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ABSTRACT

Effective modeling of high dimensional data is crucial in information process-

ing and machine learning. Classical subspace methods have been very effective in

such applications. However, over the past few decades, there has been considerable

research towards the development of new modeling paradigms that go beyond sub-

space methods. This dissertation focuses on the study of sparse models and their

interplay with modern machine learning techniques such as manifold, ensemble and

graph-based methods, along with their applications in image analysis and recovery.

By considering graph relations between data samples while learning sparse models,

graph-embedded codes can be obtained for use in unsupervised, supervised and semi-

supervised problems. Using experiments on standard datasets, it is demonstrated

that the codes obtained from the proposed methods outperform several baseline al-

gorithms. In order to facilitate sparse learning with large scale data, the paradigm of

ensemble sparse coding is proposed, and different strategies for constructing weak base

models are developed. Experiments with image recovery and clustering demonstrate

that these ensemble models perform better when compared to conventional sparse

coding frameworks. When examples from the data manifold are available, manifold

constraints can be incorporated with sparse models and two approaches are proposed

to combine sparse coding with manifold projection. The improved performance of

the proposed techniques in comparison to sparse coding approaches is demonstrated

using several image recovery experiments.

In addition to these approaches, it might be required in some applications to

combine multiple sparse models with different regularizations. In particular, combin-

ing an unconstrained sparse model with non-negative sparse coding is important in

image analysis, and it poses several algorithmic and theoretical challenges. A convex

and an efficient greedy algorithm for recovering combined representations are pro-

posed. Theoretical guarantees on sparsity thresholds for exact recovery using these
i



algorithms are derived and recovery performance is also demonstrated using simu-

lations on synthetic data. Finally, the problem of non-linear compressive sensing,

where the measurement process is carried out in feature space obtained using non-

linear transformations, is considered. An optimized non-linear measurement system

is proposed, and improvements in recovery performance are demonstrated in compar-

ison to using random measurements as well as optimized linear measurements.
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Chapter 1

INTRODUCTION

1.1 Data Exploration using Signal Models

Modern day signal and information processing techniques have a strong focus on

efficiently sensing, processing, representing, communicating and performing inference

tasks on various types of large quantities of data. This has led to a huge demand for

models that can efficiently represent the data generated by various processes, both

natural and man-made.

Simple signal models are effective in representing many types of data with a

great deal of success. A classic example can be found in the ubiquitous presence of

the least squares algorithm [4]. This is because of the reason that a model need not

necessarily describe the underlying process completely. It is only sufficient that it

describes the signals/data generated by the process. More complicated processes can

be described using simpler models as their building blocks. Both deterministic and

probabilistic models have been quite commonly used, with their own advantages and

disadvantages. We will use the term signal and data interchangeably since the theory

and models that we discuss can be applied to both.

General transformations applied to signals can reveal its simple structure in a

transformed space, in addition to preserving the information in the signal up to the

extent required. Orthonormal transformations such as the Fourier and the Wavelet [5]

reveal that the coefficients in the transformed space of many naturally occurring sig-

nals and images are sparse, i.e., a few coefficients are large and most others are small.

An example of the wavelet transform of the Lena image is shown in Figure 1.1. The

sparse structure of the coefficients in the vertical (HL), horizontal (LH) and diagonal

(HH) subbands at multiple scales are clearly visible. Similar sparse coefficient struc-

ture can be seen by decomposing a speech signal using Fourier transform and small

regions of natural images using the discrete cosine transform (DCT) [6].
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(a) (b)

Figure 1.1: (a) Lena image and (b) its transform using the Haar wavelet onto multiple
sub-bands at two different scales.

1.2 Low-Dimensional Signal Models

There has been an upsurge in the analysis and applications of sparse models in the

past two decades. Although the nature of the signal and transformation applied

to it are responsible for the sparsity of the coefficients obtained, explicitly placing

sparsity constraints has a lot of advantages. It allows us to control the sparsity by

placing additional constraints thereby leading to approximation of the signals using

its coefficients and this has immense value in the field of compression [7,8] Enforcing

sparsity constraints also helps in recovering data from their incomplete/corrupted

observations in applications such as inpainting, compressive recovery, denoising and

super-resolution [9–14]. Furthermore, sparse models can also be extended to ma-

chine learning applications such as classification [15–18], clustering [19] and transfer

learning [20]. In general, we can say that sparse models are simple models that can

form fundamental building blocks of more complicated real-world signal/data models.

The focus of this dissertation focuses is to study the paradigm of sparse models and

their interplay with modern machine learning techniques such as manifold, ensemble
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and graph-based methods. The applicability of such methods in image analysis and

recovery is also considered.

Analyzing large amounts of high-dimensional data also requires that we need

to focus on reducing the data dimensions, when preserving the significant information

in it, as determined by the application under consideration. Several dimensionality

reduction techniques have been proposed for this purpose, the most fundamental of

them being principal components analysis (PCA) [21]. Although PCA is effective in

several applications, it is not suited well to applications where the data either lies in a

non-linear manifold, or when there is additional class-specific information that can be

exploited. In both these cases, there is non-linearity induced in the structure of the

data distribution. If the intrinsic structure of the manifold is mathematically defined,

the problem of manifold learning reduces to the problem of identifying the intrinsic

parameters. However, in the absence of such information, learning methods such as

ISOMAP [22], local linear embedding (LLE) [23], Laplacian eigenmaps [24], Hessian

eigenmaps [25] can be used to visualize the structure of the structure of the manifold.

In fact, sparse coding is also a manifold learning approach, when the data manifold

is assumed to be a union of low-dimensional subspaces. Since manifold learning is

unsupervised, it is not possible to take advantage of the class-specific discriminative

information. This is addressed by posing the pairwise relationship between the data

as graphs and using embedding techniques to identify projections which enhance

the data discrimination. Example graphs for unsupervised, supervised and semi-

supervised learning applications are shown in Figure 1.2. Some of the discriminative

graph-embedding techniques include linear discriminant analysis (LDA) [26], local

discriminant embedding (LDE) [27], and semi-supervised discriminant analysis (SDA)

[28], which can be used for supervised and semi-supervised learning on the data.

When we are faced with the problem of insufficient training data or when

we use complex hypotheses for performing inference on the data, the models used
3



may overfit the data and hence result in a poor performance with novel test data.

In this case, instead of learning a single strong hypothesis, we may learn multiple

weak hypotheses and aggregate their results to obtain our final inference. The base

hypothesis or the base model needs to satisfy only weak conditions, and such ensemble

models have a great applicability in supervised learning applications [29]. A basic

method for creating an ensemble from multiple base models is to use a Bayesian

scheme to weight each hypothesis by its posterior probability. However, methods that

manipulate the training samples such as bootstrap aggregation [30] and boosting [31]

have been widely used in several learning settings. In these approaches, the training

data for each member in the ensemble model is obtained from the original training

set either by drawing random samples based on a uniform distribution on the data or

by modifying the distribution of the data samples progressively before obtaining the

samples. Other approaches to create ensemble models include injecting randomness

in the learning algorithm [32], and by manipulating the output targets - a standard

method in boosting for regression [33].

In several applications, it may be necessary to use appropriate regularizations

in sparse models or even combine several types of regularizations. Assuming non-

negativity for the coefficient vector is an important constraint that is very useful in

sparse representations. Although this has been used in many applications, theoreti-

cal analysis of non-negative representations has been performed only recently [34–38].

Coefficient recovery in non-negative sparse models is better than similar general sparse

models, which is an incentive to incorporate non-negative constraints whenever pos-

sible. Apart from purely non-negative sparse models, combined sparse models that

impose non-negative constraints only on a part of the coefficient vector have also

found many applications. Some of the applications of non-negative and combined

sparse models are in image inpainting [39], automatic speech recognition using exem-

plars [40], protein mass spectrometry [41], source separation [42] and clustering/semi-
4



(a) (b)

(c)

Figure 1.2: Examples of graphs used to perform graph embedding, (a) unsupervised
graph that considers only the neighborhood relationship between the data, (b) su-
pervised graph that considers the neighborhood relations between data within a class
as well as across as well as the classes, (c) semi-supervised graph that encodes class
neighborhood information augmented by a set of unlabeled data.

supervised learning of data [19,43], to name a few. We also note the literature in the

areas of non-negative sparse coding and non-negative matrix factorization [44–47],

where the idea is to decompose the data into non-negative components, possibly with

sparsity constraints.

Certain classes of data cannot be represented efficiently using models in the

input Euclidean space. These signals are represented well only after non-linear trans-

formations from the input signal space to a feature space. The non-linear transfor-

mations capture the intrinsic dimensionality of the data which can be much lesser

than its ambient dimension. The mathematical form of the non-linear transformation

itself can be unknown, but the feature space is a Hilbert space with a well-defined
5



reproducing kernel. Hence all operations in the feature space can be achieved using

the kernel trick. Kernel methods are well-known in applications such as embedding

of data using kernel principal components [48], classification using kernel SVMs [49]

and discriminative clustering [50]. Although the transformation from the input sig-

nal space to feature space is defined in terms of the kernel, transforming the data

back to input space is usually performed using approximate methods, since such a

transformation is not well-defined for all data.

1.3 Problem Statement

1.3.1 Sparse Models with Graph Embedding Constraints

Graph embedding principles [51] can be used to obtain low-dimensional dense em-

bedding of data, which is useful in several learning and inference applications. Sparse

models assume that the data lie in a union of low-dimensional linear subspaces and

obtain codes assuming that the data are independent of each other. However, incor-

porating the graph relationship between the data can be helpful in obtaining sparse

codes that are useful in several inference applications. A general class of sparse models

that incorporate graph relations between the data samples as graph embedding con-

straints are proposed. These models result in codes that are faithful to the inherent

low-dimensional linear subspace structure as well as the graph relations between the

data. Since the learning problem is non-convex, two algorithms based on non-convex

optimization procedures in order to obtain these codes have also been proposed.

1.3.2 Ensemble Sparse Models for Image Analysis

Ensemble methods that combine several weak hypotheses or models have been very

successful in inference applications. The major motivation behind the ensemble ap-

proach is that using a single complex hypothesis on data may lead to overfitting,

leading to poor generalization with novel test data. It has been well-known that

although sparse models are quite powerful in data representation, when recovering
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test data that has suffered severe corruption, careful regularization is necessary to

obtain a good performance. Furthermore, sparse models are generally obtained us-

ing non-convex optimization procedures which lead to suboptimal models. In this

dissertation, procedures for learning an ensemble of sparse models to improve the

generalization performance with test observations have been proposed.

1.3.3 Combining Sparse Coding with Manifold Projections for Image Recovery

Sparse representations with predefined and learned dictionaries have been used with

great success in a number of inverse problems. However, state-of-the-art denoising

algorithms such as BM3D [52] and clustering-based sparse representation [53] go

beyond the paradigm of sparse representations for images by grouping image patches

and jointly processing them. Therefore, utilizing the additional information present

in the manifold of training examples may lead to improved recovery performance

in general inverse problems. Two models that perform sparse coding and utilize

additional manifold regularization using examples are proposed and their performance

analyzed in image inpainting and compressive recovery.

1.3.4 Theory of Combined Sparse Representations

General and non-negative sparse representations models have a number of applica-

tions in compression, recovery and inference of data. When a subset of the coefficient

vector is constrained to be non-negative, it corresponds to a model that combines

both non-negative and general sparse representations. For non-negative and general

sparse representations, the theoretical and empirical performance guarantees of coef-

ficient recovery are well-studied. There is a need to develop and analyze algorithms

that perform coefficient recovery from combined sparse representations, and compare

them with non-negative and general sparse recovery algorithms. We propose a con-

vex and a greedy algorithm for coefficient recovery and analyze the theoretical and

empirical performance guarantees of such algorithms.
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1.3.5 Non-linear Compressive Sensing

Certain types of data are not well-representable using a union of subspaces model,

but reveal their low-dimensionality when transformed to non-linear feature spaces.

Linear compressive sensing and recovery of such data using sparse models may lead

to a poor recovery performance. Non-linear compressive sensing and recovery using

kernel random measurements have been proposed in [54]. Since the training data is

known, in this work, a procedure to compute an optimized projection system that

can further improve the recovery performance for such data has been proposed.

1.4 Contributions

In Chapter 3, the problem of incorporating graph embedding constraints in sparse

models is considered. The proposed approach for graph-embedded sparse coding en-

compasses unsupervised, semi-supervised and supervised learning frameworks. Sparse

coding using unsupervised graph embedding constraints is convex, whereas for semi-

supervised and supervised models, discriminative constraints are incorporated making

the problem non-convex. Two non-convex optimization procedures are developed for

obtaining the sparse codes in these cases. Furthermore, an annealing approach for

automatically adjusting the discrimination between classes is presented. The sparse

models are learned by alternatively computing the sparse codes and adapting the

dictionary. The application of these sparse models is demonstrated with several

datasets in unsupervised, supervised and semi-supervised learning. Parallel and fast

implementations of discriminative sparse coding procedures are coded in C++ with

MATLAB interfaces. Some of the methods and results from this chapter have been

published in [55].

In Chapter 4, ensemble models for representing and clustering the data using

sparse coding are developed and presented. Geometric analysis of the ensemble model

is performed and the reasons for better performance of the ensemble model as com-
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pared to the individual models are presented and demonstrated. Two approaches for

creating the ensemble - one which uses random subsets of the training data as base

models, and the other that uses a boosted approach for sequentially learning the base

models are presented. The proposed ensemble models are used in demonstrated in

data recovery with compressive sensing and super-resolution applications. It is also

demonstrated that the proposed model, when used with sparse coding based clus-

tering frameworks, achieve improved clustering performances. The work discussed in

this chapter has been reported in [56] and [57].

In Chapter 5, the problem of recovering data from incomplete/noisy observa-

tions, when the samples follow a combination of the union of subspaces model and a

non-linear manifold model is considered. Since the manifold does not have a closed-

form approximation, the training samples from the manifold themselves are used to

approximate it. The first approach proposed regularizes the sparse codes obtained

with a predefined dictionary using manifold examples. The second approach im-

proves on the previous model in terms of computational complexity and performance

by directly combining sparse coding and manifold projection is proposed for incom-

plete/noisy data recovery. Manifold projection is implemented using non-negative

sparse coding on examples in the neighborhood of test data. Inpainting and com-

pressive recovery of standard images is performed using the proposed models with

a predefined DCT dictionary and density filtered natural image patches as manifold

examples. For high undersampling/noise level, the proposed models perform better

than using just sparse coding with predefined/learned dictionaries. A part of the

work reported in this chapter has been published in [39].

In Chapter 6, the non-negative sparse representation model and the combined

representation model are considered. The geometry of the non-negative representa-

tion model is analyzed and the sparsity threshold for unique recovery with and with-

out the presence of an explicit sparsity regularization is derived. In the combined
9



representation model, there are special cases when the non-zero coefficient support

of either or both the general and the non-negative components are known. These are

analyzed and the corresponding thresholds for unique recovery of such representa-

tions are derived. When both the non-negative and the general coefficient supports

are unknown, two algorithms that use convex and greedy procedures for coefficient re-

covery are proposed. The sparsity thresholds that lead to unique coefficient recovery

using these procedures are derived. Finally, the empirical performances the proposed

combined coefficient recovery algorithms are compared with the performances of the

general and non-negative coefficient recovery procedures. It is demonstrated that

incorporating knowledge about the sign of the coefficients leads to improved coeffi-

cient recovery. The algorithms, analysis, and experiments in this chapter have been

reported in [58].

In Chapter 7, an optimized measurement system for non-linear compressive

sensing of certain types of data, which are well-represented in a non-linearly trans-

formed feature space, is proposed. It is evaluated for non-linear compressive sensing

of handwritten digit and sculpted face datasets, and is shown to perform better than

a random measurement system. Methods and results provided in this chapter have

been published in [59].

1.5 Notation

Lowercase boldface letters denote column vectors and uppercase boldface denote ma-

trices, e.g., a and A denote a vector and a matrix respectively. ai indicates the ith

column of the matrix A. The Moore-Penrose pseudoinverse of a matrix A is denoted

by A† = (ATA)−1AT . diag(a) = A means that A is a diagonal matrix with the ele-

ments in the vector a as its diagonal elements. |A| refers to a matrix whose elements

are the absolute values of the elements of A and the same notation applies to vectors

also. The maximum row sum and maximum column sums of A are referred to as

‖A‖∞,∞ and ‖A‖1,1 respectively. A set is denoted as A, its cardinality is given by
10



|A| and its complement by Ac. The operator [.]+ or max(., 0) returns the maximum

of the argument and zero. The operator max(.,0) will be used with vectors also, in

which case, there will be an element-by-element comparison with the zero vector and

the output will be a vector. IK denotes an identity matrix of size K ×K, 1K1,K2 is

a matrix of ones with size K1 × K2. Similar notation will for defining vectors also.

When it is clear from context, the subscripts will be dropped for simplicity. The

abbreviation WLOG expands to without loss of generality.
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Chapter 2

BACKGROUND

2.1 Sparse Models

Several applications in data analysis aim to express the signals in the most parsimo-

nious terms. Let us consider the linear generative model,

y = Dβ, (2.1)

where y ∈ RM is the data to be represented, D ∈ RM×K is the dictionary that

contains the set of elementary patterns and β ∈ RK is the coefficient vector. Sparsity

can be imposed by placing the appropriate penalty on the coefficient vector β. The

straightforward function used to measure the sparsity is the `0 norm of the coefficient

vector denoted as ‖β‖0. In lieu of the exact `0 penalty, which is combinatorial, its

convex surrogate, the `1 penalty can be used to compute the sparse codes. The `0

and `1 minimization problems are expressed as

min
β
‖β‖0 subj. to y = Dβ, (2.2)

min
β
‖β‖1 subj. to y = Dβ. (2.3)

We refer to the solution obtained from (2.2) as theML0 solution and the one obtained

from (2.3) as the ML1 solution. Since real-world data usually contains some amount

of noise that is not expressed in the generative model in (2.1), the equality constraints

in (2.2) and (2.3) are replaced using the constraint ‖y −Dβ‖2
2 ≤ ε. Here, ε denotes

the error goal of the representation which depends on the additive noise. In fact,

any penalty function from the set {‖β‖p | 0 < p ≤ 1}, can be shown to be promote

sparsity. The shape of the unit `p balls which are level sets defined by(
K∑
i=1
|β[i]|p

)1/p

= 1 (2.4)

are shown in Figure 2.1 for various values of p. Note that the p = 0 cannot be used

in (2.4), since the `0 norm, that counts the number of non-zero coefficients, is only a
12



Figure 2.1: Unit `p balls for p = 0.3, 0.5, 1, 2 (clockwise from top left). Note that the
only `p ball that is sparsity promoting and convex is the `1

pseudonorm. The optimization given in (2.3) can be visualized as the expansion the `1

ball until it touches the affine feasible set y = Dβ. Considering the various unit balls

in Figure 2.1, it can be shown that all points in the `2 ball have an equal probability

of touching an arbitrary affine feasible set, and hence the solution is almost always

dense. However, the balls with p ≤ 1 have a high probability of touching the feasible

set at points where most of the coordinates are zero, leading to sparse solutions with

high probability. In the rest of this chapter, we restrict our discussion to `0 and `1

norms.

2.1.1 Other Sparsity Regularizations

The penalized version of the `1 minimization problem in (2.3) can be represented as

min
β
‖y−Dβ‖2

2 + λ‖β‖1, (2.5)

where the parameter λ trades off the error and the sparsity of the representation.

Suppose there are groups of dictionary atoms that have a high correlation, the `1
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minimization chooses only one of them and ignores the others. This leads to an

unstable representation, as signals that are close in space could have very different

representations. Modifying the problem as

min
β
‖y−Dβ‖2

2 + λ1‖β‖1 + λ2‖β‖2, (2.6)

we have the elastic net regularization that is a combination of the sparsity prior

and the ridge-regression penalty [60]. This ridge regression penalty ensures that

correlated dictionary atoms are picked together in the solution leading to a stabler

representation. If we have the knowledge that dictionary atoms contribute to the

representation in groups, this can be exploited by posing the group lasso problem [61]

min
β
‖y−

L∑
l=1

Dlβl‖2
2 + λ

L∑
l=1

√
pl‖βl‖2, (2.7)

where L is the number of groups, pl depends on the size of the group, Dl is the lth

dictionary group and βl is the lth coefficient group. The summation term acts like

a sparsity constraint at the group level and the all dictionary atoms in a group are

either chosen or neglected together.

In the sparsity regularization considered so far,the data samples are considered

independent and hence the relationship between them are not taken into account.

In most cases, real-world data have a strong relationship between each other and

utilizing this can be of significant help in stabilizing the representations for inverse

problems. Consider the scenario where we have several data samples that are in the

same subspace spanned by a group of dictionary atoms, and hence have the same

sparsity support. This generalization of simple approximation to the case of several

input signals is referred to as simultaneous sparse approximation (SSA). Given several

input signals, we wish to approximate all the signals at once using different linear

combinations of the same set of elementary signals. The coefficient vectors for sparse

coding and SSA are given in Figure 2.2, where it can be seen clearly that SSA prefers
14



Figure 2.2: The coefficient vectors chosen in sparse coding for a group of signals (left)
and the coefficient vectors for simultaneous sparse approximation (right). The shaded
cells represent non-zero coefficients.

to choose the same dictionary for all data samples in the group. For a dictionary D

and the set of input vectors Y, the SSA can be obtained by solving

min
B

k∑
i=1
‖βi‖pq subj. to. ‖Y −DB‖2

F ≤ ε, (2.8)

where βi denotes the ith row of the coefficient matrix B. The value for the pair (p, q)

is chosen as (1, 2) or (0,∞), and the former leads to a convex norm, whereas the

latter actually counts the number of non-zero rows in B.

2.1.2 Sparse Representations on Pairs of Dictionaries

When a dictionary D is a combination of two different sub-dictionaries D1 ∈ RM×K1

and D2 ∈ RM×K2 such that D = [D1 D2] , the representation of the data y is given

by

y = D1β1 + D2β2, (2.9)

where β1 ∈ RK1 and β2 ∈ RK2 are the coefficient vectors. Let us denote the coefficient

vector for D as β. Several recent papers [62, 63] have focussed on analyzing the

sparsity thresholds for unique recovery of the coefficients from the data y, when β1

and β2 are general sparse vectors. By considering the coherence parameters of D1 and

D2 separately, an improvement up to a factor of two can be achieved in the sparsity
15



threshold when compared to considering D1 and D2 together as a single dictionary.

Apart from deterministic sparsity thresholds, probabilistic or robust thresholds, i.e.,

thresholds that hold for most sparsity patterns and non-zero values of β have also been

derived [62]. In addition, bounds on coefficient recovery error in cases of approximate

sparsity and noisy observations have also been derived.

2.1.3 Non-negative Sparse Representations

The representations considered so far had no constraints on the signs of the coef-

ficients. However there are several applications, where we require the model to be

strictly additive, i.e., the coefficients need to be of the same sign. The underdeter-

mined system of linear equations with the constraint that the solution is non-negative

can be expressed as

y = Xα, such that α ≥ 0, (2.10)

where α ∈ RKx is the non-negative coefficient vector, and X ∈ RM×Kx is the dic-

tionary with Kx > M . Under the constraint that the solution is sparse the solution

can be computed using an optimization program similar to (2.2) with the additional

non-negativity constraint incorporated. We will refer to the solution obtained using

this procedure as the ML0−NN solution. Similar to (2.3), the convex program used

to solve for the non-negative coefficient vector is given as

min
α

1Tα subject to y = Xα,α ≥ 0. (2.11)

If the set

{α|y = Xα,α ≥ 0} (2.12)

contains only one solution, any variational function on α can be used to obtain the

solution [35,36] and `1 minimization is not required.

2.1.4 Geometrical Interpretation

The generative model indicated in (2.1) with sparsity constraints is a non-linear

model, because the set of all S−sparse vectors is not closed under addition. The
16



Figure 2.3: The union of subspaces model; the data lies in the union of two 1−D
subspaces (D1 and D2), and one 2−D subspace (D3).

sum of two S− sparse vectors generally results in a 2S−sparse vector. An example

of the sparse model in an example 3−dimensional case is given in Figure 2.3, where

it can be seen that the sum of data samples from D1 and D2, does not lie in a

1−dimensional subspace. Clearly, sparse models are generalizations of linear subspace

models since each sparse pattern represents a subspace, and the union of all patterns

represent a union of subspaces. Considering S−sparse coefficient vectors obtained

from a dictionary of size M ×K, the data samples y obtained using the model (2.1)

lie in a union of
(
K
S

)
S−dimensional subspaces. In the case of non-negative sparse

model given by (2.10), for S−sparse representations, the data samples lie in a union

of
(
K
S

)
simplical cones. Given the a subset DΩ of dictionary atoms, where Ω is the set

of S indices corresponding to the non-zero coefficients, the simplical cone generated

by the atoms is given by ∑
j∈Ω

α[j]xj | α[j] > 0

 . (2.13)

Note that a simplical cone is a subset of the subspace spanned by the same atoms.

It is instructive to compare the combinatorial complexity, pertaining to `0

minimization, for computing general and non-negative sparse representations. For a
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general representation, we need to identify both the support and the sign pattern,

whereas for a non-negative representation, identification of support alone is suffi-

cient. The complexity of identifying the support alone for a S−sparse representation

is
(
K
S

)
, and identification of sign pattern along with the support incurs a complexity

of
(

2K−S
S

)
. This is because, there are 2K signs to choose from and we cannot choose

both positive and negative signs for the same coefficient. The comparison of these

complexities for general and non-negative sparse representations is shown in Figure

2.4. It is clear that the complexity increases as the number of coefficients increase and

the non-negative sparse representation is far less complex compared to the general

representation, in terms of absolute complexity. Although this gives us an idea about

the combinatorial complexity, the general representation actually incurs lesser com-

plexity both with practical convex and greedy optimization procedures. The reason

for this is that including additional constraints such as non-negativity in an opti-

mization problem usually increases the computational complexity for arriving at an

optimal solution.

Although the geometric interpretation presented above considers the combina-

torial complexity, in practical cases, we need to ensure that the `1 solution obtained

using (2.3) is equivalent to the `0 solution given by (2.2) [64, 65]. This equivalence

completely depends on the properties of the dictionary D. Assuming that the dic-

tionary atoms are normalized to unit `2 norm, let us define the Gram matrix for the

dictionary as G = DTD and denote the coherence as the maximum magnitude of the

off-diagonal elements

µ = max
i 6=j
|gi,j|. (2.14)

It can be inferred that the representation obtained from `0 minimization is unique

and equivalent to `1 minimization if

‖a‖0 ≤
1
2

(
1 + 1

µ

)
. (2.15)
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Figure 2.4: The number of patterns to be searched for if `0 minimization is used
to compute sparse representations. Size of the dictionary is 100 × 200. Computing
non-negative representations always incurs lesser complexity compared to general
representations.

2.1.5 Sparsity Thresholds

This is referred to as the deterministic sparsity threshold, since it holds true for all

sparsity patterns and non-zero values in the coefficient vectors. This threshold is

illustrated in Figure 2.5 for various values of µ. Since the general representation

encompasses the non-negative case also, the same bound holds true for non-negative

sparse representations as well. Furthermore, the threshold is the same for `1 min-

imization as well as greedy recovery algorithms such as the Orthogonal Matching

Pursuit (OMP). The deterministic sparsity threshold scale at best as
√
M as M in-

creases. Probabilistic or Robust sparsity thresholds, on the other hand scale in the

order ofM/ logK [66] and break the square-root bottleneck. However, the trade-off is

that the unique recovery using `1 minimization is only assured with high probability,

and robust sparsity thresholds for unique recovery using OMP are also unknown.
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Figure 2.5: Deterministic sparsity threshold with respect to the coherence of the
dictionary.

2.1.6 Phase Transitions

Deterministic thresholds are too pessimistic, and in reality the performance of sparse

recovery is much better than that predicted by the theory. Robust sparsity thresholds

are better but still restrictive as they are not available for several greedy sparse recov-

ery algorithms. Phase transition diagrams describe sparsity thresholds at which the

recovery algorithm transitions from a high probability of success to high probability

of failure for various values of the ratio M/K (undersampling factor) ranging from 0

to 1. For random dictionaries and coefficient vectors whose entries are realized from

various probability distributions, empirical phase transitions can be computed by

finding the points at which fraction of success for sparse recovery is 0.5 with respect

to a finely spaced grid of sparsity and undersampling factors [67].

