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ABSTRACT 

Process migration is a heavily studied research area and has a number of 

applications in distributed systems. Process migration means transferring a process 

running on one machine to another such that it resumes execution from the point at 

which it was suspended. The conventional approach to implement process migration 

is to move the entire state information of the process (including hardware context, 

virtual memory, files etc.) from one machine to another. Copying all the state 

information is costly. This thesis proposes and demonstrates a new approach of 

migrating a process between two cores of Intel Single Chip Cloud (SCC), an 

experimental 48-core processor by Intel, with each core running a separate instance 

of the operating system. In this method the amount of process state to be 

transferred from one core’s memory to another is reduced by making use of special 

registers called Lookup tables (LUTs) present on each core of SCC. Thus this new 

approach is faster than the conventional method.   
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CHAPTER 1 

INTRODUCTION 

Process migration is the act of transferring a process between two processors 

and restoring the process from the point it left off. While load balancing across 

networked nodes has been a major motivation for process migration, it has a 

number of other applications including fault tolerance, power management and data 

access locality. Several implementations have been built for different operating 

systems including MOSIX[1], V[2], Accent[3], Sprite[4] and Mach[5]. Process 

migration involves transferring the state of a process from one machine to another. 

The state includes virtual address space (code, stack and data), registers, open files, 

message buffers and environmental data such process-id, username etc. The cost of 

moving all this state information is a major difficulty in process migration. The major 

portion of this cost is the cost of moving the virtual address space as it forms the 

largest unit of the process state [6]. 

This research looks into process migration on Intel Single-Chip Cloud 

computer (SCC) [7] which is a 48-core experimental processor prototype created by 

Intel Labs as a platform for many-core software research. The aim of the research is 

to propose a new technique for migrating a process from one core of SCC to another 

which is faster than the conventional technique of moving the complete state of the 

process from one core to another. This technique makes use of special sets of 

registers present on each core of SCC called Lookup tables (LUTs) such that only a 

portion of the state is transferred thereby reducing the cost of migration. Apart from 

performance there are many other complex issues associated with process migration 

such as transparency, naming, scheduling etc. but these are not in the scope of this 

research. 
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The SCC has 48 Pentium-1 (P54C) cores placed in a tile formation with two 

cores per tile. The tiles are connected by a 6X4 mesh network. Each P54C core is 32-

bit processor and can address 4GB of memory called the core-physical address 

space. The SCC can support up to 64 GB of memory called the system-physical 

address space. The system-physical address space includes the memory of four 

DDR3 memory controllers (supporting a maximum of 16 GB each), on-chip memory 

for message passing between the cores (MPB) and memory-mapped configuration 

registers. The translation of core-physical addresses to system-physical addresses is 

done through lookup tables (LUTs). Each core has a private LUT which maps every 

core-physical address to a system-physical address which can belong either to the 

off-chip DRAM, the MPB or the configuration registers. The LUTs get assigned default 

values at boot time. The default LUT configuration divides the off-chip DRAM into 

memory private to each core and memory shared by all cores. However the LUT 

entries can be changed by a core dynamically. A core can change LUT entries not 

only of its own but also of other cores. These properties of LUTs can be used to 

migrate a process running on a core to another core without physically moving the 

complete state of the process from one core’s private memory to another. The idea 

is to make a portion of the private memory of one core a part of the private memory 

of another core by changing a few LUT entries on both the cores. 

To demonstrate the proposed method of migrating a process a small kernel 

has been written. The experiment involves running an instance of this kernel on two 

cores and migrating a process from one core to another. The kernel on the source 

core starts a user process and migrates it to the destination core using LUTs. The 

experiment also involves migrating the process using the conventional method in 

which the entire state of the process is copied from source core’s memory to 



3 

destination core’s memory using shared memory. The performance from both the 

approaches has been compared. 

OUTLINE 

The rest of the report is organized as follows. Chapter 2 gives an overview of 

Process Migration. Chapter 3 describes the SCC architecture and programming 

model. Chapter 4 describes the experiment and evaluation. Chapter 5 mentions 

related work.  
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CHAPTER 2 

PROCESS MIGRATION 

 A process is an operating system abstraction of a program in execution. Each 

process has a state associated with it. The state of a process refers to all the 

information that is required to resume the execution of the process. The components 

of the process state may vary from machine to machine but typically include the 

following [8]: 

- virtual address space – code, data and stack segment 

- open files - file id, read-write pointers, buffers etc 

- message buffers – sending and receiving messages and buffers 

- machine state – registers , program status word etc. 

- environment data – process-id , user-id, references to child , parent 

processes etc. 

Process migration refers to the act of suspending a process running on one 

machine in the middle of execution and transferring to another machine where it 

resumes execution from the point at which it was suspended. For the process to 

resume execution properly the entire state of the process may need to be 

transferred.  

Process Migration has a number of applications [9]: 

 Dynamic Load Balancing - Processes can be moved from a heavily loaded 

node to a lightly loaded node. This would increase the system throughput and 

reduce the average response time. 

 Resource Sharing - If a process requires access to a resource such as a 

special hardware available on a remote node it can be moved to that node 

resulting in better resource utilization and reduced network communication. 
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 Fault tolerance – If a node experiences partial failure or is likely to fail all the 

processes running on it can be moved to a different node thus ensuring 

availability. 

 Improving System Administration – If a machine is temporarily shut down all 

the long-running processes executing on it can be moved to another machine 

and then migrated back when the machine is up again. 

 Improving communication Performance - If a process is frequently 

communicating with another process on a different node the communication 

cost can be reduced by moving one of the processes to the same node as the 

other or to a nearby node. 

 Mobile Computing – Users may use different devices at different times and 

may want to continue using the same programs while remaining connected to 

the network.  

There are many different implementations of process migration. All the 

existing process migration implementations may vary in some aspects but have the 

following basic steps in common [10]: 

- A decision is made to migrate the process. 

