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ABSTRACT 

 

There exist many facets of error and uncertainty in digital spatial information. As 

error or uncertainty will not likely ever be completely eliminated, a better 

understanding of its impacts is necessary. Spatial analytical approaches, in 

particular, must somehow address data quality issues. This can range from 

evaluating impacts of potential data uncertainty in planning processes that make 

use of methods to devising methods that explicitly account for error/uncertainty. 

To date, little has been done to structure methods accounting for error. This 

research focuses on developing methods to address geographic data uncertainty in 

spatial optimization. An integrated approach that characterizes uncertainty 

impacts by constructing and solving a new multi-objective model that explicitly 

incorporates facets of data uncertainty is developed. Empirical findings illustrate 

that the proposed approaches can be applied to evaluate the impacts of data 

uncertainty with statistical confidence, which moves beyond popular practices of 

simulating errors in data. Spatial uncertainty impacts are evaluated in two 

contexts:  harvest scheduling and sex offender residency. Owing to the integration 

of spatial uncertainty, the detailed multi-objective models are more complex and 

computationally challenging to solve. As a result, a new multi-objective 

evolutionary algorithm is developed to address the computational challenges 

posed. The proposed algorithm incorporates problem-specific spatial knowledge 

to significantly enhance the capability of the evolutionary algorithm for solving 

the model.   
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 

Geographic information systems (GISs) provide the capacity to digitally create, 

store, manipulate, analyze and display various types of geographic information 

(Longley et al. 2011). While these functionalities enable the handling of spatial 

data in a much more rapid and precise way than traditional paper-based 

approaches, uncertainties still remain in geographic information and will not 

likely ever be completely eliminated.  

 

There are various sources of uncertainty in digital geographic information. 

Uncertainty can arise from the inaccuracy of source documents and processing. 

As an example, the original paper maps may be distorted because of folding, 

stretching and humidity; when digitizing the paper maps, additional errors could 

be introduced because of an operator’s control of the cursor (Goodchild 1989); if 

satellite images are employed to generate a digital vector map, the resolution of 

images and the raster-to-vector transformation process could all result in errors in 

the final vector map; and geocoding errors are considerable (see Cayo and Talbot 

2003 and Goldberg 2011). Uncertainty can also be due to the vagueness or 

ambiguity in definitions of classes of objects (Fisher 1999). For instance, a forest 
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region is usually delineated into a series of “stands” where species composition, 

density and size are assumed to be homogenous. However, there are always 

transition zones between stands and stand boundaries that are actually vague in 

reality (Goodchild 1989). Uncertainty can be attributed to missing or inadequate 

information as well. Finally it is common to estimate attributes by interpolation 

techniques, which could lead to more errors.  

 

When digital spatial information is relied upon in spatial analysis or for decision 

making, errors or uncertainties contained in the data will propagate through 

analysis and affect decisions (Longley et al. 2011). A significant literature has 

demonstrated error propagation effects, ranging from simple analysis, like 

polygon area calculation (Goodchild et al. 1999) and map algebra operations 

(Arbia et al. 1999; Griffith et al. 1999; Abbapour et al. 2003; Leung et al. 2004b), 

to complex statistical analysis and modeling, such as regression modeling 

(Heuvelink et al. 1989; Das et al. 2002; Griffith et al. 2007) , clustering methods 

(Goovaerts 2006; Malizia 2012), and spatial optimization models (Goodchild 

1984; Murray 2003; Aerts et al. 2003; Bonneu and Thomas-Agnan 2009). In fact, 

any spatial analytical method or decision making involving geographic 

information could be impacted by spatial data uncertainty. To ensure the 

appropriate use of spatial information, it is essential to evaluate whether the 

accuracy of information used is sufficient for the intended application. If it is not, 

this may result in inaccurate analysis results and biased/incorrect decisions 

(Heuvelink 1998). As an example, Goodchild et al. (1999) showed that a parcel 
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area could range from 6,000 square meter to 14,000 square meter given 10 meter 

positional uncertainty; Aerts et al. (2003) estimated that construction costs for a 

ski run might increase approximately 32 percent when accounting for errors in a 

digital elevation model; and, Goovaerts (2006) found that ignoring spatial 

uncertainty in cancer risk estimates could lead to misallocation of medical 

resources.  

 

Given error propagation and its impacts on decision making, considerable 

research effort have been made in developing methods to account for spatial data 

uncertainty in applications. These can be generally categorized into analytically 

based methods and simulation-based methods (Heuvelink et al. 2002; Shi et al. 

2004). The analytically based methods, such as the Taylor series approximation 

and Rosenblueth’s method (see Heuvelink 1998), link input spatial data to output 

results by deriving an operation function,       , where   represents input data 

and    is the analysis results (Leung et al. 2004a). The error or uncertainty in 

input data can then be transformed into impacts on analysis results using the 

operation function. Analytical methods can therefore theoretically generate 

statistical descriptions of the implications of spatial uncertainty if the operation 

function is known. However, it is usually difficult to derive operation functions, 

especially when complicated analyses are involved. So far, analytically based 

methods are mainly applied to straightforward problems, such as length and area 

measurement (Leung et al. 2004d) and overlay analysis (Arbia et al. 1998; 

Griffith et al. 1999; Leung et al. 2004c; Shi et al. 2004). In contrast to analytically 
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based method, simulation-based methods mimic errors in spatial data and then 

compare analysis scenarios given simulated error. This is relatively easy to 

implement and has been applied to many sophisticated decision making contexts 

(see Fisher 1991; Aerts et al. 2003; Brown and Heuvelink 2007; Bruin et al. 2008; 

Hevelink et al. 2010; Bonneu et al. 2011).   

 

Of interest in this research is error propagation in spatial optimization, a spatial 

analytical method that contributes to a wide range of environmental and urban 

planning problems, including transportation, districting, natural resource 

management, and land-use planning, among others. Overviews of spatial 

optimization may be found in Church (2001), Xiao (2008), and Tong and Murray 

(2012). A spatial optimization problem involves determining the best 

location/assignment of people, goods or activities interacting across space while 

some constraints or conditions are maintained. A problem is therefore represented 

as a mathematical model, with decision variables, an objective(s), and constraints 

(Murray 2010; Tong and Murray 2012). Given the multiple components in the 

model, the operation function,       , is typically challenging to derive. As a 

result, the simulation-based method is popular in evaluating data uncertainty 

impacts in spatial optimization. Examples can be found in Goodchild (1984), 

Hodgson (1991), Aerts et al. (2003), Murray (2003), Heuvelink et al. (2010) and 

Bonneu et al. (2011). Nevertheless, simulation relies on a limited sample size and 

makes it impossible to assess uncertainty impacts with true statistical confidence 

(Lilburne and Tarantola 2009). In addition, the computational load associated 
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with the simulation-based method is generally high, especially for complex 

models (Hevelink et al. 2010). 

 

1.2 Research Objectives 

 

Given the challenges in understanding the impacts of geographic uncertainty in 

spatial optimization, this research has two core objectives. The first objective is to 

develop methods that enable the impacts of spatial data uncertainty on spatial 

optimization models to be evaluated with a degree of statistical certainty. More 

specifically, new multi-objective models that explicitly account for geographic 

data uncertainty will be proposed. The second objective is to develop a new 

heuristic for the proposed multi-objective optimization models. The heuristic can 

ensure the identification of high-quality solutions within a reasonable amount of 

time.  

 

1.3 Organization of the research 

 

This research is organized as follows. Chapter 2 starts with a review of existing 

work associated with uncertainty in spatial optimization, and then discusses the 

implications of spatial data uncertainty in a dispersion model. Next, a new multi-

objective model is proposed to incorporate spatial data uncertainty. This is 

followed by an application of the developed model to evaluate the implications of 

offender residency restriction laws in the Phoenix metropolitan area.  
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Chapter 3 evaluates the impacts of spatial data uncertainty in dispersion modeling 

in the context of harvest scheduling, where separation requirements are 

determined by contiguity instead of distance as studied in Chapter 2. After 

reviewing existing approaches to address uncertainty issues in harvest scheduling, 

an algorithm to assess contiguity uncertainty is developed and an alternative 

modeling approach that explicitly account for spatial uncertainty is presented and 

compared with the model detailed in Chapter 2. The implications of spatial 

uncertainty in harvest scheduling are then examined in a forest region located in 

northern California. 

 

Chapter 4 develops a new multi-objective evolutionary algorithm for the models 

presented in Chapters 2 and 3.  The chapter begins by reviewing existing solution 

techniques for a dispersion model, then a genetic algorithm and its advantages and 

design issues in multi-objective optimization problems are introduced. Next, a 

multi-objective genetic algorithm is proposed. Finally, computational results are 

presented and discussed. 

 

The final chapter, Chapter 5, summarizes the research results of this dissertation 

and provides concluding comments. In addition, future research directions are 

discussed.
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CHAPTER 2 

 

INCORPORATING GEOGRAPHIC UNCERTIANTY IN SPATIAL 

OPTIMIZATION
*
 

 

As presented in Chapter 1, this dissertation seeks to better understand the impacts 

of geographic uncertainty on spatial optimization. This chapter develops an 

approach to incorporate spatial data uncertainty into a dispersion model, a 

particular type of spatial optimization problem. The integrated approach 

characterizes uncertainty impacts by constructing and solving a new multi-

objective model that explicitly accounts for data uncertainty. 

 

2.1 Introduction 

 

The growth and popularity of geographic information systems (GIS) and 

associated digital spatial information is remarkable, fundamentally changing 

planning and management processes as well as spawning the development of 

advanced spatial analytical methods. While there has been much done to identify 

and ameliorate data error and uncertainty issues, and more generally improve 

overall data quality, imperfections in spatial information remain. This ultimately 

may be attributed to the fact that the three dimensional real world is abstracted as 

a simplified digital representation in modeling and analyses (Longley et al. 2011). 

                                                           
* This chapter represents a slightly revised version of a paper published in International Journal 

of Geographical Information Science, co-authored with Dr. Alan T. Murray. 
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When spatial data is relied upon in applications, error or uncertainty in data will 

not disappear but rather will be propagated through subsequent manipulation, 

processing and analysis (Longley et al. 2011). There are many examples in the 

literature that demonstrate this, including Arbia et al. (1998) and Abbaspour et al. 

(2003), where error propagation is tracked in simple map algebra operations like 

overlay. More sophisticated analytical approaches have been subjected to data 

uncertainty impacts as well, including Fisher (1991), Heuvelink (1998), Bruin et 

al. (2001), Aerts et al. (2003) and Heuvelink et al. (2007), to name but a few. In 

particular, Aerts et al. (2003) found a significant difference in construction costs 

for a ski run when accounting for potential errors in derived slopes using in a land 

use optimization model. What the above work highlights is that all spatial analysis 

is likely impacted by data error/uncertainty in some way. Better understanding 

impacts and implications of data uncertainty in spatial analysis using various 

methods therefore requires techniques to explicitly account for uncertainty, lest 

the analysis be biased and unreliable. 

 

While uncertainty impacts associated with any and all spatial analytical methods 

are a concern, this research focuses on spatial optimization, an analytical method 

that contributes to transportation, retail, natural resource management, location 

modeling, medical geography, land use planning and districting, among others. 

The importance of optimization in GIScience is well recognized, spanning 

database structure and access, algorithm design, cartographic display and spatial 

analysis (see Church 1999; Murray 2007). Overviews of spatial optimization may 
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be found in Church (2001), Xiao (2008) and Tong and Murray (2012). A spatial 

optimization problem is one where there are decisions to be made regarding the 

placement and/or allocation of a good or service, and the best decisions are sought 

subject to maintaining any constraints or conditions. A problem or issue is 

therefore represented (implicitly or explicitly) as a mathematical model, with 

decision variables, an objective(s) and constraints (Tong and Murray 2012). 

