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ABSTRACT 

Tolerances on line profiles are used to control cross-sectional shapes of parts, 

such as turbine blades.  A full life cycle for many mechanical devices depends (i) 

on a wise assignment of tolerances during design and (ii) on careful quality 

control of the manufacturing process to ensure adherence to the specified 

tolerances.  This thesis describes a new method for quality control of a 

manufacturing process by improving the method used to convert measured points 

on a part to a geometric entity that can be compared directly with tolerance 

specifications.  The focus of this paper is the development of a new computational 

method for obtaining the least-squares fit of a set of points that have been 

measured with a coordinate measurement machine along a line-profile.  The 

pseudo-inverse of a rectangular matrix is used to convert the measured points to 

the least-squares fit of the profile.  Numerical examples are included for convex 

and concave line-profiles, that are formed from line- and circular arc-segments. 
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5.2 Selected displaced locations for the middle-sized profile (dashed-line) in 
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5.5. The 3-D T-Map for the middle-sized profile in Figure 5.1 and its 

tolerance-zone in Figure 5.2. (a) Aligned similarly to the T-Maps in 

Figure 2.3(b) and Figure 5.4.  (b) At an orientation that makes the 
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5.7. (a) The profile of size F > 0 is displaced in extreme upper left 

direction; (b) Double slider mechanism formed when the configuration 

in (a) rotated CCW; (c) Double slider mechanism formed when the 

configuration in (a) rotated CW; (d) contact-1mbi occurs when profile 

size is F≤ŧ /5. For clarity, line segment 1m is represented as a point on 

the line segment, which will form contact1mbi; (e) For the configuration 

in (d), the profile slide at contact-dm4o and contact-1mbi, and new 

double slider mechanism occurs; (f) For F≥ŧ /5, the CCW rotation of 

the profile is constrained by contact-dm4o and contact-bm2o; (g) CW 

rotation is constrained by contact-4mdi for F≤ŧ /6; (h) CW rotation is 

constrained by contact-bm1o for F≥ŧ /6. ......................................................68 

5.8. (a) The profile of size F ≥ 0 is displaced in extreme lower right 

direction; (b) Double slider mechanism formed when the profile in (a) 

is rotated CCW; (c) Double slider mechanism formed when the profile 

in (a) rotated CW; (d) The CCW rotation is constrained by three 

contacts: contact-am1o, contact-bm2o, contact-dm4o; (e) If F ≤ ŧ /6, the 

second contact occurs at 4mdi; (f) Further rotation is constrained by the 

third contact am4o; (g) If F ≥ ŧ /6, the profile rolls due to the contact 

between arc segments 3m and 3o. (h) If ŧ /6 ≤ F ≤ ŧ /4, the contact 4mdi 

occurs and the double slider mechanism is same as in (e) of this figure; 

(i) If ŧ /6 ≤ F ≤ ŧ /4, further rotation is constrained by the third contact 
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CHAPTER 1 

INTRODUCTION 

A statement made by Lord Kelvin regarding metrology describes the 

motivation for this thesis: 

 “When you can measure what you are speaking about and express it in 

numbers, you know something about it; and when you cannot measure it, when 

you cannot express it in numbers, your knowledge is of a meager and 

unsatisfactory kind. It may be the beginning of the knowledge, but you have 

scarcely in your thought advanced to the stage of a science.” 

In this thesis, inspection means measuring dimensions that determine 

geometric shape of a manufactured part for conformance to dimensional and 

geometric tolerance specifications on a drawing. A drawing of a part specifies 

relative location of nominal geometric features, such as planes, cylinders, profiles 

etc., dimensions and tolerance specifications and it also contains other 

information such as, desired material requirement, and it provides a medium of 

communication between all departments of a manufacturing industry, from design 

to metrology. Tolerance specifications on a feature determine limits for 

manufacturing variations that are permissible for a feature.  Coordinate 

measurement machines (CMMs) are used to record the coordinates for a large 

number of points, a point-cloud, of one or more features on a part. Then 

conversion softwares are used to reduce the measured data to feature parameters, 

such as thickness of a plate, diameter of a cylinder and its location. This research 
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is concerned about the development of a method to convert measured data in 

coordinate form on a line profile, made of line and arc segments, to parameters 

that represent a manufactured profile with respect to nominal feature. 

1.1. Background 

Geometric imperfections exist in every manufacturing process that is used 

to produce a mechanical product or part. Since there is always finite error in a 

manufactured part, a tradeoff is necessary between acceptable quality part and 

available manufacturing facility. Tolerance is defined as acceptable limit of 

dimensional variation allowed on a feature of the part. Application of tolerances 

on a part can make it interchangeable in an assembly so that any one chosen at 

random from a batch of these parts will fit successfully. Tolerances determined in 

the design stage influence the product life as well as its manufacturing process. 

