Ensuring Safety of Model-based Generated Code
for Pervasive Health Monitoring Systems
by

Sunit Verma

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree
Master of Science

Approved February 2013 by the
Graduate Supervisory Committee:

Sandeep Gupta, Chair
Cihan Tepedelenlioglu
Martin Reisslein

ARIZONA STATE UNIVERSITY
May 2013

ABSTRACT

Wireless technologies for health monitoring systems have seen considerable interest
in recent years owing to it’s potential to achieve vision of pervasive healthcare, that is
healthcare to anyone, anywhere and anytime. Development of wearable wireless medical
devices which have the capability to sense, compute, and send physiological information to
a mobile gateway, forming a Body Sensor Network (BSN) is considered as a step towards
achieving the vision of pervasive health monitoring systems (PHMS). PHMS consisting of
wearable body sensors encourages unsupervised long-term monitoring, reducing frequent
visit to hospital and nursing cost. Therefore, it is of utmost importance that operation of
PHMS must be reliable, safe and have longer lifetime. A model-based automatic code
generation provides a state-of-art code generation of sensor and smart phone code from
high-level specification of a PHMS. Code generator intakes meta-model of PHMS speci-
fication, uses codebase containing code templates and algorithms, and generates platform
specific code. Health-Dev, a framework for model-based development of PHMS, uses
code generation to implement PHMS in sensor and smart phone. As a part of this thesis,
model-based automatic code generation was evaluated and experimentally validated. The
generated code was found to be safe in terms of ensuring no race condition, array, or pointer
related errors in the generated code and more optimized as compared to hand-written BSN

benchmark code in terms of lesser unreachable code.

ACKNOWLEDGEMENTS

I own sincere thankfulness to my advisor Dr. Sandeep K.S. Gupta for giving me an
opportunity to work at the Impact lab (http://impact.asu.edu/) and his support and encour-
agement in guiding me in my thesis work. I thank my committee members Dr. Martin
Reisslein and Dr. Cihan Tepedelenlioglu for their valuable advice and suggestions in im-
proving my thesis. I am indebted to all the members of Impact lab especially Dr. Georgios
Varsamopoulos, Dr. Ayan Bannerjee, Priyanka Bagade, Joseph Milazzo, Yu Xie, Joshua
Ferguson, and Madhurima P ore for their constant help and support. I thank National Sci-
ence Foundation (through grants CNS-0831544 and IIS-1116385) for funding the research.

I thank my parents, brother, my roommates and friends for their love and support.

il

To my parents for all their love and sacrifices

il

TABLE OF CONTENTS

Page

LISTOFFIGURES e vii
CHAPTER

I INTRODUCTION e e e 1

2 BACKGROUND 5

2.1 PHMS software development approach 5

Manual implementation 5

Automated implementationo 7

2.2 TinyOS EXECUTIONMODELS 10

Event 11

Task . . . e 11

TinyOS execution flow of ECG sensing and processing 12

2.3 Safety hazards in TinyOS programming 13

24 Code generation techniques 16

TEMPLATES + FILTERING 16

TEMPLATES + META-MODEL 17

FRAMEPROCESSING o 17

API-BASED GENERATION 18

INLINE CODE GENERATION 18

CODE ATTRIBUTES o oo e 19

CODE WEAVING e 19

3 PROPOSED CODE GENERATOR 21

3.1 Model-based 21

3.2 Manageability 21

3.3 Algorithm specification L Lo L. 22

3.4 Annotationintemplatecode 22

CHAPTER Page

3.5 Flexibility and extensibility in template code 22
3.6 Model-based code generator for PHMS 23
High-level specification 23
Meta-Model 24
Template code with attribute 25
Codeframe 26
Preprocessor 26
Generator e 28

3.7 Safety-assurance in PHMS software from code generator 28
4 HEALTH-DEV 31
4.1 Specificationmodule oL Lo 31
Mote component L 34

Base stationcomponent Lo 35
Network component Lo 35

42 Parsermodule 35
4.3 Code generationmodule L L L Lo 36
Bluetooth API 36
Sensor Handler 37

5 EVALUATION, VALIDATION and USECASES 38
5.1 Evaluation L 38
5.2 Validation 43
Radiodutycycling 43
Mobility aware transmission control Lo 44

