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ABSTRACT  

   

Ball Grid Array (BGA) using lead-free or lead-rich solder materials are 

widely used as Second Level Interconnects (SLI) in mounting packaged 

components to the printed circuit board (PCB). The reliability of these solder 

joints is of significant importance to the performance of microelectronics 

components and systems. Product design/form-factor, solder material, 

manufacturing process, use condition, as well as, the inherent variabilities present 

in the system, greatly influence product reliability. Accurate reliability analysis 

requires an integrated approach to concurrently account for all these factors and 

their synergistic effects. Such an integrated and robust methodology can be used 

in design and development of new and advanced microelectronics systems and 

can provide significant improvement in cycle-time, cost, and reliability.   

IMPRPK approach is based on a probabilistic methodology, focusing on 

three major tasks of (1) Characterization of BGA solder joints to identify failure 

mechanisms and obtain statistical data, (2) Finite Element analysis (FEM) to 

predict system response needed for life prediction, and (3) development of a 

probabilistic methodology to predict the reliability, as well as, the sensitivity of 

the system to various parameters and the variabilities. These tasks and the 

predictive capabilities of IMPRPK in microelectronic reliability analysis are 

discussed.   
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

Ball Grid Array (BGA) packages using lead-free or lead-rich solder 

materials have been extensively used as Second Level Interconnects (SLI) in 

mounting the microelectronic packages to the printed circuit boards (PCB). The 

reliability of these BGA solder joints is of significant importance to the 

performance of the microelectronics systems. Product design and form-factor, 

solder alloy composition, microstructure, and inherent variabilities in materials 

properties greatly influence the BGA reliability.  

Increasing demand for the small and high performance electronic devices 

using surface mount technology (SMT) and Ball grid array (BGA) design 

highlights the importance of conducting research in BGA reliability. In recent 

years, a significant amount of research activities have been conducted to address 

these concerns and improve the reliability of the microelectronic packages [1-7].  

Considering numerous system variabilities that are present in 

microelectronics packaging; such as design variations (e.g. Wire bond, Flip chip, 

etc.), product  applications (e.g. consumer electronics, Automobile, Aerospace, 

etc.),  materials / property differences (e.g. Lead free solder, lead rich solder, 

mold compound, adhesion layer, and other  materials used in packages), geometry 

or configurations, etc., the need for a robust and integrated methodology for 
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predicting the reliability and sensitivity of these packages becomes more 

significant.     

In order to address the reliability and sensitivity concerns in the 

microelectronic packaging systems, and to quantify the impact of the random 

variables on the overall system reliability, the IMPRPK methodology is being 

proposed.  IMPRPK is an Integrated Methodology for Predicting the Reliability of 

the microelectronics Packaging systems.   

 

1.2 Problem statement 

Product performance and reliability are not only impacted by 

manufacturing and operating/use condition, but the reliability of any mechanical 

or electrical system is also directly influenced by the inherent variables present in 

such systems.  A minor change in system variables could cause a substantial 

change in the system performance and reliability [8].  The focus of this 

dissertation is to develop a methodology for quantifying the impact of different 

variabilities; such as variation in material, design/ form-factor and processing, use 

condition and defect size on reliability of packages. This methodology can then be 

used in package design and/or manufacturing as new products with different 

requirements in form factors, material/processing, etc. are deemed needed in 

response to a time-sensitive market. 

What differentiates our approach from others is our focus in considering 

many variables/variabilities at once when studying their impact on reliability, 
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while a general approach by others is to investigate the effect by evaluating the 

effect of single variable at a time.  

 

1.3 Approach 

In order to address the above mentioned reliability concerns, the IMPRPK 

approach was proposed to be used in predicting the reliability and sensitivity of 

the microelectronic packages exposed to many system variabilities. The BGA 

interconnect reliability case was used as a mean to validate this proposed 

approach. 

IMPRPK approach is a probabilistic approach used in predicting the 

reliability and risk factors of the system, as a function of variation in the system. 

This approach will help design engineers to identify the culprit system parameters 

and manage/reduce the potential risks associated with them during the product 

design, development, and the early stages of the manufacturing, hence, resulting 

in significant cycle-time and cost reduction. 

In developing IMPRPK methodology, three major tasks were focused: 

 Task I- Characterization: The main elements of this task are: 

i. Obtain the variability data associated with geometry 

(design/dimensions and BGA solder array), microstructure (processing 

effect), material properties (effect of composition, processing), and 

defect size (voids and cracks size distribution).  These data are then 
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used in constructing the statistical random variable distribution 

functions needed for probabilistic analysis.   

ii. Characterize untested end-of-Line (EoL) and tested (Accelerated 

Thermal cycled, ATC) samples to identify the failure modes and select 

the appropriate life prediction models for accurate reliability analysis. 

 Task II- Finite Element Method (FEM): Create and analyze the global and 

local Finite Element Models (FEM) to obtain individual BGA loading 

condition under a given loading condition and external parameters. 

Integrating FEM with a probabilistic model provides the capability to 

predict materials responses when the variabilities are incorporated into the 

loading/external condition input to FEM model. The global FEM model 

which defines the whole package, utilizes the input boundary conditions of 

the package (e.g. thermal cycling, displacement and rotation of the 

package) to calculate the package level displacements of the system 

“global FEM response”.  The local FEM model (also known as sub-

model) uses the package displacement values predicted by the global 

model as the inputs/boundary condition for calculating the state of stress, 

strain and energy in individual BGA interconnects, hence the “local FEM 

response”.  The system response from the local model is then used in 

combination with the life prediction models, such as. Coffin-Manson, 

Perkins, Darveaux, and/or others [4], [9-19] to predict the time-dependent 

failure and/or package life/survival. 
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 Task III- Probabilistic and reliability analysis: The probabilistic and 

reliability analysis is the significant element of this study. In this task the 

variability distribution data generated in task 1, in combination with the 

local responses from the FEM simulation developed in task 2, are 

integrated with a commercially available probabilistic methodology, to 

predict the effect of system variability/uncertainties on product reliability. 

This integrated methodology not only is applicable for reliability analysis, 

it is also intended for use in design and manufacturing optimization and 

process control.  The applicability and efficiency of various probabilistic 

analysis techniques for the microelectronic packages were evaluated 

during the course of this study in order to identify and select the most 

appropriate method for microelectronic systems. 

 

1.4 Effects included 

The study presented here includes the critical microelectronic package 

parameters on BGA reliability.  The parameters considered include, but are not 

exclusively limited to: material properties, constitutive model constants, package 

components, geometry and dimensions, defect distribution, and use conditions. 

The FEM predictions are then used in conjunction with Darveaux’s life prediction 

model to determine the BGA survival life under the set conditions selected above.  

Combining  the system variabilities data in the form of statistical distribution 

obtained in task (i) with these  deterministic models developed in task (ii) and a  
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probabilistic approach, provides the information on failure probability of the 

system, as well as the sensitivity of the system to the applied changes to any of 

the input variables.   

 

1.5 Effects not included 

 Some effects such as microstructure evolution and formation and growth 

of the intermetallic compounds (IMCs) were not evaluated during this work.  

Combination of these effects with different life prediction (e.g. Coffin Manson 

and Perkins, etc.) and probabilistic models such as Monte Carlo, first and second 

order reliability could be studied as a future work. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Introduction 

This chapter summarizes BGA reliability issues and the relevant failure 

mechanisms, life prediction models, and reliability approaches discussed by other 

investigators. 

Understanding of the BGA reliability concerns will be beneficial in 

improving the package performance and service life. In this chapter the system 

and BGA level reliability of the microelectronic packages will be discussed and 

effect of the key parameters involved in BGA reliability will be reviewed.  

 

2.2 Microelectronics system reliability 

One approach in defining the reliability of a system is to focus on the 

difference between the strength of the materials used in that system and the stress 

levels of the system in a given operation state.  Upon the stress value in the 

system exceeding the strength of the material, the failure will occur and therefore 

the system will not be reliable anymore.  Determining the stress levels of the 

system (system response to the loading and process and use condition) are 

generally complicated and numeric codes (e.g. ABAQUS and ANSYS) are 

required in determining the stress levels. 



  8 

Effects such as thermal mismatch between the package elements (especially at 

local level) and thermal cycling of the packages (combination of cyclic loading 

and creep deformation) influence the stress levels of the system [20-21]. 

Depending on the type of the deterministic model used in reliability analysis, the 

response of the system could be in the form of the stress, strain or energy.  

The probabilistic approach will predict the probability of the system failure by 

incorporating the variabilities in material, geometry and process and use condition 

in deterministic model. 

The probabilistic approach is the main core of this dissertation. 

 

2.2.1 Deterministic model 

In the complex systems (e.g. microelectronic package) with multiple 

materials, boundary and use condition, determining the system response is often 

difficult and requires numeric FEM codes (e.g. ABAQUS, ANSYS, etc.) for 

solving them.   

In the past years, a significant amount of papers have been published in the area 

of the first (FC) and second level (BGA) interconnects and also Surface Mount 

Device (SMDs) reliability [3], [5], [7], [9-11] [17-19]. 
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2.2.2 Probabilistic approach 

Reliability of the microelectronic package is influenced by the reliability 

of its components [22]. Natural variabilities in material properties and process and 

use condition exist in the manufacturing process of the electronic packages.  

Ignoring the effect of these variabilities would result in inaccurate service life 

prediction of electronic packages. Performing the probabilistic analysis will 

integrate the impact of these variabilities on overall system reliability [3], [5-7], 

[11], [13], [19], [24], [26]. 

 

2.3 BGA reliability 

BGAs as second level interconnects (SLI) provide the mechanical, thermal 

and electrical connection between the substrate and PCB (Printed Circuit Boards).  

Integrity of these BGAs as one of the weakest elements of package, would impact 

the overall reliability of the microelectronic package [17] [24]. 

Parameters such as loading mode (tensile vs shear), temperature and strain rate 

influence the reliability of the BGAs (Fig. 1) [25].  

 

Fig. 1 Ball grid array (BGA) [23] 
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2.3.1 Failure models and mechanisms 

Different failure modes commonly observed in the BGA solders include 

instantaneous brittle or ductile fracture and time-dependent failures such as Creep, 

fatigue, Thermo-Mechanical fatigue (TMF)influenced by operating conditions 

[27]. A summary of potential failure modes for BGA solders is provided in Fig. 2 

 

Fig. 2 Summary of the potential failure modes for BGA solders. 

Synergistic effect of various mechanisms, e.g., creep-fatigue interactions, should 

be considered in BGA reliability analysis.   

 The instantaneous failures generally occur due to the excessive tensile 

and/or shear loads and is a time independent failure.  Depending on the type of 

BGA material e.g. ductile or brittle, different fracture surface will be observed. 

One of the common reasons of the brittle failure in the BGA solders in due to the 
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formation of the brittle-natured intermetallic compounds forming in the tin-copper 

interface at elevated temperatures and/or reflow process [32][34]. 

Demonstration of different instantaneous failure modes related to the shear and 

pull tests and their results in the BGA solder failure are presented and discussed in 

detail in [28-29] and [31] respectively.  

 

 Fatigue failure is the most recognized failure mechanism in the Second 

Level Interconnects (BGAs) and is caused by the low frequency cyclic load [30], 

[33].  The large difference in the coefficient of thermal expansion values between 

the silicon die (2.6 PPM/˚C) and organic FR4 substrate (18 PPM/˚C) in 

combination with cyclic temperature change is the root cause of the thermal 

fatigue failure.  This effect is lower with using of the ceramic substrates [3]. 

 Fatigue failure has two stages, it starts with the crack initiation and 

follows by the penetration of the crack across the BGA until the solder joint 

becomes unstable and fracture occurs [17].    

 The time dependent (and usually slow) permanent deformation of the 

BGA solders under the influence of stresses at elevated temperatures in the range 

or above the 50% of their absolute melting temperature (homologous 

temperature), occurs as a result of creep deformation.  Considering the melting 

temperature of the SAC405 and Sn37Pb solders (217˚C and 183˚C respectively), 

these solders are subjected to the creep deformation even at room temperature 

(25˚C). This effect is even more significant for the Sn37Pb solders since they are 
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in about 65% of their absolute melting temperature at 25˚C [35].  Long dwell 

times during thermal cycling and/or duty cycle, especially, the high temperature 

hold time will increase the impact of the creep failure in the BGAs.   Creep failure 

decreases the thermal fatigue life of the BGA solders by damaging and degrading 

the grain boundaries of the BGA solders via the nucleation, growth and 

combination of the cavities in grain boundaries (intergranular failure) [36-37].  

The creep behavior in the BGA solders are controlled by two main mechanisms: 

 Dislocation creep 

 Diffusion creep 

Both of these mechanisms are active at elevated temperatures and their main 

difference is in the level of stress and microstructural behavior.  The dislocation 

creep is defined based on the dislocation motion within the crystal as a result of 

high stress levels while the diffusion creep is described based on the diffusion of 

vacancies as a result of applied stress.  The diffusion creep mechanism will be 

active even at lower stress levels [35].  Fig. 3 shows a generic example of creep 

strain vs. time graph, reflecting the increase in creep rate with increasing 

temperature. 

Prior to primary creep, there is a time independent material extension which could 

be either elastic or combination of elastic and time independent plastic.  In the 

primary creep region the material deforms with a fairly high rate until the material 

reaches to the work hardening condition which will cause a decrease in the creep 
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strain rate.  Increasing the temperature of the material will cause a thermal based 

recovery phenomenon which will balance with the work hardening effect and will 

result a steady-state creep strain (second stage of the creep)  in this stage the 

deformation is independent of time and strain.  During the tertiary creep, grain 

boundary cavitation and coalescence is responsible for intergranular cracking and 

creep failure. 

The ATC tested BGA’s were used to identify the failure modes in solder cracking. 

 

 

Fig. 3 Creep strain vs. temperature for the solders [35]. 

2.3.2 Parameters influencing reliability 

Ball grid array solder reliability is the critical element influencing overall 

package reliability.  Material properties (e.g. Chemical composition, 
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microstructure, etc.), package design and form factor (flip-chip, wire-bond), 

product processing and use condition (e.g. temperature) [2], [38] are parameters 

that impact the service life and reliability of microelectronics packages.  In 

addition to these parameters, the inherent variability present on these parameters 

play a significant role on the reliability. It is of utmost importance that we 

understand and predict the impact of all these parameters and variability on 

product performance in an efficient and timely manner, in quest to address the fast 

paced market entry requirement.   The listing of various parameters and those 

considered in this study is provided in Table. 1 

Table. 1 Various parameters considered in this study 

 

2.3.2.1 Material 

2.3.2.1.1 Chemistry 

Chemical composition plays a substantial role in the reliability of the 

BGAs.  Composition, microstructure, ductility and intermetallic compounds are 

some of the key material parameters influencing the BGA reliability. 
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Common solder materials used for First Level Interconnect (FLI) C4 bumps and 

Second Level Interconnect (SLI) BGAs are Sn37Pb (lead-rich) and Sn-Ag-Cu 

lead-free alloys (e.g., SAC405, etc.).  The great wetting properties in combination 

with adequate creep, thermal fatigue, enhanced fluidity and relatively low melting 

temperature and vapor pressure made Tin based alloys a perfect choice for the 

microelectronic applications [33], [39-40], [42].  Two major classes of 

interconnect solder alloys used in microelectronics industry are:   

 Lead based solder material 

 Lead free solder material 

The binary phase diagram of the SnPb solder material is shown in Fig. 4, where 

Sn37Pb is the eutectic composition alloy of Sn and Pb and the melting 

temperature of this alloy is about 183°C. 

Utilizing the lead based soldering alloys in microelectronic industry has a 

long history and in the past 50 years the tin-lead solders were widely used  in 

manufacturing of the electronic devices [39], [43].  In 2000, only in the U.S., 

11500 tons of lead was consumed in manufacturing of the solders [41]. This was 

only 0.7% of the total lead consumption during that year. 
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Fig. 4 Binary phase diagram for the eutectic Sn37Pb alloy [44] 

Considering the great properties of the tin-lead solder alloys, the use of these 

solder alloys has been dropped in the recent years due to the toxic effect of the 

heavy metals on human health.  Heavy metals such as lead could cause serious 

brain damages and because of this concern majority of the countries have passed 

bills to reduce and eliminate the use and disposing of the products containing the 

heavy metals [41] [43] [45].  Starting the July 2006, European Union has 

forbidden the use of the lead based electronics and therefore the Sn37Pb solders 

must be replaced with the alternative alloys [1].  The global effort in lead 

reduction (and removal) from the consumer electronics and other applications, has 

motivated the need to find alternative substitutions for the lead based solders. 
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To address this concern, the new lead free solder alloys were introduced.  There 

are more than 70 different composition available for the lead free solders [40] and 

among these options the eutectic tin (Sn), silver (Ag) and copper (Cu) alloys are 

the most common options.  Fig. 5 shows the top view of ternary phase diagram 

for the lead free SAC solders.  According to this figure, majority of the near 

eutectic SAC alloys are located in the area confined in red area. Based on the 

composition of these three elements, different alloys could be formed (e.g. Sn-Ag, 

Sn-Cu, SAC205, SAC305, SAC405, etc.) [43][46].  

 

Fig. 5 Ternary phase diagram of the lead free solders (SAC) [44][47][48] 
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2.3.2.1.2 Microstructure 

Microstructure of the BGA solders play a significant role in the BGA 

integrity and package reliability [50]. Depending on the BGA solder composition 

(e.g. SAC405, Sn37Pb, etc.), different inter metallic compounds (Ag3Sn, Cu6Sn5) 

[36], [44], [50] could be formed within the base Tin matrix.  Processing and use 

conditions influence the size of microstructural features such as grains and 

intermetallic compounds, impacting BGA solder properties such as the strength 

values.  Well known Hall-Petch relation presented in equation (1) below, 

describes the effect of grain size on the yield stress of the crystalline metal, where 

the material strength increases with the inverse of the square root of the grain size 

   

                                          

In equation (1),    is the yield stress,    is the friction stress needed to move 

individual dislocations,   is the constant (material dependent) and   represents 

the grain size [49], [51]. 

Microstructure evolution due to thermal exposure result in, grain size increase, 

and formation of micro voids and/or micro cracks [24]. 

Formation and coarsening of intermetallic particles as a result of elevated 

temperature is one of the factors in degrading the reliability of the BGAs [36].   

 

(1) 
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The effect of the initial microstructure and its time dependent evolution during the 

use condition at elevated temperatures are generally not considered in life 

prediction models.   

