
Fast Process Migration on Intel SCC

using Lookup Tables (LUTs)

by

Vaibhav Jain

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved March 2013 by the

Graduate Supervisory Committee:

Partha Dasgupta, Chair

Aviral Shrivastava

Hasan Davulcu

ARIZONA STATE UNIVERSITY

May 2013

i

ABSTRACT

Process migration is a heavily studied research area and has a number of

applications in distributed systems. Process migration means transferring a process

running on one machine to another such that it resumes execution from the point at

which it was suspended. The conventional approach to implement process migration

is to move the entire state information of the process (including hardware context,

virtual memory, files etc.) from one machine to another. Copying all the state

information is costly. This thesis proposes and demonstrates a new approach of

migrating a process between two cores of Intel Single Chip Cloud (SCC), an

experimental 48-core processor by Intel, with each core running a separate instance

of the operating system. In this method the amount of process state to be

transferred from one core’s memory to another is reduced by making use of special

registers called Lookup tables (LUTs) present on each core of SCC. Thus this new

approach is faster than the conventional method.

ii

DEDICATION

To my parents, family, friends, and colleagues.

iii

ACKNOWLEDGEMENTS

 I would like to thank Dr. Partha Dasgupta, Dr. Aviral Shrivastava, and Dr.

Hasan Davulcu to provide me an opportunity to work under their guidance on this

thesis. I would also like to thank Dr. Stefan Lankes from RWTH Aachen University,

Germany for his guidance and valuable suggestions. I am thankful to the members

of MARC community for their help in answering my queries related to Intel SCC.

Special thanks to Michael Ziwisky for helping me in understanding his Baremichael

framework.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

CHAPTER

1 INTRODUCTION.. 1

OUTLINE .. 3

2 PROCESS MIGRATION ... 4

3 INTEL SINGLE CHIP CLOUD COMPUTER ... 8

TILES ... 9

MEMORY .. 13

LUT .. 13

ON-CHIP MESSAGE PASSING ... 16

MANAGEMENT CONSOLE PC ... 17

BAREMETAL .. 18

4 EXPERIMENTATION AND EVALUATION .. 20

CUSTOM KERNEL .. 21

PORTING THE KERNEL TO SCC ... 22

PROCESS MIGRATION USING LUT ... 23

PROCESS MIGRATION USING SHARED MEMORY 29

EVALUATION .. 29

5 RELATED WORK ... 32

REFERENCES ... 34

v

APPENDIX Page

A DEFAULT LUTs .. 37

vi

LIST OF TABLES

Table Page

1. SCC Configuration Registers .. 12

2. Address Translation Fields ... 15

3. Time for single process migration ... 30

4. Default LUT entries for 32 GB System Memory ... 38

vii

LIST OF FIGURES

Figure Page

1. SCC Architecture. ... 9

2. Tile design architecture of SCC. .. 11

3. Address translation using Lookup Table... .. 16

4. Effect of copying LUT entry on memory access 25

1

CHAPTER 1

INTRODUCTION

Process migration is the act of transferring a process between two processors

and restoring the process from the point it left off. While load balancing across

networked nodes has been a major motivation for process migration, it has a

number of other applications including fault tolerance, power management and data

access locality. Several implementations have been built for different operating

systems including MOSIX[1], V[2], Accent[3], Sprite[4] and Mach[5]. Process

migration involves transferring the state of a process from one machine to another.

The state includes virtual address space (code, stack and data), registers, open files,

message buffers and environmental data such process-id, username etc. The cost of

moving all this state information is a major difficulty in process migration. The major

portion of this cost is the cost of moving the virtual address space as it forms the

largest unit of the process state [6].

This research looks into process migration on Intel Single-Chip Cloud

computer (SCC) [7] which is a 48-core experimental processor prototype created by

Intel Labs as a platform for many-core software research. The aim of the research is

to propose a new technique for migrating a process from one core of SCC to another

which is faster than the conventional technique of moving the complete state of the

process from one core to another. This technique makes use of special sets of

registers present on each core of SCC called Lookup tables (LUTs) such that only a

portion of the state is transferred thereby reducing the cost of migration. Apart from

performance there are many other complex issues associated with process migration

such as transparency, naming, scheduling etc. but these are not in the scope of this

research.

2

The SCC has 48 Pentium-1 (P54C) cores placed in a tile formation with two

cores per tile. The tiles are connected by a 6X4 mesh network. Each P54C core is 32-

bit processor and can address 4GB of memory called the core-physical address

space. The SCC can support up to 64 GB of memory called the system-physical

address space. The system-physical address space includes the memory of four

DDR3 memory controllers (supporting a maximum of 16 GB each), on-chip memory

for message passing between the cores (MPB) and memory-mapped configuration

registers. The translation of core-physical addresses to system-physical addresses is

done through lookup tables (LUTs). Each core has a private LUT which maps every

core-physical address to a system-physical address which can belong either to the

off-chip DRAM, the MPB or the configuration registers. The LUTs get assigned default

values at boot time. The default LUT configuration divides the off-chip DRAM into

memory private to each core and memory shared by all cores. However the LUT

entries can be changed by a core dynamically. A core can change LUT entries not

only of its own but also of other cores. These properties of LUTs can be used to

migrate a process running on a core to another core without physically moving the

complete state of the process from one core’s private memory to another. The idea

is to make a portion of the private memory of one core a part of the private memory

of another core by changing a few LUT entries on both the cores.

To demonstrate the proposed method of migrating a process a small kernel

has been written. The experiment involves running an instance of this kernel on two

cores and migrating a process from one core to another. The kernel on the source

core starts a user process and migrates it to the destination core using LUTs. The

experiment also involves migrating the process using the conventional method in

which the entire state of the process is copied from source core’s memory to

3

destination core’s memory using shared memory. The performance from both the

approaches has been compared.

OUTLINE

The rest of the report is organized as follows. Chapter 2 gives an overview of

Process Migration. Chapter 3 describes the SCC architecture and programming

model. Chapter 4 describes the experiment and evaluation. Chapter 5 mentions

related work.

4

CHAPTER 2

PROCESS MIGRATION

 A process is an operating system abstraction of a program in execution. Each

process has a state associated with it. The state of a process refers to all the

information that is required to resume the execution of the process. The components

of the process state may vary from machine to machine but typically include the

following [8]:

- virtual address space – code, data and stack segment

- open files - file id, read-write pointers, buffers etc

- message buffers – sending and receiving messages and buffers

- machine state – registers , program status word etc.

- environment data – process-id , user-id, references to child , parent

processes etc.

Process migration refers to the act of suspending a process running on one

machine in the middle of execution and transferring to another machine where it

resumes execution from the point at which it was suspended. For the process to

resume execution properly the entire state of the process may need to be

transferred.