- A remote node is selected and a migration request is sent to the node.  

- The process is suspended on the source node. All the arriving messages are 

queued up to be delivered to the destination node after migration. 

- A skeleton process is created on the destination node and space is allocated 

for process state. This is not activated until sufficient state has been imported 

into it. 

- The process state (registers, virtual memory, open files, message channels 

etc.) is extracted from the source node and transferred to the destination 

node and imported into the skeleton process.  
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- The process is resumed on the destination node. 

- The state information remaining on the source node is removed. Some 

information may still be retained for e.g. to redirect the incoming messages. 

Designing a process migration facility is a complex task and a number of 

issues need to be considered. Following are some of the issues to be considered: 

 Virtual memory transfer – The cost of transferring virtual memory is the 

dominant factor in the cost of transferring the entire state [6]. Transferring 

complete address space at once results in long freeze time (time for which 

process is not running during migration) for the process to be migrated. 

Different approaches have been adopted in different implementations to 

reduce the cost of moving virtual memory [8][11]: 

a. Eager (all) - Entire address space is transferred at the time of migration. 

This is the simplest approach. However it can prove to be expensive if the 

address space is large and the migrated process is not going to need most 

of it. 

b. Eager (dirty) - Only modified (dirty) pages are transferred during 

migration while the rest of the pages are only transferred on demand. This 

reduces the cost of transfer during migration. However it requires the 

source node to continue maintaining the state of the process. 

c. Copy-on-Reference - Pages are transferred only on reference. This has the 

lowest initial cost. 

d. Precopy – Pages are transferred while the process is still executing on the 

source node. This reduces the freeze time of the migrated process. 

e. Flushing – The dirty pages are flushed to the disk and accessed on 

demand from the disk. Thus the source node does not need to maintain 

pages in memory. 
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 File migration [12] – File migration is an important issue in process migration. 

The state associated with an open file consists of file descriptor, read/write 

pointers and cached blocks. Migrating open files transparently can be 

challenging. Different approaches have been implemented. One of them is to 

close the files on the source node and reopen them on the destination node. 

Another approach is to have all the file related system calls redirected to the 

source node[4]. The approach may vary if a distributed file system is 

available. 

 Process relationships – The presence of child and parent processes adds more 

complexity to process migration. It may be decided to keep the related 

process on the source node or to move them to destination node. 

This research focuses on improving performance of process migration on Intel 

SCC by reducing the amount of state transferred from one core to another. The 

components of process state that are considered are register and virtual address 

space. All the other issues such as migration of open files, devices, parent and child 

processes etc. are kept out of the scope of the research.  
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CHAPTER 3 

INTEL SINGLE CHIP CLOUD COMPUTER 

The Single Chip Cloud Computer (SCC) is an experimental processor created 

by Intel labs as a platform for many-core research. It is the second processor in 

Intel’s Tera-scale research program [13]. The Tera-scale program envisions creating 

many-core platforms capable of handling terabytes of data and providing teraflops of 

computing performance. There are two main motivations for SCC [14] – to promote 

many-core research and to promote parallel-programming research. Intel has made 

SCC available to several researchers in both industry and academia as a result of 

which there is a lot of ongoing research in parallel and many-core computing using 

SCC as the platform. Many applications and operating systems have been ported to 

SCC [15][16][17] and new applications and operating systems are being developed 

to run efficiently on SCC. 

The SCC has 48 IA (Intel Architecture) cores on a single die which according 

to Intel is the maximum number of IA cores that have ever been integrated on a 

single chip[18][18]. Each IA core is based on Pentium (P54C) core. The P54C was 

chosen because it is simple in design, cheap and smaller in area as compared to 

newer processors [17][19]. This made it possible to put 48 cores on a single die in a 

cost-effective way. It also made it easy to modify existing applications to run on 

SCC. The cores are placed in a tile formation. There are 24 tiles in total with two 

cores on each tile. The tiles are connected by a high performance 6x4 2D mesh 

network. SCC has four on-die DDR3 memory controllers. The tiles can communicate 

with each other or with the memory controllers by sending packets over the mesh 

network. Figure 1 illustrates SCC architecture. 

The SCC currently does not have any hardware devices such as keyboard, 

monitor or disk. The only way to communicate with the SCC is through a 
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Management Console PC (MCPC) which is connected to it through PCI/e interface. 

The MCPC is a 64-bit machine running a version of Linux. It has software provided by 

Intel labs to manage SCC. The software on MCPC can be used to load operating 

systems and programs on some or all of the cores of SCC, to modify the SCC 

configuration registers, to read from and write to the memory and more [20]. 

 

Figure 1. SCC Architecture. Reprinted from [17]. Reprinted with permission. 

 

TILES  

 The SCC consists of 24 tiles connected by mesh network. Figure 2 shows the 

architecture of a tile. Each tile has two cores. Each core is a P54C [24] processor 
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with an L1 cache and an L2 cache. An important difference in the design of standard 

multi-core systems and SCC is that the caches in SCC are non-coherent. The reason 

behind this decision is that as the number of cores increases cache-coherency 

becomes a bottleneck in the performance of the system [21]. So to make the 

platform scalable to large number of cores cache-coherency has been left for the 

software to manage.  

 Each tile has small on-chip memory called the Message Passing Buffer (MPB). 

The MPB supports faster reads and writes than the off-chip DDR memory. Although 

the MPB is local to a tile, any core can access the MPB assigned to any other core. 

The primary purpose of MPB is to enable passing between programs and operating 

systems running on different cores. A message sent from one message-passing 

program to another goes from L1 cache of the sending core to the MPB and then to 

the L1 cache of the receiving core. Thus message or data is transferred without using 

the off-die memory. 

