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ABSTRACT 

Photodetectors in the 1.7 to 4.0 µm range are being commercially 

developed on InP substrates to meet the needs of longer wavelength applications 

such as thermal and medical sensing.  Currently, these devices utilize high indium 

content metamorphic Ga1-xInxAs (x > 0.53) layers to extend the wavelength range 

beyond the 1.7 µm achievable using lattice matched GaInAs.  The large lattice 

mismatch required to reach the extended wavelengths results in photodetector 

materials that contain a large number of misfit dislocations.  The low quality of 

these materials results in a large nonradiative Shockley Read Hall 

generation/recombination rate that is manifested as an undesirable large thermal 

noise level in these photodetectors.  This work focuses on utilizing the different 

band structure engineering methods to design more efficient devices on InP 

substrates. 

One prospective way to improve photodetector performance at the 

extended wavelengths is to utilize lattice matched GaInAs/GaAsSb structures that 

have a type-II band alignment, where the ground state transition energy of the 

superlattice is smaller than the bandgap of either constituent material.  Over the 

extended wavelength range of 2 to 3 µm this superlattice structure has an optimal 

period thickness of 3.4 to 5.2 nm and a wavefunction overlap of 0.8 to 0.4, 

respectively.  In using a type-II superlattice to extend the cutoff wavelength there 

is a tradeoff between the wavelength reached and the electron-hole wavefunction 

overlap realized, and hence absorption coefficient achieved.  This tradeoff and the 

subsequent reduction in performance can be overcome by two methods:  adding 
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bismuth to this type-II material system; applying strain on both layers in the 

system to attain strain-balanced condition.  These allow the valance band 

alignment and hence the wavefunction overlap to be tuned independently of the 

wavelength cutoff. 

Adding 3% bismuth to the GaInAs constituent material, the resulting 

lattice matched Ga0.516In0.484As0.970Bi0.030/GaAs0.511Sb0.489 superlattice realizes a 

50% larger absorption coefficient.  While as, similar results can be achieved with 

strain-balanced condition with strain limited to 1.9% on either layer.  The optimal 

design rules derived from the different possibilities make it feasible to extract 

superlattice period thickness with the best absorption coefficient for any cutoff 

wavelength in the range. 
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1 INTRODUCTION 

Tremendous amount of research has been carried out in the field of 

semiconductor alloys to suffice the need of low cost and efficient optoelectronic 

devices.  Optoelectronic devices are broadly classified as emitters and detectors.  

Emitters such as light emitting diodes emit photons at a wavelength proportional 

to the bandgap of the semiconductor material used to form the PN junction.  

Similarly, a solar cell absorbs photons from the sunlight with energy greater than 

or equal to the bandgap of the material utilized in the absorbing layer to generate 

an equivalent electrical signal.  When the source of photon energy is not 

necessarily sunlight the device is generally termed as a photodetector.  Thus the 

operation wavelength of optoelectronic devices is largely dependent on the 

bandgap of the semiconductor material used.  It is important to have materials 

with bandgaps that can cover the entire light spectrum; from the ultraviolet into 

the infrared wavelengths to design efficient devices for a given wavelength.   

This work concentrates on probing semiconductor materials for the near 

and mid infrared wavelength (1.7 to 4.0 μm) for detection purposes.  Because of 

their detection wavelength these detectors are also called infrared photodetectors.  

Infrared photodetectors are used in numerous fields like remote gas sensing, 

biological imaging, molecular spectroscopy medical diagnosis, electrical 

characterization, temperature measurements, astronomy, fault isolation, insulation 

testing, night vision devices and military target acquisition and detection. 

The cutoff wavelength beyond which a photodetector ceases to detect is 

defined by the material’s bandgap.  Thus it is possible to detect a broad spectrum 
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of wavelengths with a narrow bandgap material.  However, the noise of a 

photodetector scales with the dark current which increases exponentially with 

reduction in bandgap.  To reduce the dark current it is critical to design a 

photodetector with bandgap which corresponds to the desired wavelength of 

detection. 

1.1 Band structure engineering for device applications  

Band structures have been an integral part of semiconductor research 

owing to their capability to tune material parameters like bandgap, effective 

masses and conduction and valence band edge alignments of the material.   

Reconfiguration of band structures in a controlled manner with aid of various 

techniques is termed as band structure engineering.  Alloying between compounds 

offers the ability to tailor the electronic structure, where the resultant change can 

be controlled by the mole fraction of the compounds in the final alloy.  This 

method allows engineering a broad range of bandgaps between the traditionally 

known III-V compounds some of which are represented in Figure 1.  The 

complete range of alloys between the two end point compounds shown by the 

solid lines represents direct bandgap alloys.  For the direct bandgap alloys the 

momentum of electrons in conduction band equals that of the holes in valence 

band thus permitting optical transitions in these alloys.  This is not true in the case 

of indirect alloys shown by the dashed red curves, where an electron has to 

transfer its momentum to recombine with a hole. 
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Figure 1: Bandgap versus lattice constant for few conventional compound 
semiconductors and bismuth based highly mismatched alloy.   

Due to miscibility gap between the end compounds it was not possible to 

engineer all these alloys with simple chemical admixtures.  It is now feasible to 

grow these alloys with the aid of epitaxial growth.  With the advent of techniques 

such as molecular beam epitaxy and metal organic vapor phase epitaxy it is 

possible to control device growth at the atomic scale permitting the formation of 

complex structures and alloys. 

These alloys are capable of covering large range of wavelengths in the 

infrared spectrum but are held back due to lack of availability of high quality, 

inexpensive substrates.  The lattice mismatch between the alloy and substrates is  

proportional to the strain on the final structure.  If these strain levels are not 

limited to the critical values they can deleteriously affect the growth quality 
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consequently producing crystallographic defects.  Crystallographic defect like 

misfit dislocations manifests themselves as non-radiative transitions thus 

deteriorating the efficiency of the detector.  Hence the use of alloying for bandgap 

engineering is limited to alloys with lattice constant in the vicinity of these readily 

available substrates. 

The electronic structure of a bulk semiconductor is defined by the 

periodically varying potential over the crystal lattice, which in turn defines the 

permissible energy levels for charge carriers.  It is possible to design two-

dimensional structures where the potential profile changes in the direction of 

growth, thus limiting the movement of the charge carriers to two directions.  An 

example of such a structure is a quantum well in which a thin well layer is 

sandwiched between two barrier layers with larger bandgap.  The well layer is so 

thin that the carrier wavefunction cannot be restricted within the well region.  This 

change modifies the confinement energy of the constituent consequently 

producing energy levels different than that of the bulk.  These energy levels 

define the effective bandgap of the two-dimensional design hence adding another 

degree of freedom to bandgap engineering.  Shift observed in the energy levels 

are largely dependent on the band edge alignment between the participating 

alloys.  The figure below shows the various alignments available to form the two 

dimensional structures.  These structures have been heavily studied and utilized in 

all optoelectronic device applications.  Furthermore, these structures also aid in 

improving the optical properties by increasing the confinement of charge carriers 

in a layer.  
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Figure 2: Different band edge alignments possible between alloys  

Another, interesting technique to engineer bandgap is to use multiple  

layers of the constituents and switching between the layers much faster than a 

quantum well.  Due to the proximity of well layers the wavefunction of two 

adjacent layers interact hence giving rise to minibands.  Such a structure where 

the switch between lattices of different alloys occurs in very short intervals is 

called a superlattice. 

Besides the above mentioned techniques a fairly new method to tailor 

band structure in line with alloying is the use of highly mismatched alloys.  Some 

of these mismatched alloys with bismuth have been marked in Figure 1.  These 

alloys constitute of elements which differ largely in their chemical and physical 

properties.  These differences bring about drastic changes in the electrical and 

optical properties of the resultant alloy [1-3].  They not only show anomalous ly 

large reduction in bandgap but are also responsible for the direct bandgap nature 

of GaNxP1-x [4].   

An additional degree freedom in band structure engineering can be 

realized by adding strain on the layers for the aforementioned structures.  Strain 
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shifts the conduction and valence band edge as well as removes the degeneracy in 

the valence band thus reconfiguring the band structure of an alloy.  It is vital to 

limit the strain-levels in a bulk alloy below the critical values.  But in the two-

dimensional structure if we grow strain-balanced structures it is possible to retain 

the effect of strain within the layers, hence suppressing the chances of misfit 

dislocation due to the lattice mismatch with the substrate.  By strain balance we 

mean compensating the strain on one layer with an equal and opposite strain on 

the adjacent layer.  In this work we utilize these different degrees of freedom of 

band structure engineering to design efficient photodetectors for an extended 

range of infrared wavelengths. 

1.2 Infrared photodetectors for medical and industrial applications  

In order to define the detection wavelength for a specific application it is 

vital to take into consideration the atmospheric transmission.  This helps to 

minimize the effect of random elements like gases and water vapor present in the 

path of detection.  The wavelengths where the effect of these obstructions is 

negligible or minimal are generally referred as atmospheric transmission 

windows.  These windows are crucial for communication and all other detection 

purposes which have low signal to noise ratio.  Gases like carbon dioxide (CO2) 

and nitrous oxide (N2O) can be detected with ease at their respective fundamental 

absorption lines in the atmospheric spectrum.  Figure 3 shows the atmospheric 

transmission spectrum with some of its major components. 
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Figure 3: Atmospheric transmission spectrum of radiation.  Courtesy: Robert A. 

Rohde / Global Warming Art [5].  

From the above figure it is evident that there exist multiple absorption 

windows in the 1 to 4 μm region which can be utilized for free space 

communications.  In this work we are interested in designing efficient 

photodetectors for the 1.7 to 4.0 μm wavelengths.  The 2 to 3 μm range has been 

of large interest for multiple device applications.  The 2.9 μm wavelength has the 

highest absorption coefficient in water which is useful for medical applications 

considering the high water content found in human tissues.  Some of them are 

removal of damaged skin, cavity treatment by the heat radiated from these 

infrared devices and cancer diagnosis by studying change in cell morphology.  

Glucose has a strong absorption line at 2.5 μm making this range suitable for live-

cell imaging in biological research.  All commercial grade pyrometers use the 2.7 

μm wavelength for temperature measurement in the industry.  Also the presence 

of emission lines for gases like carbon dioxide, methane and carbon monoxide in 
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the range makes it very important for innovative gas sensing applications.  The 

detectors in this range can also be utilized for target acquisition purposes in 

military which is largely done in the 3 to 5 µm spectrum. 

 
Figure 4: Schematic diagram of a photodetector. 

Semiconductor photodetectors work on the principle of photogenerated 

electron hole pairs where the energy from the absorbed light excites an electron 

from the valence band to the conduction band.  The energy of the light shone to 

the detector should be equal or greater than the semiconductor’s bandgap for the 

light to be absorbed.  The created electron and hole pair are then extracted to 

generate an equivalent electrical signal.  Figure 4 depicts a simple diagram 

marking the important layers for a semiconductor photodetector.  The active 

region is surrounded by the heavily doped regions which collect the photo excited 

carriers.  The heavy doping on these layers assists in forming an ohmic contact 

which reduces the resistance at the junction.  In general the substrates used are 
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doped to either n+ or p+ conditions forming heavily doped region below the 

active region.  Bandgap of the material used in the absorption layer defines the 

working wavelength of the detector.  The absorption layer, also the active region 

can comprise of multiple layers of bulk alloys.  Besides it can also utilize the 

different degrees of freedom discussed earlier for engineering the desired 

bandgap.  The thickness of the absorption layer is proportional to the amount of 

light absorbed, hence it is possible to improve the efficiency of the device with 

thicker layers.  However these designs can turn out to be expensive and bulky due 

to the extra material utilized.  

Detectors available today in the 1.7 to 3 μm range use bulk Ga1-xInxAs (x 

> 0.53) for the active region.  But as the indium content is increased there is 

mutual increment in the lattice constant of the alloy.  This leads to lattice 

mismatch between the substrate and the layer large enough to produce misfit 

dislocations.  The low quality of these materials dramatically decreases the 

nonradiative lifetime and hence increases the undesirable thermal noise in these 

photodetectors due to Shockley Read Hall generation recombination.  

Over the years the type-II band alignment between GaInAs/GaAsSb has 

been exploited to improve the photodetector performance in this range [6, 7].  

This work improves the efficiency over the entire extended wavelength range by 

utilizing type-II superlattice designs with the GaInAs/GaAsSb system. 

Bismuth is added in the GaInAs layer to effectively reduce the bandgap.   

The Ga1-yInyAs1-xBix alloy for the entire 1.7 to 4.0 μm spectrum can be grown at 

the InP lattice thus eradicating any chances of misfit dislocations.  Similar results 
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are achieved with the use of strain-balanced designs for the GaInAs/GaAsSb alloy 

system.  Both compressive and tensile strain are applied on each layer and 

compensated with an equivalent opposite strain in the other layer.  Figure 5 shows 

both of these methods as they cover the entire spectrum of interest in the vicinity 

of the InP lattice constant. 

 
Figure 5: Bandgap versus lattice constant demonstrating strain-balance and 

bismuth based alloys for the GaInAs-GaAsSb superlattice system.  

Red curves atop the alloy curves (in blue) represent the range of alloys on 

InP which are limited to strains below 3%.  The alloys with lattice constants 

smaller than InP are tensilely strained while as the larger lattice constant will 

induce a compressive strain on the layer.  The two adjacent layers in the 

GaInAs/GaAsSb system can be strain balanced to realize efficient device 

structures for the extended wavelengths covered by the system. Alloying GaAsBi 
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with GaInAs can also aid in covering a broad spectrum of infrared wavelengths at 

the InP lattice constant.  The resultant quaternary GaInAsBi is shown in green 

which transforms from a semiconductor to a semi-metal as it approaches GaAsBi. 
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2 FUNDAMENTALS OF HIGHLY MISMATCHED ALLOYS 

Alloying has proven to be the most widely used technique to realize 

semiconductors capable of covering a broad spectrum of wavelengths.  Yet there 

lays a scope of improvement in the quality of these alloys for spectral ranges such 

as the ‘green gap’ [8] (520-570 nm).  Conventional alloys are fabricated with 

constituents having similar chemical and physical properties limiting the 

variations in their final parameters to a very small range.  The class of ‘highly 

mismatched alloys’ depict a distinct trend in their behavior because of the huge 

differences in the properties of their constituents. 

2.1 Highly mismatched alloy background 

In the periodic table N and Bi are at the two extremes of Group V 

elements and when alloyed with other widely known III-V compounds such as 

GaAs, GaSb they tend to form highly “mismatched” alloys.  The substantial 

difference between their properties such as atomic size, electronegativity and 

ionization energy makes it extremely difficult to fabricate single-phase alloys.  

But with these dissimilarities between the constituent elements the band 

properties of the final alloy result in large deviations from the host compound.  