53 UseCase. oo i e 45
Continuous Monitoring System 45

Physiological data facilitator to smart phoneapp
6 CONCLUSION AND FUTUREWORK
REFERENCES e

vi

LIST OF FIGURES

Figure Page
1.1 Pervasive Health Monitoring System (PHMS). 2
2.1 ECG Monitoring System. e e 6
2.2 Only software developer can perform manual implementation. 7
2.3 Automated software development of PHMS software. 8
2.4 Automatic Code Generator extracts software and hardware requirements from

the models to generate the code for PHMS. 10
2.5 Architecture of eventin TinyOS. Lo 12
2.6 Execution flow of ECG sensing and processing ina sensor. 14
2.7 Template with filtering. L oo 16
2.8 Template with meta-model. 17
2.9 Frame processing. e e e 18
2.10 API-based generation. L 18
2.11 Inline code generation. 19
2.12 Code attribute. 19
213 Codeweaving e e e 20
3.1 Model-based code generator for PHMS. 23
3.2 Sensormodel in AADL. 24
3.3 Sensor and smart phone metal-model are input to generator. 25
3.4 Code snippet of TinyOS template with attributes. 26
3.5 Declaration and sequencing of algorithm frame into TinyOS template code. . . 27
3.6 Preprocessors and macros in TinyOS template code. 27
4.1 Health-Dev Architecture Overview. 32
4.2 Health-Dev User Interface. 33
4.3 Specifiable properties in Mote component. L. L. 34

vii

Figure Page

5.1
5.2
53
54
5.5

Methods of Evaluation. 39

Code size comparison between generated and BSNBench code after Safe TinyOS. 41

Code size comparison between generated and BSNBench code after cXprop. . . 42
Design flow of Continuous Monitoring System. 46
Health-Dev base station forwarding heart rate data to PetPeeves. 47

viii

Chapter 1
INTRODUCTION

Increase in the cost of hospital-based care and worldwide deployment of wireless networks
and infrastructures has encouraged the development of Pervasive Health Monitoring Sys-
tems (PHMS). Figure 1.1 shows PHMS consist of resource constraint body-wearable sen-
sors or medical devices that gathers physiological information from the body and commu-
nicates with the base station [1]. Base station controls the sensors and as well as uploads
the data to a cloud server via wireless link which can be accessed by physician for further
diagnosis and reference. PHMS makes continuous monitoring system of human physiol-
ogy easy and deployable. Continuous monitoring helps in avoiding confusion between fatal
and non-fatal symptoms such as, heart-attack and heart-burn can can similar symptom of
chest pain. Hence, a user can detect the source of symptom only if his/her body is being
continuously monitored.

In order to have pervasive healthcare, anyone should be able to make a PHMS at any-
time and anywhere with a guarantee of safe operation of PHMS software. Since PHMSes

usually operate in an unsupervised scenario, software operating such PHMSes plays an

Health monitoring Electronic Health Record Diagnosis by Physician
EEG

Wireless
ontroller

Motion Sensor

Figure 1.1: Pervasive Health Monitoring System (PHMS).

important role in monitoring and controlling of human physiology. In a typical PHMS,
software is concurrent, distributed and runs on a memory constrained sensor having no
hardware-based memory protection. Such software are often evaluated so that developers,
regulators, physicians and patient can be confident in PHMS’s safety. A PHMS is con-
sidered as safe if it’s operation does not cause any harm to the body of user. However,
software-related errors in PHMS have been attributed to the failure of life saving medical

devices. Following errors [2] may occur due to various reasons:

e Rule-based error : These errors occur when software development approach is cor-
rect but poor implementation results in logic failure in the software. As medical
devices industry is growing at faster pace, demand to perform rapid implementation,
preferably manually, increases the risk of involving potential errors in the software of
medical devices. There has been several recent cases of failures of life saving medical
devices such as drug delivery systems, as reported by Food and Drug Administration

(FDA) Maude database [3].

e Memory failure : Memory failure occur due to access of restricted area in memory.
As most of the embedded devices, such as medical sensors, are memory constrained

it becomes difficult to carefully manage the memory usage.

e Knowledge-based error : These errors occur due to a poor software development ap-
proach. It can also be caused due to inadequate knowledge to implement algorithms

which process and adapt to critical changes in human physiological data.

e Abnormal use : Abnormal use of medical software without any user guide may cause
user interface of a medical device controller to crash resulting to interruption in mon-

itoring and may also cause loss of physiological data.