Spatial optimization research has in fact long recognized data uncertainty issues. 

For example, Cooper (1974) observed that demand locations may not be known 

with certainty in location models and Goodchild (1984) discussed that potential 

demand locations in a location-allocation model for retail site selection may be 

somewhat inaccurate. Reviews of work on one class of spatial optimization 

problem, location models, associated with data uncertainty can be found in 

Murray (2003) and Snyder (2006).  

 

Even though data uncertainty in spatial optimization models has been widely 

acknowledged, a generally applicable method to account for uncertainty and 

evaluate its impacts on modeling results remains elusive (Church 1999; Murray 

2003). One commonly used method is simulating error in spatial data. This has 

involved intentional perturbation of input or output data to mimic error, then 

comparing analyses obtained with and without simulated error (see Goodchild 

1984; Hodgson 1991; Aerts et al. 2003; Murray 2003; Beech et al. 2008). This 

makes intuitive sense, and provides some capacity for evaluation and sensitivity 

assessment. However, simulation along these lines is computationally intensive, 
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effectively necessitating an infinite number of combinatorial possibilities to be 

considered in practice. It is impossible to consider all combinations of variability, 

which is why samples have been relied upon. Unfortunately, uncertainty 

necessarily remains, often absent any type of certainty bounds on derived findings 

or results (Salema et al. 2007; Ascough et al. 2008).  

 

This chapter aims to develop an explicit approach for considering 

error/uncertainty in spatial optimization. To illustrate this, a particular type of 

spatial optimization problem known as a dispersion model is considered. 

Uncertainty in geographic proximity is expressly represented and incorporated 

into the model, enabling evaluation and assessment with a degree of statistical 

certainty. The next section reviews existing literature on data uncertainty in 

spatial optimization. This is followed by the introduction of the optimization 

model being considered here. A discussion highlighting spatial uncertainty 

associated with the use and application of this dispersion model is then presented. 

A new model is then introduced that enables data uncertainty to be explicitly 

considered. Application results are presented to illustrate the effectiveness of the 

new model. Finally, a discussion and concluding comments are given. 
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2.2 Background 

 

Spatial optimization models are implicit or explicit mathematical representations 

of planning problems, necessarily abstractions of reality, and could be affected by 

uncertainties or errors in various ways. Such uncertainty may arise in model 

specification, solution sub-optimality, attribute variation 

(estimates/classification/precision), spatial representation, locational accuracy and 

proximity interpretation, among others. Many studies have sought to better 

understand elements of uncertainty along these lines. Table 2.1 lists representative 

work associated with uncertainty in spatial optimization grouped in six categories. 

The last three, spatial representation, locational accuracy and proximity 

interpretation, are particularly relevant to issues of spatial uncertainty. As a result, 

the review that follows focuses on these three categories. While uncertainty in 

model specification, sub-optimality and attributes are no doubt important, they are 

generally not associated directly with error in spatial position. 
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Table 2.1: Literature addressing one or more aspects of uncertainty in spatial 

optimization models 

Model 

specification 

Solution  

optimality 

Attribute 

variation 

Spatial  

representation 

Locational 

accuracy 

Proximity 

interpretation 

Ratick and 

White (1988)  

Eiselt and 

Laporte (1995) 

Kuby et al. 

(2011) 

Karp (1977) 

Johnson et 

al. (1989) 

Rardin and 

Uzsoy 

(2001) 

Brookes 

(2001) 

Aerts and 

Heuvelink 

(2002) 

Li and Yeh 

(2005) 

Hodder 

and Dincer 

(1986) 

Carson and 

Batta 

(1990) 

Zhao and 

Kockelman 

(2002) 

Daskin et 

al. (2002) 

Salema et 

al. (2007)  

Wagner et 

al. (2009) 

Klibi et al. 

(2010) 

 

Goodchild 

(1979) 

Daskin et al. 

(1989) 

Current and 

Schilling (1990) 

Fotheringham et 

al. (1995)  

Miller (1996) 

Drezner and 

Drezner (1997) 

Murray and 

Gottsegen 

(1997) 

Francis et al. 

(1999) 

Murray and 

Weintraub 

(2002) 

Murray and 

O’Kelly (2002) 

Emir-Farinas 

and Francis 

(2005) 

Murray (2005)  

Francis et al. 

(2009) 

Cooper 

(1974) 

Mirchandani 

and Odoni 

(1979) 

Weaver and 

Church 

(1983) 

Goodchild 

(1984) 

Hodgson 

(1991) 

Murray 

(2003) 

Aerts et al. 

(2003) 

Bonneu and 

Thomas-

Agnan 

(2009) 

AltInel et al. 

(2009) 

 

Bach (1981) 

Mirchandani 

and Oudjit 

(1980) 

Berman and 

Odoni (1982) 

Hodgson 

(1991) 

Brimberg, J. 

and R. F. Love 

(1995). 

Andersson et 

al. (1998) 

Plastria, F. 

(2001) 

AltInel et al. 

(2009) 
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There has been much work on spatial representation associated with uncertainty 

and error in spatial optimization modeling, as suggested by the representative 

work noted in Table 2.1. There are two basic streams associated with spatial 

representation that relate to uncertainty. One is aggregation and another is 

simplification. Aggregation has involved the intentional merging of spatial units, 

either to reduce computational effort or to accommodate the modeling approach. 

Work by Goodchild (1979), Daskin et al. (1989), Current and Schilling (1990), 

Fotheringham et al. (1995), Murray and Gottsegen (1997), Francis et al. (1999) 

and Francis et al. (2009) has sought to examine some aspect of unit aggregation in 

spatial optimization. In many cases it has been demonstrated that errors associated 

with such aggregation can be minimal in certain circumstances. Another way that 

aggregation has been used is to re-structure spatial units in a particular planning 

problem so that they conform to more easily implementable mathematical 

characterizations. For example, Murray (1999) demonstrates how aggregation of 

smaller management units into larger blocks then allows binary restrictions 

between blocks to be imposed in a constraint, avoiding the combinatorial 

complexity of enumerating possible blocks. Murray and Weintraub (2002) 

provide empirical evidence of error introduced as a result. The second aspect of 

spatial representation uncertainty is due to simplification. Miller (1996), Drezner 

and Drezner (1997) and Church (1999) detail that spatial simplification of 

demand/facility objects is fairly common, typically involving the conversion of an 

area to a single representative point. Evidence of error in such simplification 

along these lines is detailed in Murray and O’Kelly (2002). 
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Locational uncertainty noted in Table 2.1 is another important area of work in 

spatial optimization modeling, encompassing inaccuracy in given demand 

locations and sited facility locations. Demand location inaccuracy could be caused 

by systematic or random errors in data. Hodgson (1991) and Aerts et al. (2003) 

simulate demands with such kind of errors to examine its impacts on solutions. 

While Hodgson (1991) finds little sensitivity in model results given input data 

errors, Aerts et al. (2003) demonstrate substantial impacts of locational errors in 

practice. Demand locations could also be stochastic for some planning situations, 

either uncertain in location or changing over time (see Cooper 1974; Mirchandani 

and Odoni 1979; Weaver and Church 1983; AltInel et al. 2009; Bonneu and 

Thomas-Agnan 2009). Another form of locational uncertainty, solution variation, 

is that identified sites are not available due to land use and accessibility issues. 

Goodchild (1984) and Murray (2003) evaluate optimality loss by simulating 

possible locational offsets for sited facilities.  

 

A final aspect of spatial uncertainty identified in Table 2.1 is associated with 

proximity interpretation. Distances between facilities/demands are commonly 

employed to measure proximity in spatial optimization. Many distance measures 

are possible, such as Euclidean, rectilinear and network. Uncertainty associated 

with possible distance measures could have significant impacts on modeling 

results.  For example, Bach (1981) and AltInel et al. (2009) imply that model 

solutions and computational effort can be quite dissimilar when using different 

distance measures. Other related studies include Andersson et al. (1998) and 
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Plastria (2001). The impacts of distance measurement errors are discussed in 

Hodgson (1991) and Brimberg and Love (1995). Mirchandani and Oudjit (1980) 

and Berman and Odoni (1982) consider stochastic distances, simulating several 

scenarios to represent expected distances. 

 

Since data uncertainty could have a substantial impact on spatial optimization 

model results, as suggested above, there is always a need to evaluate potential 

impacts. Previous work in this area has approached the assessment of uncertainty 

through simulation-based approaches, requiring repeated solution of many 

modified problems where data inputs have been systematically altered in some 

manner. What is lacking is the capacity to qualify or statistically infer something 

about the impacts of data uncertainty in definitive terms. 

 

2.3 Uncertainty implications 

 

The intent of this chapter is to demonstrate how spatial uncertainty can be 

addressed in an integrated and explicit fashion. A particular spatial optimization 

model, a dispersion model called the anti-covering location problem, is used here 

given it wide-spread application. It has been applied to a broad range of urban and 

environmental contexts, including forest planning (Barahona et al. 1992; 

Hochbaum and Pathria 1997; Murray 1999; Goycoolea et al. 2005), market 

saturation (Zeller et al. 1980), examination of habitat carrying capacity (Downs et 

al. 2008) and undesirable service provision (Grubesic and Murray 2008). 
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However, the implications of spatial uncertainty for this dispersion model are not 

understood.  

 

The anti-covering location problem (ACLP), also referred to as node packing, 

vertex packing, maximal independent set and stable set problems, aims to 

determine the maximum number of service locations that can be sited while 

maintaining a minimum separation between locations. It has been formulated as 

integer program (see Padberg 1973; Nemhauser and Trotter 1975; Moon and 

Chaudhry 1984; Nemhauser and Sigismondi 1992; Murray and Church 1997; 

Murray and Kim 2008), with much attention on efficient solution. Consider the 

following notation: 

                 

                      

                                                       

    
                         
                                       

  

The variables,   , therefore represent the decisions associated with whether or not 

a service facility is sited at location  . All areas that are within the specified 

distance   from  , denoted by the set   , cannot simultaneously site a service 

facility if area   is already selected. With this notation, the formulation follows: 
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Anti-Covering Location Problem (ACLP) 

                              

 

                                                                                               

                                                                                                              

                                                                                                

The objective of ACLP, equation (2. 1), is to maximize the number of selected 

areas to locate facilities/services. That is, the goal is to site as many as possible in 

order to provide the greatest level of service possible (or the most accessible). 

Constraints (2.2) are spatial proximity constraints ensuring that no two pairs of 

conflicting areas could both site facilities. Constraints (2.3) impose binary integer 

restrictions on decision variables. 

 

The ACLP, or equivalently the node packing problem, is a deterministic 

optimization model that assumes the input data to be precise and accurate. In this 

case, the locations   and the distance between them are assumed to be known 

precisely. However, there actually exist various sources of uncertainty associated 

with any spatial data relied upon, and most certainly this should be understood 

and likely accounted for when used to support any substantive planning and 

analysis. For example, potential facility locations are typically inaccurate in some 

way. The reason is that data/map layers are usually produced from field survey, 

remote sensing imagery or paper-map reproduction, each of which involves 

systematic and random errors. Imprecision also occurs in any transformation 

process where raw data is somehow converted to a desirable data format, like 
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digitization and geo-referencing. The metadata information for potential sites, 

such as commonly used parcels, has a specific spatial accuracy associated with it. 

