the kidney images can be

solved using spectral clustering with `1 graphs. However, such an approach poses two
192

main challenges: (i) prior knowledge about the intensities in the glomeruli regions

cannot be used, and (ii) computational complexity of building an `1 graph is high.

In this paper, we propose to obtain an embedding using a set of training images

and build a low-complexity method for estimating the glomerular number in any test

image.

In order incorporate supervisory information, we first build a training set

by manually marking the glomerular regions in a few kidney MRI images. The

training stage of the algorithm works with image patches of size 5 × 5 extracted

from the training images. Patches are extracted around every pixel in the image,

and those patches centered at the pixels marked as belonging to glomeruli regions

are considered to be positive examples (Xpos). The rest of the patches are marked

as negative examples (Xneg). Our goal is to create a low-dimensional embedding

that discriminates the positive and negative examples effectively. Local discriminant

embedding addresses this problem by building graphs as described in Section 8.3. In

order to obtain a more robust embedding, we propose to use `1 graphs.

As a preprocessing step, all training patches are normalized to unit `2 norm.

Optionally, mean removal can also be performed prior to normalization. Follow-

ing this, we compute four different similarity (sparse coefficient) matrices for con-

structing the `1 graph using the procedure described in Section 8.4.1: (i) Ap,p =

SC(Xpos,Xpos), (ii) Ap,n = SC(Xpos,Xneg), (iii) An,p = SC(Xneg,Xpos), and (iv)

An,n = SC(Xneg,Xneg). In order to use these similarities to discriminate between the

two classes, we propose to construct intra-class and inter-class similarity matrices as

follows.

A =

 Ap,p 0Tp,Tn

0Tn,Tp An,n

 (8.13)

193

A′ =

0Tp,Tp Ap,n

An,p 0Tn,Tn

 (8.14)

The corresponding laplacian matrices are computed as

L = (I−A)T (I−A), (8.15)

L′ = (I−A′)T (I−A′). (8.16)

By creating a low-dimensional projection V, we are interested in preserving the intra-

class relationships, while making samples from different classes to be dissimilar. This

is achieved by performing local discriminant embedding with L and L′ respectively as

shown in (8.5). Figure 8.3 describes the process of computing a discriminant embed-

ding using `1 graphs. In order to demonstrate the behavior of the proposed embedding

approach, we build an example dataset using images from 2 different classes (Digits

3 and 7) in the USPS dataset. In each class, we use 300 randomly chosen images for

training and the rest for testing. Figure 8.4(a) shows the 3−dimensional embedding

of the training images and it can be seen that the two classes are well separated. By

using the identified mapping for novel test images, we obtain the features in Figure

8.4(b). The compactness of samples within a class, and separation between the two

classes reflects the discrimination power of the proposed embedding.

8.4.3 Obtaining Glomerular Count

Since we have learned a discriminant embedding, computing low-dimensional features

for a test image is straightforward. Unlike conventional sparse coding methods, we

need not compute sparse codes for the test image patches. As a result, the proposed

algorithm works in near real-time, and processes an image of 256×256 in just around

0.2 seconds. Given a test image, we extract 5×5 patches similar to the training stage,

and normalize them to unit `2 norm. Following this we project the vectorized patches

onto the discriminant directions as VTZ, where Z denotes the matrix of patches from
194

Figure 8.5: A low-complexity procedure for obtaining the glomerular count in a test
image. The discriminant mapping determined in the training stage is used with the
test image patches directly, and hence there is no need to obtain the sparse codes.

a test image. Using these low-dimensional features, we employ the simple K-means

clustering procedure to perform segmentation. Given the segmented image, we count

the number of independent regions with atleast more than r pixels. This implies that

we assume that the glomeruli regions contain at least r pixels in its neighborhood, so

that we can ignore a few lonely false positives provided by the algorithm. The steps

involved in obtaining the glomerular count for a test image is illustrated in Figure

8.5.

8.5 Experimental Results

8.5.1 Dataset

For evaluating the performance of the proposed algorithm, we use the dataset re-

ported by the authors in [204]. Furthermore, the estimated glomerular number is

compared against the results obtained using the MRI segmentation used in [204],

acid maceration, and stereological methods. We now briefly describe the procedure

for obtaining the dataset. Additional details on the materials and methods can be

195

found in [204]. Cationic Ferritin was synthesized and male Sprague-Dawley rats,

weighing between 215 and 245 g, were given three intravenous bolus doses. Kidneys

were perfused and fixed via transcardial perfusion of PBS followed by 10% neutral

buffered formalin, then resected and stored in glutaraldehyde. The perfused left kid-

neys were imaged in glutaraldehyde on a Varian 19T 89-mm-bore NMR (Varian, Palo

Alto, CA), equipped with a DOTY 3-axis imaging probe and a gradient with a max-

imum strength of 300 G/cm (DOTY Scientific, Columbia, SC). Scans were acquired

with a 3D gradient echo (GRE) sequence with echo time/repetition time = 7/40 ms

and a resolution of 62× 62× 78µm. Total scan time was 6 hours/kidney.

8.5.2 Benchmark Method

Labeled glomeruli in the 3D MRI data set can be counted using the method used

in [204]. Using bicubic interpolation, images in the data set were resized and the

spatial resolution was changed to 31×31×62µm. Spatial signal magnitude gradients

were computed to identify significant spatial changes in signal magnitude throughout

the volume. Only voxels exceeding a threshold on the signal magnitude difference were

included for the subsequent operations. Following this, regional minima were located

in these areas using an upper signal magnitude threshold. Regions in the image

considered to be glomeruli were then labeled based on morphological thresholds.

Note that, here it is assumed that a glomerulus is approximately spherical. Finally,

the watershed transform was computed on these regions to distinguish individual

glomeruli where signal overlap of multiple glomeruli might occur.

8.5.3 Results

In this section, we report the results obtained using the proposed algorithm, in com-

parison to the benchmark technique with MRI images, acid maceration, and stere-

ology methods. The evaluation was carried out with three different subjects (Rat

A, Rat B and Rat C) and the glomerular count for the MRI based approaches were

196

Figure 8.6: Segmentation results for a sample set of MRI images obtained using the
proposed algorithm. (Left-Right) Original kidney image with reduced intensities at
glomeruli locations; Ground truth image with manually labeled glomeruli regions;
Segmentation obtained using the approach described in Section 8.4.3.

obtained from 192 slices. Note that the results reported for the proposed algorithm

were obtained using only 2-D slices. For training the discriminant mapping, 5 ground

truth images were used and patches of size 5 × 5 were extracted. Using the ground

truth labels, a training set containing 7, 500 positive and 7, 500 negative example
197

Table 8.1: Glomerular count obtained using acid maceration, stereology, and the
MRI techniques, for three different datasets. Each dataset consisted of 192 images
and total glomerular count is shown. In addition, the total time taken, in seconds,
to process each dataset using the proposed algorithm is shown.

Dataset MRI Maceration Stereology Proposed Time
Number [204] Number Number Algorithm Taken (s)

Rat A 32, 789 27, 504 34, 504 33, 884 41.1
Rat B 35, 203 31, 190 35, 421 34, 335 42.4
Rat C 31, 772 31, 075 32, 117 44.9
Rat D 39, 482 33, 321 34, 765 40.3
Rat E 29, 682 31, 478 35, 208 46.6
Mean 33, 786 30, 914 34, 963 34, 062 43.1
STD 3, 753 2, 112 648 1193 2.6

patches was generated. The patches were normalized, and the four `1 graphs were

constructed with the sparsity penalty λ fixed at 0.2. The number of reduced dimen-

sions d was fixed at 10 and the mapping V ∈ R25×10 was obtained using the algorithm

described in Figure 8.3. For each image in the evaluation dataset, the normalized 5×5

patches were projected onto the discriminant directions, and K-means clustering was

performed to identify the gomeruli. Finally, the number of independent regions was

counted and reported as the glomerular number.

Figure 8.6 illustrates the segmentation obtained for a set of test images, using

the proposed algorithm. In each case, both the original and ground truth images are

shown for comparison. Clearly, the proposed algorithm provides impressive results

in determining the glomeruli regions and the glomeruli count is comparable to the

manual count. The glomerular counts for the three evaluation datasets are shown

in Table 8.1. The results obtained using the proposed method are comparable to

the stereology results, and the variance is comparatively lower. Another important

advantage of the proposed scheme is its low computational complexity, which is evi-

dent from the time reported in 8.1. The time complexity was measured in MATLAB

R2010b on a 2.8GHz, Intel i7 desktop.

198

Chapter 9

LOCAL SPARSE CODING IN OBJECT RECOGNITION AND IMAGE

RETRIEVAL

Several state-of-the-art object recognition systems are based on Spatial Pyramid

Matching (SPM) [99]. An image is partitioned into increasingly finer regions and

features are evaluated in the local regions. Local descriptors are extracted from small

image patches, coded with a dictionary learned using features from several training

images, and the code vectors in each spatial region are pooled together by building

histograms. Finally, the histograms of the different spatial regions are concatenated

and presented to a non-linear classifier. Typically, the features extracted from the

images are either Scale Invariant Feature Transform (SIFT) descriptors or Histogram

of Oriented Gradients (HOG) descriptors. The descriptors are coded using vector

quantization with a K-means dictionary. Though, this approach has been very effec-

tive, the complexity of using a non-linear classifier is quite high. Hence, the authors

in [100] proposed to replace the vector quantization in SPM by sparse coding, which

enabled the use of linear classifiers. Furthermore the authors of [167] showed that

sparse representations can be efficiently performed in a high dimensional feature space

using the kernel trick. The kernel trick maps the non-linear separable features into a

high dimensional feature space, in which similar features are grouped together, hence

improving the linear separability.

Note that sparse coding algorithms aim to reduce only the reconstruction er-

ror and hence do not explicitly consider the correlation between the codes, which

is crucial for classification tasks. As a result, the codes obtained for similar fea-

tures may be quite different. The overcomplete nature of the dictionary makes the

sparse coding process highly sensitive to the variance in the features. This can be

circumvented by suitably regularizing the sparse coding problem. Laplacian sparse

199

coding [160] addresses this by exploiting the dependence between the local features,

thereby ensuring the consistence of the sparse codes. In [154], the authors proposed

the locality-constrained linear coding approach, which explicitly encourages the code

to have non-zero coefficients for dictionary atoms in the neighborhood of the encoded

data. In [153] it was shown theoretically that, under certain assumptions, locality

is more important than sparsity for non-linear function learning using the obtained

local codes.