Among these four sources of software-related errors, rule-based error and memory fail-
ure have been identified as commonly occurring errors in PHMS software [4]. In this thesis
I have tried to ensure rule-based error and memory failure don’t occur in a PHMS software.
A safe PHMS software must ensure no memory and logic failure occurs during PHMS
operation.

Most of sensors used in PHMS are run on TinyOS [5], a low-power operating system
which is used to target platforms of wireless sensor network applications. A typical PHMS
application can have thousand lines of code that are concurrent and distributed. They are

often
e run on memory-constrained sensors with no hardware protection to memory
e run for a long duration of time

e have to cope with unpredicted situations such as radio out-of-range, sensor failure

etc.

These constraints makes it difficult to avoid race condition and array & pointer-related er-
rors in TinyOS [6]. Hence a safe PHMS software must ensure no race, out-of-bound array

access and null-pointer dereferencing occurs.

This thesis focuses on an automated software development of PHMS to reduce the po-
tential errors in manual implementation. In this regards, a model-based automatic code
generator for sensor and smart phone was developed. The code generator takes PHMS
model as an input from a high-level specification and applies code generation to platform-
specific template code to generate device-specific code. Using this framework, the gener-
ated code was evaluated and validated based on the requirements set forth in specification

phase. My contribution was to evaluate the code generated against BSNBench code [7]

3

and validate against set forth requirement in specification phase. The code was further
applied to a static code analyzer to observe the extent of optimization achieved in terms of
less unreachable code and safety by ensuring no arrays and pointers related errors in the
generated code.

The rest of the thesis is organized as follows - Chapter 2 presents discussion of ap-
proaches to develop PHMS software. It also describes the TinyOS execution model and var-
ious code generation techniques; Chapter 3 describes the proposed model-based code gen-
erator for PHMS; Chapter 4 discusses Health-Dev, a model-based development of PHMS
which uses code generator to generate sensor and smart phone code; Chapter 5 evaluates
and validates the generated code; Chapter 6 concludes the thesis with a discussion on future

works.

Chapter 2
BACKGROUND

This chapter discuss manual and automated implementation approaches to develop PHMS
software. Most of the sensors used in PHMS are run on TinyOS [8, 9]; hence, for generation
sensor code, code generator must be aware of TinyOS execution models. Unsafe TinyOS
programming scenarios that leads to memory and logic failure are discussed so that code
generation must avoid them to ensure safety in generated code. Finally, various source code

generation techniques are also discussed.
2.1 PHMS SOFTWARE DEVELOPMENT APPROACH

To make a continuous monitoring system where a sensor senses ECG (Electrocardiogra-
phy) signal, calculate heart-rate and send the processed data to smart phone via Bluetooth

as shown in Figure 2.1, there are two approaches to implement the system:

e Manual

e Automated

Figure 2.1: ECG Monitoring System.

./

Software Developer Physician Medical device Regulator Common user

Figure 2.2: Only software developer can perform manual implementation.

Manual implementation

Manual implementation requires user to have domain-specific programing knowledge such
as C-based languages, Java, etc. Only a software developer can implement the system as
shown in Figure 2.2, but the implementation time and quality also depends on the skills and
experiences of software developer. A physician can have in-depth knowledge on diagnosis
of a patient but may not have knowledge to implement a customized PHMS. Medical device
regulator can have extensive knowledge of PHMS design requirements but may not have the
knowledge to customize the PHMS accordingly. A common user can be a health concerned
person who just wishes to monitor health quickly with no hassle, but may not have PHMS
implementation knowledge.

In 2011, it was found that software failures were responsible for 24% of medical device
failures [10] where logic failure and corruption in RAM (Random Access Memory) were
commonly found errors. One of the main causes of such failure were attributed to manual

implementation of PHMS [11].
Automated implementation

Automated software development can be one of the solutions to avoid memory and logic
failures in PHMS implementation. The automated implementation must generate sensor

and smart phone code from a high-level specification. It must be easy for anyone (de-

6

Sensor Code
b
\;/f " ECG

Wireless
Controller

Code
generator

High-level
Specification [REEE!