Asymptotic phase transitions can be computed based on the theory of poly-

topes [35,37,67,68]. For K →∞ when the dictionary entries are derived from N (0, 1)

and the non-zero coefficients are signs (±1) asymptotic phase transitions are shown in
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Figure 2.6: Asymptotic phase transitions for simplex and cross-polytope when the
dictionary elements are derived from i.i.d. Gaussian N (0, 1) and non-zero coefficients
are signs.

Figure 2.6 for `1 minimization algorithms. It can be seen that imposing non-negativity

constraint gives an improved phase transition when compared to not having it. Fur-

thermore, empirical phase transitions computed for Rademacher, partial Hadamard,

Bernoulli and random Ternary ensembles are similar to those computed for Gaussian

i.i.d. ensembles [67]. The phase transitions of several greedy recovery algorithms have

been analyzed and presented in [69] and optimal tuning of sparse approximation al-

gorithms that use iterative thresholding have been performed by studying their phase

transition characteristics [70].

2.1.7 Learning the Sparse Model

When the dictionary D that represents the data itself is unknown and only a set of T

training data samples Y = [yi]Ti=1 are known, the dictionary can be learned from the

training data. Given a sufficient number of training examples, the learned dictionary

is a good representative of key features present in the data. This is an unsupervised
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problem and the cost function used promotes dictionaries which generate a represen-

tation having a small residual error with the training data. We will state the general

problem of dictionary learning in terms of minimizing the representation error as

min
D,B
‖Y −DB‖2

F s.t. ‖βi‖0 ≤ Sd, ‖dj‖2 = 1,∀i, j (2.16)

Several dictionary learning algorithms have been proposed in the literature [11–13,

71–77], some of them tailored to specific applications but the fundamental goal is

to identify the basis for the union of subspaces where the data resides. This leads

to improved performances in data compression, recovery and inference, where sparse

models are widely used.

2.2 Low-dimensional Manifold Models

Low dimensional manifold models find applications in representation and processing

of natural signals and images. Intrinsic low-dimensionality of data is necessary to

learn simple models with less number of parameters, which can in-turn help in efficient

data representation, recovery and inference. Here, we use the term manifold to refer

to low-dimensional surfaces in a high-dimensional space, that can be triangulated.

This is in contrast to the sparse coding model, where the data was assumed to be

lying in a union of subspaces.

2.2.1 Principal Components Analysis

Before jumping into the various manifold learning approaches, we will first describe

the well-known principal components analysis method, which will provide us with

valuable insights into various data modeling approaches. In PCA, a set of orthogonal

projection directions are computed such that the projected data is decorrelated [21].

This is achieved by performing an eigen analysis on the covariance matrix and choos-

ing the projection matrix as the maximum variance directions. For the data samples

given by Y = [y1 . . .yT ], let us denote the mean as y, and the covariance matrix

as C. The d orthogonal projection directions are given by the matrix V, which are
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chosen as the eigenvectors corresponding to the d largest eigenvalues of V. For a

test data sample denoted as u, the PCA coefficients are given as VT (u−y), and the

projection is given by VVT (u−y) +y. Note that mean of the training samples must

be removed from test data before projection and added back after projection. From

the discussion above, it can be inferred that PCA is a global model that identifies

the maximum variance subspace, such that the isometry of the data is approximately

preserved. PCA assumes that the data is generated from a Gaussian distribution.

Gaussian is a maximum entropy prior distribution only when we have do not have

any idea about the data generating process. However, in many cases we do have some

knowledge about the data generating process. As it can be seen in the discussions

that follow, even a very primitive knowledge that the data is distributed in a locally

linear fashion, leads to much more sophisticated and useful modeling paradigms.

2.2.2 Manifold Learning and Dimensionality Reduction

We will start with the assumption that the data is sampled out of a smooth and

embeddable manifold which means that locally the manifold can be treated like an

Euclidean space. Furthermore, locally the manifold is assumed to be of much lower

dimensions compared to the ambient dimension M . We will not venture into exact

mathematical definitions and [78] is an excellent reference for this. Since manifold

learning is must take into account the local structure of the manifold, there is a need

for us to move away from the PCA model. The learning paradigm must take into

account the local similarities between the data samples. Typically, we do not have a

complete description of the manifold, rather we only have a finite number of samples

obtained from it. Let us denote the T samples from the manifoldM by the columns

of the matrix Y, which are also referred to as examples.

One of the first approaches that attempted to create an embedding of data

considering their pairwise dissimilarities is multidimensional scaling. Let us denote
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the dissimilarities between two training samples i and j as δi,j, and let the embedding

of a sample yi be qi. Let ∆ be the matrix containing the pairwise dissimilarities δi,j

and ∆Q be the matrix containing the pairwise distances between embeddings, such

that ∆Q(i, j) = ‖qi − qj‖2. MDS is attempts to find the embeddings by minimizing

the following objective,

‖∆−∆Q‖2
F , (2.17)

where ‖.‖2
F denotes the Frobenius norm of the matrix. Denoting the matrix containing

the top d eigenvectors of the matrix ∆ to be V, the global minimum for (2.17) is

obtained by setting qi as the ith row of V.

ISOMAP [22] is a global manifold learning algorithm that uses MDS to obtain

a low-dimensional embedding. The embedding is obtained such that the intrinsic

manifold distances between the samples in the manifold are preserved in the embed-

ding. In other words, the pairwise dissimilarity δi,j is set as the shortest distance

between two points as we traverse along the manifold, which is also referred to as

the geodesic distance. The ISOMAP algorithm expresses the manifold as a graph

constructed by connecting the neighboring data samples and uses the Djikstra’s al-

gorithm to estimate the geodesic distance. The MDS cost given in (2.17) is then

minimized to obtain the embedding. Note that this algorithm attempts to preserve

all pairwise geodesic distances and hence can be termed as global.

Since smooth manifolds can be thought of as locally similar to Euclidean

spaces, it is possible to embed them with low-distortion considering only the local

linear structure. Locally linear embedding [23] is a dimensionality reduction approach

that computes an embedding using this idea. It proceeds in three steps: (a) building

a neighborhood for each sample, (b) finding the weights that linearly approximate

the sample using its neighbors and (c) finding the low-dimensional coordinates that

are best reconstructed using those weights. Given the desired number of dimensions
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d, the algorithm can be formally described as:

1. Find the k nearest neighbors Nk for yi,

2. Find the weight matrix W that results in a low-distortion reconstruction of yi

from its neighbors by optimizing,

min
W

T∑
i=1
‖yi −

∑
j 6=i

wijyj‖2
2, (2.18)

where wij = 0 if j /∈ Nk(i), and
∑
j wij = 1.

3. Find the embedding that minimizes the reconstruction error using the weights

obtained,

min
Q

T∑
i=1
‖qi −

∑
j 6=i

wijqj‖2
2, (2.19)

such that the embedding is centered, and has a unit covariance.

Once the weights are computed, the embedding can be obtained by performing an

eigen decomposition of the matrix (I−W)T (I−W) and choosing the k bottom eigen

vectors, ignoring the last which is a constant 1 vector. If we denote this eigen vector

set by the matrix V, the embedding qi corresponds to the ith row of this matrix.

A closely related method to LLE that attempts to compute low-dimensional

embeddings using the locality information is the Laplacian eigenmaps [24]. We be-

gin by considering the neighbors of each data sample, obtained either using the

k−neighborhood or the ε−neighborhood and create a binary affinity matrix, whose

entries are given by

wij =


1 if i ∈ Nk(j) OR j ∈ Nk(i),

0 otherwise.
(2.20)

Note that the weights for the neighbors can also be computed using the heat kernel

wij = exp−γ‖yi−yj‖22 , (2.21)
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where γ controls the scale of this function. Note that the weight matrix is also the

adjacency matrix of the graph G obtained from the samples Y. Since we consider only

an undirected graph here, the weight matrix can be made symmetric. The diagonal

degree matrix ∆ is computed such that δii = ∑
j wij. The Laplacian matrix is now

obtained as L = D −W, and it is a symmetric positive semidefinite matrix. The

embedding is now obtained by performing the generalized eigen decomposition such

that

Lv = λ∆v. (2.22)

Similar to the case of LLE, we obtain the embedding Q choosing the d bottom eigen

vectors and leaving out the last corresponding to an eigen value of 0. It can be shown

that this is the optimal solution to the following objective

min
Q

∑
ij

‖qi − qj‖2
2wij, (2.23)

along with the constraint that trace(QDQT ) = I. The objective mandates that if

two high-dimensional data samples yi and yj are neighbors, then the low-dimensional

embeddings qi and qj must be close to each other. For a novel data sample z as-

sumed to be lying close to the manifold, the embedding an be computed without

re-performing the eigen decomposition. The embedding q can be obtained using an

out-of-sample extension procedure, by optimizing

min
q

∑
i

‖q − qi‖2
2wi. (2.24)

Here wi is fixed as 1 if z is in the neighborhood of the training sample yi, else it is

set as 0.

2.2.3 Manifold Projection

When modeling low-dimensional manifolds, one useful approach is to consider the

manifold as a union of convex sets, where each convex set is formed using a small

subset of examples [78,79]. This amounts to a piecewise linear approximation of the
26



manifold using low dimensional simplices, similar to piecewise linear approximation

of one dimensional curves using lines. Furthermore, this interpretation can generalize

well to cases where we have data clustered in disjoint unions of convex sets rather than

a continuous submanifold. A useful application of this generalization is in the case of

high contrast natural image patches, which have been shown to lie in clusters and non-

linear low dimensional submanifolds [80]. Since the manifolds that we assumed are

triangulable, they can be approximated using local linear models in inverse problems.

In several learning problems, it is necessary to project a data sample onto

a known manifold, which is a generalization of projecting a sample onto a known

subspace. Denoting the test data as z and the manifold as M, projection can be

performed by selecting a small set of samples YΩ = {yi}i∈Ω in the neighborhood of z

and finding the closest point of z in the simplex spanned by YΩ. Ω is the index set of

manifold samples in the neighborhood of z. Usually the neighborhood is chosen using

an `2 distance measure, and this is similar to the approach used by LLE for manifold

learning. An illustration of manifold projection for a sample case in is given in Figure

2.7. When the neighborhood Ω is known, manifold projection involves estimating the

weights αΩ,

α̂Ω = argmin
αΩ

‖z−YΩαΩ‖2
2 subject to

∑
i∈Ω

αi = 1, αi ≥ 0 i ∈ Ω, (2.25)

from which the projection can be estimated as ẑ = YΩαΩ.

The selection of the neighborhood and projection of the test sample onto the

low dimensional simplex can be posed as a weighted sparse coding problem,

α̂ = argmin
α
‖z−Yα‖2

2 + λ
T∑
i=1
‖z− yi‖2

2|αi|

subject to
T∑
i=1

αi = 1, αi ≥ 0 ∀i, (2.26)

where α ∈ RT are coefficients for the projection of z on Y. The constraints on α

ensure that the test sample is projected onto the convex hull (simplex) spanned by the
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Figure 2.7: Manifold projection of test data using four nearest neighbor samples from
M.

chosen manifold samples. Nearest neighbor and weighted sparse coding based models

have been used for local dictionaries from data which have been very successful for

object classification applications [16].

2.3 Graph-Embedding Methods

In several learning algorithms, the pairwise relationship between the data samples Y

can be encoded using graphs. This can be observed in the case of manifold learning

methods in Section 2.2.2. These graphs can be then used to perform dimensionality

reduction for the data. The formulation of graph embedding [51] provides a uni-

fied framework under which such dimensionality reduction schemes can be analyzed.

Furthermore, manifold learning schemes are typically unsupervised and do not take

into account the additional label information that may be available for the training

samples. Whereas, graph embedding techniques can be applied successfully for di-

mensionality reduction with unsupervised, supervised or semi-supervised cases. The

examples of such graphs are given in Figure 1.2 graphs.
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2.3.1 Locality Preserving Projections

An example of an unsupervised graph embedding approach is Locality preserving pro-

jections (LPP) [81], which uses a graph similar to that used by Laplacian eigenmaps.

However, unlike Laplacian eigenmaps, it computes orthonormal projection directions

that form the basis set for the embedding subspace. Therefore, embedding for both

training samples and test samples can be obtained by projecting them on to the

embedding subspace. Constructing the affinity matrix using (2.20), the orthonormal

projection directions V ∈ RM×d, can be computed by optimizing

min
trace(VT Y∆YT V)=I

trace(VTYLYTV). (2.27)

The embedding for any data sample y can be obtained as VTy. Similar to the case of

Laplacian eigenmaps, it can be shown that LPP computes the projection directions

by minimizing the objective

min
V

T∑
i,j=1
‖VTyi −VTyj‖2

2wij subj. to
T∑
i=1
‖VTyi‖2

2δi,i = 1. (2.28)

This optimization ensures that the embedding preserves the neighborhood structure

of the graph.

2.3.2 Linear Discriminant Analysis

The unsupervised embedding algorithms considered so far use a single graph, which

can be constructed with just the data and a distance function. We will introduce a

discriminative embedding algorithm that will incorporate the label information pro-

vided for the training data and construct an embedding that improves the separation

between classes.

The Linear discriminant analysis (LDA) algorithm [26] computes a set of d

discriminant directions V, so that the class separability of the projected data VTY

is improved. The projection directions are computed using the within-class and
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between-class scatter matrices. The within-class scatter matrix is obtained as,

Sw =
C∑
c=1

T∑
i=1

I(li = c) (yi − µc) (yi − µc)
T , (2.29)

and it computes the scatter of data samples around their respective class mean vectors

denoted by µc for classes c = {1, . . . , C}. The label for the sample i is given by li.

Note that I(.) is the indicator function which returns the value of 1 if the argument

condition is true and zero otherwise. When all data samples are centered to zero

mean, the between-class scatter is given by

Sb =
C∑
c=1

Tcµcµ
T
c , (2.30)

where Tc denotes the total number of samples in the class c. The embedding dimen-

sions are set to d = C − 1 and the objective for computing V is

max
V

Tr[VTSbV]
Tr[VTSwV] . (2.31)

This trace ratio minimization is usually converted to minimization of the ratio trace

Tr[(VTSwV)−1VTSbV], for which the greedy solution is obtained using the general-

ized eigen decomposition [82].

LDA directions can be alternatively computed by maximizing the ratio of

Tr[VTSbV] and Tr[VT (Sw + Sb)V]. This can be formulated as a graph embedding

problem with the intra- and inter-class defined as

wij =


1/Tli if li = lj,

0 otherwise,
(2.32)

w′ij = 1/T. (2.33)

Using these affinity matrices we define the diagonal degree matrices ∆ and ∆′, whose

elements are computed as δii = ∑
j wij and δ′ii = ∑

j w
′
ij respectively. The Laplacian
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matrices are obtained as L = ∆ −W and L′ = ∆′ −W′. Now the projection

directions V can be obtained by performing the generalized eigen decomposition

YL′YT = λYLYT (2.34)

and choosing the d top eigen vectors.

2.3.3 Local Discriminant Embedding

Although LDA is a discriminative embedding, it incorporates only the class label

information and completely ignores the local structure of the data. Local discriminant

embedding (LDE) considers both the locality information as well as the class label

information in order to create a discriminative embedding [27]. Let Nk(i) denote the

k−nearest neighbor set for the data sample i. The affinity matrices in this case are

given by

wij =


1 if li = lj AND [i ∈ Nk(j) OR j ∈ Nk(i)],

0 otherwise,
(2.35)

w′ij =


1 if li 6= lj AND [i ∈ Nk′(j) OR j ∈ Nk′(i)],

0 otherwise.
(2.36)

The Laplacians L and L′ are computed and projection directions V are obtained

similar to the case of LDA. The embedding for any data sample z can be obtained

as VTz. An example of graphs used by LDE is given in Figure 1.2 (b).

2.3.4 Semi-Supervised Discriminant Analysis

In semi-supervised learning, the information available in the labeled training set is

augmented by an unlabeled training set. If the unlabeled data is carefully used, it

can be used to improve the discrimination between classes. The unlabeled data is

denoted as Yu ∈ RM×Tu , and the labeled data is given as Y` ∈ RM×T` , and hence

the total training set is given by Y = [Y` Yu]. Semisupervised discriminant analysis
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(SDA) computes discriminative embedding directions incorporating both unlabeled

and labeled training set. The entries in the affinity matrices are given by [28]

wij =


1/Tli + αsij if li = lj,

αsij otherwise,
(2.37)

w′ij =


1/T` if both yi and yj are labeled,

0 otherwise,
(2.38)

where

sij =


1 if i ∈ Nk(j) OR j ∈ Nk(i),

0 otherwise.
(2.39)

Note that α is the parameter that adjusts the relative importance of labeled and

unlabeled data. An example of graphs used by SDA is given in Figure 1.2 (c).

2.4 Ensemble Methods in Supervised Learning

In standard supervised learning problems, the training examples given to the learning

system are denoted by T = {(y1, l1), (y2, l2), . . . , (yT , lT )}. The unknown underlying

function corresponding to the features is denoted by l = f(y), where x is usually a

vector of features which represent the different attributes of the data. If the li values

are drawn from a discrete set {1, . . . , C}, the problem is referred to as classification,

whereas in regression the values are drawn from a real line. We will consider only

the case of classification, and here the goal is to learn a classifier such that given a

test data it outputs the estimated labels. Since learning the classifier is an attempt

to approximate the target function, we will consider he expected error of the learning

algorithm with respect to a target function and training set size. The expected error

has three components, as described in [83]: (a) bias, which measures the how the

close the average classifier is to the target function, (b) variance, which measures the
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variation of the predictions around the mean prediction, and (c) minimum error that

can be achieved using a Bayes optimal classifier for the target function.

Ensemble methods attempt to combine the decisions of multiple classifiers

in order to classify new examples. As it has been argued in [84], using ensembles

may reduce the bias and variance of the learning algorithms. Intuitively, it can be

seen that if on an average a classifier performs better than random guessing, and if

different classifiers make different errors on each sample, combining the decisions of

those classifiers will give a better accuracy compared to each of them. In fact, the

necessary and sufficient condition for an ensemble to perform better than each of its

members is that the classifiers are diverse and accurate [85]. Diversity means that

the errors made by each of the classifiers is uncorrelated and accuracy means that

each classifier performs better than random guessing. We will two ensemble based

classification systems, bagging [30] and boosting [31] that have been widely used in

supervised learning. The L individual classifiers used in our discussions are denoted

by h1, . . . , hL.

2.4.1 Bootstrap Aggregation

Usually the single training set T is used to arrive at a single classifier h. Suppose

we obtain L learning sets {Tl} each consisting of T independent observations from

the underlying process. Assuming that we learn a classifier from each of the sets,

the output of the final classifier will be the expected value of the individual outputs.

Since we are dealing with classifiers, expectation can be replaced by a weighted voting

mechanism, where each classifier gives a weighted vote, its weight determined by the

probability of the learning set.

However, usually we are supplied with only a single training set T and do not

access to the underlying distribution. Still we can obtain the learning sets {Tl}, each

of which is a bootstrap replicate of the set T . The boostrap replicates are obtained
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by drawing T samples at random, with replacement, from the set T . Each bootstrap

replicate contains, on an average 63.2% of samples from the original training set, with

several samples repeated in each set. The final classifier h, will be the average

h = 1
L

L∑
l=1

hl. (2.40)

For bagging to succeed the base classifier must be unstable, i.e., it must be substan-

tially different for each of the bootstrapped training sets. Else, the averaging using

(2.40) will not be of much help. It has been shown in [86] empirically that bagging

and other randomized methods help in addressing the statistical problem in learning,

which occurs when the amount of training data is small compared to the complexity

of the hypothesis space. Although it is intuitive that bagging will reduce the variance

term in the expected error of the learning algorithm, it has been argued that it may

also reduce the bias portion of the error for some datasets [87].

2.4.2 Boosting

Boosting is also an ensemble based classification method that combines several mod-

erately accurate classifiers to produce an accurate prediction rule. The fundamental

difference between bagging and boosting is that boosting learns a set of classifiers

sequentially, where each classifier focuses on the samples wrongly classified by the

previous ones. Although several methods for boosting exist, we will focus only the

AdaBoost algorithm [31], because of its simplicity and wide applicability.

To begin with, let us consider only the two-class AdaBoost algorithm, which

uses an ensemble of weak classifiers {hl}, each of which is the map hl : Y → {−1,+1}.

Here Y denotes the set of training samples. Each weak hypothesis has an associated

error defined as

εl =
T∑
i=1

I(li 6= hl(yi))pt(yi) (2.41)

where pl(.) denotes the probability masses on the training examples at round l. The

complete AdaBoost algorithm [31] is:
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1. Initialize the probability masses, pl(yi) = 1/T , i = 1, 2, . . . , T

2. For l = 1 to L:

a) Fit a classifier hl to the training data using weights pl(yi).

b) Compute error εl using (2.41).

c) Compute

αl = log 1− εl
εl

. (2.42)

d) Update the probability masses

pl+1(yi)← pl+1(yi) exp (αlI (li 6= hl(yi))) , i = {1, 2, . . . , T} (2.43)

e) Renormalize pl+1(yi).

3. Output final class of data y as

argmax
c

L∑
l=1

αlI(hl(yi) = li). (2.44)

Using the weak hypothesis hl in each iteration, AdaBoost chooses the parameter αl,

which measures the importance assigned to hl. Note that it is required to an accurate

classifier, i.e., εl < 1/2, in each round to have a valid αl > 0. In other words, αl < 0

will signal that the particular weak classifier may reduce the performance of the

ensemble. The update of the probability masses is performed such that misclassified

samples get higher weights in the next round. The final hypothesis is a weighted vote

of the L weak hypothesis.

It can be shown that statistically the two-class AdaBoost computes the final

hypothesis using forward stagewise additive modeling and an exponential loss function

[88]. In order to perform boosting in multiclass classification, an algorithm based on

multiclass exponential loss function has been proposed in [89].
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Boosting tries to reduce the classification error aggressively and hence may

result in better performance compared to bagging, with weak classifiers. However, in

the presence of classification noise, i.e., when there are mislabeled training samples,

bagging tends to perform better than boosting [90], when there are mislabeled training

samples, i.e., in the presence of classification noise. This is because, boosting may

provide very high weights for mislabeled training samples in several rounds, leading

to a poor generalization with test data. Whereas, the diversity of bagging classifiers

is improved in the presence of classification noise. Other ensemble based algorithms

include Bayesian voting algorithms, algorithms that manipulate the output targets

and those that randomize the internal decisions, such as randomized decision trees

[86,90].

2.5 Kernel Models

For certain classes of signals, the low-dimensional structure is revealed after apply-

ing non-linear transformations. The underlying generative processes of these signals

have very low degrees of freedom that cannot be modeled using unions of subspaces

and local linearity may be a restrictive assumption as well. We refer to such a space

obtained after the non-linear transformation as the feature space. Let the data Y

in the input space Y , be transformed to the feature space F , using the non-linear

transformation φ : Y 7→ F . The feature space is an inner product space with a repro-

ducing kernel K(., .)defined (reproducing kernel Hilbert space). Since the dimension

of F can be very high and sometimes infinite depending on φ(.), given two signals yi

and yj, the operations in F can be efficiently performed exclusively using the inner

product 〈φ(yi), φ(yj)〉F = K(yi,yj) [49]. Another important property of the feature

space F is that the transformed data φ(Y) span the space and hence any element of

the space can be expressed as a linear combination of φ(Y). Commonly used kernels

can be broadly divided into three categories, projective, radial and user-defined. Pro-
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jective kernels are of the form K(yi,yj) = f(〈yi,yj〉Y), and some examples of these

are polynomial, exponential and sigmoid kernels. Radial kernels depend on the `2

distance between the data and hence can be written as K(yi,yj) = f(‖yi − yj‖2
Y).

User-defined kernels can either have a mathematical form, or it can just be a ma-

trix of feature space similarities between the data samples. The only condition for

the user-defined kernel to be valid is that the kernel matrix should be symmetric

positive-semidefinite as specified by Mercer’s theorem [91].

Principal component analysis (PCA) can be performed in the feature space

using the kernel trick [48]. Discriminant subspaces of the feature space can also be

computed using generalized discriminant analysis (GDA) [92] such that the projected

data in the feature space may be well-separated as required by certain inference tasks

such as classification and clustering. The inverse of the map φ : Y 7→ F is not defined

for all vectors in F . Hence, the approximate preimage of an arbitrary vector in F

can be obtained using techniques based on multi-dimensional scaling (MDS) [93],

conformal mapping [94] or local isomorphism [95].
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Chapter 3

GRAPH-EMBEDDED SPARSE REPRESENTATIONS

3.1 Introduction

As discussed in the previous chapters, several supervised, semi-supervised, and un-

supervised machine learning schemes can be unified under the general framework of

graph embedding. Incorporating graph embedding principles into sparse representa-

tion based learning schemes can provide an improved performance in several learning

tasks. In this chapter, we propose dictionary learning procedures for computing

sparse codes that obey graph embedding constraints. Sparse codes for unlabeled

graphs can be obtained by minimizing a convex objective, and this can be efficiently

implemented by modifying the existing LARS algorithm. However, obtaining dis-

criminative sparse codes is a highly non-convex problem and we propose two meth-

ods to obtain supervised graph-embedded sparse codes (GE-SC). The first procedure

integrates a modified version of the sequential quadratic programming (SQP) proce-

dure [96] with the feature sign search (FSS) method [97]. The second approach uses

the concave-convex procedure (CCCP) to linearize the concave part of the objective

function, and performs an iterative optimization to obtain the GE-SCs. Experiments

demonstrating that the proposed graph embedded sparse codes perform better than

several baseline methods in unsupervised clustering, supervised and semi-supervised

classification, are also presented. Some of the methods and results in this chapter

have been published in [55].

Sparse coding aims to obtain a parsimonious representation for the data using

the basis functions in a given dictionary. However, the coding process does not

explicitly consider the underlying graph structure of the data. Assuming that the

data Y can be sparsely represented using a dictionary, Ψ ∈ RM×K , the authors

in [98, 99] proposed an algorithm to obtain sparse codes, X ∈ RK×T , that preserve
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the neighborhood structure of the unsupervised graph G by solving

min
Ψ,X
‖Y −ΨX‖2

F + γ
∑
i

‖xi‖1

+ βtrace(XLXT ) subj. to ∀j, ‖ψj‖2 ≤ 1, (3.1)

where L is the Laplacian of the graph G. Here xi is the sparse code for the sample

xi and ψj is the jth column of Ψ. We will refer to this as the unsupervised GE-SC.

Graph embedding can also be applied to supervised and semi-supervised learn-

ing problems. Local discriminant embedding (LDE) [27] is one such supervised em-

bedding scheme that incorporates intra- and inter-class relationships by respectively

defining two graphs G and G′. Denoting the graph Laplacian of G′ by L′, the optimal

directions for linear embedding in LDE can be obtained by solving

min
trace(VT YL′YT V)=I

trace(VTYLYTV). (3.2)

Furthermore, when only a subset of the training data is labeled, a semi-supervised

graph embedding approach, referred to as semi-supervised discriminant analysis (SDA)

has been developed [28].

Approaches such as local sparse coding incorporate the graph or manifold

structure of the data indirectly by considering the neighbor relation between the train-

ing data and the dictionary [16], and this has been useful in classification and image

retrieval [100]. The unsupervised GE-SC method, that uses unsupervised graphs, has

been used in classification and clustering of images [99]. The authors in [19] proposed

to use an `1-graph, that describes the neighborhood relation between the training data

using sparse codes for clustering, subspace learning, and semi-supervised learning.

In this chapter, graph embedded sparse coding and dictionary learning is per-

formed using an alternating optimization procedure. The GE-SC are obtained using

a modified version of SQP in the FSS algorithm. Dictionary learning is performed

using the Lagrangian dual method by fixing the sparse codes. We use the proposed
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(a)
(b)

Figure 3.1: Proposed graph-embedded sparse coding approaches: (a) Supervised
graph, (b) Semi-supervised graph. Note that solid and dotted lines denote the edges
in the graphs G and G′ respectively. In (b), G′ is fully connected within a class also
(overlaps with the solid lines).

algorithm to obtain GE-SC for supervised and semi-supervised graphs, as illustrated

in Figure 3.1. Results obtained with the AR face database demonstrate that the

sparse codes computed using the proposed dictionaries perform better in comparison

to other baseline approaches in supervised and semi-supervised classification.