However, a part with tighter tolerances requires better precision manufacturing 

processes and more deliberate measurement processes that cause higher 

production time and cost. 

As per conventional practice, a dimensional tolerance means limiting the 

range of a dimension, such as the range in diameter of a cylinder. However, due to 

requirement of more complex parts, geometric variations were acknowledged and 

new geometric tolerance scheme introduced to control feature’s variations based 

on part’s functionality. Guidelines for specifying geometric dimensions and 

tolerances are documented in GD&T standards. Two standards popular in 

industries are the ASME Y14.5M standard [1] and the ISO standard. The ISO 

standards provide GD&T guidelines in several volumes as shown in Table 1.1. 
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Table 1.1. ISO standards related to GD&T specifications 

ISO 128 Technical Drawings 

ISO 1101 
Geometrical Product Specifications (GPS) - Geometrical tolerancing -- 

Tolerances of form, orientation, location and run-out 

ISO 1660 Technical drawings -- Dimensioning and tolerancing of profiles 

ISO 2692 

Geometrical product specifications (GPS) – Geometrical tolerancing -- 

Maximum material requirement (MMR), least material requirement 

(LMR) and reciprocity requirement (RPR) 

ISO 2768-1 
General tolerances – Part 1: Tolerances for linear and angular dimensions 

without individual tolerance indications 

ISO 2768-2 
General tolerances – Part 2: Geometrical tolerances for features without 

individual tolerance indications 

ISO 5458 
Geometrical Product Specifications (GPS) – Geometrical tolerancing -- 

Positional tolerancing 

ISO 5459 
Technical drawings -- Geometrical tolerancing -- Datums and datum- 

systems for geometrical tolerances 

ISO 5460 

Technical drawings -- Geometrical tolerancing -- Tolerancing of form, 

orientation, location and run-out -- Verification principles and methods --

Guidelines 

 

1.2. Dimensional Metrology 

The objective of dimensional metrology is to make measurement on the 

features of a manufactured part and to reduce the data to a form that presents an 

assessment of whether or not all the features are within tolerance zones described 

in the drawing. Conventional inspection methods are made using hard inspection 

gauges and simple non-automated measuring instruments such as a vernier 

caliper, micrometer etc. Though the inspection time for gauges is less, each is 

expensive and measures only the dimension for which it is designed. Moreover, 

since a gauge only provides a “Go-No Go” result, trends in a manufacturing 

process cannot be learned. A simple non-automated measuring instrument 

provides measurement value over large range of dimensions; but cannot measure 

complex features such as turbine blades. Non-conventional measuring instrument 
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like Coordinate Measuring Machine (CMM) provides precise measurement of 

complex of geometries that are difficult to measure by conventional instruments. 

A typical CMM machine is a versatile measuring device, which assesses 

and records the coordinates of the measuring probe as it is brought against any 

type of feature of a part mounted within the machine working space (Figure 1.1). 

Higher accuracy than the conventional measuring instruments can be achieved by 

proper calibration and inspection setting. In addition, the automated inspection 

process on CMM provides consistent measurements and reduces human errors. 

The fundamental difference between CMM and conventional measuring 

instruments is that the CMM measures sets of coordinates of a large number of 

points on the part to provide a ‘point cloud’. 

There are two methods to confirm the acceptance of a part: soft-gauging 

and regression. Soft-gauging or functional gauging is to just check whether all the 

                  

Figure 1.1. Typical types of CMM machines: Portable CMM (left) and gantry 

type (right) 
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points in the cloud are within the specified tolerance zone or not. Like the hard 

inspection gauges, this method is computationally fast and gives “Go-No Go” 

decisions without determining feature parameters’ values such as, size, location 

and orientation of the feature. It is mostly used when parameterization of the part 

or feature is difficult, such as turbine blades. Another method, regression, is to 

reduce the amount of the data points to a small number (usually seven or less) of 

feature parameters (i.e. three locations, three orientations and a size) that identify 

the nominal location, orientation, and size of a feature of the manufacture part. 

For example, points measured on a cylindrical surface can be reduced to the 

diameter of a maximum inscribed cylinder. Now the question is which one is 

better, soft-gauging or regression? For just an inspection point of view the soft-

gauges are used. But for a broader perspective, when one wants to follow the 

trend in the manufacturing process, the method of data reduction is useful. The 

trend in the manufacturing process helps to recognize process parameters that are 

causing manufacturing variations. For example, consistently bigger sizes of 

drilled holes may be a sign of tool wear. However, Regression methods require 

considerable amount of computation to obtain the seven or less feature parameters 

that can be used to assess a feature. Moreover, parameters’ values can be quite 

different for different methods (e.g. least squares, maximum inscribed, minimum 

zone etc.) of converting the cloud of measured points [3].  