Motion Sensor

Smart phone Code

Developer

Figure 2.3: Automated software development of PHMS software.

veloper, physician, medical device regulator and common user) to specify the high-level
specification as shown in Figure 2.3. The code generator must generated safety-assured
code to ensure safer operation of PHMS.

This approach can reduce development cost and time as well as provide rapid proto-
typing from high-level specification of system models. As such, PHMS implementation
can be performed by physicians, medical device manufacturer and common user, who may
not necessarily understand each others design perspective. Hence, it is important to reduce
the complex design process by using high-level specification. Automatic software develop-
ment has been adopted in real time systems and non-real time systems. PHMS is a real time
system where each request is required to be processed in a given time constraint. Many re-
searchers have proposed automatic code generation methodologies for real-time embedded
systems [12, 13, 14, 15, 16, 17, 18, 19, 20, 21] and amongst them model-based approach
has received considerable focus [12, 14, 18, 19, 20, 21]. A model-based approach deals
with the exploitation of abstract representation of a complex system and also helps in com-
pliance checking and testing of models before actual implementation. Model-based code
generation exploits the models of a complex systems e.g. PHMS to generate executable

code. It also allows easier maintainability and readability in generated code.

Automatic code generation of sensor and smart phone is a complex process due to diver-
sities in hardware and software components of sensor and smart phone as shown in Figure
2.4. Although all sensors are bound to perform sensing, computation and communication
with smart phone, they have different types of sensing modules, micro-controllers, com-
munication radios and above all, they may have different operating systems (OS). Some
of the most preferred OS for sensor platforms are TinyOS which is based on event driven
paradigm and Linux-based e.g. iMote. Hence, programing abstraction for sensors are di-
verse. In the case of smart phone, software development is typically done using Software
Development Kit (SDK) which is available as a library to high-level languages such as C
or Java. SDK contains hardware abstraction; uniform across different platform for a given
OS. However, SDK supports different programming languages which may vary in syntax
and semantics. Hence, for each sensor platform and OS specific smart phone, code gener-
ator must have template files in a comprehensive code base to understand the programing
paradigm and hardware abstraction in order to generate the code.

Figure 2.4 describes an overview of an automatic code generator for PHMS. A high-
level specification must allow user to specify sensor and base station platform. User must
be able to specify sensing, communication and algorithm properties for the respective plat-
forms. A model parser must convert the specification into sensor and base station models

which is input to the code generator creating required sensor and base station code.
2.2 TinyOS EXECUTION MODELS

TinyOS applications are written in nesC, a dialect of the C language, optimized for memory
constrained sensor networks. TinyOS has two-level scheduling: event (interrupt) and task.
It is called an event-driven operating system in which events performs small hardware-

based processing, and long running tasks are interrupted.

High-level specification Sensor platform Base station platform

Arduino Cderived
dialect

Operating Systems TinyOS And TinyOS

Communication Customized Ul Communication
Protocol development Protocol

* ZigBee * Graphing of data « ZigBee

Sensor
* ECG
* Accelerometer

Hardware abstraction
* Temperature

* Humidity
* Light

* Bluetooth * Display of * Bluetooth
processed data
* Widgets

Algorithm

Processing * Physiological Signal Processing
Algorithm
* Energy Management Algorithm

Generated Model
from High-level Sensor Model Base station Model
specification

Code Generator Model-based Code Generator

4 2

Sensor Code Base station Code

Algorithm
« Signal Processing Algorithm

Sensors Smart phone as a Base station

Hardware Base

station as
Gateway

Body Sensors Networks

Figure 2.4: Automatic Code Generator extracts software and hardware requirements from
the models to generate the code for PHMS.

Event

Event represents hardware-based interrupts such as clock and radio and does a small amount
of data processing. Clock-based events (timer interrupt) occurs periodically while radio in-
terrupts occurs when radio of a sensor receives data from other sensor or a base station. The
Figure 2.5 shows an architecture of event implementation in TinyOS. TimerC component
sends a call command to ClockC component. The call command is a non-blocking request

to lower-level component. An event will be invoked by ClockC and the event handler in

9

TimerC will process the event in first-in, first-out order. For example, in the following code
snippet, ReadECG.read is called to read the sensed data. An event ReadECG.readDone

responds to the call stating if the data was successfully read or not.

if (call ReadECG.read() !'= SUCCESS) {

report_problem();