Another notable point is that it takes only dilute quantities of N and Bi to bring 

about these large variations.  Nitrogen alloys have been a topic of interest for 

shorter wavelengths of the light spectrum and a lot of research was undertaken [9-

11] in early 1970’s to grow these with other available technologies.  Nitrides 

picked up pace after they were first successfully grown using metal organic 

chemical vapor deposition [12] due to their popularity for the visible spectrum.  



 

13 

The highly mismatched alloy GaAs1-xNx has recently been studied for infrared 

detection applications [13]. 

On other hand traces it was not until Ma et al. [14] who first reported 

photoluminescence spectra from Bi containing III-V alloys.  Before these several 

attempts were made to grow InSbBi and InAsSbBi as they were expected to be a 

good substitute for other conventional alloys in the 8 to 12 μm wavelength [15-

19].  The proposal of InAs1-xBix [20] alloys for the 3 to 5 μm was followed by 

succession of growths [21, 22] realizing Bi based alloys for the first time.  These 

growths were testified for good structural quality and composition using 

techniques like RBS, XRD and PL.  The InAs1-xBix and InSb1-xBix alloys can be 

lattice matched with GaSb and InSb respectively with dilute quantities of bismuth 

(x < 6%) thus favoring good crystal quality. 

In the year 1998 K. Oe and H. Okamoto grew a novel semiconductor 

GaAs1-xBix [23] using metal organic vapor phase epitaxy with 2% bismuth in the 

alloy.  They depicted the temperature insensitivity of the alloy which is be neficial 

for fabricating lasers whose lasing wavelength should remain constant for all 

ambient temperature variations.  Such lasers are specifically used in 

communications hence this property acted as a catalyst for Ga1-yInyAs1-xBix lasers, 

which were expected to emit at the 1.55 μm wavelength used in fiber optic 

telecommunication.  Tremendous amount of research has been carried out on 

GaAs1-xBix properties because of its capability to cover a wide range of 

wavelengths in the near and short infrared region.  Some of the important 

properties observed included the anomalous ly large reduction bandgap and large 
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increase in spin – orbit splitting energy [1, 2, 24].  The huge mismatch in these 

alloys has always acted as a hindrance to accomplish good quality growth with 

larger quantities of bismuth.  Yet in the recent past there has been success in 

growing multi quantum wells with high bismuth content (x= 25%) in GaAs1-xBix 

[3].  In the recent past another highly mismatched alloy of interest has been 

GaSb1-xBix which is expected to operate in the mid-infrared range and has several 

potential benefits over other alloys presently deployed in the range [25]. 

To implement these mismatched alloys and realize photodetectors in the 

near and mid-infrared wavelength it is necessary to estimate the drastic deviations 

from their host semiconductor.  Thus it is important to understand the underlying 

basic principles which bring about these changes.  In the following sections these 

principles and some important trends observed in highly mismatched alloys are 

discussed. 

2.2 Localized impurities 

The constituents of an alloy can be classified into cation or anion species.  

Consider the III-V compounds, where the element from group III belongs to the 

cation species and the latter belongs to the anion species.  Atoms from the 

primary elements comprising the alloy are called host atoms.  Any other element 

besides the host species can be considered to be an impurity.  Impurities with an 

equal number of valence electrons as the host are called isovalent impurities.  

These impurities can belong to either the cation or anion group.  When these 

isovalent impurities are implanted into the host semiconductor they tend to 

replace the respective host atom species consequently forming an alloy.  Although 
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it is important to remember that an element behaves as an impur ity only when it is 

in the limit of dilute quantities when compared to the host atoms.  

The amount of deviation observed in the properties of a host 

semiconductor when an impurity is added is defined by the differences in them.  

The differences are not limited to but include properties such as electronegativity, 

atomic radius and ionization energy.  Therefore to estimate these changes it is 

important to understand the behavior of an impurity in the host semiconductor.  If 

the properties of an impurity are similar to the host atom it substitutes, then the 

impurity tends to lie close to the host semiconductor bands and hence it is called a 

shallow level impurity.  The energy level of an impurity in the semiconductor can 

be calculated using the effective mass approximation [26] method. 

Effective mass approximation assumes the perturbing potential of the 

impurity to be weak and slowly varying in space.  Hence the impurity can be 

treated as an integral part of the host lattice.  The impurity electron can now be 

considered to behave like the host atom’s electron in the crystal.  The envelope 

function for the impurity can be calculated from Schrödinger’s equation defined 

by the method where the envelope function encompasses the changes in the host 

wavefunction due to the impurity as a perturbation.  The continuous eigenvalues 

derived from the Schrödinger’s equation are used to describe the localized and 

delocalized states of the impurity.  The states which are bound to the impurity and 

play no role in the impurity-host interaction are called localized states.  On the 

contrary, ones available for interaction with the host atom are termed as 

delocalized states. 



 

16 

However some impurities fail to adhere to the aforementioned 

approximations thus invalidating application of the method.  These impurities are 

called deep level impurities.  These impurities tend to have a strong potential and 

in addition do not lie close to the host bands thus allowing them to bind a state 

locally.  This localized nature of the impurity in the semiconductor makes it 

impossible to construct the wavefunction within the realm of the Bloch function 

defining the host’s wavefunction.  Moreover, the uncertainty of predicting the 

energy level of these impurities in a semiconductor increases.  In order to extract 

the energy levels of these impurities Hjalmarson et al. [27] utilized a modified 

Koster - Slater model to understand the interaction between the localized and 

delocalized states of the impurity and semiconductors with a zinc blende crystal 

structure.  

Delocalized or extended states of a host semiconductor construct the 

wavefunction of the valence electrons hence defining the dispersion relations 

between energy and wave-vector for the conduction and valence band.  The study 

adjusts the Hamiltonian for a perturbed semiconductor by removing all its matrix 

elements related to neighbors beyond the first neighbors and yet reproduce the 

empirically known band structure for the semiconductor.  The tight binding 

analysis within the Koster-Slater method of this Hamiltonian yields the energy 

level of the substitutional impurity.  The theory also assumes that the localized 

states of the impurity participating in the interaction either have A1 symmetry or 

T2 symmetry where they interact with s-orbit or p-orbit of the host semiconductor 

respectively.  This interaction with a specif ic orbit consequently defines the 
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location of the impurity in the band alignment.  This assumption reveals the 

conformity of the model with the experimental findings, giving weight to the 

nature of the impurity.  These findings approximate the energy level of the 

impurity to lie further from the bands and thus the name deep level or deep center 

impurity. 

 
Figure 6: Impurity levels for group V elements aligned with the well known III-V 

semiconductors.  (Courtesy: Chaturvedi Gogineni) 

The energy levels for some of the group V elements have been marked 

and compared to a few III-V compound semiconductors in Figure 6.  Some of 

these results for the nitrogen impurity level in the GaP lattice were verified 

experimentally [28].  We can therefore infer that impurity with large differences 

in properties with respect to the host species is likely to behave as a deep level 
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trap.  Due to their nature to bind a state locally we refer to them as localized 

impurities.  

The physical nature of the impurity when compared to the replacing atom 

defines the location in the host semiconductor.  Isoelectronic impurities more 

electronegative in nature when compared to the anion species of the host atom act 

as weak acceptors and follow an A1 symmetry.  The A1 symmetry impurities tend 

to lie closer to the conduction band of the semiconductor thus interacting with the 

electrons in the band.  Nitrogen serves as a perfect example for III-V 

semiconductors as it’s the most electronegative of the group V and consequently 

when it replaces any of its complementary anion species it interacts with the 

conduction band.  This conforms with its proximity to the conduction band of 

most semiconductors shown in Figure 6.  While impurities more metallic in 

nature act as weak donors and hence interact with the holes in valence band.  

These impurities are predicted to have T2 symmetry.  Heavier or larger atoms in 

the group like bismuth or antimony fall into this category. 

2.3 Characteristic nature of highly mismatched alloys  

An alloy inherits its chemical and physical properties from the 

constituents, governed by their mole fraction.  Highly mismatched alloys deviate 

from this universal law due to the huge mismatch between its constituents and 

thus exhibit drastic changes in properties with small changes in composition.  

Large reduction in bandgap, increasing spin-orbit split-off energy, temperature 

independence, splitting of bands and variations in effective mass of carriers are 

some of the characteristic properties that highly mismatched alloys demonstrate.  
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An important point of emphasis is that these variations are a strong 

function of the impurity in the highly mismatched alloys.  As an example, the A1 

symmetry like impurities would affect the electron effective mass as they interact 

with the conduction band in comparison to the T2 symmetry impurities which 

would affect the hole effective mass.  It is the localized nature of these impurities  

that is responsible for the abnormality in the properties of a mismatched alloy.  

The studies about some of these deviations are crude and require a more rigorous 

process to be in place to understand them.  The properties for “well-matched” 

alloys can be predicted with ease using virtual crystal approximation [29] but this 

does not stand true for the “mismatched” alloys.  The band anticrossing model has 

been able explain these abnormalities to an extent. 

The bandgap of these alloys has been observed to reduce drastically with 

increasing mole fraction of impurity.  This has been observed experimentally in 

all III-V semiconductors.  To begin with addition of 1% of nitrogen in GaAs 

lattice reduces the bandgap by 180 meV [30] and 1% bismuth in GaAs reduces 

the bandgap by 60 meV [31].  The band anticrossing model (BAC) [32] explains 

this anomalous reduction due to the interaction of the host semiconductor band 

with the impurity.  This anticrossing interaction causes the bands to split thus 

effectively producing two bands on either side of the original band.  The new sub-

bands can be marked as E+ and E- lying above and below the original band 

respectively.  In the case of conduction band interaction the effective bandgap 

reduction is justified by the E- band below the conduction band.  Whereas, the E+  

band above the valence band in impurities like bismuth defines the new bandgap 
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of the alloy.  This behavior due to anticrossing is the prime reason for large 

bandgap reductions.  This has been depicted time and again using multiple 

experimental set-ups like photoluminescence and photoreflectance.  We predict 

similar results in our simulations for the other III-V highly mismatched alloys 

which are presented in the following chapter. 

Another notable property observed in the p-like or T2 symmetry is the rise 

in spin-orbit splitting.  The BAC model predicts a downward movement in the 

spin-orbit band with growing concentrations of impurity in the alloy.  This 

augments to the upward shift in heavy and light hole bands thus enlarging the 

spin-orbit split-off energy (∆so).  Increasing the ∆so reduces the auger 

recombination process hence suppressing non-radiative transitions like 

conduction to heavy hole band/split-off to heavy hole band and inter valence band 

absorption which are governed by transition of carriers between the light/heavy 

hole and spin-orbit band. 

These processes have been experimentally proven [33] to be the dominant 

reason for reduced efficiency in the InP based near wavelength lasers (1.3μm-

1.6μm).  Auger recombination is expected to increase dramatically with decrease 

in bandgap or increased temperature.  This leads to an added factor of temperature 

dependence in these devices thus requiring constant cooling for stable 

performance.  With the increased spin-orbit splitting these transitions are 

suppressed thus improving the efficiency of the device.  This has been verified for 

antimony based alloys which exhibit reduced sensitivity to temperature in the mid 

and long-infrared range due to their large ∆so [13].  Figure 7 depicts a trend of 
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steady increment in the spin-orbit splitting as we substitute higher atomic number 

elements for the anion site in the III-V binary alloys.   

 
Figure 7: Spin-orbit splitting energy for various III-V compounds depicting 
dependence on atomic number of the anion species.  Ref [31, 34] 

These results clearly imply that we can expect a larger ∆so for bismuth 

based alloys as predicted by BAC, thus opening new possibilities for temperature 

independent devices in the near and mid infrared wavelengths. 

2.4 Bismuth as a constituent in III-V materials 

Bismuth has been an element of interest for compound semiconductors 

and its presence can be found as early as early 1960s [35].  However, its evolution 

in this field has been hampered by the difficulty to incorporate substantial 

quantities into the lattice.  This crisis arises due to the large atomic size of 

bismuth which is responsible for its surface segregation while growth.  However, 

researchers have tried to utilize this property as a surfactant [36, 37] for growth of 
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other mismatched alloys like GaAs1-xN x.  Nonetheless, intensified research on 

growth of III-V bismuth alloys has made generous improvement in growing thin 

films with substantial amounts of bismuth [3, 38] 

Bismuth alloys have extensively been grown and characterized to operate 

in the near infrared wavelengths (1 to 2 μm).  GaAs1-xBi x has been a forerunner in 

this sphere since the last decade, though the initial growths recorded for bismuth 

alloys were mainly on InAsxSbyBi1-x-y or InAs1-xBi x.  Indium based bismuth 

compounds can be a good substitute for the market dominant materials like 

mercury telluride (HgCdTe) detectors in the mid and long wavelength infrared 

region.  But due to the iterating issues encountered in the growth of these alloys 

for over a decade (1984-1998) the researchers began to search for a better 

mismatched alloy.  Though GaAs1-xBix alloys have been successful in achieving 

wavelengths in the near infrared regime any attempts to go deeper into longer 

wavelengths have been allied to increased amount of bismuth in the alloy, which 

has been a detrimental technique to realize these wavelengths.  

Due to the distinctive characteristics of highly mismatched alloys like 

GaAsBi we explore further to prove their huge, yet unrealized, potential.   

However to understand their properties it is important to be able to model their 

band structures.  
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3 BAND ANTICROSSING MODEL AND BAND STRUCTURE 

The simplest formulation to predict these parameters for the alloy is to 

scale the values linearly between the constituent compounds also well known as 

the Vegard’s law [39].  Though Vegard believed that the lattice constant can be 

best characterized as a linear relation between the constituents parameters 

governed by their molecular volume there was no mention about the band 

structure.  The virtual crystal approximation [29] follows this law to calculate the 

band structure by replacing all crystal potentials observed by the free electron in 

the lattice with potentials from individual constituents subjective to their 

compositional fraction in the final compound.  To account for the small degree of 

divergence from the virtual crystal approximation or the linear trend a bowing 

factor was added.  In cases where the composition of the constituents is the main 

reason of potential fluctuations the bowing factor is small and negligible 

compared to the bandgap energies of the alloy compounds.  The virtual crystal 

approximation along with the addition of a bowing factor is given in Equation 1 to 

describe the bandgap of the alloy formed between the two constituent materials  

                             
          

           
                                             (1) 

where,   
   and   

   are the bandgap energies of the constituent materials and x is 

the mole fraction of compound A in the alloy and   represents the bowing 

parameter that describes the deviation from linear.  The bowing factor quantifies 

the effect of increasing disorder in the formation of ‘random alloys’ [40].  In this 

context, ‘random alloys’ refers to those alloys that lack periodicity in the 

arrangement of the constituent atoms in the lattice but still have a well-defined 
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crystalline structure.  But this first-order approach fails when the highly 

mismatched alloys form clusters, where the atoms from the constituents are 

localized around a lattice site.  These differences lead to large deviation from the 

linear interpolation and cannot be described by a single bowing factor.  