2.3.2.1.3 Statistical behavior 

Many investigators have studied the stochastic behavior of the BGA 

solders, including, the impact of internal voids, cracks, temperature range, cycle 

frequency and etc. on properties [52-53].  Majority of these studies are 

experimental efforts and the effect of the internal voids were rarely included in 

the numeric (FEM) analysis.  This study concluded that the probability of 

formation, position and the size of these voids in the electronic packages are 

absolutely random. Fig. 6 shows example of voids observed in BGA solder 

[53].Comparing the FEM and experimental results for the solders with and 

without voids have proven that the equivalent plastic and shear strain is not 

always larger for the solders with voids and factors such as position, frequency 

and size of the void will define the amount of the strain in the BGA solders [53-

54].   

It has also been reported that the effect of the voids in the lead free and 

lead based solder is not significant and could be neglected and only the voids 

larger than 50% of the solder joint area will reduce the integrity of the BGA 

solders [53]. 
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Fig. 6 Voids (with different size and position) from the time zero solder joints 

[53] 

2.3.2.1.4 Solder DBTT effect 

The Ductile Brittle Transition Temperature (DBTT), is the transition from 

ductile to brittle failure for a given loading mode and temperature as a result of 

constant or increasing strain rate.  The ductile to brittle transition strain rate 

(DTBTSR) on the other hand is the strain rate level in which the ductile to brittle 

transition will occur in the BGA [25]. The ductile and brittle failure of the BGA 

solders as a result of tensile load is presented in Fig. 7 &8.  According to these 

figures the bulk of the solder will mainly experience ductile failure whereas the 

interface failure will fail in brittle manner.  Higher DTBTSR is the indicative of 

having a robust system with respect to impact loading. It is also shown that BGA 

aging can impact the ductile to brittle transition level [55-56]. 
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Fig. 7 Ductile and brittle failure under the tensile test (this figure shows the 

different types of the failures (ductile, brittle and pad lift) [25] 

 

Fig. 8 Trend of tensile strength with strain rate (left) and trend of ductility with 

strain rate (right) [25] 

The effect of the DBTT is more significant at low temperature thermal 

cycling which considering the high operation temperature of the consumer 

electronics (compared to DBTT) is not a concern. 
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2.3.2.1.5 Molding compound Tg effect 

The glass transition temperature (Tg) of polymer and resin materials used 

in microelectronic systems (e.g., molding compound) has a crucial impact on 

microelectronic package reliability.  The glass transition temperature is the 

reversible transition of the amorphous material from a hard and relatively brittle 

state to semi molten (rubber like) state.  In the microelectronic packages, the 

amorphous materials (e.g. molding compound, underfill, die attach, etc.) have 

specific glass transition temperature.  Generally the Coefficient of Thermal 

Expansion (CTE) values of these materials are low at lower temperatures (with 

higher elastic modulus) and it increases significantly above the glass transition 

temperature (Tg). 

2.3.2.2 Geometry 

2.3.2.2.1 Form factor 

Parameters such as form-factor (e.g. wire bonded with molding compound 

vs. flip chip with under fill) in combination with the BGA layout in the package 

(e.g. full grit array vs. partial grit array) would influence the microelectronic 

package reliability.  For instance, it has been reported that the fatigue failure in 

the partial grid array packages is much significant compared to the full grid array 

of solders [35][57]. BGA joints close to the edge of the silicon die have shown 

higher stress and strain values compared to the rest of the BGAs (see Fig. 9).  This 

is due to high thermal mismatch between the silicon die and substrate. 
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Fig. 9 Accumulated effective plastic strain (left) and Effective stress (right) [17] 

Parameters such as package dimensions, solder standoff, pitch size, etc. will also 

impact the failure pattern of the packages. For instance the thickness of the silicon 

die and printed circuit board will impact the reliability of the BGA in opposite 

ways [23]. 

2.3.2.3            Processing and use condition 

Understanding the details of the manufacturing process of the 

microelectronic packages in combination with specific requirements of use-

condition is crucial for BGA integrity. Variations in process and manufacturing 

(e.g. Reflow, residual stress and cooling rate, etc.) in addition to device handling, 

on and off cycles and environmental effects (e.g. ambient temperature and 

humidity) are required to be incorporated in BGA reliability analysis. 
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2.3.2.3.1 Reflow 

The formation of interconnects (e.g. BGA) in microelectronic packages 

takes place through the reflow process.  Reflow process in combination with 

existing thermal mismatch between the package components could cause 

electrical discontinuity in the package [59].  The IMCs are the byproducts of the 

reflow process which prevents the further diffusion of the pad material into the 

solder joint by forming a brittle barrier layer [60].  

2.3.2.3.2 Residual stress 

Residual stresses are thermally induced stresses in the BGA. Package 

warpage and plastic deformation develop during the reflow/assembly process, due 

to the differences in the coefficient of thermal expansion of dissimilar materials, 

resulting in residual stresses forming at the solder joints [57-58], [61]. Fig. 10 

shows the remaining deformation in the BGA solders as a result of the reflow 

process.  This deformation at room temperature will induce the residual stress in 

the BGAs.   

Selecting the package elements (especially epoxy materials) with similar 

CTE values would significantly reduce the level of residual stress in the packages.  

The residual stress has been recognized as one of the main reliability concerns in 

the microelectronic packages [57]. 
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Fig. 10 Residual stresses in the BGA solders after the reflow as a result of the 

thermal mismatch between the silicon chip and FR4 board [33] 

2.3.2.3.3 Cooling rate 

Microstructure of the BGA is extremely sensitive to its processing steps. 

Cooling rate will influence the reliability and integrity of the BGAs by affecting 

the microstructure (different grain size and precipitate morphology) and altering 

their mechanical properties. Study by other investigators has revealed the effect of 

cooling rate and ATC cycle on fatigue life of the BGA solders, showing longer 

fatigue life for solders experiencing slower cooling rate [62]. Fig. 11 shows the 

effect of the cooling rate and heat treatment on the microstructure of lead-rich 

solders. In this Figure, slower cooling rates (lower than ~0.01˚C/s) in part (a) 

shows Sn and Pb lamellae’s while increasing the cooling rate will change the 

lamellae structure to globular structure with Pb rich particles with in the Sn rich 

phases. 
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Fig. 12 also shows the microstructure evolution as a result of cooling rate in the 

SAC405 solders. The effect of the cooling rate in the lead rich and lead free 

solders are discussed in [63], [65] and [64], [66] respectively. 

 

 

Fig. 11  Effect of the solidification and cooling rate on the Sn37Pb alloys (a) to 

(c) slow to rapid cooling rate, (d) annealing for 60 h at 85˚C (e) worked and 

annealed [63] 
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Fig. 12 Comparison between the water cooled (a) and air cooled (b) 

microstructure (Sn-3.5Ag) [64] 

2.3.2.3.4 Thermal cycle 

The typical microelectronic devices are subjected to thermal cycling 

during their normal operation and use condition. The reliability of packages 

exposed to such thermal cycling is evaluated using accelerated Thermal Cycle 

(ATC) tests, with hold time during the high and low temperatures of the ATC.   

Fig. 13 shows the comparison between the displacement-time graphs with and 

without hold times (Trapezoidal and Triangle respectively). Trapezoidal wave is 

generally used in ATC test.   

The effects of the triangular and trapezoidal low cycle fatigue on 

microstructure evolution of SAC solder have been demonstrated in Fig. 14. 

According to this figure, including the upper and lower temperature hold times 

(Trapezoidal wave form) will increase the size of the intermetallic particles in 

BGA solders. 
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Fig. 13 Triangle (Top) and trapezoidal (Bottom) wave forms used in the fatigue 

tests [36] 

 

Fig.14 Effect of the dwell time on the microstructure (intermetallic particles) of 

the SAC solders (A) triangular low-cycle fatigue (B) Trapezoidal low-cycle 

thermal fatigue. [36] 

Some investigators have reported insignificant temperature and hold time 

effect on lead-free SAC BGA solders crack length , while the effect was more 

significant in Sn37Pb solders [27], [36]. 
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It is shown that thermal cycling can lead to reduced fatigue life of the solders, by 

altering their microstructure and formation of the IMC layers. A reduction in 

BGA fatigue life (by a factor of 6 to 8 times, after 1000 thermal cycles of aging) 

was reported by Pang JHL, Tan KH, Shi X, Wang Z [68]. The summary of the 

typical use condition and service life of different electronic package applications 

is presented in [24]  

2.3.2.3.5 Aging effect 

Aging will degrade the BGA reliability by altering the microstructure of 

the solder joints and formation of oxides at elevated temperatures [59].  It is also 

been shown that the BGA failure rate is higher for the thermal cycling and 

thermal shock aging compared to isothermal aging in both lead free and lead rich 

BGAs [14], [67]. Fig.15, 16, 17 demonstrate the morphology change in the lead 

free solders a result of different thermal aging process (isothermal, thermal 

cycling and thermal shock respectively) at 125˚C. These photomicrographs 

clearly show the increase in the thickness of the IMCs at the solder/copper-plate 

interface, with increased thermal aging temperature and time. 

 

Fig. 15 IMC morphology change in lead free solder (during the isothermal aging) 

after (a) 0h (b) 119h (c) 262h [67] 
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Fig. 16 IMC morphology change in the lead free solders subjected to thermal 

cycling (a) 500 cycles (b) 1000 cycles (c) 2000 cycles [67] 

 

Fig. 17 IMC morphology change in the lead free solders subjected to thermal 

shock (a) 500 cycles (b) 1000 cycles (c) 2000 cycles [67] 

Similar to lead free BGAs, the phase coarsening was also observed in 

Sn37Pb solders (Fig. 18).   The phase coarsening in the Sn37Pb solders was 

significantly more compared to the SAC405 BGAs.  

 

Fig. 18 Time dependent (200°C) IMC growth in the Sn37Pb solders (a) after 10 

sec (b) after 10 min (c) after 40 min [33] 
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2.3.3 Deterministic models 

Deterministic models are used to identify the response of the systems.  

Depending on the active failure modes in the system one of these models must be 

selected and utilized.  

 

2.3.3.1    Fatigue 

Fatigue is a type of failure which degrades the integrity of the BGA 

solders as a result of cyclic loads. The fatigue failure which is caused due to the 

alteration in temperature is called thermal fatigue.  Different fatigue models will 

be reviewed in this section:   

 

2.3.3.1.1  Various fatigue models 

There are different empirical low cycle fatigue life models proposed by 

various investigators (e.g. Darveaux, Farooq, Perkins, Park, Engelmaier). Listing 

of different fatigue models along with their characteristics is shown in Table. 2  

Even though these empirical life prediction models are commonly used, one 

should be considerate of the fact that the inaccuracy of these models in some 

cases could be as large as one order of magnitude [69]  
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Table. 2 Fatigue models and their classifications [72] 

 

Some of these models are further discussed in the following sections. 

 

Coffin-Manson Model:  

Coffin-Manson is the most recognized method in fatigue life prediction 

analysis.  [9], [17], [24], [35-36], [70-71].  

 Equation (2) shows the general form of the Coffin-Manson fatigue model.   

This relation was first proposed in 1950’s and ever since then has been used in 

fatigue life prediction applications.  

 

In this relation, the Nf represents the number of cycles to failure and εp represents 

the plastic (inelastic) strain range and K and n are the constants of the model.  

Some investigators use Nf (50%) or the number of cycles to 50% failure for Nf in 

(2) 
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Coffin-Manson equation. Thermal cycling and/or available fatigue data are 

generally used in determining the constants of the Coffin Manson equation (or the 

modified versions of the equation discussed below). 

Since the Coffin-Manson is a general relation for the metals, various 

researchers have modified this equation to incorporate different parameters and 

interactions impacting fatigue behavior, and calculate the relevant constants [9-

11].  Equation (3) shows the modified version of the Coffin-Manson relation for 

low cycle fatigue of the Sn37Pb solders [9] 

 

Where, 

Nf = mean cycles to failure 

ε’f = fatigue ductility coefficient ~ 0.325 

C = fatigue ductility exponent=-0.442-6*10
-4

Ts+1.74*10
-2

 ln(1+f) 

Δγ = shear strain range 

Ts = mean cyclic solder joint temperature, ˚C 

f = cyclic frequency, 1≤f≤1000 cycles/day 

The former equation was also reported by John Lau [9] with different constants. 

The difference in reported constants for equation (3) by John Lau are: 

  

(3) 
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Ts = mean cyclic solder joint temperature, ˚C = 52.5°C (liq to liq) and =35°C (air 

to air) 

f = cyclic frequency, 1≤f≤1000 cycles/day = 200 cycles per day for liquid to 

liquid thermal shock and =30 cycles per day to air to air temperature cycling 

C=-0.38122 for liquid to liquid thermal shock and =-0.40325 for air to air 

temperature cycling 

Farooq [11] version of the Coffin-Manson equation representing 50% median life 

is given in equation (4) 

 

In this equation εp represents the maximum von Mises plastic strain range. 

Perkins [10] version of the Coffin-Manson equation for the median fatigue life is 

represented in equation (5) below, where in represents the inelastic strain range 

per cycle 

 

Darveaux life prediction model:  

Darveaux’s life prediction model is based on combination of two terms.  First 

term represents the required number of cycles for crack initiation, while the 

second term represents the crack growth after initiation.  

(4) 

(5) 
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Equation (6) demonstrates the general form of the Darveaux’s model [12], [16].  

 

In these set of equations the first term represents the number of cycles to 

initiation while the second term shows the crack growth rate.  

The constants of the model (a, b, c and d) are generally calculated by fitting the 

experimental data on the number of cycles to crack initiation and crack growth 

rate generated for various energy values [73].  (l) Is the shortest distance in which 

the crack would extend before instantaneous or final fracture.  In IMPRPK, (l) is 

equal to the diameter of the solder neck region. The typical constants of the 

Darveaux’s model are provided in [4], [14-16], [74].  Table (3) shows the 

constants of the Darveaux’s model for the lead free and lead rich solders. 

 

Table. 3 Constants of the Darveaux’s model for the lead free and lead rich solders 

(assuming the number of cycles to crack initiation=zero) [74] 

Material\Parameters a b c d 

SAC405 N/A N/A 0.0068 1.4613 

Sn37Pb N/A N/A 0.0044 1.3227 

 

(6) 
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It has been reported that Darveaux’s model will predict the BGA life with a 25% 

correlation error [12]. Study by other investigators [76] based on the independent 

comparison of data has shown much larger inaccuracies.  

A volumetric average of the accumulated viscoplastic energy density (equation 

(7)) is used in Darveaux’s equation.  

The purpose of the volumetric averaging of the energy is to reduce the 

sensitivity of the energy values to element size and mesh density used in finite 

element models for predicting the energy density. The value of the strain energy is 

equal to the area confined inside the stabilized stress-strain hysteresis loop [75]. 

Many investigators have reported stabilized hysteresis loops after the first 3 

cycles in ATC tests [87]. 

 

 

Perkins life prediction model: 

Perkins has used the following relation to calculate the median life of the 

solders [10]. This life prediction model relates the temperature, geometry and 

frequency information of the package to the median fatigue life.  Equation (8) 

demonstrates the Perkins model. 

 

(8) 

(7) 
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In this relation, (A) is the substrate size, (B) is the CTE mismatch between the 

board and substrate, (C) is the substrate thickness, (D) is the board thickness and 

(E) is the ball pitches. 

Morrow fatigue life model: 

Morrow fatigue life model presented by equation (9) is discussed in detail 

in references [24] and [52]: The variables in this model are: 

 

  =fatigue ductility coefficient 

∆W= cyclic visco-plastic strain energy (the confined area inside the cyclic stress-

strain hysteresis loop 

C= fatigue ductility exponent (-0.5 to -0.7 for common engineering metals) 

Engelmaier-wild fatigue life model: 

Engelmaier-wild fatigue life model (equation 10 & 11) is another modified 

version of the Coffin-Manson model that empirically incorporates the dwell time 

and frequency effect in fatigue life calculation [24]: 

 

Where, 

(9) 

(10) 
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εf’  =  ductility coefficient 

ΔD = the cyclic total strain energy 

C = Fatigue ductility exponent, resulting from: 

 

TSJ = mean cyclic solder joint temperature 

tD = Half cycle dwell time in minutes (relates to the cyclic frequency and the 

shape of the cycles and represents the time available for the stress relaxation/ 

creep to take place. 

Other fatigue life models: 

            Wong [77] has also introduced another life prediction model (equation 

(12)).   

 

In this relation, Nf is the fatigue cycles, C=-1.51, AD=5.9E-3 mm
2
 and Ai is solder 

crack surface in mm
2
. 

The effect of the frequency on the fatigue life was also reported by Solomon & 

Tolksdorf through a frequency modified Coffin-Manson [52], [70]. 

According to the Fig. 19 & 20, as a result of the area confined inside the stress 

strain curve, the fatigue life has decreased with decreasing the frequency. 

Increasing the temperature on the other hand has also decreased the thermal 

fatigue life of the Sn37Pb solders (as a result of the area inside the hysteresis 

loop) [52].  

( ) ( / )c

f i DN W A A 

(11) 

(12) 



  39 

 

Fig. 19 The effect of the frequency on the hysteresis loop of the Sn37Pb solders 

(T=25˚C and strain rate of 10%) [27][52] 

 

Fig. 20 The effect of the temperature on the hysteresis loop of the Sn37Pb solders 

(f=1HZ and strain rate of 10%) [52] 

 

2.3.3.1.2 Key parameters influencing fatigue life 

Reviewing various empirical fatigue life prediction models discussed in 

previous section indicated general agreement in using the induced inelastic strain 

and strain energy density (caused by the thermal mismatch in the package 

elements) as the key parameter or descriptor for fatigue life prediction in 

microelectronics packaging.  Reducing the thermal strain by controlling the 

temperature range (difference in upper and lower temperature values), and 

minimizing the thermal expansion mismatch of the materials used in package, 
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especially that of the epoxy materials (e.g. epoxy molding compound, underfill, 

die attach, board and substrate material, etc.) could improve the fatigue life of the 

microelectronic packages. 

Package assembly has a crucial role on the BGA reliability regardless of the 

solder material [75].   A compliant package-Board assembly will have a better 

reliability in comparison with the package with high level of thermal mismatch 

[79] 

In addition to the effect of the temperature range on the fatigue life of the BGA 

solders (Thigh-Tlow), the value of the upper and lower temperatures play a 

significant role on the BGA life. Increasing the upper and lower temperatures, 

will reduce the thermal fatigue life of the package.  Fig. 21 demonstrates this 

effect for the Sn37Pb and SAC405 solders. Change in BGA geometry which 

impacts the stress state, influences the solder joint reliability. FEM studies 

presented in [78] showed a significant impact due a minor change in BGA 

geometry. 
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Fig. 21 Effect of temperature values on the BGA characteristic life (cycles) [79] 

2.3.3.2   Creep 

Creep is defined as a time dependent deformation in the materials and it is 

generally active at elevated temperatures.  Creep models and constitutive 

equations used in predicting creep deformation and materials response in high 

temperature are discussed in the following section.  