}

event void ReadECG.readDone(error_t result, uintl6_t data) {
if (result != SUCCESS) {

report_problem();

Yelse{}
}
Event TimerC
handler
N
v
ClockC
Figure 2.5: Architecture of event in TinyOS.
Task

Task handles larger data computation which take a longer amount of time and are run in
background. Tasks are a form of deferred procedure call (DPC), which enables a program

to perform a computation or operation until a later time. They are synchronous and always
10

run to completion. However, they can be interrupted by any event as they have low priority.
For example, in the following code snippet, when event TimerECG is fired, a task is posted
to perform data computation which runs in the background. The Table 2.1 summarizes the

difference between Task and Event.

task void ecg_data_compute() {
perform computation\
}
event void TimerECG.fired() {
if (ECG_reading == NREADINGS_ECG) {
// Post a task to perform processing of data

post ecg_data_compute();

Table 2.1: TinyOS execution model.

Task Event

Deferred background processing Handles hardware interrupts
Less priority High priority

Synchronous code Asynchronous code
Non-preemptive Preempt Tasks and Events

Called by Event or Call command Called by Call command

TinyOS execution flow of ECG sensing and processing

This section gives an overview of the flow of sensed data in a sensor before it is sent over
Bluetooth to smart phone. The Figure 2.6 gives a flow diagram of TinyOS execution in

ECG sensor. The Boot event calls Bluetooth radio to start and also starts a periodic timer.

11

Event Boot Call Call Timer.
Bluetooth.Start() start.Periodic()

Call Response Call |
Event .)
[Bluetooth.StartDone() J Event Timerfired|()
Send Data , Response
1‘ Heart-Rate Algorithm Raw Sense raw ECG signal
Post Post Yes data No Call

ECG_Data_Comp €—

Prepare_Packet() ute(stored ReadECG.read()
?
call l T Response Call \L /f‘ Response ’ Calll T Response
task task Event
Prepare_Packet() ECG_Data_Compute() ReadECG.readDone()

Figure 2.6: Execution flow of ECG sensing and processing in a sensor.

Whenever Timer is called, an event is fired as response to the call. The fired event checks
if raw data is available in a buffer. If raw data is not available, ReadECG is called to read
and store the data. A task is posted to calculated heart-rate from raw data and another task

is posted to prepare the packet of data to send it via Bluetooth to smart phone.
2.3 SAFETY HAZARDS IN TINYOS PROGRAMMING

TinyOS programming becomes unsafe mainly due to the following errors which affects the

memory of micro-controller.

e Null-pointer dereference : For a given TinyOS sensor code, if a structure is defined
with a uninitialized pointer to the structure and if there is an attempt to write data us-
ing that pointer, then memory corruption can occur. This occurs due to the fact that
the data will be written on to the output register PIOUT (MSP430 micro-controller)
of peripheral of port P1, potentially modifying the operation of those modules con-

trolled through P1OUT bits.
12

struct sensor_data {

nx_uintl6_t size;

nx_uint16_t datal[10];
} *sensor_data; // pointer not initialized
// write into sensor_data->data[9]

sensor_data->data[9] = rawDatal[l]; // memory corruption

Out-of-bound array access : Attempt to access out-of-bound array indexes can cor-
rupt the stack as well as adjacent stack memory. In the following code snippet, there
is an attempt to copy data from rawData to 10’ index of data array but the index

value supported by data array is from O to 9.
sensor_data->data[10] = rawDatal1l];

Race conditions : Whenever task (synchronous) and event (asynchronous) or two
events simultaneously perform read/write operation to a data structure, race condi-
tion occurs. Operation on the shared data must be mutually exclusive otherwise the
possibility of corrupting the shared data increases. For example, in the following
code snippet, sensor_data is shared between task and event which can potentially in-
cur a race condition when accessing sensor_data. This is because a task is not run
immediately and thus it is unclear when sensor_data is going to be access first. The

probability of race becomes highly likely when two tasks share sensor_data.

event void TimerECG.fired() {
sensor_data->datal[9]= rawDatal[1];
post ecg_data_compute();
post ecg_prepare_packet () ;

13

}

task void ecg_data_compute() {
sensor_data = outputData;

}

task void ecg_prepare_packet() {

sendData = sensor_data;

In order to generate safety-assured code for PHMS, an automatic code generator must

ensure above errors don’t occur in code generation.
2.4 CODE GENERATION TECHNIQUES

With the use of model-based development, new applications can be created with less ef-
fort and time than traditional approaches. The principles of model-based development
are successfully applied in avionic and auto manufacturing industries [22]. Lately, soft-
ware engineering industry has suffered due to unmanageable complexities in the process
of product development. This led model-based development to become a major focus in
software engineering. Generation of source code is becoming an integral part of software
engineering especially in the context of model-based development approach. Researchers
have proposed various approaches and tools for source code generation which is subse-
quently compiled and run [23].