There is a router connected to each tile to route packets over the mesh 

network. Each tile also contains a Mesh-Interface Unit (MIU) [23]. The MIU is the 

interface between the tile and the router. The MIU packetizes the data going out to 

the mesh and de-packetizes data coming in from the mesh. The MIU catches cache 

misses and translates 32-bit core addresses into 46-bit system addresses using 

Lookup tables (LUTs) present on the tile. The translation between core and system 

address is explained in detail later. The tiles are organized into four regions, each of 

which maps to a particular memory controller. This mapping is also determined by 

LUTs.  
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Figure 2. Tile design architecture of SCC. Reprinted from [17]. Reprinted with permission. 

 Each tile contains a set of configuration registers that can be used by 

programs running on the cores to control operating modes of different hardware 

components of the tile. The registers are located in the MIU in a Control Register 

Buffer (CRB). They are accessed using memory-mapped IO. The configuration 

registers consists of two Lookup tables (LUTs), two Test-and-set registers, a TileID 

register, two L2 cache configuration registers, two core configuration registers, a 

global clock configuration register and two sensor registers[22]. Table 1 lists the 

different configuration registers. There are two Lookup tables on each tile, one for 

each core. The registers LUT0 and LUT1 are the first entries in the two lookup tables. 

The TileID register MYTILEID is a read-only register and contains the (x,y) 

coordinates of tile. It also contains the core-ID of the core that read it. There are two 

core configuration registers – CLCFG0 and CLCFG1 on a tile. They can be used to 
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send inter-processor interrupts from one core to another. The L2 cache configuration 

registers – L2CFG0 and L2CFG1 are used to enable or disable L2 caches of the cores 

on the tile. 

Table 1. SCC Configuration Registers 

Register  Description Access 

LUT1 LUT register core 1 Read/Write 

LUT0  LUT register core 0  Read/Write 

LOCK1 Atomic Test and Set Lock Core 1 Read/Write 

LOCK0 Atomic Test and Set Lock Core 0  Read/Write 

MYTILEID Tile ID Read 

GCBCFG  Global Clock Unit Configuration  Read/Write 

SENSOR Thermal Sensor Value Read 

SENSORCTL  Thermal Sensor Control Read/Write 

L2CFG1   L2 Cache Core 1 Configuration Read/Write 

L2CFG0 L2 Cache Core 0 Configuration Read/Write 

GLCFG1  Core 1 Configuration Read/Write 

GLCFG0  Core 0 Configuration Read/Write 

 

Note. Reprinted from [17]. Reprinted with permission. 

 There are three IDs associated with each core – tiledD , processorID and 

coreID[20]. The coredID identifies the core within a tile and is either 0 or 1.Since the 

tiles are arranged in a 6X4 2D array, each tile has an (x,y) coordinate. The tileID is 

and 8-bit value where the first four bits are for the y coordinate and and the last four 

are for the x coordinate. As mentioned earlier the tileID can be obtained by reading 

the TildeID register. The processorID goes from 0 to 47. 

  



13 

MEMORY 

 The SCC has features of shared memory systems as well as distributed 

memory systems [21]. It has off-chip DRAM and on-chip SRAM (MPB). The off-chip 

DRAM is accessed through four on-chip memory controllers attached to four tiles at 

the positions – (0, 0), (0, 5), (2, 0) and (2, 5) in the 6X4 grid. Each controller has 

two DDR3 banks. The banks can have capacity of 2GB, 4GB or 8GB. Thus a total of 

64GB of memory can be supported by SCC.  

 Each core has a 16KB L1 data cache and a 16KB L1 instruction cache. 

There is also a unified 256 KB L2 cache. The SCC does not provide any cache 

coherence and it is up to the software to manage coherence. To enable the 

programmer to manage cache coherence the SCC provides two features [22]. A new 

memory type or tag called MPBT has been provided that identifies the cache lines 

that hold MPB data. The MPBT data bypasses the L2 cache. In addition a new 

instruction called CL1INVMB has been added to the P54C instruction set to invalidate 

all the cache lines marked as MPBT in the L1 cache. Invalidating the cache lines 

would force the data in the L1 cache to be update from MPB on the next read. The 

instructions WBINVD and INVD can be used to respectively flush and invalidate the 

L1 cache completely. However there is no hardware instruction to flush the L2 cache 

[19].  

LUT 

 Each core on SCC is a 32-bit processor and can address up to 4GB of memory 

called the core-physical address space. The total memory supported by SCC is 64GB 

called the system-physical address space. The system address space is divided into 

different memory regions – off-chip DRAM, on-chip MPB and memory-mapped 

configuration registers. The translation of core physical address to system physical 

address is done by using lookup tables or LUTs. An LUT is a set of configuration 
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registers within the CRB (Configuration register buffer). Each core has its own LUT. 

The LUT determines if a core physical address refers to the off-chip memory, on-chip 

memory or configuration registers. When a program accesses a 32-bit virtual 

address it is first translated to a 32-bit core-physical address by the core’s Memory 

Management Unit (MMU) using page tables. The core physical address is then 

translated to system physical address through the LUT. Figure 3 shows the 

translation process. The LUT has 256 8-byte entries. Each entry maps to a 16MB 

segment (an LUT page) of the core physical address space thus making a total of 

4GB. The upper 8 bits of the core physical address are used to index one of the 256 

LUT entries. Each LUT entry contains 22 bits of information. The lower 10 bits are 

prepended to the lower 24 bits of the core physical address to form a 34 bit address. 

The upper 12 bits of the LUT entry provide the routing information. The routing 

information consists of an 8-bit Destination ID, a 3-bit Subdestination ID and a 

Bypass bit. The Destination ID is the destination Tile ID (y, x). The Subdestination ID 

determines the type of memory to be accessed – DDR3, MPB or CRB. The 

Subdestination ID specifies the port at which the packet would leave the destination 

router - North, East, West, South. It can also specify one of the other destinations - 

Core0, Core1, MPB and CRB. The four memory controllers are either located at the 

West port or the East port of a router. Table 2 lists the different values of 

Subdesination ID and the destinations they indicate. The Bypass bit is used to 

bypass the MIU when the destination address is local to the tile thus allowing faster 

access.  