3.2 Supervised Graph-Embedded Sparse Coding

The proposed optimization problem for dictionary learning and sparse coding with

graph embedding constraints can be expressed as

min
Ψ,X
‖Y −ΨX‖2

F + γ
∑
i

‖xi‖1 + βtrace(XLXT )

subj. to trace(XL′XT ) = c, ‖ψj‖2 ≤ 1,∀j (3.3)

where γ and β are positive constants. The objective function ensures that the codes

obtained are sparse, reconstruct the data well, and minimize the intra-class neighbor

distance. The equality constraint ensures that the inter-class neighbor distances

are fixed, and this along with the objective results in an improved discrimination
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between the sparse codes, when compared to the original data. The GE-SCs and the

dictionaries can also be obtained by posing the optimization as

min
Ψ,X
‖Y −ΨX‖2

F+γ
∑
i

‖xi‖1 + β
(
trace

(
XLXT

)
− λtrace

(
XL′XT

))
subj. to ‖ψj‖2 ≤ 1,∀j. (3.4)

In this case, the parameter λ controls the inter-class and intra-class penalties. Codes

for the novel test samples can be computed using unconstrained sparse coding with

the learned dictionary Ψ. The proposed GE-SC formulations incorporate the unsu-

pervised GE-SC given by (3.1) as a special case.

3.2.1 Supervised Graph

When labeled training data is available, the problem in (3.3) can be solved to ob-

tain dictionaries that produce highly discriminative sparse codes, by using the graph

Laplacians as defined in LDE. Let the label for the training data yi be li and let

Nk(i) denote the set of k nearest samples of yi. For supervised GE-SC, the entries

in the affinity matrix W and W′ are defined similar to the case of LDE as [27]

wij =


1 if li = lj AND [i ∈ Nk(j) OR j ∈ Nk(i)],

0 otherwise,
(3.5)

w′ij =


1 if li 6= lj AND [i ∈ Nk′(j) OR j ∈ Nk′(i)],

0 otherwise.
(3.6)

The graph Laplacians L and L′, used in (3.3), are then constructed using W and W′.

3.2.2 Semi-Supervised Graph

When the training set consists of both unlabeled data Yu ∈ RM×Tu , and labeled

data Y` ∈ RM×T` , such that Y = [Y` Yu], the dictionary Ψ and sparse codes can be

obtained using the graph Laplacians defined by SDA. For the semi-supervised GE-SC

approach, the labeled training data is augmented using unlabeled training samples in
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the neighborhood. Let us denote Tli as the number of samples in class specified by li

and α as the parameter that adjusts the relative importance of labeled and unlabeled

data. The entries in the affinity matrices are defined similar to the case of SDA [28]

wij =


1/Tli + αsij if li = lj,

αsij otherwise,
(3.7)

w′ij =


1/T` if both xi and xj are labeled,

0 otherwise,
(3.8)

where

sij =


1 if i ∈ Nk(j) OR j ∈ Nk(i),

0 otherwise.
(3.9)

3.3 Proposed Algorithms

We will first consider the problem of unsupervised GE-SC given in (3.1). It is solved

as an alternating minimization procedure that optimizes the dictionary while fixing

the sparse codes and vice-versa. When sparse codes are fixed, dictionary learning is

a convex problem and hence can be solved efficiently using various approaches. We

adopt the Lagrangian dual method proposed in [97] for learning the dictionary. Given

the dictionary, unsupervised GE-SC can be obtained using the LARS algorithm [101].

Although computing sparse codes using (3.1) is a convex optimization procedure, it is

computationally expensive to obtain the sparse code matrix X as a whole. Therefore,

we obtain the sparse codes of each data sample sequentially. For the data sample i,

this can be expressed as

min
xi
‖yi −Ψxi‖2

2 + γ‖xi‖1 + β(lii‖xi‖2
2 + 2xTi X\il\i), (3.10)

where lii is the ith diagonal element of L, X\i is the coefficient matrix with its ith

column removed and l\i, is the ith columns of L with its ith elements removed. The
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above optimization can be equivalently expressed as

min
xi

xTi (ΨTΨ + βliiI)xi − 2xTi (ΨTyi −X\il\i) + γ‖xi‖1, (3.11)

where I is the identity matrix of appropriate dimensions. Clearly, (3.11) contains only

quadratic and linear terms with a sparsity penalty, and hence it can be efficiently

implemented using the LARS algorithm.

For supervised GE-SC given in (3.3), when the dictionary is fixed, sparse

codes are computed sequentially for each data sample, and for any sample yi, we can

simplify (3.3) to obtain

min
xi
‖yi −Ψxi‖2

2 + γ‖xi‖1 + β(lii‖xi‖2
2 + 2xTi X\il\i)

subj. to l′ii‖xi‖2
2 + 2xTi X\il′\i − δt = 0, (3.12)

where lii and l′ii are the ith diagonal elements of L and L′, X\i is the coefficient

matrix with its ith column removed and l\i, l′\i are the ith columns of L, L′ with

their ith elements removed. The objective is convex but non-differentiable when the

coefficients are zero, and furthermore, we also have a non-convex (quadratic equality)

constraint. SQP is an approach that can be used to solve nonlinearly constrained

optimization problems [96], by posing it as a sequence of quadratic subproblems.

However it requires that the objective be differentiable everywhere, which is not the

case for the problem defined in (3.12). Therefore, in order to solve for the sparse

codes, we consider a modified version of the SQP method considering only the non-

zero coefficients (active set) at every step. The active set can be modified using the

feature sign search (FSS) algorithm proposed in [97]. We provide an optimization

strategy that combines the modified SQP and the FSS methods.
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We also consider obtaining supervised GE-SCs using (3.4). In this case, the

sparse codes for individual samples can be obtained by solving

min
xi
‖yi −Ψxi‖2

2 + γ‖xi‖1 + β
(
lii‖xi‖2

2 + 2xTi X\il\i

− λ
(
l′ii‖xi‖2

2 + 2xTi X\il′\i
) )

. (3.13)

Note that the objective is non-convex and more specifically, it is a sum of convex

and concave terms. This can be solved efficiently using the concave-convex procedure

(CCCP) [102], which iteratively computes the sparse codes by linearizing the concave

term.

3.3.1 Modified SQP Method

In order to compute the GE-SCs in (3.12) using the SQP method, we will denote

X\il\i as di, X\il′\i as ci and the sign vector for xi as θi. Each entry of θi is obtained

from the set {−1, 0, 1} depending on the sign of the corresponding entry in xi. We

will use x̂i to specify the current non-zero or active set of coefficients, and use Ψ̂ for

the reduced dictionary with columns corresponding to the active set. Similar notation

is used for other vectors and matrices also. Expressing

f(x̂i) = ‖y− Ψ̂x̂i‖2
2 + β(łii‖x̂i‖2

2 + 2x̂Ti d̂i), (3.14)

h(x̂i) = ł′

ii‖x̂i‖2
2 + 2x̂Ti ĉi − δt, (3.15)

s(x̂i) = γθ̂
T

i x̂i, (3.16)

and considering only the active coefficients, the optimization problem in (3.12) can

be written as,

min
x̂i

f(x̂i) + s(x̂i) subj. to h(x̂i) = 0. (3.17)

Since SQP is a non-convex optimization procedure, it is necessary to define a merit

function to ensure that it converges from remote starting points. The merit function

measures both the reduction in objective, as well as the degree to which the constraint
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is met and hence it plays the role of objective function in unconstrained minimization.

We will use the `1 merit function

m(x̂i) = f(x̂i) + σ|h(x̂i)|, (3.18)

where σ controls the relative importance of f(x̂i) and h(x̂i), and its gradient is given

by

∇m(x̂i) = ∇f(x̂i) + σ sign(h(x̂i))∇h(x̂i). (3.19)

In the subsequent description, for simplicity, we will drop the subscript i that corre-

sponds to the index of the data sample.

The SQP method sequentially solves the Karush-Kuhn-Tucker (KKT) system

of the problem sequentially, using Newton-Lagrange method. Therefore, we first

define the Lagrangian function for (3.17) as,

L(x̂, λ) = g(x̂)− λh(x̂), (3.20)

where g(x̂) = f(x̂) + s(x̂) and λ is the dual variable. The KKT conditions can be

expressed as

G(x̂, λ) =

 ∇g(x̂)− λ∇h(x̂)

h(x̂)

 . (3.21)

Assuming that we are at the kth iteration, the solution at the next iteration is denoted

as  x̂(k+1)

λ(k+1)

 =

 x̂(k)

λ(k)

+

 ∆x̂(k)

∆λ(k)

 , (3.22)
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Table 3.1: The Feature Sign Search algorithm that incorporates the modified SQP
method for computing GE-SC.

Step 1: Initialize x(0), active set A, θ(i) = sign(x(i)),
k = 0.

Step 2: Initialize λ(0) = ∇h(x̂(0))T∇g(x̂(0))
‖∇h(x̂(0))‖22

.

Step 3: Select i = argmax
i

∣∣∣∣∣∂m(x)
∂x(i)

∣∣∣∣∣ from non-active

coefficients. Add i to A if local improvement
in merit function is obtained.
- if ∂m(x)

∂x(i) > γ, set θ(i) = −1,A = A ∪ {i},
- if ∂m(x)

∂x(i) < −γ, set θ(i) = 1,A = A ∪ {i}.
Step 4: Feature Sign Step

- Using modified SQP, compute ∆x̂(k) and ∆λ(k).
- Perform line search on x̂(k) + τ∆x̂(k) and
λ(k) + τ∆λ(k) where 0 ≤ τ ≤ 1.

- Check objective at all values of τ where
at least one coefficient changes sign.

- Find ‖G(x̂, λ)‖2 at all such points and update x̂(k+1),
λ(k+1) to the point where ‖G(x̂, λ)‖2 is the smallest.

- Update active set by removing zero coefficients
and set θ = sign

(
x(k+1)

)
.

Step 5: Check Optimality
(a) For non-zero coefficients, check if G(x̂, λ) = 0. If

true, check condition (b) else go to Step 4.
(b) In non-active set, check if

∣∣∣∂m(x)
∂x(i)

∣∣∣ ≤ γ, ∀x(i) = 0.
If true, return x as the solution else go to Step 3.

the increment (∆x̂(k),∆λ(k)) can be obtained by solving the KKT system (3.21) as∇2L(x̂(k), λ(k)) −∇h(x̂(k))

∇h(x̂(k))T 0


∆x̂(k)

∆λ(k)



= −

∇g(x̂(k))− λ(k)∇h(x̂(k))

h(x̂(k))

 , (3.23)
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Figure 3.2: Convergence of the GE-SC objective function over 30 iterations using the
modified SQP procedure.

where

∇g(x̂(k)) = 2(Ψ̂T Ψ̂ + βlI)x̂(k)

+ 2(d̂− Ψ̂Ty + (γ/2)θ̂), (3.24)

∇h(x̂(k)) = 2(l′x̂(k) + ĉ), (3.25)

and

∇2L(x̂(k), λ̂
(k)) = 2(Ψ̂T Ψ̂ + (βl − λl′)I). (3.26)

The Feature Sign Search Algorithm: The active coefficient set is updated and

optimality of (3.12) is ensured using the FSS algorithm described in Table 3.1. The

coefficients are initialized using unconstrained sparse coding, and they are updated

sequentially for the data samples. Here x(i) and θ(i) denote the ith elements of

the vectors x and θ respectively. The active set A contains the indices of the non-

zero coefficients. The empirical convergence of the objective function in a supervised

learning scenario is given in Figure 3.2.

3.3.2 The Concave-Convex Procedure

The CCCP is a procedure that is guaranteed to monotonically decrease the objective

value of energy functions [102]. Any function with a Hessian that has eigen values
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Figure 3.3: The general algorithm for optimizing the dictionary and obtaining super-
vised GE-SC.

bounded above zero can be expressed as a sum of a convex part and a concave part.

Therefore, CCCP is a general technique that can be applied to several optimization

problems. Given the energy function E(x), which can be expressed as the sum of

concave and convex parts, Evex(x) + Ecave(x), the energy function to be minimized

in step k + 1 is

Ek+1(x(k+1)) = Evex(x(k+1)) + x(k+1)T∇Ecave(x(k)). (3.27)

Essentially, this involves linearizing the concave part of the objective around its pre-

vious solution and finding the minimum of the modified objective. In the case of

the GE-SC objective function given in (3.13), clearly the concave part is given by

(−βλl′ii‖xi‖2
2). Hence, computing the GE-SC is performed by linearizing the concave

part and the objective for (k + 1)th iteration is given as

min
xi
‖yi −Ψxi‖2

2 + γ‖xi‖1 + β
(
lii‖xi‖2

2 + 2xTi X\il\i

− λ
(
l′iix

(k)T

i xi + 2xTi X\il′\i
))

, (3.28)

where x(k)
i results in a minimum value for the objective in the previous iteration. The

solution can be obtained using LARS by identifying the linear, quadratic and `1 terms

in 3.28 similar to the case of (3.11). Repeating this for a few iterations is reduces the

objective sufficiently and results in GE-SCs. The dictionary can be updated using

the Lagrangian dual method.

48



3.4 Dictionary Learning and GE-SC

The overall dictionary learning and GE-SC computation procedure is summarized

in Figure 3.3 for discriminative graphs. For unsupervised GE-SC, the procedure is

similar to the alternating sparse coding and dictionary training optimization. For the

supervised/semi-supervised case, graphs are obtained using the appropriate procedure

as described in Sections 3.2.1 and 3.2.2. The dictionaries are initialized as normalized

K-means cluster centers of the data. The GE-SC are initialized as plain sparse codes.

3.4.1 Iterative Trace Ratio Procedure

Considering the conventional problem of supervised graph embedding, the discrim-

inative directions for the embedding can be obtained using (3.2). This can also be

expressed as trace ratio maximization

max
VT V=I

trace(VTYL′YTV)
trace(VTYLYTV) . (3.29)

The greedy solution to this problem is obtained by computing the embedding direc-

tions vi sequentially such that vT
i YL′YT vi

vT
i YLYT vi

is maximized, and the current direction is

orthogonal to the previous directions. This greedy optimization scheme leads to the

ratio-trace problem

max
VT V=I

trace[(VTYLYTV)−1(VTYL′YTV)] (3.30)

and clearly, this can be solved as a generalized eigenvalue problem. However, as

it can be observed, the convenient greedy solution will result only in a suboptimal

trace ratio (3.29). Various methods to obtain the global optima for (3.29) have been

described in [82, 103, 104]. The iterative algorithm proposed in [104] computes the

global optimum by posing the trace difference maximization

Wt = argmax
VT V=I

trace(VTYL′ − λtLYTV), (3.31)

49



(a) (b)

Figure 3.4: (a) Convergence of representation error when learning a dictionary for
GE-SC using CCCP, (b) Convergence of the inverse trace ratio (λ) parameter, that
clearly shows the increasing discrimination across classes as time proceeds.

where λt+1 for next iteration is updated as the trace ratio

λt+1 = trace(VT
t YL′YTVt)

trace(VT
t YLYTVt)

. (3.32)

When V is an orthonormal system, it has been proved in [104] that this iterative trace

ratio (ITR) scheme converges to the global optimum of the trace ratio maximization

(3.29).

3.4.2 Incorporating ITR in GE-SC

In our proposed GE-SC approaches, (3.3) and (3.4), the goal is to improve the discrim-

ination across classes similar to the trace ratio approach. The difference, however, is

that instead of computing low-dimensional projection directions, we compute sparse

codes X that can directly provide an improved discrimination. For a given dictionary

Ψ, the iterative trace ratio problem can be adapted to compute the sparse codes

that result in improved discrimination. Note that, in our case, the proof of global

optimality is not straightforward, since the dictionary Ψ is not usually orthonormal.

Nevertheless, we formulate the iterative trace ratio schemes for both (3.3) and (3.4).

The parameters c and λ in (3.3) and (3.4) are replaced by ct and λt where t de-

notes the iteration number. The GE-SCs are computed fixing the dictionary, and the
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updated parameters are

ct+1 = trace(XtL′XT
t ), (3.33)

and

λt+1 = trace(XtLXT
t )

trace(XtL′XT
t ) (3.34)

respectively. In order to simplify the learning procedure, as shown in Figure 3.3, the

algorithm updates the dictionary every time before updating the parameters. This is

similar to an “annealing” scheme and was incorporated in the GE-SC learning with

CCCP, since it is a simpler scheme compared to using the modified SQP method. The

convergence of representation error ‖Y−ΨX‖2
F for this learning scheme is shown in

Figure 3.4(a) and the convergence of the parameter λ is shown in Figure 3.4(b). Note

that 1/λ indicates the trace ratio trace(XtL′XT
t )

trace(XtLXT
t ) , and a high value for the trace ratio

implies high discrimination across classes.

3.5 Simulation Results - Unsupervised Clustering

The first set of simulations study the behavior of GE-SCs obtained using (3.1) in

unsupervised clustering. We compare it with clusterings obtained using LPP. The

number of neighbors for LPP was fixed at 10, and the Laplacian L of LPP was used to

compute GE-SCs also. The non-negative GE-SC X were obtained with parameters

β = 1 and the parameter γ was tuned for best performance. The Gramm matrix

XTX obtained from the sparse codes is shown in Figure 3.5 for the USPS dataset [3].

The dataset has 10 classes and clearly, the codes of different classes are uncorrelated,

whereas, the codes belong to the same class are highly correlated. From (3.1), it can

be seen that the GE-SCs consider the local neighborhood structure using the penalty

trace(XLXT ), and also the sparse subspace structure with the sparse coding term,

‖Y − ΨX‖2
F + γ

∑
i ‖xi‖1. This can be contrasted to schemes such as LPP, which

consider only the local neighborhood structure, and `1 graphs [19], that consider

only the sparse subspace structure, when clustering the data. Spectral Clustering
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Figure 3.5: The structure of the Gramm matrix of the sparse codes when performing
unsupervised GE-SC. The sparse codes here are obtained from 10 classes of the USPS
dataset [3] and clearly, the codes of different clusters are unccorrelated.

was performed with GE-SCs using XTX as the weight matrix [105]. The clustering

performance was evaluated for the standard datasets [3, 106] whose attributes are

given in Table 3.2, with accuracy (ACC) and normalized mutual information (NMI) as

the measures. For each dataset, the clustering was performed 50 times and the average

and maximum performances were measured. Results in Table 3.3 show that the

codes obtained using the proposed approach result in higher maximum and average

performances compared to LPP. We also noted when performing the experiments

that the performance of the GE-SC codes was immune to the choice of number of

neighbors when building the graph, to a good extent.

52



Table 3.2: Datasets used in clustering.

Dataset Dimensions Instances Clusters
Digits 16 10992 10

Soybean 35 562 15
Segment 19 2309 7
Satimage 36 6435 6

USPS 256 9298 10

3.6 Simulation Results - Face Recognition

The proposed algorithm was tested with the AR face database in supervised and

semi-supervised classification. The database has 100 classes with 26 examples per

class. 504 random projections were obtained from each image and used as the feature

vector. The dictionary Ψ consisted of 500 columns. All experiments were repeated

with 5 random train and test sets to increase the reliability of the results. For

both supervised and semi-supervised learning, dictionaries were learned using the

proposed approach with the parameters γ = 0.01, β = 0.005. The parameter δt was

fixed at 30 in the first iteration and reduced up to 0.5 in the last iteration of training.

Classification was performed using the unconstrained sparse codes generated from

the learned dictionary with the parameter γ = 0.003 for both train and test datasets.

Table 3.3: Comparison of unsupervised clustering with graphs obtained from LPP
and the proposed GE-SC approach.

Dataset ACC NMI
LPP GE-SC LPP GE-SC

max avg max avg max avg max avg
Digits 78.6 70.5 79.9 72 71 69 73 70

Soybean 70.46 64.2 72.8 65.3 76 72 78 74
Segment 57.6 53.3 71.1 68.2 54 49 65 64
Satimage 74.9 73.8 76.72 75.8 64 63 65 64
USPS 73.3 65.1 76.9 70.11 67 65 69 66
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Figure 3.6: Performance of SC, unsupervised GE-SC, and supervised GE-SC based
classification schemes for various number of training samples per class.

3.6.1 Supervised Learning

For supervised learning, we used 20 samples per class for training and the remaining 6

for testing. The recognition performance is reported in Table 3.4. Supervised GE-SC

is compared with unconstrained sparse coding (SC), unsupervised GE-SC as well as

with LDE. For all the approaches, classification was performed using linear support

vector machines. Figure 3.6 shows that the supervised GE-SC scheme consistently

works better compared to the SC and unsupervised GE-SC methods, for different

number of training samples per class.

Table 3.4: Recognition results for AR face database. For LDE and supervised GE-
SC, the number of neighbors k = k′ = 4, for unsupervised GE-SC, k is fixed at 4,
and for LDE, the number of reduced dimensions d = 150.

Algorithm % Classification
Local disc. embedding 97.55

Sparse coding 95.77
Locality preserving SC 96.57
Graph embedded SC 98.12
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Table 3.5: Comparison of face recognition performance using semi-supervised learning
in a subset of AR faces. The parameters used in the algorithms are d = 150, k =
k′ = 2 and α = 0.1.

Algorithm % Classification
Semi-supervised disc. analysis 89.80

Sparse coding 89.62
Unsupervised GE-SC 90.42
Supervised GE-SC 96.13

3.6.2 Semi-supervised Learning

We used the unoccluded subset (14 images per class) of AR faces for semi-supervised

learning. The training set consisted of 6 labeled examples, and 4 unlabeled exam-

ples. The unlabeled examples along with the remaining 4 examples were used for

testing. The performance of various approaches for this dataset is reported in Table

3.5. The graph for SDA and supervised GE-SC was constructed using the proce-

dure described in Section 3.2.2. Note that GE-SC results in the best performance

followed by unsupervised GE-SC which used an unlabeled graph on the training set

with k = 2.

3.7 Conclusions

We proposed algorithms to compute graph-embedded sparse codes and demonstrated

their use in unsupervised, supervised and semi-supervised learning. Unconstrained

sparse coding does not result in discriminative codes, although it may improve the

performance of learning algorithms by rejecting “noise” in the data that hampers the

learning performance. Including neighborhood relations using unsupervised graph

constraints stabilizes the sparse codes and hence it usually results in an improved

performance, compared to using unconstrained codes. Explicit discriminative graph

constraints posed on sparse codes result in a discriminative sparse embedding, which

may have utility in several learning applications.
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Chapter 4

ENSEMBLE SPARSE MODELS FOR IMAGE ANALYSIS

4.1 Introduction

Sparse representations using learned dictionaries have been successful in several im-

age analysis applications. In this chapter, we propose and analyze the framework of

ensemble sparse models, and demonstrate their utility in image restoration and unsu-

pervised clustering. The proposed ensemble model is an additive linear combination

of multiple weak sparse models. Theoretical analysis of the ensemble model reveals

that even in the worst-case, the ensemble model performs better than any of its con-

stituent individual models. The dictionaries corresponding to the individual sparse

models are obtained using either random selection or boosted approaches. In the ran-

dom selection approach, each dictionary consists of a random subset of normalized

training examples. Boosted approaches learn one dictionary per round such that the

dictionary learned in a particular round is optimized for the training examples having

high reconstruction error in the previous round. The final restored data is computed

as a linear combination of the individual approximations. Results with compressed

recovery of standard images show that the ensemble representations lead to a better

performance compared to using a single dictionary obtained with the conventional

alternating minimization approach. The proposed ensemble models are also used for

single image superresolution and we show that they perform comparably to the re-

cent approaches. Furthermore, learning ensemble models using the random selection

approach incurs very little computational complexity. In unsupervised clustering,

experiments show that the proposed model performs better than baseline approaches

in several standard datasets. The work discussed in this chapter has been reported

in [56] and [57].
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Using the linear generative model, the sparse code of a data sample x can be

obtained by optimizing,

h(x,D) = min
a
‖x−Da‖2

2 + λ‖a‖1. (4.1)

Here ‖a‖1 is the `1 penalty that promotes sparsity of the coefficients, and the equiv-

alence of (4.1) to `0 minimization has been discussed in [64] under some strong con-

ditions on the dictionary D. Some methods to obtain sparse representations used in-

clude the Matching Pursuit (MP) [107], Orthogonal Matching Pursuit (OMP) [108],

Order-Recursive Matching Pursuit [109], Basis Pursuit (BP) [110], FOCUSS [111]

and iterated shrinkage algorithms [112,113].

In several image processing andsample machine learning applications, it is

advantageous to learn a dictionary, such that the set of training examples obtained

from a probability space have a small approximation error with sparse coding. This

problem can be expressed as minimizing the objective [114]

g(D) = Ex[h(x,D)], (4.2)

where the columns of D, referred to as dictionary atoms, are constrained to have unit

`2 norm, i.e., ‖dj‖2 ≤ 1,∀j. If the distribution in the probability space is unknown

and we only have T training examples {xi}Ti=1, each with probability mass p(xi), (4.2)

can be modified as the empirical cost function,

ĝ(D) =
T∑
i=1

h(xi,D)p(xi). (4.3)

Typically dictionary learning algorithms solve for the sparse codes [101, 115]

using (4.1), and obtain the dictionary by minimizing ĝ(D), repeating the steps until

convergence. We refer to this baseline algorithm as Alt-Opt. Since this is an alter-

nating minimization process, it is important to provide a good initial dictionary and

this is performed by setting the atoms to normalized cluster centers of the data [13].
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Instead of learning dictionaries using sophisticated learning algorithms, it is possible

to use the training examples themselves as the dictionary. Since the number of exam-

ples T is usually much larger than the number of dictionary atoms K, it is much more

computationally intensive to obtain sparse representations with examples. Neverthe-

less, both learned and example-based dictionaries have found applications in inverse

problems [2, 11, 14] and also in machine learning applications such as clustering and

classification [15,17–19,116–122].

4.1.1 Ensemble Sparse Models

In this chapter, we propose and explore the framework of ensemble sparse models,

where we assume that data can be represented using a linear combination of L dif-

ferent sparse approximations, instead of being represented using an approximation

obtained from a single sparse model. The approximation to x can be obtained by

optimizing

min
{βl}L

l=1

‖x−
L∑
l=1

βlDlal‖2
2. (4.4)

Here each coefficient vector al is assumed to be sparse, and is obtained by solving

for the optimization (4.1) with Dl as the dictionary. The weights {βl}Ll=1 control the

contribution of each base model to the ensemble.

Since the ensemble combines the contributions of multiple models, it is suffi-

cient that the dictionary for model is obtained using a “weak” training procedure. We

propose to learn these weak dictionaries {Dl}Ll=1 sequentially, using a greedy forward

selection procedure, such that training examples that incurred a high approximation

error with the dictionary Dl are given more importance while learning Dl+1. Fur-

thermore, we also propose an ensemble model where each individual dictionary is

designed as a random subset of training samples. The formulations described in this

chapter belong to the category of boosting [31] and random selection algorithms [29]

in machine learning. In supervised learning, boosting is used to improve the accu-
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racy of learning algorithms, using multiple weak hypotheses instead of a single strong

hypothesis. The proposed ensemble sparse models are geared towards two image

analysis problems, the inverse problem of restoring degraded images, and the prob-

lem of unsupervised clustering. Note that, boosted ensemble models have been used

with the bag-of-words approach for updating codebooks in classification [123] and

medical image retrieval [124]. However, it has not been used so far in sparsity based

image restoration problems or unsupervised clustering. Also when compared to [125],

where the authors propose to obtain multiple randomized sparse representations from

a single dictionary, in our approach, we propose to learn an ensemble of dictionaries

and obtain a single representation from each of them. Typical ensemble methods for

regression [33] modify the samples in each round of leveraging, whereas in our case

the same training set is used for each round.

4.1.2 Contributions

In this work, we propose the framework of ensemble sparse models and perform a

theoretical analysis that relates their performance when compared to its constituent

base sparse models. We show that, even in the worst case, an ensemble will perform at

least as well as its best constituent sparse model. Experimental demonstrations that

support this theory are also provided. We propose two approaches for learning the

ensemble: (a) using a random selection and averaging (RandExAv) approach, where

each dictionary is chosen as a random subset of the training examples, and (b) using

a boosted approach to learn dictionaries sequentially by modifying the probability

masses of the training examples in each round of learning. In the boosted approach,

two methods to learn the weak dictionaries for the individual sparse models, one

that performs example selection using the probability distribution on the training set

(BoostEx), and the other that uses a weighted K-means approach (BoostKM ), are

provided. For all cases of ensemble learning, we also provide methods to obtain the
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ensemble weights, {βl}Ll=1, from the training examples. Demonstrations that show

the convergence of ensemble learning, with the increase in the number of constituent

sparse models are provided. Experiments also show that the proposed ensemble

approaches perform better than their best constituent sparse models, as predicted by

theory.