Process Migration has a number of applications [9]:

 Dynamic Load Balancing - Processes can be moved from a heavily loaded

node to a lightly loaded node. This would increase the system throughput and

reduce the average response time.

 Resource Sharing - If a process requires access to a resource such as a

special hardware available on a remote node it can be moved to that node

resulting in better resource utilization and reduced network communication.

5

 Fault tolerance – If a node experiences partial failure or is likely to fail all the

processes running on it can be moved to a different node thus ensuring

availability.

 Improving System Administration – If a machine is temporarily shut down all

the long-running processes executing on it can be moved to another machine

and then migrated back when the machine is up again.

 Improving communication Performance - If a process is frequently

communicating with another process on a different node the communication

cost can be reduced by moving one of the processes to the same node as the

other or to a nearby node.

 Mobile Computing – Users may use different devices at different times and

may want to continue using the same programs while remaining connected to

the network.

There are many different implementations of process migration. All the

existing process migration implementations may vary in some aspects but have the

following basic steps in common [10]:

- A decision is made to migrate the process.

- A remote node is selected and a migration request is sent to the node.

- The process is suspended on the source node. All the arriving messages are

queued up to be delivered to the destination node after migration.

- A skeleton process is created on the destination node and space is allocated

for process state. This is not activated until sufficient state has been imported

into it.

- The process state (registers, virtual memory, open files, message channels

etc.) is extracted from the source node and transferred to the destination

node and imported into the skeleton process.

6

- The process is resumed on the destination node.

- The state information remaining on the source node is removed. Some

information may still be retained for e.g. to redirect the incoming messages.

Designing a process migration facility is a complex task and a number of

issues need to be considered. Following are some of the issues to be considered:

 Virtual memory transfer – The cost of transferring virtual memory is the

dominant factor in the cost of transferring the entire state [6]. Transferring

complete address space at once results in long freeze time (time for which

process is not running during migration) for the process to be migrated.

Different approaches have been adopted in different implementations to

reduce the cost of moving virtual memory [8][11]:

a. Eager (all) - Entire address space is transferred at the time of migration.

This is the simplest approach. However it can prove to be expensive if the

address space is large and the migrated process is not going to need most

of it.

b. Eager (dirty) - Only modified (dirty) pages are transferred during

migration while the rest of the pages are only transferred on demand. This

reduces the cost of transfer during migration. However it requires the

source node to continue maintaining the state of the process.

c. Copy-on-Reference - Pages are transferred only on reference. This has the

lowest initial cost.

d. Precopy – Pages are transferred while the process is still executing on the

source node. This reduces the freeze time of the migrated process.

e. Flushing – The dirty pages are flushed to the disk and accessed on

demand from the disk. Thus the source node does not need to maintain

pages in memory.

7

 File migration [12] – File migration is an important issue in process migration.

The state associated with an open file consists of file descriptor, read/write

pointers and cached blocks. Migrating open files transparently can be

challenging. Different approaches have been implemented. One of them is to

close the files on the source node and reopen them on the destination node.

Another approach is to have all the file related system calls redirected to the

source node[4]. The approach may vary if a distributed file system is

available.

 Process relationships – The presence of child and parent processes adds more

complexity to process migration. It may be decided to keep the related

process on the source node or to move them to destination node.

This research focuses on improving performance of process migration on Intel

SCC by reducing the amount of state transferred from one core to another. The

components of process state that are considered are register and virtual address

space. All the other issues such as migration of open files, devices, parent and child

processes etc. are kept out of the scope of the research.

8

CHAPTER 3

INTEL SINGLE CHIP CLOUD COMPUTER

The Single Chip Cloud Computer (SCC) is an experimental processor created

by Intel labs as a platform for many-core research. It is the second processor in

Intel’s Tera-scale research program [13]. The Tera-scale program envisions creating

many-core platforms capable of handling terabytes of data and providing teraflops of

computing performance. There are two main motivations for SCC [14] – to promote

many-core research and to promote parallel-programming research. Intel has made

SCC available to several researchers in both industry and academia as a result of

which there is a lot of ongoing research in parallel and many-core computing using

SCC as the platform. Many applications and operating systems have been ported to

SCC [15][16][17] and new applications and operating systems are being developed

to run efficiently on SCC.

The SCC has 48 IA (Intel Architecture) cores on a single die which according

to Intel is the maximum number of IA cores that have ever been integrated on a

single chip[18][18]. Each IA core is based on Pentium (P54C) core. The P54C was

chosen because it is simple in design, cheap and smaller in area as compared to

newer processors [17][19]. This made it possible to put 48 cores on a single die in a

cost-effective way. It also made it easy to modify existing applications to run on

SCC. The cores are placed in a tile formation. There are 24 tiles in total with two

cores on each tile. The tiles are connected by a high performance 6x4 2D mesh

network. SCC has four on-die DDR3 memory controllers. The tiles can communicate

with each other or with the memory controllers by sending packets over the mesh

network. Figure 1 illustrates SCC architecture.

The SCC currently does not have any hardware devices such as keyboard,

monitor or disk. The only way to communicate with the SCC is through a

9

Management Console PC (MCPC) which is connected to it through PCI/e interface.

The MCPC is a 64-bit machine running a version of Linux. It has software provided by

Intel labs to manage SCC. The software on MCPC can be used to load operating

systems and programs on some or all of the cores of SCC, to modify the SCC

configuration registers, to read from and write to the memory and more [20].

Figure 1. SCC Architecture. Reprinted from [17]. Reprinted with permission.

TILES

 The SCC consists of 24 tiles connected by mesh network. Figure 2 shows the

architecture of a tile. Each tile has two cores. Each core is a P54C [24] processor

10

with an L1 cache and an L2 cache. An important difference in the design of standard

multi-core systems and SCC is that the caches in SCC are non-coherent. The reason

behind this decision is that as the number of cores increases cache-coherency

becomes a bottleneck in the performance of the system [21]. So to make the

platform scalable to large number of cores cache-coherency has been left for the

software to manage.

 Each tile has small on-chip memory called the Message Passing Buffer (MPB).

The MPB supports faster reads and writes than the off-chip DDR memory. Although

the MPB is local to a tile, any core can access the MPB assigned to any other core.

The primary purpose of MPB is to enable passing between programs and operating

systems running on different cores. A message sent from one message-passing

program to another goes from L1 cache of the sending core to the MPB and then to

the L1 cache of the receiving core. Thus message or data is transferred without using

the off-die memory.

There is a router connected to each tile to route packets over the mesh

network. Each tile also contains a Mesh-Interface Unit (MIU) [23]. The MIU is the

interface between the tile and the router. The MIU packetizes the data going out to

the mesh and de-packetizes data coming in from the mesh. The MIU catches cache

misses and translates 32-bit core addresses into 46-bit system addresses using

Lookup tables (LUTs) present on the tile. The translation between core and system

address is explained in detail later. The tiles are organized into four regions, each of

which maps to a particular memory controller. This mapping is also determined by

LUTs.