2.3.3.3 Constitutive creep models 

There are various constitutive modes which are generally used in 

determining the temperature dependent strain rate and inelastic creep deformation 

in materials.  In this section some these models used in microelectronics industry 

will be presented. 
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Anand constitutive model:   

Anand constitutive model is one of the most advanced models used in 

calculating the inelastic strain rates of the materials [35], [80-83].  The most 

important feature of the Anand model is its state dependency (strain depends on 

temperature, stress and loading rate) and the fact that there is no specific yield 

condition.  This means that yield could occur at any non-zero state of stress. 

Anand constitutive model is a combination of flow equation with three 

other equations (equation (13)) which are defining the strain hardening or strain 

softening of the material [35], [80].   

 

 

 

In these equations the parameters are as follows: 

    

  
 = effective inelastic deformation rate 

σ = effective Cauchy stress 

(13) 
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  =hardening constant 

 =deformation resistance  

  =saturation value of s 

 ̂=time derivative of s 

 =absolute temperature 

 =strain rate sensitivity to stress 

 =strain rate sensitivity to hardening 

Table (4) lists the constants of the Anand model reported for Sn37Pb and SAC405 

BGA solder alloys [35] and [81]. The models are incorporated in finite elements 

model such as ANSYS.  

Table. 4 Constants of the Anand model for the Sn37Pb and SAC405 solders 

Parameter Sn37Pb SAC405 

   1800 Psi 22.64 Mpa 

    (1/K) 9400 7619 

  (1/sec) 4E+6 107.65 

ζ 1.5 59.36 

   2E5 Psi 9002 Mpa 

  0.303 4.03 

 ̂ 2E3 Psi 86.28 Mpa 

  0.07 0.0046 

  1.3 1.3 
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Double power law creep model: 

The double power law creep model has two terms for low and high strain 

regimes.  Equation (14) shows the typical relation for the Double power law 

creep.  

 

Constants of the double power law creep are reported in the [47], [84], [86-88], 

and are listed in Table (5) 

Table. 5 Constants of the double power law creep model for Sn37Pb and SAC405 

materials [84] 

Material\Parameter 
A1 

(1/sec) 

H1/K 

(Kelvin) 
n1 

A2 

(1/sec) 

H2/K   

(Kelvin) 
n2 

σn 

(MPa) 

Sn37Pb 1.7E12 5413 3 8.9E24 5413 7 
1 

SAC405 4E-7 3223 3 1E-12 7348 12 1 

 

Hyperbolic sine creep model: 

Hyperbolic sine is the other type of the creep model in which the 

temperature, and stress dependencies are established via the Arrhenius relation 

and sinh function, respectively [71], [85].  Equation (15) demonstrates the 

hyperbolic sine constitutive model commonly used to account for power-law-

breakdown occurring at high stress regime. Constants of the hyperbolic sine 

(14) 
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constitutive model for SAC405 and Sn37Pb solder materials are listed in Table 

(6) [89] and [90] respectively. 

 

Table. 6 Constants of the hyperbolic sine constitutive model for the Sn37Pb and 

SAC405 solder materials 

Material\Parameter A α (MPa
-1

)
 

n 
H/K (J/mol) 

Sn37Pb 10 0.1 2 
44900 

SAC405 441000 0.005 4.2 
45000 

 

 

2.3.3.4 Key parameters influencing creep  

As discussed earlier, time dependent inelastic strain, or creep deformation, 

has a strong dependency on temperature and stress. Dwell/hold times and 

temperature are therefore key influencing parameters impacting creep related 

deformation and failure of the BGAs. As expected, longer hold time at elevated 

temperature will result in a larger creep effect.  Values of the activation energy for 

creep (Q) and stress exponent (n) (Equation 14) play a significant role in the level 

of creep occurring in the material. 

 

 

 

(15) 
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2.4 Finite Element Method 

As a part of the life prediction effort, it is required that we calculate the 

state of stress and/or energy in particular points of the system. Considering the 

complexity of microelectronics packaging system, material properties, loading 

and boundary conditions, determining the system response (e.g. energy, stress, 

strain, etc.) would become a challenging task.  A solution for these challenges 

would be utilizing the numerical techniques (e.g. ABAQUS, ANSYS) in finding 

the system response [23].  In these methods the response of the system will be 

determined based on the given test condition. The principals of the FEM analysis 

are based on the approximation of the geometry, displacements, material 

properties and loading and boundary conditions. It has been reported that these 

parameters could cause inaccuracy in determining the life of the package. 

Therefore using the proper material properties and geometry data in FEM modes 

is crucial [69].  

2.4.1 How and why to use the FEM for reliability analysis 

Commercial FEM codes (e.g. ABAQUS, ANSYS, etc.) are widely used to 

calculate the response of the complex systems during the fatigue failure analysis.   

Global (board level) and local (BGA level) FEM solutions are widely utilized for 

deterministic analysis in conjunction with one of the life prediction models (e.g. 

Darveaux, etc.) [3].  Global FEM model will provide the displacement of the 
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system which will be used as boundary condition in determining the stress and 

energy levels of the BGAs (local model). 

2.4.2 Key FEM parameters and their significance 

Defining the correct geometry, material properties and boundary 

conditions in the FEM model is critical.  Considering the fact that these 

parameters are the only inputs used by FEM code to determine the system 

response, it highlights the importance of entering the correct input data in FEM 

code.  Coefficient of thermal expansion (CTE) is one of the material properties 

which play a significant role in package reliability. Using inaccurate values of the 

CTE in analysis could result in getting wrong response from the FEM code.   

One needs to be cognizant of the fact that the temperature dependency of 

CTE is defined in two different ways, and inappropriate utilization of it can result 

in great errors! (Fig. 22) 

(i) Tangent CTE which is defined as instantaneous rate of change of the thermal 

strain with respect to temperature [91]. Equation (16) shows the relation to find 

the tangent CTE. 

   

 

(ii) Secant (mean) CTE which is defined relative to T˚ (reference temperature) 

[91-92].  Equation (17) demonstrates the secant CTE.   T˚ is the reference 

temperature in which the strain is equal to zero. 

(16) 
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Fig. 22 Comparison between the tangent and secant CTE [91] 

It should be noted that ABAQUS uses the secant CTE and entering the tangent 

CTE instead of secant CTE could result in error.  

2.5 Probabilistic methodologies  

Natural variabilities are introduced in microelectronic packaging systems 

during the manufacturing and assembly process, and are present in material 

properties, component geometry, etc., [12]. It is crucial and an efficient element to 

include all of these system variabilities into the design of the microelectronic 

packages to avoid the system failure during the normal operation condition.  Even 

though the optimum values for deterministic analysis is a proper start point for the 

design process but it is not always reliable. Deviation from the input mean values 

(nominal values) could result in a substantial impact on the system output (Fig. 

(17) 
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23).  This fact implies the importance of the probabilistic analysis in 

manufacturing process of the microelectronic packages.  In order to have a 

reliable and efficient system, the ideal deterministic point must be transferred to 

the ideal reliable point. 

 

Fig. 23 Comparison between the deterministic and reliable optimum [8] 

The probabilistic analysis will insure the safe operation of the microelectronic 

devices by increasing their reliability.  Besides the improvement of the system 

reliability by incorporating the uncertainties in the design, the level of 

sensitivity/importance of each variable on the system output could also be 

determined.   

2.5.1 Probabilistic models 

Depending on the complexity of the systems and desired confidence level, 

one of the available probabilistic models could be employed.  Direct Monte Carlo 

model is one of the most recognized and simple models which is widely used for 

probabilistic analysis.  It works based on repeated sampling of the random 
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variables and finding the results of the system for these samples using 

deterministic analysis. Monte Carlo method requires a large number of samples to 

be processed in order to get the lower and upper probabilities [94-95]. 

For the complex and nonlinear systems with multiple physics and 

complicated geometry, it is required to use the numeric codes (e.g. ABAQUS and 

ANSYS) in order to predict the behavior and response of the system.  In these 

cases using the Monte Carlo method, which requires hundreds to thousands of 

random samples, will not be efficient and the theoretical methods (e.g. First Order 

Reliability Method, Second Order Reliability Method, Mean Value, Advanced 

Mean Value and Advanced Mean Value Plus) needs to be utilized [95]. 

Details of these methods are discussed in chapter 6.  

2.5.2 SwRI NESSUS and DARWIN 

Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) is 

a modular computer program for performing the probabilistic analysis and it uses 

one of the many probabilistic methods for structural and mechanical systems 

analysis [96]. This software has been developed initially by the Southwest 

Research Institute (SwRI) for NASA in order to perform the probabilistic analysis 

of the space shuttle main engine components.  The capabilities of NESSUS in 

performing the reliability analysis with different system uncertainties, and 

probabilistic methods, as well as, its capacity in utilizing the commercially 

available numeric codes have made it a great tool for reliability analyses [93].  
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Design Assessment of Reliability With Inspection (DARWIN) is another 

product from SwRI.  DARWIN is a probabilistically-based damage tolerance 

design code [97] which is originally designed to determine the risk of fracture of 

the turbine engine. 

In this study the NESSUS was used as main tool in predicting the reliability of the 

microelectronic packages. 
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Chapter 3 

IMPRPK (INTEGRATED METHODOLOGY FOR PREDICTING 

RELIABILITY OF PACKAGING SYSTEMS) 

 

3.1 Integrated probabilistic approach 

It has been decades that the reliability analysis has been implemented in 

engineering design and manufacturing applications.  The principals of the 

reliability analysis are based on the sampling of the target population and 

identifying the ratio of the failed samples over the total number of analyzed 

samples from target population.  

 

Complexity of the majority of the systems as well as the contribution of different 

variables on overall system performance necessitates the need for developing a 

robust and integrated methodology to be used in evaluating the reliability of such 

systems.   

Reliability of any system depends on the performance of the weakest 

design point of the system.  In microelectronics industry first and second level 

solder interconnects, e.g. C4 Bumps and BGAs, which are commonly used to 

connect the silicon die to the substrate (first level interconnects, FLI) and as a 

surface mount technology to connect substrate to PWB printed wiring board 

(second level interconnect, SLI) [98] are critical reliability concerns. Fig. 24 

shows a schematic representation of a FCBGA (Flip Chip Ball Grid Array) 
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microelectronic system with FLI and SLI interconnects. These solders provide 

mechanical, electrical and thermal support in the electronic packages [40] and are 

known to commonly fail under the thermal and mechanical loads (e.g. mechanical 

shocks, thermal cycling, etc.). 

 

Fig. 24 FCBGA with first and second level interconnects 

As it was mentioned previously, the variabilities in any complex system 

will have direct impact on reliability of that system.  This impact could be due to 

the effect of a single variable (e.g. Substrate thickness, temperature limits or 

material properties) or a combination of multiple variables.  

In the past, and for the most part, the reliability and sensitivity analysis of the 

microelectronic packages were mainly limited to studying the effect of one or two 

package variables such as geometry or thermal cycling condition (e.g. Dwell time 

and temperature range). Example of such approach reported by various 

investigators is presented in [99].   

In order to efficiently study the effect of multiple system parameters 

(variables) on the overall system reliability, a robust and integrated methodology 

must be developed.  The main goal of this dissertation is to address this need by 

developing such an Integrated Methodology for Predicting the Reliability of the 

microelectronics Packaging system (IMPRPK).  The IMPRPK methodology also 

has the capability in incorporating the interaction between many system variables 
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and determining the key parameters influencing the BGA reliability by 

performing the sensitivity analysis. 

The second level BGA interconnects were specifically focused in development 

and validating the IMPRPK. 

The approach which was used in developing IMPRPK consists of three 

major tasks of (i) Characterization to determine the variabilities and loading 

condition of the system , (ii) Finite Elements Modeling to calculate the system 

response to these variables , and (iii) probabilistic and reliability analysis to 

predict the life and sensitivity of the system.   

The details of each task are provided in next section and the dedicated chapters. 

 

3.2 Elements of IMPRPK 

This section summarizes the key elements that are used in development 

and validation of IMPRPK, detailed discussions are provided in next chapters. 

The three major tasks involved in IMPRPK are: 

i. Characterization  

ii. Finite Element Method (FEM)  

iii. Probabilistic and sensitivity analysis 

IMPRPK approach and its key elements are demonstrated in Fig. 25 below.  
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Fig. 25 Overall representation of the Integrated Methodology for Predicting the 

Reliability of microelectronic Packages (IMPRPK). 

 

Even though IMPRPK is developed using BGA data and analysis, this 

integrated methodology can be generalized and used for any other system. The 

key elements involved in extending this methodology to other systems include;  

I. identification of the relevant variabilities present in system,  

II. development of statistical distributions associated with these variabilities,  

III. Identification and selection of appropriate deterministic models for 

predicting system performance at a specific condition, independent of 

system variabilities 
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IV. Incorporating/integrating probabilistic methodology by employing one of 

the available analysis methods, depending on the complexity of the system 

and desired confidence level. 

Following sections provide a summary of the principles of the three IMPRPK 

tasks. Detailed discussions are provided in the following chapters. 

 

I. Characterization Task: Characterization is one of the most important 

elements of any efficient reliability analysis.  The information from the 

characterization task plays a significant role in predicting the reliability of the 

system.  Our effort on this task was focused in collecting various statistical and 

experimental data in following areas. 

 Statistical variabities in geometry and size  (e.g. thickness of elements, 

solder joint stress concentration and radius of curvature) 

 material properties (e.g. coefficient of thermal expansion, fracture and 

failure mechanisms, information on crack initiation and crack growth) 

 Defect and microstructural constituents and their size distribution (e.g., 

post-process/pre-test and post-test porosity size distribution, post-test 

crack size distribution, inter-metallic components IMC and size 

distribution) 

The statistical data obtained from characterization task I is used in defining the 

random variable distribution required in the probabilistic analysis section.  
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Post-test metallography and fractography (Fracture morphology, striation spacing, 

crack length) data from characterization task is also used to validate the finite 

element analysis results in task II.   

 

II. Finite Element Method (FEM) Task: FEM method is widely used in 

determining the response of the system to external loading, including mechanical 

and/or thermal,  providing valuable information on deformation and local stress, 

strain, displacement, energy density in complex components/systems. In this 

study FEM models for two complex microelectronics packaging (MEP)  systems 

consisting of (i) molded wire-bond FLI and BGA SLI (ICH form factor), and (ii) 

flip chip FLI and BGA SLI (MCH form factor) were created. FEM numerical 

analyses were conducted for these two MEP designs, generating global and local 

response data on various components, including BGA solders which are the focus 

of this study.  FEM results were generated on both lead-rich and lead-free solder 

materials.  

Solder displacement developed as a result of applied thermal loadings and 

the thermal mismatch between the components of the package are determined by 

the “global” coarse mesh density FEM model. The displacement predictions 

from the global model are then used   as the boundary-conditions in fine mesh 

density “local” model to accurately determine the detailed information on 

various system responses. The key responses we have used in life prediction 

models are creep strain and dissipated energy density.  
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Even though FEM technique is a powerful tool in determining the response of the 

system, one needs to be careful in ensuring the accuracy and validity of the results 

obtained from analysis. Chapter 5 discusses potential errors and presents 

misleading information that may be obtained if a user is not familiar with the 

FEM and constructs an erroneous model and input data. 

There are different numeric codes (e.g. ABAQUS, ANSYS, etc) which are 

commonly used to calculate the system response. ABAQUS code was used in this 

study due to its ability in solving the complex solid mechanics problems and the 

existence of a wide variety of embedded creep models. Details of the Finite 

Element Model construction and analysis results are discussed in Chapter 5. 

The outcomes of the FEM analysis in combination with the statistical data from 

the characterization section are used in the probabilistic analysis task, and in 

determining the reliability and sensitivity of complex MEP system to various 

variabilities. 

 

III. Probabilistic and sensitivity analysis Task: In this task, a probabilistic 

model such as Monte Carlo, Mean Value, Advanced Mean Value or Advanced 

Mean Value +is used in determining the reliability of the system experiencing 

potential variabilities. The variability data are used as different random variables 

in this approach.  The probabilistic approach uses the following steps in 

determining the nominal probability of the system, as well as, predicting its 



  59 

sensitivity to various parameter.  The nominal probability of a system with 

multiple variabilities is determined by using the mean values of the variables ; 

1. Mean and standard deviation values of the random variables are used to 

construct the appropriate random variable distribution. 

2. The deterministic system response for the selected random variables are 

obtained using the deterministic model 

3. A Probabilistic approach, e.g. Monte Carlo, Mean Value, Advanced Mean 

Value or Advanced Mean Value +, is used in determining the probability 

of system failure by constructing the nominal probability of the failure 

(cumulative density function (CDF)) using the mean values of the random 

variables.    

4. The important/critical factors of the system and the sensitivity of the 

system to various factors are determined by calculating the derivatives of 

the nominal probability with respect to the mean and standard deviation 

for each of the probability levels. A plot of the probability derivatives vs. 

the applied changes to any of the system variables are then constructed for 

graphical representation of sensitivity analysis.  The random variable 

associated with higher sensitivity values is then considered to have the 

bigger impact on the reliability of the system compared to the other 

random variables. 

Details of the probabilistic analysis including the random variable selection is 

discussed in Chapter 6. 



  60 

In summary, IMPRPK highlights the importance of the parameters which 

have the largest impact on overall system reliability.  Application of this robust 

and integrated methodology in microelectronics industry will result in 

considerable time and cost reduction during design and development cycle of 

future products, as one substitutes IMPRPK simulation for costly and long-cycle 

reliability tests. 
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Chapter 4 

CHARACTERIZATION 

4.1 Introduction 

The reliability of the BGA solders as second level interconnects is of 

significant importance to the performance of microelectronics components and 

systems. Product design/form-factor, solder alloys, and the inherent variability in 

materials and/or geometry greatly influence product reliability.   Characterization 

effort is the initial step of three fundamental tasks to develop the Integrated 

Methodology for Predicting Reliability of microelectronic Package system 

(IMPRPK). Various characterization techniques (e.g. electrical continuity test, 

serial sectioning, dye and pry and optical/scanning electron microscopy (SEM) 

imaging techniques) were employed to process the ICH and MCH packages.  The 

outcomes of the characterization effort are utilized in construction and validation 

of the Finite Element models (FEM).   

 

Statistical data on crack and defect distribution from the un-tested and 

tested BGA solders was collected through the characterization activity in order to 

determine and define the system variability distribution.  These random variable 

distributions will be used in combination with the probabilistic analysis to predict 

the reliability of the system. 