For example, parcel data in Ramsey, Minnesota has a horizontal accuracy of 7 to 

30 feet (RCSO 2005), while the accuracy of parcel data in Santa Barbara, 

California is 3.28 to 328 feet (SBSD 2011). Parcel level data is generally one of 

the most spatially accurate data sources, but even so a boundary of a parcel might 

be a few hundred feet or more off. 

 

If such data is utilized in an optimization model, such as the ACLP, there is 

potential for error or bias in any analysis. In this case, a boundary being within 

300 feet of the reported location would likely alter what is potentially conflicting. 

Murray and Grubesic (2011) discuss other sources of error and uncertainty, but 

suffice it to say that there is some error, either due to the data or other spatial 

considerations. Such error may be defined as a composite level of spatial 

uncertainty,  , as follows: 

                                                                                                                        

where, 

                                                   

                                                    

                                                        

Murray and Grubesic (2011) conclude that spatial location, distance measurement 

and proximity evaluation are most critical for the ACLP, but certainly other forms 

of error could be considered as well in equation (2.4). The challenge therefore is 
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generating a valid inference based on the co-mingling of uncertainty. An approach 

for doing this is now detailed.  

 

2.4 Accounting for error/uncertainty 

 

A spatial optimization model is now derived to explicitly address locational 

error/uncertainty characterized by  . This is in contrast to the generation of 

multiple input/output scenarios using simulated errors, an approach commonly 

relied upon in the literature. The developed model enables the possible impacts of 

uncertainty to be thoroughly evaluated, including worst case to best case scenarios. 

Given composite error in equation (2.4), the strict proximity restrictions in the 

ACLP become somewhat ambiguous. Specifically, some adjacency constraints 

may or may not become necessary, depending on the actual spatial proximity 

between two units   and  . For instance, if the pre-specified separation distance is 

1,320 feet and the estimated error resulting from spatial uncertainty is 50 feet 

under some confidence level, the dispersion conditions, constraints (2.2), might 

need to impose a restriction when they are measured to be as close as 1,220 feet 

(1320-2*50=1220) or as far away as 1,420 feet (1320+2*50=1420). Alternatively, 

if the units are actually outside of the separation standard, then they should not be 

enforced as there is no problem if both are selected. Unfortunately, all proximity 

constraints in the ACLP are required to be imposed.  
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In order to address spatial error/uncertainty, consider the following additional 

notation: 

                                                  

     
                                                             
                                                                                                                

  

                                                       

                                                              

      

The idea here is to track proximity restrictions based on what is certain and what 

is uncertain. Those restrictions that are uncertain will be accounted for in the 

model using decision variables    . In this sense, the intent is to possibly relax 

uncertain restrictions, possibly impose uncertain restrictions, or possibly impose 

some but relax others. To accomplish this, a conflict probability,    , is introduced, 

reflecting a potential violation of a dispersion requirement.  This allows for 

differentiation between different types of restrictions based on ancillary criteria. 

As an example, when two units are considered further away, the conflict 

probability might be less than if they were closer to each other. Given the 

potential errors involved in ACLP,     represents a conservative conflict set that 

is certain based on the characterization of error. Restrictions between unit   and 

members of this set should always be imposed. Alternatively, the uncertain 

conflicts are represented by the set   . It may or may not be necessary to impose 

restrictions between unit   and members of this set, depending on actual proximity. 

These two sets, therefore, account for the error scope (    ). Figure 2.1 depicts 

the two sets surrounding a residential parcel  . 
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Figure 2.1 Sets     and    

 

Structuring a new model that incorporates certainty and uncertainty will make use 

of the two sets,    and   .  

Error - Anti-Covering Location Problem (E-ACLP) 
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This new model is structured with multiple objectives. The first objective, (2.5), is 

to maximize the number of selected areas, exactly as structured in the ACLP. The 

second objective, (2.6), is to minimize the total conflict probabilities of relaxing 

separation constraints that are spatially uncertain. Constraints (2.7) ensure that no 

two selected sites conflict among the certain restrictions. Constraints (2.8) track 

separation of those that might be in conflict. These are the constraints that could 

be okay to relax or ignore, depending on error.  When     equals one, both    and 

   could be one in constraint (2.8), indicating both areas could be selected; 

otherwise, the proximity constraint is imposed, and at most one of them can be 

selected. Constraints (2.9) impose binary integer restrictions on decision variables. 

 

The E-ACLP is a multi-objective extension of the ACLP. Further, it is related to 

the work of Hochbaum and Pathria (1997) who proposed the generalized 

independent set problem, where all proximity constraints can be violated with 

some penalty cost. Thus, if the set    is empty and    is not empty, then the E-

ACLP would be equivalent to the generalized independent set problem. Thus, the 

E-ACLP can be considered as an extension or generalization of the generalized 

independent set problem in that it imposes restrictions between conflicts that are 

certain, but allows those that are uncertain to possibly be relaxed, similar to the 

spirit of the generalized independent set problem. 
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Solution of the E-ACLP is challenging given the multiple objectives and binary 

integer variables. Depending on the significance of uncertainty and the penalty 

costs, there will no doubt be tradeoffs between the two objectives. The model can 

be solved to identify trade off solutions using multi-objective techniques, such as 

the weighting or constraint methods (see Cohen 1978). 

 

2.5 Application 

 

The ACLP and the E-ACLP detailed above are applied in the context of 

evaluating the implications of offender residency restriction laws. In order to 

mitigate risk exposure to communities by convicted sex offenders that reintegrate 

into society, local governments have considered/proposed regulations that limit 

where convicted sex offenders can live relative to other offenders. Grubesic and 

Murray (2008) detailed how the ACLP could be used to assess this issue, 

providing insights regarding the maximum number of offenders that could reside 

in a region under such conditions as well as the geographic implications of this 

residence restriction law. The study area is a community in the Phoenix 

metropolitan area containing 1,583 parcels of which 1,295 are residential parcels. 

The separation distance   has been established as 1,320 feet, identical to proposed 

legislation detailed in Grubesic and Murray (2008). Based on parcel data accuracy 

and other sources of spatial uncertainty, as well as imputed quality,    is estimated 

to be   0 feet. 
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The spatial optimization models are structured using Python, an open source 

object-oriented programming language, and subsequently solved using a 

commercial optimization package, Gurobi. Computational processing was carried 

out on a MS Windows-based, Intel Xeon (2.53 GHz) computer with 6 GB of 

RAM. 

 

Application of the ACLP indicates that the maximum number of offenders that 

could reside in this community would be 16 in order to ensure a dispersion 

distance 1,320 feet between each pair of offenders. This possible spatial 

configuration is shown in Figure 2.2. The analysis using the ACLP, as noted 

previously, assumes that the data is free of error or uncertainty. The issue then is 

what are the implications of data error/uncertainty in this case, both at a regional 

level in terms of total number of offenders as well as more locally in terms of 

spatial patterns of residency. 

 

To assess the impacts of data error/uncertainty, the E-ACLP is applied. For the 

sake of simplicity, the conflict probabilities are assumed to all equal one. The 

constraint method is used here to identify all trade off solutions associated with 

these two objectives. 
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Figure 2.2 Offender distribution identified using the ACLP 

 

Spatial configuration of the 15 residences identified using the E-ACLP 

The computational results for each of the five different tradeoff solutions are 

displayed in Table 2.2. The “maximal residences” column in Table 2.2 indicates 

the number of offenders that can reside in the region, specified in objective (2.5). 

The “minimal conflict probability” column in Table 2.2 effectively corresponds to 

the number of restriction constraints relaxed since all the conflict probabilities are 

equal. This is objective (2.6) in the E-ACLP. Table 2.2 highlights that accounting 

for error in the model means that as few as 15 residences could be established, but 
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up to 19 are possible. This is in contrast to the 16 identified using the ACLP, 

assuming certainty in spatial location. Table 2.2 shows that increasing the number 

of residences means that the conflict probability would increase, or rather 

separation constraints would need to be relaxed. This trade off is depicted in 

Figure 2.3, showing the Pareto optimal curve and the associated non-dominated 

solutions attained by changing the relative importance of objective (2.5) with 

respect to objective (2.6). For the 15 residences in Figure 2.3, all uncertain 

restrictions are actually imposed, explaining the zero penalty cost in Table 2.2 for 

this solution. On the other extreme, it is possible that 19 residences could be 

established, and doing so would mean that 22 uncertain restrictions would not be 

imposed. The other solutions in Figure 2.3 (and Table 2.2) therefore reflect a trade 

off ranging between these extremes of 15 to 19 for number of residences and 0 to 

22 for conflict probability. 

 

Table 2.2: Computational results for the E-ACLP 

Maximal residences 

(Objective 5) 

Minimal penalty cost 

(Objective 6) 

Solution Time 

15 0 147.05 

16 2 19,287.59 

17 7 825.57 

18 12 2,878.05 

19 22 1,223.61 
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Figure 2.3 Non-dominated solutions found using the E-ACLP 

 

Figure 2.4 Spatial configuration of the 15 residences identified using the E-ACLP 
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Beyond the implications for total number of residences possible, each possible 

solution reflects a different spatial pattern that could result. In the case of 15, this 

corresponds to the situation that the most expansive separation distance      

(1320+100 feet) is effectively imposed. The resulting spatial configuration is 

shown in Figure 2.4. All of the other solutions reflect a relaxation of this strict 

interpretation of error. Thus, Figure 2.5 corresponding to 16, Figure 2.6 

corresponding to 17, Figure 2.7 corresponding to 18 and Figure 2.8 corresponding 

to 19 each move more towards the other end of separation,       (1320-100 

feet).  

 

Figure 2.5 Spatial configuration of the 16 residences identified using the E-ACLP 
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Figure 2.6 Spatial configuration of the 17 residences identified using the E-ACLP 



 

30 
 

 

Figure 2.7 Spatial configuration of the 18 residences identified using the E-ACLP 



 

31 
 

 

Figure 2.8 Spatial configuration of the 19 residences identified using the E-ACLP  

 

It is most evident that the E-ACLP provides the capacity to identify a range of 

implications for spatial uncertainty in the geographic position of land units. 

However, the specific comparative nuances are particularly interesting. The 

contrast between the ACLP and E-ACLP is very evident when examining Figure 

2.2 (ACLP) and Figure 2.5 (E-ACLP), where 16 residences are identified by each 

approach. What can be observed is a change in the spatial distributions of 

identified residences. The reason for this is that the separations between selected 

residences in Figure 2.2 are mostly less than 1,420 feet. When error is taken into 
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account, this changes things, which means that proximity restrictions must be 

relaxed in the E-ACLP if 16 residences are to be selected. 

 

2.6 Discussion 

 

Addressing uncertainty in spatial data no doubt complicates any analysis endeavor. 

Further discussion on a number of points is provided here associated with analysis 

complexity, model solution and alternative approaches. 

 

The application results presented in the previous section illustrate that the ACLP 

is in fact sensitive to spatial data uncertainty. If the potential errors in spatial data 

are ignored, the analysis and any conclusions are incomplete. The Error-Anti-

Covering Location Problem (E-ACLP) was introduced to illuminate how spatial 

uncertainty would affect analysis findings. In this case, it is possible that 15 to 19 

offenders could reside in the region, and in each case there would be a different 

associated level of neighborhood danger or risk as a result. Thus, there is 

considerable complexity in the analysis of associated impacts of uncertainty. 

Addressing spatial error/uncertainty using the E-ACLP has necessitated the use of 

multiple objectives. Multi-objective models mean that there are trade-off, 

reflecting the complexities of planning situation and requiring subjective 

interpretation of the results. The application results suggest a range of possible 

impacts associated with data error/uncertainty on the modeling results; moreover, 

the trade-off curve provides a statistical confidence that can be related to data 
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uncertainty. This rationale may also be applied to other spatial optimization 

models.  