In order to demonstrate the effectiveness of the proposed ensemble models, we

explore its application to image recovery and clustering. The image recovery prob-

lems that we consider here are compressive sensing using random projections and

single image superresolution. When boosted ensemble models are learned for image

recovery problems, the form of degradation operator specific to the application is also

considered, thereby optimizing the ensemble for the application. For compressive re-

covery, we compare the performance of the proposed Random Example Averaging

(RandExAv), Boosted Example (BoostEx), and Boosted K-Means (BoostKM ) ap-

proaches to the single sparse model, whose dictionary is obtained using the Alt-Opt

approach. It is shown that the ensemble methods perform consistently better than a

single sparse model at different number of measurements. Note that, the base sparse

model for example-based approaches is designed as a random subset of examples, and

hence it requires minimal training. Furthermore, in image superresolution, the per-

formance of the proposed ensemble learning approaches is comparable to the recent

sparse representation methods [1], [2].

Furthermore, we explore the use of the proposed approaches in unsupervised

clustering. When the data are clustered along unions of subspaces, an `1 graph [19]

can be obtained by representing each data sample xi as a sparse linear combination

of the rest of the samples in the set. Another approach proposed in [117] computes

the sparse coding-based graph using codes obtained with a learned dictionary. We

propose to use ensemble methods to compute sparse codes for each data sample,

and perform spectral clustering using graphs obtained from them. Results with sev-
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eral standard datasets show that high clustering performance is obtained using the

proposed approach when compared to `1 graph-based clustering.

4.2 Analysis of Ensemble Models

We will begin by motivating the need for an ensemble model in place of a single sparse

model, and then proceed to derive some theoretical guarantees on the ensemble model.

Some demonstrations on the performance of ensemble models will also be provided.

4.2.1 Need for the Ensemble Model

In several scenarios, a single sparse model may be insufficient for representing the

data, and using an ensemble model instead may result in a good performance. The

need for ensemble models in supervised learning have been well-studied [86]. We

will argue that the same set of reasons apply to the case of ensemble sparse models

also. The first reason is statistical, whereby several sparse models may have a similar

training error when learned from a limited number of training samples. However,

the performance of each of these models with test data can be poor. By averaging

representations obtained from an ensemble, we may obtain an approximation closer

to the true test data. The second reason is computational, which can occur with the

case of large training sets also. The inherent issue in this case is that sparse modeling

is a problem with locally optimal solution. Therefore, we may never be able to reach

the global optimal solution with a single model and hence using an ensemble model

may result in a lesser representation error. Note that this case is quite common

in dictionary learning, since many dictionary learning algorithms only seek a local

optimal solution. The third reason for using an ensemble model is representational,

wherein the hypothesis space assumed cannot represent the test data sample. In

the case of sparse models, this corresponds to the case where the dictionary cannot

provide a high-fidelity sparse approximation for a novel test data sample. This also

happens in the case where the test observation is a corrupted version of the underlying
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test data, and there is ambiguity in obtaining a sparse representation. In this case

also, it may be necessary to combine multiple sparse models to improve the estimate

of the test data.

In order to simplify notation in the following analysis, let us denote the lth

approximation in the ensemble model as cl = Dlal. The individual approximations

are stacked in the matrix C ∈ RM×L, where C = [c1 . . . cL] and the weight vector is

denoted as β = [β1 . . . βL]T . The individual residuals are denoted as rl = x − cl, for

i = 1, . . . , L, and the total residual of the approximation is given as

r = x−Cβ. (4.5)

We characterize the behavior of the ensemble sparse model by considering four dif-

ferent cases for the weights {βl}Ll=1.

Case 1: Weights are Unconstrained

In this case, the ensemble weights {βl}Ll=1 are assumed to be unconstrained and

computed using the unconstrained least squares approximation

min
β
‖x−Cβ‖2

2 (4.6)

When the data x lies in the span of C, the residual will be zero, i.e., r = 0. The

residual that has minimum energy in the L approximations is denoted as rmin. This

residual can be obtained by setting the corresponding weight in the vector β to be

1, whereas (4.6) computes β that achieves the best possible residual r for the total

approximation. Clearly this implies

‖r‖2 ≤ ‖rmin‖2. (4.7)

Therefore, at worst, the total approximation will be as good as the best individual

approximation.
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Case 2: Weights are Non-negative

The ensemble weights {βl}Ll=1 are assumed to be non-negative in this case. The least

squares approximation (4.4), with the constraint β ≥ 0 will now result in a zero

residual if the data x lies in the simplical cone generated by the columns of C. The

simplical cone is defined as the set {b : b = ∑L
l=1 clβl}. Otherwise, the bound on the

total residual given by (4.7) holds in this case, since rmin can be obtained by setting

the appropriate weight in β to 1 in (4.5), and the rest to 0 in this case also.

Case 3: Weights Sum to 1

When the ensemble weights are constrained to sum to 1, the total residual can be

expressed as

r =
L∑
l=1

βlrl. (4.8)

This can be easily obtained by replacing x as ∑L
l=1 βlx in (4.5). Denoting the residual

matrix R = [r1 . . . rL], the optimization (4.4) to compute the weights can also be

posed as minβ ‖Rβ‖2. Incorporating the constraint ∑L
l=1 βl = 1, it can be seen that

the final approximation Cβ lies in the affine hull generated by the columns of C,

and the final residual, Rβ, lies in the affine hull generated by the columns of R.

Clearly the final residual will be zero, only if the data x lies in the affine hull of C,

or equivalently the zero vector lies in the affine hull of R. When this does not hold,

the worst case bound on r given by (4.7) holds in this case as well.

Case 4: Weights are Non-negative and Sum to 1

Similar to the previous case, the total residual can be expressed as (4.8). As a result,

the final representation Cβ lies in the convex hull generated by the columns of C,

and the final residual, Rβ, lies in the convex hull generated by the columns of R.

Furthermore, the final residual will be zero only if the zero vector lies in the convex

hull of R. Clearly, the worst case bound on r given by (4.7) holds in this case.
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Figure 4.1: Performance of the “oracle” ensemble models for various constraints on
weights and different dictionary sizes in the base models.

Although the worst case bounds for all the four cases are the same, the con-

straint spaces for the cases might provide us an idea about their relative performances

with real data. The first case is unconstrained and it should result in the least error.

The second case constrains that the solution should lie in the simplical cone spanned

by the columns of C, and this should lead to higher residual energy than Case 1. Case

3 constrains the solution to lie in an affine hull, which is of L−1 dimensions compared

to simplical cone in L dimensions, so it could lead to a higher error compared to Case

2. Case 4 is the subset of constraint spaces for Cases 1 to 3 and hence it will lead to

the highest residual error.

4.2.2 Demonstration of Ensemble Representations

In order to demonstrate the performance of ensemble representations with real data,

we obtain a random set of 100, 000 patches, each of size 8× 8, from a set of natural

images. The training images were obtained from the superresolution toolbox pub-

lished by Yang et. al. [126], and consist of a wide variety of patterns and textures.
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Figure 4.2: Samples images from the training set. Note that the training images have
a good mix of geometric patterns as well as textures.

A few images from the training set are shown in Figure 4.2. We will refer to this

set of training images simply as the training image set throughout this chapter. The

chosen patches are then processed to remove the mean, followed by the removal of low-

variance patches. Since image recovery is the important application of the proposed

models, considering high-variance patches alone is beneficial. Each dictionary in the

ensemble Di is obtained as a random set of K vectorized, and normalized patches.

We fix the number of models in the ensemble as L = 20. The test data is a random

set of 1000 grayscale patches obtained from the Berkeley segmentation dataset [127].

For each test sample, we compute the set of L approximations using the sparse model

given in (4.1), with λ = 0.2. The individual approximations are combined into an

ensemble, under the four conditions on the weights, {βl}, described above. The opti-

mal weights are computed and the mean squared norm of the residuals for all the test

samples are compared in Figure 4.1, for the dictionary sizes K = {256, 1025, 2048}.

We observe that the performance of the ensembles generally improve as the size of the

dictionaries used in the base models increase. The variation in performance across

all the four cases of weights follows our reasoning in the previous section. We refer

to these as “oracle” ensemble models, since the weights are optimally computed with

perfect knowledge of all the individual approximations and the actual data. In reality,

the weights will be precomputed from the training data.

4.3 Proposed Ensemble Sparse Representation Algorithms

The ensemble model proposed in (4.4) results in a good approximation for any known

data. However, in order to use ensemble models in analysis and recovery of images,
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that are possibly corrupted or degraded, both the weights {βl}Ll=1 and the dictionaries

{Dl}Ll=1 must be inferred from uncorrupted training data. The set of weights is fixed

to be common for all test observations instead of computing a new set of weights for

each observation. Let us denote the set of training samples as X = [x1 x2 . . . xT ],

and the set of coefficients in base model l as Al = [al,1 al,2 . . . al,T ], where al,i is

the coefficient vector of the ith sample for base model l. In the proposed ensemble

learning procedures, we consider both simple averaging and boosting approaches.

4.3.1 Random Example Averaging Approach

The first approach chooses L random subsets of K samples from the training data

itself and normalizes them to form the dictionaries {Dl}Ll=1. The weights {βl} are

chosen to be equal for all base models as 1/L. Note that the selection of dictionaries

follows the same procedure as given in the previous demonstration (Section 4.2.2).

We refer to this ensemble approach as Random Example Averaging (RandExAv).

4.3.2 Boosting Approaches

The next two approaches use boosting and obtain the dictionaries and weights se-

quentially, such that the training examples that resulted in a poor performance with

the l − 1th base model are given more importance when learning the lth base model.

We use a greedy forward selection procedure for obtaining the dictionaries and the

weights. In each round l, the model is augmented with one dictionary Dl, and the

weight αl corresponding to the dictionary is obtained. The cumulative representation

for round l is given by

Xl = (1− αl)Xl−1 + αlDlAl. (4.9)

Note that the weights of the greedy forward selection algorithm, αl, and the weights

of the ensemble model, βl, are related as

βl = αl
L∏

t=l+1
(1− αt). (4.10)
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From (4.9), it can be seen that Xl lies in the affine hull of Xl−1 and DlAl. Fur-

thermore, from the relationship between the weights {αl} and {βl} given in (4.10),

it is clear that ∑L
l=1 βl = 1 and hence the ensemble model uses the constraints given

in Case 3. Only the Cases 3 and 4 lead to an efficient greedy forward selection ap-

proach for the ensemble model in (4.4), and we use Case 3 since it leads to a better

approximation performance (Figure 4.1).

In boosted ensemble learning, the importance of the training samples in a

particular round is controlled by modifying their probability masses. Each round

consists of (a) learning a dictionary Dl corresponding to the round, (b) computing

the approximation for the current round l, (c) estimating the weight αl, (d) computing

the residual energy for the training samples, and (e) updating the probability masses

of the training samples for the next round. Since the goal of ensemble approaches is

to have only weak individual models, Dl is obtained using naive dictionary learning

procedures as described later in this section. The dictionaries for the first round

are obtained by fixing uniform probability masses for each training example in the

first round, (i.e.), p1(xi) = 1/T for i = {1, 2, . . . , T}. Assuming that Dl is known,

the approximation for the current round is computed by coding the training samples

X with the dictionary using (4.1). The weight αl is computed such that the error

between the training samples and the cumulative approximation Xl is minimized.

Using (4.9), this optimization can be expressed as

min
αl
‖Xl − [(1− αl)Xl−1 + αlDlAl]‖2

F , (4.11)

and can be solved in closed form with the optimal value given as,

αl =
Tr
[
(X−Xl−1)T (DlAl −Xl−1)

]
‖DlAl −Xl−1‖2

F

, (4.12)

where Tr denotes the trace of the matrix. The residual matrix for all the training

samples in round l is given by Rl = X−DlAl. The energy of the residual for the ith
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Figure 4.3: Comparison of the reconstruction performance of the proposed ensemble
methods with test data, when various sizes of dictionaries are used in the base sparse
models.

training sample is given as el(i) = ‖rl,i‖2
2. If the dictionary in round l provides a large

approximation error for sample i, then that sample will be given more importance in

round l + 1. This will ensure that the residual error for sample i in round l + 1 will

be small. The simple scheme of updating the probability masses as pl+1(xi) = el(i),

upweights the badly represented samples and downweights the well-represented ones

for the next round.

Given a training set {xi}Li=1, and its probability masses {pl(xi)}Li=1, we will

propose two simple approaches for learning the dictionaries corresponding to the

individual sparse models.

BoostKM

When the sparse code for each training example is constrained to take one only one

non-zero coefficient of value 1, and the norms of the dictionary atoms are uncon-

strained, the dictionary learning problem (4.3) can be shown to reduce to K-Means

clustering. Hence, computing a set of K-Means cluster centers and normalizing them
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to unit `2 norm constitutes a reasonable weak dictionary. However, since the distri-

bution on the data could be non-uniform in our case, we need to alter the clustering

scheme to incorporate this. Denoting the cluster centers to be {µk}Kk=1, the cluster

membership sets to be {Mk}Kk=1, the weighted K-Means objective is denoted as

min
{µk}K

k=1,{Mk}K
k=1

K∑
k=1

∑
i∈Mk

p(xi)‖xi − µk‖2
2. (4.13)

The weighted K-Means procedure is implemented by modifying the scalable K-Means++

algorithm, also referred to as the K-Means‖ (K-Means Parallel) algorithm [128]. The

K-Means‖ algorithm is an improvement over the K-Means++ algorithm [129] that

provides a method for careful initialization leading to improved speed and accuracy

in clustering. The advantage with the K-Means‖ algorithm is that the initialization

procedure is scalable to a large number of samples. In fact, it has been shown in [128]

that just the initialization procedure in K-Means‖ results in a significant reduction in

the clustering cost. Since we are interested in learning only a weak dictionary, we will

use the normalized cluster centers obtained after initialization as our dictionary. The

K-Means++ algorithm selects initial cluster centers sequentially such that they are

relatively spread out. For initializing K cluster centers, the algorithm creates a dis-

tribution on the data samples and picks a cluster center by sampling it and appends

it to the current set of centers. The distribution is updated after each cluster cen-

ter is selected. In contrast, the K-Means‖ algorithm updates the distribution much

more infrequently, after choosing q cluster centers in each iteration. This process is

repeated for s iterations, and finally the number of cluster centers obtained is sq.

The chosen centers are re-clustered to obtain the initial set of K clusters. It is clear

that s must be chosen such that sq > K. We provide only the initialization of the

weighted K-Means‖ algorithm that takes the data distribution, {pl(xi)}Ti=1, also into

consideration.
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Let us denote δi as the shortest distance of the ith training sample to the set of

cluster centers already chosen. The initialization of the weighted K-Means‖ algorithm

proceeds as follows:

(a) InitializeM = {}.

(b) Pick the first center µ1 from the training set based on the distribution {pl(xi)}Ti=1,

and append it toM.

(c) The set of intermediate cluster centers,M′, is created using q samples from the

data, {xi}Ti=1, according to the probability pl(xi)δ2
i∑T

j=1 pl(xj)δ2
j

.

(d) Augment the setM←M∪M′.

(e) Repeat steps 2, 3 and 4 for s iterations.

(f) Set the weight of each element µ in the setM, as the sum of weights of samples

in X that are closer to µ than any other sample inM.

(g) Perform weighted clustering on the elements ofM to obtain the set of K cluster

centers,M.

Note that the steps (b) and (c) are used to compute the initial cluster centers giving

preference to samples with higher probability mass. Finally, each dictionary atom dk

is set as the normalized cluster center µk

‖µk‖2
.

BoostEx

From (4.3), it is clear that the learned dictionary atoms are close to training samples

that have higher probabilities. Therefore, in the BoostEx method, the dictionary for

round l is updated by choosing K data samples based on the non-uniform weight

distribution, {pl(xi)}Ti=1, and normalizing them. This scheme will ensure that those

samples with high approximation errors in the previous round, will be better repre-

sented in the current round.
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Figure 4.4: Convergence of approximation error with test data for proposed ensemble
methods, when dictionaries of size 1024 are used with the base sparse models.

4.3.3 Demonstration of the Proposed Approaches

The performance of the proposed ensemble schemes for dictionaries of three different

sizes K = {256, 1024, 2048} are compared. The training set described in Section

4.2.2 is used with the RandExAv, BoostKM, and BoostEx schemes. The dictionaries

{Dl}Ll=1 and the weights {βl}Ll=1 are obtained with the above schemes for L = 20.

The individual approximations in the training set are obtained using (4.1) with the

sparsity penalty set as λ = 0.2. For each sample in the test set described in Section

4.2.2, the individual representations are computed using (4.1) with λ = 0.2. The

ensemble approximation the ith test sample is obtained as ∑L
l=1 βlDlal,i. Figure 4.3

compares the performances of the proposed schemes for different dictionary sizes.

The minimum error obtained across all individual approximations is also shown for

comparison, with all the three methods and the different dictionary sizes. It can be

seen that the proposed schemes satisfy the basic property of the ensemble discussed

in Section 4.2, where it has been shown that the ensemble approximation performs
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Figure 4.5: Illustration of the proposed boosted dictionary learning for image restora-
tion. SC denotes sparse coding using (4.15).

better than the best constituent individual approximation. As the number of number

of approximations in the ensemble increase, the average mean squared error (MSE)

for the three proposed methods reduce, as shown in Figure 4.4 for a dictionary size

of 1024. Clearly, increasing the number of models in the ensemble results in a better

approximation, but the MSE flattens out as the number of rounds increase.

4.4 Application: Image Restoration

In restoration applications, it is necessary to solve an inverse problem, in order to

estimate the test data y from

z = Φ(y) + n, (4.14)

where Φ(.) is the corruption operator and n is the additive noise. If the operator

Φ(.) is linear, we can represent it using the matrix Φ. With the prior knowledge

that y is sparsely representable in a dictionary D according to (4.1), (4.14) can be

expressed as z = ΦDa + n. Restoring x now reduces to computing the sparse codes
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a by solving

min
a
‖z−ΦDa‖2

2 + λ‖a‖1. (4.15)

and finally estimating y = Da [11]. In the proposed ensemble methods, the final

estimate of x is obtained as a weighted average of the individual approximations.

Furthermore, in the boosting approaches, BoostKM and BoostEx, the degradation

operation can be included when learning the ensemble. This is achieved by degrad-

ing the training data as ΦX, and obtaining the approximation with the coefficients

computed using (4.15) instead of (4.1). The procedure to obtain boosted dictionaries

using degraded data and computing the final approximation is illustrated in Fig-

ure 4.5. In this figure, the final approximation is estimated sequentially using the

weights {αl}Ll=1, but it is equivalent to computing {βl}Ll=1 using (4.10) and computing

the ensemble estimate ∑L
l=1 βlDlAl. The set of test images that we use to test our

restoration framework are given in Figure 4.6.

4.4.1 Compressive Recovery

In compressed sensing (CS), the N−dimensional observation z is obtained by project-

ing the M−dimensional data y onto a random linear subspace, where N �M [130].

In this case, the entries of the degradation matrix Φ ∈ RN×M are obtained as i.i.d.

realizations of a Gaussian or Bernoulli random variable. Compressive recovery can

be effectively performed using conventional dictionaries or ensemble dictionaries. In

addition, the proposed idea of ensemble learning can be incorporated in existing learn-

ing schemes to achieve improved recovery performance. In particular, the multilevel

dictionary learning algorithm [12] can be very easily adapted to compute ensemble

representations. Before discussing the experimental setup, and the results of the pro-

posed methods, we will describe the modification to multilevel dictionary learning for

improving the compressed recovery performance with learned dictionaries.
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Figure 4.6: The set of standard images used in our experiments on image restora-
tion. In a raster-scan fashion, the images are: Barbara, Boat, Cameraman, Couple,
Fingerprint, Girl, House, Lena, Man, Peppers, and Straw.

Improved Multilevel Dictionaries

The multilevel dictionary (MLD) learning algorithm is a hierarchical procedure where

the dictionary atoms in each level are obtained using a 1-D subspace clustering pro-

cedure [12]. Multilevel dictionaries have been shown to generalize well to novel test

data, and have resulted in high performance in compressive recovery. We propose

to employ the RandExAv procedure in each level of multilevel learning to reduce

overfitting and thereby improve the accuracy of the dictionaries in representing novel

test samples. In each level, L different dictionaries are drawn as random subsets of

normalized training samples. For each training sample, a 1−sparse representation is

computed with each individual dictionary, and the approximations are averaged to

obtain the ensemble representation for that level. Using the residual vectors as the

training data, this process is repeated for multiple levels. The sparse approximation

for a test sample is computed in a similar fashion. Since the sparse code computa-

tion in each level is performed using simple correlation operations, the computation

complexity is not increased significantly by employing ensemble learning. In our

simulations, we will refer to this approach as Example-based Multilevel Dictionary

learning (Ex-MLD).
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Alt-Opt (24.81 dB) BEx (25.7 dB)

BKM (26.06 dB) RExAv (26.15 dB)

Ex-MLD (27.19 dB)

Figure 4.7: Compressed recovery of Lena image for N = 8 measurements using
Alternating Dictionary Optimization (Alt-Opt), BoostEx (BEx), BoostKM (BKM ),
RandExAv (RExAv) and Example-based MLD (Ex-MLD) approaches. Reconstructed
images and PSNRs are shown.
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Results

The training set is the same as that described in Section 4.2.2. For the baseline

Alt-Opt approach, we train a single dictionary with K = 256 using 100 iterations

with the sparsity penalty λtr set to 0.1. The ensemble learning procedures BoostEx,

BoostKM and RandExAv are trained with L = 50 and K = 256 for sparsity penalty

λtr = 0.1. The boosted ensembles are trained by taking the random projection

operator into consideration, as discussed in Section 4.4 for the reduced measurements,

N = {8, 16, 32}. For the Ex-MLD method, both the number of levels and the number

of atoms in each level were fixed at 16. In each level, we obtained L = 50 dictionaries

to compute the ensemble representation.

The recovery performance of the proposed ensemble models is evaluated us-

ing the set of standard images shown in Table 4.1. Each image is divided into non-

overlapping patches of size 8×8, and random projection is performed with the number

of measurements set at N = {8, 16, 32}. For the Alt-Opt procedure, the individual

patches are recovered using (4.15), and for the ensemble methods, the approximations

computed using the L individual dictionaries are combined. The penalty λte is set to

0.1 for sparse coding in all cases. For each method, the PSNR values were obtained by

averaging the results over 10 iterations with different random measurement matrices,

and the results are reported in Table 4.1. It was observed that the proposed en-

semble methods outperform the Alt-Opt methods in all cases. In particular, we note

that the simple RandExAv performs better than the boosting approaches, although

in Section 4.2.2 it was shown that boosting approaches show a superior performance.

The reason for this discrepancy is that boosting aggressively reduces error with train-

ing data, and hence may lead to overfitting with degraded test data. Whereas, the

RandExAv method provides the same importance to all individual approximations

both during the training and the testing phases. As a result, it provides a better
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Figure 4.8: Effect of dictionary and training set sizes on the dictionary training
time for different learning schemes. The training times given are in seconds and are
compared only for PairDict (40 iterations), BoostEx (L = 50) and BoostKM (L = 50)
since ExDict and RandExAv require no training.

generalization in the presence of degradation. We also note that similar behavior has

been observed with ensemble classification methods [90]. Random sampling methods

such as bagging perform better than boosting with noisy examples, since bagging

exploits classification noise to produce more diverse classifiers. Furthermore, we ob-

served that the proposed Ex-MLD method performed significantly better than all

approaches, particularly for lower number of measurements. Figure 4.7 shows the

images recovered using the different approaches, when N was fixed at 8. As it can be

observed, the Ex-MLD and RandExAv methods provide PSNR gains of 2.38dB and

1.34dB respectively, when compared to the Alt-Opt approach.

4.4.2 Single Image Superresolution

Single image superresolution (SISR) attempts to reconstruct a high-resolution im-

age using just a single low-resolution image. It is a severely ill-posed problem and

in sparse representation based approaches, the prior knowledge that natural image
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patches can be represented as a sparse linear combination of elementary patches,

is used. The degraded test image is represented as Z = ΦY, where the operator

Φ the blurs the high-resolution image Y and then downsamples it. Note that Y

and Z denote vectorized high- and low-resolution images respectively. Each overlap-

ping patch obtained from the degraded image is denoted as z. The paired dictionary

learning procedure (PairDict) proposed in [1] has been very effective in recovering the

high-resolution patches. This method initially creates degraded counterparts of the

high-resolution training images, following which gradient-based features are extracted

from the low-resolution patches and the features are appended to the corresponding

vectorized high-resolution patches. These augmented features are used to train a

paired dictionary
(

Dlo
Dhi

)
such that each low-resolution and its corresponding high-

resolution patches share the same sparse code. For a low-resolution test patch z, the

sparse code a is obtained using Dlo, and the corresponding high-resolution counter-

part is recovered as y = Dhia. An initial estimate Y0 of the high-resolution image is

obtained by appropriately averaging the overlapped high-resolution patches. Finally,

a global reconstruction constraint is enforced by projecting Y0 on to the solution

space of ΦY = Z,

min
Y
‖Z−ΦY‖2

2 + c‖Y −Y0‖2
2, (4.16)

to obtain the final reconstruction. As an alternative, the example-based procedure

(ExDict) proposed in [2], the dictionaries Dlo and Dhi are directly fixed as the fea-

tures extracted from low-resolution patches and vectorized high resolution patches

respectively. Similar to the PairDict method, the global reconstruction constraint in

(4.16) is imposed for the final reconstruction.

In our simulations, standard grayscale images (Table 4.2) are magnified by a

factor of 2, using the proposed approaches. In addition to the PairDict and ExDict

methods, simple bicubic interpolation is also used as a baseline method. We also
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Original

Degraded

PairDict (27.78 dB) ExDict (27.78 dB)

BoostKM (27.78 dB)

Figure 4.9: SISR of the Cameraman image with scaling factor of 2. The PairDict,
ExDict, and BoostKM methods result in very similar high resolution images. PSNRs
of resulting images are also shown.

obtained paired dictionaries with 1024 atoms using 100, 000 randomly chosen patches

of size 5 × 5 from the grayscale natural images in the training set. The sparsity

penalty used in training was λtr = 0.15. The training set was reduced to the size
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of 20, 000 samples and used as the dictionary for the ExDict method. For ensemble

learning, L was fixed at 50 and the approximation for each data sample was obtained

using just a 1−sparse representation.

For different number of training samples, we compared the training times for

PairDict (40 iterations), BoostEx (L = 50) and BoostKM (L = 50) algorithms in Fig-

ure 4.8. The computation times reported in this chapter were obtained using a single

core of a 2.8 GHz Intel i7 Linux machine with 8GB RAM. The BoostKM approach

has the maximum computational complexity for training, followed by PairDict and

BoostEx approaches. The ExDict procedure requires no training and for RandExAv,

training time is just the time for randomly selecting K samples from the training set

of T samples, for L rounds. Clearly, the complexity incurred for this is extremely

low.

For the test images, SISR is performed using the baseline PairDict and ExDict

approaches using a sparsity penalty of λte = 0.2. For the PairDict, and ExDict

approaches, the code provided by the authors [126] was used to generate the results.

The recovery performance of the proposed algorithms are reported in Table 4.2. For

PairDict, as well the proposed ensemble methods, the dictionary size is fixed at

1024, whereas all the examples are used for training with the ExDict approach. We

observed from our results that an ensemble representation with a simplified sparse

coding scheme (1-sparse) matched the performance of the baseline methods (Figure

4.9).

4.5 Application: Unsupervised Clustering

Conventional clustering algorithms such as K-Means provide good clusterings only

when the natural clusters of the data are distributed around a mean vector in space.

For data that lie in a union of low-dimensional subspaces, it is beneficial to develop

clustering algorithms that try to model the actual data distribution better. The
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Table 4.2: Superresolution of standard images upscaled by a factor of 2: PSNR in
dB obtained with bicubic interpolation (Bicubic), paired dictionary (PairDict) [1],
example dictionary (ExDict) [2], BoostEx (BEx), BoostKM (BKM ), and RandExAv
(RExAv) methods.

Image Bicubic PairDict ExDict BEx BKM RExAv
Lena 34.10 35.99 35.99 35.97 35.95 35.99
Boat 29.94 31.34 31.34 31.28 31.23 31.29
House 32.77 34.49 34.49 34.38 34.41 34.41

Cameraman 26.33 27.78 27.78 27.72 27.78 27.71
Straw 24.20 25.93 25.93 25.90 25.90 25.94
Girl 33.81 35.39 35.39 35.33 35.37 35.35

sparse subspace clustering method [131], a special case of which is referred to as the

`1 graph clustering [19], results in clusters that correspond to subspaces of data. This

is achieved by representing each example as a sparse linear combination of the others

and finally performing spectral clustering using a similarity matrix obtained from the

coefficient matrix. The clustering method has the advantage of incorporating the

noise model directly when performing sparse coding, thereby achieving robustness.