9.1 Locality in Sparse Models

In non-linear function learning problems, it is typical to overfit the data particularly

when the dimensionality of the data is much higher in comparison to the number

of data samples. However, in several real problems we do not observe this so-called

curse of dimensionality, since they often lie on a manifold with much smaller intrinsic

dimensionality. Performing machine learning tasks using such data is to effectively

exploit the intrinsic geometric properties of the manifold of interest. In recent years,

the knowledge of the geometric properties have been utilized to devise sophisticated

algorithms for tasks such as classification and clustering. One of the approaches that

has been popular in the machine learning community is the use of non linear dimen-

sionality reduction (NLDR) techniques [221]. Their main aim is to identify a low

dimensional manifold onto which the high dimensional data can be projected while

preserving most of the local and/or global structure. Approaches such as Locally Lin-

ear Embedding, Hessian LLE, and Laplacian Eigenmaps preserve local information

of the manifold. In contrary, global methods such as Isomap, semidefinite embed-

ding etc. try to preserve both global and local relationships. However, this class of

techniques assumes that the data is embedded in a high-dimensional ambient vec-

tor space, i.e. the manifold is an embedded sub-manifold of some vector space. If

such an embedding can be found, one can apply a variety of methods developed for

200

vector-spaces in conjunction with one of several NLDR techniques. Locally Linear

Embedding (LLE) is an unsupervised learning algorithm which exploits the fact that,

the local geometry of a non-linear function can be well approximated using a linear

model. When the dictionary D represents the set of anchor points that characterize

the local geometry, the idea of using sparse coding to model the local neighborhood

of data merits attention. However, sparse coding, in the absence of additional con-

straints, tries to reduce the error of the representation without any consideration on

locality. It is possible to include additional locality constraints by considering the

general class of the weighted `1 minimization problems,

min
x

K∑
k=1

w(k)|xk| subject to ‖y−Ψx‖2 ≤ ε, (9.1)

where w(1), ..., w(K) are positive weights. It can be clearly seen that large weights

could be used to encourage zero entries in the sparse code x. The LCC algorithm

proposed in [153] computes local sparse codes using weights based on the Euclidean

distance measure as given by

w(k) = ‖y−ψk‖2
2, (9.2)

where ψk is the kth column of Ψ. Since the dictionary elements are normalized, the

following distance metric can be alternatively employed to compute the neighborhood.

w(k) = ‖y− (yTψk)ψk‖2
2. (9.3)

Note that this metric proposed in [45] is used by K-hyperline clustering [35] to identify

the membership of a data sample. In K-hyperline clustering, a cluster center is

evaluated as the rank-1 SVD (singular value decomposition) of the data samples

belonging to that cluster. This weighting scheme directly considers the coherence

between the normalized dictionary elements and the data sample y.

Since the weighted `1 minimization in (9.1) is computationally expensive, an

approximate method for locality constrained linear coding (LLC) was proposed in
201

[154]. The LLC algorithm employs the following criteria:

min
X

T∑
i=1
‖yi −Ψxi‖2

2 + λ‖wi � xi‖2
2 subject to 1Txi = 1,∀i, (9.4)

where � denotes element-wise multiplication and wi measures the similarity between

the ith data sample and all the dictionary atoms. The distance metric used is

wi(k) = exp
(
‖yi −ψk‖2

σ

)
,∀k, (9.5)

where σ is used to adjust the control the magnitude of weights in the neighborhood of

a data sample. In order to speed up this procedure, the P nearest dictionary atoms are

first identified and a smaller linear system is solved using a least squares procedure on

the chosen dictionary atoms. This reduces the computational complexity from O(K2)

to O(K + P 2), where K denotes the number of dictionary atoms and P << K.

9.2 Local Sparse Coding

In this section, we describe the proposed dictionary learning algorithm for local sparse

coding of image descriptors. Similar to the dictionary learning approaches for regular

sparse coding, the proposed algorithm iterates between local sparse coding and dictio-

nary update steps. However, we need to take into account the neighborhood relation

between a dictionary atom and the training vectors it represents, when updating the

dictionary. The dictionary learning is a generalized clustering procedure where the

training vectors are assigned to more than one dictionary atom in the local sparse

coding step. Similarly, the training vectors participate in the update of more than

one dictionary atom in the update step. The dictionary is initialized using cluster

centroids obtained from K-means clustering of the training vectors. The joint opti-

mization problem for local sparse coding and dictionary learning can be expressed

as {
Ψ̂, {x̂i}Ti=1

}
= min

Ψ,{xi}T
i=1

T∑
i=1
‖yi −Ψxi‖2

2 + ‖Wixi‖1, (9.6)

202

additionally constraining ‖Ψk‖2 = 1,∀k = {1, . . . , K}. In order to solve for local

sparse codes, we rewrite the weighted minimization problem in (9.6) as

x̂i = argmin
xi

‖yi −ΨW−1
i xi‖2

2 + λ‖xi‖1,∀i = {1, . . . , T}. (9.7)

Here Wi is a diagonal matrix containing the weights corresponding to the dictionary

elements in Ψ computed as

Wi(k, k) = ‖yi −ψk‖2
2,∀k = {1, . . . , K}. (9.8)

Setting Γi = ΨW−1
i , (9.7) can be expressed as

x̂i = argmin
xi

‖yi − Γixi‖2
2 + λ‖xi‖1,∀i = {1, . . . , T}. (9.9)

This is equivalent to standard sparse coding with the modified dictionary Γi. We can

employ the feature-sign search algorithm or the LARS-LASSO method to efficiently

solve (9.9) for the sparse codes. Though these algorithms are significantly faster than

using convex optimization, the following greedy approach can also be used to evaluate

the local code for test data. For a test data sample y, we can first identify the P

nearest neighbors and then compute the corresponding P−sparse code using

min
x

∥∥∥∥∥∥y−
∑
k∈C
ψkxk

∥∥∥∥∥∥
2

subject to ‖x‖0 ≤ P, (9.10)

where C contains the set of indices of the P nearest dictionary atoms selected by the

distance metric in (9.3). This optimization implies that only the selected dictionary

atoms, {ψk}k∈C, can participate in the approximation of y. This can be solved using

the Orthogonal Matching Pursuit or the LARS algorithm.

9.2.1 Dictionary Learning

As described earlier, updating the dictionary atom should not affect its neighborhood

relation with the training vectors it represents when trying to reduce the error. The

non-zero coefficients in the local sparse code reveals the relationship between a data
203

sample and the dictionary atoms. We can preserve the relationship by fixing the

coefficients when the dictionary atoms are updated, such that the approximation

error is reduced. This can be contrasted with the dictionary update of K-SVD, where

the dictionary atom and the corresponding coefficients are updated together using

an SVD procedure. Given the sparse codes and the weighting matrix, the dictionary

update step can be expressed as

Ψ̂ = argmin
Ψ

T∑
i=1
‖yi −Ψzi‖2, subject to ‖ψk‖2

2 = 1,∀k = {1, . . . , K}. (9.11)

Here zi = W−1
i xi denotes the reweighted coefficient vector obtained from the local

sparse coding step. In order to update the kth dictionary atom, we can simplify the

objective function as∥∥∥∥∥∥Y −
K∑
j=1
ψjzj,r

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥Y −
∑
j 6=k
ψjzj,r

−ψkzk,r

∥∥∥∥∥∥
2

F

,

= ‖Ek −ψkzk,r‖2
F . (9.12)

Here zk,r denotes the row vector containing the set of coefficients of all training vectors

corresponding to the dictionary atom ψk. The objective can be rewritten as

‖Ek −ψkzk,r‖
2
F = tr[(Ek −ψkzk,r)T (Ek −ψkzk,r)],

= tr[ET
kEk − ET

kψkzk,r

−(ẑk,r)TψT
kEk + (zk,r)TψT

kψkzk,r]. (9.13)

Since ψT
kψk = 1, the optimization with respect to ψk will consider only the second

and third terms. The dictionary atom ψk can therefore be updated as

ψ̂k = Ek(zk,r)T
‖Ek(zk,r)T‖2

. (9.14)

It can be observed that this dictionary update is equivalent to computing the weighted

mean of the residual error vectors, where the weights are obtained using local sparse

coding. Since the coefficients are fixed during the update, the dictionary atoms change

slowly from the initial atoms over iterations.
204

9.3 Kernel Local Sparse Coding

It is well known that the kernel trick can be employed to capture the non-linear

similarity of features. We propose to perform local sparse coding in a high dimensional

feature space, in order to improve the discrimination power of the codes. Let us define

a non-linear transformation to a feature space F as Φ : RM 7→ F . We denote the set

of training vectors Y in the feature space as Φ(Y). The kernel matrix K ∈ RN×N is

a Gram matrix of all the feature vectors, K = Φ(Y)TΦ(Y). All computations in the

feature space will be performed exclusively using kernel similarities. In this work, we

consider the RBF kernel to perform local sparse coding. Given two data samples y1

and y2, the kernel similarity can be computed as

K(y1,y2) = exp(−γ(‖y1 − y2‖2
2)). (9.15)

The joint optimization of local sparse coding and dictionary learning can be performed

in the feature space as

{
Ψ̂, {x̂i}Ti=1

}
= argmin

Ψ,{xi}T
i=1

T∑
i=1
‖Φ(yi)− Φ(Ψ)W−1

i xi‖2
2 + λ‖xi‖1, (9.16)

with the constraint that ‖Ψk‖2 = 1,∀k = {1, . . . , K}. Here,

Wi(k, k) = ‖Φ(yi)− Φ(ψk)‖2
2

= K(yi,yi) + K(ψk,ψk)− 2K(yi,ψk)

= 2(1−K(yi,ψk)). (9.17)

For each data sample yi, kernel local sparse coding can be performed by simplifying

the objective function in (9.16) as

x̂i = argmin
xi

xTi W−1
i K(Ψ,Ψ)W−1

i xi − 2K(yi,Ψ)W−1
i xi + λ‖xi‖1 (9.18)

This can be solved using the feature-sign search algorithm, with the additional com-

plexity of evaluating the kernel matrices.
205

9.3.1 Dictionary Learning

In order to perform dictionary update using the kernel matrices, fixing the sparse

codes and denoting zi = W−1
i xi, (9.16) can be rewritten as

min
Ψ

T∑
i=1
‖Φ(yi)− Φ(Ψ)zi‖2

2 subject to ‖ψk‖ ≤ 1,∀k. (9.19)

The objective in (9.19) can be equivalently expressed as

f =
T∑
i=1

1 +
K∑

k1=1

K∑
k2=1

zi(k1)zi(k2)K(ψk1 ,ψk2)− 2
K∑

k1=1
zi(k1)K(ψk1 ,yi)

 . (9.20)

Since the objective function to be minimized involves the kernel matrices, we can

iteratively update one dictionary atom at a time using the procedure described in

[167]. In order to update the kth dictionary atom, we differentiate the objective in

(9.20) as

∂f

∂ψk

= −4γ
T∑
i=1

 K∑
k2=1

zi(k)zi(k2)K(ψk,ψk2)(ψk −ψk2)− zi(k)K(ψk,yi)(ψk − yi)
 .

(9.21)

By setting the derivative to zero, we can estimate the modified dictionary element.

However, the kernel matrices K(ψk,Ψ) and K(ψk,Y) are unknown and hence we

resort to using ψ(n−1)
k from the earlier (n−1)th iteration of the algorithm to compute

those kernel matrices at the nth iteration. The dictionary atom update in the nth

iteration by solving
T∑
i=1

 K∑
k2=1

zi(k)zi(k2)K(ψ(n−1)
k ,ψk2)(ψk −ψk2)− zi(k)K(ψ(n−1)

k ,yi)(ψk − yi)
 = 0.