 

A final point in need of discussion is model solution. Because the uncertainty 

associated with spatial data impacts dispersion requirements, the E-ACLP allows 

for the relaxation of uncertain proximity constraints with some conflict 

probability. At a basic level, this means that a difficult problem, the ACLP or 

node packing problem, has been extended through the use of an additional 

objective and new binary integer variables. This point is particularly important 

when one considers that the ACLP/node packing problem is itself a challenging 

optimization problem to solve, and subject to considerable research on better 

solution approaches. In particular, Murray and Church (1997), Goycoolea et al. 

(2005) and Murray and Kim (2008), among others, have focused on methods for 

identifying better facets or alternative formulations of the problem. Given that the 

application reported in this chapter considered 1,295 potential residential 

locations and required less than 2 seconds to solve the ACLP, it is not terribly 

surprising to see in Table 2.2 that the E-ACLP was considerably more difficult to 

solve, requiring 19,287 seconds in the worst case. As problem size grows, it is 

unlikely that the E-ACLP would be optimally solved using commercial software. 

Therefore, it is clear that future research is needed for developing alternative 

approaches, both heuristic and exact, to solve the E-ACLP. 
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2.7 Conclusion 

 

In this chapter we have highlighted the error and uncertainty common in virtually 

all spatial information. The implications of error/uncertainty in spatial data are 

that any methods making use of the data must understand their effects. Spatial 

optimization work has approached geographic uncertainty through the use of 

simulated error propagation, but such an approach is computationally intensive 

and fails to provide capabilities for establishing statistical significance in derived 

findings. To address this deficiency, we have proposed a new integrated approach 

to explicitly account for data uncertainty in a spatial optimization model. This 

entailed the formulation and solution of a new multi-objective model. The 

application results illustrated the effectiveness of this approach, providing the 

capacity to establish bounds on spatial uncertainty. It is hoped that more research 

will follow along these lines as addressing uncertainly will no doubt mean that 

more complex and difficult models will arise. 
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CHAPTER 3 

 

SPATIAL UNCERTAINTY IN HARVEST SCHEDULING
*
 

 

Chapter 2 addressed spatial data uncertainty issues in a dispersion model where 

geographic proximity is measured by Euclidean distance. However, adjacency in 

many planning problems is evaluated by contiguity, such as sharing a common 

boundary or vertex. This chapter deals with spatial uncertainty in the context of 

harvest scheduling, where adjacency between harvest units is determined by 

sharing a common boundary. An algorithm to assess uncertainty in contiguity-

based adjacency is developed and an alternative modeling approach is proposed. 

Comparison to the model presented in Chapter 2 is also undertaken.  

 

3.1 Introduction 

 

Harvest scheduling involves important resource management decisions, with 

significant implications for economic and environmental well being. The diverse 

and competing uses of forest resources, such as economic productivity, recreation 

and flora and fauna sustainability, make the scheduling of harvest units 

challenging. To assist in this difficult task, optimization models have been widely 

relied upon to develop harvest schedules, where constraints are structured and 

imposed to limit spatial disturbance with an objective to maximize harvesting 

                                                           
*
 This chapter represents a slightly revised version of a paper published in Annals of Operations 

Research, co-authored with Dr. Alan T. Murray. 
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benefits (Thompson et al. 1973; Murray and Weintraub 2002; Goycoolea et al. 

2005; Constantino et al. 2008).  

 

Murray (1999) discusses that there are two general approaches to represent and 

impose spatial disturbance restrictions in harvest optimization models. One 

assumes that the timber units are delineated so that harvesting any two adjacent 

units would exceed a maximum area of disturbance. The other approach 

anticipates that the harvest units are much smaller than a stipulated maximal 

clear-cut area, making it possible to harvest several neighboring units 

simultaneously. Murray (1999) refers to these approaches as the unit restriction 

model (URM) and the area restriction model (ARM), respectively. The URM and 

ARM are deterministic and assume model input to be precise and accurate. 

Unfortunately spatial information is typically uncertain in many ways, particularly 

spatial location and harvest unit boundaries. De Groeve and Lowell (2001) 

highlight the significance of this issue, showing that the width around forest unit 

boundaries within which the actual location could reside ranges from 24.7 to 44.4 

meters. This is not surprising considering that management units have historically 

been delineated by using automated paper map conversion approaches and aerial 

photographs, but even GPS and other survey based data are limited in spatial 

accuracy (Edwards and Lowell 1996; Brown 1998; De Groeve and Lowell 2001; 

Radoux and Defourny 2007). 
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It is well recognized that deterministic optimization models could be sensitive to 

spatial uncertainty (Cooper 1974; Drezner and Drezner 1997; Murray and 

Weintraub 2002; Murray 2003; Aerts et al. 2003; Altinel et al. 2009). 

Unfortunately, there is no universal understanding of spatial uncertainty impacts 

or biases. This means that evaluation must be designed for individual models 

before employing them to assist decision-making processes (Church 1999; 

Murray 2003). Even though a substantial amount of work has investigated 

uncertainty issues in harvest scheduling (Hoganson and Rose 1987; Weintraub 

and Abramovich 1995; Klenner et al. 2000; Boyland et al. 2005; Peter and Nelson 

2005; Palma and Nelson 2009), spatial uncertainty has not been explicitly 

examined in harvest scheduling optimization models.   

 

This chapter details new approaches to address spatial uncertainty in harvest 

scheduling subject to spatial disturbance restrictions. We structure two multi-

objective approaches to assess how spatial uncertainty could impact harvest 

schedules, focusing on the URM. The next section reviews previous research 

related to data uncertainty in forest planning. This is followed by the formulation 

of the URM and a discussion of spatial uncertainty associated with its application. 

This chapter then structures two new modeling approaches that explicitly account 

for spatial data uncertainty. Application results are presented that illustrate the 

range of potential solutions possible when spatial uncertainty is considered. 

Finally, a discussion and concluding comments are given.   
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3.2 Background 

 

There are many facets of uncertainty in forest management planning. 

Management unit delineation, yield, market value, production demands, 

sustainability requirements and other inputs for harvest scheduling optimization 

models may be highly uncertain. Failure to account for data uncertainty in models 

could lead to suboptimal, infeasible or biased solutions (Pickens and Dress 1988). 

A number of studies have examined aspects of data uncertainty in harvest 

scheduling models. 

 

One widely employed approach is simulating possible scenarios and solving the 

resulting deterministic scheduling model for each scenario. For example, natural 

disturbance scenarios, like fires or avalanches, have been simulated to evaluate 

the disturbance impacts on harvest scheduling in Klenner et al. (2000), Von 

Gadow (2000), and Peter and Nelson (2005), where average harvest profit could 

increase $1.8 million per year when fire disturbance is incorporated. Scenarios 

with uncertain inventory data are generated in Pkukkala (1998) and Eid (2000), 

while uncertainties in timber yield are simulated in Hoganson and Rose (1987) 

and Eriksson (2006). Eid (2000) also illustrate that an error level of 15 % in 

inventory data could result in expected net present value losses between 64 NOK 

per ha and 1471 NOK per ha. Boyland et al. (2005) simulate the deviations of 

harvest schedules to assess robustness. Scenario-based approaches are 

straightforward and have been applied in various forest planning contexts. 
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However, the identification of scenarios is necessary, which might be difficult and 

likely requires substantial additional data. Secondly, since enumeration of all 

possible scenarios is not feasible due to computational practicalities, sampling 

becomes necessary, leaving much remaining uncertainty in any derived findings 

(Snyder 2006).  

 

Stochastic programming methods have also been applied to harvest scheduling. 

As an example, Boychuk et al. (1996) construct a stochastic programming model 

to account for the impacts of fire loss. Reeves and Haight (2000) incorporate the 

means and covariances of stumpage prices into a harvest scheduling model. 

Chance-constrained programming has been used to assess uncertainty in timber 

yields (Weintraub and Vera 1991; Weintraub and Abramovich 1995; Hof et al. 

1996) and production demands (Hof and Pickens 1991). Wind damage and spatial 

structure of stands are taken into account by employing probabilistic models 

(Meilby 2001) and Markov decision process (Forsell et al 2011).They also 

demonstrate that the expected net present value of stands would significantly 

increase if accounting for the risk of wind damage (Forsell et al. 2011). A 

limitation is the assumption that the probability distributions of uncertain 

parameters are known. Moreover, the computational burden of these approaches 

requires the development of problem specific exact or heuristic solution 

techniques, limiting their general application. Robust optimization models have 

also been structured to integrate data uncertainty in harvest scheduling (Palma and 

Nelson 2009; Bohle et al. 2010). 
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There is little doubt that the evaluation of data uncertainty impacts in harvest 

scheduling is essential. Previous forest research has investigated various 

uncertainties, but spatial uncertainty has not been explored relative to adjacency 

based restrictions, leaving important questions about expected impacts and 

potential biases that may exist in derived harvesting plans.  

 

3.3 URM and spatial uncertainty 

 

The URM has been widely applied to support harvest scheduling (see Thompson 

et al. 1973; Murray 1999; Murray and Weintraub 2002; Goycoolea et al. 2005). 

The primary feature of the URM is constraints that prohibit any two neighboring 

management units from being simultaneously harvested. Beyond this, numerous 

extensions are possible, including the addition of volume flows, green-up 

requirements, road building/maintenance, etc. Considerable research has focused 

on developing efficient exact and heuristic solution techniques for the URM 

(Murray and Church 1995; Murray and Church1996; Snyder and Revelle 1997; 

Weintraub et al. 2000). Consider the following notation: 
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Without loss of generality, only a single planning period is considered. The URM 

formulation is: 

Unit Restriction Model (URM) 

                        

 

                                                                                                   

                                                                                                              

                                                                                                    

The objective of URM, (3.1), is to maximize the benefits associated with harvest 

scheduling, which could be economic or environmental benefits. Constraints (3.2) 

ensure that no two adjacent units are simultaneously harvested. Constraints (3.3) 

impose binary restrictions on decision variables. 

 

Again, various extensions to this basic formulation are possible. Common 

concerns include road building/maintenance, as well as even flows in the case of 

temporal models. In addition, much effort has focused on exact and heuristic 

solution techniques (Murray and Church 1995; Murray and Church 1996; Snyder 

and Revelle 1997; Weintraub et al. 2000). An assumption in the URM is that 

adjacency relationships are certain. That is, the input adjacency set    is assumed 

to be precise and accurately defined. However, there actually exist various 

sources of uncertainty associated with spatial information and its use in data 

processing and manipulation. Given the potential for erroneous or biased results, 

any uncertainty should be understood and accounted for if possible when data is 

used to support any substantive planning and analysis. For example, boundary 

uncertainty of forest units has been discussed in Edwards and Lowell (1996), 
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Naesset (1998), De Groeve and Lowell (2001) and Orzanco et al. (2004), and 

concludes that forest unit boundaries are inaccurate in various ways. Figure 3.1 

demonstrates that boundary imprecision could have a significant influence on 

identified components of adjacency sets. Depicted in Figure 3.1a are planning 

units assumed to spatially be precise and accurate. Figure 3.1b shows the 

geographic extent of where the actual unit boundary could be when taking spatial 

uncertainty into account. Specifically, units 6 and 9 are considered neighbors in 

Figure 3.1a but may not actually be neighbors if accounting for boundary 

uncertainty (Figure 3.1b). Alternatively, unit pairs 6 and 3 and 6 and 2 are not 

considered adjacent but could actually be adjacent if accounting for boundary 

uncertainty (Figure 3.1b).  In addition to boundary delineation, uncertainty could 

also arise in adjacency interpretation. For example, various adjacency 

interpretations are considered in the literature, such as weak adjacency in 

Goycoolea et al. (2005) and strong adjacency in Constantino et al. (2008). Other 

forms of uncertainty could be considered as well (see Murray and Grubesic 2011). 