11

Figure 2. Tile design architecture of SCC. Reprinted from [17]. Reprinted with permission.

 Each tile contains a set of configuration registers that can be used by

programs running on the cores to control operating modes of different hardware

components of the tile. The registers are located in the MIU in a Control Register

Buffer (CRB). They are accessed using memory-mapped IO. The configuration

registers consists of two Lookup tables (LUTs), two Test-and-set registers, a TileID

register, two L2 cache configuration registers, two core configuration registers, a

global clock configuration register and two sensor registers[22]. Table 1 lists the

different configuration registers. There are two Lookup tables on each tile, one for

each core. The registers LUT0 and LUT1 are the first entries in the two lookup tables.

The TileID register MYTILEID is a read-only register and contains the (x,y)

coordinates of tile. It also contains the core-ID of the core that read it. There are two

core configuration registers – CLCFG0 and CLCFG1 on a tile. They can be used to

12

send inter-processor interrupts from one core to another. The L2 cache configuration

registers – L2CFG0 and L2CFG1 are used to enable or disable L2 caches of the cores

on the tile.

Table 1. SCC Configuration Registers

Register Description Access

LUT1 LUT register core 1 Read/Write

LUT0 LUT register core 0 Read/Write

LOCK1 Atomic Test and Set Lock Core 1 Read/Write

LOCK0 Atomic Test and Set Lock Core 0 Read/Write

MYTILEID Tile ID Read

GCBCFG Global Clock Unit Configuration Read/Write

SENSOR Thermal Sensor Value Read

SENSORCTL Thermal Sensor Control Read/Write

L2CFG1 L2 Cache Core 1 Configuration Read/Write

L2CFG0 L2 Cache Core 0 Configuration Read/Write

GLCFG1 Core 1 Configuration Read/Write

GLCFG0 Core 0 Configuration Read/Write

Note. Reprinted from [17]. Reprinted with permission.

 There are three IDs associated with each core – tiledD , processorID and

coreID[20]. The coredID identifies the core within a tile and is either 0 or 1.Since the

tiles are arranged in a 6X4 2D array, each tile has an (x,y) coordinate. The tileID is

and 8-bit value where the first four bits are for the y coordinate and and the last four

are for the x coordinate. As mentioned earlier the tileID can be obtained by reading

the TildeID register. The processorID goes from 0 to 47.

13

MEMORY

 The SCC has features of shared memory systems as well as distributed

memory systems [21]. It has off-chip DRAM and on-chip SRAM (MPB). The off-chip

DRAM is accessed through four on-chip memory controllers attached to four tiles at

the positions – (0, 0), (0, 5), (2, 0) and (2, 5) in the 6X4 grid. Each controller has

two DDR3 banks. The banks can have capacity of 2GB, 4GB or 8GB. Thus a total of

64GB of memory can be supported by SCC.

 Each core has a 16KB L1 data cache and a 16KB L1 instruction cache.

There is also a unified 256 KB L2 cache. The SCC does not provide any cache

coherence and it is up to the software to manage coherence. To enable the

programmer to manage cache coherence the SCC provides two features [22]. A new

memory type or tag called MPBT has been provided that identifies the cache lines

that hold MPB data. The MPBT data bypasses the L2 cache. In addition a new

instruction called CL1INVMB has been added to the P54C instruction set to invalidate

all the cache lines marked as MPBT in the L1 cache. Invalidating the cache lines

would force the data in the L1 cache to be update from MPB on the next read. The

instructions WBINVD and INVD can be used to respectively flush and invalidate the

L1 cache completely. However there is no hardware instruction to flush the L2 cache

[19].

LUT

 Each core on SCC is a 32-bit processor and can address up to 4GB of memory

called the core-physical address space. The total memory supported by SCC is 64GB

called the system-physical address space. The system address space is divided into

different memory regions – off-chip DRAM, on-chip MPB and memory-mapped

configuration registers. The translation of core physical address to system physical

address is done by using lookup tables or LUTs. An LUT is a set of configuration

14

registers within the CRB (Configuration register buffer). Each core has its own LUT.

The LUT determines if a core physical address refers to the off-chip memory, on-chip

memory or configuration registers. When a program accesses a 32-bit virtual

address it is first translated to a 32-bit core-physical address by the core’s Memory

Management Unit (MMU) using page tables. The core physical address is then

translated to system physical address through the LUT. Figure 3 shows the

translation process. The LUT has 256 8-byte entries. Each entry maps to a 16MB

segment (an LUT page) of the core physical address space thus making a total of

4GB. The upper 8 bits of the core physical address are used to index one of the 256

LUT entries. Each LUT entry contains 22 bits of information. The lower 10 bits are

prepended to the lower 24 bits of the core physical address to form a 34 bit address.

The upper 12 bits of the LUT entry provide the routing information. The routing

information consists of an 8-bit Destination ID, a 3-bit Subdestination ID and a

Bypass bit. The Destination ID is the destination Tile ID (y, x). The Subdestination ID

determines the type of memory to be accessed – DDR3, MPB or CRB. The

Subdestination ID specifies the port at which the packet would leave the destination

router - North, East, West, South. It can also specify one of the other destinations -

Core0, Core1, MPB and CRB. The four memory controllers are either located at the

West port or the East port of a router. Table 2 lists the different values of

Subdesination ID and the destinations they indicate. The Bypass bit is used to

bypass the MIU when the destination address is local to the tile thus allowing faster

access.

 For loading and running an operating system (or a baremetal application) a

file containing LUT mappings is required. The tool sccMerge provided by Intel on the

MCPC is used to generate a loadable image of the operating system to be booted

along with the default LUT mappings. APPENDIX A shows the default LUT mappings

15

generated when the total system memory is 32 GB. The LUTs can be modified

dynamically after booting. This can be done either through a program running on the

Management Console or through a program running on a core. The default LUT

configuration divides the off-chip DRAM into regions private to a core and regions

shared by the cores. The memory private to a core is mapped only by the LUT of that

core. The memory shared by the cores is mapped by LUTs of all the cores thus

making it accessible to all the cores. However since the LUT entries can be changed

dynamically, it is possible to make a portion of the private memory of one core

visible to other cores by modifying a few LUT entries. This has the effect of moving

data without physically copying it.

Table 2. Address Translation Fields

Sub-Destination subdestID

(3 bit)

Comment

Core0 0x0 Not a destination for memory R/W

Core1 0x1 Not a destination for memory R/W

CRB 0x2 Configuration Register

MPB 0x3 Message Passing Buffer

E_port 0x4 @'(0,5) is DDR3 MC

S_port 0x5 @'(0,3) is SIF, @(0,0) is VRC

(presuming y,x order)

W_port 0x6 @'(0,0) is DDR3 MC

N_port 0x7 Nothing is on this port of any edge

router

Note. Reprinted from [23]

16

Figure 3. Address translation using Lookup Table. Reprinted from[17]. Reprinted with

permission.