The coefficient vector for the ith data sample is obtained as

min
bi

‖xi −Xai‖+ λ‖ai‖1, subj. to. aii = 0. (4.17)

By imposing the constraint that the ith element of ai should be 0, we ensure that

a data sample is not represented by itself, which would have resulted in a trivial

approximation. The coefficient matrix is denoted as A = [a1a2 . . . aT ], and spectral

clustering [105] is performed by setting the similarity matrix to the symmetric non-

negative version of the coefficient matrix, S = |A| + |AT |. Computing the graph

in this case necessitates the computation of sparse codes of T data samples with a

M × (T − 1) dictionary. Sparse coding-based graphs can also constructed based on

coefficients obtained with a dictionary D, inferred using the Alt-Opt procedure. De-

noting the sparse codes for the examples X by the coefficient matrix A = [a1 . . . aT ],

the similarity matrix can be constructed as S = |ATA|. Similar to the `1 graphs,
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Table 4.3: Comparison of the clustering performances (accuracy and normalized mu-
tual information) of the algorithms with standard datasets. The best maximum or
average performance is given in bold font.

Dataset `1 graph BoostEx RandExAv BoostKM
max avg max avg max avg max avg

Accuracy
Digits 88.72 74.61 88.63 76.79 88.62 77.56 88.31 76.85

Soybean 67.44 58.22 67.26 63.21 70.82 65.31 69.22 63.50
Segment 65.32 57.84 63.42 58.46 63.33 56.49 65.63 58.67
Satimage 77.56 69.37 75.03 72.88 83.59 75.25 71.62 65.32
USPS 78.24 62.47 75.01 68.18 78.26 64.14 90.96 75.18

NMI
Digits 84.97 76.50 84.69 77.67 84.73 78.04 84.31 78.02

Soybean 74.55 65.94 72.84 68.66 77.50 73.71 76.05 71.66
Segment 59.14 53.91 56.72 53.23 54.94 51.20 58.44 55.32
Satimage 65.09 61.20 62.98 59.01 69.38 66.12 60.27 55.57
USPS 81.04 74.14 70.52 66.89 82.67 76.95 82.78 78.37

this similarity matrix can be used with spectral clustering to estimate the cluster

memberships [117]. In this case, the dominant complexity in computing the graph is

in learning the dictionary, and obtaining the sparse codes for each example. When

the number of training examples is large, or when the data is high-dimensional, ap-

proaches that use sparse coding-based graphs incur high computational complexity.

We propose to construct sparse representation-based graphs using our ensem-

ble approaches and employ them in spectral clustering. In our ensemble approaches,

we have two example-based procedures, (RandExAv and BoostEx) and one that uses

K-Means dictionaries (BoostKM ). For BoostKM, we obtain L dictionaries of size K

using the boosting procedure, with 1−sparse approximations. The final coefficient

vector of length LK for the data sample xi is obtained as, ai = [aT1,iaT2,i . . . aTL,i]T ,

where al,i is the coefficient vector for round l. The similarity matrix is then estimated

as S = |ATA|. In the example-based procedures, again 1−sparse representation is

used to obtain the coefficient vectors {a1,i, a2,i . . . , aL,i}, for a data sample xi. A
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cumulative coefficient vector of length T can be obtained by recognizing that each

coefficient in al,i ∈ RK , can be associated to a particular example, since Dl is an

example-based dictionary. Therefore a new 1−sparse coefficient vector āl,i ∈ RT is

created such that Dlal,i = X̄āl,i, where X̄ contains the normalized set of data samples

X. Finally the cumulative coefficient vector for xi is obtained as ∑L
l=1 βlāl,i. They

are then stacked to form the coefficient matrix Ā = [ā1 . . . āT ]. Spectral clustering

can be now performed using the similarity matrix S = |Ā| + |ĀT |. The clustering

performance was evaluated in terms of accuracy and normalized mutual information

(NMI), and compared with `1 graphs. As seen from Table 4.3, the ensemble-based

approaches result in high accuracy as well as NMI. In all our simulations, data was

preprocessed by centering and normalizing to unit norm. It was observed that the

proposed ensemble methods incur comparable computational complexity to `1 graphs

for datasets with small data dimensions. However, we observed significant complexity

reduction with the USPS dataset, which contains 9298 samples of 256 dimensions. To

cluster the USPS samples, the `1 graph approach took 411.85 seconds to compute the

sparse codes, whereas BoostEx, RandExAv, and BoostKM took 152.56, 147.93, and

83.58 seconds respectively. This indicates the suitability of the proposed methods for

high-dimensional, large scale data.

4.6 Conclusions

We proposed and analyzed the framework of ensemble sparse models, where the data

is represented using a linear combination of approximations from multiple sparse

representations. Theoretical results and experimental demonstrations show that an

ensemble representation leads to a better approximation when compared to its indi-

vidual constituents. Three different methods for learning the ensemble were proposed.

Results in compressive recovery showed that the proposed approaches performed bet-

ter than the baseline sparse coding method. Furthermore, the ensemble approach
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performed comparably to several recent techniques in single image superresolution.

Results with unsupervised clustering also showed that the proposed method leads to

better clustering performance in comparison to the `1 graph method.
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Chapter 5

COMBINING SPARSE CODING AND MANIFOLD PROJECTION FOR IMAGE

RECOVERY

5.1 Introduction

Sparse approximation techniques can be used to recover data from its low dimensional

corrupted observations, based on the knowledge that the data is sparsely representable

using a known dictionary. Global dictionaries learned using patches from a set of

natural images have been found to generalize well in obtaining sparse representations

of a wide range of images, not included in the training set [12]. The process of

dictionary learning can effectively identify the elementary representative patterns of

a dataset. However, the efficiency of sparse coding based recovery schemes that

use predefined or learned dictionaries can be improved if additional regularization is

performed using the higher dimensional training examples from the data manifold.

We propose two models that combine sparse coding using a predefined dictionary

with projection onto the data manifold, to improve data recovery. The first model

performs regularization of the sparse codes using examples from the data manifold

and the second model directly combines sparse coding and manifold projection. Using

an example application of image inpainting, we demonstrate that the proposed models

achieve a reduction in reconstruction error in comparison to using only sparse coding

with predefined and learned dictionaries, when the percentage of missing pixels and/or

noise level is high. The second model was used in image inpainting and compressive

recovery of standard images under various noise/undersampling conditions. In all

cases of compressive recovery and most cases of image inpainting, the proposed model

performed better than sparse coding based recovery schemes using predefined and

learned dictionaries. A part of the methods and results presented in this chapter

were published in [39].
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5.2 Combined Sparse Coding and Manifold Projection

Using a dictionary D ∈ RM×Kd , the sparse representation of the test data y ∈ RM

can be computed using the optimization program,

β̂ = argmin
β
‖y−Dβ‖2

2 + λ‖β‖1. (5.1)

The dictionary can be a collection of predefined basis functions, such as the DCT, or

can be learned from the training set itself using algorithms such as the K-SVD [13]

or multilevel dictionary learning [12]. With the additional knowledge that the test

data lies near the manifoldM, we present two approaches to combine the paradigms

of manifold projection and sparse coding in order to achieve a better recovery per-

formance. The assumption of nearness to a manifold is true in many cases such as

when the data are patches from natural images. The T training samples obtained

from the underlying manifoldM are indicated by X = {xi}Ti=1, where xi ∈ RM and

X ∈ RM×T . The first approach uses manifold samples for regularizing the sparse

code computed using a predefined dictionary, whereas the second approach directly

combined the sparse coding and manifold projection models.

5.2.1 Model 1: Regularizing Sparse Coding using Manifold Samples

The knowledge of the underlying manifold can be exploited by learning a dictionary

directly from the manifold samples and computing a sparse code for the test data

using the learned dictionary. However, in cases with missing/incomplete data, we

have the observations

z = ΨTy + n, (5.2)

where Ψ ∈ RM×N with N < M and n ∼ N (0, σ2IN). When N << M and σ2 is

high, apart from sparsity constraints, additional regularization in the form of samples

from the manifold will aid in the recovery of y. The proposed model uses a pre-

defined dictionary for sparse coding, and the training examples (manifold samples)
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in the neighborhood for regularization. It is important to note that once the sparse

code is generated, the proposed approach performs the reconstruction using only the

predefined dictionary and we do not require the manifold samples. To summarize,

the goal of the proposed approach is to find a sparse code using the observation, such

that the recovered test sample lies close to the manifoldM.

The proposed model involves two components: (a) computing the sparse code

using the observation, y, and D and (b) projection of the recovered test sample Dβ

close toM. This in essence involves combining the sparse representation and manifold

projection problems given in (6.3) and (3.1) into the joint optimization problem,

{α̂, β̂} = argmin
α,β

‖Dβ −Xα‖2
2 + λ‖β‖1

subject to ‖z−ΨTDβ‖2
2 ≤ ε,

T∑
i=1

αi = 1, αi ≥ 0 ∀i. (5.3)

Here, β denotes the sparse code for the observation y, α corresponds to the coeffi-

cient vector obtained from manifold projection, and λ controls the trade-off between

sparsity of β and the manifold projection residual. The first term in the objective

function along with the second and third constraints perform the manifold projec-

tion on the recovered data Dβ. When compared to (3.1), the manifold projection

component in the cost function of (5.3) does not contain the weighted sparsity term,∑T
i=1 ‖y − xi‖2

2|αi|. This omission does not affect the performance of the proposed

algorithm and leads to a speed-up of the optimization, as observed from our experi-

ments. ε is the maximum residual error allowed for the sparse representation.

From the term ‖z−ΨTDβ‖2
2 ≤ ε, we can observe that the error ellipsoid for

the sparse recovery is constrained only in N dimensions as ΨT ∈ RN×M . When N

is not large enough to permit a good sparse approximation, constraining Dβ to be

close to the manifoldM will improve the approximation. A simplified version of this

scenario is illustrated in Figure 5.1. We have M = 2 and N = 1 in this case. The

test data y is lying close to the manifold M. The noisy observation of y with one
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Figure 5.1: The data y lying near manifold M is corrupted with noise and one of
the dimensions is removed to result in y. The shaded region indicates the possible
locations of recovered data, subject to error constraints.

of the dimensions removed is z. e1 and e2 are the canonical basis vectors. The first

constraint in (5.3) specifies that the projection of the recovered data on to e1 should

lie within
√
ε of z. The shaded region indicates the possible locations of recovered

data. Incorporating the constraint that the recovered data Dβ is close toM improves

the chance of Dβ being close to y. This is particularly true when N is quite small

because of which sparse coding alone cannot provide a good recovery for the test data

from its noisy observation. Eqn. (5.3) is rewritten as

η̂ = argmin
η
‖[D −X]η‖2

2 + λ ‖[I 0]η‖1

subject to
∥∥∥[I 0] ȳ−

[
ΨTD 0

]
η
∥∥∥2

2
≤ ε,

[0 − I]η ≤ 0 and [0 I]η = 1. (5.4)

and solved using the MATLAB CVX [132] package. Here ȳ = [zT zT ]T , η = [βTαT ]T ,

0 indicates a zero vector or matrix and I is an identity matrix of appropriate dimen-

sions.
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Figure 5.2: The test data y has a component that can be represented in the manifold
M and another component that can be sparsely represented in a dictionary D. The
test observation z is a noisy, low dimensional version of the test data y.

5.2.2 Model 2: Directly Combining Manifold Projection and Sparse Coding

Instead of regularizing the sparse code using manifold samples, we can also assume

that the test data y has two components, one that can be represented by manifold

projection on to the training examples X and the other that can be well-represented

using the pre-defined dictionary D. This model can be expressed as

y = XΩαΩ + Dβ, (5.5)

where Ω is the neighborhood of y assumed to be known. The only additional con-

straint posed here is αΩ ≥ 0 since our experiments showed that the additional con-

straint that the elements of αΩ sum to one did not yield a significant improvement

in performance.

The test observation z, which is a noisy and low-dimensional version of y

is given by (5.2) and this model is illustrated in Figure 5.2 for a low-dimensional

case when M = 2 and N = 1. Since the neighborhood Ω is usually not known, an

estimated neighborhood Ω̂ is obtained by computing the distance between z and the

low-dimensional examples ΨTX. The coefficients can be computed by solving the
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optimization program

{α̂Ω̂, β̂} = argmin
αΩ̂,β

‖αΩ̂‖1 + ‖β‖1 subject to ‖z−ΨTXαΩ̂ −ΨTDβ‖2
2 ≤ ε,αΩ̂ ≥ 0.

(5.6)

The above program can be solved using the COMB-BP algorithm or its greedy vari-

ant, the COMB-OMP, proposed in Section 6.3.3. In both cases, we need to modify

the algorithms to incorporate stopping criteria based on the error constraint. The

COMB-BP can be efficiently implemented by modifying the LARS algorithm [101]

to incorporate the non-negative constraint on a part of the coefficient vector.

5.3 Applications

Image inpainting and compressive recovery are the example applications that we

consider for the frameworks we discussed above. Considering the observation model

in (5.2), we present two applications. When the matrix Ψ is a subset of the columns

of an identity matrix, the model describes a missing data scenario and y can be

recovered from z by inpainting. When Ψ is a matrix with entries realized from

certain probability distributions, then (5.2) denotes noisy measurements of the data

computed through random projections and compressive recovery can be performed.

Considering that the data is generated from the basic linear generative model y = Dβ,

where β is sparse, recovery of the test data can be performed by minimizing the `0

norm as

min
β
‖β‖0 subject to ‖z−ΨTDβ‖2 < ε (5.7)

where ε is the error goal that depends on the noise level σ of n. In order to solve

(5.7) as a convex program, we replace `0 norm by its convex surrogate, the `1 norm.

In image inpainting, the missing pixels can be directly estimated by computing

β using (5.7) and then reconstructing the test data from the sparse code. Since

the dimensionality of the dictionary D is reduced when performing recovery, exact

recovery is possible only if the number of non-zero coefficients in β satisfies the
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coherence condition for the dictionary ΨTD [11]. Some recent inpainting algorithms

that use sparse representations are available in [9, 10,133,134].

The fundamental idea behind compressive sensing is that for most types of nat-

urally occurring signals, only a few measurements are sufficient to accurately recover

them [67,130,135]. When the signal y lies in a union of subspaces whose basis vectors

are defined by the columns of an overcomplete dictionary D, it can be represented as

y = Dβ, where β is a sparse vector. The measurement system Ψ can be random or

optimized to the dictionary D. When the measurement system is random, Ψ typi-

cally consists of i.i.d. samples drawn from distributions such as Gaussian, Bernoulli,

Rademacher or random ternary [67]. They are universal in the sense that they can

work well with a large class of dictionaries. When optimized to the dictionary D, the

measurement system leads to an improved recovery when compared to a randomly

constructed Ψ [12, 136, 137]. The theoretical recovery performance of compressive

sensing depends on the characteristics of ΨTD, which we refer to as the equivalent

dictionary. More information on the theory of compressive sensing and recovery can

be found in [138–143]. In the experiments below we recover the test data from the

low-dimensional corrupted observations using the models proposed in this chapter.

5.4 Experiments

The experiments demonstrate the use of the proposed models in inpainting and com-

pressive recovery of natural images. We resort to a patch-based approach and our

training and test data are image patches of size 8 × 8. The pre-defined dictionary

D used in our models is overcomplete DCT of size 64 × 256. The manifold samples

consisted of 50000 randomly chosen patches of size 8× 8 from 250 training images of

the Berkeley Segmentation Dataset (BSDS) [127]. Some examples of training images

are shown in Figure 5.3. For comparison, a KSVD dictionary of size 64 × 256 was

also learned from the 50000 training patches.

92



(a) (b) (c)

Figure 5.3: Example training images from BSDS from which the training patches
were extracted.

Figure 5.4: The first 1024 of the 10704 density filtered patches. Density filtration
itself was performed on a set of 50000 examples chosen from the BSDS training set.

The training samples were preprocessed using density filtration in three stages.

The procedure identifies training examples that constitute high density regions in

space and these were stacked in the matrix X for use with the proposed models. In

the first stage of preprocessing, for each sample (64−dimensional), the mean value of

its coordinates was subtracted from each of its coordinate. The second step involved

computing the energy, as the sum of squares of coordinates, for each sample. The

mean energy of all samples was computed and only those samples with energy greater

than 95% of the mean energy were retained. The third stage was density filtration

[80] in which we specified the number of nearest neighbors (15 here) and picked a
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Figure 5.5: Average inpainting performance of the proposed Model 2 on 10, 000 ran-
domly chosen BSDS test patches at σ = 25.

Table 5.1: Inpainting performance for standard images when the fraction of missing
pixels is 0.75 (N = 16) and 0.5 (N = 32). For each noise level (σ), the first row is the
PSNR with the overcomplete DCT, second row is with the K-SVD dictionary, third
row is with the proposed combined model.

Boat House Lena Peppers Man
Noise N=16 N=32 N=16 N=32 N=16 N=32 N=16 N=32 N = 16 N=32

26.31 31.66 28.57 34.23 29.21 34.56 23.86 29.84 27.23 31.68
σ = 0 27.09 31.52 29.4 34.55 30.17 34.86 25.29 30.43 28.21 32.29

27.45 31.49 30.19 34.54 30.6 34.69 26.2 30.96 28.52 32.23
25.24 28.22 26.93 30.51 27.48 30.59 23.29 27.3 25.89 28.36

σ = 15 25.86 28.55 27.42 30.76 28.03 30.87 24.47 28.06 26.57 28.88
26.18 28.6 28.09 30.98 28.36 30.91 25.3 28.55 26.83 28.92
24.27 26.57 25.92 28.62 26.18 28.66 22.71 25.72 24.78 26.7

σ = 25 24.78 26.89 26.31 28.87 26.58 28.95 23.74 26.42 25.28 27.15
24.99 26.95 26.8 29.02 26.76 28.95 24.58 26.88 25.44 27.13

percentage of the samples (30% here) that had their neighbors closest to them in

space. X contained 10704 samples after the preprocessing steps. The parameters for

preprocessing were chosen in order to ensure that sufficient number of representative

training samples were available, but the number was not so high that it would slow

down the optimization. The first 1024 patches out of 10704 density filtered examples

are shown in Figure 5.4. It can be seen that most of the patches that constitute high

density regions in space have a “blurred-wedge” like structure.
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Before performing extensive tests with standard images, we randomly selected

10, 000 patches of size 8×8 from the BSDS test set and performed inpainting in order

to analyze the behavior of the proposed models. The test data were 10, 000 patches

chosen at random from the BSDS test dataset. From each patch either 25%, 50% or

75% of the pixels were masked and AWGN with standard deviation σ = {15, 20, 25}

was added. Only the noisy, unmasked pixels were retained in z. The number of

unmasked pixels was N and ΨT would be an identity matrix with N of its randomly

chosen rows retained. Inpainting based on sparse coding consisted of solving (6.3)

using z and ΨTD, as the observation and the dictionary respectively. Inpainting

using Model 1 was performed by solving (5.3) for each observation z using X and

ΨTD as manifold examples and the dictionary respectively. Inpainting using Model

2 amounts to finding K = 500 nearest neighbors indexed by the set Ω̂ using z and

ΨTX, and using (5.6) using a modified LARS algorithm to solve for the coefficients.

The residual error goal was computed as (1.1σ)2N in all the three cases. For sparse

coding and Model 1 proposed approach, the image patches were recovered as Dβ̂ using

their respective sparse codes. For Model 2, the recovered image patch was given by

XΩ̂α̂Ω̂ + Dβ̂. The root mean-squared error (RMSE) of the inpainting procedure for

all the P test patches is,

RMSE =
[

1
MP

P∑
i=1
‖yi −Dβi‖2

2

] 1
2

. (5.8)

The PSNR is computed as 20 log10(255/RMSE). The performance of the Model

2 is shown only for the noise level σ = 25, where it shows significant performance

improvement over predefined/learned dictionaries. Model 1 performs similar to Model

2 in this cases, but its computational complexity is very high.

5.4.1 Inpainting Standard Images

We performed inpainting on a set of standard images (lena, boat, peppers, house,

couple and man) with 50% and 75% missing pixels and additive Gaussian noise of σ =
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(a) (b) (c)

Figure 5.6: Inpainting Peppers image when the fraction of missing pixels is 0.75
(N = 16) and noise level σ = 15 using: (a) overcomplete DCT dictionary, PSNR
= 23.39 dB, (b) KSVD dictionary, PSNR = 24.47 dB, (c) Proposed combined model,
PSNR = 25.3 dB.

{0, 15, 25}. We only present the result of Model 2 here as its performance supersedes

that of Model 1. The COMB-OMP algorithm was used to implement a greedy version

of (5.6), with K = 500. Inpainting was performed on patches with 1−pixel overlap

and the image was recovered by averaging the patches. Table 5.1 presents the PSNR

of the recovered images when 75% and 50% of the pixels were missing. It can be seen

that in all cases where N = 16 and σ = 25, the proposed model performs better than

sparse coding based on DCT/KSVD dictionaries. In general, it can be seen that as

the noise level and number of missing pixels increase the performance of the proposed

model improves over the other methods. Inpainted Peppers images with 75% missing

pixels and σ = 15 are shown in Figure 5.6. The inpainted image using the proposed

model has the details clearly visible when compared to the other two images.

5.4.2 Compressive Recovery of Standard Images

l Compressive sensing was performed on non-overlapping 8 × 8 image patches of

the standard images (Barbara, Boat, House, Lena and Man) using Gaussian random

measurement matrices with the number of measurements fixed at 16, 32 for various

measurement SNRs of 0, 15 and 25 dB. The COMB-OMP algorithm was again used to
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(a) (b) (c)

Figure 5.7: Recovery of Boat image from compressed measurements with N = 16
at 15 dB SNR: (a) overcomplete DCT dictionary, PSNR = 21.28 dB, (b) KSVD
dictionary, PSNR = 23.97 dB, (c) Proposed combined model, PSNR = 26.21 dB

Table 5.2: Compressive recovery performance for standard images at various mea-
surement SNRs when N = 16 and N = 32. For each SNR, the first row is the PSNR
with the overcomplete DCT, second row is for K-SVD, third row is for MLD and the
fourth row is for the proposed combined model.

SNR (dB) Barbara Boat House Lena Man
N=16 N=32 N=16 N=32 N=16 N=32 N=16 N=32 N=16 N=32
19.87 21.29 20.76 22.33 21.70 23.76 22.40 24.26 21.44 22.95

0 dB 20.43 21.44 22.02 23.38 23.25 24.86 23.83 25.40 22.86 24.22
20.63 21.38 22.58 23.76 24.03 25.50 24.74 25.76 23.43 24.53
20.87 21.77 22.81 24.20 24.43 25.98 24.91 26.45 23.73 25.04
21.37 24.94 22.46 26.00 24.05 28.21 24.20 28.34 23.24 26.18

15 dB 21.92 24.33 24.39 27.66 26.43 30.03 26.67 30.35 25.40 28.35
22.37 24.26 25.43 27.29 27.63 30.49 28.20 30.24 26.23 28.05
22.85 24.88 25.94 28.56 28.60 31.54 28.69 31.45 26.87 29.33
21.72 25.23 22.60 26.33 24.03 28.93 24.40 28.75 22.87 26.76

25 dB 22.10 24.76 24.63 28.53 26.83 31.74 26.90 31.59 25.42 29.31
22.54 24.78 25.74 27.86 28.07 32.06 28.88 31.10 26.57 28.79
23.11 25.30 26.29 29.24 29.19 32.95 29.21 32.49 27.22 30.05

implement (5.6) withK = 500, similar to the case of inpainting. The average recovery

performance over 25 iterations using DCT, KSVD, MLD [12] and the proposed Model

2 are presented in Table 5.2. It can be seen that the proposed Model outperforms

all the others in all the cases presented. Figure 5.7 also shows the recovered Boat

image for the case when N = 16 and SNR= 15dB when DCT/KSVD dictionaries and

Model 2 was used. Difference in performance is visible particularly when we look at
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the edges (such as the mast) in the image. Since edges and corners form a significant

component of human visual perception, subjective improvement is also significant.

5.5 Conclusions

We presented an two models that combine the standard sparse coding paradigm with

manifold projection using training examples, for improving the recovery performance

for missing/incomplete data cases. The first model combines a manifold regularization

with sparse coding, whereas the second model assumes that the data has a sparse

coding component and a manifold projection component. We demonstrated that,

these two models performed better recovery when compared to using plain sparse

coding based methods. As demonstrated in the experiments, the proposed models

are particularly useful in conditions of severe corruption of images.
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Chapter 6

COMBINED NON-NEGATIVE AND GENERAL REPRESENTATIONS

6.1 Introduction

The non-negative solution to an underdetermined linear system can be uniquely re-

covered sometimes, even without imposing any additional sparsity constraints. In

this chapter, we derive conditions under which a unique non-negative solution for

such a system can exist, based on the theory of polytopes. Furthermore, we develop

the paradigm of combined sparse representations, where only a part of the coefficient

vector is constrained to be non-negative, and the rest is unconstrained (general). We

analyze the recovery of the unique, sparsest solution, for combined representations,

under three different cases of coefficient support knowledge. Experiments that demon-

strate the recovery of combined representations using randomly generated dictionaries

and coefficients are also presented.

The system of linear equations with the constraint that the solution is non-

negative can be expressed as

y = Xα, where α ≥ 0, (6.1)

where y ∈ RM is the data vector, α ∈ RKx is the non-negative solution (coefficient

vector), and X ∈ RM×Kx is the dictionary with Kx > M . When only a part of the

solution is constrained to be non-negative and the rest is unconstrained (general), we

obtain the combined representation model,

y = Xα+ Dβ, where α ≥ 0. (6.2)

Here, the coefficient vector β ∈ RKx is unconstrained, and X ∈ RM×Kx and D ∈

RM×Kd are the sub-dictionaries for the non-negative and general representations re-

spectively. We denote the combined coefficient vector as δ = [αT βT ]T , and the

combined dictionary as G = [X D]. We assume that G is overcomplete with
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Kx + Kd > M , and the columns of the dictionaries are normalized to have unit `2

norm. The sparsest solutions to (6.1) and (6.2) are obtained by minimizing the `0

norm, the number of non-zero elements, of the corresponding non-negative coefficient

vector, α, or the combined coefficient vector, δ. In both the cases, the unique min-

imum `0 norm solution, when it exists, will be referred to as ML0 solution. In this

chapter, we focus on obtaining deterministic guarantees for recovery of theML0 solu-

tions to the linear systems (6.1) and (6.2), using both convex and greedy algorithms,

based on the properties of the dictionaries.

Some of the applications of the non-negative representation model in (6.1), and

the combined model in (6.2) are in image inpainting [39], automatic speech recognition

using exemplars [40], protein mass spectrometry [41], astronomical imaging [144],

spectroscopy [145], source separation [42], and clustering/semi-supervised learning of

data [19,43], to name a few.

6.1.1 Prior Work

For the non-negative representation model in (6.1), a sufficiently sparseML0 solution

can be recovered by minimizing the `1 norm of α, using the non-negative version of

the basis pursuit (BP) algorithm [110], which we refer to as NN-BP. The optimization

program can be expressed as

min
α

1Tα subject to y = Xα,α ≥ 0. (6.3)

The conditions on X under which the recovery ofML0 solution using (6.3) is possible

have been derived based on the neighborliness of polytopes [35–37], and the non-

negative null-space property [38]. A non-negative version of the greedy orthogonal

matching pursuit (OMP) algorithm [146], which we will refer to as NN-OMP, for

recovering the coefficients has also been proposed [34]. If the set

{α|y = Xα,α ≥ 0} (6.4)

100



contains only one solution, we can use any variational function instead of the `1 norm

in order to obtain the unique non-negative solution [34–36]. In particular, the solution

can be obtained by using the non-negative least squares (NNLS) algorithm [41,147].

A major part of our work investigates the combined sparse representation

model introduced in (6.2), where only a part of the sparse coefficient vector is con-

strained to be non-negative. We consider the deterministic sparsity thresholds i.e.,

the maximum number of non-zero coefficients possible in theML0 solution, such that

the ML0 solution can be uniquely recovered. To the best of our knowledge, such an

investigation has not been reported so far in the literature. However, when both α

and β are unconstrained general sparse vectors, the sparsity thresholds for recovery

of the ML0 solution have been presented in [62, 63]. By considering the coherence

parameters of X and D separately, the authors in [62] show that an improvement

up to a factor of two can be achieved in the deterministic sparsity threshold when

compared to considering X and D together as a single dictionary. Note that deter-

ministic sparsity thresholds provide guarantees that hold for all sparsity patterns and

non-zero values in the coefficient vectors. Probabilistic or robust sparsity thresholds,

that hold for most sparsity patterns and non-zero values in the coefficient vectors

have also been derived in [62], again for the case where α and β are general sparse

vectors. When this representation is approximately sparse and corrupted by additive

noise, theory and algorithms for coefficient recovery are presented in [148].