The challenge now is evaluating the impacts of spatial uncertainty in the URM 

given such uncertainty. 
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(a) 

Figure 3.1 Harvest unit boundary imprecision: (a) planning units assumed to 

spatially be precise and accurate, (b) planning units accounting for boundary 

uncertainty  
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Figure 3.1 continued 

 

(b) 

  



 

45 
 

3.4 Accounting for spatial uncertainty 

 

One approach for addressing spatial uncertainty in the URM is to reconsider 

neighbor, or adjacency, definitions. The adjacency sets,   , are not necessarily 

accurate when spatial uncertainty is recognized. One way to deal with this is to 

define two sets,    and   , representing the certain adjacency and possible 

adjacency conditions for unit  , respectively. If   represents the spatial uncertainty 

of a polygon boundary, then the buffered area around units in Figure 3.1b is a 

realization of this uncertainty. The two sets can therefore be identified in a 

systematic fashion. An algorithm is detailed in Figure 3.2 to facilitate spatial 

relationship characterization and the relative probabilities that two units are 

adjacent. 
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Figure 3.2 Ωi and Ψi generation 

 

If the minimum boundary distance between units   and   in the URM,    , is 

larger than 0 and less than or equal to   , two units may be neighbors. Further, if 

the length of shared boundary between units   and  ,    , is less than or equal to   , 

then there is a chance that the units may not actually be neighbors. This suggests 

that some adjacency relationships,   , are known with certainty, but other 

potential adjacencies,   , are not. The challenge is to explicitly incorporate 

known and potential adjacency into a URM based model in a manner where 

uncertainty can be explored and better understood. To accomplish this, one 
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approach is to use decision variables     to track whether a potential adjacency 

condition is relaxed, with a parameter     reflecting a probabilistic significance of 

relaxation. The minimum distance and shared boundary length discussed 

previously could be employed to specify    . For example, shorter minimum 

distance and longer shared boundary between two units suggest a higher 

probability of being adjacent. Considering Figure 3.1b, units 3 and 6 are more 

likely to be neighbors than units 2 and 6 because of the minimum boundary 

distance between units 3 and 6 is shorter than that of units 2 and 6. An approach 

based on certain and possible adjacency is structured as follows: 

Error-Unit Restriction Model I (E-URM I) 

                               

 

                                                                                            

                                   

     

                                                                                 

                                                                                                              

                                                                             

                                                                                               

                                                   

This model is structured with multiple objectives. The first objective, (3.4), is to 

maximize the benefits associated with harvesting units, as structured in the URM. 

The second objective, (3.5), minimizes the total risk of violating proximity 

constraints that are spatially uncertain. Constraints (3.6) ensure that no two 

harvest units conflict among the known restrictions. Constraints (3.7) track 

separation between those units that are potentially in conflict. These are the 
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constraints that could be okay to relax or ignore, depending on uncertainty.  When 

    equals one, both    and    could be one in constraint (3.7), indicating both 

units could be harvested; otherwise, the proximity constraint is imposed, and at 

most one unit could be harvested. Constraints (3.8) impose binary restrictions on 

decision variables. 

 

Of course, the E-URM I is not the only possible approach for addressing 

uncertainty. In the E-URM I each pair of potential adjacency restrictions,   , may 

be relaxed. However, it might make sense to consider relaxing all uncertain 

restrictions associated with unit  , with no violation risk beyond the initial 

relaxation. That is, relaxations associated with unit   are allowed, or they are not. 

Consider the following additional notation:  

                                                               

    
                                         
                                              

  

The risk,    , is not related to each constraint relaxation but rather to each potential 

harvest unit. Since relaxing unit   indicates that all potential adjacency constraints 

associated with unit   could be relaxed. Specification of this potential unit risk,    , 

might be: 

        

 

                                                                                                                           

New decision variables,   , are utilized to determine whether the unit constraints 

are to be relaxed. An alternative model is therefore structured as follows: 
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Error-Unit Restriction Model II (E-URM II) 

                               

 

                                                                                          

                                

 

                                                                                            

                                                                                                            

                                                                     

                                                                                            

                                                                                                  

The first objective, (3.10), remains to maximize the total benefits of harvesting 

and the second objective, (3.11), is to minimize the total risk of violating potential 

harvest unit restrictions. Constraints (3.12) ensure the certain separation 

requirements are satisfied for each unit. Constraints (3.13) link the relaxation 

decision of unit   to all of the units in the set   . When    equals one, all units in 

   could be harvested concurrently. Constraints (3.13) impose binary integer 

restrictions on decision variables. 

 

In the E-URM I each potential adjacency restriction pair is associated with a 

violation risk, independent of other uncertain adjacencies. Alternatively, E-URM 

II focuses on a unit and the entire set of potential adjacency conditions. However, 

the violation risk is associated with units and potential restrictions for one unit are 

bundled together in the E-URM II. The differences between the E-URM I and E-

URM II are subtle. Consider unit 6 in Figure 3.1, with           . Constraints 

(3.7) for    in the E-URM I would be: 
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Selecting both   variables in any one of these constraints would imply a 

relaxation, so the associated   variables would need to be one. Specifically, 

suppose           . This could imply that          . The objective, 

(3.5), would therefore reflect that multiple pairs are relaxed. Consider this 

relationship in the E-URM II. Constraints (3.13) would be:  

              

              

              

Selecting both   variables in any one of these constraints would only require at 

least one associated   variables to be one. Specifically, suppose          

 . This could imply that only      is sufficient to maintain feasibility. This 

means that the relaxation of potential adjacency is accounted for in objective 

(3.11) for a single unit, in contrast to multiple conditions above for the E-URM I.    

Research has shown the URM to be challenging to solve (Murray and Church 

1996; Hochbaum and Pathria 1997; Weintraub et al. 2000; Constantino et al. 

2008). Thus, extensions of the URM, such as the multi-objective E-URM I and II, 

are also expected to be computationally demanding. Given the two objectives, the 

weighting or constraint methods could be used to identify tradeoff solutions (see 

Cohen 1978), providing insight on the impacts of spatial uncertainty. 
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3.5 Application results 

 

A forest region located in northern California is used to examine the impacts of 

spatial uncertainty on harvest scheduling (see Figure 3.3). A number of other 

studies have undertaken various types of spatio-temporal analysis for this region, 

including Murray and Weintraub (2002), Murray et al. (2004) and Goycoolea et al. 

(2005). This region has 351 harvest units averaging 25 acres in size. Investigation 

suggests that harvest units were likely delineated using an automated or semi-

automated map conversion approach. Our analysis estimates   to be 30 meters. 

That is, harvest unit boundaries are only accurate to within 30 meters of their 

indicated location. 
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Figure 3.3 Butter Creek forest in Northern California 

 

The spatial optimization models are structured using Python, and subsequently 

solved using a commercial optimization package, Gurobi. Computational 

0 100 20050 Km

0 2 41 Km
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processing was carried out on a MS Windows-based, Intel Xeon (2.53 GHz) 

computer with 6 GB of RAM. 

 

Application of the URM indicates that the maximum return possible from 

harvesting activities is 5854.25 (114 units harvested). The spatial configuration of 

harvesting activity is shown in Figure 3.4a. This analysis result, as noted 

previously, assumes that the data is certain and spatially precise. However, spatial 

boundaries of units are only accurate to within 30 meters. There is a need to 

address this spatial uncertainty. 

 

Both E-URM I and E-URM II are utilized to assess the impacts of data 

uncertainty. The risk of violating potential adjacency restrictions,    , are set to 

range from 1 to 8 depending on the actual minimum boundary distance,     and 

shared boundary length,    . Specifically, when 
  

 
       ,      ; when 

      
  

 
,      ; when 

 

 
      ,      ; when       

 

 
,      ; 

when       
 

 
,      ; when 

 

 
      ,      ; when       

  

 
, 

       when 
  

 
       ,      . The models all require less than 0.1 second 

to solve using Gurobi and the constraint method is used here to identify all 

tradeoff solutions associated with the two objectives. 
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(a) 

Figure 3.4 Spatial configuration comparison between the URM and E-URM I: (a) 

URM (5854,25 benefit), (b) E-URM I (5571.62 benefit and 0 violation risk), (c) 

E-URM I (6876.95 benefit and 387 violation risk)  
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Figure 3.4 continued 

 

(b) 
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Figure 3.4 continued 

 

(c) 

 

The tradeoff solutions for the E-URM I are displayed in Figure 3.5. The x-axis 

(“Violation Risk”) corresponds to objective (3.5) and (3.11), which equals the 

total risk of relaxed potential proximity constraints. The y-axis (“Benefit”) 

corresponds to objective (3.4) and indicates total economic return. As Figure 3.5 

shows, accounting for spatial uncertainty in the model means that the total 

economic returns 5571.62 (106 units harvested) but as high as 6876.95 (142 units 

harvested). This is in contrast to 5854.25 identified using the URM, assuming 

boundary certainty, which means a 4.8% reduction in total benefit in the lowest 
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case and a 17.5% increase in total benefit in the most optimistic case. The Pareto 

optimal curve also shows that increasing benefits means that the violation risk 

would increase, or rather more potential proximity constraints would need to be 

relaxed. For the 5571.62 solution in Figure 3.5, all certain and uncertain proximity 

restrictions are actually imposed (zero violation risk). On the other extreme, the 

6876.95 solution is achieved by relaxing all potential restrictions. The other 

solutions in Figure 3.5 therefore reflect a tradeoff ranging between these extremes 

of 5571.62 to 6876.95 for economic return from forest harvesting and 0 to 387 for 

violation risk. In addition to the implications for total benefits of harvesting 

schedules, each solution represents a different spatial pattern. Figure 3.4b shows 

the spatial configuration of the 5571.62 solution, while that of the other extreme 

(6876.95) is displayed in Figure 3.4c. There are clear spatial pattern differences in 

Figure 3.4a, 3.4b and 3.4c, resulting in different economic returns.  
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Figure 3.5 Tradeoff curves for the E-URM I and II 

 

The tradeoff solutions for the E-URM II are also depicted in Figure 3.5, where 

each unit is associated with violation risk. The sum of violation risk associated 

with each unit (“Violation Risk”) ranges from 0 to 440. Since the two extremes in 

Figure 3.5 characterize the scenarios of relaxing none and all potential restrictions, 

the range of total economic return is the same as that in  E-URM I, and the spatial 

configurations of the two extremes are the same as for the E-URM I (Figure 3.4b 

and 3.4c). However, the other tradeoff solutions of the E-URM II do have higher 
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violation risk than those of the E-URM I because all potential proximity 

restrictions associated with a unit is either relaxed or not relaxed but this may not 

be the case in the E-URM I. Additionally, they also exhibit varying spatial 

patterns. Figure 3.6b shows the spatial configuration of a solution giving 6504.22 

benefit and 160 unit violation risk for the E-URM II in contrast to the E-URM I 

solution with 6502.03 benefit and 134 violation risk in Figure 3.6a. Unit 305 is 

relaxed in Figure 3.6b, indicating that the proximity restrictions between 305 and 

283, and 305 and 308 are all relaxed. However, in Figure 3.6a only unit 283 and 

308 are selected. This occurs because each pair of potential constraints is 

independent in the E-URM I while potential adjacency restrictions for a unit are 

combined in the E-URM II. 
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(a) 

Figure 3.6 Spatial configuration comparison between the E-URM I and II: (a) E-

URM I (6502.03 benefit and 134 violation risk), (b) E-URM II (6504.22 benefit 

and 160 violation risk)  
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Figure 3.6 continued 

 

(b) 

 

3.6 Discussion and conclusions 

 

The results presented illustrate that spatial data uncertainty has real and 

significant impacts on the URM. If the potential uncertainty/error in spatial 

information is ignored, the modeling results could be erroneous, biased or 

misguided. The Error-Unit Restriction Model I and II (E-URM I and E-URM II) 

were developed to account for spatial uncertainty. In order to address spatial 

uncertainty, the E-URM I and II utilized multiple objectives. This approach 
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enables a range of tradeoff solutions to be identified, which makes analysis more 

complicated, but they remain finite and can be evaluated to assess implications in 

harvest scheduling. Specifically, considering spatial uncertainty shows that the 

total harvest benefits could range widely from 5571.62 to 6876.95, in contrast to 

5854.25 suggested using the URM. 