(9.22)

The solution is given as

ψ
(n)
k =

Ψdiag[K(ψk(n− 1),Ψ)]ZzTk,r −Ydiag[K(ψ(n−1)
k ,y)]zTk,r

K(ψ(n−1)
k ,Ψ)ZzTk,r −K(ψ(n−1)

k ,y)zTk,r
. (9.23)

Here zk,r is a row vector containing the set of coefficients of all training vectors

corresponding to the dictionary atom ψk, and diag[.] creates a diagonal matrix using

the argument vector as its diagonal.
206

9.4 Object Recognition Experiments

In this section, we evaluate the performance of the proposed dictionaries in object

recognition. Following the approach described in [100], we compute sparse codes for

the local descriptors in an image and aggregate them at multiple spatial scales. In our

simulations, all images are divided into patches of size 24×24 with a grid spacing of 8

and one SIFT descriptor is extracted per patch. The descriptors are coded using the

following approaches: (a) regular sparse coding using K-means dictionary (SC) [100],

(b) kernel sparse coding (KSC) [167], (c) Laplacian sparse coding (Laplacian SC)

[160], (d) locality-constrained linear coding using K-means dictionary (LLC) [154],

(e) local sparse coding using the proposed dictionary (LSC), and (f) kernel local

sparse coding using the proposed dictionary (KLSC). We then employ spatial pyramid

coding, where we generate region-specific codes at different spatial scales. Each image

is processed at spatial scales 1, 2 and 4 respectively. In the first scale, where the full

image is considered, the sparse codes are stacked into a matrix and max-pooling [154]

is performed, where the row-wise maximum coefficient value is chosen, resulting in a

vector. Note that we consider the absolute values for computing maximum at each

index, but retain the sign. At scale 2, the image is split into 4 regions and 4 max

pooled feature vectors are generated. Similarly, 16 feature vectors are obtained at

scale 4. Finally, all the 21 feature vectors are stacked into a single column vector and

used as the training feature to a linear SVM. We evaluated the object recognition

performance using Caltech-256, UIUC sports, Corel-10 and Scene-15 datasets. We

fixed the number of dictionary elements K = 1024 in all cases and randomly chose

75, 000 patches to generate the dictionary for each dataset. We set the parameter

λ = 0.3 for the feature-sign search algorithm. For the parameter γ in the Gaussian

kernel function, we selected the values 1
64 ,

1
128 ,

1
128 ,

1
256 on Scene-15, UIUC sports,

Caltech-256 and Corel-10 respectively. It is evident from all the results presented in

207

Table 9.1: Comparison of the classification accuracies on the Caltech-256 dataset.

Method # Training Vectors
15 30 45 60

SC [100] 27.73 34.02 37.46 40.14
KSC [167] 29.77 35.67 38.61 40.3

Laplacian SC [160] 30.01 35.74 38.54 40.43
LLC [154] 30.08 35.68 38.59 40.47

LSC (Proposed) 30.19 35.94 38.72 40.66
K-LSC (Proposed) 30.28 36.05 38.84 40.82

this section that the proposed algorithms achieve improved classification accuracies

in comparison to the other approaches. All results presented were averaged over 10

iterations and the training/testing sets were randomly chosen in each iteration.

9.4.1 Caltech-256

The Caltech-256 dataset [179] contains 30, 607 images in 256 categories and its vari-

ability makes it extremely challenging in comparison to the Caltech-101 dataset. The

intra-class variance is quite high and the objects of interest are not necessarily in the

center of the images. We tested the performance of the different algorithms with 30,

45, and 60 training images per class respectively. Table 9.1 shows the classification

accuracies obtained using the different algorithms. As it can be observed, kernel local

sparse coding algorithm outperformed the other sparse coding based approaches in

all cases.

9.4.2 Corel-10 Dataset

The Corel-10 dataset [222] contains 1000 images belonging to 10 categories: skiing,

beach, buildings, tigers, owls, elephants, flowers, horses, mountains and food. Each

class contains 100 images and we randomly select 50 images from each class for

training. The results obtained are presented in Table 9.2.

208

Table 9.2: Comparison of the classification accuracies on the Corel-10, Scene-15, and
UIUC sports datasets.

Method Accuracy (%)
Corel-10 Scene-15 UIUC Sports

SC [100] 86.2 80.28 82.74
KSC [167] 89.43 83.08 84.92

Laplacian SC [160] 88.4 89.75 85.31
LLC [154] 88.41 89.78 85.34

LSC (Proposed) 88.8 89.94 85.56
K-LSC (Proposed) 89.71 90.61 85.93

9.4.3 Scene-15 Dataset

The Scene-15 dataset [99] contains 4485 images belonging to 15 different categories

and is typically used for evaluating scene classification performance. The number

of images per class vary between 200 and 400 images. The scene categories of this

dataset include suburb, coast, forest, highway, inside city, mountain, open country,

street, tall building, office, bedroom, industrial, kitchen, living room and store. We

train the linear SVM by using features extracted from 100 images of each class use

the rest for testing.

9.4.4 UIUC Sports Dataset

The UIUC sports dataset [223] contains 1792 images from 8 different classes: bad-

minton, bocce, croquet, polo, rock climbing, rowing, sailing and snow boarding. The

number of images in each class varies from 137 to 250. Following the standard evalu-

ation procedure [167], we randomly select 70 images from each class for training and

the rest for testing. The object recognition performance is reported in Table 9.2.

9.5 Image Retrieval

In this section, we present a supervised coding approach for performing image retrieval

using sub-image heterogeneous features. In sparse coding based object recognition, we

considered dense descriptors extracted from small patches in an image. However, prior

knowledge of the labels/tags associated with the training images are not considered
209

when building the SPM feature. Incorporating supervised information into local

sparse coding will result in highly discriminative features for retrieval. Hence, we

propose to extract features from reasonably large regions in an image, since we can

assign labels to those regions. Preliminary results for the proposed image retrieval

framework were reported in [46].

9.5.1 Extracting Sub-image Features

In the proposed approach, we first divide an image into highly overlapping sub-images,

that are much larger than image patches used for extracting local descriptors. For

example, in an image of size 256×256, the sub-images can be of size 128×128. Since

the sub-images are large, they correspond to significant portions of objects/scenes in

the image. We extract multiple global/local features from each sub-image and build

a heterogeneous feature by normalizing each feature to unit `2 norm, and stacking

them together.

Designing a dictionary, for local sparse coding, using the heterogeneous fea-

tures will enable us to identify key representative sub-image features found across

all images. Such a dictionary captures the interactions between the objects and the

background in the images and hence the resulting codes may retrieve more meaning-

ful neighbors. This dictionary corresponds to a “bag of visual phrases” where each

dictionary element corresponds to a visual phrase. This can be contrasted with the

“bag of visual words”, which is the dictionary that we would obtain if we had con-

sidered small image patches. Local sparse codes for the sub-image features can be

obtained using the procedure in Section 9.2. The codes of all sub-images in an image

are then aggregated in a spatial pyramid as described earlier, where the aggregation is

performed using max-pooling. The resulting feature vector represents the importance

of each visual phrase in the image. In Figure 9.1, we show one sample image each

from three classes of the Microsoft Research Cambridge database [6]. The feature

210

Figure 9.1: Sample images from the Microsoft Research Cambridge database [6] (left)
and their aggregated sub-image features (right).

vectors obtained by aggregating the local sparse codes of sub-images at one spatial

scale are shown on the right. In the first image, there is predominantly only one ob-

ject present in the image (bicycle). The second image (chimney) contains geometric

structures (walls, rooftops) in addition to the background (sky). In the third image,

all sub-images are quite similar to cloud-like patterns. The feature vectors for the im-

ages illustrated have disjoint non-zero supports and this leads to high discrimination

among classes.

9.5.2 Supervised Local Sparse Coding

As described earlier, we propose to employ a coding scheme that exploits the fact that

once a dictionary atom has been chosen to represent a sub-image feature in a class,

it may as well be used to represent other sub-image features of the same class. In

addition to exploiting the class label information, this will ensure that aggregating the

sparse codes from all sub-images will result in a sparse feature. In [159], the authors

proposed a mixed-norm regularization method to perform group sparse coding of

visual descriptors in an image. Furthermore, simultaneous sparse coding has been
211

successfully employed to obtain sparse codes for a set of data samples. In our setup,

we assume that all sub-image features in a class can be modeled using the same

neighborhood. In other words, we want to exploit the clusterability of the features

within a class. For each class, the local neighborhood is identified by computing a

representative feature for that class and then determining the weights corresponding

to all dictionary atoms. If we employ the distance metric in (9.2), mean of all features

is used as the representative. Whereas, the rank-1 SVD of the features is used as

the representative when (9.3) is employed. Given the neighborhood, we perform

supervised coding of the sub-image features in a class as

X̂(g) = argmin
X
‖Y(g) −ΨW−1

(g)X‖
2
F subject to ‖X‖row−0 ≤ L, (9.24)

where Y(g) is the set of training sub-image features in class g, W(g) is the di-

agonal weight matrix corresponding to the estimated neighborhood for that class

and ‖X‖row−0 is the row-`0 pseudo norm of the coefficient matrix i.e., ‖X‖row−0 =

|rowsupp(X)|. Here,

rowsupp(X) = {k ∈ {1, . . . , K} : xk,t 6= 0 for some t} . (9.25)

Several algorithms exist to solve this simultaneous sparse approximation problem

[224] and any algorithm can be chosen depending on the accuracy and computational

complexity requirements of the system.

The dictionary update step in Section 9.2.1 can be extended to the case of

supervised local sparse coding straightforwardly. The objective function to be mini-

mized when updating the dictionary atom ψk can be written as

G∑
g=1

∥∥∥Y(g) −ΨW−1
(g)X

(g)
∥∥∥2

F
(9.26)

where G denotes the total number of classes. Substituting Z(g) = W−1
(g)X(g), the

212

Figure 9.2: Proposed supervised local sparse coding algorithm for image retrieval
using sub-image heterogeneous features.

objective can be simplified as

G∑
g=1

∥∥∥Y(g) −ΨZ(g)
∥∥∥2

F
=

G∑
g=1

∥∥∥E(g)
k −ψkz

(g)
k,r

∥∥∥2

F
(9.27)

=
∥∥∥[E(1)

k . . .E(G)
k

]
−ψk

[
z(1)
k,r . . . z

(G)
k,r

]∥∥∥2

F

=
∥∥∥Ẽk −ψkz̃k

∥∥∥2

F
, (9.28)

where E(g)
k = Y(g) −

∑
j 6=k
ψjz

(g)
j,r and ψk is constrained to be unit norm. In effect,

the updated dictionary atom can be obtained using the procedure in (9.14) with the

concatenated error matrix Ẽk and the coefficient vector z̃k (corresponding to ψk).