ON-CHIP MESSAGE PASSING

 Each tile has 16KB of message passing buffer (MPB). By default 8KB assigned

to each core. The MPB of each core is accessible is by all the cores. The LUT of a core

maps the MPBs of all the tiles. The LUT also contains an entry for the core to access

its own MPB. To support message passing new features have been added to the SCC

core. A new memory type called Message Passing Buffer Type (MPBT) has been

introduced. The MPBT data bypasses the L2 cache. Each cache line has a new status

17

bit that identifies the contents of the cache line as MPBT. A reserved bit in the page

table marks the page as MPBT data. A new instruction called CL1INVMB has also

been added to the instruction set of the P54C core. This instruction invalidates all the

MPBT cache lines in the L1 cache thereby avoiding reading of stale data from the

cache. To provide support for message passing through MPB Intel has provided a

library called RCCE [25]. It moves the data from the private memory of the sending

core through the L1 cache to the MPB and then to L1 cache of the receiving core.

MANAGEMENT CONSOLE PC

The MCPC is a 64-bit computer connected to the SCC over a PCIe interface. It

runs some version of Ubuntu Linux. Intel provides a set of tools called sccKit on the

MCPC to manage SCC. The MCPC also contains RCCE, a modified Linux image to load

on to the cores and tools to enable developers to build custom Linux images. The

sccKit provides both a graphical interface (called sccGui) and a command-line

interface. The programs in the sccKit can be used to load an operating system on the

cores, to read and write memory and configuration registers, to monitor core

performance and more. Following are some of the useful commands [20]:

 sccBmc - This command is used to send commands to the Board Management

Controller (BMC). It can be used to initialize the SCC platform or read some

status information. This command when used with –i option re-initializes the

SCC.

 sccBoot - This command is used to boot an operating system on a range of

cores. The operating systems can either be the Linux image provided by Intel

or a custom operating system. When used with –s option it lists the cores that

can be reached by ping.

18

 sccReset - This command is used to reset a range of cores. It gives options

for holding the reset and releasing the reset. It also has option to list the

cores that are in reset mode.

 sccDump - This command reads the contents of the off-chip DRAM, the

configuration registers, the MPB and the LUTs. The contents can be dumped

to a file. It is a useful tool for debugging.

 sccMerge - This command is useful for loading custom operating system on

the cores. It takes as an input a bootable image and create a merged image

to be loaded on all the memory controllers along with the default LUT

mappings for all the cores. The optional arguments include the size of

memory at each controller in GB (-m) and the number of cores assigned to a

memory controller (-n).

BAREMETAL

 There are two ways in which applications can be run on SCC –

 On top of an operating systems such as Linux

 Directly on the hardware without the support of an operating system.

 Intel has provided a modified version of Linux called sccLinux which can be

loaded on each core separately using the tools present on the MCPC. It provides a

number of useful features for application programming [20]. However, sometimes it

is desirable to run the programs directly on hardware. This can help to achieve

greater speed of execution and to avoid operating system overheads. It also

provides greater freedom in programming for e.g. running programs on the highest

privilege level. This way of programming is referred to as Baremetal programming.

There are currently three frameworks available that can help in running baremetal

applications – ETI SCC framework [26], Microsoft framework and Baremicahel

framework [27]. Of these three frameworks only Baremichael is open-source.

19

Baremichael enables developers to load and launch C and assembly programs on

SCC cores. It includes a subset of the C standard library and some SCC-specific

helper functions and macros. It also provides a pseudo-terminal called MikeTerm that

shows the output from applications running on the cores. The experiment conducted

for this thesis makes use of some of the code from Baremichael.

20

CHAPTER 4

EXPERIMENTATION AND EVALUATION

 As described earlier, Intel SCC has 48 cores and four memory-controllers

which can support up to a maximum of 64 GB of off-chip memory.

The memory at each memory-controller can be divided into memory private to each

core and memory shared by all cores. This division is done through LUTs and is

configurable. In the default LUT configuration, the tiles are divided into four regions

with 12 cores each such that each region is served by a particular memory

controller. Thus at each memory controller there are 12 private memory regions and

one shared memory region shared by all the 48 cores. The most common way of

programming SCC is to run it as a cluster. Each core is booted with an operating

system and forms a node in the cluster. In such a setup if a process running on one

core is to be migrated to another core, the typical approach would be to move the

process state from the private memory of the source core to the private memory of

the destination core by using shared memory. Copying all the state twice is

expensive. This thesis therefore proposes a new approach to migrate a process. In

the new approach a process is migrated by using LUTs such that minimal or no state

needs to be copied. To demonstrate the new method of process migration a small

kernel has been developed. The kernel implements a migrate() system call which can

migrate the process that invokes it. There are two implementations of the migrate()

system call. One that uses LUTs and the other that uses shared memory. To evaluate

the performance improvement with the new approach, a process is migrated using

both LUTs and shared memory and the results are then compared.

21

CUSTOM KERNEL

 The custom kernel was first developed on a local Linux system on an emulator

and its basic features were tested. It was then modified to run on SCC. It is a kernel

with limited functionality. Following are some of the features of the kernel:

 Interrupt handling and system calls – The kernel implements an interrupt

handling mechanism and some interrupt handlers. It also provides system

calls to print text on the screen, to fork a child process and also to migrate a

process (discussed later).

 Memory management – The kernel implements virtual memory through

paging. It has a physical memory manager and a virtual memory manager.

The physical memory manager keeps track of free frames using a bitmap. The

virtual memory manager manages allocation and de-allocation of pages

through page-directories and page-tables. The kernel also includes a heap

allocator for dynamic memory allocation in kernel mode.

 Process management - A simple round-robin scheduler has been implemented

using a queue of Process-control-blocks (PCBs). Whenever a timer interrupt

occurs it causes a context-switch and the next process in the queue is

executed. A PCB contains pointer to a memory block containing all the

register values, a pointer to the page directory of the process, a process-id

and a pointer to the next PCB in the scheduler queue. The address space of a

process consists of a code segment, a data segment and a stack. The virtual

addresses of the all three segments are currently fixed.

 At the moment the kernel does not have a file-system. Therefore to execute a

program, the hex-dump of the code and data sections of the executable needs to be

copied into two arrays in the source code. To create a process the kernel reads the

binary of the process from the arrays and copies it into virtual memory.

22

PORTING THE KERNEL TO SCC

 The design of the SCC is different from a typical multi-core system in a

number of ways. Various new architectural features have been incorporated for

better scalability. Therefore to execute any application or operating system on SCC

modifications are required. This section describes how the custom kernel has been

ported to SCC and what modifications have been made to the kernel. The open-

source Baremichael framework has been very helpful in porting the custom kernel to

SCC.