The traditionally studied alloys are composed of cation or anion species 

with similar chemical and physical properties.  This is not the case with highly 

mismatched alloys where the anion species such as arsenic have large differences 

in properties when compared to its counterpart bismuth.  The distinct trend 

observed in these mismatched elements instigates the need of an improved model 

predicting the band parameters of these alloys with more accuracy. 

3.1 Band Anticrossing Model (BAC) 

In an attempt to explain this behavior many theories have been put forth.  

First of these attempts was when S.A. Barnett tried to predict the bandgap for InBi 

alloys based on quantum dielectric theory [20].  In his paper he reduced the 

Equation (1) by proving the bowing factor to be negligible thus making the 

bandgap of the alloy dependent on the alloy added.  In another attempt Wei and 

Zunger utilized the first-principles local density approximation to explain the 

large bandgap reduction in GaAs1-xNx [41].  They were the first to suggest the 

localized nature of the foreign anion species added in the host semiconductor 

which altered the band structure of the alloy.  There assumption to use a 

composition dependent bowing to define the degree of localization for these 

foreign atoms was not sufficient to estimate the bandgap.  To overcome these 

shortcomings the local density approximation method was replaced by an 
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empirical pseudopotential method with an increased focused on the interaction of 

the nitrogen-clusters in nitrogen containing alloys [13, 42]. 

As an alternative to this a BAC model for Ga1-yInyAs1-xNx was proposed 

by Shan et al. [32] established on a two level band anticrossing.  The BAC model 

treats the foreign atoms as isoelectronic impurities to the host anion species, as 

these have the same number of valence electrons.  These impurities act as 

localized states in the host semiconductor.  The interaction between these 

localized trap states and the host semiconductor band is responsible for the 

reconfiguration of the band structure.  

The interaction of the impurity with the host’s conduction or valence band 

is defined by the position of the impurity in the semiconductor.  Either interaction 

yields disparate effects and hence has to be treated separately.  Wu et.al [43] 

proposed the BAC model which restructures the conduction band utilizing a two 

level anticrossing interaction between the delocalized states of the host 

semiconductor’s conduction band and the localized states of the A1 symmetry 

impurity. 

The valence band anticrossing model [31] is based on the same 

anticrossing.  It utilizes the interaction between the valence band of the host and 

the localized states of the T2 symmetry impurities to predict the band structure for 

the resultant alloy.  The model simulates the energy-wave vector (E-k) dispersion 

curves and can be extended over the entire Brillouin zone to define other 

important attributes besides the bandgap of the alloy.  In the following sections 
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we have dealt with both of these models and also predict the reconfigured 

structure for InAs0.96Bi0.04 and GaSb0.85Bi0.15. 

3.2 Conduction Band Anticrossing Model 

The BAC model predicts anticrossing between the host semiconductor and 

the impurity based on the impurity energy level.  The trap level of any impurity 

can be defined by its chemical nature and the symmetry of the substitutional 

element.  In the model used by Hjalmarson et.al, they classify the impurity into 

A1 symmetry or s-like and T2 symmetry or p-like.  

The conduction BAC is based on a modified version of the single site 

model Anderson used to predict the interaction of the s-d orbitals for iron group 

elements dissolved in non-magnetic elements [44].  A many-impurity Anderson 

model was established to understand the properties of a semiconductor when it 

interacts with low concentration of impurities [45-47].  For the conduction BAC 

model the s-d interaction is replaced with the interaction between localized states 

of the impurity atom and the extended band states of the host semiconductor.  The 

model predicts the effect of the band anticrossing on the final band structure on 

solving a three term Hamiltonian consisting of perturbed and unperturbed 

energies of the electron in the vicinity of the interaction. 

                
   

     
 

     
   

     
 

  
 

  
             

          

   

          (2) 

where, the first two terms represent the energy of electrons in the band or 

extended states at the conduction band    and the electrons in the localized states 

of the impurity level   .  The third term represents the change in energy due to 
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the interaction between the two band levels with the interaction strength defined 

by the parameter Vkj.  Solutions to this equation can be found using a Green’s 

function approach [4].  Considering that impurities are present in dilute 

concentrations, the model assumes a random placement of impurity atoms in the 

semiconductor’s lattice.  To average the effect of these randomly placed impurity 

atoms on the electron wavefunction the coherent potential approximation is 

utilized.  The coherent potential approximation describes the theory of how waves 

scatter in a material with spatial inhomogeneity.  This averaging restores the 

space transitional invariance for the wave-vector,  .  On solving the above 

Hamiltonian (2) using the now transitional invariant Green’s function we can 

reduce the equation into a 2 × 2 matrix for a varying mole fraction of the impurity 

in the alloy represented by  .[4] 

                                             
   

          

               
                                 (3) 

The parameter Γ is derived from the imaginary part of the Green’s solution 

which is expected to explain the effects on electron mobility and band broadening 

from the anticrossing.  It is defined as             
   where the terms 

included are, density of states    of the conduction band, hybridization parameter 

  and an empirically determined constant  .  Since the many-impurity Anderson 

model utilized in here is built for low impurity concentration (0<x<<1) thus it is 

vital to use the model only for dilute concentrations of the impurity.  When the 

broadening parameter tends to zero or is negligible Equation (3) can be reduced to 

[4] 
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                                                     (4) 

The mixing of states between the two energy levels predicts splitting of 

the band into two sub-bands.  The lower sub-band (E+) defines the new bandgap 

and plays a vital role in modifying other parameters for the band structure 

compared to the upper sub-band (E-).  The electronic structure over the entire 

Brillouin zone can be produced by using this conduction BAC model for a range 

of   values.  In the case when broadening parameter is non zero or large we can 

approximate the solution to 

                                        
           

  

           
                

                 (5) 

Alterations in the electronic structure have been experimentally depicted 

[43] and successfully explained with the conduction BAC model on GaN0.05As0.95.  

While the term    was non-zero, broadening was observed in both E+ and E-.with 

prominent effects in the vicinity of the N impurity level.  It can also be inferred 

from the conduction BAC model that the hybridization will affect parameters like 

electron effective mass, density of states and the electron mobility due to changes 

in the curvature of the conduction band.  Results from experiments [48, 49] 

conducted on GaNxAs1-x and GaNxP1-x have depicted the effect of interaction 

strength parameter or hybridization parameter Vkj is maximum at the conduction 

band minima hence removing chances of modifications in the any other high 

symmetry points unless the minima at these zones are close to the impurity level.  
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3.3 Valence Band Anticrossing Model 

The conduction BAC model predicts the anticrossing between the highly 

electronegative impurities and the conduction band of the host semiconductor.  

Their electronegative nature defines their A1 symmetry consequently positioning 

them in the vicinity of the conduction band.  If the impurity species are more 

metallic in nature with respect to the host anion species the impurity tends to have 

a p-like or T2 symmetry.  The impurity level for most elements with T2 symmetry 

has been found to lie near the valence band of the host semiconductors [27].  This 

proximity suggests the interaction of delocalized states from the valence band 

with the localized states from the band formed by these impurities.  

The interaction of localized states from the T2-symmetry impurity and the 

delocalized states of the host semiconductor cannot be explained by the 

conduction band anticrossing.  To manifest the band anticrossing for the impurity 

level and the valence band interaction a new theory was introduced by K. Alberi 

et al.[31].  Valence band anticrossing successfully predicts the effect of band 

anticrossing between the host semiconductor’s valence band and the energy level 

formed by impurity atoms.  The valence BAC model is established on the 

hybridization between the p-states from the impurity band and the delocalized or 

extended states host atoms.  Due to their metallic nature the impurity atoms have 

a tendency to behave as donors and thus weakly bind the holes.  

Valence BAC model uses a modified k.p matrix to simulate the electronic 

structure for the anticrossing between the bands.  The k.p model implements a 

perturbation theory on the Schrödinger’s Equation (6) to predict the band 
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structure around a given value of  .  It also incorporates the interaction of the 

band under consideration with other neighboring bands giving an extensive and 

accurate picture.  

                                    
  

   
                                                     (6) 

The Hamiltonian   is defined by the terms Planck’s constant  , free 

electron mass   , periodic potential experienced by an electron     , the  -  

dispersion of the n
th

 band       and the periodic wavefunction of the electron 

    .  The Equation (6) can be reduced using the Bloch’s function with a periodic 

function        to Equation (7).  After the perturbation is introduced into the 

reduced Equation (7), we get [50]. 

                     
  

   
  

 

  
                            

    

   

                     (7) 

                        
    

   
 

 

  
        

  

  
  

         

            
    

            ( ) 

The new term introduced represents the interaction of a neighboring band 

with the band being studied.  This equation can be utilized to form matrix 

equations which are further solved to calculate the bands.  The complexity of the 

solutions is increased by the number of bands included which in turn results in 

more precise and accurate band structure. 
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Equation (8) is used in the well established 6 × 6 k.p matrix to describe 

the Γ7 and Γ8 valence bands of a semiconductor.  For the valence BAC model 

another 6 × 6 matrix is augmented in the original matrix to incorporate the 

localized states from the impurity.  The resulting 12 × 12 matrix adopted from K. 

Alberi et al. [31] is expressed in Equation (9). 

Terms from the standard 6 × 6 matrix were appended to incorporate the 

linear change of the valence band maximum and the large split-off in the spin-off 

band. 
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                             (10d)  

                                                                                                                            (10e) 

                                              
 

 
                                                        (10f) 

                                                                                                                          (10g)  

The terms       and      represent the energy difference between the 

valence band maximum and the spin-orbit split-off energies of the two end point 

compounds respectively.              are the Luttinger parameters for the host 

compound and         represents the spin-orbit split-off energy level for the 

impurity.  The remaining sparse matrices appended account for the changes in the 



 

33 

electronic structure due to the band anticrossing between the localized and 

delocalized from the impurity and host respectively.  

Since the valence BAC also assumes random placement of the impurity 

atoms in the host lattice the coherent potential approximation is utilized to restore 

the spatial transitional invariance of the crystal.  The coherent potential 

approximation yields a modified hybridization parameter   defined by the 

impurity fraction   and coupling parameter or anticrossing strength    , also 

shown in Equation (10g).  The coupling parameter is largely dependent on the 

mismatch between the impurity and the host species.  

The valence BAC model predicts results analogous to the conduction 

BAC, where each resulting bands in the electronic structure splits into E+ and E- 

sub-bands.  Valence BAC anticipates anticrossing between all the three bands in 

the valence band namely heavy hole, light hole and the spin-orbit split-off band 

with the band formed by the localized states of the impurity.  This interaction 

results in six doubly degenerate bands after the interaction.  It should be 

emphasized that three distinct anticrossing interactions is seen at values of   near 

the Brillouin zone center or the Γ point [51].  Another important detail to be 

considered here is regarding the reference energy level for all parameters in the 

valence BAC calculations is the valence band maximum of the host 

semiconductor and not InSb.  A noticeable feature in the residual band structure is 

the large splitting energy between the heavy and light holes and the spin-orbit 

split-off.  
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The valence BAC has been extensively used to study the GaAs1-xBix alloy 

system where the bandgap is expected to reduce from 1.42 eV [34] to -1.45 eV 

[52] as x varies from 0 to 1.  Figure 8 shows a comparison between the bandgap 

values calculated using the virtual crystal approximation and valence BAC for the 

alloy.  Using the valence BAC model we evaluate some other bismuth based 

highly mismatched alloys of interest for infrared detectors.  Bismuth being the 

largest element is more metallic in nature than rest of the elements in the group.  

 
Figure 8: Experimentally determined values compared to the trend predicted by 

virtual crystal approximation for GaAs1-xBix bandgap energies.  Ref. [2, 31, 53-
55] 

This characteristic behavior of bismuth renders the T2 or p-like symmetry to the 

impurity.  Thus the impurity level of bismuth is placed close to the valence band 

for all well-studied semiconductors.  The Bi impurity level generally lies below 
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the valence band for most semiconductors with an exception of GaN, where the 

impurity level lies within the bandgap. 

3.4 Valence band structure for InBixAs1-x 

InAs inherently serves as a vital alloy for the mid wavelength infrared 

region due to its narrow bandgap.  With an intension to cover all wavelengths 

beyond the InAs emission line, a highly mismatched alloy is simulated using the 

valence BAC model.  It has been predicted that dilute amounts of bismuth bring 

about large reductions in the bandgap of the resultant alloy.  Thus InAs is alloyed 

with InBi to form InBixAs1-x which transforms from a semiconductor into a semi-

metal as the content of InBi is increased in the alloy. 

 
Figure 9: Comparison of InBixAs1-x bandgap from band anti crossing and virtual 

crystal approximation.  Ref [24, 54] 
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Despite the huge miscibility gap in the alloy system successful growth 

with dilute quantities of bismuth [21, 56-58] has been reported over the last two 

decade using both metalorganic vapor phase epitaxy and molecular beam epitaxy.  

Some of the bandgap values extracted from these references are compared with 

the calculated bandgap from the valence BAC in Figure 9. 

The calculations predicted a reduction of 40 meV/% of bismuth in 

bandgap which is in good agreement with the results acquired experimental [21, 

58].  A zero bandgap alloy is expected with 7.2% bismuth in the lattice.  The 

bismuth impurity level EBi and EBi-SO was assumed 0.53 eV and 2.11 eV 

respectively, below the InAs valence band [31].  The band parameters for InAs 

and InBi were taken from Vurgaftman et al. [34] and Janotti et al. [52] 

respectively.  The coupling parameter was approximated from the strength of 

anticrossing between Bi impurity level and GaAs.  Owing to the proximity of 

GaAs and InAs valence bands the coupling parameter CBi was kept constant at 

1.55 eV [51]. 

The choice of band parameters used in these calculations is critical for 

arriving at plausible results.  Thus extreme care needs to be placed while selecting 

the parameters especially with the constituent alloy consisting bismuth in the 

anion species.  To achieve consistent results we focus on using the same set of 

publications for all values to all possible limits.  The conduction band is 

determined using the virtual crystal approximation considering bismuth impurity 

level to be distant enough for any hybridization.  Since both constituent were 

direct bandgap alloys the conduction band minima remained at the Γ point.  The 
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dispersion curves shown in Figure 10 are extracted using the valence BAC model 

depicting the splitting of the heavy hole, light hole and the spin-orbit spilt-off 

band into sub-bands where the zero energy level represents the valence band edge 

of InAs.  Calculations conform to the increase in spin-orbit splitting energy 

expected for bismuth based alloys [31, 59].  With only 6% bismuth incorporated 

in the InAs lattice the hybridization raises the valence band edge beyond the InAs 

valence band maxima hence reducing the bandgap of InAs from 0.354 eV [21] to 

0.051 eV. 