TEMPILATES + FILTERING

In this approach, the filter is applied to a higher-level specification to extract relevant in-
formation as specification subset (Figure 2.7). The generator applies the template code to

the specification subset resulting in target code. The filtering mechanism must be powerful

14

and specification must be clearly defined to allow code generation. Since this approach is
tightly coupled with specification syntax, industry standard tool such as Extensible Markup
Language (XML) and Extensible Stylesheet Language Transformations (XSLT) can easily

act as a high specification language.

Specification
apply to apply to

Specification
Target Code

Figure 2.7: Template with filtering.

TEMPLATES + META-MODEL

This approach focuses on code generation from a meta-model which is a simplified de-
scription of a model (Figure 2.8). The generator parses the high-level specification which
adheres to meta-model and creates an instance of the meta-model. The code templates
are applied on it to generate the target code. One of the advantages of this approach is
parsing and instantiation of the models are completely separate from code templates and
hence it makes easier to change the format of the specification (model) as long as gener-
ated meta-models are in compliance with code generator. Such approach can be used for

domain-specific applications.

adheres to

parse
Specification MetaModel

instance of

MetaModel Templates Target
Instance apply to P Code

Figure 2.8: Template with meta-model.

15

FRAME PROCESSING

This approach focuses on code generation with the usage of parameterizable templates
called frames (Figure 2.9). A frame can be viewed as typed function that facilitates code
generation. The code generation is controlled by one frame called as specification frame
which instantiates, parametrizes and composes other frames. The frame processing could
be achieved from two methods; script-based frame processor and adaption approach. In
script-based approach, script instantiates and parametrize frames. In adaption approach,

the frame processor injects code into specific location in other frames.

1. create & P .
instantiat Specification | 2. Instantiate Code
Instantiate Frame & parametrize Frame

3. generate
Target Code

Figure 2.9: Frame processing.

API-BASED GENERATION

To handle generation of small pieces of code for a well-defined task, Application Program-
mer Interface (API), which are defined in terms of abstraction of the code can be used
(Figure 2.10). The developer will manually write the program with the help of APIs to
create or modify the code. The APIs are formulated in terms of a standard grammar. The
generated code will also be an instance of that grammar. Such approach is best suited where

generation of small code are required.

INLINE CODE GENERATION

This approach uses preprocessing technique to generate the required code. The source code
with variant configuration is preprocessed based on configuration specification (Figure

2.11). Source code remains in an iteration until all the required preprocessing is achieved.
16

Grammar
AST/CST

formulated Instance of,
in terms of adheres to

Client calls createor o
Program modify

Figure 2.10: API-based generation.

When all variants are resolved the code is generated. With a facility to change variables,
conditions, and type expressions accordingly, one can generate customized and optimized
code from a single template file where several versions of source code are embedded. Such

approach is used when developing a library which is required to run on multiple platforms.

Integrated compiler suite

- (optional)
config
specification
preprocess
Source code | preprocess [IeIU(eERele[S
Including variant with some i
configurations Variants resoved IGRE!

[all resolved]
Source code Machinelor
with all
Variants resolved byte code

Figure 2.11: Inline code generation.

(optional)

CODE ATTRIBUTES

In this approach, the source code is annotated with attributes. The generator parses the
source code and creates required changes to source code based on attributes (Figure 2.12).
The attributes are usually special comments specifying what functionality or expression
should replace the comment. One can annotate in any fashion as long the parser under-
stands the annotation.

CODE WEAVING

The basis of this approach is derived from API-based code generation technique (Figure

2.13). There are different meta-artifacts which are used for code composition. Each meta-
17

Master+Source parse Internal generate Generated
. Representation
Attributes P Ceile

Figure 2.12: Code attribute.

artifact has different functionality and must be considered how each meta-artifact influences
others. A code-weaver must take care of above constraints before weaving the pieces of
code together.