9.5.3 Simulations

Figure 9.2 illustrates the proposed algorithm for performing image retrieval using sub-

image features. In our simulations, we obtained images from the Microsoft Research

Cambridge image database [6] and resized them to 256×256. The dataset consists of

4, 323 images belonging to 19 different classes. We used 75% of images randomly cho-

sen from each class for training and the rest for testing. For each image, we extracted
213

the following features: Histogram of Oriented Gradients (HoG), GIST and Local Bi-

nary Pattern (LBP). We obtained the heterogeneous base feature for each image by

`2 normalizing and stacking the three features. To generate the sub-image features,

we divided each image into overlapping patches of size 128 × 128 (grid spacing: 16)

and obtained the base feature for each patch. We employed the algorithm in Section

9.5.2 to learn a dictionary containing 512 atoms using sub-image features from the

training set. The supervised local sparse codes from each image were aggregated in

2 spatial scales. In the first spatial level, all sub-image features were pooled together

to form a 512 × 1 vector. In spatial level 2, each image was divided into 4 regions

and sparse codes of only sub-images from that region were aggregated. Aggregated

codes from both levels were stacked to form a 2560× 1 vector and `2 normalized. For

each test image, all sub-image features were simultaneously coded using (9.24) and

spatial pyramid features were constructed.

For comparison we generated spatial pyramid features by aggregating local

sparse codes obtained by not incorporating the class label information. We employed

a simple Euclidean distance based nearest neighbor search on the features to iden-

tify visually similar images. Figure 9.3 demonstrates the Precision vs Recall curves,

obtained using the original heterogeneous features, proposed local sparse coded sub-

image features with/without label information for 5 different classes from the dataset.

Note that the curves are obtained by averaging the retrieval results of all test images

in every class. As it can be observed, in all cases both local sparse coding based fea-

tures performed significantly better than the heterogeneous features. Furthermore,

the performance improvement by employing supervised coding is also evident from

the results.

214

(a) Aeroplane (b) Animal

(c) Bicycle (d) Car

(e) Window

Figure 9.3: Precision vs Recall curves for different classes from the Microsoft Research
Cambridge image database [6]. In each case, a sample set of test images are shown.
The images are best viewed in color and 300% zoom-in.

215

Chapter 10

SUMMARY AND FUTURE WORK

10.1 Summary

In this dissertation, different aspects of sparse learning were considered, and a range

of algorithms was presented to use sparse models in image understanding and com-

puter vision applications. Though sparse methods have been used in large scale

learning, because of their ability to provide parsimonious models, they can be made

more effective by incorporating ideas from statistical learning theory and machine

learning. Inferring dictionaries for sparse representations using training examples

is a well-studied problem. These methods have been adapted to several supervised

and unsupervised learning problems by incorporating a variety of discriminatory con-

straints, and learning strategies. However, by considering the characteristics of dictio-

nary learning algorithms, from the perspective of statistical learning, more effective

image models can be derived. Furthermore, modern tools from machine learning

such as kernel methods, ensemble methods, graph-embedding approaches, locally-

linear methods can enrich the use of sparse modeling paradigm in computer vision

applications. In the rest of this section, a detailed summary of the findings in this

dissertation is provided.

To facilitate the understanding of dictionary learning algorithms, the problem

of 1-D subspace clustering was considered, and its theoretical and algorithmic charac-

teristics were analyzed. Since dictionary learning is a generalization of 1-D subspace

clustering (K-lines), the findings from this analysis can be highly beneficial in improv-

ing the behavior of sparse learning algorithms. The convergence and local optimality

of this clustering procedure was proved, and an Expectation-Maximization formula-

tion was developed to show that dictionary learning is indeed a generalization of 1-D

subspace clustering. Though performance of a clustering algorithm is often deter-

mined by a suitable initialization, its stability characteristics can be used to evaluate
216

the clusters identified by the algorithm. It was proved that the K-lines clustering algo-

rithm is stable under certain conditions. In spite of the markedly different geometries

of the K-lines and the K-means clustering algorithms, they both are locally optimal

and their distortion functions belong to the uniform Donsker class which leads to sim-

ilar stability properties.The overhead of computing SVD for high dimensional data in

K-lines clustering was addressed. Different approaches for dimensionality reduction

based on random projections were presented and applied to cluster video data. Per-

forming clustering in a feature space, obtained using non-linear transformations, can

improve the clustering performance because of the improved separability between the

classes. Hence, the kernel K-lines clustering algorithm, that uses a simple iterative

procedure for identifying 1-D subspaces, was developed.

Though clustering algorithms are unsupervised, and hence their performance

is dependent on the class separability, performing discriminative clustering can im-

prove their performance. To incorporate discriminatory information, approaches such

as linear discriminant analysis (LDA) are used to identify a low-dimensional sub-

space, where clustering is performed. The label information for LDA can be obtained

from the previous iteration of clustering. Since 1-D subspace clustering can be very

useful for estimating the unknown mixing process in blind source separation, an algo-

rithm to perform discriminative K-lines clustering was developed. The method works

by iteratively identifying projections to discriminate the observations from different

sources, and computing the mixing parameters using 1-D subspace clustering. The

proposed algorithm can work in all configurations of mixing, relaxes the dependency

on source sparsity and disjointedness, and can refine the rough estimate of the num-

ber of sources provided. For overdetermined and fully determined mixing conditions,

discrimination is improved using appropriate dimensionality reduction. Since it is

not possible to reduce dimensionality in underdetermined mixing, the algorithm uses

a novel feature space method to overcome this problem. Simulation results with
217

speech mixtures indicate that the proposed technique achieves improved estimation

when compared to state-of-the-art approaches, and enables a robust estimation of

the number of sources. The proposed method can have a significant impact in the

separation of speech and acoustic mixtures in hearing aid design, and extraction of

artifacts in biomedical signals.

Sparse learning amounts to building a suitable dictionary that can efficiently

represent the training data samples. The performance of such a dictionary is often

measured by its ability to represent novel test samples, not present in the training

set. By inferring dictionaries that can model the entire data space, and not just

the samples considered, global dictionaries can be designed for large scale problems.

A multilevel learning algorithm to design global dictionaries that exploit the redun-

dancy and energy hierarchy found in natural image patches. The proposed algorithm

employs K-lines clustering to learn atoms for each level of the dictionary. It was

showed that the algorithm converges for a sufficient number of levels and that en-

ergy hierarchy is exhibited for a sufficient number of atoms per level. In addition,

theoretical aspects of learning such as stability and generalization were considered.

It was proved that the dictionaries learned using different sets of training data, from

the same probability space, are arbitrarily close to each other, for a sufficiently large

number of data samples. Furthermore, the asymptotic generalization characteris-

tics was analyzed, and the stability and generalization behavior were demonstrated

using simulations. Finally, to improve the generalization capability of multilevel dic-

tionaries, it was proposed to perform ensemble learning in each level of multilevel

dictionary design. Simulation results for compressed recovery, image denoising, and

image compression clearly demonstrated that the proposed multilevel dictionaries

provide superior performance when compared to global K-SVD dictionaries.

Inferring sparse models in a feature space provides a flexible way to model non-

linear relationship between the training examples, which is crucial for discrimination
218

tasks such as object recognition. Using kernel methods to address this problem will

allow the use of multiple features to identify the similarity between two images. The

idea of multiple kernel sparse models was developed to enable the design of sparse

models in a unified space obtained using multiple kernels. The proposed approaches

are of importance in complex vision problems, wherein they effectively character-

ize the image data, by fusing the information obtained from a large set of visual

features. By learning sparse models in the multiple kernel domain, compact repre-

sentations were obtained for the images and discrimination was achieved by exploiting

the interactions between the multiple descriptors. Two different approaches for ob-

taining MKSR and optimizing the dictionaries for the feature space were developed.

The proposed algorithms were comprehensively evaluated in supervised object recog-

nition and unsupervised clustering tasks and the simulation results demonstrate the

effectiveness of the proposed MKSR algorithms.

Since kernel methods allow the computation of sparse codes for diverse fea-

tures, multiple kernel sparse representations can be effective in image segmentation.

A novel, automated segmentation technique for detecting brain tumors was proposed

in this dissertation. In the new approach, ensemble kernel matrices were constructed

using using the pixel intensities and their spatial locations, and kernel dictionaries

were designed for sparse coding pixels in a non-linear feature space. The resulting

sparse codes were used to train a linear SVM classifier that determines if a pixel in the

image belongs to an active tumor region. Furthermore, a semi-automated segmenta-

tion approach was proposed that uses two kernel dictionaries to model the tumor and

non-tumor pixels respectively, and employs a simple error-based classifier. Us- ing

simulations on a real dataset obtained for 9 different patients, it was demonstrated

that both of the proposed approaches resulted in accurate tumor identifications in

comparison to the widely used tumor segmentation approaches.

219

Local sparse modeling can be effective in modeling samples lying close to a

manifold, which is true in several classification problems. In this dissertation, dic-

tionary learning algorithms were proposed to perform local sparse coding of image

features for object recognition and image retrieval. Since the kernel trick can be

used to exploit the non-linear similarity of the features, local sparse coding in a high-

dimensional feature space obtained by an implicit mapping function. When applied

for object recognition, the proposed algorithms achieved im460 proved recognition

performance in comparison to other sparse coding based classification approaches.

Incorporating supervised (label/tag) information when coding sub-image heteroge-

neous features for image retrieval, resulted in highly discriminative local sparse codes.

Using simulations, improvements in image retrieval performance by using supervised

local sparse coding were demonstrated.

Measuring the number of glomeruli in the entire, intact kidney using non-

destructive techniques is of immense importance in studying several renal and sys-

temic diseases. Commonly used techniques either require destruction of the entire

kidney or perform extrapolation from measurements obtained from a few isolated sec-

tions. A recent magnetic resonance imaging (MRI) method, based on the injection of

a contrast agent (cationic ferritin), can be used to effectively identify glomerular re-

gions in the kidney. In this paper, we propose a robust, accurate, and low-complexity

method for estimating the number of glomeruli from such kidney MRI images. The

proposed technique uses a few expert-marked training images to obtain discrimina-

tive graphs that can distinguish the glomerular regions from the rest. These graphs

are obtained using non-local sparse coding-based approaches and discriminative pro-

jection directions are obtained using graph-embedding techniques. For novel test

images, patches are extracted and embedded in a low-dimensional space using the

discriminative projection directions. Glomerular regions are identified and counted

by clustering the embedded test data. Results with experimental data show that
220

the proposed algorithm performs accurate glomerular counting, when compared to

existing approaches, at a near real-time speed.

10.2 Future Work

The paradigm of sparse representations has enabled the design of mathematical mod-

els that can describe the lower level processing in the primary visual cortex of the

human brain. Furthermore, performing suitable non-linear aggregation of these low-

level features has resulted in efficient recognition frameworks. Though scientists are

far from providing a comprehensive description of the human visual system, incor-

porating several learning aspects from human vision allows us to build biologically

possible models for image understanding and computer vision. In addition, address-

ing the challenges in translating these ideas to prototype engineering systems is of

immense importance. Building scalable models for large scale is a more contemporary

challenge that adds a novel dimension to sparse learning. These requirements present

huge potential in extending the research presented in this dissertation.