 
Figure 10: Energy-wave vector (E-k) dispersion curves for InAs0.94Bi0.06. 

Although we don’t show any calculations for the electrical properties of 

the carriers but we do expect modifications from the reconfiguration of the bands.  

For example, increment in the hole effective mass due to the increased state 

broadening with hybridization of the impurity and host bands, augmented with the 
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increased impurity scattering points a reduction in the hole mobility is evident 

[51]. 

3.5 Valence band structure for GaBixSb1-x 

The hybridization of the bands in this alloy system is not expected to be as 

strong as the InAsBi system.  Firstly, the degree of mismatch between the 

electronegativity of the two group V element is rather modest.  Furthermore the 

bismuth impurity level is 1.17 eV below the GaSb valence band minima 

compared to the 0.53eV in InAs.  Though there has been no application of the 

alloy in real world devices yet the alloy can be utilized to realize long wavelength 

infrared detectors on the widely available GaSb substrates.  Another important 

application can be to overcome the problem of small valence band offset in the 

strained InGaAsSb.  The quaternary alloy is utilized for lasers with cut-off 

wavelength in the 3 to 3.3 μm range and the small valence band offset results in 

significant hole leakage [60].  This problem can be overcome with the large 

valence band bowing observed in bismuth based alloys. 

Shown in Figure 11 is a plot of the theoretical values for the GaSb1-xBix 

(x<0.15) alloy.  For these calculations the valence band edge was determined with 

the valence BAC model where as the conduction band edge was calculated by 

linear interpolation between the two end point compounds, GaSb and GaBi.  As 

expected the bandgap bowing is much smaller than InBiAs and hence its 

proximity to the virtual crystal approximation values.  Our calculations predict a 

30 meV/% of bismuth reduction in the bandgap compared to an 18 meV /% of 

bismuth for virtual crystal approximation.  This result aligns well with the 
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findings observed for other alloys with lower degree of mismatch, like GaAs1-xSbx 

[31].  

 
Figure 11: Comparison of bandgap values determined by band anti crossing and 
virtual crystal approximation for dilute quantities of Bi in GaBixSb1-x. 

The values for impurity level (Eimp) and the spin-orbit split-off energy 

(Eimp-so) for bismuth were assumed to be 1.17 eV and 2.67 eV respectively, below 

the GaSb valence band maximum.  The conduction band, valence band and spin-

orbit split-off bands for the semi-metal GaBi were predicted to be 0.03 eV, -2.15 

eV and -1.11 eV. All of the above were based on the values from the work 

published by Alberi et al. [31].  The coupling parameter was set to 1 eV 

comparable to the 1.05 eV for GaAsSb [51] bearing in mind the similarity of the 

anticrossing strength.  Though growing GaSbBi has not been an effortless task 

even amidst the presence of techniques like molecular beam epitaxy [25] but 
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some success has been achieved in incorporating Bi into the GaSb lattice using 

liquid phase epitaxy [61].The electronic structure for the alloy at the Γ-point have 

been depicted in Figure 12. 

 
Figure 12: Energy-wave vector (E-k) dispersion curves with the expected splitting 
of sub-bands for GaBi0.15Sb0.85. 

Another notable feature when compared to the InAsBi alloy is the spin-

orbit splitting energy remains approximately constant in GaSbBi over the dilute 

bismuth range calculated.  Increase in splitting energy aids in suppressing auger 

recombination processes like CHSH (conduction-heavy hole spin-orbit-heavy 

hole) (recombination of an excited spin-orbit electron with a vacant electronic 

state in the heavy hole band) and inter-valence band absorption thus improving 

the efficiency of the design.  Due to the lack of good quality samples there has 

been no study on the hole effective mass and hole mobility for the alloy but due to 
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the large energy gap between the GaSb valence band edge and bismuth impurity 

level we expect the hybridization to have minimal effects. 

In the next chapter we investigate applications of bismides to cover the 

short and mid infrared wavelengths on the extensively used substrates like InP. 
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4 NOVEL DEVICE STRUCTURES BASED ON HIGHLY MISMATCHED 

BISMUTH ALLOYS 

In 1977, Tsu and Esaki proposed an engineered semiconductor with a one-

dimensional periodic potential [62].  This proposal had advocated using advanced 

thin-film growth technique to engineer the optical and electrical properties of 

semiconductors.  In 1987, Smith and Mailhiot [63] proposed Type-II superlattice 

materials for IR detection.  The superlattice gives the additional degree freedom 

of controlling the ground state transition energy by varying the thickness of 

constituent layers. 

Semiconductors like mercury telluride (HgCdTe) and InSb are 

traditionally used to cover a broad spectrum of infrared wavelengths in detection 

applications.  But they are seldom used in the short and mid infrared wavelengths 

due to their inefficient performances.  The inefficiency can be attributed to factors 

like inferior material quality due to lattice mismatch, thermal losses and 

temperature dependent output characteristics.  Bandgap engineering has proven to 

be the most efficient method to overcome these drawbacks while achieving the 

desired bandgap.  In this chapter we utilize the type-II alignment between 

GaInAs/GaAsSb at the InP lattice constant to design superlattice structures whose 

thickness can be adjusted to cover an extended range of wavelengths.  Compared 

to bulk where the transition energy is represented by the bandgap of the material 

the transition energy in a type-II is governed by the relative conduction and 

valence band alignment in the adjacent layers. 
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The property of bismuth based alloys to reduce the bandgap more 

effectively than the high indium content in the alloy aids in covering wavelengths 

longer than 1.7 μm at the InP lattice constant.  Different bismuth compositions are 

compared to achieve optimal design solution for a given cutoff wavelength.  

4.1 Kronig-Penney Calculations 

The Kronig-Penney model [64] is extensively used to approximate the 

band structures of semiconductors.  It assumes a periodic potential arising from 

the close packed atoms in the crystalline structure of a solid.  This periodic 

potential behaves as a potential well for the carriers.  The model calculates the 

behavior of an electron in the average potential of the well.  The average potential 

includes the interactions with all ions and other electrons.  Any interactions 

between the electron and hole bands are neglected thus making the model less 

complex when compared to other band structure calculation models.  The 

Schrödinger equation for these potentials is solved to define the wavefunction of 

an electron or a hole, describing its wave like property in the crystal.  

 
Figure 13: Schematic view of the periodic square potential where ‘a’ is the well 
thickness, ‘b’ is the barrier thickness and ‘Vo’ is the barrier potential. 
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The solution for the Schrödinger equation describing the wavefunction for 

the potential well shown above can be written as: 

                                   
                   

                                 
                      (11) 

where, the wave-vectors are defined by 

                                                      
  

                                                              (12) 

                                           
   

  
                                                        (13) 

The model stands true for wave-vectors close to zero due to the parabolic 

approximation assumed in the energy bands.  The conventional formalism was 

set-up for bulk materials where the effective mass was constant throughout the 

system, which is untrue in the case of superlattice structures.  Superlattice 

structures constitute of alloys having different effective masses and thus a 

modification of the model is necessary.  Though Mukherji and Nag [65] 

accounted for the change of effective mass between the layer but the model was 

still inconsistent as they assumed the wavefunction to be continuous at the 

interfaces of these layers.  It was not until Cho and Prucnal [66] that a generalized 

formalism of the model was proposed for the superlattice structures.  The overlap 

of carrier wavefunctions into the adjacent layers due to their proximity results in 

the development of a sub-band through the superlattice structure.  These sub-

bands are generally referred as minibands.  

The envelope wavefunction approximation [67] is employed to replace the 

continuity of wavefunction at the interfaces.  Figure 14 shows the transition of a 
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single wavefunction in a quantum well to the envelope wavefunction in a 

superlattice structure due to the coupling between them.  The gray and yellow 

rectangles in the superlattice structure represent the bandgap of the two layers.  

 
Figure 14: Schematic comparing the wave-functions of a quantum well and 

superlattice. 

Using the modified boundary conditions the energy bands for the 

superlattice structures can be classified into odd-band and even-band solution 

each having their maximum and minimum energy level.  The energy levels of 

these bands can then be defined as [66]:  
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                                                                                                         (14d) 

The equations 14(a) and 14(b) define the minimum energy and maximum energy 

level of each band respectively.  The smallest solution of 14(a) and 14(b) 

corresponds to the first miniband (ground miniband) in the superlattice and the 

second solution corresponds to the third miniband and hence forth all solutions 

represent the odd-index miniband like 5, 7, etc.  Similarly, the Equation 14(c) and 

14(d) represent the minimum and maximum energy levels for all even-indexed 

bands.  The proportional relationship between the miniband levels and thickness 

of the well and barrier adds an extra degree of freedom in bandgap e ngineering in 

superlattices.  The ground state transition energies can now be controlled with the 

thickness of the layers.  

4.2 Superlattice absorption 

The amount of light absorbed by the detector is characterized by its 

absorption co-efficient.  The absorption co-efficient of a detector is defined as the 
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ratio of number of photons absorbed per unit volume   to the number of photons 

injected per unit area per second [50]. 

                                                            
 

      
                                                    (15) 

The number of photons injected per unit area per second can be derived from the 

photons per unit area per second S and the energy of a photon  ω.  The absorption 

rate of the photons per unit of volume V, can be defined in terms of the initial (Ea) 

and final (Eb) energies of the state between which the electron travels and the 

probability of finding a electron in these states is denoted by fa and fb [50] 

                                
 

 
      

                       

    

                 (16) 

The term    
  is termed as the interband optical matrix element and can be 

represented using the product of momentum matrix and vector potential of the 

optical electric field           
      . 

                                                          
    

   

   
                                                       (17)  

Since the absorption refers to transition of electron from the valence to conduction 

we can refer to the momentum matrix as    .  Though the momentum matrix in 

bulk is defined by the complete envelop wavefunction of the electron and hole but 

in the case of interband transition it depends only on the periodic parts of the 

Bloch functions. 

                                                                 
        

  
                                             (1 ) 
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The term         represents the periodic part for the valence or conduction band 

for the periodic potential V(r) of the crystal.  Then the interband momentum 

matrix and optical matrix element can be approximated by the Equation (19) and 

(20) respectively [50].  

                                                       
    

 

 
      

   

  
                                        (19)  

                                                      
    

   

   
             

                                          (20) 

The term       
 represents the conservation of momentum between the transitions. 

The interband momentum matrix for a superlattice includes the complete 

envelope wavefunction (        ) due to potential vector variations in the growth 

direction, having an initial wave vector   .  The envelope wavefunctions are 

considered for the conduction sub-band ‘n’ and valence sub-band ‘m’. 

                                                                          
  

                                          (21) 

                                                  
           

    
 

  
                                              (22) 

The Equation (22) represents the wavefunction overlap between the two bands 

[50].  Using this value of     into Equation (20) and substituting the interband 

optical matrix Equation (16)   can be written as, 

                           
   

 

 
         

                     

       

           (23) 

The relation of photon absorption rate and the square of wavefunction 

overlap derived in Equation (23) can be utilized to compare various device 

designs.  The energy conservation function between the initial (  ) and final (  ) 
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carrier energies in the relation restricts the comparison to qualitative analysis 

only.  These energy levels are defined by the density of states.  Density of states 

refers to the number of quantum states per unit of energy and is directly 

proportional to the mass of the carrier.  This implies that for the same 

wavefunction overlap the strength of a transition involving a light hole will be 

much lower when compared to the heavy-hole transition.  Thus we will classify 

the transitions involving light hole.  This will aid in better qualitative analysis of 

the design. 

In the following sections we utilize the aforementioned principles of 

quantum theory to find an optimal solution for detectors in the 1.7 to 4 μm range 

by exploiting the type-II alignment between GaInAs and GaAsSb.  

4.3 Engineering the band structure of GaInAs-GaAsSb superlattices using 

Bi 

In the year 1977 Halasz et.al [62] reported the type-II alignment for the 

Ga1-yInyAs/GaAs1-xSbx alloy system.  Since then there have been multiple reports 

on the growth of this material system to realize devices for the short and mid 

wavelength infrared range [68-71].  Most of these attempts utilized a multiple 

quantum well structure for the active region of the device.  Only few of them 

exploited the type-II alignment for superlattice design with no attempt to optimize 

the design.  We utilize the type-II superlattice design in an attempt to improve the 

wavefunction overlap beyond the multiple quantum well structure and also 

provide an optimized solution for the short and mid infrared wavelengths.  
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The longest wavelength achievable is restricted to 1.69 µm for 

Ga0.47In0.53As and 1.73 µm in the case of GaAs0.51Sb0.49 by their bulk bandgap.  

Whereas the type-II alignment between Ga1-yInyAs/GaAs1-xSbx overcomes this 

restriction to realize wavelengths beyond that of either constituent on InP 

substrates.  The minibands simulated using the Kronig-Penney model for the 

Ga0.47In0.53As/GaAs0.51Sb0.49 type-II alignment, are shown in Figure 15.  The layer 

with 2 nm thickness represents the Ga0.47In0.53As and the adjacent with 8 nm 

thickness demarcates the GaAs0.51Sb0.49 layer.  The bands shown in green 

represent the electron minibands where the second miniband is not completely 

confined and extends beyond the highest conduction band level of GaAsSb.  The 

heavy holes are marked in blue while as the bands in pink represent the light hole 

minibands. 

 
Figure 15: Schematic diagram showing the minibands formed in the Ga0.47In0.53As 

- GaAs0.51Sb0.49 type-II superlattice.  Electron minibands are shown in green 
shaded boxes, heavy holes by light blue and light holes by pink.  The black 
arrows represent some of the possible transitions between the different minibands 
with each transition marked by the minibands involved.  
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Due to the difference in masses the light hole level tends to shift faster towards 

lower energy levels.  The figure also depicts some of the several possible 

transition energies between these minibands.  As the electron minibands shift to 

higher energy the confinement energy is reduced and thus the minibands are 

broader.  Similarly, the hole minibands are thicker at lower energies.  The 

difference in effective mass for light hole and heavy hole explains the larger shift 

observed in light hole minibands.  The heavier effective mass of heavy holes also 

results in lower transport factor consequently reducing the penetration into 

adjacent layers.  This explains the thinner heavy hole minibands compared to the 

light hole or electron minibands.  This work concentrates on the effective bandgap 

of the superlattice or the ground state transition energy (0.595 eV) defined by the 

first electron and hole miniband and hence. 

Figure 16 shows a contour plot for the extended range of wavelengths that 

can be covered by varying the thicknesses of the layers.  The dashed black and 

blue line represents the bandgap for GaAs0.51Sb0.49 and Ga0.47In0.53As respectively 

with the green dashed line marking the smallest possible transition in the 

superlattice.  The family of curves shown in red is extracted by varying the  

thickness of the GaAs0.51Sb0.49 for a constant thickness of the Ga0.47In0.53As layer.  