Code Weaving

Meta-Artifact 1 Meta-Artifact2 ICICICICIIICNY

Instance of

Artifact A Artifact B Artifact C
Woven Source Code (A,B,C)

Figure 2.13: Code weaving

meta level

concrete level

18

Chapter 3
PROPOSED CODE GENERATOR

To design the code generator for PHMS, there are various requirement aspects that needs
to be undertaken. The code generator must be flexible and manageable from developers
point of view and accepts any high-level specification tool given the meta-model derived
from it maintains compliance with code generator. Following are the characteristics of the

code generator for PHMS.
3.1 MODEL-BASED

The model-based development allows modeling of a software system from a higher ab-
straction level. The model can be directly transformed to a programming language with the
help of automatic code generation. User will be able to specify PHMS specification with-
out worrying about low-level details of implementation. It can be more cost-effective as it
reduces development time and provides more opportunities to test each of the functionali-
ties to ensure they are less error prone. Hence compliance checking and testing of model
can be easily performed. Based on the different approaches of code generation discussed,

only TEMPLATES+META-MODEL provide model-based code generation.
3.2 MANAGEABILITY

One of the important aspects of code generator in the context of its development is that code
generation framework must incorporate flexibility and extensibility. Such aspect facilitate
the developer an ability to change the functionality without making major changes to the
code generation framework. Similarly, extension of hardware and software abstraction can
be implemented in modular fashion. Hence, modularity provides better management in

internal components of code generator. As discussed in various approaches to generate

19

code, only TEMPLATE+META-MODEL and FRAME PROCESSING approach stresses

on modularization.
3.3 ALGORITHM SPECIFICATION

The code generator for PHMS must support physiological signal processing algorithms,
the declaration of algorithm and provision of its execution sequence; play a critical role
in ensuring real-time operation without missing a deadline. Such requirement calls for
modularity in specifying algorithm which can be accomplished by introducing algorithms
as frames. As mentioned in FRAME PROCESSING approach, frames are functions which
are instantiated and parametrized before its usage. Such approach will allow the ability
to inject algorithm frames into a specific location and bring modularity to template code.

Only FRAME PROCESSING provides such modular approach.
3.4 ANNOTATION IN TEMPLATE CODE

The code template should provide the information to parser about what and where the
frames should be injected. Template code should have annotations or special comments
to make parser of a generator understand the code accordingly. The benefit of this pattern

is one can annotate code with as many information as long as parser of a code generator

understands it. Only CODE ATTRIBUTES provides such approach.
3.5 FLEXIBILITY AND EXTENSIBILITY IN TEMPLATE CODE

From re-usability point of view, for a given template code, the template must be able to
provide several versions of code. The template code should be flexible which can allow
embedment of several versions of templates ensuring it runs on diverse platform. Exten-
sibility aspect should be available to include new sensor or communication support to the
same platform. With the help of pre-processing directives, such properties can be achieved.

Only INLINE CODE GENERATION provide such approach.

20

3.6 MODEL-BASED CODE GENERATOR FOR PHMS

Currently, there exist no approach for code generation of PHMS that addresses all the
characteristics discussed, model-based code generator for PHMS was proposed (Figure
3.1) which inherits all the necessary properties from different code generation approaches

to make it compatible for PHMSes.

Templates
with

S Attributes
parse ’
] High-level MetaModel
Specification preprocess

instance of

MetaModel
Generator Preprocessor
Instance

Instantiate & parameterize

adheres to apply to

all resolved
Target
Code @ait
Frame

Figure 3.1: Model-based code generator for PHMS.

The high-level specification adhering to the meta-model is parsed to create an instance
of the meta-model and is fed to generator as input. Based upon the given meta-model,
the generator pulls a copy of a platform-specific template code with attributes. It applies
preprocessing technique to template file, defining and expanding the required expressions.
Appropriate code frames are instantiated and parametrized before injection into a specific

locations in template file. The code generator is divided into modules as follows:

High-level specification

The high-level specification allows user to specify requirements to implement PHMS with-
out worrying about low-level details of implementation. The specification must adhere
with the meta-model format which is the actual input to the generator module. The spec-

ification must allow user to specify sensor and smart phone specification and translate it

21

to respective models. Architecture Analysis and Design Language (AADL) is one such
language used for model-based engineering in embedded system engineering that allows
the modeling of an embedded systems. It allows user to define constructs for sensors and
smart phone to create a system architecture. The Figure 3.2 shows that a sensor construct
is defined with input and output ports. The instance of that sensor consists of an identifier,
algorithm and communication components. It also allows to specify routing of the data

through algorithms.