Learning sparse models in a large scale setting calls for the design of several

theoretical and algorithmic tools. Incorporating strategies from ensemble learning

improved the performance of global multilevel dictionaries in image restoration prob-

lems. Understanding the impact of these ensemble methods on the generalization

characteristics of learned dictionaries will enable to build effective application-specific

dictionaries. In particular, deriving generalization bounds for the finite sample case

will be valuable for implementing sparse methods in real-world systems. The other

important aspect that needs to be considered is the learning efficiency of these mod-

els. Though the dictionary training is performed online, it is often infeasible to learn

models using millions of training samples. Hence, algorithms that can perform online

learning in order to optimize the sparsifying dictionaries can be designed. From a

statistical viewpoint, we need to compute an initial empirical estimate of the under-

221

lying parameters, and improve the estimates with adding more training examples in

batches such that the empirical estimates approach their expected values. By un-

derstanding online learning methods from the viewpoint of algorithmic stability can

also lead to improved global models. Furthermore, realizing efficient implementations

using the computational resources of the CPU and the GPU (Graphical Processing

Unit) will be an important step towards large scale learning. Several optimization

strategies from supervised and unsupervised learning can be adopted to these global

dictionaries.

Approaches for building structured dictionaries in order to achieve improved

regularization can also be considered. Instead of learning a single dictionary for rep-

resenting all image patches, building multiple dictionaries of varying complexity can

be beneficial in a variety of ill-conditioned image recovery problems. Though quan-

tification of complexity can be carried out based on several information theoretic

principles, sparsity is a natural choice. Hence, image reconstruction amounts to first

performing model selection from the set of models of varying complexity, such that it

will result in the sparsest solution. In particular a hierarchical learning framework can

be designed where in addition to imposing sparsity on the image representation, we

constrain the dictionary atoms to be sparse in the dictionaries lower in the hierarchy.

This is referred to as Double Sparsity. Such an algorithm will ensure that any dic-

tionary atom can be sparsely decomposed into a set of other dictionaries. Following

this, we need to learn statistical models that computes the likelihood of generating

an image patch, by sparse coding, using each of the dictionaries. This will provide a

principled way of identifying the complexity of the patch and choosing the suitable

model for efficiently representing it. This approach can be very useful in recovery

problems such as image denoising, image super-resolution, and image inpainting.

The analysis of K-lines clustering revealed that the distortion function, though

does not belong to the class of Bregman divergences, can lead to stable clusterings.
222

However, several forms of distortion (or) loss functions used in machine learning

are often based on a Bregman divergence. Hence, building a set of analysis tools

based on statistical learning theory to understand the stability characteristics of such

distortion functions will be very valuable in several supervised and unsupervised

learning methods.

The use of sparse models in recognition applications can be made more effec-

tive by incorporating principles from human vision, and modern machine learning.

Kernel methods were found to be particularly useful in exploiting the non-linear rela-

tion between the features, and fusing multiple descriptors to describe the image data.

Performing theoretical analysis of kernel sparse learning in comparison to kernel sup-

port vector machines can provide new insights for improving the discrimination power

of sparse methods. In recent years, there have been significant fundamental advances

in understanding differential geometric properties of several features and models with

wide applications such as shape analysis, face recognition, activity recognition, visual

detection and tracking. Some of the challenges in performing machine learning tasks

over such non-Euclidean spaces is to effectively exploit the intrinsic geometric proper-

ties of the manifold of interest. In recent years, the knowledge of geometric properties

such as tangent-spaces, exponential maps, inverse exponential maps etc. have been

utilized to devise sophisticated algorithms for tasks such as classification, clustering,

and retrieval. By designing dictionary learning algorithms for these non-Euclidean

manifolds, sparse models can be made very effective in high-dimensional data visual-

ization.

223

REFERENCES

[1] “Berkeley segmentation dataset,” Available at http://www.eecs.berkeley.edu/
Research/Projects/CS/vision/grouping/segbench/.

[2] B. Olshausen, “Sparsenet matlab toolbox,” Available at
http://redwood.berkeley.edu/bruno/sparsenet/.

[3] V. G. Reju, S. Koh, and Y. Soon, “An algorithm for mixing matrix estimation
in instantaneous blind source separation,” Signal Processing, vol. 89, pp. 1762–
1773, 2009.

[4] “K-SVDmatlab toolbox,” Available at http://www.cs.technion.ac.il/ elad/software/.

[5] “USPS dataset,” Available at ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/data/.

[6] I. Ulusoy and C. M. Bishop, “Generative versus discriminative methods for
object recognition,” in IEEE CVPR, 2005.

[7] D. Field, “Relations between the statistics of natural images and the response
properties of cortical cells,” Journal of the Optical Society of America, vol. 4,
pp. 2379–2394, 1987.

[8] E. Simoncelli, “Modeling the joint statistics of images in the wavelet domain,”
Proceedings of the SPIE 44th Annual Meeting, July 1999.

[9] A. B. Lee, K. S. Pedersen, and D. Mumford, “The nonlinear statistics of high-
contrast patches in natural images,” International Journal of Computer Vision,
vol. 54, no. 1, pp. 83–103, 2003.

[10] G. C. et. al., “On the local behavior of spaces of natural images,” International
Journal of Computer Vision, vol. 2007, 2006.

[11] D. Graham and D. Field, “Natural images: Coding efficiency,” Encyclopedia of
Neuroscience, vol. 6, pp. 19–27, 2008.

[12] S. Marčelja, “Mathematical description of the responses of simple cortical
cells*,” JOSA, vol. 70, no. 11, pp. 1297–1300, 1980.

224

[13] J. Jones and L. Palmer, “An evaluation of the two-dimensional gabor filter
model of simple receptive fields in cat striate cortex,” Journal of Neurophysiol-
ogy, vol. 58, no. 6, pp. 1233–1258, 1987.

[14] D. Field and D. Tolhurst, “The structure and symmetry of simple-cell receptive-
field profiles in the cat’s visual cortex,” Proceedings of the Royal society of
London. Series B. Biological sciences, vol. 228, no. 1253, pp. 379–400, 1986.

[15] D. Chandler and D. Field, “Estimates of the information content and dimen-
sionality of natural scenes from proximity distributions,” JOSA A, vol. 24, no. 4,
pp. 922–941, 2007.

[16] M. Riesenhuber and T. Poggio, “Neural mechanisms of object recognition,”
Current opinion in neurobiology, vol. 12, no. 2, pp. 162–168, 2002.

[17] D. J. Field, “What is the goal of sensory coding?” Neural Computation, vol. 6,
pp. 559–601, 1994.

[18] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set:
A strategy employed by v1?” Vision Research, vol. 37, no. 23, pp. 3311–3325,
December 1997.

[19] M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek, “An overview
of jpeg-2000 (2000),” in Proceedings of IEEE Data Compression Conference,
Snowbird, Utah, 2000, pp. 523–541.

[20] M. Elad, Sparse and Redundant Representations: From Theory to Applications
in Signal and Image Processing. Springer, 2010.

[21] Y. C. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals: Uncer-
tainty relations and efficient recovery,” IEEE Transactions on Signal Process-
ing, vol. 58, no. 6, pp. 3042–3054, 2010.

[22] J. Huang, T. Zhang, and D. Metaxas, “Learning with structured sparsity,”
Proceedings of the 26th Annual International Conference on Machine Learning
ICML 09, pp. 1–8, 2009.

[23] Z. He et.al., “K-hyperline clustering learning for sparse component analysis,”
Signal Processing, vol. 89, pp. 1011–1022, 2009.

225

[24] S. Ben-David, U. von Luxburg, and D. Pál, “A sober look at clustering sta-
bility,” Proceedings of the Conference on Computational Learning Theory, pp.
5–19, 2006.

[25] S. Ben-David, D. Pál, and H. U. Simon, “Stability of K-means clustering,”
Learning Theory, vol. 4539, pp. 20–34, 2007.

[26] A. Rakhlin and A. Caponnetto, “Stability of K-means clustering,” in Advances
in Neural Information Processing Systems, B. Schölkopf, J. Platt, , and T. Hoff-
man, Eds., vol. 19. Cambridge, MA: MIT Press, 2007.

[27] G. Hinton, “Learning to represent visual input,” Philosophical Transactions of
the Royal Society B: Biological Sciences, vol. 365, no. 1537, pp. 177–184, 2010.

[28] H. Lee, C. Ekanadham, and A. Ng, “Sparse deep belief net model for visual area
v2,” Advances in neural information processing systems, vol. 20, pp. 873–880,
2008.

[29] C. MarcâĂŹAurelio Ranzato, S. Chopra, and Y. LeCun, “Efficient learning of
sparse representations with an energy-based model,” Advances in neural infor-
mation processing systems, vol. 19, pp. 1137–1144, 2006.

[30] R. Rigamonti, M. Brown, and V. Lepetit, “Are sparse representations really
relevant for image classification?” in Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on. IEEE, 2011, pp. 1545–1552.

[31] M. Brown, G. Hua, and S. Winder, “Discriminative learning of local image
descriptors,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 33, no. 1, pp. 43–57, 2011.

[32] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust ob-
ject recognition with cortex-like mechanisms,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 29, no. 3, pp. 411–426, 2007.

[33] M. Girolami, “Mercer kernel-based clustering in feature space,” IEEE Transac-
tions on Neural Networks, vol. 13, pp. 780–784, 2002.

226

[34] B. C. B. Cheng, J. Y. J. Yang, S. Y. S. Yan, Y. F. Y. Fu, and T. S. Huang,
“Learning with `1-graph for image analysis,” IEEE Transactions on Image Pro-
cessing, vol. 19, no. 4, pp. 858–866, 2010.

[35] J. J. Thiagarajan, K. N. Ramamurthy, and A. Spanias, “Optimality and sta-
bility of the K-hyperline clustering algorithm,” Pattern Recognition Letters,
vol. 32, no. 9, pp. 1299–1304, 2011.

[36] J. J. Thiagarajan, K. N. Ramamurthy and A. Spanias, “Dimensionality reduc-
tion for distance based video clustering,” in Artificial Intelligence Applications
and Innovations, ser. IFIP Advances in Information and Communication Tech-
nology, vol. 339, 2010, pp. 270–277.

[37] J. J. Thiagarajan, K. N. Ramamurthy, and A. Spanias, “Mixing matrix estima-
tion using discriminative clustering for blind source separation,” Digital Signal
Processing, 2012.

[38] J. J. Thiagarajan, K. N. Ramamurthy, A. Spanias, and P. Nasiopoulos, “Learn-
ing multilevel dictionaries for compressed sensing using discriminative cluster-
ing,” in Intelligent Information Hiding and Multimedia Signal Processing (IIH-
MSP), 2012 Eighth International Conference on. IEEE, 2012, pp. 494–497.

[39] J. J. Thiagarajan, K. N. Ramamurthy, and A. Spanias, “Multilevel dictio-
nary learning for sparse representation of images,” in Digital Signal Processing
Workshop and IEEE Signal Processing Education Workshop (DSP/SPE), 2011
IEEE. IEEE, 2011, pp. 271–276.

[40] ——, “Learning stable multilevel dictionaries using K-hyperline clustering,”
IEEE Transactions on Neural Networks and Learning Systems, 2013. [Online].
Available: http://arxiv.org/pdf/1303.0448v1.pdf

[41] ——, “Multiple kernel sparse representations for object recognition and
unsupervised clustering,” IEEE Transactions on Image Processing, 2013.
[Online]. Available: http://arxiv.org/pdf/1303.0582v1.pdf

[42] J. Thiagarajan, D. Rajan, K. Ramamurthy, D. Frakes, and A. Spanias, “Au-
tomated tumor segmentation using kernel sparse representations,” 2012 IEEE
12th International Conference on Bioinformatics and Bioengineering (BIBE),
pp. 401–406, 2012.