 For loading and running an operating system (or a baremetal application) a 

file containing LUT mappings is required. The tool sccMerge provided by Intel on the 

MCPC is used to generate a loadable image of the operating system to be booted 

along with the default LUT mappings. APPENDIX A shows the default LUT mappings 
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generated when the total system memory is 32 GB. The LUTs can be modified 

dynamically after booting. This can be done either through a program running on the 

Management Console or through a program running on a core. The default LUT 

configuration divides the off-chip DRAM into regions private to a core and regions 

shared by the cores. The memory private to a core is mapped only by the LUT of that 

core. The memory shared by the cores is mapped by LUTs of all the cores thus 

making it accessible to all the cores. However since the LUT entries can be changed 

dynamically, it is possible to make a portion of the private memory of one core 

visible to other cores by modifying a few LUT entries. This has the effect of moving 

data without physically copying it. 

Table 2. Address Translation Fields 

Sub-Destination subdestID  

(3 bit) 

Comment 

Core0 0x0 Not a destination for memory R/W 

Core1 0x1 Not a destination for memory R/W 

CRB 0x2 Configuration Register 

MPB 0x3 Message Passing Buffer 

E_port 0x4 @'(0,5) is DDR3 MC 

S_port 0x5 @'(0,3) is SIF, @(0,0) is VRC 

(presuming y,x order) 

W_port 0x6 @'(0,0) is DDR3 MC 

N_port 0x7 Nothing is on this port of any edge 

router 

 

Note. Reprinted from [23] 
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Figure 3. Address translation using Lookup Table. Reprinted from[17]. Reprinted with 

permission. 

 

ON-CHIP MESSAGE PASSING 

 Each tile has 16KB of message passing buffer (MPB). By default 8KB assigned 

to each core. The MPB of each core is accessible is by all the cores. The LUT of a core 

maps the MPBs of all the tiles. The LUT also contains an entry for the core to access 

its own MPB. To support message passing new features have been added to the SCC 

core. A new memory type called Message Passing Buffer Type (MPBT) has been 

introduced. The MPBT data bypasses the L2 cache. Each cache line has a new status 
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bit that identifies the contents of the cache line as MPBT. A reserved bit in the page 

table marks the page as MPBT data. A new instruction called CL1INVMB has also 

been added to the instruction set of the P54C core. This instruction invalidates all the 

MPBT cache lines in the L1 cache thereby avoiding reading of stale data from the 

cache. To provide support for message passing through MPB Intel has provided a 

library called RCCE [25]. It moves the data from the private memory of the sending 

core through the L1 cache to the MPB and then to L1 cache of the receiving core.  

MANAGEMENT CONSOLE PC 

The MCPC is a 64-bit computer connected to the SCC over a PCIe interface. It 

runs some version of Ubuntu Linux. Intel provides a set of tools called sccKit on the 

MCPC to manage SCC. The MCPC also contains RCCE, a modified Linux image to load 

on to the cores and tools to enable developers to build custom Linux images. The 

sccKit provides both a graphical interface (called sccGui) and a command-line 

interface. The programs in the sccKit can be used to load an operating system on the 

cores, to read and write memory and configuration registers, to monitor core 

performance and more. Following are some of the useful commands [20]:  

 sccBmc - This command is used to send commands to the Board Management 

Controller (BMC). It can be used to initialize the SCC platform or read some 

status information. This command when used with –i option re-initializes the 

SCC.  

 sccBoot - This command is used to boot an operating system on a range of 

cores. The operating systems can either be the Linux image provided by Intel 

or a custom operating system. When used with –s option it lists the cores that 

can be reached by ping.  
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 sccReset - This command is used to reset a range of cores. It gives options 

for holding the reset and releasing the reset. It also has option to list the 

cores that are in reset mode. 

 sccDump - This command reads the contents of the off-chip DRAM, the 

configuration registers, the MPB and the LUTs. The contents can be dumped 

to a file. It is a useful tool for debugging. 

 sccMerge - This command is useful for loading custom operating system on 

the cores. It takes as an input a bootable image and create a merged image 

to be loaded on all the memory controllers along with the default LUT 

mappings for all the cores. The optional arguments include the size of 

memory at each controller in GB (-m) and the number of cores assigned to a 

memory controller (-n).  

BAREMETAL 

 There are two ways in which applications can be run on SCC –  

 On top of an operating systems such as Linux 

 Directly on the hardware without the support of an operating system. 

 Intel has provided a modified version of Linux called sccLinux which can be 

loaded on each core separately using the tools present on the MCPC. It provides a 

number of useful features for application programming [20]. However, sometimes it 

is desirable to run the programs directly on hardware. This can help to achieve 

greater speed of execution and to avoid operating system overheads. It also 

provides greater freedom in programming for e.g. running programs on the highest 

privilege level. This way of programming is referred to as Baremetal programming. 

There are currently three frameworks available that can help in running baremetal 

applications – ETI SCC framework [26], Microsoft framework and Baremicahel 

framework [27]. Of these three frameworks only Baremichael is open-source. 
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Baremichael enables developers to load and launch C and assembly programs on 

SCC cores. It includes a subset of the C standard library and some SCC-specific 

helper functions and macros. It also provides a pseudo-terminal called MikeTerm that 

shows the output from applications running on the cores. The experiment conducted 

for this thesis makes use of some of the code from Baremichael. 
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CHAPTER 4 

EXPERIMENTATION AND EVALUATION 

 As described earlier, Intel SCC has 48 cores and four memory-controllers 

which can support up to a maximum of 64 GB of off-chip memory. 