 

An issue that might be raised is to consider derived potential risk and simply 

impose those adjacency restrictions above a certain threshold and ignore those 

below the threshold. Doing so would mean that the URM could be applied. While 

simple and straightforward, such an approach fails to incorporate important 

information about risk and economic return that is considered simultaneously. 

Comparison of the E-URM I and II results with that of the case where all potential 

adjacency restrictions with violation risk less than a prespecified threshold are 

relaxed confirms the inferiority of such an approach as only dominated solutions 

are identified. That is, the threshold approach would only enable solutions in the 

interior/dominated region of the tradeoff solution space, and in most cases these 

are far from the Pareto frontier (see Figure 3.7). 
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Figure 3.7 Comparison of threshold based solutions 

 

Worth further discussion is the determination of violation risk. One possible way 

to impose violation risk by using minimum boundary distance and shared 

boundary length was detailed here, but there could be many other different ways 

to define such risk, depending on the practical application. Any approach for 

viewing potential adjacency in probabilistic terms may be of interest to consider. 

Both modeling approaches can readily accommodate this.  
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This chapter presented new ways to address spatial uncertainty in harvest 

scheduling by introducing the error unit restriction model I and II (E-URM I and 

E-URM II). We demonstrated that spatial data uncertainty could have significant 

impacts on forest planning.  It remains to be seen how spatial uncertainty might 

be considered more generally in other spatial models used to support forest 

management planning. Clearly this is an important first step. 
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CHAPTER 4 

 

A MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM FOR FACILITY 

DISPERSION UNDER CONDITIONS OF SPATIAL UNCERTAINTY
*
 

 

As shown in Chapters 2 and 3, multi-objective models that explicitly account for 

spatial uncertainty are computationally challenging to solve. This chapter 

develops a multi-objective evolutionary algorithm to address the computational 

challenges posed by multi-objective approaches. The proposed algorithm 

incorporates problem-specific spatial knowledge to significantly enhance the 

capability of the evolutionary algorithm for solving these problems. 

 

4.1 Introduction 

Dispersion is essential in many environmental and urban planning contexts, 

including avoiding market saturation, determining forest harvest schedules, 

strategically placing military outposts, and locating undesirable facilities, among 

others. The intent is to identify outcomes that limit localized impacts, achieve 

sustainability and generally reflect an equitable distribution of services. An 

overview may be found in Church and Murray (2009).  

One of the most widely applied dispersion approaches is the anti-covering 

location problem (ACLP), formally presented in Moon and Chaudhry (1984) to 

support location decision-making. In order to avoid concentration, this model 

                                                           
*
 This chapter represents a revised version of a paper submitted to Journal of the Operational 

Research Society, co-authored with Dr. Alan T. Murray. 
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aims to determine the placement of facilities that can generate maximum benefits 

while a prespecified spatial separation is imposed.  The ACLP is effectively 

equivalent to node packing, vertex packing, r-separation, and maximal 

independent set problems. Technical discussion of these problems can be found in 

Nemhauser and Trotter (1975), Lawler et al. (1980), Nemhauser and Sigismondi 

(1992), and Erkut et al. (1996), among others. Though the ACLP and related 

problems are utilized extensively, they remain challenging to solve optimally for 

medium or large sized problem instances. This is not surprising as they belong to 

the class of NP-hard combinatorial optimization problems, indicating that there is 

no polynomial time algorithm to solve them (Garey and Johnson 1979). The 

challenges to solve the ACLP, combined with its broad application, have made it 

the focus of continued research efforts devoted to efficient solution. For exact 

solution approaches, improved mathematical structure has been sought. For 

example, Nemhauser and Sigismondi (1992) proposed a strong mathematical 

formulation by introducing clique and odd-hole inequalities. Murray and Church 

(1997) incorporated both neighborhood constraints and clique constraints, 

demonstrating significant computational benefits. Other examples can be found in 

Caprara et al. (2000), Strijk et al. (2000), Goycoolea et al. (2005) and Murray and 

Kim (2008). In addition to exact approaches, a variety of heuristic methods have 

also been developed. Examples include Greedy Search (Chaudhry et al. 1986; Feo 

et al. 1994; Cravo et al. 2008; Gamarnik and Goldberg 2010), Tabu Search 

(Gendreau et al. 1993; Strijk et al. 2000; Wu and Hao 2011), Simulated Annealing 

(Fleischer 1994; Strijk et al. 2000), Lagrangian Relaxation (Murray and Church 
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1997; Ribeiro et al. 2011), and Genetic algorithm (Hifi 1997; Chaudhry 2006). 

These techniques have considerably improved computational capabilities for 

solving this problem. 

 

Beyond the computational difficulty in obtaining optimal or near optimal 

solutions, recent work highlights important data uncertainty issues. As the ACLP 

is a deterministic model, assuming the input of the model to be precise and 

accurate may be problematic in many ways. Chapter 2 has demonstrated that the 

ACLP and related models are sensitive to spatial data uncertainty, and proposed a 

multi-objective formulation that explicitly accounts for data uncertainty. The new 

model, referred to as the error-anti-covering location problem (E-ACLP), can 

identify trade-off solutions reflecting the range of potential impacts associated 

with data uncertainty on modeling results. While this model provides an effective 

approach to evaluate the implications of spatial uncertainty, it also requires 

significantly more computational effort to solve because it is a multi-objective 

extension of ACLP. This is particularly important given that the ACLP is itself a 

NP-hard problem and subject to considerable research on efficient solution 

techniques. There is clearly a need to develop heuristic approaches to solve the E-

ACLP, as many practical problem instances simply cannot be solved otherwise. 

In this chapter we develop a multi-objective evolutionary algorithm to address the 

computational challenges of solving the E-ACLP. The next section introduces the 

spatial optimization model considered here and reviews solution approaches for 

this problem. Following this, genetic algorithms (GAs) and multi-objective 
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genetic algorithms (MOGAs) are briefly discussed. Then, the design of a MOGA 

for the E-ACLP is detailed. Application results are then presented and discussed. 

The chapter ends with a summary and concluding remarks. 

 

4.2 Modeling spatial uncertainty 

 

As noted previously, the purpose of anti-covering location problem (ACLP) and 

related models is to maximize the benefits associated with selected units while 

maintaining a minimum spatial separation between them. Units in this context 

could, for example, refer to management units to be harvested or commercial 

parcels for placing waste recycling centers or other types of service facilities. 

Consider the following notation: 
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The ACLP can be formulated as follows (Church and Murray 2009): 

                           

 

                                                                                                

                                                                                                              

                                                                                                

The objective, (4.1), is to maximize the benefits associated with selecting units. 

Constraints (4.2) ensure that no two conflicting units can be selected 

simultaneously. Binary integer requirements are stipulated in constraints (4.3). 

 

The defining feature of the ACLP is the dispersion orientation in siting/selecting 

units. The conflict sets,   , reflect this, and are assumed to be known precisely. 

However, it is widely acknowledged and accepted that spatial data is fraught with 

uncertainty and error (see Goodchild and Gopal 1989). Spatial data uncertainty, 

therefore, creates ambiguity in   . New sets can be introduced,    and   , to 

represent certain and uncertain conflicts, as was done in Chapter 2 to propose an 

extension of the ACLP. The model is referred to as the E-ACLP and relies on the 

following additional notation: 
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   is introduced as a conservative conflict set that is deemed to be certain. 

Separation restrictions between unit   and members of    will always be imposed. 

Alternatively, the uncertain conflicts are represented by the set   . It may or may 

not be necessary to impose restrictions between unit   and members of   , 

depending on the probability of a conflict,    . Binary decision variables     track 

whether the uncertain proximity constraints are imposed or not. 

Using the above notation, the E-ACLP is formulated as follows (Chapter 2): 

                            

 

                                                                                               

                                

     

                                                                                    

                                                                                                              

                                                                              

                                                                                                 

                                                                                             

The first objective, (4.4), remains to maximize the benefits associated with 

selecting units, as structured in the ACLP. The second objective, (4.5), is to 

minimize the total probability of relaxing separation constraints that are spatially 

uncertain. The two objectives are in conflict in the sense that gains in benefits can 

be achieved only by relaxing uncertain proximity constraints. Constraints (4.6) 

ensure that no two selected sites conflict among the certain restrictions. 

Constraints (4.7) track separation of those that might be in conflict. These are the 

constraints that could be okay to relax or ignore, depending on uncertainty. When 

    equals one, both    and    could be one in constraint (4.7), indicating both 
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units could be selected; otherwise, at most one of them can be selected. 

Constraints (4.8) impose binary integer restrictions on decision variables. 

 

When comparing the formulation of the ACLP with the E-ACLP, an equivalency 

can be observed when       and     . That is, both models are exactly the 

same in this case. In practice, however, it would be expected that       and 

          . The implication is that the total benefits would increase when 

uncertain proximity constraints are relaxed as fewer overall spatial restrictions 

would be imposed. Alternatively, total benefits would decrease when uncertain 

restrictions are imposed, because more restrictions would be imposed relative to 

the ACLP. 

 

4.3 Solution approaches 

 

The E-ACLP is a multi-objective model, requiring identification of tradeoff 

solutions using multi-objective solution techniques. One popular approach is the 

weighting method (Cohen 1978), where the two objectives are combined using a 

weight  . This is accomplished as follows: 

                                 

 

               

     

                                       

Objectives (4.4) and (4.5) can be replaced by objective (4.9), and the model 

solved. By varying the weight from 0 to 1, different problem scenarios arise and 

tradeoff solutions can be found. Given that it is often impossible in practice to 

enumerate all possible values of the weight,  , techniques have been proposed to 
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sample weight values to identify Pareto-optimal solutions (Eswaran et al. 1989; 

Solanki 1991; Ralphs et al. 2006). However, it may not be possible to find all 

nondominated solutions, significant time may be spend finding non-unique 

solutions, and the problem(s) may simply be too difficult to solve in a reasonable 

amount of time, if at all.  

 

Another approach to find nondominated tradeoff solutions is the constraint 

method (Cohen 1978), where one objective is integrated into the model as a 

constraint and the second objective optimized. Assuming that   is a feasible 

solution for the second objective, then the E-ACLP can be represented as: 

                              

 

                                                                                           

                                   

     

                                                                         

                                                                                 

                                                                          

                                                                                             

                                                                                           

Since the probabilities,    , can always be scaled to integers and     are binary 

decision variables, the possible values of  are finite. By iterating all potential 

values of  ,  different single-objective models result and can be solved using 

exact IP approaches. Given this, the constraint method can ensure the 

identification of all nondominated solutions but requires solving the transformed 

single-objective model many times. While nice in theory, it remains that the E-
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ACLP is NP-hard and unlikely to be optimally solved in some instances or for 

large size problems. In fact, attempts to solve some of the reported problems here 

using an exact IP approach proved impossible.  