227

[43] J. J. Thiagarajan, K. N. Ramamurthy, D. Rajan, A. Spanias, D. Frakes, and
A. Puri, “Kernel sparse models for automated tumor segmentation,” Interna-
tional Journal on Artificial Intelligence Tools (Submitted), 2013.

[44] J. J. Thiagarajan, K. N. Ramamurthy, D. Frakes, and A. Spanias, “An algo-
rithm to measure glomerular number in kidney MRI images,” IEEE Transac-
tions on Biomedical Engineering (Submitted), 2013.

[45] J. J. Thiagarajan and A. Spanias, “Learning dictionaries for local sparse coding
in image classification,” in Signals, Systems and Computers (ASILOMAR),
2011 Conference Record of the Forty Fifth Asilomar Conference on. IEEE,
2011, pp. 2014–2018.

[46] J. J. Thiagarajan, K. N. Ramamurthy, P. Sattigeri, and A. Spanias, “Supervised
local sparse coding of sub-image features for image retrieval,” in IEEE ICIP,
2012.

[47] J. J. Thiagarajan, K. N. Ramamurthy, and A. Spanias, “Local sparse coding
for image classification and retrieval,” Eurasip Journal on Image and Video
Processing (Submitted), 2013.

[48] R. Bracewell, The Fourier Transform and Its Applications (3rd edition).
McGraw-Hill Science Engineering, 1999.

[49] I. Daubechies, Ten Lectures on Wavelets. SIAM, 1992.

[50] E. J. Candès and D. L. Donoho, “New tight frames of curvelets and opti-
mal representations of objects with C2 singularities,” Department of Statistics,
Stanford University, USA, Tech. Rep., 2002.

[51] D. L. Donoho and M. Elad, “Optimally sparse representation in general
(nonorthogonal) dictionaries via l1 minimization,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2197–
2202, March 2003.

[52] A. Spanias, “A hybrid transform method for speech analysis and synthesis,”
Signal Processing, vol. 24, pp. 217–229, August 1991.

228

[53] J. A. Tropp, “Topics in sparse approximation,” Ph.D. dissertation, University
of Texas, Austin, 2004.

[54] B. D. Rao and Y. Bresler, “Signal processing with sparseness constraints,” in
Proceedings of the 1998 IEEE International Conference on Acoustics,Speech
and Signal Processing, Seattle, 1998.

[55] P. Frossard and P. Vandergheynst, “Redundant representations in image pro-
cessing,” in Proceedings of the 2003 IEEE International Conference on Image
Processing, Barcelona, Spain, 2003.

[56] R. R. Coifman and D. L. Donoho, “Translational invariant de-noising,” Wavelets
and Statistics, Lecture Notes in Statistics, Tech. Rep., 1995.

[57] D. Donoho, “Neighborly polytopes and sparse solution of underdetermined lin-
ear equations,” Stanford University, Tech. Rep., 2005.

[58] J. Tropp, “On the conditioning of random subdictionaries,” Applied and Com-
putational Harmonic Analysis, vol. 25, no. 1, pp. 1–24, 2008.

[59] G. Davis, S. Mallat, and M. Avellaneda, “Greedy adaptive approximation,”
Journal of Constructive Approximation, vol. 13, pp. 57–98, 1997.

[60] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,”
IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3397–3415, 1993.

[61] J. A. Tropp, “Greed is good: Algorithmic results for sparse approximation,”
IEEE Transactions on Information Theory, vol. 50, no. 10, pp. 2231–2242,
October 2004.

[62] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by
basis pursuit,” SIAM Review, vol. 43, no. 1, pp. 129–159, 2001.

[63] I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from lim-
ited data using FOCUSS: A re-weighted norm minimization algorithm,” IEEE
Transactions on Signal Processing, vol. 45, no. 3, pp. 600–616, March 1997.

[64] H. Lee, A. Battle, R. Raina, and A. Ng, “Efficient sparse coding algorithms,”
Advances in neural information processing systems, vol. 19, p. 801, 2007.

229

[65] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression,”
The Annals of statistics, vol. 32, no. 2, pp. 407–499, 2004.

[66] M. Elad, “Why simple shrinkage is still relevant for redundant representations?”
IEEE Transactions on Information Theory, vol. 52, no. 12, pp. 5559 –5569,
December 2006.

[67] M. Elad, B. Matalon, J. Shtok, and M. Zibulevsky, “A wide-angle view at
iterated shrinkage algorithms,” in SPIE (Wavelet XII) 2007, 2007.

[68] J. A. Tropp and A. Gilbert, “Signal recovery from partial information via or-
thogonal matching pursuit,” IEEE Transactions on Information Theory, 2005.

[69] J. Fuchs, “Recovery of exact sparse representations in the presence of bounded
noise,” Information Theory, IEEE Transactions on, vol. 51, no. 10, pp. 3601–
3608, 2005.

[70] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[71] L. K. Jones, “On a conjecture of huber concerning the convergence of projection
pursuit regression,” Annals of Statistics, vol. 15, no. 2, pp. 880–882, 1987.

[72] S. Chen, S. A. Billings, , and W. Luo, “Orthogonal least squares methods and
their application to nonlinear system identification,” International Journal of
Control, vol. 50, no. 5, pp. 1873–1896, 1989.

[73] G. Davis, S. Mallat, and Z. Zhang, “Adaptive time-frequency decompositions,”
Optical Engineering, vol. 33, no. 7, p. 2183ÂŰ2191, July 1994.

[74] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching pur-
suit: Recursive function approximation with applications to wavelet decompo-
sition,” in Proceedings of 27th Annual Asilomar Conference on Signals, Systems
and Computers, Pacific Grove, California, November 1993.

[75] S. Weisberg, Applied linear regression. Wiley, 2005, vol. 528.

230

[76] A. Bruckstein, M. Elad, and M. Zibulevsky, “On the uniqueness of nonnegative
sparse solutions to underdetermined systems of equations,” IEEE Transactions
on Information Theory, vol. 54, no. 11, pp. 4813–4820, 2008.

[77] D. Needell and J. Tropp, “Cosamp: Iterative signal recovery from incom-
plete and inaccurate samples,” Applied and Computational Harmonic Analysis,
vol. 26, no. 3, pp. 301–321, 2009.

[78] J. Starck, F. Murtagh, and J. Fadili, Sparse image and signal processing:
wavelets, curvelets, morphological diversity. Cambridge Univ Pr, 2010.

[79] J. Starck, D. Donoho, and E. Candes, “Very high quality image restoration by
combining wavelets and curvelets,” in Proc. SPIE, vol. 4478, 2001, pp. 9–19.

[80] R. Gribonval and M. Nielsen, “Sparse representations in unions of bases,” IEEE
Transactions on Information Theory, vol. 49, no. 12, pp. 3320–3325, 2003.

[81] S. Mallat, A wavelet tour of signal processing. Academic press, 1999.

[82] K. N. Ramamurthy, J. J. Thiagarajan, and A. Spanias, “Improved sparse cod-
ing using manifold projections,” in Image Processing (ICIP), 2011 18th IEEE
International Conference on. IEEE, 2011, pp. 1237–1240.

[83] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for design-
ing overcomplete dictionaries for sparse representation,” IEEE Transactions on
Signal Processing, vol. 54, no. 11, pp. 4311–4322, 2006.

[84] K. Engan, S. O. Aase, and J. H. Husoy, “Method of optimal directions for frame
design,” in Proceedings of IEEE ICASSP, 1999.

[85] K. Engan, B. Rao, and K. Kreutz-Delgado, “Frame design using FOCUSS with
method of optimal directions (MoD),” in Norwegian Signal Processing Sympo-
sium, 1999.

[86] I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from limited
data using focuss: A re-weighted norm minimization algorithm,” IEEE Trans-
actions on Signal Processing, vol. 45, no. 3, pp. 600–616, March 1997.

231

[87] S. F. Cotter, M. N. Murthi, and B. D. Rao, “Fast basis selection methods,”
in Proceedings of 31st Annual Asilomar Conference on Signals, Systems and
Computers, vol. 2, Pacific Grove, California, November 1997.

[88] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning for
sparse coding,” in Proceedings of the 26th Annual International Conference on
Machine Learning. ACM, 2009, pp. 689–696.

[89] L. Bottou and O. Bousquet, “13 the tradeoffs of large-scale learning,” Opti-
mization for Machine Learning, p. 351, 2011.

[90] G. Yu, G. Sapiro, and S. Mallat, “Image modeling and enhancement via struc-
tured sparse model selection,” in Proc. of IEEE ICIP, Sep. 2010, pp. 1641
–1644.

[91] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local sparse
models for image restoration,” in Computer Vision, 2009 IEEE 12th Interna-
tional Conference on. IEEE, 2009, pp. 2272–2279.

[92] K. Fukunaga, Introduction to statistical pattern recognition (2nd ed.). Aca-
demic Press, 1990.

[93] K. Huang and S. Aviyente, “Sparse representation for signal classification,”
East, vol. 19, pp. 609–616, 2007.

[94] F. Rodriguez and G. Sapiro, “Sparse representations for im-
age classification: Learning discriminative and reconstructive
non-parametric dictionaries,” Security, 2008. [Online]. Available:
http://www.ima.umn.edu/preprints/jun2008/2213.pdf

[95] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Supervised dictio-
nary learning,” in Proceedings of NIPS, 2009.

[96] J. Wright et.al., “Robust face recognition via sparse representation,” IEEE
Trans. on PAMI, vol. 31, no. 2, pp. 210–227, 2001.

[97] J. J. Thiagarajan, K. N. Ramamurthy, P. Knee, A. Spanias, and V. Berisha,
“Sparse representations for automatic target classification in sar images,” in

232

Communications, Control and Signal Processing (ISCCSP), 2010 4th Interna-
tional Symposium on. IEEE, 2010, pp. 1–4.

[98] R. Raina et.al., “Self-taught learning: Transfer learning from unlabeled data,”
in Proceedings of ICML, 2007.

[99] S. Lazebnik et.al., “Beyond bags of features: Spatial pyramid matching for
recognizing natural scene categories,” Proceedings of CVPR, 2006.

[100] J. Yang et.al., “Linear spatial pyramid matching using sparse coding for image
classification,” in Proceedings of IEEE CVPR, 2009.

[101] P. Knee, J. J. Thiagarajan, K. N. Ramamurthy, and A. Spanias, “Sar tar-
get classification using sparse representations and spatial pyramids,” in Radar
Conference (RADAR), 2011 IEEE. IEEE, 2011, pp. 294–298.

[102] P. Sattigeri, J. J. Thiagarajan, K. N. Ramamurthy, and A. Spanias, “Implemen-
tation of a fast image coding and retrieval system using a gpu,” in Emerging
Signal Processing Applications (ESPA), 2012 IEEE International Conference
on. IEEE, 2012, pp. 5–8.

[103] J. Yang, K. Yu, and T. S. Huang, “Supervised translation-invariant sparse
coding.” in CVPR’10, 2010, pp. 3517–3524.