The memory at each memory-controller can be divided into memory private to each 

core and memory shared by all cores. This division is done through LUTs and is 

configurable. In the default LUT configuration, the tiles are divided into four regions 

with 12 cores each such that each region is served by a particular memory 

controller. Thus at each memory controller there are 12 private memory regions and 

one shared memory region shared by all the 48 cores. The most common way of 

programming SCC is to run it as a cluster. Each core is booted with an operating 

system and forms a node in the cluster. In such a setup if a process running on one 

core is to be migrated to another core, the typical approach would be to move the 

process state from the private memory of the source core to the private memory of 

the destination core by using shared memory. Copying all the state twice is 

expensive. This thesis therefore proposes a new approach to migrate a process. In 

the new approach a process is migrated by using LUTs such that minimal or no state 

needs to be copied. To demonstrate the new method of process migration a small 

kernel has been developed. The kernel implements a migrate() system call which can 

migrate the process that invokes it. There are two implementations of the migrate() 

system call. One that uses LUTs and the other that uses shared memory. To evaluate 

the performance improvement with the new approach, a process is migrated using 

both LUTs and shared memory and the results are then compared.  
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CUSTOM KERNEL 

 The custom kernel was first developed on a local Linux system on an emulator 

and its basic features were tested. It was then modified to run on SCC. It is a kernel 

with limited functionality. Following are some of the features of the kernel: 

 Interrupt handling and system calls – The kernel implements an interrupt 

handling mechanism and some interrupt handlers. It also provides system 

calls to print text on the screen, to fork a child process and also to migrate a 

process (discussed later).  

 Memory management – The kernel implements virtual memory through 

paging. It has a physical memory manager and a virtual memory manager. 

The physical memory manager keeps track of free frames using a bitmap. The 

virtual memory manager manages allocation and de-allocation of pages 

through page-directories and page-tables. The kernel also includes a heap 

allocator for dynamic memory allocation in kernel mode. 

 Process management - A simple round-robin scheduler has been implemented 

using a queue of Process-control-blocks (PCBs). Whenever a timer interrupt 

occurs it causes a context-switch and the next process in the queue is 

executed. A PCB contains pointer to a memory block containing all the 

register values, a pointer to the page directory of the process, a process-id 

and a pointer to the next PCB in the scheduler queue. The address space of a 

process consists of a code segment, a data segment and a stack. The virtual 

addresses of the all three segments are currently fixed.  

 At the moment the kernel does not have a file-system. Therefore to execute a 

program, the hex-dump of the code and data sections of the executable needs to be 

copied into two arrays in the source code. To create a process the kernel reads the 

binary of the process from the arrays and copies it into virtual memory. 
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PORTING THE KERNEL TO SCC 

 The design of the SCC is different from a typical multi-core system in a 

number of ways. Various new architectural features have been incorporated for 

better scalability. Therefore to execute any application or operating system on SCC 

modifications are required. This section describes how the custom kernel has been 

ported to SCC and what modifications have been made to the kernel. The open-

source Baremichael framework has been very helpful in porting the custom kernel to 

SCC.  

 The custom kernel was first developed on the local system using an emulator 

and grub bootloader was used to boot the kernel. However the SCC does not have 

BIOS due to which the booting process is different than a regular multi-core system 

with BIOS. The first step to execute a kernel (or application) directly on the SCC 

cores is to convert the binary of the kernel into an Intel specific ASCII format using a 

tool called bin2obj[28]. Since the cores start in 16-bit real mode, the binary of the 

kernel needs to include the boot-code to jump from real mode to protected mode. 

For the custom kernel the 16-bit boot-code is taken from Baremichael. After that the 

sccMerge script is used to create a loadable image of the kernel. sccMerge takes as 

input the output of bin2obj and a text file which mentions all the cores on which the 

kernel is to be loaded. sccMerge also creates a file containing the default LUT 

mappings. The loadable image and LUT mappings are then pre-loaded using sccBoot 

command and the cores can then be booted using sccReset. 

 The LUT of a core maps its physical address space to its private memory, 

shared memory, MPBs and CRBs. For the kernel to access these regions the physical 

address space needs to be mapped to virtual address space through page tables. 

Also, the kernel needs to access the shared memory, the MPBs and CRBs explicitly. 
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So the virtual addresses of shared memory, the MPBs and CRBs are explicitly set to 

be equal to the physical addresses which map to them through the LUT. 

 The kernel has been modified to add the functionality of sending inter-

processor interrupt to another core. On the P54C core interrupts are handled by local 

APIC (Advanced Programmable Interrupt Controller). There are two ways to send 

inter-processor interrupt on SCC. One is to control the LINT pins of the local APIC of 

the destination core by writing to the Core Configuration register. This is the method 

that has been used in the kernel. The other method uses the Global Interrupt 

Controller. To handle the inter-processor interrupt the LINT pins of local APIC need 

to be configured.  

 To read the output from the kernel the Miketerm utility[27], which is a part of 

Baremichael, has been used. The utility works in conjunction with the printf() 

function provided by the framework. Therefore the printf() function implementation 

has been plugged into the kernel. The printf() function writes the data in a circular 

buffer in shared memory. Every core is allocated a different buffer in the memory. 

The Miketerm utility polls all the 48 buffers and displays the text found in them. It 

uses the sccDump command to read the contents of the buffers. Miketerm precedes 

all the ouput with core-identifier. The order in which output from different cores will 

be displayed is not guaranteed. 

 The kernel also includes some useful SCC-specific functions and macros that 

are taken from the Baremichael framework. For e.g. a function to get the core-id and 

macros for getting the address of CRB and LUT of the core based on the default LUT 

mapping.  