 The custom kernel was first developed on the local system using an emulator

and grub bootloader was used to boot the kernel. However the SCC does not have

BIOS due to which the booting process is different than a regular multi-core system

with BIOS. The first step to execute a kernel (or application) directly on the SCC

cores is to convert the binary of the kernel into an Intel specific ASCII format using a

tool called bin2obj[28]. Since the cores start in 16-bit real mode, the binary of the

kernel needs to include the boot-code to jump from real mode to protected mode.

For the custom kernel the 16-bit boot-code is taken from Baremichael. After that the

sccMerge script is used to create a loadable image of the kernel. sccMerge takes as

input the output of bin2obj and a text file which mentions all the cores on which the

kernel is to be loaded. sccMerge also creates a file containing the default LUT

mappings. The loadable image and LUT mappings are then pre-loaded using sccBoot

command and the cores can then be booted using sccReset.

 The LUT of a core maps its physical address space to its private memory,

shared memory, MPBs and CRBs. For the kernel to access these regions the physical

address space needs to be mapped to virtual address space through page tables.

Also, the kernel needs to access the shared memory, the MPBs and CRBs explicitly.

23

So the virtual addresses of shared memory, the MPBs and CRBs are explicitly set to

be equal to the physical addresses which map to them through the LUT.

 The kernel has been modified to add the functionality of sending inter-

processor interrupt to another core. On the P54C core interrupts are handled by local

APIC (Advanced Programmable Interrupt Controller). There are two ways to send

inter-processor interrupt on SCC. One is to control the LINT pins of the local APIC of

the destination core by writing to the Core Configuration register. This is the method

that has been used in the kernel. The other method uses the Global Interrupt

Controller. To handle the inter-processor interrupt the LINT pins of local APIC need

to be configured.

 To read the output from the kernel the Miketerm utility[27], which is a part of

Baremichael, has been used. The utility works in conjunction with the printf()

function provided by the framework. Therefore the printf() function implementation

has been plugged into the kernel. The printf() function writes the data in a circular

buffer in shared memory. Every core is allocated a different buffer in the memory.

The Miketerm utility polls all the 48 buffers and displays the text found in them. It

uses the sccDump command to read the contents of the buffers. Miketerm precedes

all the ouput with core-identifier. The order in which output from different cores will

be displayed is not guaranteed.

 The kernel also includes some useful SCC-specific functions and macros that

are taken from the Baremichael framework. For e.g. a function to get the core-id and

macros for getting the address of CRB and LUT of the core based on the default LUT

mapping.

PROCESS MIGRATION USING LUT

As explained earlier, process migration involves suspending a process on the

source machine and resuming execution of the process on the target machine. This

24

requires the state of the process to be made available on the target machine. The

conventional way of doing this is to copy the state from the source to the target. In

the context of SCC the source and the target machines are the cores of the SCC each

running a separate instance of an operating system. Each core has its own private

memory which can belong to any of the four memory controllers. The cores can also

share memory. The division between the shared and private memory can be

configured through LUTs present on each core. A portion of the physical memory can

be shared or private depending on the LUT entries of all the cores. If a memory area

is mapped only by the LUT of one core, it is private to that core as no other core will

be able to access it. On the other hand if a memory area is mapped by LUTs of more

than one cores, it is shared by all those cores. In the default LUT configuration

generated by sccMerge, the cores are divided into groups of 12 such that each core

in a group has its private memory on the same memory controller. Also, on each

controller there is some memory which is shared by each of the 48 cores. However,

since the LUTs can be changed dynamically, it is possible for a program (or kernel)

to make a portion of the private memory of a core visible to other cores by changing

LUT entries. As each entry in an LUT maps to a 16 MB segment of physical memory,

it requires changing only two LUT entries to move a 16 MB chunk of memory from

one core's private memory to another without physically copying the memory. This

leads to the idea that if entire state of a process can be located in 16MB chunks of

memory then by modifying a few LUT entries the whole process can be migrated

from one core to another. This would result in a smaller freeze time during migration

as compared to the conventional approach. Figure 3 shows how changing an LUT

entry causes redirection of memory read/write accesses.

25

CORE 0 CORE 1

R/W

CORE 0 CORE 1

R/W

R/W

COPY
R/W

16 MB 16 MB

16 MB
16 MB

LUT – Core 0 LUT – Core 1

LUT – Core 0 LUT – Core 1

PRIVATE MEMORY
– Core 0

PRIVATE MEMORY
– Core 1

PRIVATE MEMORY
– Core 1

PRIVATE MEMORY
– Core 0

LUT Entry

Figure 4. Effect of copying LUT entry on memory access

26

 Following is an overview of how process migration is implemented in the

custom kernel:

 create_process_LUT() - This method creates the user process to be migrated

such that all of its state is located in a 16 MB segment of memory which is

mapped by a single LUT entry. The state consists of PCB Page directory, page

tables, code segment, data segment and stack segment. In the experiment a

small process (code, data and stack segments each occupying one page each)

is migrated. Therefore the process state only occupies a single LUT page.

 migrate() - This is a system call invoked by the user process to be migrated (

created by create_process_LUT()). Invoking a system call causes the current

context of the process to be saved in memory. The migrate() system call

initiates the process of migration on the source core. It performs the following

functions:

- Suspends the process to be migrated by calling the

remove_current_process() method.

- Copies the contents of the LUT entry which maps the process state on the

source core to the LUT entry on the destination core. This makes the

process state visible to the destination core.

- Sends an inter-processor interrupt to the destination core by writing to

certain registers in the configuration register block of the destination core.

 remove_current_process() - This method is called by the migrate() system

call as mentioned above. It removes the current process from scheduler's

queue.

 ipi_handler() - This is the interrupt handler for inter-processor interrupt (IPI).

When the destination core receives IPI from the source core this method

27

starts executing. It performs the second stage of process migration by calling

receive_process().

 receive_process() - This method completes process migration by adding the

process to be migrated to the scheduler's queue on the destination core.

Since the process state is visible to the destination core after the LUT entry is

copied, adding the PCB of the process to scheduler's queue just requires few

pointer operations.

Following is a step-by-step description of how process migration is

accomplished in the experiment conducted for this thesis:

1. Two cores of SCC are booted with the custom kernel and default LUT

mappings.

2. As soon as the kernel starts running on the source core it creates the process

to be migrated. For creating the process the kernel allocates memory for the

state of the process such that entire state lies in a 16MB segment of physical

memory. This segment maps to a single LUT entry. For simplicity the process

is kept small enough to fit within 16MB of memory. Also, the source and

destination cores are fixed.

3. When the process starts running, it displays the core-id of the core on which

it is executing and then invokes the migrate() system call.