 

4.4 Multi-objective genetic algorithms (MOGAs) 

In multi-objective optimization problems the objectives are usually conflicting 

with each other. Thus no single solution represents a best case for all objectives. 

As a result, the ultimate goal of a solution technique for multi-objective 

optimization problems is to identify a complete set of nondominated or Pareto-

optimal solutions that cannot be improved with respect to any objective without 

degrading at least one other objective (Cohen 1978; Konak et al. 2006). An 

efficient multi-objective optimization algorithm should therefore be capable of 

identifying or approximating the Pareto-optimal front in order to reflect the range 

and diversity of tradeoff solutions possibly.  

 

Based on the principle of natural selection, genetic algorithms (GAs) are well 

suited to solve mutli-objective optimization problems (Deb 2001). GAs operate 

with a population of chromosomes (solutions) and can capture a diverse set of 

chromosomes (solutions) in a single generation (run) (Deb et al. 2002). As the 

evolution goes through crossover, mutation and reproduction, the population is 

able to identify or approximate the Pareto-optimal front. GAs theoretically 

provide the capacity to satisfy both convergence and diversity goals, important to 

multi-objective optimization problems, which explains why they have been 
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widely applied. Jones et al. (2002) reported that 70% of multi-objective heuristic 

approaches are based on GAs. In the recent years, there has been increasing 

interest in designing multi-objective GAs (MOGAs) for spatial optimization 

problems. Examples can be found in Xiao et al (2002), Bennett et al. (2004), Kim 

et al (2009), Cao et al. (2011), Wu and Grubesic (2010), Roberts et al. (2011) and 

Wu et al. (2011). 

 

Even though the basic idea of GAs is universal, it is the actual design and 

implementation that determine the success and performance of the algorithm, and 

whether the Pareto-optimal front can be found or sufficiently approximated (Alp 

et al. 2003; Konak et al. 2006). Beasley et al. (1993), Bennett et al. (2004), Xiao 

(2008) and Tong et al. (2009) demonstrated the necessity to incorporate problem-

specific knowledge into GA design. To this end, we propose a new hybrid 

initialization procedure and greedy feasibility operator to enhance the 

performance of MOGA for solving the E-ACLP. The overall design of the 

algorithm follows Deb et al. (2002) but integrates the hybrid initialization 

procedure and greedy feasibility operator ideas proposed here. The overall design 

of the developed MOGA for the E-ACLP is summarized in Figure 4.1. While 

each GA component is important, more emphasis is placed on the initialization 

and feasibility operator given their novelty and capacity for improving the 

performance of MOGA. Details of GA components are now presented. 
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Figure 4.1 Flow diagram of the MOGA for solving the E-ACLP  
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4.4.1 Representation and Initialization 

 

Solutions are represented using a simple  -bit binary string where n is the number 

of potential areas. A value of 1 at the  th bit indicates that unit   is selected, while 

0 implies that it is not selected. An important issue regarding the binary encoding 

scheme is that the resulting offspring solutions after genetic operations may be 

infeasible. Infeasible solutions are modified, or repaired, using a greedy feasibility 

operator. 

 

Being a population-based approach, GAs require generating a set of initial 

solutions to start the basic search process. A random initialization procedure is 

quite common in GA design. A straightforward approach for the E-ACLP could 

be:  

B-1. Solution   is a  -bit string of zeros and candidate set   contains all 

potential units:          . 

B-2. Randomly select a unit   from candidate set   and set      to equal 1. 

B-3. Remove the certain conflict units    from candidate set  :       . 

B-4. If candidate set   is empty, stop; otherwise, go to step B-2. 

While this is easy to implement and can generate feasible solutions for E-ACLP, 

solution quality is not particularly good. Evidence suggests that good initial 

solutions will generally lead to better performance of GAs (Ahuja et al. 2000; 

Bennett et al. 2004), so a new hybrid initialization procedure is developed to 
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generate more effective initial solutions. The new hybrid initialization procedure 

is as follows. 

H-1. Impose all uncertain proximity constraints and solve the resulting 

model by exact or heuristic approaches. 

H-2. Relax all uncertain proximity constraints and solve the resulting model 

by exact or heuristic approaches. 

H-3. Add the solutions obtained in steps H-1 and H-2 to initial population. 

H-4. Generate the remaining initial solutions randomly (B-1 through B-4). 

The first two steps help ensure that the optimal or near-optimal solutions are 

found when relaxing all or none of the uncertain proximity restrictions for the 

initial population. Through the integration of good initial solutions, greater 

efficacy of the MOGA is expected compared to only random initialization. 

 

4.4.2 Feasibility operator 

 

As noted previously, offspring solutions generated using a crossover operator may 

be infeasible, indicating that some certain conflict conditions are not imposed. As 

a result, a feasibility operator is required to transform infeasible solutions into 

feasible ones. Xiao (2008) presents a general feasibility operator that keeps 

randomly selecting from the infeasible solution until none can be selected without 

violating constraints. Hifi (1997) developed a GA for ACLP, where infeasible 

solutions are repaired by sequentially removing selections that violate constraints 

(alter some genes from 1 to 0) and then adding all other potential areas that do not 
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violate constraints (alter some genes from 0 to 1). Compared to the general 

feasibility operator in Xiao (2008), the repair procedure in Hifi (1997) might 

generate solutions with relatively higher benefits because it includes the areas 

initially not selected. However, sequentially removing conflicts could result in a 

poor solution, slowing down convergence. Of course, a good solution for the E-

ACLP should not only maximize benefits but also minimize the probability of 

violating the potential proximity conflicts. To achieve quick convergence to a 

good solution and maintain solution diversity, the following greedy feasibility 

operator is proposed: 

F-1.   is the total number of generations;   is the current generation;   is the 

binary string of input offspring solution;   represents the set of selected 

areas in  :                     . 

F-2. Calculate the net benefit (    of each area in   by subtracting the total 

benefits of its neighbors in set   from its own benefits:  

                

           

 

F-3. Pick the area    with the highest net benefit in  , remove its conflict set 

from set   and invert the corresponding indexes in   to 0: 

         and               with probability    , or 

               and                     with probability 

     ; 

F-4. If all areas in   has been picked, go to step F-5; otherwise, go to step F-

3. 

F-5. Consider the other areas that can be added into  , denoted as   :  
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F-6. Calculate the net benefit of each area in    as step F-2. 

F-7. Pick the area     with the highest net benefit in   , set         , and 

remove it and its conflict set from set   : 

                and          with probability    , or 

                     and          with probability      ; 

F-8. If    is empty, stop; otherwise, go to step F-7. 

For the feasibility operator F-1 – F-8,    ensures that areas with large benefits 

and less neighbor conflict will be preserved. This is in contrast to sequentially 

removing, along the lines suggested in Hifi (1997). The greedy feasibility 

operator can therefore generate higher quality solutions and speed up convergence. 

The proposed approach takes into account the minimization of conflict 

probabilities by incorporating the uncertain conflict set    into both the 

calculation of net benefit (steps F-2 and F-6) and the exclusion of neighbor 

conflict (steps F-3 and F-7). At earlier generations (small   , when area   is 

selected, the areas in the uncertain conflict set    will be highly likely to be 

excluded, leading to a small sum of conflict probabilities. Over time, only the 

certain conflict set will be excluded and large conflict probabilities could be 

expected. This greedy feasibility operator will enhance the diversity of solutions 

given its exploration of a range of conflict probabilities in different generations. 
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4.4.3 Other operator 

 

In order to achieve efficient convergence, we select the best nondominated 

individuals from parent and offspring populations for the next generation. This is 

accomplished by implementing the nondominated sorting procedure detailed in 

Deb et al (2002). The crowding distance approach, preventing solutions in the 

same nondomination level from clustering in objective space, is also introduced to 

increase the diversity of solutions. Binary tournament selection is utilized to select 

parents for offspring production. Fusion crossover proposed by Beasley and Chu 

(1996) is employed to create new offspring solutions given its superiority in 

keeping good information of parents and enhancing the diversity of offspring 

solutions over other common operators. This crossover operator is performed with 

some probability (crossover rate) that determines how often two selected 

individuals will crossover. If not performed, the two selected individuals will be 

directly copied as offspring solutions. 

 

4.5 Application results 

 

The proposed MOGA for solving the E-ACLP was implemented in Visual C++ 

and executed on a Intel Xeon (2.53 GHz) computer running Windows with 6 GB 

of RAM. Two different planning problems are utilized to demonstrate the 

effectiveness of the proposed algorithm. 
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The first planning application involves harvest scheduling. The forest region 

(Butter Creek) is in Northern California, and contains 351 harvest units. Each unit 

has a delineated spatial boundary and an associated economic return. Harvest 

scheduling for this region has been reported in Murray and Weintraub (2002), 

Murray et al. (2004) and Goycoolea et al. (2005). The planning goal is to 

maximize the total economic return, but no two adjacent (spatially conflicting) 

units can be harvested simultaneously. When the ACLP is applied to this forest 

planning problem, it suggests that the maximum economic return that can be 

achieved without violating proximity conflicts is 5854.25. However, the 

boundaries of harvest units are inaccurate and could have implications for total 

economic return. In order to account for the observed 30 meter boundary 

uncertainty, the E-ACLP is applied to identify all nondominated solutions using 

the constraint method. Using Gurobi, a commercial optimization package, total 

solution time was 90 seconds to find the 275 nondominated solutions, with a 

maximum of 0.51 seconds required to solve any individual problem. These 

nondominated solutions indicate that the total economic return could be as low as 

5571.62 with 0 conflict probability or as high as 6876.95 with 387 total conflict 

probabilities, which means a 4.8% decrease and 17.5% increase in total economic 

return, respectively, from the 5854.25 identified using ACLP. Having exact 

solutions in this case enables assessment of the proposed MOGA heuristic in 

terms of computation time as well as convergence to and diversity along the true 

Pareto-optimal front.  
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As the feasibility operator is applied to each infeasible child solution, the only 

required input parameters are population size and crossover rate. After empirical 

testing, the crossover rate was set as 1.0. The algorithm terminates when a 

prespecified number of generations is reached. Algorithm performance is 

evaluated using the following population size and generation characteristics: 100 

population size and 100 generations, 100 population size and 500 generations, and 

500 population size and 500 generations. Each parameter combination is run for 

10 times.  

 

Table 4.1 reports computational results for solving the forest planning problem 

using the proposed MOGA heuristic. The first two columns in Table 4.1 are 

associated with the heuristic parameters, Population and Generation. The next 

column corresponds to the number of nondominated solutions identified using 

MOGA. The “Average benefit gap” and Maximal benefit gap” columns in Table 

4.1 evaluate how much the MOGA solutions deviate from the Pareto-optimal 

front. The final column is solution time in seconds. The information in Table 4.1 

summarizes the average of ten runs of the heuristic beginning with different 

random initial solutions. Table 4.1 shows that for the 10 different applications of 

the heuristic 89 nondominated solutions are found on average in the case where 

population size is 100 and number of generations is 100. Further, the average 

benefit gap is 1.71%, the maximal benefit gap is 4.32%, and solution time is 4.89 

seconds. When the number of generations is increased to 500, 115 nondominated 

solutions are found, the average benefit gap decreases to 1.04% and maximal 
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benefit gap decreases to 2.55%, but solution time increases to 21.60 seconds. 

Finally, when both population and number of generations are increased to 500, the 

number of nondominated solutions increases to 166, but average and maximal 

benefit gap are almost the same as 100 population size. This also does require 

increased computation effort, with solution time of 145.68 seconds. 