PROCESS MIGRATION USING LUT 

As explained earlier, process migration involves suspending a process on the 

source machine and resuming execution of the process on the target machine. This 
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requires the state of the process to be made available on the target machine. The 

conventional way of doing this is to copy the state from the source to the target. In 

the context of SCC the source and the target machines are the cores of the SCC each 

running a separate instance of an operating system. Each core has its own private 

memory which can belong to any of the four memory controllers. The cores can also 

share memory. The division between the shared and private memory can be 

configured through LUTs present on each core. A portion of the physical memory can 

be shared or private depending on the LUT entries of all the cores. If a memory area 

is mapped only by the LUT of one core, it is private to that core as no other core will 

be able to access it. On the other hand if a memory area is mapped by LUTs of more 

than one cores, it is shared by all those cores. In the default LUT configuration 

generated by sccMerge, the cores are divided into groups of 12 such that each core 

in a group has its private memory on the same memory controller. Also, on each 

controller there is some memory which is shared by each of the 48 cores. However, 

since the LUTs can be changed dynamically, it is possible for a program (or kernel) 

to make a portion of the private memory of a core visible to other cores by changing 

LUT entries. As each entry in an LUT maps to a 16 MB segment of physical memory, 

it requires changing only two LUT entries to move a 16 MB chunk of memory from 

one core's private memory to another without physically copying the memory. This 

leads to the idea that if entire state of a process can be located in 16MB chunks of 

memory then by modifying a few LUT entries the whole process can be migrated 

from one core to another. This would result in a smaller freeze time during migration 

as compared to the conventional approach. Figure 3 shows how changing an LUT 

entry causes redirection of memory read/write accesses.  
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Figure 4. Effect of copying LUT entry on memory access 
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 Following is an overview of how process migration is implemented in the 

custom kernel:  

 create_process_LUT() - This method creates the user process to be migrated 

such that all of its state is located in a 16 MB segment of memory which is 

mapped by a single LUT entry. The state consists of PCB Page directory, page 

tables, code segment, data segment and stack segment. In the experiment a 

small process (code, data and stack segments each occupying one page each) 

is migrated. Therefore the process state only occupies a single LUT page. 

 migrate() - This is a system call invoked by the user process to be migrated ( 

created by create_process_LUT()). Invoking a system call causes the current 

context of the process to be saved in memory. The migrate() system call 

initiates the process of migration on the source core. It performs the following 

functions:  

- Suspends the process to be migrated by calling the 

remove_current_process() method. 

- Copies the contents of the LUT entry which maps the process state on the 

source core to the LUT entry on the destination core. This makes the 

process state visible to the destination core. 

- Sends an inter-processor interrupt to the destination core by writing to 

certain registers in the configuration register block of the destination core. 

 remove_current_process() - This method is called by the migrate() system 

call as mentioned above. It removes the current process from scheduler's 

queue. 

 ipi_handler() - This is the interrupt handler for inter-processor interrupt (IPI). 

When the destination core receives IPI from the source core this method 



27 

starts executing. It performs the second stage of process migration by calling 

receive_process(). 

 receive_process() - This method completes process migration by adding the 

process to be migrated to the scheduler's queue on the destination core. 

Since the process state is visible to the destination core after the LUT entry is 

copied, adding the PCB of the process to scheduler's queue just requires few 

pointer operations. 

Following is a step-by-step description of how process migration is 

accomplished in the experiment conducted for this thesis: 

1. Two cores of SCC are booted with the custom kernel and default LUT 

mappings.  

2. As soon as the kernel starts running on the source core it creates the process 

to be migrated. For creating the process the kernel allocates memory for the 

state of the process such that entire state lies in a 16MB segment of physical 

memory. This segment maps to a single LUT entry. For simplicity the process 

is kept small enough to fit within 16MB of memory. Also, the source and 

destination cores are fixed. 

3. When the process starts running, it displays the core-id of the core on which 

it is executing and then invokes the migrate() system call.  

4. The migrate() system call removes the process from scheduler’s queue and 

copies its LUT entry mapping on the source core to the destination core. The 

indices of LUT entries on the source and destination core are kept same so 

that the destination core sees the same physical addresses as the source. 

This is required for the page-tables and page-directories to work as they refer 

to physical address of the pages. In the end the migrate() system call sends 

an inter-processor interrupt to the destination core. 
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5. On the destination core, the interrupt-handler for inter-processor-interrupt 

starts executing. The 16MB memory segment containing the process state is 

now visible to the destination core. The offset of the PCB of the process is 

fixed from the start of the segment. The interrupt-handler makes the process 

runnable on the destination core by adding the PCB to the scheduler queue. 

6. When the process starts on the destination core it again prints the core id of 

the core on which it is running. This time it is destination core. 

From the above description it can be seen that if the whole process state can within 

16MB of memory it can be migrated just by changing one LUT entry. Even if it is 

required to manipulate multiple LUT entries it would still be better than copying the 

entire process state as LUT entries are just registers.  

 As mentioned before, this thesis concentrates only on one aspect of process 

migration which is transferring the virtual address space and processor state of the 

process. The other aspects of process migration such as migration of open files, 

devices, communication channels and messages and handling of parent-child 

processes have been kept out of the scope. Currently SCC does not have any devices 

connected to it and is managed by software present on the MCPC. When sccLinux is 

booted on the cores, a directory on the MCPC (/shared) is NFS mounted on all the 

cores and to create a persistent file it has to be created in this directory [34]. In 

such a setup, a simplistic way of dealing with open files during migration is to close 

files on the source core and reopen them on the destination core. However, a 

number of complexities can arise when factors such as deletion of files, caching of 

file blocks and sharing of files between parent and child processes are considered 

[4].  
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PROCESS MIGRATION USING SHARED MEMORY 

The kernel contains a second version of both the migrate() system call and 

the IPI interrupt-handler to migrate a process using shared memory. The second 

version of migrate system call starts the migration by removing the process from the 

scheduler queue and then copies the state of process to shared memory including 

the Process Control Block, code, data and stack. The page directory and the page 

tables are not copied as they refer to physical addresses on the source core which 

will not be the same on the destination core after migration. The interrupt handler on 

the destination core copies the PCB and the address space of the process from the 

shared memory into the private memory of the destination core. It then creates a 

new process using the copied PCB and address space thus essentially creating a 

clone of the process to be migrated. This new process is then scheduled to run by 

adding the PCB to scheduler’s queue.  