The larger bandgap is observed for the superlattice with smallest period due to the 

enhancement of the two-dimensional confinement energy in the superlattice 

system. 
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Figure 16: Family of curves for transition energy versus GaAsSb thickness at 

different Ga0.47In0.53As thicknesses represented by red curves.  The solid blue 
curves denote the constant squared wavefunction overlap where the largest 
overlap for different wavelengths are connected by the solid black line also called 
the optimal design.  The inset shows the type-II band alignment between the 

GaInAs/GaAsSb material system with the constituent bandgaps and the smallest 
possible transition between them. 

The minibands are continuous energy levels approximated by replacing 

the fast changing potentials with an effective potential derived from the two layers 

in the superlattice.  This can be observed in the slope of family of curves for layer 

thicknesses.  The slope approaches zero as one of the layers is thicker in 

comparison to the other and the slope is higher when they are similar, with 

exception of reaching the maximum or minimum possible transition energy.  The 

layer thicknesses near the minimum possible transition energy are too thick thus 

diminishing the effect of superlattices.  Thus at these thicknesses the ground state 

minibands saturate near the band edge of the layers behaving like bulk alloys.  

The energy level of the minibands also relies more on the thicker layer.  This 
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explains the nearly flat curves at very thin GaInAs and thick GaAsSb layers or 

near the maximum possible transition.  

With an interest to improve the wavefunction overlap for each wavelength 

it is must to have the wavefunction overlap plotted in the same graph.  This is 

accomplished by plotting the contour maps for the squared wavefunction overlap 

atop the family of curves, which are represented by the light blue curves.  Each 

curve marks the overlap achieved for a specific transition at different layer 

thicknesses.  In general the wavefunction overlap in a superlattice system is 

increased by decreasing the superlattice period.  This explains the high 

wavefunction overlap achieved at the very short periods of the super lattice.  As 

the thickness of the layers is increased the layers begin to behave like bulk alloys 

confining the electrons to GaInAs and holes to GaAsSb layer.  This increase in 

carrier confinement in the adjacent layers reduces the wavefunction overlap 

between the carriers hence deteriorating the optical performance of the 

superlattice.  The lowest point on each of these curves corresponds to the highest 

overlap that can be achieved for a specific wavelength.  The solid black line 

connects these minima over the entire spectrum thus demarcating the best 

achievable squared wavefunction overlap for all wavelengths.  Since the line 

defines the optimum design parameters it is here on referred as the optimal design 

line. 

Though the superlattice system is capable of covering the entire 1.7 to 4.0 

μm wavelength but the results obtained with incorporation of bismuth in the Ga1-

yInyAs-GaAs1-xSbx alloy system look promising.  Improvement in wavefunction 
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overlap is observed with each percent increase of bismuth in the superlattice 

system.  These results and some other major findings from similar simulations are 

discussed below. 

 
Figure 17: Band edge alignment for GaAsSb(Bi) and GaInAs(Bi) with different 

bismuth concentrations lattice matched to InP. 

The impurity level of bismuth is positioned 0.61 eV below the valence 

band of Ga0.47In0.53As.  The highly localized nature of the impurity level leads to 

subsequent interaction with the host semiconductors valence band.  This 

interaction is simulated using the BAC model which consequently predicts the 

formation of sub-bands.  The conduction band was linearly interpolated between 

Ga0.47In0.53As and GaAs0.68Bi0.32.  It is these sub-bands which result in an upward 

shift of the valence band minima with respect to its original position.  The 

resultant band edge alignment for Ga1-yInyAs1-xBix reduces the bandgap by 71 
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meV per % of bismuth.  Similar calculations were also performed on 

GaAs0.51Sb0.49 where the impurity level is 1.64 eV below the host’s valence band.  

The simulated energy dispersion curves show a downward shift in the conduction 

band edge and upward shift in the valence band edge.  These shifts result in 

bandgap reduction by 59 meV per % of bismuth for the novel quaternary GaAs1-x-

ySbxBiy.  Figure 17 summarizes the band edge alignment obtained for the two 

quaternaries when lattice matched to InP. 

Due to reasons such as larger reduction in bandgap and interaction of 

bismuth mainly with valence band in Ga1-yInyAs1-xBix compared to GaAs1-x-

ySbxBiy we decide to carry further the remainder of the studies using the former 

alloy.  Increase in the lattice constant due to larger bismuth atoms replacing 

arsenic in Ga1-yInyAs is compensated by reducing the indium concentration and 

replacing it with the smaller gallium atoms, preserving the lattice match 

condition.  Whereas when bismuth replaces antimony in GaAs1-xSbx it is achieved 

by increasing the mole fraction of arsenic.  Furthermore, the drastic reduction of 

bandgap with dilute quantities of bismuth in the Ga1-yInyAs layer also suggests the 

use of bulk Ga1-yInyAs1-xBix for the entire 1.7 to 4.0 μm range.  

Bulk alloy have an added advantage of ideal wavefunction overlap since 

all the carriers will be confined to a single layer.  Figure 18 shows the bandgap for 

varying bismuth concentration in Ga1-yInyAs1-xBix.  The 4.0 μm wavelength can 

be realized with 6.8% of Bi in the alloy.  However it must be noted that it is 

extremely difficult to incorporate bismuth into the lattice due to large atomic size 

and hence a trade-off has to be meet while fabricating the alloy. 
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Figure 18: The bandgap of Ga1-yInyAs1-xBix for increasing bismuth mole fraction 
in the alloy. 

This problem can be resolved by utilizing smaller quantities of bismuth in 

the GaInAs/GaAsSb superlattice system.  Figure 19 shows the alignment of the 

two alloys and few important transition energies with and w ithout bismuth.  The 

GaAsSb layer enacts as the hole well and GaInAsBi layer as the electron well.   

The smallest possible superlattice transition is defined by the lowest conduction 

band level and the highest valence band level in the superlattice system.  Other 

transition energies possible from various energy levels formed by the minibands 

are marked in the picture as conduction band and valence band ground state 

range. 

Since bismuth works mainly with the valence band of GaInAs thus in the 

figure we see the valence band shifted up with bismuth but the conduction 

movement is not discernible.  With 5% bismuth in the GaInAs(Bi) layer the 
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transition energy reduces from 0.733 eV to 0.399 eV and the smallest transition 

possible between the two layers reduces from 0.298 eV to 0.273 eV. 

 
Figure 19: Schematic showing possible transition energies and bandgap in the 
GaInAs(Bi)-GaAsSb type-II superlattice.  The dashed blue line represents the 
shift observed in the valence band edge for GaInAs with 1% bismuth.  

To compare the impact of bismuth in the superlattice system we plot the 

squared wavefunction contour plots at different bismuth concentrations.  Figure 

20 shows the contour plot for 1% bismuth in the GaInAs lattice.  The reduced 

bandgap of GaInAs with addition of Bi can be seen from the shift of the dashed 

black line to a lower energy level.  There is also a minute reduction in the smallest 

possible transition energy from 0.298 eV to 0.297 eV.  Square of the 

wavefunction overlap at 2.7 μm improved to 0.23 with 1% of bismuth compared 

to 0.19 without bismuth.  Another noticeable feature with addition of bismuth into 

the superlattice was the formation of a new region bound by the bandgap of the 

two constituent materials where the wavefunction overlap attained values close to 

1. 
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Figure 20: Family of curves for transition energy versus GaAsSb thickness at 
different Ga0.48In0.52As0.99Bi0.01 thicknesses represented by red curves.  The solid 
blue curves denote the constant squared wavefunction overlap where the largest 

overlap for different wavelengths are connected by the solid black line also called 
the optimal design line. 

The entire range of wavelengths covered by the superlattice system is 

divided into short period superlattice region and extended wavelength region.  

The short period superlattice alloy region is seen for the thinner period 

superlattices.  This implies that the superlattice period at very thin layers act as 

“one” layer hence behaving like a digital alloy.  The confinement of the carrier 

wavefunctions within “one” layer explains the high wavefunction overlap 

observed in the short period superlattice.  For the short period superlattice region 

the wavefunction improves continuously as the superlattice period is reduced 

which is not true in the case of extended wavelength region.  The maximum 

wavefunction overlap attained for a given wavelength is defined by a point on the 

optimal design line.  
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Figure 21: Family of curves for transition energy versus GaAsSb thickness at 
different Ga0.52In0.48As0.97Bi0.03 thicknesses represented by red curves.  The solid 
blue curves denote the constant squared wavefunction overlap where the largest 

overlap for different wavelengths are connected by the solid black line also called 
the optimal design line.  

 
Figure 22: Family of curves for transition energy versus GaAsSb thickness at 

different Ga0.55In0.45As0.95Bi0.05 thicknesses represented by red curves.  The solid 
blue curves denote the constant squared wavefunction overlap where the largest 
overlap for different wavelengths are connected by the solid black line also called 
the optimal design line. 
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On further increment of the bismuth mole fraction in the alloy a similar 

trend of changes are observed.  The bandgap of the GaInAsBi further reduced and 

the area the short superlattice period increased as seen from Figure 221, 22.  The 

maximum wavefunction overlap for the 2.7 μm wavelength increased to 0.3  and 

1 with 3% and 5% bismuth respectively.  

The optimal designs from the different bismuth mole fractions are plotted 

together in order to define the best design.  Figure 23 plots the optimal design line 

for transition energy as a function of varying GaAsSb layer thickness.  This is 

repeated for all concentrations of Bi in the GaInAs layer.  Since for the transition 

energies larger than the minimum bandgap we observe the short period 

superlattice region which do not have an optimal design the curves are restricted 

by the bandgap of the GaInAs(Bi) layer.  Similarly, the GaInAs(Bi) layer 

thickness for different wavelengths on the optimal design line are plotted against 

the corresponding GaAsSb layer thickness in Figure 24. 

On comparing the optimal design for different bismuth mole fractions in 

the superlattice system a set of parametric equations are deduced with an aim to 

define the best superlattice design at each wavelength.  Since the curve fit on each 

optimal design line is utilized to determine the system of equations, they are 

termed as optimal design rules.  Eventually, the resultant parameters obtained 

from these optimal design rules are bound to give the best wavefunction overlap 

for the selected cut-off wavelength.  To derive the best superlattice period for a 

cut-off wavelength a two step method has to be followed.  First with defined 

transition energy (E) or wavelength of interest Equation (24) can be utilized to. 
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Figure 23: Comparison of optimal designs for the GaInAs(Bi)/GaAsSb 
superlattice system at different GaAsSb layer thicknesses over the 1.7 to 4.0 um 
range for different bismuth concentraions in the GaInAs layer. 

 
Figure 24: GaInAs(Bi) versus GaAsSb optimal thickness curves for different 
bismuth concentrations in the GaInAs(Bi)/GaAsSb superlattice system. 



 

62 

deduce the thickness of the GaAsSb layer.  In the second step this thickness is 

substituted in Equation (25) to assess the best thickness for the GaInAsBi layer  

                                                                
    

    

                                       (24) 

                                                              
  

    

 
   

                                         (25) 

where,    and    represent the thickness of GaAsSb and GaInAsBi respectively.   

Table 1: Constants defined in the optimal design rules for different dilute bismuth 
concentrations in GaInAs. 

 
Table 1 presents the constants for the Equation (24) and (25) for each of 

the above presented bismuth percentages.  It can be inferred from the table that E0 

is closely related to the minimum bandgap achievable.  

Although higher percentages of bismuth in the superlattice system is proportional 

to higher wavefunction overlap but it is difficult to predict which solution of 

bismuth will be the most efficient considering the complexity involved in adding 

bismuth in the alloy.  The graph in Figure 25 shows a comparison for the best 

squared wavefunction overlap achieved for the wavelengths covered by the 

Transition Energy versus thickness GaInAs(Bi) versus GaAsSb 
thickness 

Bi 

(%) 

EBi1 (eV) EBi2 (eV) dBi1 (nm) dBi2 (nm) dBi3 (nm) pBi 

0 0.3013 0.1783 2.902 0.8718 0.6707 1.4078 

1 0.3007 0.2928 2.525 0.4092 0.4903 1.2310 

3 0.2886 0.4582 2.999 2.4121 3.3063 1.3483 

5 0.2803 0.4929 2.937 3.2855 6.1989 1.1962 
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superlattice with the different bismuth concentration in the GaInAs layer.  The 

dashed black line represents the bandgap of the GaInAs(Bi) layer which in turn 

defines a cut-off wavelength for the design.  The cut-off wavelength shifts to 

longer wavelengths as the fraction of bismuth is increased.  The wavelengths 

longer than the cut-off wavelength fall in the extended wavelength region and are 

defined by optimal design line.  The squared wavefunction overlap approaches 

unity as we move closer to the cut-off wavelength for the respective design.  All 

wavelengths shorter than the cut-off wavelength fall under the short period 

superlattice region where the ideal wavefunction overlap can be realized with 

extremely thin layers. 

 
Figure 25: Best squared wavefunction overlap achievable for the MWIR spectrum 
at different bismuth concentrations. 
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Equation (26) best describes the curves obtained in Figure 25 at different 

bismuth concentrations, where the constants defined in the equation are listed in 

Table 2.  

                                                         
 

    

                                   (26)  

Table 2: Constants defined in the design equation for wavefunction overlap at 
different dilute bismuth concentrations in GaInAs. 

Bi 

(%) 

ABi1 ABi2 EB3 (eV) 

0 0.9957 0.4611 0.5008 

1 0.2346 0.0436 0.1928 

3 0.0310 1.916*10
-4

 0.0605 

5 1.243*10
-5  

5.128*10
-9

 0.0214 

 

The wavefunction overlap doubles as the bismuth increases from 0% to 

3% in the superlattice.  Thus from our calculations it is evident that dilute 

quantities of bismuth can form lattice matched alloys with an improved 

wavefunction overlap.  Although the important point to remember is the amount 

of bismuth that can be incorporated into these structures.  For bismuth 

concentration above 6.8% the complete 1.7 to 4 μm can be achieved with the bulk 

GaInAsBi.  For any value below this concentration the optimal design rules 

derived need to be utilized to attain the best wavefunction overlap with the 

superlattice system.  In the following chapter we apply strain on the 
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GaInAs/GaAsSb system to improve the efficiency of the system without having to 

add Bi in the layers. 
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5 STRAIN-BALANCED SUPERLATTICE DESIGN 

Large strains due to lattice mismatch between the superlattice layers can 

adversely affect the quality of growth.  The enormous force applied by these 

strains on the layers can result in misfit dislocations when the layer tends to relax 

to its original lattice.  If the strain in a layer is counterbalanced by an opposite 

strain in the adjacent layer these forces acting at the interfaces can be nullified.  