 

Table 4.1: Computational results of the proposed MOGA for harvest scheduling 

Population Generation 

Nondominated 

solutions 

identified 

Average 

benefit 

gap
*
 

Maximal 

benefit 

gap
**

 

Solution 

time (sec) 

100 100 89 1.71% 4.32% 4.89 

100 500 115 1.04% 2.55% 21.60 

500 500 166 1.12% 2.65% 145.68 

 

*
 The solution is compared to the Pareto-optimal front based on similarity of 

conflict probability value, objective (4.5). The benefit difference, objective (4.4), 

is then standardized and converted to a percentage. The average is based on the 

benefit gaps of all MOGA solutions. 

**
 See above, but in this case the largest benefit gap of all MOGA solutions is 

reported. 
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Generally, the MOGA heuristic is able to identify high-quality nondominated 

solutions. It is also worth noting that more generations could significantly 

enhance the performance of MOGA, irrespective of the number of nondominated 

solutions identified or deviation from the Pareto-optimal front. Larger populations 

seem to not contribute much to improving the convergence to the Pareto-optimal 

front. This is important in practice because identifying a reasonable population 

size is critical to the efficiency of a GA. 

 

The results in percentage terms are possible in Table 4.1 because the actual 

Pareto-optimal front is known. This can be visualized as well for the two 

objectives of the E-ACLP. Figure 4.2 shows the nondominated solutions of the 

best run of the MOGA heuristic (out of ten) as a function of benefit (objective 4.4) 

and conflict probability (objective 4.5) by different population size and 

generations in comparison to the true Pareto-optimal front. As Figure 4.2 

illustrates, the solutions of the MOGA are evenly distributed and cover the entire 

objective space of the Pareto front, with benefits ranging from 5571.62 to 6876.95 

and conflict probability ranging from 0 to 387. The divergence from the Pareto 

frontier is small, especially at the neighborhoods of minimum and maximum 

conflict probabilities. The ability of the MOGA heuristic to closely approximate 

the Pareto frontier is evident, supporting the observation that the heuristic is 

performing well.  
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Figure 4.2 Nondominated solutions by different population size and generations 

for harvest scheduling 

 

The second planning application involves estimating the number of alcohol 

outlets that could be located in Philadelphia after imposing a 200 feet proximity 

restriction between outlets. Grubesic et al. (2012) detailed how dispersion models 

can be used to assess public policy changes being considered in Pennsylvania to 

privatize alcohol sales, where distributors will seek to maximize customer access. 

Thus, the question arises regarding how many outlets can be expected and where 

will they be located, and ultimately what will the health and safety implications be. 

11,226 potential outlet areas in Philadelphia are found through GIS-based 

suitability analysis. Based on parcel data accuracy and other sources of spatial 

uncertainty, the parcel boundary error is estimated to be      feet. To evaluate 
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the impacts of spatial uncertainty on the number of expected alcohol outlets, the 

corresponding E-ACLP is structured. Unfortunately, it is not possible to optimally 

solve this problem using an exact IP method. For example, when   is 100 in 

equation (4.11), the resulting single objective model cannot be solved using 

Gurobi after running for seven days. As all nondominated solutions are needed, 

this is a significant problem. The MOGA heuristic is therefore essential.  

 

Using the same parameters previously reported, the solutions using the MOGA 

heuristics are reported in Table 4.2. Given the large problem size (11,226 

potential areas), the solution time ranges from 2631.56 seconds to 64,803 seconds 

when population size and generations increase from 100 to 500. In addition, 150, 

198 and 197 nondominated solutions are found respectively, and are displayed in 

Figure 4.3. The differences between solution convergence for 500 population size 

and 100 population size are not large either, suggesting that it is possible to obtain 

good quality solutions for large size problem using a small population size. 

Though it is difficult to evaluate convergence of the MOGA solutions without 

knowing the true Pareto-optimal front, Figure 4.3 shows that a diverse set is found, 

where the maximum number of alcohol outlets could actually range from 2,896 (0 

conflict probability) to 3,288 (1101 conflict probability). When compared to the 

3,073 outlets identified using the ACLP, assuming parcel boundary certainty, 

these represents a 5.76% reduction and 7% increase in the total number of alcohol 

outlets. 
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Table 4.2: Computational results of the proposed MOGA for assessing alcohol 

outlets 

Population Generation Nondominated 

solutions identified 

Solution time 

(sec) 

100 100 150 2631.56 

100 500 198 13075.00 

500 500 197 64803.00 

 

 

 

Figure 4.3 Nondominated solutions by different population size and generations 

for assessing alcohol outlets 
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4.6 Discussion 

 

The application results presented in previous section demonstrate that the MOGA 

heuristic is effective in solving the E-ACLP in many ways. First, it is the first 

heuristic proposed to solve the E-ACLP and proved to be effective. Second, the 

average deviations of the MOGA solutions from the Pareto frontier are small, 

only 1.04% to 1.71% in the case of harvest scheduling, indicating that good 

quality solutions have been found. Third, the nondominated solutions identified 

using the MOGA are very diverse and evenly distributed (see Figures 4.2 and 4.3).  

Finally, the MOGA heuristic makes the large size applications computationally 

feasible to solve, using 2631.56 seconds to identify 150 nondominated solutions, 

as the E-ACLP could not be solved for assessing alcohol outlets using exact 

methods. This is important and meaningful because many practical planning 

problems often exceed the capabilities of exact approaches.  

 

Worth further discussion is the distinction of the proposed MOGA from other GA 

approaches. As noted previously, a new hybrid initialization procedure and greedy 

feasibility operator are developed in the MOGA heuristic, both of which result 

from the exploration of problem-specific spatial knowledge. This is critical to 

good performance for the MOGA. To demonstrate this point, two other possible 

GA approaches are also assessed and compared. One is the general GA approach 

detailed in Xiao (2008) and the other is the GA approach used to solve ACLP in 

Hifi (1997). Since both approaches are designed for solving single objective 
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optimization problems, their reproduction procedure is modified to use the 

nondominated sorting procedure utilized in the MOGA, but their genetic 

operators, like initialization, crossover and feasibility, remain intact. 

Nondominated solutions using 500 population size and 500 generations are 

compared against MOGA solutions using the same parameters and are displayed 

in Figure 4.4. The solutions identified using the other two GA approaches are 

obviously dominated by MOGA solutions. Further, these solutions tend to cluster 

in the medium conflict probability region. The superiority of the MOGA solutions 

can be attributed to the knowledge-based genetic operations. For example, the 

hybrid initialization increases the likelihood of GA exploration around low and 

high conflict probability values; the greedy feasibility operator allows more areas 

to be selected and larger benefits achieved.  

 

The computational effort of the proposed MOGA also needs further discussion. 

Compared to other heuristics, GAs usually have larger computational loads (Xiao 

2008). This can be observed when solving the large size problem. More work is 

therefore needed to improve its computational efficiency. One possible way is the 

parallelization of the algorithm, but is left for future research.  
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Figure 4.4 Nondominated solutions using different GA approaches for harvest 

scheduling 

 

4.7 Conclusion 

 

This chapter presents a new MOGA for solving the E-ACLP. This model 

addresses spatial data uncertainty issues in the selection of units to maximize the 

benefits associated with selected units while maintaining a minimum spatial 

separation between them. Even though the general idea of a GA is the same in 

most applications, there is no generic GA that works well for any problem. The 

proposed MOGA incorporates problem-specific spatial knowledge by introducing 

a hybrid initialization procedure and greedy feasibility operator to considerably 

enhance the capacity of GA to solve the E-ACLP. Compared with Pareto-optimal 
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solutions derived by exact methods, the application results demonstrate that the 

new MOGA heuristic is able to generate a diverse set of solutions close to the 

Pareto-optimal front, achieving both diversity and convergence goals for solving 

multi-objective optimization problems. In addition, as the first heuristic approach 

for solving the E-ACLP, the MOGA is capable of identifying good quality 

solutions in a reasonable amount of time for large size planning problems that 

cannot be solved using exact approaches. The superior performance of the new 

MOGA is also affirmed by comparison to other possible GA approaches.  
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CHAPTER 5 

 

CONCLUSIONS 

 

5.1 Summary 

 

It is well acknowledged that error or uncertainty always exists in geographic 

information (Longley et al. 2011). However, it is still a challenge to evaluate 

impacts on analysis and decision making. This research focused on addressing 

geographic uncertainty in spatial optimization. We first developed a multi-

objective approach that explicitly accounts for spatial uncertainty in dispersion 

modeling, enabling the impacts of uncertainty to be evaluated with statistical 

confidence. Further, in the context of harvest scheduling, uncertainty in 

contiguity-based adjacency was assessed and an alternative modeling approach to 

integrate spatial uncertainty was proposed and compared. In addition, to address 

the computational challenges of the new multi-objective model, a new multi-

objective genetic algorithm is developed and empirical results demonstrated its 

performance superiority in supporting facility and service planning.  

 

Chapter 2 proposed a multi-objective extension of dispersion model to take into 

account spatial data uncertainty.  It showed that geographic data uncertainty 

would have significant implications on proximity determination. Some proximity 

may not hold any longer and additional proximity may occur after considering 
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data uncertainty. Such uncertainty in proximity is incorporated into the model and 

lead to the new multi-objective formulation. Solving this new model can identify 

trade-off solutions reflecting the range of potential impacts associated with data 

uncertainty on modeling results. 

 

Chapter 3 discussed spatial uncertainty in harvest scheduling, where proximity is 

evaluated using contiguity-based measures. This is in contrast to the distance-

based measures in Chapter 2. A new algorithm integrating both shared boundary 

length and minimum distance was developed to assess uncertainty in contiguity-

based adjacency. In addition, we also proposed an alternative modeling approach 

to deal with uncertainty issues in dispersion modeling. The results of the two 

modeling approaches were also compared. 

 

The new multi-objective models presented in Chapters 2 and 3 are NP-hard, 

requiring considerable computational efforts to solve optimally. Chapter 4 

developed an efficient heuristic approach for solving these multi-objective models. 

This heuristic incorporated problem-specific spatial knowledge to significantly 

enhance the capability of the evolutionary algorithm for solving this problem. 

Application results also showed that high-quality nondominated solutions could 

be identified using the algorithm in a reasonable time. 
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5.2 Future work 

5.2.1 Exploring alternative representations of geographic uncertainty  

 

In this research, geographic data uncertainty is described by an error band,  , 

around each study unit. However, a more accurate probabilistic description of 

error/uncertainty may be possible. For example, the error is likely to be normally 

distributed. In addition, spatial data uncertainties are assumed to be independent, 

but they could be highly correlated (Keefer et al. 1988).  More work is needed to 

explore enhanced knowledge of geographic uncertainty. 

 

5.2.2 Improving computational efficiency  

 

While the proposed multi-objective genetic algorithm is capable of identifying 

good solutions in a reasonable amount of time, there is still a need to improve 

computational efficiency. As shown in the application results, the computational 

load of the algorithm for solving large sized problem is substantial. More work is 

therefore needed to seek out efficiencies. One possible way forward is 

parallelization of the algorithm. Of course, more research is needed to explore this 

possibility. 
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5.2.3 Incorporating uncertainty in other spatial optimization models 

 

This research developed two multi-objective extensions for dispersion models to 

address spatial uncertainty issues. Such rationale could be applied to other spatial 

optimization models, such as the location set covering problem (LSCP) and the 

maximal covering location problem (MCLP). If spatial uncertainty is accounted 

for, facility coverage is no longer deterministic but probabilistic, which could be 

integrated into coverage modeling by constructing new multi-objective models. 

More research is therefore needed to investigate this. 
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