[104] S. van de Geer, Empirical Processes in M-Estimation, ser. Cambridge series in
statistical and probabilistic mathematics. Cambridge, UK: Cambridge Uni-
versity Press, 2000.

[105] A. Banerjee, X. Guo, , and H. Wang, “On the optimality of conditional expec-
tation as a Bregman predictor,” IEEE Transactions on Information Theory,
vol. 51, no. 7, pp. 2664ÂŰ–2669, July 2005.

[106] J. J. Thiagarajan, K. N. Ramamurthy, and A. Spanias, “Shift-invariant sparse
representation of images using learned dictionaries,” in Machine Learning for
Signal Processing, 2008. MLSP 2008. IEEE Workshop on, 2008, pp. 145–150.

[107] J.M. Buhmann, “Empirical risk approximation: An induction principle for un-
supervised learning,” The University of Bonn, Tech. Rep. IAI-TR-98-3, 1998.

233

[108] A. Caponnetto and A. Rakhlin, “Stability properties of empirical risk mini-
mization over Donsker classes,” Journal of Machine Learning Research, vol. 7,
pp. 2565–2583, 2006.

[109] A. Okabe, B. Boots, K. Sugihara, S. N. Chiu, and S. N. Chiu, Spatial Tessel-
lations : Concepts and Applications of Voronoi Diagrams, 2nd ed. New York:
Wiley, 2000.

[110] A. Gersho and R. Gray, Vector Quantization and Signal Compression. Boston:
Kluwer Academic Publishers, 1992.

[111] H. Flanders, Differential Forms with Applications to the Physical Sciences. New
York: Dover Publications, 1989.

[112] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete
data via the EM algorithm,” Journal of the Royal Statistical Society, vol. 39,
pp. 1–38, 1977.

[113] A. Drémeau and C. Herzet, “An em-algorithm approach for the design of or-
thonormal bases adapted to sparse representations,” in Acoustics Speech and
Signal Processing (ICASSP), 2010 IEEE International Conference on. IEEE,
2010, pp. 2046–2049.

[114] S. S. Vempala, The Random Projection Method, ser. Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, 2004.

[115] S. Dasgupta, “Learning mixtures of gaussians,” in Proceedings of the 40th An-
nual Symposium on Foundations of Computer Science, 1999, pp. 634–644.

[116] R. Kannan and S. S. Vempala, Spectral Algorithms, ser. Foundations and Trends
in Theoretical Computer Science. Now Publishers Inc, 2009.

[117] A. K. J. A. Vailya and H. Zhang, “Video clustering,” Michigan State University,
Technical Report, 1996.

[118] “Yuv video sequences,” Available at http://trace.eas.asu.edu/yuv/index.html.

[119] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010. [Online].
Available: http://archive.ics.uci.edu/ml

234

[120] A. Cichocki and S. Amari, Adaptive Blind Signal and Image Processing: Learn-
ing Algorithms and Applications. New York, NY, USA: John Wiley & Sons,
Inc., 2002.

[121] M. Zibulevsky and B. A. Pearlmutter, “Blind source separation by sparse de-
composition in a signal dictionary,” Neural Computation, vol. 13, no. 4, pp.
863–882, April 2001.

[122] P. Bofill and M. Zibulevsky, “Underdetermined blind source separation using
sparse representation,” Signal Processing, vol. 81, no. 11, pp. 2353–2362, 2001.

[123] A. Belouchrani and M. G. Amin, “Blind source separation based on time-
frequency signal representations,” IEEE Transactions on Signal Processing,
vol. 46, no. 11, pp. 2888–2897, 1998.

[124] L. Nguyen, A. Belouchrani, K. Abed-Meraim, and B. Boashash, “Separating
more sources than sensors using time-frequency distributions,” in Proceedings
of the International Symposium on Signal Processing and its Applications, 2001,
pp. 583–586.

[125] A. Jourjine, S. Rickard, and O. Yilmaz, “Blind separation of disjoint orthogonal
signals: Demixing n sources from 2 mixtures,” in Proceedings of the IEEE
ICASSP, 2000, pp. 2985–2988.

[126] O. Yilmaz and S. Rickard, “Blind separation of speech mixtures via time-
frequency masking,” IEEE Transactions on Signal Processing, vol. 52, no. 7,
pp. 1830–1847, 2004.

[127] F. Abrard and Y. Deville, “Blind separation of dependent sources using the
time-frequency ratio of mixtures approach,” in Proceedings of the International
Symposium on Signal Processing and its Applications, 2003, pp. 1–4.

[128] ——, “A time-frequency blind signal separation method applicable to underde-
termined mixtures of dependent sources,” Signal Processing, vol. 85, no. 7, pp.
1389–1403, 2005.

[129] Y. Li, S. Amari, A. Cichocki, D. Ho, and S. Xie, “Underdetermined blind
source separation based on sparse representation,” IEEE Transactions on Signal
Processing, vol. 54, no. 2, pp. 423–437, 2006.

235

[130] M. Xiao, S. Xie, and Y. Fu, “A novel approach for underdetermined blind
sources separation in frequency domain,” in Proceedings of the International
Symposium on Neural Networks, 2005, pp. 484–489.

[131] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

[132] C. Ding and T. Li, “Adaptive dimension reduction using discriminant analysis
and K-means clustering,” in International Conference on Machine Learning.
ACM Press, 2007, pp. 84–405.

[133] F. D. L. Torre and T. Kanade, “Discriminative cluster analysis,” in Interna-
tional Conference on Machine Learning. ACM Press, 2006, pp. 241–248.

[134] J. Ye, Z. Zhao, and H. Liu, “Adaptive distance metric learning for clustering,” in
Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference
on. IEEE, 2007, pp. 1–7.

[135] J. Ye, Z. Zhao, and M. Wu, “Discriminative k-means for clustering,” Advances
in Neural Information Processing Systems, vol. 20, pp. 1649–1656, 2007.

[136] G. Baudat and F. Anouar, “Generalized discriminant analysis using a kernel
approach,” Neural Computation, vol. 12, pp. 2385–2404, October 2000.

[137] K. Fukunaga, Introduction to Statistical Pattern Recognition (2nd ed.). San
Diego, CA, USA: Academic Press Professional, Inc., 1990.

[138] G. Golub and C. Van Loan, Matrix Computations. Johns Hopkins University
Press, 1996.

[139] M. Aharon and M. Elad, “Image denoising via sparse and redundant repre-
sentations over learned dictionaries,” IEEE Transactions on Image Processing,
vol. 15, no. 12, pp. 3736–3745, 2006.

[140] J.M. Duarte-Carvajalino et.al., “Learning to sense sparse signals: simultaneous
sensing matrix and sparsifying dictionary optimization,” IEEE Transactions on
Image Processing, vol. 18, no. 7, pp. 1395–1408, 2009.

236

[141] T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi, “General conditions for
predictivity in learning theory,” Nature, vol. 428, no. 6981, pp. 419–422, 2004.

[142] A. Maurer and M. Pontil, “K-Dimensional Coding Schemes in Hilbert Spaces,”
IEEE Transactions on Information Theory, vol. 56, no. 11, pp. 5839–5846, 2010.

[143] D. Vainsencher and A. M. Bruckstein, “The Sample Complexity of Dictionary
Learning,” Journal of Machine Learning Research, vol. 12, pp. 3259–3281, 2011.

[144] S. Zhu et.al., “Learning explicit and implicit visual manifolds by information
projection,” Pattern Recognition Letters, vol. 31, pp. 667ÂŰ–685, 2010.

[145] G. Yu, G. Sapiro, and S. Mallat, “Image modeling and enhancement via struc-
tured sparse model selection,” in Image Processing (ICIP), 2010 17th IEEE
International Conference on. IEEE, 2010, pp. 1641–1644.

[146] T. G. Dietterich, “An experimental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, boosting, and randomization,” Ma-
chine learning, vol. 40, no. 2, pp. 139–157, 2000.

[147] K. N. Ramamurthy, J. J. Thiagarajan, and A. Spanias, “Boosted dictionaries
for image restoration based on sparse representations,” in Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference on, 2013.

[148] K. Ramamurthy, J. Thiagarjan, P. Sattigeri, and A. Spanias, “Ensemble sparse
models for image analysis,” IEEE Transactions on Image Processing (Submit-
ted), 2013.

[149] M. Elad, “Optimized projections for compressed-sensing,” IEEE Transactions
on Signal Processing, vol. 55, no. 12, pp. 5695–5702, 2007.

[150] “Uncompressed color image database,” Available at
http://vision.cs.aston.ac.uk/datasets/UCID/.

[151] K. Grauman and T. Darrell, “The pyramid match kernel: Discriminative clas-
sification with sets of image features,” in Computer Vision, 2005. ICCV 2005.
Tenth IEEE International Conference on, vol. 2. IEEE, 2005, pp. 1458–1465.

237

[152] Z. Jiang, Z. Lin, and L. Davis, “Learning a discriminative dictionary for sparse
coding via label consistent K-SVD,” in IEEE CVPR, 2011.

[153] K. Yu et.al., “Nonlinear learning using local coordinate coding,” Proceedings of
NIPS, 2009.

[154] J. Wang et.al., “Locality-constrained linear coding for image classification,” in
Proceedings of IEEE CVPR, 2010.

[155] R. Rigamonti, M. Brown, and V. Lepetit, “Are sparse representations really
relevant for image classification?” in IEEE CVPR, 2011.

[156] D. Bradley and J. Bagnell, “Differential sparse coding,” in Proceedings of NIPS,
2008.

[157] Q. Zhang and B. Li, “Discriminative K-SVD for dictionary learning in face
recognition,” in IEEE CVPR, 2010.

[158] J. J. Thiagarajan, K. N. Ramamurthy, and A. Spanias, “Sparse representations
for pattern classification using learned dictionaries,” in Research and Develop-
ment in Intelligent Systems XXV: Proceedings of AI-2008, The Twenty-eighth
SGAI International Conference on Innovative Techniques and Applications of
Artificial Intelligence, vol. 25. Springer, 2008, p. 33.

[159] S. Bengio, F. Pereira, Y. Singer, and D. Strelow, “Group sparse coding,” in
Proceedings of NIPS, 2009.

[160] S. Gao, I. Tsang, L. Chia, and P. Zhao, “Local features are not lonely âĂŞ
laplacian sparse coding for image classification,” in IEEE CVPR, 2010.

[161] K. Ramamurthy, J. Thiagarajan, P. Sattigeri, and A. Spanias, “Learning dictio-
naries with graph embedding constraints,” in Signals, Systems and Computers
(ASILOMAR), 2012 Conference Record of the Forty Fifth Asilomar Conference
on. IEEE, 2012.

[162] M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu, and D. Cai, “Graph
regularized sparse coding for image representation,” Image Processing, IEEE
Transactions on, vol. 20, no. 5, pp. 1327–1336, 2011.

238

[163] I. Ramirez, P. Sprechmann, and G. Sapiro, “Classification and clustering via
dictionary learning with structured incoherence and shared features,” in Com-
puter Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on.
IEEE, 2010, pp. 3501–3508.

[164] Y. Lin, T. Liu, and C. Fuh, “Multiple kernel learning for dimensionality reduc-
tion,” IEEE Trans. on PAMI, vol. 33, no. 6, pp. 1147–1160, Jun. 2011.