EVALUATION 

 The proposed approach of migrating a process using LUTs has been compared 

with the conventional approach of using shared memory by measuring the time 

required to migrate a process using both the approaches. The experiment consists of 

migrating a process between two cores multiple times and averaging the total time 

over the number of the number of migrations. An instance of the custom kernel is 

booted on both the source and destination core. The source kernel creates a process 

to be migrated as soon as it starts. The process is small in size with only page each 

for code, data and stack segment. The code of the process consists of a loop that 

invokes the migrate() system call in each iteration. Whenever the migrate() system 

call is invoked on a core it causes the process to migrate to  the other core. The 

process prints the value of the Global Timestamp counter before and after the loop. 

The Global timestamp counter is a 64-bit counter running at the frequency of 125 
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MHz and available in form of two 32-bit values in registers. Thus the total time taken 

by the loop in seconds is calculated by calculating the difference between the two 

values of the counter and dividing it by 125 X 106.  This time divided by the number 

of iterations gives the time taken by a single migration. The experiment was 

repeated by selecting different cores as source and destination to observe the 

variation in the migration time due to the distance between the cores. In case of the 

shared memory approach, migration requires copying of entire state of process. 

Therefore the migration time is expected to be more when the source and 

destination cores are accessing different memory controllers as compared to when 

both the cores access the same controller. The following core pairs were selected for 

migration: 

- Core0 and Core1 on Tile (0,0) – same memory controller. 

- Core0 on Tile (0,0) and  Core 0 on Tile (5,0)  - horizontally opposite 

memory controllers. 

- Core0 on Tile (0,0) and Core0 on Tile (5,2)  - diagonally opposite memory 

controllers.  

Following table shows the time per migration (rounded up) obtained for both the 

approaches with different source and destination cores.  

Table 3. Time for single process migration 

 Migration Using 

LUT 

Migration using 

shared memory 

Core0 to Core1 on Tile(0,0)    1 ms  9 ms 

Core0 on Tile(0,0) and  Core0 

on Tile(5,0) 

   1 ms  165 ms 



31 

Core0 on Tile (0,0) and Core0 

on Tile (5,2) 

   1 ms  165 ms 

 

The table shows a clear improvement in performance when a process is migrated 

using LUT based approach as compared to shared-memory based approach. It also 

shows that unlike the shared memory based approach the performance of the LUT 

based approach does not get affected by the distance between the memory 

controllers. 

The proposed method of process migration is also evaluated for a possible use-case 

of process migration on SCC- migrating a memory intensive process to core that is 

closer to the memory controller which the process is accessing. The SCC has four 

memory controllers and a core can access any memory controller depending on the 

LUT configuration. The default LUT configuration provides shared memory on all the 

four controllers. Therefore if a process is heavily using memory on a memory 

controller but is executing on a core far from the controller on the mesh, it can 

benefit by migrating to the core closer to it. To demonstrate this a process was 

started on a core on Tile (0,0). The process was just copying contents of one 

memory location to another in a loop with both the locations belonging to the 

memory chip close to the Tile (5,2). The time taken by the process to execute the 

read/write loop was measured. After that the process was again started on Tile (0,0) 

but this time it was migrated to the Tile (5,2) before the loop started and the time 

taken by the loop was measured. As expected the time to complete the loop was less 

when the process was migrated. For 221 iterations of the loop, it took 1.006 secs 

when the process was executing on Tile (0,0) whereas it took 0.77 secs when the 

process was migrated to Tile (5,2).   
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CHAPTER 5 

RELATED WORK 

 Process migration has been a topic of research for many years and several 

implementations have been developed, both for distributed systems such as 

Sprite[4], Amoeba[29], V[2], Accent[3], DEMOS/MP[30], Charlotte[31] and for Unix 

such as Condor[32] and MOSIX[1]. Process migration can be implemented either at 

user-level or at kernel-level. At user-level, process migration is easier to implement 

and maintain as it does not require any changes to the operating system. However, 

at user-level it is difficult to extract the kernel-dependent state and not all processes 

can be migrated. Also, user-level process migration is less transparent and less 

efficient as compared to kernel-level process migration. An example is Condor which 

migrates processes using checkpoint/restore mechanism. Each process is linked to a 

user-level library which provides the process the ability to save its state to stable 

storage. This saved state is later used to restart the process on a different node. 

Kernel-level process migration is complex but more efficient than user-level 

migration. It is easier to capture the state of the process at kernel-level. 

Charlotte[31], Sprite[4], DEMO/MP[30] and V[2] are examples which employ kernel-

level process migration techniques. The transfer of virtual address space of a process 

is a dominating factor in the performance of a process migration system. This is the 

reason that a lot of research in process migration has focused on reducing the cost of 

virtual memory transfer. Accent[3] uses a technique called lazy copying or Copy on 

Reference to reduce the initial cost of migration. In Copy on Reference, virtual 

memory pages stay on the source until they are referenced on the target machine. 

Pages are copied to the target only when the migrated process references them. 