 

 



  62 

4.1.1 Processing the ICH and MCH packages 

Two package form factors were analyzed in this study. Details of these 

packages which are used to package the I/O control Hub (ICH) and Memory 

Controller Hub (MCH), are presented in Fig. 26  

 

Fig. 26 Details of the ICH and MCH packages. 

As it is shown in Fig. 26, the MCH package contains the under filled Flip 

Chip (FC) First Level Interconnect (FLI) with a full array of Second Level 

Interconnects (SLI), hence a “FCBGA” design while the ICH package is an over-

molded package with wire connections as first level interconnects.  The ICH 

package uses a partial BGA array as second level interconnects (Fig. 27).  

MCH and ICH BGA layouts are presented in Fig. 27 (A) and (B), respectively. 

The nomenclature we use in identifying the physical position of each individual 
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BGA solder in MCH and ICH packages are also provided in Fig. 27.  For 

example, solder H10 represents a horizontal position of “H”, and the vertical 

position 10. This solder designation is used throughout our study, including in 

discussion of the FEM results. 

 

Fig. 27 BGA solder layout in (A) MCH package and (B) ICH package 

After the attachment of the ICH and MCH packages to the mother board, 

these packages were thermally cycled (ATC test) and the extent of the BGA 

damage in these packages were evaluated utilizing the different characterization 

techniques.  

Fig. 28 shows the simplified typical thermal cycle process which was utilized in 

processing of the ICH and MCH packages. 
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Fig. 28 Temperature cycle profile used in accelerated thermal cycled (ATC) 

In each cycle, the ICH and MCH packages were cooled down from the 

high temperature source to the low temperature source and were heated up to 

complete the thermal cycle loop. Each of these thermal cycling loops were formed 

by combination of two ramp steps (ramp down and ramp up) and two dwell or 

hold steps at upper and lower temperature sources.  The actual ramp (temperature-

time) profile used in the ATC test of the ICH and MCH packages is shown in Fig. 

29.   
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Fig. 29 Temperature-time profile for the ramp steps during the thermal cycling 

process. 

 

4.2 Characterization Task 

In this study, the characterization task was initiated by conducting the 

electrical continuity test on all of the 47 received boards (Fig. 30).  Table. 7 

demonstrates the details of the received mother boards with respect to the BGA 

material properties.   

The total of 30 boards were subjected to accelerated thermal cycling test and the 

details of the ATC test conditions are presented in Table. 8.  Details of the 

received mother boards from Intel Corporation are presented in Appendix B. 
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Table. 7 Configuration of the Boards evaluated during the IMPRPK project. 

 

 

Table. 8 Details of the ATC test and reflow process 

 

The IMPRPK characterization process consists of two major tasks: 

1. Non-destructive tests (e.g. X-ray, electrical daisy chain continuity test) 

2. Destructive tests (e.g. Dye and Pry, serial sectioning, fractography 

analysis) 

 

4.2.1  Non-Destructive tests 

4.2.1.1 Electric daisy chain continuity test 

The first characterization task we performed on the ATC and EOL boards 

was the electrical continuity test [100].   

The principles of the electrical connectivity test is based on the variation in 

measured resistance of the daisy chained loops (Fig. 31) in the ATC packages and 

compare them to the resistance of the reference (un-tested time zero) packages.   
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Fig. 30 Overall view of the mother board with the MCH and ICH packages 

In these test boards, the BGA solders within the ICH and MCH packages 

were connected to each other through a daisy chain setup forming an electrically 

closed loop.  Number of the daisy chain rings in any of these ICH and MCH test 

packages (Also known as test vehicles (TVs)) depends on the areal density of the 

BGA solders in any of these packages.  

The resistance measurements of the ICH and MCH test packages were conducted 

in two levels using a standard volt meter: 

a) Package level measurement 

b) Board level measurement 

MCH  

ICH  
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Fig. 31 demonstrates the simple setup which was used to measure the resistivity 

of the loops (package level resistivity) and the resistivity of the individual lines 

within the loops.  As it was mentioned before, the resistances of the ICH and 

MCH loops in the EOL (un-tested) packages were used as reference to measure 

the variation of the resistance in ATC packages. The End of Line (EOL) package 

level resistances of the ICH and MCH packages (reference resistances) were 

measured to be 3 and 11 respectively. In Fig. 31, NW, NE, SE and SW 

represent the corners of each loop with in the ICH and MCH packages.  

 

Fig. 31 Setup to measure the electrical continuity of each loop (and individual 

lines) in the ICH and MCH packages. 

Fig. 32 shows the board level (total resistance) resistance measurement setup for 

the ICH and MCH packages.  The board level resistance includes the resistance of 
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the embedded metallization lines inside the board plus the resistance of each loop.  

The total resistances for the EOL ICH and MCH packages (reference resistances) 

were 5 and 13 respectively. 

 

Fig. 32 Setup used to measure the total resistance of the ICH and MCH loops 

including the resistance of the metallization lines across the mother board. [100] 

A color code classification method was constructed based on the measured 

resistance values along the each line of the loops in daisy chain setup (Fig. 33). It 

has been reported that the variation in measured resistance of the loops could be 

used to develop the relation between the inelastic strain (or dissipated energy 

density) and package life (number of cycles to failure) during the accelerated 

thermal cycling process [10]. According to this classification, the dashed green 
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line is the indication of having the intact BGA solders while the yellow and red 

colored lines represent the partial and full electric discontinuity of the BGAs 

respectively.  Increasing the failure percentage of the BGA solders (higher 

measured resistivity values) will shift the color of the lines from green to yellow, 

orange and red.  Fig. 33 shows the electrical test result for the ICH and MCH 

packages.  The electrical continuity test was performed on 100% of the received 

mother boards. 

        

         

Fig. 33 Typical electrical continuity test results from the ICH and MCH packages 

[100] Details of the test conditions are (all Sn37Pb BGA solders): 

 

ICH 

MCH 

(a) (b) (c) 

(d) (e) (f) 
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The main outcome from this characterization technique was identifying 

the failure pattern of the ICH and MCH packages. This analysis revealed that the 

ICH packages have failed outside of the die shadow and under the molding 

compound area while the MCH packages showed failure pattern under the die 

shadow region.  CTE mismatch between the silicon die, molding compound, and 

substrate is believed to be responsible for this behavior. FEM analysis in chapter 5 

discusses this effect in detail. 

Electrical continuity measurements not only defined the failure pattern of the ICH 

and MCH packages but also provided some valuable information regarding the 

relation between the dwell time and the number of thermal fatigue cycles 

(Predicting the dominant failure mechanism for the ICH and MCH packages 

containing the Sn37Pb and SAC405 solder materials).  The electrical test results 

indicated that in MCH design the number of cycles is more damaging than the 

dwell time.  ICH and MCH packages with about 4400 cycles and 60 minute dwell 

time demonstrate more damage compared to the similar packages with about 2300 

cycles and 480 minute dwell time (Fig. 34).  Therefore by reviewing the electrical 

test results one could conclude that the thermal fatigue failure is more damaging 

than the creep failure as a result of ATC process. 

According to Fig. 34, the intermediate number of cycles and dwell times would 

result in the highest number of BGA failure 
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Fig. 34 the electrical test results on Sn37Pb solders proved that the number of 

cycles are more damaging than the dwell time (Fatigue failure is dominant) [100] 

4.2.2 Destructive tests 

4.2.2.1    Dye and pry test 

After conducting the electrical continuity test and in order to identify the 

extent of the failure (crack penetration in the BGA solders), a couple of the ICH 

and MCH packages were selected for the dye and pry experiments (Fig. 35).   

Dye and pry is one of the commonly used techniques in microelectronic industry 

to study the extent of the crack in the solders [27].  Basically in this method the 

ICH and MCH packages were separated from the mother board (using the water 

Sn37Pb Sn37Pb Sn37Pb 
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jet cutting unit) and then were placed in the dye solution inside the vacuum 

chamber for about five minutes. The vacuum level used in this experiment to 

remove the trapped air from the inside of the package was about 250 torr. This 

process was repeated for a couple of times and after each run the chamber 

pressure was increased to atmospheric pressure.   

 

   

Fig. 35 Dye and pry experiment to determine the extent of the crack in the 

solders. (Overloaded solder in pry (top-left), partial open solder (top-center), 

completely open solder evident by full dye coverage (top-right)) & Partial crack 

growth in the solder (bottom). 

The “Dykem” dye solution was used for the dye process. After this step, 

the dyed packages were let to cure at room temperature overnight.  A couple of 

these dyed and cured packages were pried later (Fig. 35) and the rest were 

mounted in the clear epoxy resin for future processes steps (polishing and serial 
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sectioning). During the dye and pry process, by removing the trapped air from the 

interior parts of the package (using the vacuum chamber), the dye solution 

penetrated inside the crack sites facilitating the precise measurement of the crack 

penetration in the solder.         

Dye and pry is the best way to identify the extend of the crack in the BGA 

solders since it provides the areal coverage of the failure.  These data could be 

used in detailed life prediction of the BGA solders. 

There are two techniques to pry the packages.  

1) Twisting the package until the BGAs failure resulting in separation of 

substrate from the printed circuit board (PCB)   

2) Separate the substrate from the PCB by pulling the substrate while the 

boardside is fixed (Fig. 37). 

The second method is recommended since the solders don’t get extra damage 

during the prying process (twisting could add un-wanted damages to the BGAs). 

Prying test results of the ATC samples revealed that almost 75% of the BGA 

solders had failed from the solder neck region in the substrate side of the package 

and very low percentage of the BGA solders had resin failure (were detached 

from the epoxy in the board side) (Fig. 36).  
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Fig. 36 Solder failure pattern including the position of failure in ICH packages 

captured from dye and pry experiment. [101] 

 

In Fig. 36, the yellow dots represent the resin failure during the pry test (no 

failure) while the maroon region represents the BGA failure due to the existence 

of the cracks  
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Some of the ICH and MCH packages were only pried (without dyeing). These 

samples were later used to conduct the fractography analysis on the fracture 

surfaces in effort to identify the failure mode.  

 

Fig. 37 Cut and pry setup (a & b) [102]  and substrate-side solder cracking (bright 

points) on ICH (c) & MCH (d) packages (Board #8) (Board #8 is tested for 3526 

cycles with 240 min dwell times and -20˚C to 100˚C temperature range). 

Fig. 37 (a) & (b) shows the sample preparation steps for prying of the ICH and 

MCH packages.  The failure patterns captured from the pry test of the ICH and 

MCH packages agreed with the failure patterns obtained from the electrical 

continuity test. Where, in the molded wire bond ICH package shows majority of 

BGA failure/damage outside of the die shadow region (Fig. 37 c), while the 

ICH MCH 
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unmolded flip chip MCH package demonstrates the damage under the die region 

(Fig. 37 d).  In this figure the brighter spots represent the BGA solder crack 

failure while the darker points are the intact BGA solders. 

4.2.2.2    Serial sectioning 

ICH and MCH packages were mounted in the clear epoxy solution for the 

accurate serial sectioning Fig. 38. The “EpoFix” resin and hardener solution 

mixture was utilized to mount these packages. A vacuum chamber with the 

vacuum level in the range of 250 torr was used to remove the air bobbles from the 

epoxy solution prior to curing the resin. The curing process took 12 hours to 

complete. 

     

Fig. 38 Epoxy mounted ICH (left) and MCH (right) packages. 

These mounted packages were then sliced (using diamond saw) and 

polished through the center and edge of the packages (Row A and N or V (for 

ICH and MCH packages respectively)). [For the position please refer to Fig. 27].  

The cut position was set based on the dimensions of the package and using the 

installed micrometer on the diamond saw.  A micrometer was also installed on the 
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precision polishing tool as well to insure the proper material removal from the 

surface of the package. 

The Allied high tech diamond saw and precession polishing units were 

utilized in the sample preparation process of this study. 

Precession and hand polishing units with different grit polishing papers 

(600 & 800 grit for surface removal and 2000 grit for minor surface removal and 

surface finish) and polishing cloth in combination with polishing solutions (e.g.,  

1µm Alumina suspension and 0.04 µm colloidal silica suspension) were used as 

final step for surface finish. In this process the rough polishing papers (600 & 800 

grit) were used to remove the material to reach a desire level and then the fine grit 

polishing pads (2000 grit) were used to smooth out the package surface (5-10 min 

/ 70-100 RPM).  The polishing process was completed by using the cloth 

polishing pads to reach a clean and shiny surface.  Polished samples were then 

analyzed using the different imaging techniques.  

  

4.2.2.3     Optical imaging 

Optical microscopes are widely used for characterizing the electronic 

components (e.g. BGA level solders in microelectronic packages).  Optical 

imaging techniques are accurate and affordable metrology methods providing the 

detail geometry and defect (e.g. voids and cracks) size and distribution data 

required for the statistical analysis.  Fig. 39 and 40 demonstrate the typical cross 

section images of the polished surfaces of the Sn37Pb and SAC405 BGA solders. 
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Fig. 39 represents the End of Line (EOL) Sn37Pb BGA solder. The EOL is a term 

which is used for the BGA solders after the reflow process and before conducting 

any ATC tests on them. The End of Line (EOL) SAC405 solders microstructures 

(Fig. 40) reveals the presence of the needle and round shaped dendrites. The 

morphology/size of these dendrites is influenced by the cooling rate of the BGAs. 

The effect of the cooling rate on the shape of these dendrites are presented in [46], 

[103]. 

 

Fig. 39 Typical optical image from the MCH Sn37Pb BGA solders 

  
Fig. 40 Typical optical image from the MCH SAC405 BGA solders  

Void 
Ag3Sn 

Dendrites 
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4.2.2.3.1     Defect (void) distribution 

The location and size of the internal voids and defects in the EOL and 

ATC samples were investigated and their distributions were populated using the 

Weibull distribution for the SAC405 and Sn37Pb BGA solders. Since the size of 

the defects varies between the zero and the size of the component which contains 

the defect, therefore the Weibull distribution will be appropriate distributions to 

use for defect distribution. Porosity size distribution observed on BGA solders in 

this study are presented in Figures 41and 42. Following is some observations 

based on these data: 

 End-Of-Line (EOL) Sn37Pb BGA solders have larger void sizes compared 

to the SAC405 BGA solders.  The largest observed void size (associated 

with the probability level of 0.5%) for the Sn37Pb solders was about 150 

µm while this value was around 80 µm for the SAC405 solders (Fig. 41).  

Increased defect size could be a contributing factor in increased failure 

rate of Sn37Pb solders compared to SAC405 BGAs, observed in this 

study.  

 Void sizes are larger in the ATC tested samples, diffusion and 

consolidation of the smaller voids during thermal cycling could be 

responsible for this effect.  Fig. 42 demonstrates the increase in void sizes 

after the ATC process. The largest void size associated with ATC Sn37Pn 

solders are about 230 µ. 
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Fig. 41 Void distribution comparison in EOL SAC405 and Sn37Pb solders. 
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Fig. 42 Increase in void size after ATC test could be due to diffusion and 

consolidation of smaller voids and forming larger voids. 

 

4.2.2.3.2      Post ATC tested BGA Failure & Cracking 

BGA solder crack morphology, location, and size were studied using the 

optical imaging tools.  Fig. 43 and 44 demonstrate the distribution of the cracked 

BGA array solders in ICH and MCH packages respectively. In the ICH and MCH 

packages the cracks were populated in different locations with respect to the 

position of the silicon die and mold compound. In the flip chip MCH package, the 

cracked BGA joints are mostly located under the silicon die, while the BGA 
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solder joints in the ICH packages with molding compound cracked solders were 

mostly outside of the silicon die shadow region and under the molding compound. 

This behavior is mainly associated with the thermal mismatch between the silicon, 

substrate, molding compound, and the board. 

 

Fig. 43 Crack distribution in the ICH package 



  84 

Fig. 44 Crack distribution in the MCH package 

 

The failure patterns observed through metallographic analysis presented 

here are similar to that observed in the electrical continuity and dye and pry tests. 

The measured crack length data versus the distance from neutral point (DNP) 

obtained from cross sectioned ICH and MCH packages are presented in Fig. 45.  

Each data point in the consolidated graphs in Figure 45 represents the crack 

length in single solder from the array.   

These failure patterns are used in validating the FEM analysis. Chapter 5, 

discusses the approach and the integrity of the FEM models through independent 

comparison of model prediction with these characterization data. 
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Fig. 45 Crack distribution vs. Solder position (DNP) in the MCH (top) and ICH 

(bottom) packages. (Data are from board#9 (Sn37Pb))  
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4.2.2.3.3     BGA Solder crack Morphology 

Solder crack morphology was evaluated by optical microscopy of the 

sectioned and polished samples. Cracks are commonly initiated from the interior 

side of the BGAs (facing to the neutral point). Intergranular cracking (crack 

growth along the grain boundaries), as well as transgranular cracks (passing 

through the grains) are observed in these solder joints. Intergranular cracking is 

indicative of brittle failure due to weak grain boundaries and/or due to creep 

failure, while transgranular failure could be associated with fatigue failure.  Fig. 

46 shows a view of the intergranular cracks. The intergranular failure in creep 

dominated failure mode is associated with nucleation, growth and coalescence of 

the cavities on grains or interphase boundaries [37]. 

Fig. 47 shows the transgranular crack observed in cross sectioned ICH package 

from board number 9 (Sn37Pb solder). This sample was exposed to dye prior to 

cross sectioning of the sample.  In this figure the penetrated dye in the crack site 

is also visible.  
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Fig. 46 Intergranular cracking in SAC405 (Board # 41) (top) and Sn37Pb (Board 

# 9) (bottom) solders. 

      

Fig. 47 Transgranular crack in the package side (Sn37Pb (Board #9)) 

Based on these observations, the contribution from both fatigue and creep failure 

mechanisms in overall BGA failure is speculated. 

   

4.2.2.3.4     Inter Metallic Compound (IMC) 

The Inter Metallic Compound (IMC) layers are one of the co-products of 

the BGA formation process (Fig. 48).  Formation of these IMC layers is mainly 

due to the diffusion of the Copper and Tin atoms in each other’s sites and creating 

the Cu5Sn6 composition (Fig. 53). 

   

Fig. 48 Intermetallic compound layer thickness (Sn37Pb (left) and SAC405 

(right)) 
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These IMC layers are located at the interface of the solder and copper layers. 

Because of the brittle nature of these IMC layers they play a significant role in 

BGA failure by providing the crack initiation sites at the solder-copper interface. 

In some cases the solders would fail through the IMC layer (Fig. 49) 

   

Fig. 49 Initiation and penetration of the cracks through the IMC layer or along the 

solder-IMC interface (SAC405-MCH (left) and Sn37Pb-ICH (right)). 