4. The migrate() system call removes the process from scheduler’s queue and

copies its LUT entry mapping on the source core to the destination core. The

indices of LUT entries on the source and destination core are kept same so

that the destination core sees the same physical addresses as the source.

This is required for the page-tables and page-directories to work as they refer

to physical address of the pages. In the end the migrate() system call sends

an inter-processor interrupt to the destination core.

28

5. On the destination core, the interrupt-handler for inter-processor-interrupt

starts executing. The 16MB memory segment containing the process state is

now visible to the destination core. The offset of the PCB of the process is

fixed from the start of the segment. The interrupt-handler makes the process

runnable on the destination core by adding the PCB to the scheduler queue.

6. When the process starts on the destination core it again prints the core id of

the core on which it is running. This time it is destination core.

From the above description it can be seen that if the whole process state can within

16MB of memory it can be migrated just by changing one LUT entry. Even if it is

required to manipulate multiple LUT entries it would still be better than copying the

entire process state as LUT entries are just registers.

 As mentioned before, this thesis concentrates only on one aspect of process

migration which is transferring the virtual address space and processor state of the

process. The other aspects of process migration such as migration of open files,

devices, communication channels and messages and handling of parent-child

processes have been kept out of the scope. Currently SCC does not have any devices

connected to it and is managed by software present on the MCPC. When sccLinux is

booted on the cores, a directory on the MCPC (/shared) is NFS mounted on all the

cores and to create a persistent file it has to be created in this directory [34]. In

such a setup, a simplistic way of dealing with open files during migration is to close

files on the source core and reopen them on the destination core. However, a

number of complexities can arise when factors such as deletion of files, caching of

file blocks and sharing of files between parent and child processes are considered

[4].

29

PROCESS MIGRATION USING SHARED MEMORY

The kernel contains a second version of both the migrate() system call and

the IPI interrupt-handler to migrate a process using shared memory. The second

version of migrate system call starts the migration by removing the process from the

scheduler queue and then copies the state of process to shared memory including

the Process Control Block, code, data and stack. The page directory and the page

tables are not copied as they refer to physical addresses on the source core which

will not be the same on the destination core after migration. The interrupt handler on

the destination core copies the PCB and the address space of the process from the

shared memory into the private memory of the destination core. It then creates a

new process using the copied PCB and address space thus essentially creating a

clone of the process to be migrated. This new process is then scheduled to run by

adding the PCB to scheduler’s queue.

EVALUATION

 The proposed approach of migrating a process using LUTs has been compared

with the conventional approach of using shared memory by measuring the time

required to migrate a process using both the approaches. The experiment consists of

migrating a process between two cores multiple times and averaging the total time

over the number of the number of migrations. An instance of the custom kernel is

booted on both the source and destination core. The source kernel creates a process

to be migrated as soon as it starts. The process is small in size with only page each

for code, data and stack segment. The code of the process consists of a loop that

invokes the migrate() system call in each iteration. Whenever the migrate() system

call is invoked on a core it causes the process to migrate to the other core. The

process prints the value of the Global Timestamp counter before and after the loop.

The Global timestamp counter is a 64-bit counter running at the frequency of 125

30

MHz and available in form of two 32-bit values in registers. Thus the total time taken

by the loop in seconds is calculated by calculating the difference between the two

values of the counter and dividing it by 125 X 106. This time divided by the number

of iterations gives the time taken by a single migration. The experiment was

repeated by selecting different cores as source and destination to observe the

variation in the migration time due to the distance between the cores. In case of the

shared memory approach, migration requires copying of entire state of process.

Therefore the migration time is expected to be more when the source and

destination cores are accessing different memory controllers as compared to when

both the cores access the same controller. The following core pairs were selected for

migration:

- Core0 and Core1 on Tile (0,0) – same memory controller.

- Core0 on Tile (0,0) and Core 0 on Tile (5,0) - horizontally opposite

memory controllers.

- Core0 on Tile (0,0) and Core0 on Tile (5,2) - diagonally opposite memory

controllers.

Following table shows the time per migration (rounded up) obtained for both the

approaches with different source and destination cores.

Table 3. Time for single process migration

 Migration Using

LUT

Migration using

shared memory

Core0 to Core1 on Tile(0,0) 1 ms 9 ms

Core0 on Tile(0,0) and Core0

on Tile(5,0)

 1 ms 165 ms

31

Core0 on Tile (0,0) and Core0

on Tile (5,2)

 1 ms 165 ms

The table shows a clear improvement in performance when a process is migrated

using LUT based approach as compared to shared-memory based approach. It also

shows that unlike the shared memory based approach the performance of the LUT

based approach does not get affected by the distance between the memory

controllers.

The proposed method of process migration is also evaluated for a possible use-case

of process migration on SCC- migrating a memory intensive process to core that is

closer to the memory controller which the process is accessing. The SCC has four

memory controllers and a core can access any memory controller depending on the

LUT configuration. The default LUT configuration provides shared memory on all the

four controllers. Therefore if a process is heavily using memory on a memory

controller but is executing on a core far from the controller on the mesh, it can

benefit by migrating to the core closer to it. To demonstrate this a process was

started on a core on Tile (0,0). The process was just copying contents of one

memory location to another in a loop with both the locations belonging to the

memory chip close to the Tile (5,2). The time taken by the process to execute the

read/write loop was measured. After that the process was again started on Tile (0,0)

but this time it was migrated to the Tile (5,2) before the loop started and the time

taken by the loop was measured. As expected the time to complete the loop was less

when the process was migrated. For 221 iterations of the loop, it took 1.006 secs

when the process was executing on Tile (0,0) whereas it took 0.77 secs when the

process was migrated to Tile (5,2).

32

CHAPTER 5

RELATED WORK

 Process migration has been a topic of research for many years and several

implementations have been developed, both for distributed systems such as

Sprite[4], Amoeba[29], V[2], Accent[3], DEMOS/MP[30], Charlotte[31] and for Unix

such as Condor[32] and MOSIX[1]. Process migration can be implemented either at

user-level or at kernel-level. At user-level, process migration is easier to implement

and maintain as it does not require any changes to the operating system. However,

at user-level it is difficult to extract the kernel-dependent state and not all processes

can be migrated. Also, user-level process migration is less transparent and less

efficient as compared to kernel-level process migration. An example is Condor which

migrates processes using checkpoint/restore mechanism. Each process is linked to a

user-level library which provides the process the ability to save its state to stable

storage. This saved state is later used to restart the process on a different node.

Kernel-level process migration is complex but more efficient than user-level

migration. It is easier to capture the state of the process at kernel-level.