Such a condition is defined as a strain-balanced condition.  This is feasible in the 

GaInAs/GaAsSb superlattice system if the strain on the GaInAs layer can be 

compensated by an equal and opposite strain on the GaAsSb layer.  Alternating 

this pattern in the design can assist in the growth of thicker superlattice stacks 

with negligible chance of relaxation on either ends of the stack.  The difference in 

strain levels of the adjacent layer can also be compensated by varying the 

thickness of the layer.  

Presence of strain in the layers also modifies the band edge alignment of 

the system.  Tensile strain shifts the conduction band down towards lower 

energies and the degenerate valence band splits, with the light hole shifting up and 

the heavy hole shifting down.  On the other hand compressive strain reverses the 

direction of these shifts.  The conduction band and heavy hole shift upwards to 

higher energies while as the light hole shifts down.  The resultant band edge 

alignment from the strain-balance condition reconstructs the superlattice 

minibands hence modulating the ground state transition energy.  This chapter 

details the effect of various strain levels on parameters like band offsets and 
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wavefunction overlap in the GaInAs-GaAsSb superlattice on InP substrates for 

the 1.7 to 4.0 μm spectrum. 

5.1 Coherently strained superlattices 

The thickness of a layer below which the mismatch between the substrate 

and layer lattice constant can be accommodated by strain is called critical 

thickness.  When the layer thickness exceeds this critical dimension the force 

exerted by the mismatch is large enough to relax the layer lattice constant to its 

original value consequently producing misfit dislocations in the strained layer.  

These misfit dislocations act as non radiative recombination centers which 

adversely affect the optical efficiency of a device. 

Matthews and Blakeslee [72] developed a model to estimate the critical 

thickness of a strained layer.  They utilized the force exerted by the misfit strain 

and tension in the dislocation line to explain the change of symmetry at interfaces 

between the layers.  The thickness at which the interface loses its coherency due 

to strain can be expressed by [72]. 
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where    and    denote the substrate  and layer lattice constant respectively,   is 

the layer strain,    ,     are the elastic constants of the layer and    is critical 
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thickness of the layer.  With the layer limited to the critical thickness it is feasible 

to grow a strained layer and modulate the band edge alignment of the alloy 

without misfit dislocations.  

Strain reconfigures the band edge alignment thus modulating the bandgap 

of an alloy.  With the intent to improve efficiency using strain over the extended 

range of wavelengths covered by the GaInAs/GaAsSb type-II superlattice system 

it is necessary to estimate the shift in the conduction band and valence band edge 

due to the strain.  The shift in conduction band    , light hole        and heavy 

hole        can be described by the following set of equations.  
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   and    are the parallel and perpendicular component of strain on the 

layer.    ,    represent the hydrostatic deformation potentials and    is the shear   
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deformation potential. 

It is important to have a consistent method to calculate the strain-balance 

condition for the superlattice system.  Daukes et.al [73] published a 

comprehensive paper comparing the available methods to calculate strain-balance 

conditions.  The paper categorizes them as average lattice method, thickness 

weighted method and zero-stress method.  The average lattice method calculates 

the final lattice parameter    from the thickness average of the lattice constants 

for the compressive and tensile layers.  Equation (29) represents this method 

numerically where the thicknesses of the two layers are represented by       and 

their respective lattice constants by      .  Second technique equates the strain-

thickness products for the tensile and compressive layers.  The basic form for this 

method is shown in Equation (30a) and (30b) which neglects the differences in 

the elastic constants (     ) defined by deformation potentials of the layer.  The 

Equation (30c) and (30d) takes into account the differences between the elastic 

constants.  

                                                        
           

       
                                                   (29) 

                                                                                                                    (30a) 

                                                       
            
           

                                               (30b) 

                                                                                                              (30c) 

                                                    
                
               

                                       (30d) 

                                                                                                         (31a) 
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                             (31b) 

The paper presents zero stress method as the most rigorous derivation for 

finding the strain-balance condition.  The biaxial strain on the layers induces an 

effective in-plane stress which causes the lattice distortion.  Hence the method 

considers the effect of stress when strain-balancing two layer with opposite strain.  

The zero average in-plane stress can be derived from the average strain energy 

density with respect to strain in one layer [73].  This is then used to deduce the 

final lattice constant as shown in (31b). 

To compare the different techniques a strain-balanced condition for 1% 

tensilely strained Ga0.61In0.39As and 1% compressively strained GaAs0.38Sb0.62 

layers was calculated using all the four methods.  For a 1.5 nm thick Ga0.61In0.39As 

layer the equivalent thicknesses yielded for the GaAs0.38Sb0.62 by the four methods 

are listed in the table below. 

Table 3: Comparison between different strain-balancing methods. 

 Average 
lattice 

Basic 

thickness 
weighted 

Thickness 

weighted with 
elastic constants 

Zero-Stress 

dGaAsSb (nm) 1.47 1.50 1.58 1.62 

 
Since the differences in the resultant values for the four methods are 

practically insignificant the basic form of thickness weighted method is used to 

calculate the strain-balance. 
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5.2 Band alignment for strained GaInAs-GaAsSb 

The band edge alignment of a compound is modulated with the 

introduction of strain into its lattice.  Thus to realize its potential it is important to 

analyze these alignments.  The band edge alignment for the compressively 

strained GaAsSb layer and the tensilely strained GaInAs layer for three different 

strains is shown in Figure 26. 

 
Figure 26: Band edge alignment for tensilely strained GaInAs on InP is shown by 
the red lines.  Similarly the black lines denote the compressively strained GaAsSb 
layer on InP.  The dashed lines represent the light hole energy level for each 

alignment.  

In order to compressively strain GaAs1-xSbx on InP substrates the lattice 

constant for the tertiary alloy has to be greater than the lattice matched conditions 

(x > 0.49).  This is achieved by decreasing the  mole fraction of smaller arsenic 

atom and replacing it with the larger antimony atom.  To introduce tensile strain 

in the Ga1-yInyAs layer the lattice constant for the layer is reduced below the InP 
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lattice constant by increasing the gallium mole fraction in the alloy (y < 0.53).   

Since these alignments have a positive bandgap the uppermost solid line in Figure 

26 stands for the conduction band and lower solid lines mark the heavy holes.  

The dashed lines represent the light hole level for each alignment.  The alignment 

becomes more type-II with increase in strains on the layers thus implying validity 

of the strain method to improve the efficiency of the system.  

Bandgap of the GaInAs layer increases from 0.73 eV to 0.74 eV with 

0.3% strain.  Although a reduction in the bandgap is expected but the tensile strain 

also results in increased Ga fraction.  As the mole fraction of Ga is increased we 

move closer to the GaAs binary which has a much larger bandgap than the lattice 

matched Ga0.47In0.53As and hence the increase in bandgap.  

For the Figure 27 the GaAsSb is tensilely strained and the GaInAs is 

compressively strained.  The lattice constant for GaAs1-xSbx is decreased below 

the lattice matched condition (x < 0.49) to apply tensile strain on the layer.  To 

maintain the strain-balanced condition the strain on GaInAs has to be 

compressive.  The lattice constant for Ga1-yInyAs is increased beyond the lattice 

matched condition (y > 0.53) to compressively strain the layer. 

Similar to the case of tensile strain in GaInAs, the tensile strain on 

GaAsSb also observes an increase in the bandgap due to higher content of GaAs 

in the alloy.  It can be seen in Figure 27 that with increase in, tensile strain on 

GaAsSb layer and compressive strain on GaInAs the alignment becomes less 

type-II.  This will defeat the very purpose of using type-II superlattice to reach 

bandgaps smaller than either constituent. 
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Figure 27: Band edge alignment for compressively strained GaInAs on InP is 

shown by the black lines.  Similarly the red lines denote the tensilely strained 
GaAsSb layer on InP.  The dashed lines represent the light hole energy level for 
each alignment.  

In addition, even with state of the art growth techniques it is impossible to 

grow perfect crystalline layer with strains larger than 3%.  Thus for all further 

calculations we restrict the maximum value of strain on either layer to 3%.  

Nevertheless the strain-balance method can still be utilized to improve the 

performance of the superlattice system for the extended wavelengths. 

5.3 Extended wavelengths for strain-balanced GaInAs-GaAsSb 

The transition energy for an unstrained superlattice system is dependent on 

the minibands which in turn is governed by the thicknesses of the two constituent 

layers.  With induction of strain in the system the list is appended to include the 

strain on either layer thus increasing the complexity of the problem.  Each set of 
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values for these four variables has to satisfy the thickness weighted relation in 

Equation (30a) to attain a strain-balanced condition.  To tackle this problem we 

classify the problem into a two-fold process.  First, find the optimal thickness 

design for all possible strain-balanced conditions.  In the second fold each of these 

optimal designs for a specific strain balance condition are compared to pick the 

best design.   

Since for the strain-balanced condition the transition energy is defined by 

the thickness and strain from each layer the possibility of realizing specific 

transition energy turns into a multi-dimensional problem.  This problem is solved 

by slicing it into two parts, where for the first part the strain on a layer is kept 

constant and the remaining three variables are changed over a defined range in a 

plot.  The constant strain on one layer is compensated by a varying strain on the 

other layer to achieve the strain balanced condition over a range of thicknesses.  

Since the strain and thickness for a layer are related by the strain-balanced 

condition they can be plotted on a single axis.  Thus the transition energy can be 

again plotted as a function of the two layer thicknesses. 

There are four ways to plot the varying layer thicknesses and strains for 

the system.  In the first case, a family of curves for different thicknesses with a 

varying compressive strain on one layer is plotted while the layer with constant 

tensile strain is held at the x-axis.  Second method swaps the strain between the 

layers so that a family of curves is plotted with a varying tensile strain and the  

constant compressive strain layer is held at the x- axis.  The varying strain for the 

above mentioned methods can also be held at the x-axis.  This variation adds two 
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more methods of plotting where the strain on the layer at the horizontal axis can 

be varied or kept constant.  

   
(a)      (b) 

Figure 28: Transition energy versus GaInAs thickness curves for varying GaAsSb 
thickness.  Each red curve indicates a variable a) compressive and b) tensile strain 

on GaAsSb layer for a constant 1% a) tensile and b) compressive strain on 
GaInAs layer. 

Figure 28(a) depicts the first case where the Ga0.319In0.681As layer having 

1% constant tensile strain is held at the horizontal axis.  The family of curves for 

different thickness is plotted with compressive strain below 3% on the GaAsSb 

layer.  The image on the right swaps the strain to apply 1% compressive strain on 

Ga0.319In0.681As layer whereas a varying tensile strain below 3% is applied on 

GaAsSb. 

In Figure 29 the varying strain on GaAsSb is held at the x-axis.  The 

GaAs1-xSbx layer is tensilely strained in Figure 29(a) and family of curves is then 

traced for 1% compressive strain on GaInAs.  For Figure 29(b) the strain on the 

layers are swapped to apply compressive strain on the GaAsSb layer and tensile 

on GaInAs layer.  
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  (a)       (b) 
Figure 29: Transition energy versus GaAsSb thickness curves for varying GaInAs 
thickness.  Each red curve indicates a constant 1% a) compressive and b) tensile 

strain on GaInAs layer for a variable a) tensile and b) compressive strain on 
GaAsSb layer. 

The plots in Figure 28 show that the family of curves with constant strain 

on the horizontal axis are too crammed and complex.  This makes it extremely 

difficult to plot and compare the contours for the squared wavefunction overlap 

on these plots.  Due to these complications we can rule out the methods which 

plot the constant strain on the horizontal axis.  In Figure 29 we assess the method 

of plotting the layer with varying strain on the horizontal axis and have family of 

curves for the constant strain.  These graphs look promising as the family of 

curves is well spaced and it is lot simpler to plot the wavefunction overlap 

contours.  Figure 29(b) shows optimal design line to be limited by the maximum 

strain allowed on the varying strain layer therefore simplifying the comparison of 

various designs.  Thus it can be deduced that it is best to plot the family of curves 

for the layer with constant tensile strain while the layer with varying compressive 

strain is held at the x-axis. 
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The above graphs were limited to 1% constant strain with either 

compressive or tensile strain on the layers.  To realize the optimal solution for the 

strain balanced conditions it is required to explore these conditions over a range 

of strain levels.  To compare the acquired results the range here is limited to 0.3%, 

1% and 3% for either direction of strain. 

 
Figure 30: Transition energy versus GaAsSb thickness curves with constant 
squared wavefunction overlap curves in blue.  Each red curve denotes a varying 
compressive strain on GaAsSb layer with a constant 0.3% tensile strain on 

GaInAs layer.  The dashed lines represent curves of constant compressive strain 
on GaAsSb layer.  The inset depicts the band edge alignment for various strain 
conditions marked on the plot.  

To begin with we plot the squared wavefunction overlap contour plot for 

0.3% tensilely strained Ga0.509In0.491As.  The compressive strain on GaAsSb varies 

to attain a strain balanced condition for each pair of layer thicknesses on the red 

curves.  The dashed black lines on the contour plot depict the constant strain lines 

for GaAsSb over the entire region.  The band edge alignment for these strain 

lines, along with the tensilely strained GaInAs is shown to the right of the plot.  
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The solid black line represents the optimal design in the 1.7 to 4 μm range.  

Square of the wavefunction overlap at 2.7 μm improved from 0.19 to 0.27 as 

compared to the lattice matched Ga0.47In0.53As-GaAs0.51Sb0.49 system. 

 
Figure 31: Transition energy versus GaAsSb thickness curves with constant 
squared wavefunction overlap curves in blue.  Each red curve denotes a varying 

compressive strain on GaAsSb layer with a constant 1.0% tensile strain on 
GaInAs layer. 

In Figure 31 the tensile strain on GaInAs is increased to 1% and a notable 

difference from the 0.3% tensile strain is the optimal design line.  With 1% tensile 

strain on the GaInAs layer the optimal design line is  defined by the strain on 

GaAsSb and hence each constant strain line is shown as a solid black line.  Only 

for the 3% strain line the best wavefunction for the wavelengths are defined by a 

minimum point on the overlap curves.  Thus the strain line is shown by the dashed 

black line until the optimal design line merges into it.  Also square of the 

wavefunction overlap is observed to improve for wavelengths beyond 3.6 μm 

with increase in compressive strain on GaAsSb.  This stands true for the shorter 

wavelengths if the stra in is limited to 1% on the GaAsSb layer. 
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Figure 32: Transition energy versus GaAsSb thickness curves with constant 
squared wavefunction overlap curves in blue.  Each red curve denotes a varying 
compressive strain on GaAsSb layer with a constant 3.0% tensile strain on 

GaInAs layer. 

Table 4: Critical thicknesses for compressively strained GaAsSb layer and 
tensilely strained GaInAs layer. 