Substrate side of the packages will undergo multiple thermal exposures and 

therefore the thickness of the IMC layers in the substrate side of the BGAs is 

slightly larger than the board side.  Thicknesses of the IMC layers were also 

sensitive to the solder material composition and processing condition. 

Comparison between the SAC405 and Sn37Pb solders indicated a thicker IMC 

layers in SAC405 solders over the Sn37Pb solders. This is due to the higher 

reflow temperature in soldering process of SAC405 BGAs (260˚C and 220˚C for 

SAC405 and Sn37Pb solders respectively). Fig. 48 demonstrates the higher IMC 

thickness in SAC405 solder compared to Sn37Pb solder. 
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4.2.2.3.5      Inter Dendritic Cracks (IDC) 

The Inter Dendritic Cracks (IDC) was observed in the lead free BGAs in 

metallographically prepared samples and optical imaging. Even though the 

SAC405 solder is a ternary eutectic alloy it solidifies to off-eutectic 

microstructure due to non-equilibrium solidification [104]. Weibull distribution of 

the IDC sizes is shown in Fig. 50. IDC size as large as 100µm was observed on 

the BGA’s evaluated. It was also noticed that the majority of these IDCs are 

oriented along the 45 degree angle. These IDCs can act as potential fatigue crack 

initiation site in SAC405 solders. 

 

Fig. 50 IDC distribution in the SAC405 BGA solders. 

Typical position of the voids and IDCs in the EOL SAC405 solders is presented 

in Fig. 51. 
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Fig. 51 The typical position of the voids and IDCs in the EOL ICH SAC405 

solders. 

 

4.2.2.4     SEM imaging & EDX (Energy dispersive X-Ray spectroscopy) 

The Cross sectioned surfaces of the polished ICH and MCH packages 

were analyzed using the Scanning Electron Microscopy (SEM). The surfaces 

were coated with a thin layer of gold to prevent the charging effect during the 

SEM imaging. The charging effect is a result of electrons accumulation on non-

conductive material and creation of an electric shock.  In addition to information 

on the position of the cracks and IMC thickness (Fig. 52), the compositions of 

these intermetallic compounds were also identified using the energy dispersive x-

ray spectroscopy (EDX) (Fig. 53). Energy Dispersive X-ray Spectroscopy (EDX) 

IDC in SAC405 
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also provided valuable information about the composition of the components in 

the solder. Composition of the IMC layer in the SAC405 solder is shown in Fig. 

53.  

Fractographic analysis of fracture surfaces by SEM provided valuable 

information on failure modes.   Presence of the striation on the fracture surface 

(Fig. 54) is an indication of fatigue failure in the ICH packages. The striation 

spacing data could be used in validating fatigue crack growth rate.   

 

Fig. 52 SEM image shows the position of the cracks in the solder neck region 

(Substrate side) ICH Sn37Pb  

Fig. 52 reveals the crack initiating in the solder-IMC interface and then 

penetrating in the body of the BGA (intergranular failure). 
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Fig. 53 EDX data obtained from the cross section of the ICH SAC405 (Board # 

41) solder shows the composition of the IMC (Cu5Sn6) layer in solder neck 

region. 

 

4.2.2.5     Fractography analysis 

The fracture surfaces of the pried packages were analyzed using the 

Scanning Electron Microscope (SEM) to evaluate the fracture surface and identify 

the potential failure mode.  Captured SEM images from the fracture surface 

revealed the existence of the striation rings on the fracture surface which was an 

indication of the fatigue failure mode.  The recent observation supports the fatigue 

failure mode in the Sn37Pb solders and is in agreement with the electrical test 

results. Fig. 54 displays these striations on the fracture surface of the ICH-Sn37Pb 

solders. 
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Fig. 54 SEM images from the fracture surface of the ICH Sn37Pb BGA, 

demonstrating the Fatigue Failure mode (ICH-Sn37Pb). 

Limited SEM images from the fracture surface of the SAC405 solders did 

not show such clear striation rings, as those seen in the Sn37Pb solders.   

Striation spacing data can be used in estimating crack growth rate and hence, the 

constants of Darveaux’s model. The presence of voids and cavities in the fracture 

surface of the BGAs (package side) were also noted in SEM analysis, as shown in 

Fig. 54.  These voids and surface defects could be potential sites for the crack 

initiation and growth.  

In addition to the striations, failure along grain boundaries were also 

observed on the fracture surface. Fig. 55 shows such intergranular separation (this 

mode of fracture is reference as a "rock candy" fracture by some investigators).  

 

Fig. 55 Intergranular features on the fracture surface (ICH-Sn37Pb) 

The recent observation is the evidence supporting the fatigue failure in the 

Sn37Pb solders. 
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4.3     Summary  

For the most part, captured data from the characterization segment of the 

IMPRPK has provided valuable statistical data required in probabilistic analysis. 

The results of the electrical continuity, dye and pry and crack distribution patters 

have shown similar trend.   Striation spacing, as well as, the extent of cracking 

from metallographic analysis in combination with dissipated energy values in the 

solder neck region (From FEM analysis) could be used in developing the crack 

growth model and/or calculating the constants of such crack growth based life 

prediction model (e.g.  Darveaux’s model).  It was also noticed that the failure 

mode in the ICH and MCH packages is a combination of the fatigue and creep 

mechanisms.  Statistical data on void size were used in the probabilistic analysis 

task as one of the variability present in MEP systems. 
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Chapter 5 

FEM ANALYSIS 

5.1     Introduction 

Finite Element Method (FEM), also known as Finite Element Analysis is a 

numerical technique which is used to find the approximate solutions for Partial 

Differential Equations (PDE) and integrals. Essentially, the main concept of the 

FEM analysis is reducing the complications of the complex systems by dividing 

the system into small elements and solving them with respect to the rest of the 

elements. Using this technique, to solve the complicated systems is more efficient 

and effective. The FEM analysis in the form that we use today was first 

introduced by R.L. Courant in 1942 [105]. With developments in computing 

systems, the FEM approach has entered in a new phase with improved 

mathematical and numeric techniques [106-107]. 

The unique capability of the finite element analysis in solving complex problems 

makes it an extremely powerful tool for design engineers in different industries 

(e.g., Aerospace, Automobile, defense and electronics).   

In general, the principles of the engineering computational techniques, like 

FEM, are based on obtaining the response of the systems to external loading and 

boundary conditions.  Local force, weight and pressure are some of the common 

types of the external loads.   

The results of the FEM analysis are used in making and/or justifying the 

engineering decisions and improving their performance [108]  
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5.2     Applicability of the FEM in IMPRPK 

Finite Element Methods were employed to determine the response of the 

mechanical and thermal systems particularly with complex geometry and material 

properties as a result of the applied loading.   Airplanes, cars, electronic packages 

are some examples of such complex systems.  

Considering the different commercially available finite element solutions (e.g. 

ABAQUS, ANSYS, etc.), ABAQUS, because of its capabilities in solving 

complex thermal and mechanical problems and its capability in communicating 

with NESSUS was selected to be incorporated in IMPRPK.  The combination of 

ICH and MCH geometries, material properties and boundary and loading 

conditions used in IMPRPK create the thermally induced stresses and strains in 

the BGA solders. These induced stresses and strains can induce failure in in BGA 

solders in the microelectronic packages [23].   

Utilizing FEM to analyze the ICH and MCH packages is necessary due to the 

following facts: 

 Complexity of the microelectronic packages (geometry, material and 

boundary condition) 

 Complexity of the interaction between the package components through 

the thermal cycling test 

 Non-linearity of the system 

 Lack of access to measure the induced stresses and strains in the BGAs  
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Because of the mentioned complications above, the Finite Element Method 

(FEM) will facilitate finding the system response in ICH and MCH packages 

quickly and efficiently.  Determining the response of these ICH and MCH 

packages to external loading without Finite Element techniques would be almost 

impossible. 

 

5.3     Global and local FEM models 

5.3.1     Geometry details 

The FEM models for two package form factors were developed during the 

course of this study.   The FEM models of these two package configurations (so-

called ICH or I/O Controller Hub, and MCH or Memory Controller Hub), were 

constructed using the geometry (e.g. dimensions and thickness) and material 

information, as well as the data from the characterization task.  In both of these 

ICH (Wire bonded with molding compound) and MCH (Flipchip with underfill) 

packages, the second level interconnects (BGAs) provide the mechanical, 

electrical and thermal connection between the substrate and printed circuit board 

(PCB) [17].  Details of the ICH and MCH packages including their components 

are presented in Fig. 56.   

The details of the geometry information for these two ICH and MCH packages 

are presented in Table 9. 
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Fig.56 Graphical demonstration of (a) MCH and (b) ICH packages 

 

Table. 9 Detailed geometry information for the ICH and MCH packages. 

 

The first step in creating the global FEM models were patterning the 

individual BGA units (Fig. 57) and forming the ICH and MCH BGA layouts.  

Among these two packages, the ICH uses the partial BGA pattern while the MCH 

has a full array of BGAs connecting the substrate to the printed circuit board.   

The position of the BGAs in these layouts were obtained from the X-Ray imaging 

of the ICH and MCH packages.  Fig. 58 shows the BGA arrays for the ICH and 

MCH packages. 
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Fig. 57 Individual units with coarse mesh in the BGA area used to build the global 

ICH and MCH models 

These patterned BGA arrays were merged to form the center part of the 

global model.  Due to the existence of four fold symmetry in ICH and MCH 

global packages, only quarter sections of these packages were modeled.  

Analyzing the quarter section of these packages significantly reduces the 

simulation time.   

      

Fig. 58 BGA solder pattern for the ICH (left) and MCH (right) packages 
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Different parts of the global ICH and MCH packages (e.g. top, center and board 

extension parts) were assembled together using the tie constraint (Fig. 59). 

 

 

Fig. 59 Combination of three major parts (top, center and board extension) 

forming the global ICH and MCH FEM models 

Fig. 60, shows the assembled global models for the ICH and MCH packages used 

in IMPRPK. 

 

Fig. 60 The global ICH (left) and MCH (right) packages 
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The advantage of using the tie constraint is its capability in attaching the 

different parts of the package with dissimilar element shape and mesh density.  

Using the tie constraint will make it possible to replace different parts of the 

model without the need to re-design the entire model. 

The local FEM models are the refined versions of the global BGAs with 

higher mesh density and detail geometry (Fig. 61).  There are two copper pads 

located on the substrate and board sides of the local BGAs, which are called SMD 

(Solder Mask Defined) and MD (Metal defined) respectively.  The board side 

copper pad is at times called NSMD (Non-Solder Mask Defined) as well.  Fig. 62 

shows the details of the single solder with its copper pads. 

     

Fig. 61 Local ICH (left) and MCH (right) models 
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Fig. 62 The details of the single BGA solder 

A Non-linear finite element analysis with quadratic element type 

(C3D20R) was utilized in construction of the ICH and MCH global and local 

FEM models.   

The advantages and disadvantages of utilizing the non-linear FEM analysis in 

analyzing the ICH and MCH models are: 

 It will improve the accuracy of analysis 

 It will increase the chance of singularity (primarily in smaller elements) 

 It will require a longer simulation time.   

Table. 10 shows the total number of the elements used in the formation of the ICH 

and MCH global and local models. 

 

Table. 10 Total number of elements used in ICH and MCH models 
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5.3.2     Material properties and constitutive creep models 

Material properties, as well as the boundary condition and geometry, are 

key elements in the construction of efficient FEM models. Using the correct 

material properties in creating any FEM model is crucial in predicting the 

accurate system response.  The material properties of the ICH and MCH packages 

used in IMPRPK were collected from different sources.  The majority of the 

material properties were supplied by Intel Corp., some were measured during the 

course of this study (e.g., CTE and Tg of the molding compound), and the rest 

were obtained from published data in literature [17], [84], [87], [109].  Table. 11 

shows the detailed material properties used in ICH and MCH package 

components. 

Two types of solder materials were used in modeling the ICH and MCH 

packages. 

1. Lead free solder material (Sn-4Ag-0.5Cu) which also referred to as 

(SAC405). 

2. Lead rich solder material, which also referred to as (Sn37Pb). 

These two solder alloys will behave differently during the ATC test due to their 

differences in microstructure, active elements in their composition and melting 

temperature.  Plasticity was included in analyzing both SAC405 and Sn37Pb 

BGA solders. 

Considering the melting temperature of the Sn37Pb and SAC405 solders and 

since the ratio of the absolute operating temperature to the absolute melting 



  105 

temperature (Homologous temperature) of these solders is larger than 0.5, even at 

room temperature, the creep effect would be active in both of these BGA solders, 

therefore the creep deformation models needs to be incorporated in the FEM 

models [86].     

Among the different constitutive creep models which are used in 

analyzing solder deformation in MEP, there are mostly simple constitutive models 

(e.g., Double power law creep model [86-87], and hyperbolic sine creep models 

[80],[89-90]). Complex models (e.g., Anand Model) [81-82], [110] are used in 

limited cases by some investigators. Considering the limitations in computation 

time, the hyperbolic sine constitutive model was used for the creep effect in 

analyzing the BGA solders. Equation (18) demonstrates the hyperbolic sine 

constitutive model with its constants for SAC405 and Sn37Pb solder materials 

[89-90]. 

 

1( 405) 441000, 0.005( ), 4.2, 45000( )JSAC A MPa n Q
mol

    

1( 37 ) 10, 0.1( ), 2, 44900( )JSn Pb A MPa n Q
mol

    
 

In this relation (A) is the pre-exponential factor, (n) is the stress order, and (Q) is 

the activation energy of self-diffusion. 

The creep strain rates of the SAC405 and Sn37Pb solders (Fig. 63) show higher 

creep strain rates for the Sn37Pb solders compared to the SAC405.   

 

(18) 
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Table. 11 Material properties of the ICH and MCH package components. 

 

 

Fig. 63 Creep strain rate for the SAC405 and Sn37Pb solders at 75˚C [89]. 
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5.3.3    Boundary Condition and Accelerated Thermal Cycle (ATC) test 

requirements 

Due to the existence of the four fold symmetry in the ICH and MCH 

global packages, the symmetric boundary conditions were applied to the 

symmetric surfaces (X=0 & Y=0) of the packages (Fig. 64). The center point of 

the packages was also fixed in three degrees of freedom (X=Y=Z=0) [80].  

Fig. 64 shows the boundary condition used in modeling the ICH package. The red 

dots represent the nodes with limited degree of freedom in the boundary surface.  

A similar boundary condition was applied to the MCH package as well. 

 

Fig. 64 Boundary condition of the ICH package 

 

5.3.4    Incorporating CTE Temperature Dependency and Glass-Transition 

Temperature in ABAQUS 

Selecting the correct material properties and appropriate representation in 

FEM will have a significant impact on predicted dissipated energy density and 

stress/strain levels.   
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A simple experiment was conducted in order to demonstrate ABAQUS’s 

response to various ways that one may input the CTE temperature dependency 

and the glass transition temperature of the molding compound in the model. This 

validation was conducted utilizing a simple cube which was fixed in the XY 

plane.  Values of the E33 were predicted for different scenarios. Table. 12, shows 

the details of these scenarios. 

Table 12. Example of CTE input in ABAQUS, various way to input CTE 

temperature dependency 

 

The comparison between ABAQUS predictions using different scenarios and the 

experimental data for molding compound Tg is shown in Fig. 65. 

 

Fig. 65 Effect of the molding compound material selection on the strain. 
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Reviewing these results indicate that scenario 4 is the closest case to the 

real CTE measurements done on the molding compound which is used in our ICH 

packages.  In the actual CTE measurement of the Molding Compound, the initial 

length of the sample (L0=1.111974 mm) was measured at 223K. This temperature 

was used as reference temperature in ABAQUS. The value of strain will equal to 

zero at reference temperature. Fig. 66 shows the experimental strain data obtained 

for the molding compound material using the Thermo Mechanical Analysis 

(TMA) tool, and its comparison with the secant CTE values used in ABAQUS. 

It is important to mention that ABAQUS uses the Secant CTE values (CTE value 

with respect to the reference temperature).  A reference to this issue was also 

provided in chapter 2.  

 

Fig. 66 Strain measurements of the molding compound material using the TMA 

[Courtesy of Intel]. 

 

TG  
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Other investigators have reported that after the first two to three thermal 

cycles the dissipated energy density (ECDDEN) and accumulative creep strain 

(CEEQ) will be stabilized with minor fluctuations [87]. Considering the fact that 

the majority of the 30 accelerated thermally cycled mother boards which were 

used in our experiment, had dwell times equal to 240 minutes with the 

temperature ranging between -20˚C and 100˚C, the FEM simulations in this task  

were developed and validated using the 240 minutes dwell (hold) times.  The 

effect of different dwell times on system response was evaluated as a part of the 

probabilistic and sensitivity analysis presented in chapter (6)).  It is also assumed 

that the dwell temperatures are constant and there is no temperature fluctuations 

or “mini cycles” due to the workloads (e.g. running different programs) during 

the hold steps at high and low temperatures.   It has been reported [87]  that the 

existence of these mini cycles (small thermal fluctuation during the hold times) do 

not have a significant impact on the SAC405 solders while according to the same 

study this effect is significant for Sn37Pb solders  causing them to fail faster than 

SAC405 BGAs. This could be due to the lower creep rates of the SAC405 solders 

in comparison to the Sn37Pb BGAs [3], [89]. Fig. 67 shows the effect of the mini 

cycles on thermal fatigue life of Sn37Pb BGA solders.   

The temperature-time profile of the ICH and MCH FEM models is presented in 

Fig. 68.  
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Fig. 67 Effect of the mini cycles in the thermal fatigue life of the solder joints [3] 

 (a) 
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(b) 

Fig. 68 Temperature profile (a) and Thermal cycle profile (b) used in the FEM 

simulation 

 

5.4     ICH and MCH (SAC405 and Sn37Pb) packages 

5.4.1     ICH validation 

  After conducting the accelerated thermal cycling test using the global ICH 

finite element models, the obtained results were validated by comparing the 

characterization outcomes.  The global FEM results revealed strain energy density 

pattern in line with the failure pattern observed in electrical continuity test, as well 

as, dye and pry and serial sectioning tests.  Note that the strain energy density 

represent the area confined inside the stress and strain curve represents the 

average of the volumetric dissipated energy in the solder neck region. The FEM 

results showed higher dissipation energy density per unit volume (ECDDEN) in 

the solder neck region outside of the die shadow. As a post process, volumetric 
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average energy (ECDDEN) was used in the local ICH model to avoid the effect of 

local high stresses and prevent a stress singularity in the solder neck region [86-

87],[111].  The volume used in determining the average energy density in ICH 

solder neck region in this simulation consisted of a disc shaped section of 336 m 

diameter and 25m height. Effect of volume selection on cumulative and 3
rd

 

cycle ECDDEN predictions are discussed in section 5.4.2, below. 