6.1.2 Contributions

We present deterministic recovery guarantees for both the non-negative and the com-

bined sparse representation models given by (6.1) and (6.2) respectively. Furthermore,

we propose a greedy algorithm for performing coefficient recovery in combined rep-

resentations and derive deterministic sparsity thresholds for unique recovery using `1

minimization and the proposed greedy algorithm.
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For the non-negative model in (6.1), we derive the sufficient conditions for

(6.4) to be singleton based on the neighborliness properties of the quotient polytope

corresponding to the dictionary X. Similar analyses reported in [35,36] assume that

the dictionary X is obtained from a random ensemble and append a row of ones to it,

such that the row span of X contains the vector 1T . In contrast, we do not assume any

randomness on X and only require that its row span intersects the positive orthant.

We show that the sparsity threshold on α, for the set (6.4) to be singleton, is the same

as the deterministic sparsity threshold for recovering the ML0 solution of a general

sparse representation. Whenever this threshold is satisfied, `1-norm regularization in

(6.3) can be replaced with any variational function. Section 6.2 presents the analysis

of the non-negative representation model.

For the combined model in (6.2), we propose a variant of the greedy OMP

algorithm, the combined OMP (COMB-OMP) algorithm, for performing coefficient

recovery. We also consider a `1 regularized convex algorithm, which we refer to as

combined BP (COMB-BP). We derive the deterministic sparsity thresholds for re-

covering the ML0 solution using both the COMB-BP and COMB-OMP algorithms.

We show that a factor-of-two improvement in the sparsity threshold, observed when

α and β are general sparse vectors [62], holds for recovery using the COMB-BP also.

We also show that such an improvement in the sparsity threshold cannot be observed

using the COMB-OMP algorithm, because of the partial non-negativity constraint

on the coefficient vector. However, COMB-OMP incurs very low computational com-

plexity when compared to COMB-BP. Furthermore, we obtain the sparsity thresholds

in the following cases of coefficient support knowledge: (a) the non-zero support of

both α, β are known, and (b) non-zero support of β alone is known. When analyzing

case (b), we factor out the contribution of the general representation component and

arrive at conditions under which `1-norm regularization in the resulting optimization

can be replaced with any variational function for the recovery of α (Section 6.3).
102



The performance of the COMB-BP and the COMB-OMP algorithms are also

analyzed using simulations. The dictionary G is obtained from a Gaussian ensemble

and the non-zero coefficients are obtained either from uniform distribution or fixed

as random signs (±1). It is shown that both COMB-BP and COMB-OMP respec-

tively perform better than their unconstrained counterparts, the BP and the OMP,

particularly as the Kx becomes larger. We also show that the COMB-OMP incurs

substantially less computational complexity when compared to the COMB-BP.

6.2 Non-negative Sparse Representations

For the non-negative representation given in (6.1), we denote the number of non-zero

coefficients in α as Sx.

Definition ( [64]) The two-sided coherence (or simply coherence) of the dictionary

X is

µx = max
i 6=j

|xTi xj|
‖xi‖2‖xj‖2

, (6.5)

Definition ( [34]) The one-sided coherence of the dictionary X is

σx = max
i 6=j

|xTi xj|
‖xi‖2

2
. (6.6)

If the columns of X are normalized, we have µx = σx, and if they had different `2

norms, we would have µx ≤ σx [34, Lemma 1].

Definition ( [34]) The dictionary X belongs to the class of matrices denoted asM+,

if its row span intersects the positive orthant.

If X ∈ M+, ∃h such that hTX = wT ,w > 0. Let us define W = diag(w),

U = XW−1, and denote σu and µu as the one-sided and two-sided coherences of

U respectively. In [36, Theorem 1] it is shown that X ∈M+ is a necessary condition

for (6.4) to be singleton. The main result in [34, Theorem 2] states that the set (6.4)

will be singleton if X ∈M+ and Sx < 0.5(1 + 1/σu).
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We will now state the main result of this section, whose proof will be relegated

to the end of this section.

Theorem 6.2.1 When X ∈ M+, the set defined in (6.4) is singleton if the number

of non-zero entries in α, Sx < 0.5(1 + 1/µx).

The threshold given in the above theorem is better than that of [34, Theorem 2],

because µx = µu, µu ≤ σu and hence µx ≤ σu. We are able to improve the threshold

by resorting to geometric arguments based on the theory of polytopes. The rest of

this section will state and prove lemmas that will be used in the proof of our main

result.

We will define three geometric entities, the cross-polytope CKx , the simplex

T Kx−1 and the positive orthant RKx
+ , that will be used in the proof. The cross-

polytope is defined as the `1 ball, ‖α‖1 ≤ 1, in RKx , and T Kx−1 is the standard

simplex, the convex hull of unit basis vectors. Any general sparse representation with

Sx non-zero coefficients can be successfully recovered using `1 minimization (BP), if

the quotient polytope XCKx is centrally Sx−neighborly [68, Theorem 1]. This form of

neighborliness implies that any set of Sx vertices of XCKx , not including an antipodal

pair (pair of ±xi), span a face. For unique recovery of non-negative Sx−sparse vectors

using the linear program given in (6.3), the condition on the quotient polytope XT is

that it must be outwardly Sx-neighborly [37, Theorem 1]. Here, we fix T = T Kx−1 if

0 can be expressed as a convex combination of the columns of X, else we fix T = T Kx
0

where T Kx
0 is the solid simplex, the convex hull of T Kx−1 and the origin. When every

set of Sx vertices, not including the origin, span a face, the quotient polytope is said

to be outwardly Sx-neighborly.

Lemma 6.2.2 When X ∈ M+ and the number of non-zero coefficients in α is

Sx, the set defined in (6.4) is singleton if the quotient polytope XT Kx
0 is outwardly

Sx−neighborly.
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Proof By assumption, ∃h such that hTX = wT , w > 0. Consider the quotient

polytope UT Kx
0 , where U = XW−1 and W = diag(w). Since XT Kx

0 is outwardly

Sx−neighborly and the positive scaling of vertices does not affect the neighborliness

of a polytope, UT Kx
0 is also outwardly Sx−neighborly. Now denote ŷ = y/(hTy) and

γ = Wα/(hT ŷ). The set defined in (6.4) has a one-to-one correspondence with

{γ|ŷ = Uγ,γ ≥ 0}, (6.7)

If we show that (6.7) is singleton, then (6.4) is singleton as well.

Since we know that ‖α‖0 = Sx, this implies that ‖γ‖0 = Sx. Because of

the neighborliness of the quotient polytope UT Kx
0 , ŷ lies in its simplicial face F of

affine dimension Sx. Denote V to be the set of vertices of F . The remaining vertices

in the quotient polytope are denoted by the set Vc. Consider an arbitrary vector

ŷc expressed as a convex combination of the vertices Vc. Since F is a face, there

exists a linear functional λF and a constant c such that λTF ŷ = c and λTF ŷc < c [68].

This means that for an arbitrarily chosen ŷ and ŷc which are convex combinations of

vertices V and Vc respectively, ‖ŷ− ŷc‖2 > 0. By extension, the rays in the directions

of ŷ and ŷc intersect only at the origin. The convex cones formed by the vertices

V and Vc are denoted as UVR|V|+ and UVcR|V
c|

+ respectively. Since ‖ŷ − ŷc‖2 > 0 is

true for arbitrary pairs of ŷ and ŷc, the relative interiors of UVR|V|+ and UVcR|V
c|

+

are disjoint. Therefore, from [149, Theorem 1.32], there exists a hyperplane passing

through the origin that separates the cones properly. From [41, Prop. 1], the existence

of such a hyperplane is sufficient for (6.7), and by extension (6.4), to be singleton.

6.2.1 Proof of Theorem 6.2.1

If Sx < 0.5(1 + 1/µx), the quotient polytope XCKx is centrally Sx−neighborly [68,

Corollary 1.1]. Since vertices(T Kx
0 )−{0} ⊂ vertices(CKx), central Sx−neighborliness

of XCKx implies outward Sx−neighborliness of XT Kx
0 . Note that the vertex 0 will be
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neglected when considering the outward neighborliness. Combining the assumption

that X ∈M+, from Lemma 6.2.2, the set defined in (6.4) is singleton.

6.3 Combined Sparse Representations

We now turn to investigate the problem of combined sparse representations, where

a part of the coefficient support is constrained to be non-negative. For the com-

bined representation model given in (6.2), the number of non-zero coefficients and

the coefficient support for α are given by Sx and X respectively. For β, they are

respectively denoted as Sd and D. Let us define the combined representation vec-

tor δ = [αT βT ]T and the combined dictionary G = [X D]. The set G indexes

the non-zero coefficients in δ. The length of δ is denoted by Kg and its number of

non-zero coefficients is referred to as Sg. We will refer to the coefficient vector δ as

the combined representation, since it contains both non-negative and general entries

from the coefficient vectors α and β respectively. We will define the cross-coherence

between the matrices X and D as

µg = max
i,j

|xTi dj|
‖xi‖2‖dj‖2

. (6.8)

We will present deterministic sparsity thresholds for recovery of the ML0 solution of

(6.2) when the coefficient supports are unknown as well as partially known.

6.3.1 Non-Zero Supports of α and β Known

The vectors α1 ∈ RSx and β1 ∈ RSd contain the non-zero coefficients of α and β

indexed by X and D respectively. The matrices X1 and D1 contain the columns of

X and D indexed by the sets X and D respectively. Since the coefficient supports

are known, we can express (6.2) as

y = X1α1 + D1β1, (6.9)

where α1 ≥ 0. We define δ1 = [αT1 βT1 ]T and the matrix G1 = [X1 D1]. Recovery

can be performed using least squares with inequality constraints (LSI) [4, Chap. 23]
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as

min
δ1
‖y−G1δ1‖2 subject to IXδ1 ≥ 0, (6.10)

where IX = [ISx 0Sx,Sg ] is the indicator matrix such the constraints IXδ1 ≥ 0 and

α1 ≥ 0 are equivalent.

If the matrix G1 has full column rank, δ1 can be estimated by just using least

squares (LS) instead of LSI, as the additional constraint in (6.10) will not impact the

solution. The following theorem presents a sufficient condition for G1 to be of full

column rank.

Theorem 6.3.1 ( [62,63]) For the system defined in (6.9), the matrix G1 = [X1 D1]

has full column rank if

SxSd <
[1− µx(Sx − 1)]+[1− µd(Sd − 1)]+

µ2
g

. (6.11)

6.3.2 Non-Zero Support of β Alone Known

We will now consider the case where the non-zero support of β given by the set D

is known for the system in (6.2). We will derive conditions for unique recovery of

α using NN-BP and NNLS. With the knowledge of non-zero support of β, we can

rewrite (6.2) as

y = Xα+ D1β1. (6.12)

Define PD to be the projection matrix for the subspace orthogonal to the column

space of D1, i.e.,

PD = IM −D1D†1. (6.13)

Premultiplying (6.12) with PD, we get

PDy = PDXα where α ≥ 0. (6.14)

Let us define ỹ = PDy and X̃ = PDX, such that (6.14) becomes

ỹ = X̃α where α ≥ 0. (6.15)
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The condition for recovery of the unique solution α from (6.15) using NN-BP is

Sx < 0.5
(

1 + 1
µx̃

)
, (6.16)

where µx̃ is the coherence of X̃.

Lemma 6.3.2 ( [63]) The coherence of X̃, given by µx̃ can be upper bounded as

µx̃ ≤ 0.5
(

[1− µd(Sd − 1)]+(1 + µx)
µx[1− µd(Sd − 1)]+ + Sbµ2

g

)
. (6.17)

The above lemma follows directly from [63, Theorem 5]. This also implies that for

the existence of D†1, we need to have Sd < 1 + 1/µd.

Lemma 6.3.3 Let

{α̂|y = Xα̂, α̂ ≥ 0} = {α}. (6.18)

For a given non-zero support set D of β

{α̂|ỹ = X̃α̂, α̂ ≥ 0} = {α} (6.19)

holds if (6.16) is satisfied, and

∃h such that hTX > 0 and hTD1 = 0. (6.20)

Proof From Theorem 6.2.1, we know that the singleton condition (6.19) holds true

if (a) the condition in (6.16) is satisfied, and (b) ∃r such that rT X̃ > 0. Since (6.18)

is true by assumption, ∃h such that hTX > 0. For hTX > 0 and rT X̃ > 0 to hold

together, we should have h = PT
Dr. Therefore, we have hTD1 = 0, following the

definition of PD in (6.13).

If the sufficient conditions in Lemma 6.3.3 are satisfied, NNLS can be used to recover

the unique solution of (6.14), for a given non-zero support D of β.
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6.3.3 Non-zero Supports of α and β are Unknown

When the supports of α and β in (6.2) are unknown, we will first consider the problem

of recovering the coefficients using the convex program,

min
δ
‖δ‖1 subject to y = Gδ, IX̄δ ≥ 0, (6.21)

which we refer to as COMB-BP. Here, IX̄ = [IKx 0Kx,Kg ] is an indicator matrix

that picks out α from the vector δ such that the constraint in (6.21) is equivalent

to α ≥ 0. When deriving the threshold on Sg for the recovery of the ML0 solution,

without loss of generality, we assume that Sx ≤ Sd and µx ≤ µd. Similar thresholds

can be derived for the other cases also.

Condition for Recovering the ML0 Solution using the Convex Program

The sufficient condition for the COMB-BP to recover the ML0 solution is

max
i∈Gc
‖G†1gi‖1 < 1. (6.22)

This condition is same as the one given in [150, Theorem 3.3] for recovery of a

general sparse vector using BP, since the `1 norm does not depend on the sign of the

coefficients. From [62, Theorem 3], the condition (6.22) can be expressed as

(1 + µd)(2Sxµd + Sd(µg + µd)) + 2SxSd(µ2
g − µ2

d) < (1 + µd)2. (6.23)

The threshold on the total number of non-zero coefficients, Sg, is derived using (6.23),

and can be found in [62, Corollary 3].

Condition for Recovering the ML0 Solution using a Greedy Algorithm

We propose a greedy pursuit algorithm that can be used to recover the ML0 solution

from (6.2). The proposed COMB-OMP algorithm follows a procedure similar to the

OMP algorithm [150] and is presented in Appendix A. The stopping criterion for

this algorithm is either the maximum number of iterations/non-zero coefficients, T ,
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or the `2 norm of the residual, ε. In the algorithm, π(i) denotes the correlations

computed for the current residual with the normalized atom gi. When updating

the index set of chosen dictionary atoms, Gt, we consider only the positive maximum

correlation for atoms corresponding to X and absolute maximum correlation for atoms

corresponding to D. This is consistent with our combined representation scheme.

The solution update can be performed using a constrained least squares procedure.

The final debiasing step computes the solution using the LSI algorithm described in

Section 6.3.1. This step will be ignored when deriving the sparsity threshold, since

it improves the solution only when the sparsity threshold is not satisfied and when

there is additive noise in the combined model (6.2).

The sufficient sparsity threshold on the coefficient vector under which the

COMB-OMP will recover the ML0 solution will be investigated. Some of the strate-

gies used in the proofs are inspired by similar techniques used in [62, 63, 150]. In

order to derive the threshold, we will divide the dictionary G = [X D] into four

sub-dictionaries X1 ∈ RM×Sx , X2 ∈ RM×(Kx−Sx), D1 ∈ RM×Sd and D2 ∈ RM×(Kd−Sd).

We assume that the matrix G1 = [X1 D1] contains the atoms that participate in

the representation and G2 = [X2 D2] contains those that do not participate. This

implies that the signal y can be represented as

y = X1α1 + D1β1, (6.24)

where the elements of α1 ∈ RSx are strictly positive and those of β1 ∈ RSd are

non-zero.

Lemma 6.3.4 When the matrix G1 = [X1 D1] has full column rank, y is given by

(6.24), and the residual rt of COMB-OMP satisfies

max(max(XT
1 rt,0), ‖DT

1 rt‖∞) = ‖GT
1 rt‖∞, (6.25)
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the sufficient condition for COMB-OMP to uniquely recover the ML0 solution from

(6.2) is

max
i∈Gc
‖G†1gi‖1 < 1. (6.26)

Proof For COMB-OMP to recover the unique sparsest representation, no atom from

G2 must enter the support set Gt at any iteration. Therefore, the residual rt at each

iteration t must satisfy the condition

ρ(rt) ≡
max(max(XT

2 rt,0), ‖DT
2 rt‖∞)

max(max(XT
1 rt,0), ‖DT

1 rt‖∞) < 1. (6.27)

Since

max(max(XT
2 rt,0), ‖DT

2 rt‖∞) ≤ ‖GT
2 rt‖∞,

ρ(rt) can be bounded as

ρ(rt) ≤
‖GT

2 rt‖∞
max(max(XT

1 rt,0), ‖DT
1 rt‖∞) (6.28)

= ‖GT
2 (G†1)TGT

1 rt‖∞
max(max(XT

1 rt,0), ‖DT
1 rt‖∞) (6.29)

≤ ‖GT
2 (G†1)T‖∞,∞‖GT

1 rt‖∞
max(max(XT

1 rt,0), ‖DT
1 rt‖∞) (6.30)

= ‖GT
2 (G†1)T‖∞,∞ (6.31)

= ‖G†1G2‖1,1 (6.32)

= max
i∈Gc
‖G†1gi‖1 (6.33)

Eqn. (6.29) holds since (G†1)TGT
1 is an orthoprojector onto the column space of G1.

Both y and Gδt lie in the column space of G1 and hence rt lies in the same space. The

properties of ‖.‖∞,∞ ensures that (6.30) is true. By assumption, the denominator of

(6.30) equals ‖GT
1 rt‖∞. Therefore, (6.31) holds true and (6.32) follows from relation

‖AT‖∞,∞ = ‖A‖1,1 for any matrix A. From (6.27), (6.28) and (6.33), the sufficient

condition provided in (6.26) is obtained.
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Note that the sufficient condition (6.26) given in Lemma 6.3.4 is the same

for a general representation also [62, 150]. However, the important difference in the

case of recovery using COMB-OMP is that (6.26) becomes sufficient only when (6.25)

holds. As we will see in the following lemmas, this will lead to a significant difference

in terms of sparsity threshold when compared to COMB-BP. We will first derive

conditions under which the first step of the COMB-OMP, when y = r0, will satisfy

(6.25). This will then be extended to the residuals at all steps, rt, where t ≥ 1.

Lemma 6.3.5 When the matrix G1 = [X1 D1] has full column rank, and y is given

as (6.24), (6.25) will be satisfied for y = r0 if

(Sx − 1)µd + Sdµg <
1
2 . (6.34)

Proof For (6.25) to be satisfied, the sufficient condition is that

max(XT
1 rt,0) = ‖XT

1 rt‖∞. (6.35)

Therefore, we only have to consider the case where an atom from X1 will be picked.

Let us denote δ1 = [αT1 βT1 ]T and z = XT
1 y = XT

1 G1δ1. We will derive the bounds

on the maximum positive value, zm, and the minimum negative value, zn, of z. We

denote the smallest possible lower bound on zm as ẑm, and the largest possible lower

bound on |zn| as ẑn. The worst-case guarantee for (6.35) to be true is

ẑm > ẑn. (6.36)

Using the fact that

XT
1 G1 = [ISx 0] + [XT

1 X1 − ISx XT
1 D1],

the correlation vector z can be expressed as

z = α1 + [XT
1 X1 − ISx XT

1 D1]δ1. (6.37)
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Let us define C1 = [XT
1 X1− ISx XT

1 D1] and the elementwise bounds on the subma-

trices are,

|XT
1 X1 − ISx| ≤ µx(1Sx,Sx − ISx)

≤ µd(1Sx,Sx − ISx),

and XT
1 D1 ≤ |µg1Sx,Sd

|. It is clear that the maximum row sum of C1 is

‖C1‖∞,∞ ≤ (Sx − 1)µd + Sdµg. (6.38)

In order to derive the smallest lower bound on zm, we will assume that all the

coefficients in δ1 have the same absolute value given by α, and hence, from (6.37),

we have

zm ≥ α− α‖C1‖∞,∞

≥ α(1− [(Sx − 1)µd + Sdµg]) ≡ ẑm. (6.39)

The required bound on zn can be obtained by setting one element of α1 as α̂, where

0 < α̂ < α, and the absolute value of all the other elements of δ1 as α. We now have

zn ≥ α̂− α‖C1‖∞,∞,

and as α̂→ 0,

|zn| < α[(Sx − 1)µd + Sdµg] ≡ ẑn, (6.40)

which is the largest possible lower bound on zn. Substituting (6.39) and (6.40) in

(6.36), results in (6.34).

The condition given by (6.34) needs to be satisfied even if there is one non-

negative component in the combined representation. For now, let us assume that

(6.25) holds for all rt, where t ≥ 1, and derive the threshold on Sg such that theML0

solution can be recovered from (6.2). It will be shown later in the section that the

threshold on Sg obtained indeed implies that (6.25) holds for all rt, t ≥ 1.
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Lemma 6.3.6 When the matrix G1 has full column rank, and y is given as (6.24),

the sufficient condition for (6.26) to be satisfied is

Sxµd + Sdµg
1− (Sxµd + Sdµg − µd)

< 1 (6.41)

Proof The condition for success of COMB-OMP can be written as

max
i∈Gc
‖G†1gi‖1 ≤ ‖(GT

1 G1)−1‖1,1 max
i∈Gc
‖GT

1 gi‖1, (6.42)

using the property of ‖.‖1,1 and the fact that G†1 = (GT
1 G1)−1GT

1 .

In order to compute the lower bound for ‖(GT
1 G1)−1‖1,1, we first expand the

Gramm matrix

GT
1 G1 = ISg + C, (6.43)

where

C ≡

 XT
1 X1 − ISx XT

1 D1

DT
1 X1 DT

1 D1 − ISd

 .
C can be bounded elementwise as

|C| ≤

 µx(1Sx,Sx − ISx) µg1Sx,Sd

µg1Sd,Sx µd(1Sd,Sd
− ISd

)



≤

 µd(1Sx,Sx − ISx) µg1Sx,Sd

µg1Sd,Sx µd(1Sd,Sd
− ISd

)

 ,
since µx ≤ µd by assumption. The maximum column sum of C is bounded as

‖C‖1,1 ≤ (Sx − 1)µd + Sdµg, (6.44)

since Sx ≤ Sd. From (6.43), we also observe that ‖C‖1,1 < 1, since GT
1 G1 is strictly

diagonally dominant, because of the linear independence of the columns of G1. Using

(6.43), we can write

‖(GT
1 G1)−1‖1,1 = ‖(ISg + C)−1‖1,1. (6.45)
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The Neumann series ∑k(−C)k converges to (ISg + C)−1, whenever ‖C‖1,1 < 1 [151]

and hence (6.45) can be expressed as

‖(GT
1 G1)−1‖1,1 =

∥∥∥∥∥
∞∑
k=1

(−C)k
∥∥∥∥∥

1,1

≤
∞∑
k=1
‖C‖k1,1

= 1
1− ‖C‖1,1

≤ 1
1− (Sxµd + Sdµg − µd)

, (6.46)

using (6.44). If gi is a vector chosen from X2, |GT
1 gi| ≤ [µd1TSx

µg1TSd
]T and hence

we have

max
i∈Gc
‖GT

1 gi‖1 ≤ Sxµd + Sdµg = (Sx + Sd)µd + Sd(µg − µd). (6.47)

If gi is chosen from D2, |GT
1 gi| ≤ [µg1TSx

µd1TSd
]T . Therefore

max
i∈Gc
‖GT

1 gi‖1 ≤ Sxµg + Sdµd = (Sx + Sd)µd + Sx(µg − µd). (6.48)

Since Sd ≥ Sx, among (6.47) and (6.48), we will choose (6.47) as our bound. Substi-

tuting (6.47) and (6.46) in (6.42), we can obtain (6.41) as the condition for COMB-

OMP to succeed.

When (6.41) is satisfied, (6.34) holds as well. Since the number of non-zero

coefficients, Sx and Sd, of α1 and β1 are unknown, we need to derive the condition

on recovery that depends only on the number of non-zero coefficients of the combined

representation Sg.

Lemma 6.3.7 When the matrix G1 has full column rank, and y is given as (6.24),

the sparsity threshold on the combined coefficient vector δ for (6.41) to hold is

Sg < 0.5
(

1 + 1
µg

)
. (6.49)
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Proof Rewriting (6.41), we obtain

Sx <
1 + µd − 2Sdµg

2µd
≡ ψ(Sd).

The threshold on the total number of non-zero coefficients, Sg, can be obtained by

minimizing ψ(Sd) + Sd over Sd. The constraint is that Sd ≥ 1 since Sx ≤ Sd and the

overall representation will have at least one non-zero coefficient. Denoting S to be

the sparsity threshold, it can be obtained as

S = min
Sd≥1

[Sd + ψ(Sd)].

Relaxing the constraint that Sd is an integer, the minimum will be obtained when

µg = µd and the minimum value is

S = 0.5
(

1 + 1
µg

)
,

which is the strict upper bound on Sg.

A similar procedure to obtain the threshold on Sg using (6.34), results in Sg <

0.5(2 + 1/µg), which is only slightly better than (6.49). Moreover, as stated already

(6.41) implies (6.34) and not vice-versa. Therefore the sparsity threshold in (6.49)

cannot be made better. We will assume that µg = µd, as obtained in the proof of

the above lemma, and show that the above bound is sufficient for recovering the

subsequent atoms using the residuals rt, when t ≥ 1.

Lemma 6.3.8 When the matrix G1 has full column rank, and y is given as (6.24),

(6.25) will hold true for residual at any step, rt for t ≥ 1, when µg = µd and (6.49)

is satisfied.

Proof Since we assumed that µg = µd, we will assume that the overall coherence of

G1 is µg and the total number of columns in G1 is Sg. We will denote G1 = [Ga Gb],

where Ga with Sa columns contains the atoms already chosen for the representation
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and Gb contains Sb = Sg − Sa atoms, one of which will be chosen by the residual.

The residual rt will be simply denoted as r for notational convenience and is obtained

using a least squares procedure as

r = y−Gaδa, (6.50)

where

δa = G†ay. (6.51)

Let us denote the correlation vector as

z = GT
b r. (6.52)

Similar to the proof of Lemma 6.3.5, we are only concerned about recovering the non-

negative coefficients as it will give us sufficient conditions under which (6.25) will be

satisfied. The bounds on the maximum positive value, zm, and the minimum negative

value, zn, of z will be derived assuming that all the elements in δb are constrained to

be non-negative. In this case, the smallest possible lower bound on zm, given by ẑm

and the largest possible lower bound on |zn| given by ẑn. For (6.25) to hold for any

rt, where t ≥ 1, similar to the proof of Lemma 6.3.5, we need to show that

ẑm > ẑn. (6.53)

We will first expand (6.52) using (6.50) and (6.51)

z = GT
b (y−GaG†ay)

= GT
b (I−GaG†a)G1δ1 (6.54)

= GT
b (I−GaG†a)Gbδb, (6.55)

which is obtained by substituting G1 = [Ga Gb] and δ1 = [δTa δTb ]T in (6.54). Let

us denote any two distinct columns from Gb by gi and gj. Let us also denote the
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matrix Q = GT
b (I − GaG†a)Gb, which is of size Sb × Sb, and designate its (i, j)th

element to be qij. The correlation vector in (6.55) can be now expressed as

z = Qδb

We will compute bounds on the diagonal and off-diagonal elements of Q. Expanding

G†, we can write

|qij| =
∣∣∣gTi [I−Ga(GT

aGa)−1GT
a ]gj

∣∣∣ (6.56)

≤
∣∣∣gTi gj

∣∣∣+ ∣∣∣gTi Ga(GT
aGa)−1GT

a gj
∣∣∣ (6.57)

≤
∣∣∣gTi gj

∣∣∣+ ∥∥∥GT
a gi

∥∥∥2

2

∥∥∥(GT
aGa)−1

∥∥∥
2
. (6.58)

Eqn. (6.57) follows from applying triangle inequality on (6.56) and (6.58) is obtained

by upper bounding the second term in the right hand side of (6.57). We can express

∥∥∥GT
a gi

∥∥∥2

2
≤ Saµ

2
g

since the maximum absolute coherence between any two elements in G1 is µg. Since∥∥∥(GT
aGa)−1

∥∥∥
2
≤ 1/λmin(GT

aGa), and by Gershgorin’s disc theorem [152, Theorem

6.1.1], λmin(GT
aGa) ≤ [1− µg(Sa − 1)]+, we can rewrite (6.58) as

|qij| ≤ µg +
Saµ

2
g

[1− µg(Sa − 1)]+ . (6.59)

When i = j, we have

|qii| =
∣∣∣gTi [I−Ga(GT

aGa)−1GT
a ]gi

∣∣∣ (6.60)

≥
∣∣∣gTi gj

∣∣∣− ∣∣∣gTi Ga(GT
aGa)−1GT

a gj
∣∣∣ (6.61)

≥ 1−
Saµ

2
g

[1− µg(Sa − 1)]+ . (6.62)

Eqn. (6.61) follows from applying reverse triangle inequality on (6.60) and (6.62) is

obtained by following steps similar to the derivation of upper bound on |qij|. The

bounds given by (6.59) and (6.62) are valid only if 1− µg(Sa − 1) > 0, which can be
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verified by substituting µg < 1/(2Sg−1), from (6.49), and Sa < Sg. Therefore, (6.60)

and (6.62) can be rewritten as |qij| ≤ q1, |qii| ≥ q2, where

q1 = C1µg

q2 = C1(1− Saµg),

and C1 = (1 + µg)/[1− µg(Sa − 1)].