[165] S. Gou, Q. Li, and X. Zhang, “A new dictionary learning method for kernel
matching pursuit,” in FSKD, 2006, pp. 776–779.

[166] P. Vincent and Y. Bengio, “Kernel Matching Pursuit,” Machine Learning,
vol. 48, no. 1-3, pp. 165–187, 2002.

[167] S. Gao, I. Tsang, and L. Chia, “Kernel sparse representation for image classifi-
cation and face recognition,” Computer Vision–ECCV 2010, pp. 1–14, 2010.

[168] H. V. Nguyen et. al., “Kernel dictionary learning,” in Proceedings of the IEEE
ICASSP, 2012.

[169] H. Zhang, A. C. Berg, M. Maire, and J. Malik, “Svm-knn: Discriminative
nearest neighbor classification for visual category recognition,” in Proceedings
of IEEE CVPR, 2006, pp. 2126–2136.

[170] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Inter-
national Journal on Computer Vision, vol. 60, pp. 91–110, November 2004.

[171] E. Shechtman and M. Irani, “Matching local self-similarities across images and
ideos,” in Proceedings of IEEE CVPR, June 2007.

[172] M. Pietikainen, A. Hadid, G. Zhao, and T. Ahonen, Computer vision using
Local Binary Patterns, ser. Computational Imaging and Vision. Springer,
2011.

[173] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic repre-
sentation of the spatial envelope,” International Journal on Computer Vision,
vol. 42, pp. 145–175, May 2001.

239

[174] A. Bosch, A. Zisserman, and X. Munoz, “Image classification using random
forests and ferns,” in Proceedings of IEEE ICCV, 2007.

[175] J. Mutch and D. G. Lowe, “Multiclass object recognition with sparse, localized
features,” in Proceedings of IEEE CVPR, vol. 1, 2006, pp. 11–18.

[176] T. Serre, L. Wolf, and T. Poggio, “Object recognition with features inspired by
visual cortex,” in Proceedings of IEEE CVPR, 2005, pp. 994–1000.

[177] A. C. Berg and J. Malik, “Geometric blur for template matching,” in Proceed-
ings of IEEE CVPR, vol. 1, Los Alamitos, CA, USA, 2001.

[178] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin, “Liblinear: A library for
large linear classification,” The Journal of Machine Learning Research, vol. 9,
pp. 1871–1874, 2008.

[179] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category dataset,”
California Institute of Technology, Tech. Rep. 7694, 2007. [Online]. Available:
http://authors.library.caltech.edu/7694

[180] P. Jain, B. Kulis, and K. Grauman, “Fast image search for learned metrics,” in
Proceedings of IEEE CVPR, Jun. 2008, pp. 1–8.

[181] O. Boiman, E. Shechtman, and M. Irani, “In defense of nearest-neighbor based
image classification,” in Proceedings of IEEE CVPR, Aug. 2008, pp. 1–8.

[182] D. Pham and S. Venkatesh, “Joint learning and dictionary construction for
pattern recognition,” in Proceedings of IEEE CVPR, vol. 0, 2008, pp. 1–8.

[183] J. C. Gemert, J. Geusebroek, C. Veenman, and A. W. Smeulders, “Kernel
codebooks for scene categorization,” in Proceedings of ECCV, 2008, pp. 696–
709.

[184] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from
few training examples: An incremental bayesian approach tested on 101 object
categories,” in IEEE CVPR, June 2004.

240

[185] J. J. Corso et. al., “Efficient multilevel brain tumor segmentation with inte-
grated bayesian model classification,” Medical Imaging, IEEE Transactions on,
vol. 27, no. 5, pp. 629–640, 2008.

[186] M. Prastawa et. al., “Automatic brain tumor segmentation by subject specific
modification of atlas priors,” Academic Radiology, vol. 10, no. 12, pp. 1341–
1348, 2003.

[187] M.R. Kaus et. al., “Automated segmentation of MR images of brain tumors,”
Radiology, vol. 218, no. 2, pp. 586–591, 2001.

[188] M. C. Clark and et. al., “Automatic tumor segmentation using knowledge-based
techniques,” Medical Imaging, IEEE Transactions on, vol. 17, no. 2, pp. 187–
201, 1998.

[189] T. Chan and L. Vese, “Active contours without edges,” Image Processing, IEEE
Transactions on, vol. 10, no. 2, pp. 266–277, 2001.

[190] S. Ho, E. Bullitt, and G. Gerig, “Level-set evolution with region competition:
automatic 3-d segmentation of brain tumors,” in Pattern Recognition, 2002.
Proceedings. 16th International Conference on, vol. 1. IEEE, 2002, pp. 532–
535.

[191] N. Moon et. al., “Model-based brain and tumor segmentation,” in Pat-
tern Recognition, 2002. Proceedings. 16th International Conference on, vol. 1.
IEEE, 2002, pp. 528–531.

[192] M. Prastawa et. al., “A brain tumor segmentation framework based on outlier
detection,” Medical Image Analysis, vol. 8, no. 3, pp. 275–283, 2004.

[193] M.N. Ahmed et. al., “A modified fuzzy c-means algorithm for bias field estima-
tion and segmentation of MRI data,” Medical Imaging, IEEE Transactions on,
vol. 21, no. 3, pp. 193–199, 2002.

[194] C. H. Lee et. al., “Segmenting brain tumors with conditional random fields and
support vector machines,” Computer Vision for Biomedical Image Applications,
pp. 469–478, 2005.

241

[195] A. Hamamci et. al., “Tumor-cut: Segmentation of brain tumors on contrast
enhanced MR images for radiosurgery applications,” Medical Imaging, IEEE
Transactions on, no. 99, pp. 1–1, 2011.

[196] D. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[197] N. Cristianini and J. Shawe-Taylor, An introduction to support Vector Ma-
chines: and other kernel-based learning methods. Cambridge University Press,
2000.

[198] H. V. Nguyen et. al., “Kernel dictionary learning,” in Proceedings of the IEEE
ICASSP, 2012.

[199] J. Kwok and I. Tsang, “The pre-image problem in kernel methods,” Neural
Networks, IEEE Transactions on, vol. 15, no. 6, pp. 1517–1525, 2004.

[200] B. Brenner, D. Garcia, S. Anderson et al., “Glomeruli and blood pressure. less
of one, more the other?” American journal of hypertension, vol. 1, no. 4 Pt 1,
p. 335, 1988.

[201] W. E. Hoy, J. F. Bertram, R. D. Denton, M. Zimanyi, T. Samuel, and M. D.
Hughson, “Nephron number, glomerular volume, renal disease and hyperten-
sion,” Current opinion in nephrology and hypertension, vol. 17, no. 3, pp. 258–
265, 2008.

[202] J.-P. Bonvalet, M. Champion, F. Wanstok, G. Berjal et al., “Compensatory
renal hypertrophy in young rats: Increase in the number of nephrons,” Kidney
Int, vol. 1, no. 6, pp. 391–396, 1972.

[203] J. F. Bertram, M. C. Soosaipillai, S. D. Ricardo, and G. B. Ryan, “Total num-
bers of glomeruli and individual glomerular cell types in the normal rat kidney,”
Cell and tissue research, vol. 270, no. 1, pp. 37–45, 1992.

[204] S. C. Beeman, M. Zhang, L. Gubhaju, T. Wu, J. F. Bertram, D. H. Frakes,
B. R. Cherry, and K. M. Bennett, “Measuring glomerular number and size in
perfused kidneys using mri,” American Journal of Physiology-Renal Physiology,
vol. 300, no. 6, pp. F1454–F1457, 2011.

242

[205] Y. Chang, C. Hu, R. Feris, and M. Turk, “Manifold based analysis of facial
expression,” Image and Vision Computing, vol. 24, no. 6, pp. 605–614, 2006.

[206] H. S. Seung and D. D. Lee, “The manifold ways of perception,” Science, vol.
290, no. 5500, pp. 2268–2269, 2000.

[207] V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios, “Boostmap: A method for effi-
cient approximate similarity rankings,” in Computer Vision and Pattern Recog-
nition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society
Conference on, vol. 2. IEEE, 2004, pp. II–268.

[208] X. He, S. Yan, Y. Hu, and H.-J. Zhang, “Learning a locality preserving subspace
for visual recognition,” in Computer Vision, 2003. Proceedings. Ninth IEEE
International Conference on. IEEE, 2003, pp. 385–392.

[209] S. Roweis, L. K. Saul, G. E. Hinton et al., “Global coordination of local linear
models,” Advances in neural information processing systems, vol. 2, pp. 889–
896, 2002.

[210] D. Lowe and M. E. Tipping, “Neuroscale: Novel topographic feature extraction
using rbf networks,” Advances in Neural Information Processing Systems, pp.
543–549, 1997.

[211] M.-H. Yang, “Face recognition using extended isomap,” in Image Processing.
2002. Proceedings. 2002 International Conference on, vol. 2. IEEE, 2002, pp.
II–117.

[212] H.-T. Chen, H.-W. Chang, and T.-L. Liu, “Local discriminant embedding and
its variants,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, vol. 2. IEEE, 2005, pp. 846–853.

[213] D. Cai, X. He, and J. Han, “Semi-supervised discriminant analysis,” in Com-
puter Vision, 2007. ICCV 2007. IEEE 11th International Conference on.
IEEE, 2007, pp. 1–7.

[214] L. K. Saul and S. T. Roweis, “An introduction to locally linear embedding,”
Tech. Rep., 2000.

243

[215] D. L. Donoho and C. Grimes, “Hessian eigenmaps: New locally linear embed-
ding techniques for high-dimensional data,” 2003.

[216] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for em-
bedding and clustering,” in Advances in Neural Information Processing Systems
14. MIT Press, 2001, pp. 585–591.

[217] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A Global Geometric Frame-
work for Nonlinear Dimensionality Reduction,” Science, vol. 290, no. 5500, pp.
2319–2323, Dec. 2000.

[218] K. Weinberger and L. Saul, “Unsupervised learning of image manifolds by
semidefinite programming,” in Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, vol. 2, 2004, pp. 988–995 Vol.2.

[219] P. Niyogi, “Locality preserving projections,” Advances in neural information
processing systems, vol. 16, pp. 153–160, 2004.

[220] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin, “Graph embedding
and extensions: A general framework for dimensionality reduction,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 29, no. 1, pp.
40–51, 2007.

[221] L. Cayton, “Algorithms for manifold learning,” University of California, Tech-
nical report, 2005.

[222] Z. Lu and H. H. S. Ip, “Image categorization with spatial mismatch kernels,”
in IEEE CVPR, Jun. 2009, pp. 397 –404.

[223] L. Li and L. Fei-Fei, “What, where and who? classifying events by scene and ob-
ject recognition,” in International Conference on Computer Vision, Oct. 2007,
pp. 1 –8.

[224] A. Rakotomamonjy, “Surveying and comparing simultaneous sparse approx-
imation (or group lasso) algorithms,” Signal Processing, vol. 91, no. 7, pp.
1505–1526, 2011.

244

	First-page
	Abstract
	toc-lof-lot
	Main
	References