Charlotte[31], Sprite[4], DEMO/MP[30] and V[2] are examples which employ kernel-

level process migration techniques. The transfer of virtual address space of a process

is a dominating factor in the performance of a process migration system. This is the

reason that a lot of research in process migration has focused on reducing the cost of

virtual memory transfer. Accent[3] uses a technique called lazy copying or Copy on

Reference to reduce the initial cost of migration. In Copy on Reference, virtual

memory pages stay on the source until they are referenced on the target machine.

Pages are copied to the target only when the migrated process references them.

Thus the pages that are not used are never copied. In the V[2] system, a method

called Pre-copy is used to reduce the time for which a process is suspended during

33

migration. In this method, the process is allowed to continue execution while the

address space is being transferred. In Sprite[4], the source flushes all the dirty

pages to a file server while the process is being migrated. All the requests for the

pages from the target are then served by the file server instead of the source. This

method is called Flushing. This thesis also focuses on reducing the cost related to

transfer of process state during process migration. However, the technique used is

SCC-specific. It proposes a novel use of Lookup tables which are typically used for

memory mapping. A related use of Lookup tables that has been proposed in the past

is for efficiently copying large blocks of memory from one core to another in

SCC[33]. In this case however, the memory block is physically copied.

34

REFERENCES

[1] Barak, A., La’aren O.(1998).The MOSIX multicomputer operating system for high

performance cluster computing. Future Generation Computer

Systems,13.Retrieved from :

http://www.sciencedirect.com/science/article/pii/S0167739X9700037X

[2] Cheriton, D.R.(1988).The V distributed system. Communications of the ACM, 31.

[3] Rashid, R. Robertson, G. (1981). Accent: A communication oriented network

operating system kernel. Proceedings of the 8th Symposium on Operating

System Principles

[4] Douglis, F., Ousterhout J.(1990) Transparent Process Migration: Design

Alternatives and the Sprite Implementation,Ssoftware—practice and experience,

21.

[5] Rashid, R., Julin, D., Orr, D., Sanzi, R., Baron, R., Forin, A., Golub, A., Jones,

M.(1989) Mach: A System Software Kernel, Proceedings of the 1989 IEEE

International Conf. COMPCON.

[6] Zayas, E.R.(1987).Attacking Process Migration Bottleneck. Proceedings of the

Eleventh ACM Symposium on Operating Systems Principles.

[7] Howard, J., Dighe, S., Vangal, S.R., Ruhl, G., Borkar, N., Jain, S., Erraguntla, V.,

Konow, M., Riepen, M., Gries, M., Droege, G., Lund-Larsen, T., Steibl, S., Borkar,

S., De, V.K., Van Der Wijngaart, R.(Jan 2011) A 48-Core IA-32 Processor in 45

nm CMOS Using On-Die Message-Passing and DVFS for Performance and Power

Scaling, IEEE Journal of Solid-State Circuits,46. doi:

10.1109/JSSC.2010.2079450

[8] Eskicioglu, M.R.(1995).Design Issues of Process Migration Facilities in Distributed

Systems. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.2276

[9] Milojičić, D. S., Douglis, F., Paindaveine, Y., Wheeler R., Zhou S.(Sept 2000)

Process migration, ACM Computing Surveys (CSUR), 32 n.3, p.241-299.

doi:10.1145/367701.367728

[10] Mathias, N.(2003)Comparative Evaluation of Process Migration Algorithms,

Diploma Thesis, Operating Systems Group, Dresden University of Technology

[11] Stallings, W. (2008) Operating Systems: Internals and Design Principles, 6/E. :
Prentice Hall.

[12] Alard, E. and Bernard, G. (1992) Preemptive process migration in networks of

UNIX workstations Proc. 7th Int. Symp. on Computer and Information Sciences

[13] Held, J., Bautista, J., Koehl, S. (2006) Tera-scale Computing Research

Overview. Retrieved from

http://dl.acm.org/citation.cfm?id=367728&CFID=164714807&CFTOKEN=28170143
http://dl.acm.org/citation.cfm?id=367728&CFID=164714807&CFTOKEN=28170143
http://doi.acm.org/10.1145/367701.367728
http://www.unf.edu/public/cop4610/ree/PPT/PPT6E/Chapter18.pptx

35

http://www.intel.com/content/www/us/en/research/intel-labs-tera-scale-

research-paper.html

[14] Arlt, A., Hendrik, J.S. and Richling, J.(2011) Meta-programming Many-Core Sys-

tems. In Proc. of 3rd MARC Symposium

[15] Verstraaten, M., Grelck, C., Tol, M., Bakker, R., and Jesshope, C.R. (2011) On

Mapping Distributed S-NET to the 48-core Intel SCC Processor. In 3rd MARC

Symposium.

[16] Partheymuller, M., Stecklina,J. and Dobel, B.(2011) Fiasco.OC on the SCC.

MARC Symposium with Proceedings at HPI, Potsdam, Germany

[17] Linnenbank,M.(2011) Implementing MINIX on the Single Chip Cloud Computer.

Master’s thesis, Vrije Universiteit Amsterdam

[18] Held, J. (2009) Exploring programming models with the Single-chip Cloud

Computer research prototype. Retrieved from

http://blogs.intel.com/intellabs/2009/12/02/sccloudcomp/

[19] Roy, B. (2011) Exploring the Intel Single-Chip Cloud Computer and its

possibilities for SVP. Master’s Thesis, University of Amsterdam

[20] Intel Corp. SCC Programmers’s Guide V 1.0

[21] Mattson, T.G.Intel, Wijngaart, R.,Riepen, M., Lehnig, T.,Brett, P., Hass, W.,

Kennedy, P., Howard, J., Vangal, S., Borkar, N., Ruhl,G., Dighe, S.(2010) The

48-core processor: the Programmer’s view. Proceedings of the 2010 ACM/IEEE

International Conference for High Performance Computing, Networking, Storage

and Analysis

[22] Intel Corp. SCC Platform Overview Revision 0.7

[23] Intel Corp. SCC extended architecture specification, November 2010. Revision

1.1.

[24] Intel Corp. (1995) Pentium Processor Family Developers Manual Volume 3:

Architecture and Programming Manual. Technical report, 2200 Mission College

Blvd. Santa Clara, CA 94054-1549, USA.

[25] Mattson, T. and Wijngaart, R., (2010) RCCE: a Small Library for Many-Core

Communication. Retrieved from

http://www.intel.com/content/www/us/en/research/intel-labs-rcce-single-chip-

cloud-brief.html

[26] Bare Metal OS for Intel’s SCC “Cloud on a Chip”. Retrieved from

http://www.etinternational.com/index.php/projects/intel-scc

[27] Ziwisky, M., Byrlow D.,(2012) BareMichael: A Minimalistic Bare-metal

Framework for the Intel SCC. Proc. of the 6th MARC symposium, ONERA

http://www.intel.com/content/www/us/en/research/intel-labs-tera-scale-research-paper.html
http://www.intel.com/content/www/us/en/research/intel-labs-tera-scale-research-paper.html
http://blogs.intel.com/intellabs/2009/12/02/sccloudcomp/
http://www.etinternational.com/index.php/projects/intel-scc/

36

[28] sccAPI lib and docs. Retrived from

http://communities.intel.com/message/93196#93196

[29] Mullender, S. J., van Rossum, G., Tanenbaum, A. S., van Renesse, R., and van

Staveren, H. (May 1990). Amoeba – A Distributed Operating System for the

1990s. IEEE Computer, 23(5):44–53.