We know that the diagonal elements of Q are lower bounded by q1 and the

off-diagonal elements are upper bounded by q2. Since there are Sb rows in Q, the

smallest lower bound on zm is

zm ≥ αq2 − α(Sb − 1)q1 ≡ ẑm (6.63)

which is obtained when all the elements in δb are set to α. The required bound on

zn is obtained by setting one element of δb corresponding to a positive coefficient as

α̂, where 0 < α̂ < α, α̂ approaches zero and all the other values in δb are set to α. zn

can be now bounded as zn ≥ α̂q2 − αq1(Sb − 1). As α̂→ 0, we have

|zn| < α(Sb − 1)q2 ≡ ẑn. (6.64)

Using (6.53), (6.63) and (6.64), we have

µg <
1

2Sg − Sa − 2 ,

which is always satisfied since we know from (6.49) that µg < 1/(2Sg−1) and Sa ≥ 1.

Now, we are ready to state our main theorem without proof, since it follows

directly from the lemmas stated in this section.

Theorem 6.3.9 For any y that follows the combined model in (6.2), COMB-OMP

will recover the ML0 solution if the number of non-zero coefficients, Sg, is less than

0.5(1 + 1/µg).
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Figure 6.1: Deterministic sparsity thresholds for COMB-BP, BP, COMB-OMP and
OMP with µg = 0.01 in order to recover the ML0 solution from (6.2).

From the lemmas proved in this section, it is clear that this threshold cannot

be made better. Contrast this with the case of recovery using a convex program

discussed in Section 6.3.3, as well as sparsity thresholds for recovery using BP and

OMP when α and β are general sparse vectors [62, Eqn. (13)]. Figure 6.1 compares

the thresholds on Sg when µg = 0.01 and µd varies from 0 to 0.01. We can see that an

improvement up to a factor of two can be observed with COMB-BP, BP and OMP

algorithms when compared to COMB-OMP. From the proof of Lemma 6.3.5, it can

be observed that introducing non-negative constraint on even one coefficient in the

representation drastically alters the deterministic sparsity threshold of greedy OMP-

like algorithms. Note that, however, the sparsity thresholds are pessimistic and in the

experiments provided in the next section, COMB-OMP performs better than OMP

and also has much reduced computational complexity when compared to COMB-BP

and BP.
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6.4 Experiments

The COMB-BP and the COMB-OMP algorithms incorporate the prior knowledge

that a set of coefficients to be recovered are non-negative. If we use BP and OMP

algorithms for recovery, this prior knowledge cannot be exploited. In order to establish

that this additional information leads to improvement in recovery performance, we

performed numerical experiments by realizing the elements of dictionary G from an

i.i.d. zero-mean, unit-variance, Gaussian distributions. The non-zero coefficients in

the coefficient vector δ are either signs (±1) or realized from a uniform distribution.

We varied the proportion of the non-negative and the unconstrained coefficients in

the combined representation and tested the performance of COMB-BP, BP, COMB-

OMP and OMP algorithms in exact and approximate recovery. For the case of

exact recovery, we also compared NN-BP and NN-OMP algorithms which impose the

constraint that all coefficients are non-negative.

The total number of atoms in G was fixed at Kg = 200. The three cases

tested were (a) Kx = 50, Kd = 150, (b) Kx = 100, Kd = 100, and (c) Kx = 150,

Kd = 50. The location of the non-zero coefficients in δ were fixed uniformly at

random. When the non-zero coefficients were realized from a uniform distribution,

the non-negative coefficients were obtained from the uniform distribution U(0, 1) and

the general coefficients were obtained from U(−1, 1). When the non-zero coefficients

were signs, the general coefficients were obtained with equiprobable positive and

negative signs. The number of non-zero coefficients Sx and Sd were varied from 1

to 30 each, and hence the total number of non-zero coefficients, Sg, varied from 2

to 60. y was obtained using the combined model (6.2), and coefficient recovery was

performed using the six algorithms. The relative recovery error between the recovered

coefficient vector δ̂ and the actual coefficient vector δ is

RRE = ‖δ̂ − δ‖
2
2

‖δ‖2
2

. (6.65)
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(a) (b)

(c)

Figure 6.2: Exact recovery performance of COMB-BP, BP, COMB-OMP, OMP, NN-
OMP and NN-BP when G is obtained from a Gaussian ensemble and the non-zero
coefficients are realized from a uniform distribution. (a) Kx = 50 and Kd = 150, (b)
Kx = 100 and Kd = 100, (a) Kx = 150 and Kd = 50.

If the RRE is less than 10−6, the coefficient is said to be recovered exactly. Each

experiment was repeated 10 times in order to measure the average performance in

cases of both exact and approximate recovery. The average relative recovery error is

the mean of RRE over all iterations.

Let us first consider the case when the coefficients are realized from the uniform

distribution. From Figure 6.2 it can be seen that as Kx increases, the performance of
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(a) (b)

(c)

Figure 6.3: Average relative recovery error of COMB-BP, BP, COMB-OMP and
OMP when G is obtained from a Gaussian ensemble and the non-zero coefficients are
realized from a uniform distribution. (a) Kx = 50 and Kd = 150, (b) Kx = 100 and
Kd = 100, (a) Kx = 150 and Kd = 50.

COMB-BP and COMB-OMP become increasingly better when compared to that of

BP and OMP respectively. In particular, the performance of COMB-BP substantially

improves as the non-negative component in the representation becomes bigger. Note

that the recovery performance of NN-OMP and NN-BP algorithms do not compare

well with the rest of the algorithms, since they impose the constraint that all coef-

ficients are non-negative, whereas actually only a part of them are. Furthermore, in
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(a) (b)

(c)

Figure 6.4: Exact recovery performance of COMB-BP, BP, COMB-OMP and OMP
when G is obtained from a Gaussian ensemble and the non-zero coefficients are signs.
(a) Kx = 50 and Kd = 150, (b) Kx = 100 and Kd = 100, (a) Kx = 150 and Kd = 50.
The legend here is same as that of Figure 6.2.

Figure 6.3, it can be observed that COMB-BP and COMB-OMP algorithms exhibit

lesser average RRE when compared to their unconstrained counterparts. In this case,

the gap in performance between OMP and COMB-OMP is very pronounced when Kx

is large. Similar behavior can be observed when non-zero coefficients are signs (Fig-

ures 6.4 and 6.5) but in general the differences in performance of the algorithms are

less prominent. The experiments clearly show that COMB-BP and COMB-OMP per-
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(a) (b)

(c)

Figure 6.5: Average relative recovery error of COMB-BP, BP, COMB-OMP and OMP
when G is obtained from a Gaussian ensemble and the non-zero coefficients are signs.
(a) Kx = 50 and Kd = 150, (b) Kx = 100 and Kd = 100, (a) Kx = 150 and Kd = 50.
The legend here is same as that of Figure 6.3.

form better than BP and OMP respectively, although the sparsity thresholds derived

in the previous section did not point to such an improvement. This is because the

deterministic sparsity bounds are generally pessimistic. Furthermore, the presence of

a large non-negative component substantially improves the recovery performances of

COMB-BP and COMB-OMP. The average RRE using NN-OMP and NN-BP algo-

rithms are not shown since they are much higher than those of the other algorithms.
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Figure 6.6: Average CPU time in seconds taken by COMB-BP, BP, COMB-OMP
and OMP algorithms to recover one coefficient, when G is obtained from a Gaussian
ensemble and the non-zero coefficients are realized from a uniform distribution with
Kx = 100 and Kd = 100.

Finally, the average CPU time taken by each of the algorithms to recover

a coefficient vector is computed and shown in Figure 6.6, for the case when G is

obtained from a Gaussian ensemble, the non-zero coefficients are realized from a

uniform distribution, Kx = 100 and Kd = 100. The experiments were performed

using MATLAB R2010b on a 2.8GHz, Intel i7 desktop. Clearly, COMB-OMP and

OMP have much lesser computational complexity when compared to COMB-BP and

BP.

6.5 Conclusions

We considered the problem of recovering sparse solutions from a overcomplete linear

model when the solution vector was constrained to be either completely or partially

non-negative. When the solution was completely non-negative, based on the theory

of polytopes, we derived conditions on the dictionary for the existence of a unique

solution. In the case of combined sparse representations, we considered cases when the
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coefficient support was completely known, partially known or completely unknown.

When the coefficient support was completely unknown, we proposed the COMB-OMP

algorithm and derived the deterministic sparsity threshold that guarantees recovery

of the unique, minimum `0 norm solution. Experimental results, using dictionaries

drawn from a Gaussian ensemble and non-zero coefficients realized from a uniform

distribution or a equiprobable distribution of signs, showed that the COMB-BP and

COMB-OMP algorithms perform better in terms of exact and approximate recovery

compared to their unconstrained counterparts. A possible direction for future work

is to derive probabilistic sparsity thresholds for NN-BP and COMB-BP algorithms,

under appropriate assumptions on the dictionary and the coefficient vectors, that will

explain the improved experimental performance of sparse recovery algorithms with

non-negativity constraints when compared to their unconstrained versions.
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Chapter 7

NON-LINEAR COMPRESSIVE SENSING USING KERNELS

7.1 Introduction

Certain classes of signals can be represented using a few principal components in a

feature space that are obtained by a nonlinear transformations of the input signal

space. Compressive sensing of such signals can be performed using the kernel trick,

by transforming the linear measurements from the input space to the feature space.

The overview of such a system is shown in Figure 7.1. For the case of random mea-

surements, this framework has been proposed in [54] and results in a good recovery

performance with fewer measurements compared to linear compressive sensing. When

class-specific training signals are available, the measurement system can be optimized

to the signals in that class. We propose such an optimized measurement system for

non-linear compressive sensing that achieves a significantly higher recovery perfor-

mance when compared to using random measurements. We show that the optimized

measurement vectors are the training signals that have maximum projection energy

on the first few kernel principal components (Figure 7.2). Simulation results with

handwritten digits [153] and sculpted faces data [22] show that the recovery per-

formance of the proposed non-linear compressive sensing framework is better than

that obtained using optimized measurements with linear compressive sensing. The

methods and results presented in this chapter were published in [59].

7.2 Nonlinear Compressive Sensing using Kernels

Consider the T training signals given by the matrix X = [xi]Ti=1 obtained from the

M−dimensional Euclidean inner product space X . Let us assume that the non-linear

transformation to the feature space φ(.) results in signals that are centered in the

feature space. We will denote a kernel matrix or vector with similarity values as

K(., .) with the (i, j)th element given as K(xi,xj). We will use projective kernels
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Figure 7.1: The nonlinear compressive sensing and recovery system, where N linear
measurements are obtained and transformed to feature space to obtain non-linear
measurements. The recovered coefficients are used to reconstruct the original data in
the input space.

of the form K(xi,xj) = f(〈xi,xj〉X ), since they can directly transform the inner

products from the input space to the feature space. Let us define an orthonormal

basis set for the centered feature space computed using kernel PCA [49] as [V V⊥].

The basis set for the L dimensions that account for most of the energy of the feature

space data φ(X) are given by

V = φ(X)α, (7.1)

where α ∈ RT×L is obtained as the first L eigen vectors from the eigen decomposition

of K(X,X). Note that φ(X) denotes the matrix [φ(xi)]Ti=1 .

In order to perform non-linear compressive sensing in the feature space, we

transform the linear measurements 〈ψn,y〉X , where n = {1, · · · , N} and N � M ,

to the feature space as K(ψn,y) = f(〈y,ψn〉X ). The function f(.) depends only

on 〈y,ψn〉X and not on y or ψn, and hence the K(., .) is referred to as a projective

kernel. Let us assume that the data samples can be represented in the first L principal

components in feature space. Therefore, we can represent

φ(y) = Vγ + ε, (7.2)

where γ ∈ RL and 〈ε, ε〉F is much smaller compared to 〈Vγ,Vγ〉F . The kernel
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Figure 7.2: Computing optimized measurements for kernel compressive sensing. The
feature samples φ(x1) and φ(x3) have the maximum projection energy in the principal
feature subspace spanned by V = [v1 v2]. Data samples x1 and x3 are chosen as
optimized measurement vectors in the input space.

measurements can be written as

K(ψn,y) = 〈φ(ψn),Vγ〉F + 〈φ(ψn), ε〉F . (7.3)

Including all N measurements, from (7.1), we obtain

K(Ψ,y) = K(Ψ,X)αγ + K(Ψ, ε), (7.4)

where Ψ = [ψn]Nn=1. γ can be estimated using a least squares procedure from (7.4).

Using (7.2) and (7.1), the recovered signal in F can be represented as

φ(ŷ) = φ(X)αγ. (7.5)

In order to actually compute ŷ from φ(ŷ), we can use either an exact or approximate

preimage method since the inverse map of φ(.) is usually not defined.

In the approximate MDS-based preimage method, we first compute K(X, ŷ) =

K(X,X)αγ and K(ŷ, ŷ) = γTαTK(X,X)αγ using (7.5). For an arbitrary training

signal xi, we have 〈xi, ŷ〉X = f−1 (K(xi, ŷ)) and 〈ŷ, ŷ〉X = f−1 (K(ŷ, ŷ)). Using
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these inner products, ‖xi − ŷ‖2
X can be computed and the P nearest training signals

to ŷ can be estimated. MDS can be used to estimate the unknown signal ŷ, from its

nearest neighbors and their distances to ŷ.

7.3 Optimized Measurements

It has been shown in [54] that compressive recovery using kernel random projections,

perform substantially better than total variation or `1 minimization approaches for

low to medium number of measurements in several datasets. However, optimized

measurements have been shown to achieve significantly higher performance in linear

compressive sensing, when compared to random projections, when the sparse repre-

sentation dictionary is known. The idea is to ensure that the equivalent dictionary,

which is the product of the measurement matrix and the sparse representation dic-

tionary ΨTD, is as incoherent as possible. The measurement matrix Ψ is designed

such that the Gram matrix of the equivalent dictionary, DTΨΨTD, is approximately

equal to the identity matrix. Measurement vectors can be optimized in the case of

kernel compressive sensing also in order to improve the recovery performance when

compared to using same number of random measurement vectors.

From (7.3), it can be seen that the kernel measurements have two components

in F , one that lies in the span of V and one that lies in its orthogonal complement.

However, as per our assumption φ(y) has most of its energy in the span of V. If we

design a measurement system such that {φ(ψn)}Nn=1 almost entirely lies in the span

of V, we will able to perform much better recovery compared to using random mea-

surements. Furthermore, in order to ensure that we extract maximum information,

the measurement system φ(Ψ) should be of rank L in feature space. This problem

can be formally stated as:

min
Ψ,Ω
‖φ(Ψ)−VΩ‖2

F , subject to rank(φ(Ψ)) = L. (7.6)

Here φ(Ψ) is matrix with N columns and Ω ∈ RL×N . This problem has an infinite
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number of exact solutions and a suitable solution can be chosen based on any regu-

larization constraint. An important consideration is that we should be able to obtain

the actual measurement system Ψ̂ from the computed φ(Ψ) accurately, which is not

straightforward as the map φ(.) is not invertible.

The solution to (7.6), given as φ(Ψ̂) = RV, where R is an orthogonal rota-

tion and scaling matrix, is mathematically appealing. Exact preimages do not exist

in general for such a φ(Ψ̂) and compressive recovery results obtained using the ap-

proximate preimages of φ(Ψ̂) computed using the MDS based method [93] were not

encouraging. Since exact preimages can be guaranteed for the data samples X only,

we propose the following procedure to compute the optimized measurement system.

This scheme is illustrated in Figure 7.2 for a sample low dimensional scenario. Given

the L principal dimensions in the feature space represented by V, we compute the

projections βi of each feature sample φ(xi) on V. The indices of N feature samples

that have the highest projection energies are given by the set C. The measurement

vectors in the feature space are now given by φ(ĝn) = φ(xi), i = C(n). Since every

φ(xi) has an exact preimage given by xi, the measurement system is given by the N

data samples indexed by the set C itself. Note that because of the rank constraint in

(7.6), we choose N > L. By computing the rank of the matrix of projection compo-

nents [βi]i∈C, we can ensure that the projections of {φ(xi)}i∈C completely span the

subspace spanned by V. The measurement system is then used to perform kernel

compressive sensing and recovery is performed as described in Section 7.2.

7.4 Results

We compare the recovery performances of the non-linear kernel compressive sensing

with random and optimized measurement systems, as well as with that of the opti-

mized measurement system for linear compressive sensing. The two datasets used for

testing are the MNIST handwritten digit 2 dataset [153] and the sculpted faces [22].
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(a)

(b)

Figure 7.3: Kernel compressive recovery with random and optimized measurement
systems for (a) digit 2 data, (b) sculpted faces data. Mean RMSE with projection of
test data onto L kernel principal components is also shown.

The handwritten digit 2 had 5958 training images and 500 test images were randomly

chosen from the test set. Each image was of size 28× 28. The sculpted faces dataset

had 698 images of size 64× 64 of which 500 images were randomly chosen as training
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(a)

(b)

Figure 7.4: The 50 optimized measurement vectors chosen from the training set for
performing kernel compressive sensing (L = 25) (a) digit 2 data (b) sculpted faces
data.

samples and the rest were used as test samples. Note that the vectorized training

samples are denoted by X and each test sample is denoted by y. A polynomial kernel

of the form K(xi,xj) = (c+ 〈xi,xj〉X )p is used where p = 5 and c is computed as the

mean of entries of the covariance of X.

The randommeasurement vectors are obtained as realizations from i.i.d. Gaus-

sian random variables of zero mean and unit variance. The optimized measurement

system was computed using the procedure detailed in Section 7.3. For comparison, we

also learned a dictionary using the training samples in each of the two datasets using

the K-SVD algorithm and computed the optimized measurement systems for linear
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compressive sensing using the procedure described in [136]. For kernel compressive

sensing, the test data ŷ is recovered using the MDS-based preimage computation

procedure and for linear compressive sensing we use the orthogonal matching pursuit

algorithm to approximately solve for the coefficient vector β. Figure 7.3 shows the

recovery performance in terms of average root mean square error (RMSE) between

the original and the recovered test samples, for the digit and sculpted faces dataset.

For kernel compressive sensing, we set the number of measurements as twice the

number of dominant principal components, N = 2L. For linear compressive sensing

it was set to twice the assumed number of non-zero elements in the coefficient vector

β. For comparison, the average RMSE is calculated for test samples recovered by

directly projecting on to the L kernel principal components. The proposed optimized

measurement system performs significantly better than using random measurements

for kernel compressive sensing as well as using optimized measurements for linear

compressive sensing. It is close in performance to the direct projection using the

kernel principal components.

Figure 7.4 illustrates the 50 optimized measurement vectors computed for the

datasets. It can be seen that for the digit dataset, the measurement system covers

a wide variety of strokes and for the sculpted faces, the measurement system covers

a wide range of poses. For classes of data that can be well-represented using a

few principal components in the feature space, good recovery performance in kernel

compressive sensing can be obtained by using a carefully chosen set of training samples

themselves as the measurement vectors.

7.5 Conclusions

We considered the problem of compressively sensing signals that are well represented

in feature spaces obtained by a non-linear transformation of the input space. An

optimized measurement system for performing non-linear compressive sensing was
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proposed. It was shown that the measurement system can be designed using a care-

fully chosen set of samples obtained from the training data itself. Results with two

different datasets showed that the proposed optimized measurements outperformed

both the random measurement system as well as an optimized measurement system

for linear compressive sensing.
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Chapter 8

SUMMARY AND FUTURE WORK

The research presented in this dissertation covered a range of sparse models and

their interaction with manifold, ensemble and graph-based methods. The use of the

proposed methods in data representation, recovery and inference applications were

analyzed. We began by focusing on the paradigm of graph embedding, and proposed

a general sparse learning framework that incorporates graph embedding constraints.

The applications of this framework in several machine learning applications were

discussed. Following this, we shifted our interest to ensemble models and proposed

algorithms to represent data using a combination of several sparse models. The

utility of these models in image analysis applications were discussed. Subsequently,

two models that combine traditional sparse coding framework and manifold projection

for recovering data from their low-dimensional corrupted observations were proposed,

and used for recovering degraded images. We then performed a theoretical study on

an important class of sparse models, the non-negative representations, and proceeded

to develop a new paradigm of sparse representations - the combined sparse model,

where a part of the coefficient support is known to be non-negative and the rest

is unconstrained. Finally, we analyzed a non-linear compressive sensing framework

using kernels, that provides improved recovery performance for certain classes of data

and proposed an optimized measurement system that resulted in a much improved

recovery performance. A detailed summary and possible research directions for the

future are presented below.

8.1 Summary

Using the paradigm of graph embedding, relationship between data can be encoded

as undirected graphs. This was integrated with the traditional sparse modeling

paradigm and algorithms to generate graph-embedded sparse codes were proposed.
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The optimization problem is non-convex and non-differentiable, and hence methods

from non-convex optimization theory were adapted to compute these codes. Since op-

timum sparse codes cannot be obtained without dictionaries, an alternating procedure

to learn dictionaries and sparse codes was used. If discriminative graph-embedding

constraints are posed, codes that provide an improved discrimination between classes

can be obtained. The sparse coefficients were used in unsupervised, supervised and

semi-supervised learning frameworks, with standard datasets, and results showed that

the proposed algorithm performs better than several baseline procedures.

Ensemble models are a powerful class of models in machine learning, where

multiple weak hypotheses are combined to obtain the final inference. We proposed

to learn an ensemble of sparse models from the data using an adaptive procedure

that incorporates the knowledge of degradation of data. A method to restore the

data from degraded observations was also proposed. The ensemble model was used

to recover compressively sensed data and results showed that better performance was

obtained, when compared to using traditional learned dictionaries. In superresolution,

the proposed ensemble models performed comparably to several recent sparse coding-

based approaches. A notable advantage with the proposed ensemble model is that a

knowledge of only the form of degradation is sufficient, and it is not necessary that

we know the actual degradation operator. We also demonstrated the utility of the

proposed models in unsupervised clustering.

Two generative models that combine manifold projection using examples, with

sparse coding using a predefined dictionary were proposed. The manifold projec-

tion was implemented using a non-negative sparse representation of examples in the

neighborhood of the test observation. The first model regularized sparse coding using

manifold samples and the second model performed a direct combination of manifold

projection and sparse coding. Experiments with image inpainting showed that the

proposed models perform better than using predefined dictionaries with sparse cod-
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ing in extreme missing/corrupted data conditions. Compressive sensing with random

measurements and inpainting of standard images was performed using the second

model and results show that in all cases of compressive sensing and most cases of

inpainting, the proposed model performed better recovery than dictionaries learned

using the state-of-the-art procedures.

The problem of recovering a combined non-negative and general sparse repre-

sentation from an arbitrary dictionary with known coherence parameters was studied.

Sparsity thresholds for the cases when either or both the non-negative and general

coefficient supports were unknown, were derived. In particular, a greedy algorithm,

the COMB-OMP, was proposed for recovering non-negative and general coefficients

when both their supports are unknown and its performance was analyzed. Since the

sparsity thresholds derived were pessimistic, the performance of the COMB-BP, BP,

COMB-OMP and the OMP algorithms in recovering the sparse coefficient vectors

was studied through simulations, and results showed that imposing non-negativity

constraints aid in coefficient recovery.

Compressive sensing can be performed in a feature space instead of the input

space leading to improved recovery performance for certain classes of data. Such data

can be well-represented in feature spaces obtained using a non-linear transformation

of the input space. Non-linear compressive sensing is performed by transforming the

linear measurements from the input space to the feature space. A method to optimize

the measurement system to the class of training data for non-linear compressive

sensing was proposed. The optimized measurement vectors were a set of carefully

chosen training vectors themselves. Significant improvement in recovery performance

was obtained compared to using random measurements as well as using optimized

measurements for linear compressive sensing with two different datasets.
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8.2 Future Directions

Sparse codes that obey graph constraints result in similarity kernels that incorporate

the class relationships, as demonstrated in Chapter 3. Although the graph is sparse,

the similarity kernels have a block-diagonal structure, since the graph relationships

are propagated across the whole class. In the problem of label or tag propagation,

each data is assigned multiple tags and based on the similarity between the data

samples and they are propagated [154,155]. Let us assume that the data samples lie

in a union of low-dimensional linear subspaces, and the tag vectors have similarities

defined using a graph. The proposed approach can propagate the tag information by

performing graph-embedded sparse coding, which considers both the tag similarities

and sparse subspace structure of the data. In fact, the proposed approach can be

used in several applications where different kinds of similarities encoded using various

graphs should be fused. Apart from exploring new applications, analyzing the the-

oretical characteristics of the proposed graph embedded sparse modeling approach

is also a promising research direction. It is well-known that samples from smooth

manifolds can be represented using graph Laplacians [24], and samples from Grass-

mannian manifolds can be represented using `1 graphs [131]. Since we are combining

both the manifold priors in our approach, it is worthwhile to understand the type of

manifolds that can be well-represented using the proposed sparse coding approach.

From the standpoint of implementation, computing graph-embedded codes can be

performed efficiently using “gossip protocol” approaches in a distributed manner,

and its convergence can be analyzed.

The ensemble sparse models proposed in Chapter 4 form a new paradigm

in representing and recovering data, and hence there are interesting future research

directions that exist. Ensemble representations that use ideas from bagging can be

beneficial in the case of ultra-small datasets, where dictionary learning usually leads
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to a trivial solution. In the case of ultra-large datasets, a divide-and-conquer strategy

is used to reduce the complexity in dictionary learning and representation. Ensemble

approaches that use 1−sparse representations are amenable to fine-grain parallelism,

and can be efficiently implemented using Graphical Processor Units. As we move

towards increasingly parallel architectures, these types of models promise to adapt

and scale well. Furthermore, from the theoretical end, the Random Example Selection

and Averaging (RandExAv) scheme can be analyzed to derive performance guarantees.

This scheme chooses a random subset of dictionary atoms and averages the multiple

1−sparse approximations obtained. Using approaches similar to those in [125], the

estimation performance of the proposed scheme with various forms of degradations

can be analyzed.

Turning to the theory of sparse representations in Chapter 6, where we analyze

the deterministic sparsity thresholds for non-negative and combined representations,

the natural extension is to study the robust or probabilistic sparsity thresholds, which

are much more useful in practical scenarios. The robust thresholds for general repre-

sentations [66] use standard tools from Banach space probability such as Khintchine

inequalities, based on assumptions on the sign patterns of the coefficient vector. How-

ever, for non-negative representations, these tools cannot be directly used, since the

sign patterns do not change. An intuitive understanding of the problem of non-

negative representations will help us identify the tools necessary to compute the

robust thresholds. This can be then extended for the problem of combined represen-

tations as well. Although the mathematical details are not entirely clear, empirical

experiments give us the hope that such an analysis is possible, and improvements in

robust thresholds can be obtained in comparison to general representations.

Linear discriminant analysis [156] is a well-known procedure that can be used

to improve separability between different classes of data and hence lead to an im-

proved classification performance. In the non-linearly transformed feature space, this
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can be extended to compute discriminant subspaces of the feature space, using the

generalized discriminant analysis (GDA) procedure [92]. Since GDA is the discrimi-

native counterpart of kernel PCA, classification can be performed by projecting the

non-linearly transformed data onto the directions identified and classification can be

performed. The non-linear compressive random measurements of a data sample can

be used to identify its projection onto the GDA directions, computed using the train-

ing data, and this can be directly used in a classifier. Furthermore, by designing

an optimized measurement system, the projections computed onto the discriminant

directions can be improved. Measurement systems for representation and discrimina-

tion use a subset of samples from the training examples themselves. If K optimized

measurements are obtained from the training set of Ttr, where K � Ttr and the test

set contains Tte samples, the complexity of computing kernel matrices for test data

is O(KTte), instead of O(TtrTte). Hence, the optimized system, by virtue of pro-

viding a good task-specific representation, can be useful in dimensionality reduction

and subsequently in reducing the computational complexity of algorithms in kernel

space.