Sensor
System Mote Mote

features
1lnput: 1n event data port; ‘

output: in out event data port;
end Mote; [B

System Sensor
features \

input: 1n event data port; B

output: in out event data port; Algorithm

end Sensor; Communication

System implementation Mote.one_imp
subcomponents
ECGSensor: system Sensor.ECG _one_imp;

ComnCormp: system Communication.Mote imp;

connections
SendData: event data port output ->
| CommComp .input;

properties
HD MoteProperties::identifier => “12347;
HD_MoteProperties::platform => shimmer2r;

end Mote.one_imp;

System implementation Sensor.ECG.one_imp

subcomponents

Algol: process Algorithm.HD_heartRate_imp;

properties
HD SensorProperties::sensor_type => ecg;
HD SensorProperties::sampling frequency => 125;
HD_SensorProperties::sample size => 500;

connections

Algorithm_C1: event data port input -> Algol.input;
Algorithm_C2: event data port Algo21output -> output;

end Sensor.ECG.one_imp;

Mote properties Communication handler

Sensor properties | Algorithm handler |

Figure 3.2: Sensor model in AADL.

Meta-Model

Meta-model contains bare minimum but necessary information of the model. It is an ab-

straction of a model which is itself an abstraction of real-life system. Meta-modeling pro-
22

vides methods to analyze, create constructs, frames, and rules to model a given set of prob-
lems. The high-level specification is written under such regulation, which allows parser to
create a meta-model from given model. The parser extracts out all the relevant information
from the model, which is further used in code generation. Figure 3.3 shows meta-model

containing information which allows for code generation.

Sensor Metamodel
platform: Shimmer
motelD: 1234
communicationProtocol: Bluetooth
sensorType: ECG
sampling Frequency: 125 Hz
Algorithm: Heart Rate Calculator
sampleSize: 500
radioStatus: On

Smartphone Metamodel
platform: Android
communicationProtocol: Bluetooth
sensorType: ECG
graphVisibility: On

Figure 3.3: Sensor and smart phone metal-model are input to generator.

Template code with attribute

Template code is platform-specific code which acts as a base to generate required code.
It contains reference entities or attributes which helps the parser to inject required frame
(piece of a code) and brings modularity in generation. This also makes template code light-
weight and generic by storing the functionalities in separate modules, which can be easily
modified or replaced. Given the information obtained from meta-model, the generator
calls an appropriate template code and replaces its attributes with respective frames. The
frame can be an algorithm or a function. In the Figure 3.4, the encircled code snippets are
attributes of a TinyOS template code that shows where to declare an algorithm and call for

sequencing.

23

/***************************SensorTimerFirings**************************

**x [[* At each sample period: - if local sample buffer is full, send accumulated
samples- read next sample */ //********************************

#ifdef ECG

ta i - -
C {[@ ALGORITHM_CHAIN_DECLARATION @] >

// Initial copy of RAW data
ecg_raw->size = NREADINGS_TEMPERATURE;

ARRAYTOAARRAY (ecg_buffer, ecg_raw);

}

task void ecg_prepare_packet(){
local_ecg.seq_num=1;
local_ecg.version=4;
local_ecg.count = ecg_output->size;

AARRAYTOARRAY (ecg_output, local_ecg.readings);
}

Figure 3.4: Code snippet of TinyOS template with attributes.

Code frame

Code frames are generic implementation of a function which could be used by generator
after they are parametrized. They are used for specifying and sequencing of algorithms.
The generator injects the frame into the specific location, making the generation more
modular. Figure 3.5 shows a repository of algorithm frames namely, Peak detection, Fast
Fourier Transform (FFT) and Mean. These frames are declared and sequenced in a copy
of a template code by generator. Figure 3.4 shows the template with attributes indicating
where the algorithm should be declared; generator injects the f