Strain (%) GaAsSb 

critical 

thickness 
(nm) 

GaInAs 

critical 

thickness 
(nm) 

0.3 340 330 

1 54.4 53.51 

3 13.95 13.83 

 

As the light hole shifts to higher energy for 3% tensile strain on GaInAs 

layer it is possible for the ground transition to be defined by a electron and light 

hole miniband.  However for light holes to define the highest miniband the 

GaInAs layer needs to much thicker compared to the GaAsSb. Since the GaAsSb 

thicknesses for which this condition is satisfied is extremely small and thus we 
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can neglect them. On comparing the best squared wavefunction overlap at 2.7 μm 

for 1% and 3% tensile strain on GaInAs we observe a reduction from 0.35 to 0.20.  

The critical thicknesses calculated using Equation (27a) for the two layers at the 

different strain levels are listed in Table 4.  

The wavefunction overlap improved for the 0.3 % and 1 % tensile strain 

on the GaInAs but reduced for 3% strain.  This result suggests an optimized strain 

level for the tensilely strained GaInAs between the 1% and 3% strain levels.  At 

the same time it is important to reverse the strain between the layers and carry out 

similar simulations to characterize the best strain design for the system.  

For the next group of simulations the GaAsSb layer is tensilely strained 

and a complementary compressive strain is applied on the GaInAs layer.  Similar 

to the earlier plots the family of curves for different thickness is traced for the 

layer with constant tensile layer.  The layer with varying compressive strain is 

held at the horizontal axis.  Figure 33 shows the effect of 0.3% tensilely strained 

GaAsSb layer on the family of curves for varying compressive strain on the 

GaInAs layer at the horizontal axis.  The dashed black lines represent the constant 

strain for the GaInAs layer.  The valence band regains its degeneracy for all 

GaInAs thicknesses beyond 2nm when the GaAsSb layer is 12nm thick. Beyond 

this thickness of GaAsSb the light holes begin to define the ground state 

transitions. 
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Figure 33: Transition energy versus GaInAs thickness curves with constant 
squared wavefunction overlap curves in blue.  Each red curve denotes a varying 

compressive strain on GaInAs layer with a constant 0.3% tensile strain on 
GaAsSb layer.  The dashed black lines represent curves of constant compressive 
strain on GaInAs layer.  The dashed red and blue curves represent the lowest 
electron to light hole transition and its wavefunction overlap respectively. 

In general, the light holes are less confined than heavy holes due to their 

higher transport factor.  Hence the wavefunction overlap for the light holes can be 

larger than the heavy holes.  However the density of states for light holes is lower 

than the heavy holes due to the difference in their masses which may result in 

reduced absorption.  The superlattice density of states is directly proportional to 

the effective mass of the charge carrier [74].  Since the heavy hole for both layers 

is 10 times greater than the light hole we can approximate the density of states to 

be higher by a similar factor.  Therefore the light hole governed transitions cannot 

be directly compared with the heavy hole transitions.  To demarcate the difference 

between ground state transitions defined by the light hole each and heavy hole 

each thickness curve has been marked by dashed and solid lines respectively.  
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Furthermore due to the difference between the effective masses for the 

light hole and heavy hole there is a difference between the shifts observed in the 

respective minibands.  This difference explain the large energy gap between the 

light and heavy hole ground state transitions as the strain on GaInAs layer reduces 

below 0.3%.  In addition the energy levels of the minibands are also largely 

reliant on the thicker GaInAs layer which augments the downward shift of the 

light hole miniband in turn increasing the electron to light hole transition energy.  

Once the GaAsSb layer thickness is large enough this effect reduces and the light 

hole ground state transitions begin to define the superlattice bandgap.  

The wavefunction overlap for the graph is also shown separately for the 

light hole and heavy hole ground transition.  The squared wavefunction overlap 

for the heavy hole is shown by solid blue lines whereas the dashed blue lines 

represent the light hole transitions.  The optimal design line is defined by the best 

wavefunction overlap achieved at each wavelength.  Due to its proximity to the 

0.3% tensile strain line for GaInAs it has been shown separately by the solid black 

line in the contour plot for Figure 34. 

With the increase of tensile strain on the GaInAs to 1% the range of 

wavelengths covered by the heavy hole transition reduces.  This can be seen in 

Figure 35 where the light holes begin to dominate the ground state transitions for 

GaAsSb layer thicknesses beyond 5 nm compared to the 12 nm with 0.3% tensile 

strain on GaAsSb.  The larger downward shift of the heavy hole level with 

increasing tensile strain on GaAsSb layer results in shift of the heavy hole 

miniband to lower energy. 
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Figure 34: Transition energy versus GaAsSb thickness curves with optimal design 
line for varying compressive strain on GaAsSb layer with a constant 0.3% tensile 

strain on GaInAs layer. 

 
Figure 35: Transition energy versus GaInAs thickness curves with constant 

squared wavefunction overlap curves in blue.  Each red curve denotes a varying 
compressive strain on GaInAs layer with a constant 1.0% tensile strain on 
GaAsSb layer. 

Another noticeable change is the optimal design line which is now defined 

by the amount of compressive strain applied on the GaInAs layer.  Square of the 

wavefunction overlap increased for 2.7 μm from 0.07 with 0.3% tensile strain on 
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GaAsSb to 0.19 at 1% tensile strain.  Since the increment in wavefunction overlap 

is observed for the light hole transitions it is not appropriate to compare the 

improvement with the heavy hole transitions in the earlier designs. 

 
Figure 36: Transition energy versus GaInAs thickness curves with constant 

squared wavefunction overlap curves in blue.  Each red curve denotes a varying 
compressive strain on GaInAs layer with a constant 3.0% tensile strain on 
GaAsSb layer. 

As the tensile strain is increased to 3% the ground state transition is 

mostly dominated by light hole transitions.  The reduction in the longest 

achievable wavelength can be associated with the reduced type-II alignment 

between the two layers.  The increased GaAsSb bandgap due to larger GaAs 

fraction in the alloy shifts the valence band downwards thus reducing the type-II 

alignment with GaInAs.  The minimum possible transition is then dominated by 

the compressively strained GaInAs layer.  The heavy hole always forms a type-I 

alignment but the light hole remains type-II for all configurations.  This explains 

the high wavefunction overlap achieved for the heavy hole transitions, marked by 

the solid light blue lines.  On the other hand the wavefunction overlap drops 
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drastically as the transitions are defined by the light holes.  The squared 

wavefunction overlap for the 2.7 μm wavelength defined by the light holes is 

reduced to 0.01 from 0.19 at 1% tensile strain.  

Furthermore, the thicknesses utilized to cover the extended wavelength 

regime exceed the critical thickness values.  Thus the longest wavelength that can 

be realized without creating misfit dislocations is limited to 2.72 μm.  The critical 

thicknesses for the layers at different strain levels have been listed in Table5.  

Table 5: Critical thicknesses for tensilely strained GaAsSb layer and 

compressively strained GaInAs layer.  

Strain (%) GaAsSb 

critical 

thickness 
(nm) 

GaInAs 

critical 

thickness 
(nm) 

0.3 338 328 

1 54.33 52.84 

3 13.89 13.27 

 

Though the strain-balance designs shown here are limited to 0.3%, 1% and 

3% strain on the layer but they were explored for a larger range of strains.  To 

evaluate the optimum design from these designs their performances can be 

compared for a specific wavelength.  The Figure 37 utilizes the 2.7 um 

wavelength for this comparison.  The horizontal axis of the graph varies the 

antimony mole fraction in GaAsSb which in turn changes the strain while as each 

curve on the plot represents a constant strain level on the GaInAs layer.  
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Figure 37: Comparison of optimal designs at different GaAsSb mole fraction for 
the 2.7 μm wavelength.  Each curve represents a constant compressive and tensile 
strain on GaInAs layer respectively to the left and right of the zero strain line in 

pink. 

The wavefunction overlap for the perfectly lattice matched condition on 

InP is shown in pink with the highest attainable squared wavefunction overlap for 

2.7 μm marked as the optimal design for zero strain.  As the value of x in GaAs1-

xSbx reduces to the left of the lattice matched condition the tensile strain on the 

layer increases.  The curves on this side correspond to the compressively strained 

GaInAs layer acquired from the strain-balanced contour plots.  Thus each point on 

the curve is defined by a unique pair of layer thicknesses listed in Table 6.  The 

amount of compressive strain on the layer is numerically marked in percentage.  

Similarly, to the right of the lattice matched condition GaAsSb layer is 

compressively strained and each curve represents the tensilely strained GaInAs 
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layer.  The dashed black line represents the 3% strain in either direction on 

GaAsSb layer. 

Table 6: Optimal layer thicknesses for different GaAsSb strain levels at the 2.7 
μm wavelength. 

    Tensile Strain (%)   Compressive Strain (%) 

Layer Thickness 0 0.1 0.5 1.0 2.0 3.0 -0.1 -0.5 -1.0 -2.0 -3.0 

Ga1-yInyAs (nm) 3.2 5.4 5.0 3.2 5.2 13.1 4.5 3.9 3.6 3.6 4.2 

GaAs1-xSbx (nm) 5.3 3.2 9.0 9.3 7.8 13.1 3.8 3.9 3.6 1.8 1.4 

 
The curves shown by dashes represent the overlap attained by a light hole  

transition.  The valence band becomes degenerate at the point where these optimal 

design lines transform from heavy hole to a light hole transition.  Thus we expect 

a better performance at this point due the higher density of states with degeneracy 

in the valence band.  It is evident that the tensilely strained GaInAs and 

compressively strained GaAsSb is the best choice for strain balanced designs.  

Firstly, the squared wavefunction overlap is larger for all compressive strains on 

GaAsSb when compared to their equivalent complementary case.  Secondly, the 

ground state transitions are never light hole based for a compressively strained 

GaAsSb layer.  The overlap is best for tensile strains below 1% on GaInAs when 

compressive strain is limited to -0.9% on GaAsSb.  However this trend changes 

for all compressive strains beyond -0.9% on GaAsSb where the best overlap is 

always achieved with 1% tensile strain on GaInAs layer.  The maximum 

wavefunction overlap that can be realized from the various optimal strain balance 

conditions is traced by the solid black line.  Thus the curve can be termed as the 

optimized design line for 2.7 μm over the entire range of possible strains on the 
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two layers.  The highest squared wavefunction overlap of 0.35 is attained with 

1.0% tensile strain on GaInAs and -1.88% compressive strain (x = 0.75) on 

GaAsSb layer.  This point defines the best strain-balanced design for the 

GaInAs/GaAsSb system at 2.7 μm.  The corresponding layer thickness for 

GaInAs and GaAsSb are 3.1 nm and 1.8 nm respectively.  

 
Figure 38: Optimal design curves for varying GaAsSb mole fraction for selective 

wavelengths in the 1.7 to 4.0 μm spectrum.  Dashed curves and solid curves 
denote light hole and heavy hole based optimal designs. 

Similarly, the optimal design across all possible strain balance design for 

different wavelengths in the 1.7 to 4.0 μm can be traced to find a generalized 

solution for the spectrum.  The optimized design curves for selective wavelengths 

are shown in the Error! Reference source not found..  Similar to the 2.7 μm 

wavelength the optimal design was dominated by the light holes for tensilely 

strained GaAs1-xSbx (x < 0.49) and the heavy holes for compressively strained 
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designs The light holes and heavy holes designs have been demarcated by the 

dashed and solid lines respectively.  

The discontinuity observed in the 2 μm and 2.3 μm curves at the zero 

strain level is due to the change of shift in band alignment with opposite strain on 

either side.  The optimal design for each of the wavelengths is defined by the 

highest squared wavefunction overlap attained across the strain balanced 

conditions.  The wavelengths beyond 2.6 μm behaved similar to the 2.7 μm 

curves for which, the best design is observed with a compressive strain on 

GaAsSb layer and a tensile strain on GaInAs layer. 

The highest overlap for wavelengths below 2.6 μm is found with 3% 

tensile strain line on GaAsSb layer and very large opposite strain on GaInAs.  The 

resultant band edge alignment between the superlattice layers switches from type-

II to type-I alignment.  This explains the proximity to ideal wavefunction overlap 

for wavelengths below 2.6 μm.  Thus the optimal design line connecting the 

wavefunction overlap peaks for different wavelengths shown by the solid black 

curve is discontinuous at 2.6 μm.  It resumes at the 3% tensile strain line, which 

can be shifted to higher tensile strains to realize an ideal wavefunction overlap for 

these wavelengths.  Since it is difficult to have good growth quality with such 

high strain on the layer the optimal design line for these wavelengths has also 

been traced for the compressively strained GaAsSb.  The optimal design line is 

curve fit to deduce a parametric relation between the squared wavefunction 

overlap   and mole fraction   of GaAsSb. 

                                                                                                              (32) 
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                                                (33d) 

Table 7: Constants defined in the optimized strain balance design rules.  

GaInAs 

thickness 

versus 

Transition 

energy 

GaAsSb 

thickness versus 

Transition 
energy 

Mole fraction 

versus Transition 
energy 

Squared overlap 

versus 

transition 
energy 

d
s1

= 1.348 nm 

E
s2

= 0.839 eV 

E
s3

 = 0.296 eV 

d
s2

 = 3.339 nm 

E
s3

 = 0.973 eV 

A
s1

 = 1.195 

E
s4

 = 1.032 eV 

E
s5

 = 0.657 eV 

A
s2

 = 0.18 

p
s
 = 1.78 

Each point on the optimal design line in Error! Reference source not 

found. also comprises the thicknesses of the two layers which in turn define the 

optimal superlattice period for a given wavelength.  These thicknesses can be 

utilized to form a parametric equation between the transition energy or 

wavelength and superlattice period thickness.  Eventually these equations can be 

used to realize an optimized superlattice design for each wavelength in the 

spectrum.  Equation (33a) fulfills this need by relating the transition energy with 

the thickness    and   , where A and B represent GaInAs and GaAsSb 

respectively.  The relation is deduced from the curve traced between the various 

transition energies and thicknesses as shown Figure 39. 
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Furthermore for an optimal design at any wavelength it is necessary to 

define a relation between the transition energy and mole fraction which is 

accomplished in Equation (33c) deduced from the GaAsSb mole fraction curve in 

Figure 40.  No relation is defined for the GaInAs mole fraction s ince the optimal 

design for all wavelengths above 2.1 μm is realized with 1% strain on GaInAs.  

For wavelengths below 2.1 μm the zero strain condition is chosen as the optimal 

design although the increment in peak overlap achieved for these wavelengths is 

practically insignificant for tensile strains below 1% on GaInAs.  Equation (33d) 

is deduced in Figure 41 which defines the maximum squared wavefunction 

overlap that can be attained with these optimal design rules for a particular cut-off 

wavelength.  