The thermal mismatch between the silicon die, substrate and molding 

compound is primarily responsible for these stresses and strains. Fig. 69 shows 

the variation in accumulated strain energy density values (ECDDEN) after 3 

accelerated thermal cycles (a) and in the third thermal cycle (b) along row A in 

the ICH package (see Fig. 58 for the position reference). The strain energy density 

results for the third cycle shown in Fig 69b is questionable and should be further 

investigated. 

 

(a) 
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Fig. 69 Averaged dissipated energy density (ECDDEN) in the solder neck region 

vs. the distance from neutral point (DNP) for Sn37Pb solders (along row A in Fig. 

58). (a) After 3 ATC cycles (b) 3
rd

 ATC cycle (The results are based on “local” 

FEM analysis). 

In Fig. 69 the region confined between the two dashed orange lines represents the 

die shadow region and the solid red lines represent the border of the molding 

compound.  The energy values (ECDDEN) are volumetrically averaged in the 

solder neck region 

In the ICH packages, the majority of failure occurs outside of the die shadow 

region and under the molding compound. In the FEM results section of Fig. 70, 

             

(b) 

Molding compound 

border 

Die 
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Fig. 70 Validation of the extent of failure in ICH package through electrical 

testing results (top left), dissipated energy density from FEM analysis (top right) 

and serial sectioning (bottom) for Sn37Pb. 

The blue color represents the lower energy and the red color shows the maximum 

energy in the BGA solders.  

 

5.4.2     ICH results and discussion 

Effect of different package parameters on dissipated energy density of the 

BGA solders was studied.  The preliminary results are presented in this section. 

The effect of some system variables on dissipated energy density are listed here: 

 Effect of solder material on dissipated energy density:  

Changing the solder material from SAC405 to Sn37Pb showed a 

decrease in dissipated energy density values.  Fig. 71 shows the effect of 

different solder material on cumulative dissipated energy density 

(ECDDEN) for 3 thermal cycles, in the solder neck region along row A 

(for positions please refer to the Fig. 58).   
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Increase in dissipated energy density value is expected to reduce the 

thermal fatigue life of the BGA solders. 

 

Fig. 71 Effect of the solder material on cumulative dissipated energy density 

(ECDDEN) vs. the distance from neutral point (DNP) after 3 ATC cycles (The 

results are based on “local” FEM analysis) 

 

 Effect of dwell time on dissipation energy density: 

Increasing the dwell times in ICH SAC405 and Sn37Pb packages 

increased the dissipated energy density in these BGAs.  Fig. 72 demonstrates the 

effect of the dwell time on the cumulative dissipated energy density (ECDDEN) 

for SAC405 and Sn37Pb solders. 
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Fig. 72 Effect of the dwell time after 3 ATC cycles of the ICH packages (SAC405 

and Sn37Pb) along row A (for the position of the row A please refer to Fig. 58) 

The results are based on “local” FEM analysis. 

Additional FEM analysis showed minor increase in dissipated energy density 

values by doubling the dwell time in both SAC405 and Sn37Pb BGA solders.  

(10% increase in ECDDEN for the hold time of 480 minutes compared to hold-

time of 240 minutes). 

 

 Effect of volume selection in the BGA neck region on dissipation energy 

density: 

Selection of an appropriate volume to calculate the volumetric average of 

dissipated energy density is very important.  Fig. 73 shows the impact of the 

selected BGA neck region volume (i. disc volume of 0.00221 mm
3
, and ii. ring 
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volume of 0.000123 mm
3
) on the average cumulative energy density after 3 

thermal cycles (a), and the third cycle ECDDEN (b) .   

 

 

 

Fig. 73 Effect of the volume selection on the averaged cumulative dissipated 

energy density (a) after 3 ATC cycles in the BGA neck region, and (b) 3
rd

 cycle 

ECDDEN (The results are based on “local” FEM analysis) 

(a) 

(b) 
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The Volume effect and other concerns associated with ICH FEM model 

will be discussed by other investigators. 

 Effect of internal voids on dissipation energy density: 

The effect of the internal voids in ICH packages on cumulative dissipated 

energy density was evaluated. Figure 74 shows the results of Local FEM 

simulation for SAC405 and Sn37Pb solders residing in row “A” of ICH package 

design. This analysis was conducted by including a large void of 140m in each 

individual solder balls, when performing the “local” analysis. Fig. 75 shows a 

schematic of void location in each solder ball.  

 

 

Fig. 74 Effect of the internal voids (140µ) on cumulative dissipated energy 

density after 3 ATC cycles (The results are based on “local” FEM analysis) 
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Fig. 75 schematic of void location in each solder ball 

Presence of internal voids on each solder ball results in an increase on 

dissipated energy values (e.g., 10% increase in ECDDEN for 140µ diameter voids 

in these simulations). It should be noted that the probability of having such large 

voids in all of the solder balls is extremely low, however, a single solder within 

the array of BGA’s has a finite probability (e.g., 1% per characterization data 

presented in pervious chapter) of containing such large void size. Overall system 

related probability, e.g., probability of defect size distribution in conjunction with 

the probability associated with the void location in the solder, as well as, the 

solder array location and loading condition, should be further investigated in 

future programs. 

 Effect of solder material on creep strain:  

Effect of solder material on cumulative equivalent creep strain (CEEQ) 

was evaluated. Fig. 76 shows the FEM analyses results, where Sn37Pb solder 

experience higher accumulated creep strain (CEEQ) values compared to the 

SAC405 solders. Increase in BGA failure rates is expected as a result of a higher 
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creep strain, according to many fatigue models, e.g., Coffin-Manson [9-11] and 

Syed [86], etc. 

 

Fig. 76 Accumulated creep strain (CEEQ) values in the solder neck region for the 

SAC405 and Sn37Pb solders vs the distance from neutral point (DNP) after 3 

ATC cycles (The results are based on “local” FEM analysis) 

 

5.4.3     MCH validation 

The FEM results for MCH packages were validated using the 

characterization results.  Fig. 77 shows the “local” FEM analysis results for 

averaged cumulative energy density (ECDDEN) distribution along the MCH row 

A (see Fig. 58 for position references). The analysis shows a higher dissipation 

energy density per unit volume in the solder neck region in MCH BGAs under the 

silicon die region, in agreement with the failure pattern observed in MCH 

packages.  In this figure the area confined between the two dashed orange lines 

represents the die shadow region.    
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According to the predicted energy values presented in Figures 77 and 78, 

and according to strain energy based models, such as Darveaux’s model, BGA 

failure under the die shadow region is expected. The maximum value of 

dissipated energy was observed in the edge of the silicon die (due to the high 

thermal mismatch between the silicon die and substrate).  Similar result has been 

reported by other researchers [23]. 

 

Fig. 77 Cumulative dissipated energy density (ECDDEN) after 3 ATC cycles vs. 

the distance from neutral point (DNP) (SAC405) along row (A). The results are 

based on “local” FEM analysis. 
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Fig. 78 Validation of the extent of the failure in MCH package by electrical 

testing results (top left), dissipated energy density from FEM analysis (top right) 

and serial sectioning (bottom) for SAC405. 

 

5.4.4     MCH results and discussion 

Effect of various package parameters on dissipated energy density 

(ECDDEN) values in MCH packages was investigated.  The deterministic 

analysis results are presented here. A probabilistic approach used in evaluating the 

impact of these parameters on dissipated energy density (ECDDEN) will be 

discussed later in chapter 6.  
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 Effect of the solder material on dissipated energy density: 

FEM analysis of MCH models, shows higher average cumulative 

dissipated energy density for Sn37Pb BGA solders compared to the SAC405 

BGAs. Fig. 79 shows the effect of the solder material on cumulative dissipated 

energy density after three ATC cycles in the solder neck region of MCH 

packages.  

 

Fig. 79 Effect of the solder material after 3 ATC cycles (ECDDEN) vs. (DNP) 

along the row A (for the position of the row A please refer to Fig. 58) (The results 

are based on “local” FEM analysis). 

 

 Effect of the dwell time on dissipated energy density: 

Similar to ICH packages, increasing the dwell time increases the 

dissipated energy density values in MCH package. This is mostly due to the effect 

of the creep in the BGA solders (Fig. 80).   
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Fig. 80 Effect of the dwell time after 3 ATC cycles (ECDDEN) vs. (DNP) along 

the row A (for the position of the row A please refer to Fig. 58) The results are 

based on “local” FEM analysis. 

 

 Effect of voids in  BGA solders: 

The effect of internal voids (150µm) on dissipated energy density was 

evaluated in MCH packages (Fig. 81) 
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Fig. 81 Effect of the internal voids (150µ) on dissipated energy density in MCH 

SAC 405 and Sn37Pb package along the row (A) after 3 ATC cycles (for the 

position of the row A please refer to Fig. 58) The results are based on “local” 

FEM analysis. 

Presence of the 150µ internal voids in MCH SAC405 and Sn37Pb 

packages resulted in an increase in dissipated energy density values compared to 

the case without voids.  This increase in energy values was more significant at the 

edge of the silicon die.  

A higher failure rate is expected for solders with void.  It should be noted 

that this FEM analysis represents an unrealistic condition, as the probability of 

having such large voids in all of the solder balls is extremely low.  

The probabilistic analysis on the effect of the internal defects (voids) will be 

discussed in detail in the probability and sensitivity chapter. 

 

 Effect of solder material on MCH BGA creep strain:  

Effect of solder material on cumulative equivalent creep strain (CEEQ) 

was evaluated for MCH package as well. The results are presented in Fig. 82. 

Higher accumulated equivalent creep strain (CEEQ) values were predicted in the 

die shadow region of the MCH packages, where a higher BGA failure rate is then 

expected. 
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Fig. 82 Accumulated creep strain (CEEQ) values of the SAC405 and Sn37Pb 

solders vs the distance from neutral point (DNP) after 3 ATC cycles (The results 

are based on “local” FEM analysis) 

5.4.5 Steady State Dissipated Energy Density (Hysteresis Loop) per Cycle 

Many life prediction methods such as Darveaux’s crack initiation and 

growth model use the steady state strain energy density as a descriptor or 

independent variable for predicting BGA solder life. In this section the ECDDEN 

values predicted by ABAQUS for the 3
rd

 ATC cycle (assuming that steady state is 

reached within the initial 2-3 cycles) for ICH and MCH designs, as well as, the 

SAC405 and Sn37Pb solder materials are presented. Figure 83 shows the local 

FEM prediction of “3
rd

 cycle” ECDDEN values as a function of distance from 

Neutral point (DNP). The volume used in determining the average ECDDEN in 

MCH local models was a disk of 256m diameter and 22 m in height (note the 

difference in the neck region volume in the ICH and MCH). The pattern of these 

data for ICH deviates from the expected/observed behavior, further evaluation of 
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the ICH FEM model and validation of its accuracy will be conducted by other 

investigators.  

 

Fig. 83 Effect of the solder material in the MCH 3rd cycle (ECDDEN) vs. (DNP) 

along the row A (for the position of the row A please refer to Fig. 58) (The results 

are based on “local” FEM analysis). 

5.5     Integrating ABAQUS FEM with NESSUS Probabilistic Method 

We have focused on using the dissipated energy density (ECDDEN) from 

the FEM analysis for life prediction and our probabilistic analysis. We have used 

an approach similar to that recommended by Darveaux [110] and others [72]. 

These models are based on crack initiation and growth and follow a power law 

dependency for crack initiation and crack growth rate. Equation (19) below 

presents such model: 

     

(19) 
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A volumetric average of energy value was used in these crack initiation 

and growth life prediction models to avoid the effect of singularity. The FEM 

prediction of strain energy density (W) for a given set of design and materials 

parameters (deterministic levels) is used in these life prediction models to predict 

the survival life of the solder under such condition. To leverage the NESSUS 

probabilistic model for sensitivity analysis and determination of the effect of the 

various system variabilities, the ABAQUS and the lifing model were integrated 

with NESSUS in this program. Next chapter provide a detailed discussion of this 

integration. 

 

5.5.1     Validation of the probabilistic analysis software (NESSUS) by 

performing the deterministic analysis 

The probabilistic model in NESSUS was validated by conducting a single 

deterministic analysis using the mean values of the system variables.  Comparison 

between the results of this deterministic run with the previously conducted FEM 

analysis (using the same mean values) will confirm the proper probabilistic model 

setup. For the deterministic analysis, NESSUS will only run the FEM model once. 

 

5.5.2     Parameterizing the ABAQUS input file 

The global and local ICH and MCH FEM models were parameterized for 

use in NESSUS. Parameterizing package parameters, such as thickness, material 
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properties and some process / use conditions, facilitates the process of altering the 

parameters needed in probabilistic analysis. 

  

5.6     Summary 

Preliminary results of the FEM analysis revealed that system variabilities 

will greatly influence the system response (e.g., dissipated energy density).  These 

effects and the sensitivity of system to these variabilities will be discussed in 

detail in the probabilistic analysis section of this dissertation.  The conclusions 

attained from FEM analysis presented in this chapter (via deterministic approach) 

are listed below. 

• Distribution of the cumulated strain energy density values predicted by 

FEM model is in line with the failure patterns observed via the 

characterization effort of the ICH and MCH packages,  Changing the 

solder material from SAC405 to Sn37Pb caused an increase in MCH 

dissipated energy density (ECDDEN).  This current FEM model of 

ICH shows an opposite behavior, where the dissipated energy density 

(ECDDEN) value for Sn37Pb is lower than that for SAC405.This 

predictions are not validated, as the accuracy of the ICH FEM need to 

be further validated. 

• Increasing the dwell time resulted in larger dissipated energy density 

values in both ICH and MCH packages (SAC405 and Sn37Pb solder 

material).   
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• Presence of the internal voids in solders increases the dissipated 

energy density in both ICH and MCH packages.  

• FEM results revealed higher accumulated creep strain for the Sn37pb 

solders compared to the SAC405, which can further lead to shorter 

thermal fatigue life in the Sn37Pb solders, in agreement with the 

experimental reliability data. 

 

 

 

 

 

 

 

 



  132 

Chapter 6 

PROBABILISTIC & RELIABILITY ANALYSIS 

6.1     Introduction 

Probabilistic methodologies are powerful tools used in analyzing the 

overall reliability and performance of the systems including the uncertainties by: 

(i) identifying the key system parameters that are of significant 

importance to system reliability  

(ii) Determining the sensitivity of the system to the variability and/or 

applied changes associated with these parameters.  

Among the different probabilistic solutions, NESSUS because of its ability 

and efficiency in solving the complex limit state functions and predicting the 

reliability of the system with high accuracy was utilized to fulfill the probabilistic 

analysis requirements of the IMPRPK [112-115]. The Numerical Evaluation of 

Stochastic Structures Under Stress (NESSUS) is a general-purpose tool for 

determining the probabilistic response and reliability of engineered systems. 

NESSUS could be used to determine the uncertainties in load, geometry, material 

properties, and other user-defined random variables to predict the probabilistic 

response, reliability and sensitivity of the engineering systems [93], [115]. 

NESSUS probabilistic method which is integrated into IMPRPK uses 

“limit state function” in determining system failure.  Limit state function “g” is 

defined as the difference between the material limit for failure “R” (e.g., yield 

strength Sy, fracture toughness, critical crack length, etc.) and the current state of 
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the materials “S” (e.g., stress σ, stress intensity factor, crack length, etc.).  The 

criterion for failure is therefore based on limit state function and is represented by 

the range associated with g≤0. This is equivalent to failure occurring when stress 

exceeds the yield strength of material, in the example mentioned above (Fig. 84). 

 

 

0failure if R S or g 
 

Fig. 84 Graphical demonstration of the limit state function (R=Strength of the 

material and S=stress from external loading) [112] 

 

Predicted crack length from the deterministic model, and radius of the solder neck 

region were used as state of system “S” and failure criteria “R” through the 

IMPRPK. 

In order to determine the state of material/system, NESSUS will use the mean 

values of each parameter/variable to perform the analysis using the appropriate 

deterministic model. For example, finite element analysis is used to determine 

dissipated strain energy density, life prediction model based on crack initiation 
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and growth (Darveaux’s model discussed in chapter 5) is then used to determine 

the crack length.  

After determining the response of the system using the mean values of 

variables (nominal response) it will be compared against the failure criteria to 

identify if the failure has occurred or not (Fig. 85).  As the next step, NESSUS 

will start selecting random values from each one of the system variable 

distributions and by performing the deterministic analysis using these values, it 

will determine if the selected values will result in a system failure or not.  The 

recent process will be repeated multiple times with different random variable 

combinations until the desired confidence level has been achieved.  

 

  

Fig. 85 Definition of probability of failure (Pf) for joint probability density 

function [112], [114]. 

Considering the number of the failed samples out of the total number of evaluated 

samples, will be used in defining the probability of failure using the equation (20). 
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6.2     Probabilistic approaches used in NESSUS 

NESSUS is equipped with different probabilistic methods (e.g. sampling, 

theoretical and hybrid methods).  The principles of these methods are based on 

satisfying the limit state function with different approach in finding the failed 

samples and determining the probability of failure (or reliability).  Fig. 86 shows 

the comparison between the accuracy and efficiency tradeoff for different 

probabilistic methods in NESSUS.  This figure shows the high accuracy and low 

efficiency of the standard Monte Carlo method, and indicates that the AMV+ is 

the most optimum method satisfying both accuracy and efficiency (high 

efficiency with low number of iterations).  

 

(20) 
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Fig. 86 Probabilistic methods accuracy and efficiency tradeoff [113] 

Due to the complexity of the MCH and ICH global and local FEM models, 

the AMV+ has been selected to be used as probabilistic analysis method in 

IMPRPK project.  AMV+ will predict the reliability of the complex systems with 

much higher efficiency compared to other theoretical and sampling methods.  The 

details of different probabilistic methods including their advantages and 

disadvantages will be presented in the following sections of this chapter. 

The reliability of the packages used in IMPRPK was predicted using the 

AMV+ probabilistic method.  Table. 13 shows the list of the random variables 

used in the IMPRPK reliability analysis.  Besides the probability analysis, the 

sensitivity of the system to any of the random variables was also determined by 

taking the derivatives of the probability function with respect to the mean (µ) and 

standard deviation (σ) of random variables.   
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Table. 13 List of the random variables used in IMPRPK-NESSUS analysis. 

  

The sensitivity analysis will determine how crucial is the impact of one 

variable on overall reliability of system with respect to the rest of the variables. 

Performing the sensitivity analysis will become more complicated as the number 

of variables increases.  Dependency and interaction between the random variables 

are the other contributors involved in complexity of the sensitivity analysis. 