142



REFERENCES

[1] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse
representation,” Image Processing, IEEE Transactions on, vol. 19, no. 11, pp.
2861–2873, 2010.

[2] J. Yang, J. Wright, T. Huang, and Y. Ma, “Image super-resolution as sparse
representation of raw image patches,” in Computer Vision and Pattern Recog-
nition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1–8.

[3] “USPS dataset,” Available at ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/data/.

[4] C. Lawson and R. Hanson, Solving Least Squares Problems. New Jersey:
Prentice Hall Inc., 1974.

[5] S. Mallat, A Wavelet Tour of Signal Processing. Academic: New York, 1999.

[6] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE
Transactions on Computers, pp. 90–93, 1974.

[7] J. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,”
IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3445–3462, Dec.
1993.

[8] M. Marcellin, M. Gormish, A. Bilgin, and M. Boliek, “An overview of JPEG-
2000,” Proceedings of the IEEE Data Compression Conference, pp. 523–541,
Mar. 2000.

[9] M. J. Fadili, J. L. Starck, and F. Murtagh, “Inpainting and zooming using
sparse representations,” The Computer Journal, vol. 52, pp. 64–79, 2009.

[10] Z. Xu and J. Sun, “Image inpainting by patch propagation using patch sparsity.”
IEEE Transactions on Image Processing, vol. 19, no. 5, pp. 1153–65, May 2010.

[11] M. Elad, Sparse and Redundant Representations: From Theory to Applications
in Signal and Image Processing. Springer, 2010.

[12] J. Thiagarajan, K. Ramamurthy, and A. Spanias, “Multilevel dictionary learn-
ing for sparse representation of images,” in IEEE DSPE Workshop, 2011, pp.
271–276.

143



[13] M. Aharon, M. Elad, and A. Bruckstein, “The K-SVD: an algorithm for design-
ing of overcomplete dictionaries for sparse representation,” IEEE Transactions
on Signal Processing, vol. 54, no. 11, pp. 4311–4322, 2006.

[14] M. Aharon and M. Elad, “Image denoising via sparse and redundant repre-
sentations over learned dictionaries,” IEEE Transactions on Image Processing,
vol. 15, no. 12, pp. 3736–3745, 2006.

[15] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face recogni-
tion via sparse representation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 31, no. 2, pp. 210–227, 2009.

[16] K. Yu, T. Zhang, and Y. Gong, “Nonlinear learning using local coordinate
coding,” Advances in Neural Information Processing Systems, vol. 22, pp. 2223–
2231, 2009.

[17] J. J. Thiagarajan, K. N. Ramamurthy, P. Knee, and A. Spanias, “Sparse rep-
resentations for automatic target classification in SAR images,” in Proceedings
of ISCCSP, 2010.

[18] J. J. Thiagarajan, K. N. Ramamurthy, and A. Spanias, “Sparse representations
for pattern classification using learned dictionaries,” Proceedings of Twenty-
eighth SGAI International Conference on Artificial Intelligence, 2008.

[19] B. Cheng, J. Yang, S. Yan, Y. Fu, and T. Huang, “Learning with `1-graph for
image analysis.” IEEE Transactions on Image Processing, vol. 19, no. 4, pp.
858–66, 2010.

[20] R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng, “Self-taught learning: Trans-
fer learning from unlabeled data,” in Proceedings of ICML, 2007.

[21] I. Jolliffe, Principal component analysis. Wiley Online Library, 2005.

[22] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric frame-
work for nonlinear dimensionality reduction.” Science, vol. 290, no. 5500, pp.
2319–23, 2000.

[23] S. Roweis and L. Saul, “Nonlinear dimensionality reduction by locally linear
embedding,” Science, pp. 2323–2326, 2000.

144



[24] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for em-
bedding and clustering,” Advances in Neural Information Processing Systems,
vol. 14, pp. 585–591, 2001.

[25] D. Donoho and C. Grimes, “Hessian eigenmaps: Locally linear embedding tech-
niques for high-dimensional data,” Proceedings of the National Academy of Sci-
ences, vol. 100, no. 10, pp. 5591–5596, 2003.

[26] K. Fukunaga, Introduction to Statistical Pattern Recognition. Academic Press,
1990.

[27] H. Chen, H. Chang, and T. Liu, “Local discriminant embedding and its vari-
ants,” in IEEE CVPR, vol. 2, 2005, pp. 846–853.

[28] D. Cai, X. He, and J. Han, “Semi-supervised discriminant analysis,” in IEEE
ICCV, 2007.

[29] R. Polikar, “Ensemble based systems in decision making,” Circuits and Systems
Magazine, IEEE, vol. 6, no. 3, pp. 21–45, 2006.

[30] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp. 123–140,
1996.

[31] Y. Freund, R. Schapire, and N. Abe, “A short introduction to boosting,”
Journal-Japanese Society For Artificial Intelligence, vol. 14, no. 771-780, p.
1612, 1999.

[32] S. Kwok and C. Carter, Multiple decision trees. Basser Department of Com-
puter Science, University of Sydney, 1988.

[33] N. Duffy and D. Helmbold, “Boosting methods for regression,” Machine Learn-
ing, vol. 47, no. 2, pp. 153–200, 2002.

[34] A. Bruckstein, M. Elad, and M. Zibulevsky, “On the uniqueness of nonnegative
sparse solutions to underdetermined systems of equations,” IEEE Transactions
on Information Theory, vol. 54, no. 11, pp. 4813–4820, 2008.

145



[35] D. L. Donoho and J. Tanner, “Counting the faces of randomly-projected hy-
percubes and orthants, with applications,” Discrete & computational geometry,
vol. 43, Apr. 2010.

[36] M. Wang, W. Xu, and A. Tang, “A unique nonnegative solution to an under-
determined system: From vectors to matrices,” IEEE Transactions on Signal
Processing, vol. 59, no. 3, pp. 1007 –1016, march 2011.

[37] D. L. Donoho and J. Tanner, “Sparse nonnegative solution of underdetermined
linear equations by linear programming,” Proceedings of the National Academy
of Sciences, vol. 102, no. 3, Jun. 2005.

[38] M. Khajehnejad, A. G. Dimakis, W. Xu, and B. Hassibi, “Sparse recovery of
nonnegative signals with minimal expansion,” IEEE Transactions on Signal
Processing, vol. 59, no. 1, pp. 196–208, 2011.

[39] K. N. Ramamurthy, J. J. . Thiagarajan, and A. Spanias, “Improved sparse
coding using manifold projections,” in IEEE ICIP, 2011.

[40] J. Gemmeke, T. Virtanen, and A. Hurmalainen, “Exemplar-based sparse repre-
sentations for noise robust automatic speech recognition,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 19, no. 7, pp. 2067 –2080,
2011.

[41] M. Slawski and M. Hein, “Sparse recovery for protein mass spectrometry data,”
in NIPS Workshop on Practical Application of Sparse Modeling: Open Issues
and New Directions, 2010.

[42] L. Benaroya, L. M. Donagh, F. Bimbot, and R. Gribonval, “Non negative sparse
representation for wiener based source separation with a single sensor,” in Proc.
IEEE ICASSP, vol. 6. IEEE, 2003, pp. VI–613.

[43] R. He and W.-S. Zheng, “Nonnegative sparse coding for discriminative semi-
supervised learning,” in IEEE Conf. on Computer Vision and Pattern Recog-
nition, 2011.

[44] P. O. Hoyer, “Non-negative sparse coding,” in Proc. IEEE workshop on neural
networks for signal processing, 2002, pp. 557–565.

146



[45] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,”
in In NIPS. MIT Press, 2001, pp. 556–562.

[46] P. O. Hoyer, “Non-negative matrix factorization with sparseness constraints,”
Journal of Machine Learning Research, vol. 5, pp. 1457âĂŞ–1469, 2004.

[47] D. L. Donoho and V. C. Stodden, “When does non-negative matrix factorization
give a correct decomposition into parts?” in Advances in Neural Information
Processing Systems, 2004.

[48] B. Schölkopf, A. Smola, and K.-R. Müller, “Kernel principal component anal-
ysis,” Artificial Neural Networks – ICANN, pp. 583–588, 1997.

[49] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

[50] J. Ye, Z. Zhao, and M.Wu, “Discriminative k-means for clustering,” in Advances
in Neural Information Processing Systems, 2007.

[51] S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, and S. Lin, “Graph embed-
ding and extensions: A general framework for dimensionality reduction,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 1, pp.
40–51, 2007.

[52] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising with
block-matching and 3d filtering,” in Proc. Comput. Imaging IV SPIE Electronic
Imaging, Jan. 2006.

[53] W. Dong, X. Li, and L. Zhang, “Sparsity-based image denoising via dictionary
learning and structural clustering,” Computer Vision and Pattern Recognition,
2011.

[54] H. Qi and S. Hughes, “Using the kernel trick in compressive sensing: accurate
signal recovery from fewer measurements,” in Proceedings of IEEE ICASSP,
2011.

[55] K. N. Ramamurthy, J. J. . Thiagarajan, P. Sattigeri, and A. Spanias, “Learning
dictionaries with graph embedding constraints,” in Proc. Asilomar Conference
on Sig., Sys., and Comp., 2012.

147



[56] K. N. Ramamurthy, J. J. Thiagarajan, and A. Spanias, “Boosted dictionar-
ies for image restoration based on sparse representations,” in IEEE ICASSP
(accepted), 2013.

[57] K. N. Ramamurthy, J. J. Thiagarajan, P. Sattigeri, and A. Spanias,
“Ensemble sparse models for image analysis and restoration,” IEEE
Transactions on Image Processing, 2013 (submitted). [Online]. Available:
http://arxiv.org/abs/1302.6957

[58] K. N. Ramamurthy, J. J. Thiagarajan, and A. Spanias, “Recovering non-
negative and combined sparse representations,” Digital Signal Processing, 2013
(Submitted).

[59] K. Ramamurthy and A. Spanias, “Optimized measurements for kernel compres-
sive sensing,” in Proc. Asilomar Conference on Signals, Systems and Comput-
ers, 2011.

[60] H. Zou and T. Hastie, “Regularization and variable selection via the elastic
net,” Journal of the Royal Statistical Society, vol. 67, no. 2, pp. 301–320, 2005.

[61] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped
variables,” Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), vol. 68, no. 1, pp. 49–67, 2005.

[62] P. Kuppinger, G. Durisi, and H. Bölcskei, “Uncertainty relations and sparse sig-
nal recovery for pairs of general signal sets,” IEEE Transactions on Information
Theory, vol. PP, no. 99, p. 1, 2011.

[63] C. Studer, P. Kuppinger, G. Pope, and H. Bolcskei, “Recovery of sparsely
corrupted signals,” IEEE Transactions on Information Theory, vol. 58, no. 5,
pp. 3115–3130, 2012.

[64] D. L. Donoho and M. Elad, “Optimally sparse representation in general
(nonorthogonal) dictionaries via `1 minimization.” Proceedings of the National
Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2197–
202, Mar. 2003.

[65] D. Donoho, “Neighborly polytopes and sparse solution of underdetermined lin-
ear equations,” Stanford University, Tech. Rep., 2005.

148



[66] J. Tropp, “On the conditioning of random subdictionaries,” Applied and Com-
putational Harmonic Analysis, vol. 25, no. 1, pp. 1–24, 2008.

[67] D. Donoho and J. Tanner, “Precise undersampling theorems,” Proceedings of
the IEEE, vol. 98, no. 6, pp. 913–924, 2010.

[68] D. Donoho, “Neighborly polytopes and sparse solutions of underdetermined
linear equations,” Stanford University, Tech. Rep., 2005.

[69] J. D. Blanchard, C. Cartis, J. Tanner, and A. Thompson, “Phase transitions
for greedy sparse approximation algorithms,” Applied and Computational Har-
monic Analysis, vol. 30, no. 2, pp. 188–203, 2011.

[70] A. Maleki and D. L. Donoho, “Freely available, optimally tuned iterative thresh-
olding algorithms for compressed sensing,” in Proc. Signal Processing with
Adaptive Sparse Structured Representations, 2009.

[71] K. Engan, S. O. Aase, and J. H. Husoy, “Method of optimal directions for frame
design,” in Proceedings of IEEE ICASSP, 1999.

[72] R. Rubinstein, A. Bruckstein, and M. Elad, “Dictionaries for sparse represen-
tation modeling,” Proceedings of the IEEE, vol. 98, no. 6, pp. 1045–1057, 2010.

[73] L. Bar and G. Sapiro, “Hierarchical dictionary learning for invariant classifica-
tion,” in IEEE ICASSP, 2010, pp. 3578–3581.

[74] J. Mairal, G. Sapiro, and M. Elad, “Multiscale sparse image representation with
learned dictionaries,” in Proceedings of IEEE ICIP, 2007.

[75] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix fac-
torization and sparse coding,” Journal of Machine Learning Research, vol. 11,
no. 1, pp. 19–60, 2009.

[76] J. J. Thiagarajan, K. N. Ramamurthy, and A. Spanias, “Shift-invariant sparse
representation of images using learned dictionaries,” Proc. IEEE Workshop on
MLSP, pp. 145–150, 2008.

149



[77] R. Vidal, Y. Ma, and S. Sastry, “Generalized principal component analysis
(GPCA),” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 27, no. 12, pp. 1945–1959, 2005.

[78] J. R. Munkres, Elementary differential topology. Princeton University Press,
1966.

[79] E. Saucan, E. Appleboim, and Y. Zeevi, “Sampling and reconstruction of sur-
faces and higher dimensional manifolds,” Journal of Mathematical Imaging and
Vision, vol. 30, no. 1, pp. 105–123, 2008.

[80] G. Carlsson, T. Ishkhanov, V. De Silva, and A. Zomorodian, “On the local be-
havior of spaces of natural images,” International Journal of Computer Vision,
vol. 76, no. 1, pp. 1–12, 2008.

[81] X. Hei and P. , “Locality preserving projections,” Advances in Neural Informa-
tion Processing Systems, vol. 16, pp. 153–160, 2004.

[82] Y. Jia, F. Nie, and C. Zhang, “Trace ratio problem revisited,” IEEE Transac-
tions on Neural Networks, vol. 20, no. 4, pp. 729–735, 2009.

[83] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the
bias/variance dilemma,” Neural computation, vol. 4, no. 1, pp. 1–58, 1992.

[84] R. Maclin and D. Opitz, “Popular ensemble methods: An empirical study,”
arXiv preprint arXiv:1106.0257, 2011.

[85] L. Hansen and P. Salamon, “Neural network ensembles,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 12, no. 10, pp. 993–1001,
1990.

[86] T. Dietterich, “Ensemble methods in machine learning,” Multiple classifier sys-
tems, pp. 1–15, 2000.

[87] E. Bauer and R. Kohavi, “An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants,” Machine learning, vol. 36, no. 1,
pp. 105–139, 1999.

150



[88] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a
statistical view of boosting,” The annals of statistics, vol. 28, no. 2, pp. 337–
407, 2000.

[89] J. Zhu, S. Rosset, H. Zou, and T. Hastie, “Multi-class adaboost,” Statistics and
its Interface, vol. 2, pp. 349–360, 2009.

[90] T. G. Dietterich, “An experimental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, boosting, and randomization,” Ma-
chine learning, vol. 40, no. 2, pp. 139–157, 2000.

[91] M. Girolami, “Mercer kernel-based clustering in feature space,” IEEE Transac-
tions on Neural Networks, vol. 13, pp. 780–784, 2002.

[92] G. Baudat and F. Anouar, “Generalized discriminant analysis using a kernel
approach,” Neural Computation, vol. 12, pp. 2385–2404, October 2000.

[93] J. Kwok and I. Tsang, “The pre-image problem in kernel methods.” IEEE Trans-
actions on Neural Networks, vol. 15, no. 6, pp. 1517–25, 2004.

[94] P. Honeine and R. Cédric, “Preimage problem in kernel-based machine learn-
ing,” IEEE Signal Processing Magazine, vol. 28, pp. 77–88, 2011.

[95] D. Huang, Y. Tian, and F. DelaTorre, “Local isomorphism to solve the pre-
image problem in kernel methods,” in Proc. IEEE CVPR, 2011.

[96] J. Nocedal and S. Wright, Numerical optimization. Springer Verlag, 1999.

[97] H. Lee, A. Battle, R. Raina, and A. Ng, “Efficient sparse coding algorithms,”
Advances in Neural Information Processing Systems, vol. 19, p. 801, 2007.

[98] S. Gao, I. Tsang, L. Chia, and P. Zhao, “Local features are not lonely–Laplacian
sparse coding for image classification,” in Proc. IEEE CVPR, 2010, pp. 3555–
3561.

[99] M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu, and D. Cai, “Graph reg-
ularized sparse coding for image representation,” IEEE Transactions on Image
Processing, vol. 20, no. 5, pp. 1327–1336, 2011.

151



[100] J. Thiagarajan, K. Ramamurthy, P. Sattigeri, and A. Spanias, “Supervised local
sparse coding of sub-image features for image retrieval,” in Proc. IEEE ICIP,
2012.

[101] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression,”
The Annals of Statistics, vol. 32, no. 2, pp. 407–499, 2004.

[102] A. L. Yuille and A. Rangarajan, “The concave-convex procedure,” Neural Com-
putation, vol. 15, no. 4, pp. 915–936, 2003.

[103] Y.-F. Guo, S.-J. Li, J.-Y. Yang, T.-T. Shu, and L.-D. Wu, “A generalized
foley–sammon transform based on generalized fisher discriminant criterion and
its application to face recognition,” Pattern Recognition Letters, vol. 24, no. 1,
pp. 147–158, 2003.

[104] H. Wang, S. Yan, D. Xu, X. Tang, and T. Huang, “Trace ratio vs. ratio trace for
dimensionality reduction,” in Computer Vision and Pattern Recognition, 2007.
CVPR’07. IEEE Conference on. IEEE, 2007, pp. 1–8.

[105] A. Y. Ng, M. I. Jordan, Y. Weiss et al., “On spectral clustering: Analysis and
an algorithm,” Advances in Neural Information Processing Systems, vol. 2, pp.
849–856, 2002.

[106] “UCI machine learning repository,” Available at http://archive.ics.uci.edu/
ml/datasets.html.

[107] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,”
IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3397–3415, 1993.

[108] J. A. Tropp, “Greed is good: Algorithmic results for sparse approximation,”
IEEE Transactions on Information Theory, vol. 50, no. 10, pp. 2231–2242,
October 2004.

[109] S. Cotter, R. Adler, R. Rao, and K. Kreutz-Delgado, “Forward sequential algo-
rithms for best basis selection,” in IEE Proceedings - Vision, Image and Signal
Processing, vol. 146, no. 5. IET, 1999, pp. 235–244.

[110] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by
basis pursuit,” SIAM Review, vol. 43, no. 1, pp. 129–159, 2001.

152



[111] I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from lim-
ited data using FOCUSS: A re-weighted norm minimization algorithm,” IEEE
Transactions on Signal Processing, vol. 45, no. 3, pp. 600–616, 1997.

[112] M. Elad, “Why simple shrinkage is still relevant for redundant representations?”
IEEE Transactions on Information Theory, vol. 52, no. 12, pp. 5559 –5569,
December 2006.

[113] M. Elad, B. Matalon, J. Shtok, and M. Zibulevsky, “A wide-angle view at
iterated shrinkage algorithms,” in SPIE (Wavelet XII), 2007.

[114] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning for
sparse coding,” in Proc. ICML, 2009, pp. 689–696.

[115] H. Lee, A. Battle, R. Raina, and A. Ng, “Efficient sparse coding algorithms,”
Advances in Neural Information Processing Systems, vol. 19, p. 801, 2007.

[116] K. Huang and S. Aviyente, “Sparse representation for signal classification,” in
Proc. of Advances in Neural Information Processing Systems, 2006.

[117] I. Ramirez, P. Sprechmann, and G. Sapiro, “Classification and clustering via
dictionary learning with structured incoherence and shared features,” in IEEE
CVPR, 2010, pp. 3501–3508.

[118] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching
using sparse coding for image classification,” in IEEE CVPR, 2009, pp. 1794–
1801.

[119] G. Yu, G. Sapiro, and S. Mallat, “Image modeling and enhancement via struc-
tured sparse model selection,” in Proc. of IEEE ICIP, 2010, pp. 1641 –1644.

[120] Q. Zhang and B. Li, “Discriminative K-SVD for dictionary learning in face
recognition,” in IEEE CVPR, 2010.

[121] J. J. Thiagarajan and A. Spanias, “Learning dictionaries for local sparse coding
in image classification,” in Proc. of Asilomar SSC, 2011.

153



[122] J. J. Thiagarajan, K. N. Ramamurthy, P. Sattigeri, and A. Spanias, “Supervised
local sparse coding of sub-image features for image retrieval,” in IEEE ICIP,
2012.

[123] W. Zhang, A. Surve, X. Fern, and T. Dietterich, “Learning non-redundant
codebooks for classifying complex objects,” in Proc. ICML, 2009, pp. 1241–
1248.

[124] J. Wang, Y. Li, Y. Zhang, H. Xie, and C. Wang, “Boosted learning of visual
word weighting factors for bag-of-features based medical image retrieval,” in
International Conference on Image and Graphics, 2011, pp. 1035–1040.

[125] M. Elad and I. Yavneh, “A plurality of sparse representations is better than the
sparsest one alone,” IEEE Transactions on Information Theory, vol. 55, no. 10,
pp. 4701–4714, 2009.

[126] “ScSR - matlab codes for image super-resolution,” Available at
http://www.ifp.illinois.edu/∼jyang29/resources.html.

[127] “Berkeley segmentation dataset,” Available at http://www.eecs.berkeley.edu/
Research/Projects/CS/vision/grouping/segbench/.

[128] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii, “Scalable
k-means++,” Proceedings of the VLDB Endowment, vol. 5, no. 7, pp. 622–633,
2012.

[129] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seed-
ing,” in Proc. ACM-SIAM symposium on Discrete algorithms, 2007, pp. 1027–
1035.

[130] D. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[131] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm, theory,
and applications,” arXiv preprint arXiv:1203.1005, 2012.

[132] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex program-
ming, version 1.21,” http://cvxr.com/cvx, October 2010.

154



[133] O. G. Guleryuz, “Nonlinear approximation based image recovery using adaptive
sparse reconstructions and iterated denoising: Part I - theory,” IEEE Transac-
tions on Image Processing, vol. 15, pp. 539–554, 2006.

[134] ——, “Nonlinear approximation based image recovery using adaptive sparse
reconstructions and iterated denoising: Part II - adaptive algorithms,” IEEE
Transactions on Image Processing, vol. 15, pp. 555–571, 2006.

[135] R. Baraniuk, “Compressive sensing [lecture notes],” IEEE Signal Processing
Magazine, vol. 24, no. 4, pp. 118–121, 2007.

[136] J. Duarte-Carvajalino and G. Sapiro, “Learning to sense sparse signals: simul-
taneous sensing matrix and sparsifying dictionary optimization,” IEEE Trans-
actions on Image Processing, vol. 18, no. 7, pp. 1395–1408, 2009.

[137] M. Elad, “Optimized projections for compressed sensing,” IEEE Transactions
on Signal Processing, vol. 1, no. 1, pp. 1–22, 2007.

[138] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact sig-
nal reconstruction from highly incomplete frequency information,” IEEE Trans.
Inform. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[139] J. Haupt and R. Nowak, “Signal reconstruction from noisy random projections,”
IEEE Transactions on Information Theory, vol. 52, no. 9, pp. 4036 – 4048, 2006.

[140] D. Takhar et.al., “A compressed sensing camera: New theory and an imple-
mentation using digital micromirrors,” in Proc. Comput. Imaging IV SPIE
Electronic Imaging, Jan. 2006.

[141] J. Tropp and A. Gilbert, “Signal recovery from partial infor-
mation via orthogonal matching pursuit,” 2005. [Online]. Available:
http://www.math.lsa.umich.edu/∼annacg/papers/TG05-Signal-Recovery.pdf

[142] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A Simple Proof of the
Restricted Isometry Property for Random Matrices,” Constructive Approxima-
tion, vol. 28, no. 3, pp. 253–263, 2008.

155



[143] M. Stojnic, W. Xu, and B. Hassibi, “Compressed sensing - probabilistic analysis
of a null-space characterization,” in Proc. IEEE International Conference on
Acoustic, Speech and Signal Processing, 2008.

[144] J. Bardsley, “Covariance-preconditioned iterative methods for nonnegatively
constrained astronomical imaging,” SIAM Journal on Matrix Analysis and Ap-
plications, vol. 27, no. 4, pp. 1184–1197, 2006.

[145] D. Donoho, I. Johnstone, and J. Hoch, “Maximum entropy and the nearly black
object,” Journal of the Royal Statistical Society, vol. 54, no. 1, pp. 41–81, 1992.

[146] J. A. Tropp, “Topics in Sparse Approximation,” Ph.D. dissertation, University
of Texas at Austin, 2004.

[147] M. Slawski and M. Hein, “Robust sparse recovery with non-negativity con-
straints,” in Workshop on Signal Processing with Adaptive Sparse Structured
Representations, 2011.

[148] C. Studer and R. G. Baraniuk, “Stable restoration and separation of approxi-
mately sparse signals,” arXiv preprint arXiv:1107.0420, 2011.

[149] A. Berman and N. Shaked-Monderer, Completely positive matrices. World
Scientific, 2003.

[150] J. Tropp, “Greed is good: Algorithmic results for sparse approximation,” IEEE
Transactions on Information Theory, vol. 50, no. 10, pp. 2231–2242, 2004.

[151] E. Kreyszig, Introductory Functional Analysis With Applications. Wiley, John
& Sons, Incorporated, Mar. 1989.

[152] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge University Press,
1990.

[153] “The MNIST database of handwritten digits,” Available online at
http://yann.lecun.com/exdb/mnist/.

[154] M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid, “Tagprop: Discrimina-
tive metric learning in nearest neighbor models for image auto-annotation,” in

156



Computer Vision, 2009 IEEE 12th International Conference on. IEEE, 2009,
pp. 309–316.

[155] C. Wang, S. Yan, L. Zhang, and H.-J. Zhang, “Multi-label sparse coding for
automatic image annotation,” in Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 1643–1650.

[156] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2007.

157



APPENDIX A

THE COMB-OMP ALGORITHM FOR GREEDY PURSUIT OF COMBINED

SPARSE REPRESENTATIONS
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Goal

Recover the ML0 solution from y = Gδ such that IX̄δ ≥ 0.

Input

y, the input vector.

G = [X D], the combined dictionary.

T , the desired number of iterations.

ε, error tolerance.

Initialization

- Iteration count, t = 0.

- Solution, δt = 0.

- Residual, rt = y−Gδt = y.

- Active coefficient supports, Xt = {}, Dt = {}, Gt = {}.

- All coefficient supports, X̄ = {i}Kx
i=1, D̄ = {i}Kg

i=Kx+1, Ḡ = X̄ ∪ D̄.

- Non-active coefficient supports, X c
t = X̄ , Dct = D̄, Gct = Ḡ.

Algorithm

Loop until t ≤ T OR ‖rt‖2 > ε

- Compute correlations:

π(i) = rT
t gi

‖gi‖2 for 1 ≤ i ≤ Kg.

- Update support:

î = argmax
i∈X c

t

[π(i)]+.

ĵ = argmax
j∈Dc

t

|π(j)|.

k̂ = argmax([π(̂i)]+, |π(ĵ)|).

If k̂ ∈ X c
t , then Xt+1 = Xt ∪ {k̂}, else Dt+1 = Dt ∪ {k̂}.
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Gt+1 = Xt+1 ∪ Dt+1.

- Update solution:

δt+1 = argminδ ‖y−Gδ‖2 subject to support(δ) = Gt+1, IXtδ ≥ 0.

- Update residual: rt+1 = y−Gδt+1.

- Update support sets:

Gct+1 = Ḡ − Gt+1,X c
t+1 = X̄ − Xt+1,Dct+1 = D̄ − Dt+1.

- Update iteration count: t = t+ 1.

end

Debias to compute final δ:

δt = argminδ ‖y−Gδ‖2 subject to support(δ) = Gt, IX̄δ ≥ 0.
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