 
Figure 39: Optimal design curves for GaInAs and GaAsSb layer thickness at 
different wavelengths. 
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Figure 40: Optimal design curves for GaInAs and GaAsSb mole fraction at 
different wavelengths. 

 
Figure 41: Largest squared wavefunction overlap realized with strain balanced 

GaInAs/GaAsSb superlattice system over the 1.7 to 4.0 μm wavelength range. 
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6 CONCLUSIONS 

Type-II superlattice structures for GaInAs-GaAsSb have been thoroughly 

studied to design efficient photodetectors for the 1.7 to 4.0 μm spectrum.  Highly 

mismatched alloys and strain-balanced structures are utilized to engineer the type-

II band alignment between GaInAs and GaAsSb.  The resultant alignments aid in 

improving the optical properties for the extended wavelength designs.  Precise 

simulations were carried out using the valence band anticrossing model for the 

band structure of highly mismatched alloys, Kronig-Penney formulation for 

superlattice minibands and thickness weighted method for strain-balanced 

superlattice structures.  The results from these calculations are then condensed 

into squared wavefunction contour plots to extract an optimal superlattice period 

for a given cutoff wavelength.  

Perfectly lattice matched Ga1-yInyAs1-xBix alloys on InP substrates can be 

realized for the entire wavelength range with less than 6.8% bismuth in the alloy 

due to the anomalous bandgap reduction observed in mismatched alloys.  The 

absorption performance of GaInAs/GaAsSb type II superlattices on InP is 

enhanced by adding dilute amounts of bismuth to the GaInAs layer.  The type-II 

band alignment is modified with the incorporation of bismuth which consequently 

improves the wavefunction overlap.  The transitions in the type-II 

GaInAsBi/GaAsSb superlattice structure can be classified into two regimes.  

Firstly, the region with ideal wavefunction overlap that lies between the bandgaps 

of the two constituent materials also called the short period superlattice regime.  

The second region, with less than ideal wavefunction overlap is bound between 
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the energies smaller than either constituent’s bandgap and the smallest possible 

transition that can be realized by the type-II alignment between GaInAs/GaAsSb.  

The wavelengths realized in this range fall beyond the limit of either constituent 

and hence the name extended wavelength regime.  

The squared wavefunction overlap doubles when the bismuth mole 

fraction is increased from 0% to 3%.  But with increase in bismuth mole fraction 

the short period superlattice regime widens as the bandgap of the GaInAsBi layer 

reduces consequently narrowing the extended wavelength regime.  Since the 

entire spectrum can be covered with bulk GaInAsBi a trade-off has to be met 

between the wavefunction overlap and bismuth concentration.  The optimal 

design rules formulated can be utilized to deduce the superlattice period, to 

achieve a maximum overlap at a cut-off wavelength with different bismuth 

concentrations. 

Furthermore, the strain-balanced GaInAs/GaAsSb superlattice designs 

were investigated for optimal strain conditions.  The presence of two tertiary 

alloys in the system makes it feasible to have compressive or tensile strain in 

either layer with various strain levels and compensate it with complementary 

strain in the adjacent layer largely increasing the number of possible designs. 

The optimal designs for various strain balance conditions are compared for 

2.7 μm.  From the comparison, strain balance with compressively strained 

GaAsSb and tensilely strained GaInAs was found to give the best overlap.  The 

highest squared wavefunction overlap improved to 0.35 in comparison to the 0.19 

for no strain in either layer.  This overlap was attained with 1.0% tensile strain on 
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GaInAs and -1.9% compressive strain on GaAsSb with a layer thickness of 3.4 

nm and 1.8 nm respectively.  Strain balance conditions for the tensilely strained 

GaAsSb merely reached a square wavefunction overlap equivalent to the lattice 

matched condition with -3% compressive strain on GaInAs and 1.29% on 

GaAsSb.  Similarly, highest overlap conditions for other wavelengths in the 1.7 to 

4.0 μm spectrum are extracted for all mole-fractions of GaAsSb.  The maximum 

wavefunction overlap for the 2.6 to 4.0 μm range was obtained with 1% tensile 

strain on GaInAs while as the compressive strain on GaAsSb increases with the 

shift towards longer wavelengths.  All wavelengths below 2.6 μm approach an 

ideal wavefunction overlap for 3% tensile strain on GaAsSb layer due to the type-

I alignment between the layers.  Parametric equations describing the relation 

between the layer thicknesses and transition energy are derived.  These equations 

can be further used to design superlattices with maximum wavefunction overlap 

for a cut-off wavelength. 

Another distinct feature observed with the different strain balance 

conditions was the type of ground state transition.  A large part of the ground state 

transitions are governed by light holes for the tensilely strained GaAsSb layer 

where as these transitions are always defined by heavy holes for compressively 

strained GaAsSb layer.  The heavy hole transitions are preferred for photodetector 

applications due to their higher density of states.  Nevertheless, light hole based 

transitions could be utilized for applications that require higher hole transport.  

Finally, the exploration of optimal designs with the aforementioned 

techniques yields promising results for the 1.7 to 4.0 μm range.  It is highly 
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probable to fabricate devices with performance capabilities exceeding the 

presently available detector designs in the range. 
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APPENDIX A 

SUMMARY OF OPTIMAL DESIGN RULES FOR  

Ga1-yInyAs1-xBix /GaAs1-xSbx SUPERLATTICE STRUCTURES 
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Bi 
(%) 

ABi1 ABi2 
EBi3 

(eV) 

0 0.9957 0.4611 0.5008 

1 0.2346 0.0436 0.1928 

3 0.0310 1.91610
-4

 0.0605 

5 1.24310
-5  

5.12810
-9

 0.0214 
 

 

 

 

                 
    

    

   

Bi 
(%) 

EBi1 
(eV) 

EBi2 
(eV) 

dBi1 
(nm) 

0 0.3013 0.1783 2.902 

1 0.3007 0.2928 2.525 

3 0.2886 0.4582 2.999 

5 0.2803 0.4929 2.937 
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Bi 

(%) 

dBi2 

(nm) 

dBi3 

(nm) 

pBi 

0 0.8718 0.6707 1.4078 

1 0.4092 0.4903 1.2310 

3 2.4121 3.3063 1.3483 

5 3.2855 6.1989 1.1962 
 

 



 

107 

APPENDIX B 

SUMMARY OF OPTIMAL DESIGN RULES FOR STRAIN BALANCED  

Ga1-yInyAs /GaAs1-xSbx SUPERLATTICE STRUCTURES 
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APPENDIX C 

MATERIAL PARAMETERS USED IN VALENCE BAND ANTICROSSING OF 

GaAs1-xBix, InAs1-xBix and GaSb1-xBix 
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Parameter Value Unit Reference 

   Luttinger Parameters 
   

InAs 
   

1 20.0 
  

2 8.5 
 

[34] 

3 9.2 
  

GaSb 
   

1 13.4 
  

2 4.7 
 

[34] 

3 6.0 
  

GaAs 
   

1 6.98 
  

2 2.06 
 

[34] 

3 2.93 
  

Lattice Constants 
   

InAs 6.0583 + 2.74

 Å [34] 

GaSb 6.0959 + 4.72

 Å [34] 

GaAs 5.6533 + 388

 Å [34] 

InBi 6.686 Å [52] 

GaBi 6.324 Å [52] 

Bandgaps 
   

InAs 0.417 - 0.27610
-3
T

2
/(T+93) eV [34] 

GaSb 0.813 - 3.7810
-3
T

2
/(T+94) eV [34] 

GaAs 1.519 + 5.405



 eV [34] 

InBi -1.63 eV [52] 

GaBi -1.45 eV [52] 

Spin-orbit Energies 
   

InAs 0.39 eV [34] 

GaSb 0.76 eV [34] 

GaAs 0.34 eV [34] 

InBi 2.27 eV 
 

GaBi 2.20 eV [31] 

Valence Band Offsets 
   

InAs -0.59 eV [34] 

GaSb -0.03 eV [34] 

GaAs -0.80 eV [34] 

InBi 0.60 eV 
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GaBi 0.00 eV [31] 

Coupling parameter 
   

InAs1-xBix 1.55 eV 
 

GaSb1-xBix 1.05 eV 
 

GaAs1-xBix 1.55 eV [31] 

Impurity Level of Bi 
   

InAs -0.53 eV 
 

GaSb -1.17 eV 
 

GaAs -0.40 eV [31] 

Spin orbit energy for Bi 
   

InAs -2.11 eV 
 

GaSb -2.67 eV 
 

GaAs -1.90 eV [31] 
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APPNEDIX D 

MATERIAL PARAMETERS USED TO CALCULATE THE Ga1-yInyAs1-xBix /GaAs1-x 

Sbx AND Ga1-yInyAs/GaAs1-xSbx SUPERLATTICE BANDGAPS 



 

114 

Parameter Value Unit Reference 

   
InAs 6.0583 + 2.74


 Å [34] 

GaSb 6.0959 + 4.72

 Å [34] 

GaAs 5.6533 + 388

 Å [34] 

Ga1-yInyAs aGaInAs = (1-y) aGaAs + yaInAs  Å [34] 

Ga1-yInyAs1-xBix aGaInAsBi = (1-x) aGaInAs + xaGaAsBi  Å 
 

GaAs1-xSbx aGaAsSb = (1-x) aGaAs + xaGaSb Å [34] 

Bandgaps 
   

InAs 0.417 - 0.27610
-3
T

2
/(T+93) eV [34] 

GaSb 0.813 - 3.7810
-3
T

2
/(T+94) eV [34] 

GaAs 1.519 + 5.405



 eV [34] 

GaInAs Bowing 
Factor (CEg_GaInAs) 

0.477 eV [34] 

Ga1-yInyAs 
 (1-y) Eg_GaAs + yEg_InAs - y(1-

y)CEg_GaInAs 
eV [34] 

Ga1-yInyAs1-xBix  (1-x) Eg_GaInAs + xEg_GaAsBi eV 
 

GaAsSb Bowing 
Factor (CEg_GaAsSb) 

1.43 eV [34] 

GaAs1-xSbx 
 (1-x) Eg_GaAs + xEg_GaSb - x(1-

x)CEg_GaAsSb 
eV [34] 

Spin-orbit Energies 
   

InAs 0.39 eV [34] 

GaSb 0.76 eV [34] 

GaAs 0.34 eV [34] 

GaInAs Bowing 
Factor (CSO_GaInAs) 

0.15 eV [34] 

Ga1-yInyAs 
 (1-y) ∆SO_GaAs + y∆SO_InAs - y(1-

y)CSO_GaInAs  
eV [34] 

Ga1-yInyAs1-xBix  (1-x) ∆SO_GaInAs + x∆SO_GaAsBi  eV 
 

GaAsSb Bowing 
Factor (CSO_GaAsSb) 

0.60 eV [34] 

GaAs1-xSbx 
 (1-x) ∆SO_GaAs + x∆SO_GaSb - x(1-

x)CSO_GaAsSb 
eV [34] 

Valence Band 
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Offsets 

InAs -0.59 eV [34] 

GaSb -0.03 eV [34] 

GaAs -0.80 eV [34] 

GaInAs Bowing 
Factor (CEv_GaInAs) 

-0.38 eV [34] 

Ga1-yInyAs 
 (1-y) VBOGaAs + yVBOInAs - y(1-

y)CEv_GaInAs 
eV [34] 

Ga1-yInyAs1-xBix  (1-x) VBOGaInAs + xVBOGaAsBi  eV 
 

GaAsSb Bowing 

Factor (CEv_GaAsSb) 
-1.06 eV [34] 

GaAs1-xSbx 
 (1-x) VBOGaAs + xVBOGaSb - x(1-

x)CEv_GaAsSb 
eV [34] 

Effective Masses 
   

InAs 
   

Electron 0.023 
  

Light Hole 1/(InAs InAs) mo [34] 

Heavy Hole 1/(InAs InAs) 
  

GaSb 
   

Electron 0.04 
  

Light Hole 1/(GaSbGaSb) mo [34] 

Heavy Hole 1/(GaSbGaSb)   
GaAs 

   
Electron 0.067 

  
Light Hole 1/(GaAsGaAs) mo [34] 

Heavy Hole 1/(GaAsGaAs) 
  

Ga1-yInyAs 
   

GaInAs Bowing 
Factor (Cme_GaInAs) 

0.003 
 

[34] 

Electron 
 (1-y) me_GaAs + yme_InAs -  y(1-y) 

Cme_GaInAs    

Light Hole  (1-y)mlh_GaAs + ymlh_InAs  mo [34] 

Heavy Hole  (1-y)mhh_GaAs + ymhh_InAs  
  

Ga1-yInyAs1-xBix 
   

Electron  (1-x)me_GaInAs + x0.099 
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Light Hole  (1-x)mlh_GaInAs + x0.082 mo 
 

Heavy Hole  (1-x)mhh_GaInAs + x0.51 
  

GaAs1-xSbx 
   

GaAsSb Bowing 
Factor (Cme_GaAsSb) 

0.0258 
 

[34] 

Electron 
 (1-x)me_GaAs + xme_GaSb - x(1-

x)Cme_GaAsSb   

Light Hole  (1-x)mlh_GaAs + xmlh_GaSb mo [34] 

Heavy Hole  (1-x)mhh_GaAs + xmhh_GaSb     

Elastic Constants 
   

InAs 
   

C11 832.9 GPa 
 

C12 452.6 GPa  

b -1.8 eV [34] 

ac -5.08 eV 
 

av -1 eV 
 

GaSb 
   

C11 884.2 GPa 
 

C12 402.6 GPa  

b -2 eV [34] 

ac -7.5 eV 
 

av -0.8 eV 
 

GaAs 
   

C11 1221 GPa 
 

C12 566 GPa 
 

b -2 eV [34] 

ac -7.17 eV 
 

av -1.16 eV 
 

Ga1-yInyAs 
   

C11  (1-y)C11_GaAs + yC11_InAs  GPa 
 

C12  (1-y)C12_GaAs + yC12_InAs  GPa 
 

b  (1-y)bGaAs + ybInAs  eV 
 

GaInAs Bowing 
Factor (Cac_GaInAs) 

2.61 eV [34] 
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ac 
 (1-y)ac_GaAs + yac_InAs -y(1-

y)Cac_GaInAs  
eV 

 

av  (1-y)av_GaAs + yav_InAs  eV 
 

GaAs1-xSbx 
   

C11  (1-x)C11_GaAs + xC11_GaSb GPa 
 

C12  (1-x)C12_GaAs + xC12_GaSb GPa 
 

b  (1-x)bGaAs + xbGaSb eV [34] 

ac  (1-x)ac_GaAs + xac_GaSb eV 
 

av  (1-x)av_GaAs + xav_GaSb eV   

 

 