 

6.3     Validation and Results 

6.3.1 General approach Used in Determining Efficiency and Accuracy of the 

NESSUS (SwRI) 

Efficiency and accuracy of the NESSUS in performing the probabilistic 

analysis was validated using the fatigue life prediction scheme for a three point-

bend specimen with Paris law cyclic crack growth rate (CCGR) equation. 
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Equation 21 below represents the fatigue life based on integration of Paris-law 

CCGR.  This is a common exercised proposed by SwRI [112] for the validation of 

analysis using NESSUS.  

(1 / 2) (1 / 2)

max

2 ( )
2

(2 ) ( )

n n

f i

f n

a a
N for n

C n Y 

  
 

 
 

max 2

3

2

PS

B
   

In this relation, af  and ai represent final and initial crack length, P is the 

point load, S and B are the beam length and width, C and n are the Paris constant 

and exponent and Y is a dimensionless constant that depends on the geometry. 

During this validation, the efficiency of various probabilistic methods 

were compared. Figs. 87-89 show the number of samples/runs required for 

accurate prediction using various statistical methods, such as Monte Carlo (MC), 

Advance Mean Value (AMV), etc.  

(21) 
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Fig. 87 Monte Carlo (MC) analysis comparison for different number of samples. 

  

Fig. 88 MV, AMV and AMV+ comparison 

According to Fig. 87, increasing the number of processed samples in 

Monte Carlo model (from 100 samples to 1,500,000 samples) shows a significant 

improve in probability results in the tail regions (better probability prediction). 
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This simple example clearly proves that having large number of samples is vital 

in obtaining the accurate results by using the standard Monte Carlo analysis. 

  

Fig. 89 Monte Carlo (1,000,000 runs) compare to AMV+ (200 runs) 

A similar improvement in probability prediction in tail region was 

observed moving from MV to AMV and AMV+ methods (Fig. 88). According to 

this figure, AMV+ predicts the probability of failure more accurately in the tail 

regions of the probability density function compared to the MV and AMV. 

In order to verify the efficiency of the AMV+ over the standard Monte 

Carlo method, the result of 1,000,000 runs (using standard Monte Carlo analysis) 

was compared to only 200 runs of AMV+  (Fig. 89).  The results, proved the 

efficiency of the AMV+ technique over the standard Monte Carlo with much less 

required samples and similar probability prediction, especially in the tail regions 

of the probability function.  In this validation the time spent for the Monte Carlo 

analysis was 85 times more than AMV+.   
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Sensitivity of the system to each one of the random variables in Paris Law 

model was also evaluated in Fig. 90. Sensitivity analysis provides valuable 

information, regarding how crucial the impact of each random variable is on 

overall system reliability. The result shown in Figure 90 indicates that beam width 

(parameter (B)) has the most significant impact followed by initial crack length 

(parameter (AI)). The yellow and red histograms represent the sensitivity of the 

system probability to the applied changes in the mean and standard deviation of 

the parameters, respectively. 

 

Fig. 90 Sensitivity of the overall system response to each of the random variables 

in Paris equation. 
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6.3.2 IMPRPK Results        

Probabilistic and sensitivity analyses were conducted through the course 

of this study and the impact of the random variables on reliability of SAC405 

MCH package was evaluated.  The main reason for selection of the SAC405 

MCH package is the wide range of the lead free flip chip applications in 

microelectronic industry, and our confidence on the MCH FEM model compared 

to ICH model. It should be noted the MCH package tested under ATC conditions 

of -20C to 100C with 240 min dwell time had experienced solder cracking at die 

shadow region after 4500 ATC cycles (see board number 41 data presented in the 

characterization chapter).  

Due to large result files generated by each analysis when many random 

variables associated with material, geometry, and used condition are considered, 

we opted to perform few simulations with smaller number of random variables 

involved.  In all of these analyses, the CTE value of the underfill material was 

included as the reference parameter. Table. 14 shows the details of these 

probabilistic and sensitivity runs. 
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Table. 14 Details of the parameters were analyzed through probabilistic analysis 

 

The results of these runs are presented in Fig. 91-95. These figures 

demonstrate the probability, sensitivity and importance level of the random 

variables for each run. The first graph (e.g., 91a) in these figures show the 

probability of failure vs. thermal fatigue life of the BGA solders. The second 

graphs (e.g., 91b) provide the sensitivity level of the system to each variable 

(derivative of the probability function), while the third graph (e.g., 91c) indicate 

the importance level of the system variables. The importance level is indicative of 

relative ranking impact of the given variables at Most Probable Point (see detailed 

discussion provided in appendix C).   The anomaly noted in figure 95a is 

associated with the interaction of theoretical methods used in predicting the 

reliability of failure in conjunction complex FEM models (singularity issue).Fig. 
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95 is an example of a case where NESSUS was unable to properly construct the 

probability density function graph using the AMV+ method.  It is believed that 

use of importance sampling technique (AMV-AIS) in the levels with non-

monotonic behavior (finding the system response for a given probability level) 

may resolve this issue [116].   

 

 

(a) 
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Fig. 91 Probability of failure (top) vs. cycle-to-failure Nf, Sensitivity at 50% 

probability (middle) and importance level at 50% probability (bottom) of the 

random variables used in the Run A 

(b) 

(c) 
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(a) 

(b) 
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Fig. 92 Probability of failure (top) vs. cycle-to-failure Nf, Sensitivity at 50% 

probability (middle) and importance level at 50% probability (bottom) of the 

random variables used in the Run B 

 

(c) 

(a) 
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Fig. 93 Probability of failure (top) vs. cycle-to-failure Nf, Sensitivity at 50% 

probability (middle) and importance level at 50% probability (bottom) of the 

random variables used in the Run C 

(b) 

(c) 
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(a) 

(b) 

(c) 
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Fig. 94 Probability of failure (top) vs. cycle-to-failure Nf, Sensitivity at 50% 

probability (middle) and importance level at 50% probability (bottom) of the 

random variables used in the Run D 

 

 

(a) 

(b) 
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Fig. 95 Probability of failure (top) vs. cycle-to-failure Nf, Sensitivity at 50% 

probability (middle) and importance level at 50% probability (bottom) of the 

random variables used in the Run E 

In all of these results the probability of failure is defined as the integral of 

the joint probability density function of the random variables of the system. Since 

the random variables used in IMPRPK are independent, therefore the probability 

density function will be equal to the product of the individual distributions. As it 

was mentioned before, the sensitivity is the derivative of the probability function 

with respect to mean (µ) and standard deviation (σ) of each random variable.  

Sensitivity results will demonstrate how sensitive is the reliability of the system 

with respect to the changes in means and standard deviations of the system 

variables.  

The following conclusions could be conveyed by reviewing these 

probabilistic and sensitivity results: 

(c) 
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o High dwell temperature, Substrate thickness, activation energy in creep 

constitutive model and internal void sizes seem to have the highest impact 

on the reliability of the SAC405 MCH packages. 

o Various combinations of the system variables will result in different 

thermal fatigue life and sensitivity predictions.  For instance the substrate 

thickness and activation energy  in the hyperbolic sine creep model were 

the variables with high sensitivity in Run B and Run C respectively, but 

these variables in combination with High dwell temperature variable, were 

not as significant as high dwell temperature. 

o Package life prediction is influenced by the random variables present in a 

system and their interaction with each other. 

It should be noted that the sensitivity of each random variable could be 

different for various probability levels as shown in Fig. 96.  This means that some 

variables may not be a significant reliability concern at lower probability levels 

and can become more important factor at higher probability levels.    
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Fig. 96 Different sensitivity levels in Run A. (Top) sensitivity for very low 

probability (Center) sensitivity for 50% reliability (Bottom) sensitivity for very 

high reliability 
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Chapter 7 

CONCLUSION  

This chapter will review and summarize the IMPRPK tasks on 

microelectronic reliability and probabilistic analysis. The main purpose of this 

project was to investigate the applicability of probabilistic design to 

microelectronics packaging systems.  Probabilistic methodology is used in 

incorporating the impact of system variabilities on system performance, 

reliability, etc.  NESSUS probabilistic methodology developed by SwRI was 

identified as the most appropriate tool for application to complicated 

microelectronic package (MEP) system and due to its better efficiency and 

improved capabilities in solving complex limit state functions with multiple 

random variables, compared to other available probabilistic solutions, was 

adopted for use in IMPRPK.  

We focused on BGA interconnect reliability in validating this approach. 

MEP System variabilities considered included natural variabilities such as 

material properties,  design variabilities such as dimensional tolerances,  

variabilities related to the manufacturing and use condition (e.g. defect size 

distribution,  operation temperature and dwell times).  

Two package form factors, flip chip with underfill (MCH) & wire bonded 

with molding compound (ICH) were considered in this research.   

The efficiency and applicability of the IMPRPK approach in 

microelectronic reliability was validated by conducting a wide range of analyses 
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using the different parameters and their combinations.  The effect of different 

combinations of the system variables on the reliability of the system was 

evaluated and parameters which highly influence the reliability of the overall 

system were identified. 

Parameters such as use temperature, activation energy for creep Q, 

substrate thickness, and internal void size showed higher levels of impact on 

reliability compared to other parameters such as Underfill CTE, Underfill E and 

High temperature dwell time.  

Results of the sensitivity analysis will help design engineers to come up 

with more reliable package designs.  The sign and magnitude of these sensitivity 

results which are derivatives of the probability of failure function with respect to 

the mean and standard deviation of the system parameters, will dictate the impact 

of each parameter on overall system reliability. 

IMPRPK study has shown that increasing the activation energy, as well as, 

increasing the thickness of package substrate, board and silicon die will improve 

the reliability of the package. This is revealed by IMPRPK prediction of reduced 

probability of failure and negative sensitivity values.  It should be noted that the 

system variables where positive sensitivity values are predicted (e.g., use 

condition temperature, dwell time, underfill elastic modulus, underfill CTE and 

Void size) are indicative of decrease in the package reliability as a result of an 

increase in the mean and standard deviation of these package variables.   
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In conclusion,   with IMPRPK results one should consider increasing the 

mean values of the parameters when negative sensitivity is predicted and 

decreasing those with positive sensitivity. It is important to mention that the 

sensitivity results are highly dependent on variable combinations. The sign and 

magnitude of the sensitivity results could be altered with different combination of 

variables.  As an example, 7% increase in substrate thickness (equal to one 

standard deviation) will improve the reliability of BGAs by70%.   

To reduce the simulation time, we used “segmentation” approach for 

sensitivity analysis, where NESSUS simulations were conducted using groups of 

various parameters, with one parammeter included in all runs for reference. This 

approach was considered  appropriate in validating the IMPRPK-NESSUS 

capability in a timely manner. The idea was to use the sensitivity information 

from all the simulations and further consolidate them into one set for concurrent 

ranking of all parameters and  identification of  the key parameters. Such 

approach, and/or simulation considering the most critical parameters can be used 

in identifying the key parameters, to be considered in design, manufacturing, 

and/or establishing process control.    

Examples of analysis results in this study were: 

 Package substrate thickness has a more significant impact on reliability of 

both MCH & ICH package design in comparison to the board and die 

thickness  
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 The  substrate thickness effect was insignificant in comparisson to the 

temperature effect (e.g.,  hold tempertaure, activation energy), and stress 

exponent, based on NESSUS analysis using these parameters. 

Through this study the applicability of IMPRPK and probabilistic analysis 

for various package parameters was validated and the results were presented in 

detail (Chapter 6). It is  recommended that followup work to be conducted 

through  additional IMPRPK-NESSUS simulations using  the key parameters 

identified in the “segmented” simulations performed in this study, and 

considering  realistic variabilities that one may encounter with activation energies, 

srtress exponent, etc.. Synergistic effect and the Interaction of various paramters 

on the BGA reliability should also be further investigated.  

Deterministic methodologies needed in predicting component reliabilities 

were developed and incorporated into IMPRPK. As such FEM models were 

developed for couple of BGA layouts and package form-factors (MCH and ICH 

designs), FEM models were validated by comparing the independent predictions 

of the model with the experimental data obtained through characterization effort 

in this research. The predicted strain energy density values using the FEM model 

were in agreement with BGA crack distributions. Higher cumulative strain energy 

predicted by FEM for solder joints residing under and outside of the die shadow 

region in MCH and ICH designs were in agreement with the observed failure 

pattern in these two package designs.   
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The noted difference in BGA solder failure distribution in these two 

designs is attributed to the thermal mismatch between the package components.  

According to the FEM results, the dissipated energy density values are higher for 

the Sn37Pb BGAs compared to the SAC405.  Presence of molding compound and 

the accuracy in CTE and Tg values, as well as, the care in incorporating them in 

FEM models are of significant importance in obtaining the correct system 

response. 

In addition to developing a probabilistic methodology for MEP, we were 

able to obtain package dimensions, material properties and BGA internal defects 

distributions through detailed characterization effort. ABAQUS “global” and 

“local” FEM models for MCH and ICH packages were developed and validated 

using the ATC test data. Potential inaccuracy in ICH model prediction of steady-

state dissipated-strain-energy- density (e.g., 3
rd

 cycle ECDDEN) was recognized 

and should be further investigated. 

 A crack growth based life prediction model (e.g. Darveaux’s model) was 

selected for use in IMPRPK.  This model utilizes the FEM response (e.g. energy) 

to predict crack initiation and growth. The predicted thermal fatigue life using the 

Darveaux’s model with the steady-state energy density values from FEM was in 

line with the package life measure through accelerated thermal cycling tests.   
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APPENDIX A  

RANDOM VARIABLE DISTRIBUTION METHODS 
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 Normal (Gaussian) distribution: 

The normal distribution is a continuous probability distribution that has a 

symmetric bell shape function (also known as Gaussian function).  Equation (1) 

shows the mathematical relation for the normal distribution function. 

 

In this function µ is the mean value of the measured data and σ represents the 

standard deviation.   

One special case for the normal distribution (µ=0 and σ
2
=1) is called standard 

normal distribution.  

This distribution has the capability of taking any positive and negative real values 

and because of this fact majority of the random variables are categorized under 

the normal distribution function. 

Fig.1 demonstrates the standard normal distribution.    

 

Fig 1. Probability density function (left) and Cumulative density function (right) 

representation for the standard normal distribution. 

(1) 
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 Lognormal distribution:  

The lognormal distribution is also a continuous distribution which has the 

following relation with the normal distribution.   

If X is the lognormal with λ and ξ, then lnX would be a normal distribution with 

mean λ and standard deviation ξ.  Equation (2) shows the relation between the 

above mentioned parameters. 

 

Equation (3) demonstrates the mathematic relation for the lognormal distribution 

function. 

  

As it could be seen from the Fig. 2, the lognormal distribution only takes the 

positive values (due to the log function).   

 

Fig 2. Probability density function (PDF) on the left and Cumulative density 

function (CDF) on the right for the lognormal distribution. 

(2) 

(3) 
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 Weibull distribution: 

The Weibull distribution is a continuous distribution which is commonly used to 

define the particle and defect size distribution. Equation (4) shows the 

mathematical formulation for the Weibull distribution.  The typical Weibull 

distribution has been presented in Fig. 3. 

 

    

 

Fig 3. Probability density function (PDF) on the left and Cumulative density 

function (CDF) on the right for the Weibull distribution. 

 

 Uniform distribution: 

The uniform distribution (rectangular distribution) is a form of continuous 

distribution which has upper and lower bounds ([a] as lower bound and [b] as 

upper bound).  Equation (5) shows the mathematical representations of the PDF 

and CDF distributions for uniform distribution. 

(4) 
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The special cases of the uniform distribution occur when the value of the x 

is smaller or larger than the lower and upper bounds respectively.   

Equation (6) shows these special cases:  

 

The mean and standard deviation of the uniform distribution will be 

calculated according to the following relations: 

         

Fig. 4 shows the graphical representation of the uniform distribution. 

 

Fig 4. Probability density function (PDF) on the left and Cumulative density 

function (CDF) on the right for the uniform distribution. 

 

(5) 

(6) 

(7) 
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APPENDIX B 

DETAILS OF THE BOARDS AND MEP PACKAGES SUPPLIED BY 

INTEL CORPORATION FOR THIS STUDY 
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Note: “Pull out cycle count” & “Cycle” columns represent the number of cycles 

prior to BGA failure and projected number of ATC cycles respectively. 
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APPENDIX C 

PROBABILISTIC ANALYSIS - NESSUS OVERVIEW 
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1     Probabilistic analysis (Overview) 

1.1     Commonly used Probabilistic Methods (Sampling Method) 

Sampling methods because of their simplicity are widely used in 

probabilistic analysis. Beside the simplicity and accuracy of these methods their 

capabilities in analyzing the multiple limit state functions regardless of their 

condition (continuous or discrete functions) make them popular methods. In 

sampling technique the random variable distribution of each system variable will 

be divided in to certain number of increments or samples. Higher the number of 

samples will result in more accurate prediction of probability of failure.  Since 

there are no simplifications or assumptions involved in definition of the limit state 

function in sampling methods, therefore these methods will work with any single 

or multiple limit state functions.  

There are two major sampling methods:   

1. Monte Carlo (MC) 

2. Latin Hypercube Sampling (LHS) 

The principals of these two methods are the same with the difference in 

sample distribution method (Fig. 1).  In the Monte Carlo method, the samples are 

mostly populated around the center of the spectrum (around mean value) while 

the samples in LHS method are distributed more evenly throughout the spectrum 

(advantage over the Monte Carlo). Fig.1 below provides a schematic 

representation of this approach. 
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Fig. 1 Sample distribution comparison between the Monte Carlo and LHS 

sampling techniques. 

In the sampling methods increasing the number of analyzed samples will 

lead to more accurate prediction. The main concern regarding the use of these 

common sampling methods is the long process time to obtain the system 

response, especially when a numerical code (e.g. ABAQUS, ANSYS finite 

element codes) is used in determining the system response.  In some complex 

systems, the analysis of each sample could take few hours.  Considering the large 

number (usually ~100,000 to 1,000,000 samples) of required samples to obtain an 

accurate prediction, the reliability analysis may take years to finish. With the use 

of analytical closed form equations in determining the system response, utilizing 

the sampling methods are recommended to achieve more accurate prediction. 

Sampling methods will be discussed more in detail in the rest of this chapter. 

 

1.2     Theoretical Probabilistic Methods 

Besides the advantages of the sampling methods, the large number of 

required samples is the main disadvantage of these methods.  In order to address 

this concern, extensive amount of research has been conducted by the statisticians 
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and reliability engineers to develop efficient and affordable solutions for system 

reliability and sensitivity predictions of complex systems with acceptable levels of 

accuracy.  Majority of these efforts are focused in development of the theoretical 

and numerical techniques which are mainly used in probabilistic and reliability 

analysis of the complex systems. These theoretical methods will reduce the 

process cost and time by approximating the reliability of the systems to some 

acceptable confidence levels. 