[30] Miller, B. and Presotto, D., Powell, M (April 1987). DEMOS/MP: The

Development of a Distributed Operating System. Software-Practice and

Experience, 17(4):277–290.

[31] Artsy, Y. and Finkel, R. (September 1989). Designing a Process Migration

Facility: The Charlotte Experience. IEEE Computer, pages 47–56.

[32] Litzkow, M., Tannebaum, T., Basney, J., and Livny, M.,(April 1997). Checkpoint

and Migration of Unix Processes in the Condor Distributed Processing System.

Techincal Report#1346.Compute Sciences Department, University of Wisconsin-

Madison.

[33] Tol. M., Bakker, R., Verstraaten, M., Clemens Grelck and Jesshope, C.R.

Efficient Memory Copy Operations on the 48-core Intel SCC Processor.3rd MARC

Symposium

[34] Running programs with input files on SCC. Retrieved from

http://communities.intel.com/message/146008#146008

http://communities.intel.com/message/93196#93196

37

APPENDIX A

DEFAULT LUTs

38

Table 4. Default LUT entries for 32 GB System Memory

LUT # Physical Address Maps to

255 FFFFFFFF - FF000000 Private

254 FEFFFFFF - FE000000 N/A

253 FDFFFFFF - FD000000 N/A

252 FCFFFFFF - FC000000 N/A

251 FBFFFFFF - FB000000 VRC

250 FAFFFFFF - FA000000 Management Console TCP/IP Interface

249 F9FFFFFF - F9000000 N/A

248 F8FFFFFF - F8000000 N/A

247 F7FFFFFF - F7000000 System Configuration Register -- Tile 23

246 F6FFFFFF - F6000000 System Configuration Register -- Tile 22

245 F5FFFFFF - F5000000 System Configuration Register -- Tile 21

244 F4FFFFFF - F4000000 System Configuration Register -- Tile 20

243 F3FFFFFF - F3000000 System Configuration Register -- Tile 19

242 F2FFFFFF - F2000000 System Configuration Register -- Tile 18

241 F1FFFFFF - F1000000 System Configuration Register -- Tile 17

240 F0FFFFFF - F0000000 System Configuration Register -- Tile 16

239 EFFFFFFF - EF000000 System Configuration Register -- Tile 15

238 EEFFFFFF - EE000000 System Configuration Register -- Tile 14

237 EDFFFFFF - ED000000 System Configuration Register -- Tile 13

236 ECFFFFFF - EC000000 System Configuration Register -- Tile 12

235 EBFFFFFF - EB000000 System Configuration Register -- Tile 11

234 EAFFFFFF - EA000000 System Configuration Register -- Tile 10

233 E9FFFFFF - E9000000 System Configuration Register -- Tile 09

232 E8FFFFFF - E8000000 System Configuration Register -- Tile 08

231 E7FFFFFF - E7000000 System Configuration Register -- Tile 07

230 E6FFFFFF - E6000000 System Configuration Register -- Tile 06

229 E5FFFFFF - E5000000 System Configuration Register -- Tile 05

228 E4FFFFFF - E4000000 System Configuration Register -- Tile 04

227 E3FFFFFF - E3000000 System Configuration Register -- Tile 03

226 E2FFFFFF - E2000000 System Configuration Register -- Tile 02

225 E1FFFFFF - E1000000 System Configuration Register -- Tile 01

224 E0FFFFFF - E0000000 System Configuration Register -- Tile 00

223 DFFFFFFF - DF000000

: : :

216 D8FFFFFF - D8000000

215 D7FFFFFF - D7000000 MPB in Tile (x=5,y=3)

214 D6FFFFFF - D6000000 MPB in Tile (x=4,y=3)

213 D5FFFFFF - D5000000 MPB in Tile (x=3,y=3)

39

LUT # Physical Address Maps to

212 D4FFFFFF - D4000000 MPB in Tile (x=2,y=3)

211 D3FFFFFF - D3000000 MPB in Tile (x=1,y=3)

210 D2FFFFFF - D2000000 MPB in Tile (x=0,y=2)

209 D1FFFFFF - D1000000 MPB in Tile (x=5,y=2)

208 D0FFFFFF - D0000000 MPB in Tile (x=4,y=2)

207 CFFFFFFF - CF000000 MPB in Tile (x=3,y=2)

206 CEFFFFFF - CE000000 MPB in Tile (x=2,y=2)

205 CDFFFFFF - CD000000 MPB in Tile (x=1,y=2)

204 CCFFFFFF - CC000000 MPB in Tile (x=0,y=2)

203 CBFFFFFF - CB000000 MPB in Tile (x=5,y=1)

202 CAFFFFFF - CA000000 MPB in Tile (x=4,y=1)

201 C9FFFFFF - C9000000 MPB in Tile (x=3,y=1)

200 C8FFFFFF - C8000000 MPB in Tile (x=2,y=1)

199 C7FFFFFF - C7000000 MPB in Tile (x=1,y=1)

198 C6FFFFFF - C6000000 MPB in Tile (x=0,y=1)

197 C5FFFFFF - C5000000 MPB in Tile (x=5,y=0)

196 C4FFFFFF - C4000000 MPB in Tile (x=4,y=0)

195 C3FFFFFF - C3000000 MPB in Tile (x=3,y=0)

194 C2FFFFFF - C2000000 MPB in Tile (x=2,y=0)

193 C1FFFFFF - C1000000 MPB in Tile (x=1,y=0)

192 C0FFFFFF - C0000000 MPB in Tile (x=0,y=0)

191 BFFFFFFF - BF000000

: : :

132 84FFFFFF - 84000000

131 83FFFFFF - 83000000 Shared MCH3 - 4MB

130 82FFFFFF - 82000000 Shared MCH2 - 4MB

129 81FFFFFF - 81000000 Shared MCH1 - 4MB

128 80FFFFFF - 80000000 Shared MCH0 - 4MB

127 7FFFFFFF - 7F000000

: : :

85 55FFFFFF - 55000000

84 54FFFFFF - 54000000 Private

49 31FFFFFF - 31000000 Private

48 30FFFFFF - 30000000 Private

: : :

1 01FFFFFF - 01000000 Private

0 00FFFFFF - 00000000 Private

Note. Reprinted from [23]