Thus the pages that are not used are never copied. In the V[2] system, a method 

called Pre-copy is used to reduce the time for which a process is suspended during 
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migration. In this method, the process is allowed to continue execution while the 

address space is being transferred. In Sprite[4], the source flushes all the dirty 

pages to a file server while the process is being migrated. All the requests for the 

pages from the target are then served by the file server instead of the source. This 

method is called Flushing. This thesis also focuses on reducing the cost related to 

transfer of process state during process migration. However, the technique used is 

SCC-specific. It proposes a novel use of Lookup tables which are typically used for 

memory mapping. A related use of Lookup tables that has been proposed in the past 

is for efficiently copying large blocks of memory from one core to another in 

SCC[33]. In this case however, the memory block is physically copied. 
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APPENDIX A 

DEFAULT LUTs 

  



38 

Table 4. Default LUT entries for 32 GB System Memory 

LUT # Physical Address  Maps to 

255 FFFFFFFF - FF000000 Private 

254 FEFFFFFF - FE000000 N/A 

253 FDFFFFFF - FD000000 N/A 

252 FCFFFFFF - FC000000 N/A 

251 FBFFFFFF - FB000000 VRC 

250 FAFFFFFF - FA000000 Management Console TCP/IP Interface 

249 F9FFFFFF - F9000000 N/A 

248 F8FFFFFF - F8000000 N/A 

247 F7FFFFFF - F7000000 System Configuration Register -- Tile 23 

246 F6FFFFFF - F6000000 System Configuration Register -- Tile 22 

245 F5FFFFFF - F5000000 System Configuration Register -- Tile 21 

244 F4FFFFFF - F4000000 System Configuration Register -- Tile 20 

243 F3FFFFFF - F3000000 System Configuration Register -- Tile 19 

242 F2FFFFFF - F2000000 System Configuration Register -- Tile 18 

241 F1FFFFFF - F1000000 System Configuration Register -- Tile 17 

240 F0FFFFFF - F0000000 System Configuration Register -- Tile 16 

239 EFFFFFFF - EF000000 System Configuration Register -- Tile 15 

238 EEFFFFFF - EE000000 System Configuration Register -- Tile 14 

237 EDFFFFFF - ED000000 System Configuration Register -- Tile 13 

236 ECFFFFFF - EC000000 System Configuration Register -- Tile 12 

235 EBFFFFFF - EB000000 System Configuration Register -- Tile 11 

234 EAFFFFFF - EA000000 System Configuration Register -- Tile 10 

233 E9FFFFFF - E9000000 System Configuration Register -- Tile 09 

232 E8FFFFFF - E8000000 System Configuration Register -- Tile 08 

231 E7FFFFFF - E7000000 System Configuration Register -- Tile 07 

230 E6FFFFFF - E6000000 System Configuration Register -- Tile 06 

229 E5FFFFFF - E5000000 System Configuration Register -- Tile 05 

228 E4FFFFFF - E4000000 System Configuration Register -- Tile 04 

227 E3FFFFFF - E3000000 System Configuration Register -- Tile 03 

226 E2FFFFFF - E2000000 System Configuration Register -- Tile 02 

225 E1FFFFFF - E1000000 System Configuration Register -- Tile 01 

224 E0FFFFFF - E0000000 System Configuration Register -- Tile 00 

223 DFFFFFFF - DF000000   

: : : 

216 D8FFFFFF - D8000000   

215 D7FFFFFF - D7000000 MPB in Tile (x=5,y=3) 

214 D6FFFFFF - D6000000 MPB in Tile (x=4,y=3) 

213 D5FFFFFF - D5000000 MPB in Tile (x=3,y=3) 
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LUT # Physical Address  Maps to 

212 D4FFFFFF - D4000000 MPB in Tile (x=2,y=3) 

211 D3FFFFFF - D3000000 MPB in Tile (x=1,y=3) 

210 D2FFFFFF - D2000000 MPB in Tile (x=0,y=2) 

209 D1FFFFFF - D1000000 MPB in Tile (x=5,y=2) 

208 D0FFFFFF - D0000000 MPB in Tile (x=4,y=2) 

207 CFFFFFFF - CF000000 MPB in Tile (x=3,y=2) 

206 CEFFFFFF - CE000000 MPB in Tile (x=2,y=2) 

205 CDFFFFFF - CD000000 MPB in Tile (x=1,y=2) 

204 CCFFFFFF - CC000000 MPB in Tile (x=0,y=2) 

203 CBFFFFFF - CB000000 MPB in Tile (x=5,y=1) 

202 CAFFFFFF - CA000000 MPB in Tile (x=4,y=1) 

201 C9FFFFFF - C9000000 MPB in Tile (x=3,y=1) 

200 C8FFFFFF - C8000000 MPB in Tile (x=2,y=1) 

199 C7FFFFFF - C7000000 MPB in Tile (x=1,y=1) 

198 C6FFFFFF - C6000000 MPB in Tile (x=0,y=1) 

197 C5FFFFFF - C5000000 MPB in Tile (x=5,y=0) 

196 C4FFFFFF - C4000000 MPB in Tile (x=4,y=0) 

195 C3FFFFFF - C3000000 MPB in Tile (x=3,y=0) 

194 C2FFFFFF - C2000000 MPB in Tile (x=2,y=0) 

193 C1FFFFFF - C1000000 MPB in Tile (x=1,y=0) 

192 C0FFFFFF - C0000000 MPB in Tile (x=0,y=0) 

191 BFFFFFFF - BF000000   

: : : 

132 84FFFFFF - 84000000   

131 83FFFFFF - 83000000 Shared MCH3 - 4MB 

130 82FFFFFF - 82000000 Shared MCH2 - 4MB 

129 81FFFFFF - 81000000 Shared MCH1 - 4MB 

128 80FFFFFF - 80000000 Shared MCH0 - 4MB 

127 7FFFFFFF - 7F000000   

:  : :  

85 55FFFFFF - 55000000   

84 54FFFFFF - 54000000 Private 

49 31FFFFFF - 31000000 Private 

48 30FFFFFF - 30000000 Private 

: : : 

1 01FFFFFF - 01000000 Private 

0 00FFFFFF - 00000000 Private 
 

Note. Reprinted from [23] 