Some of the common theoretical methods which are widely used in the 

probabilistic analysis and are included in NESSUS [113-114] probabilistic 

methods are: 

 First and second Order Reliability Methods (FORM and SORM): works 

based on the linear and parabolic expansion of the limit state function in 

the design point (Most Probable Point) 

 Mean Value (MV), Advanced Mean Value (AMV) and Advanced Mean 

Value plus (AMV+) methods: works based on the first and second order 

mean value calculations and continuous corrections to achieve the 

acceptable confidence level.  

 

Unlike the sampling methods (e.g., Monte Carlo and Latin Hypercube 

sampling) which require a large number of samples to provide the exact 

reliability, the theoretical methods such as those listed above are capable of 

approximating the probability of the failure Pf or more commonly the Reliability 



  180 

of the system (1- Pf) with relatively high accuracy & confidence levels using very 

low number of iterations.  

 

1.3     Advantages and Disadvantages of Various Probabilistic Methods 

Comparison between the efficiency and accuracy of the sampling and 

theoretical methods reveals the advantages and disadvantages of these models.  

The advantages of the sampling techniques are their high accuracy and ease of 

implementation in predicting the reliability of any system.  The main 

disadvantages of these sampling methods are the large number of required 

samples. On the other hand, the main advantage of the theoretical methods over 

the sampling techniques is approximating the reliability of the system with much 

lower number of required samples and relatively high levels of accuracy. The 

disadvantage of the theoretical models is their limitation in the number of limit 

state functions which could be processed utilizing these methods.  Convergence 

issue and non-monotonic probability functions are the other common problems 

associated with these techniques. 

 

2     System response and limit state function 

As discussed earlier in this chapter, the response or performance function 

“Z(X)” is basically the response of the system to the random variables (Equation 

1) [114]. In the IMPRPK, the dissipated energy density is chosen to be the system 

response.  
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1 2( ) ( , ,...., )nZ X Z X X X  

According to equation (1), the system response is function of random variables of 

the system.  In this relation the Xi (i=1,2,…,n) represent the random variables of 

the system (e.g. temperature, dwell time, geometry, etc.).   

The probabilistic analysis is a statistical study to predict the probability of 

the occurrence of a limit state function and the limit state function defines the 

limit for system failure.   

 

3     Random variable distribution 

In previous sections, the concepts of the system response and limit state 

functions were defined. The details of data processing and constructing the 

random variable distribution will be covered in this section. The standard 

mathematical forms of Probability Density Functions (PDF) and Cumulative 

Density Functions (CDF) are generally used to create the random variable 

distributions.  Fig. 2 shows the difference between the PDF and CDF. 

The definition of the PDF and CDF is presented below: 

 PDF (Probability Density Function) = fX (X)  

o Which indicates how likely each value of X (random variable) is to 

occur (occurrence probability of each random variable)  

 CDF (Cumulative Distribution Function) = FX (X)  

o Which measures the probability that the random variable X does 

not exceed the value x. 

(1) 
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Fig. 2 The relation between the PDF and CDF functions [112]. 

 

There are different statistical distribution functions (e.g. Normal 

distribution, lognormal distribution, Weibull distribution and uniform 

distribution) which are generally used in defining the random variables of the 

systems [112].  Depending on the type of the data, one of the above mentioned 

distribution functions could be selected (e.g. normal distribution is used for 

positive and negative values; log normal was used only for positive values, etc.).  

All of the random variables in IMPRPK are defined using the standard normal 

distribution except the void distribution which uses Weibull distribution.  
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Fig. 3 shows the typical shape of the normal Probability Density Function (PDF) 

and Cumulative Density Function (CDF) used in Probabilistic analysis. 

 

Fig. 3 Typical normal PDF (left) and normal CDF (right) distribution density 

functions used in the probabilistic analysis of the SAC405 MCH packages. 

Details of different distribution density functions are discussed in 

Appendix (A). 

Random variables could demonstrate different interactions.  Here are some of the 

common distribution interactions: 

In these relations X and Y represent random variables: 

a. Marginal distribution of X: defines the probability density 

function (PDF) of X without regard to Y. 

 

b. Conditional distribution of X for given Y: defines the 

probability density function (PDF) of X for a specific Y. 

(2) 
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c. Independent random variables: defines the probability density 

function (PDF) when X and Y are independent random variables. 

 

In the recent case (independent random variables), the conditional PDF becomes 

the marginal and the joint PDF becomes the product of the marginal distributions. 

 

Therefore, if we have (n) independent random variables X=(X1,X2,…,Xn ) then 

the joint probability density function will be: 

 

As a summary, the joint probability density function (PDF) is equal to the 

product of the marginal distributions when all of the variables are independent. 

 

4     Most Probable Point (MPP) concept and search methods 

As it was mentioned in the introduction section of this chapter, the 

theoretical probabilistic methods are more efficient compared to the sampling 

techniques.  The efficiency of the theoretical methods is due to the locating of the 

failed samples around the most probable point on the joint PDF. The Most 

Probable Point (MPP) or Design Point is the optimum point on the domain 

(3) 

(4) 

(5) 

(6) 
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boundary [112], [114]. In order to find the MPP in a system, the coordinates of 

the probability density function (PDF) need to be transferred to the u-space (u is 

standard normal vector) [117].  By transferring the joint probability density 

function (PDF) to the standard normal distribution, the origin of the standardized 

distribution in u-space will move to zero.  The values of the mean and standard 

deviation in the u-space will be zero and one respectively. 

Fig. 4 shows the transformation steps from the uniform to standard normal 

distribution.  In the new system (standard normal distribution) the MPP will be 

located in the shortest distance between the surface of the limit state function 

(g(u)=0) and the origin of the standardized normal distribution (zero).   

Using the MPP concept will increase the analysis efficiency (particularly with the 

complex systems in combination with FEM analysis).  The principal of the 

theoretical techniques used in NESSUS are based on locating the Most Probable 

Point (MPP) concept. 

Fig. 5 shows the process of locating the most probable point (MPP) in normal 

standard distribution space (U space).  

Definition of the importance level is demonstrated in Fig. 6. 
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Fig. 4 Transformation from the uniform to standard normal distribution and 

locating the MPP [112] 

 

 

Fig. 5 Locating the MPP in standard normal distribution [112] 
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Fig. 6 Determining the importance level at MPP [112] 

5     Probabilistic and reliability analysis techniques 

The discussion provided in this section is based on SwRI training received 

during the course of this study. The information is mainly extracted from the 

SwRI documents [112-115] provided during the training.  

As it was briefly described in introduction section of this appendix, there 

are different methods for probabilistic analysis which each one predicts the 

reliability of the system to some extent. Depending on parameters such as analysis 

time, complexity of the analysis (specially using the numerical techniques) and 

desired accuracy and confidence level, one of these probabilistic analysis 

techniques could be utilized.   
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Among these methods, the sampling approach is the most common 

technique for the probabilistic analysis of the complex systems with multiple limit 

state functions.  Considering the benefits of the sampling methods such as 

simplicity of the analysis and accuracy of the results, the large number of required 

samples, long analysis time and high computing cost are the drawbacks associated 

with these techniques.  In order to get an acceptable level of accuracy from a 

sampling based method (e.g. Monte Carlo) a number of samples between 100,000 

to 1,000,000 are required to be analyzed and depending on the analysis time for 

each sample (this time could be as long as a couple of hours to days for some 

complex finite element models), this method could take a fairly long analysis 

time. 

In order to avoid the long analysis time and reduce the CPU cost, the 

analytical methods were introduced.  In these analytical methods, the process 

starts with identifying the most probable point (MPP) of failure.  By using the 

analytical methods the CPU time and the number of required runs could be 

reduced significantly (see Fig. 86 presented in chapter 6).  Beside the sampling 

and analytical techniques there is a third method which is called “Hybrid 

method”.  This method uses the location of the MPP to focus the Monte Carlo 

sampling process around that point. By focusing the samples in the vicinity of the 

MPP we can get more failure points and efficient estimate of the probability 

compared to the standard Monte Carlo sampling.  Fig. 7 shows the comparison 

between the basic and hybrid Monte Carlo methods. 
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Fig. 7 Comparison between the basic and hybrid Monte Carlo analysis [113] (the 

purple points represent the failed samples). 

 

5.1     Sampling based probabilistic models 

5.1.1     Monte Carlo (MC) 

Monte Carlo is the most common sampling based method used in 

probabilistic analysis.  Fig. 8 shows the steps of the Monte Carlo probabilistic 

analysis: 

 

Fig. 8 Monte Carlo analysis flowchart [112] 
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One of the issues with the Monte Carlo method is the sample distribution 

order.  In this method samples are not distributed evenly throughout the data 

range and mostly are populated around the mean value and by increasing the 

number of samples the distribution will slowly move towards the tails of the 

distribution profile. The tail regions are generally the most important regions in 

the probabilistic analysis since low and high probability values are important in 

decision making. Therefore a large number of samples are required to be 

processed to achieve an acceptable confidence level in sampling methods (with 

low number of samples, not enough samples would fall in the tail regions).  

The probability of failure in Monte Carlo is defined by [114]: 

f

f

N
p

N
  

Where N is the total number of evaluated samples and Nf is the number of the 

samples with negative g values or simply the number of failed samples. 

Fig. 9 shows a typical PDF Vs. sample distribution graph for the Monte Carlo 

method. 

 

Fig. 9 PDF distribution for the Monte Carlo method [112] 

(7) 
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The probability of failure is a random variable and as we get closer to the tail 

regions, the confidence level will ramp up (moving from the standard deviation of 

1 to 2.6 will increase the confidence level from 68% to 99% (Fig. 10)). 

 

Fig. 10 Standard normal probability density function (PDF). 

Some of the main advantages and drawbacks of the Monte Carlo are as follows 

[112-113]: 

• Advantages: 

• It works with any model (e.g. FEM) 

• Simple to implement in existing software 

• The response does not need to be known in analytical form 

• Discontinuity in the model response is tolerable 

• It is used as benchmark to verify all other risk assessment methods 

• Multiple limit states are allowed 

• Drawbacks:  

• Slow to estimate small probabilities with high confidence 
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• Large number of samples are required to be processed in order to 

estimate the small probabilities with relatively high confidence 

 

5.1.2     Latin Hypercube Sampling (LHS) 

In order to address the Non-equal sampling distribution in the Monte 

Carlo method, an alternative sampling method was introduced. This new method 

is called Latin Hypercube Sampling (LHS) and was introduced in 1979 [118]. 

Latin Hypercube Sampling technique works in the bases of the Latin square 

method which requires of having a square grid somehow that there is only one 

sample locates in each row and column of this grid (Fig. 11) [114]. 

 

Fig. 11 Latin Hypercube sample in two dimensions of size N=10 [114] 

In this technique, samples are distributed more evenly (arbitrarily) over each input 

variable probability distribution and the distance between the samples are 

maximized to improve the coverage (Fig. 12 & 13).   

Using this technique will produce more failed samples compared to the standard 

Monte Carlo method for the same number of simulations.  The efficiency of the 
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LHS with about 2000 samples is almost equivalent to 100000-1000000 Monte 

Carlo samples. 

 

Fig. 12 Typical PDF distribution of the LHS method [112] 

 

Fig. 13 Comparison between the Monte Carlo and LHS methods [112] 

 

Some of the main advantages and drawbacks of the LHS are as follows [112-

113]: 

• Advantages: 

• Could be applied to any model 
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• Samples are distributed more evenly compared to the standard Monte 

Carlo (Requires the small number of samples) 

• Typically is used for computing the mean, standard deviation and 

distribution of the response. 

• Supports multiple limit state functions 

• Drawbacks:  

• Large number of samples are required to estimate the small 

probabilities  

5.2     Analytical based probabilistic models 

Although the sampling methods are accurate and simple to implement, but 

the efficiency of these type of methods are not great (Fig. 86 chapter 6). To 

improve the efficiency of the analysis and reduce the process time, the analytical 

techniques were considered.  Most of these analytical methods are constructed 

based on the concept of “importance” sampling.  Importance sampling provides 

the information about the failure region by targeting the most probable point 

(MPP). Construction of the limit state function around that MPP will minimize 

the computation time and will increase the efficiency of the analysis. 

The First Order Reliability Method (FORM), Second Order Reliability Method 

(SORM), Mean value (MV), Advanced Mean Value (AMV) and Advanced Mean 

Value plus (AMV+) are developed using the above mentioned concept  

[112],[114]. The initial step of performing the analytical probabilistic analysis is 
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locating the MPP by transformation from the uniform distribution to the standard 

normal distribution (Finding the MPP).   

Fig. 14 and 15 display the process of transformation from uniform distribution to 

standard normal distribution. 

 

Fig. 14 Transformation from the uniform distribution to the standard normal 

distribution [112]. 

 

Fig. 15 Process of transformation (mapping) from uniform to standard normal 

distribution [112]. 

 

C
o
p
y
ri
g

h
t 
S

w
R

I 
®

 

C
o
p
y
ri
g

h
t 
S

w
R

I 
®

 



  196 

5.2.1     First and Second Order Reliability Methods (FORM and SORM) 

The first order reliability method (FORM) is constructed based on the 

linear expansion of the limit state or “g” function at the most probable point 

(MPP) in the u-space (Standard normal).  First order reliability method (Fig. 16) 

was initially developed to be used in the reliability analysis of the structures 

[119].  

In order to use the first order reliability method (FORM), the uniform 

distributions are required to be transformed to the standard normal space (u 

space): 

Equation (8) shows the mathematical conversion between the uniform and 

standard distributions. 

1 1[ ( )] [ ( )]X Xu F x x F u     

The first order polynomial is in the form of: 

*

1

( ) ( )
n

i i i

i

g u a a u u


  o  

And therefore the probability of failure is a function of the minimum distance 

from the origin (in the u-space) and the plane formed by first order polynomial 

g(u). 

Equation (10) demonstartes the probability of the failure in terms of the distance 

from the MPP. 

( )fp    

(8) 

(9) 

(10) 
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In this equation, β is the distance between the origin in u-space and the most 

probable point (MPP) which could be calculated using the following relation: 

 

 

Fig. 16 First order reliability method (FORM) setup [112] 

Details of the First Order Reliability Method (FORM) has been reported by M. 

Hehenbichle [120]. 

Similar to the first order reliability method (FORM), the second order 

reliability method (SORM) is constructed based on second order polynomial 

expansion (quadratic approximation to g(u)). 
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The Ki is the principal curvature at the most probable point (MPP). 

1

2 2

1

n

i i
g i

n
g

i i

i

a a

a















 




o

(11) 

C
o
p
y
ri
g

h
t 
S

w
R

I 
®

 



  198 

Fig. 17 shows the comparison between the first and second order 

reliability methods against the exact limit state function.  The prediction from the 

second order reliability method is much closer to the exact limit state function.   

The details of the SORM are presented in reference [121].   

 

Fig. 17 second order reliability method (SORM) [112] 

Some of the main advantages and drawbacks of the FORM and SORM are as 

follows [112-114]: 

 Advantages: 

• Relatively efficient for small probabilities of failure 

• Exact prediction for linear functions (FORM only) and exact 

prediction for parabolic surfaces (SORM only) 

• Accuracy of linear and parabolic approximations has improved for 

small probability of failure for FORM and SORM respectively. 

 Drawbacks:  

• Locating of MPP may be difficult for non-linear functions 
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• Error in probability prediction for non-linear and non-parabolic 

limit state functions for FORM and SORM respectively. 

• Applicable on single limit state function only  

 

5.2.2     Advanced Mean Value methods (MV, AMV and AMV+) 

For the systems with complex limit state functions, using the FORM and 

SORM would not be beneficial.  In order to analyze these complex systems, the 

mean value based techniques were developed. 

Assuming the exact response of the system as: 

1 2 3( , , ,...., )exact nZ Z X X X X  

The response of the first order mean value will be: 

1

n

MV i i

i

Z a a x


 o  

And the mean value estimate will be: 

1

( )
n

z i i

i

E Z a a 


  o  

The estimate of the variance will be:  

2 2 2

1 1 1

( )
n n n

z i i i j ij i j

i i j

V Z a a a    
  

     

Similar calculations were done to determine the second order mean value.  After 

obtaining the response for the mean value (ZMV), this value was used to calculate 

the Advanced Mean Value (AMV). 

(12) 

(13) 

(14) 

(15) 
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( )AMV MV MVZ Z H Z   

Where H(ZMV) is the difference between the response of the mean value (ZMV) 

and exact response of the system (ZExact is calculated in the most probable point of 

ZMV). 

Fig. 18 shows the steps involved in finding the response for Advanced Mean 

Value (AMV). 

 

Fig. 18 Process of calculating the AMV [112]. 

The concept of the Advanced Mean Value plus (AMV+) is similar to the 

Advanced Mean Value (AMV) and is developed based on correcting the response 

of the Advanced Mean Value (ZAMV) in the most probable point and repeating this 

process until the convergence of the response occurs.  The final result of the 

Advanced Mean Value plus (AMV+) will be more accurate and close to the exact 

response of the system.  Fig. 19 demonstrates the details of the AMV+ process. 
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Fig. 19 Steps of the MV, AMV and AMV+ methods [112]. 

 

As a summary, the process of determining the response of the system 

using the (AMV+) is same as (AMV) with repetitive response correction in the 

most probable point until the convergence occurs.  

 

Table. 1 Number of required FEM solutions for the MV, AMV and 

AMV+methods (N= number of random variables, M=number of CDF probability 

levels and i= number of iterations) [112]. 

 

A simple comparison between the AMV+ and Standard Monte Carlo 

methods indicates relatively good efficiency and accuracy of the AMV+.  AMV+ 

method provides detail information in the tail regions of the CDF (Cumulative 

Density Function) facilitating in prediction of very low and very high probability 
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of failure. In the probability function graph, AMV+ covers the probability ranges 

from 1E-5 to 0.999 while the Monte Carlo only covers the ranges between the 

0.01 to 0.99 [112]. The AMV+ also requires much less number of FEM runs 

compared to the standard Monte Carlo to generate the results (Fig. 89 chapter 6).  

Some of the main advantages and drawbacks of the MV, AMV and AMV+ are as 

follows [112-113]: 

 Advantages: 

• More efficient than FORM (MPP search is performed on a fast 

running approximate function) 

• Exact result prediction for linear functions (composed of normal 

random variables) 

• Accuracy of linear approximation improves for small probability of 

failure 

 Drawbacks:  

• Locating the MPP may be difficult for non-linear response functions 

• Applicable on single limit state function only 



 

 