1.3. Geometric Dimensioning & Tolerancing  

The objective of GD&T is to control geometric variations of features so 

that a part assembles appropriately and functions as per design intention. The 
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tolerance standard ASME Y14.5M (1994 & 2009) [1,2] describes definitions of 

the geometric variations permitted by the different geometric tolerances. The 

symbolic representation of the tolerance classes, datums, material conditions etc. 

provides a language for clear communication between designer, process planner, 

manufacturing engineer and inspection engineer. 

The ASME standard tolerances are classified into six classes: five 

geometric tolerances and the dimensional tolerance for size. As shown in Figure 

1.2, the geometric tolerance classes are then further divided into subclasses based 

on the form of control. Each tolerance specification contains a tolerance type 

symbol, tolerance value, and optional information, such as datum references and  

condition. Datums are required for the orientation, location, runout and profile 

tolerance classes, and material condition may be applied when size of the feature 

is also being controlled together with orientation, location or profile tolerance. 

 

Figure 1.2. Tolerance classification as per the tolerance standard ASME Y 

14.5M 
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The specifications in a feature control frame (FCF) define two boundaries around 

the nominal geometry; together they form a tolerance zone that limits all 

acceptable possible geometric manufacturing variations of the feature. The shape 

of the tolerance zone depends on the class of tolerance and the feature to which 

the tolerance is applied. Since this research is aimed at line profiles, an example 

of a line profile tolerance is demonstrated for further description.  

1.3.1. Profile tolerance 

The ASME Y14.5M Tolerance Standard [1] defines a line profile as a two 

dimensional outline of an object. Profile tolerances in general are used to control 

features like turbine blade that cannot be controlled by other geometric tolerances. 

Profile tolerances are used to control form or combinations of form, orientation, 

 

Figure 1.3. Specification of a line profile on a square boss, raised from a plate 

[23]. 
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and location of a feature relative to its true profile. For certain features, it also can 

be interpreted to control size. A true profile is a profile defined with basic 

dimensions i.e. without any tolerances. If the datum is not specified, the tolerance 

specified controls form of the profile only. 

The feature control frame for profile tolerance typically contains tolerance 

symbol  (line profile), or  (surface profile), a tolerance value, and optional 

datum information. Datums are required when orientation and location are 

required to control. A line profile is a 2D element. The line profile tolerance 

defines a tolerance zone an area on one or both sides of the true profile. A surface 

profile is made of surfaces. Hence, surface profile tolerance defines a volumetric 

tolerance zone. 

A description of line and surface profile tolerance zones is given here by 

an example. As shown in Figure 1.3, the line profile tolerance is applied on the 

raised square boss. The small circle on the leader indicates that the profile 

tolerance is applied all around the (square) profile feature. The dome shaped 

symbol  is used in feature control frames for line profile tolerances. At each 

cross section, the shape of the square is controlled by the profile tolerance ŧ = 0.2 

mm relative to the Datums A, B, and C. This specification establishes a tolerance 

zone between two boundary squares. One is 0.1 mm larger along every line 

normal to the surface, and the other is 0.1 mm smaller. The Datums B, and C in 

the specification provide orientation and position constraint to the two squares. 

Moreover, Datum A controls orientation of the cross sectional plane on which the 
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line profile is being considered instantaneously. For a line profile, a 2D tolerance 

zone at a cross section is shown in Figure 1.4(a). For surface profiles, the symbol 

is dome the same shape but with a line at bottom . As shown in Figure 1.4(b) 

the tolerance zone is a volume, the 2D tolerance zone raised (extruded) along the 

height of the square boss. This controls all four surfaces, on which feature control 

frame is applied, within the 3D tolerance zone. 

An alternate approach to defining the tolerance zone, as described in the 

ISO Standard [4], requires the boundaries to be formed as the inner and outer 

envelopes of a roller of size ŧ having its center traversing the true profile (Figure 

1.5). Although either construction always will yield rounded corners for the outer 

boundary (the ISO roller becomes stationary at a corner), the ASME Standard [1] 

permits a relaxation of the parallel-boundary requirement at discontinuities in 

slope (sharp corners) so that the tolerance-zone may extend to the intersection of 

 

Figure 1.4. Portion of tolerance zones (Detail D) for line- and surface-profile of 

the boss in Figure 1.3; (a) 2D tolerance zone for the line profile, (b) 3D tolerance 

zone if the specification in Figure 1.3 were for surface profile, (c) A rectangular 

cross section of the 3D tolerance zone viewed from ‘V’. 
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the boundary lines (Figure 1.3(a)).  We have included such extensions for the 

tolerance-zone at the four sharp corners depicted in Figure 1.3. Throughout the 

thesis, the same practice is followed while defining the tolerance zones for line 

profiles. 

1.4. Problem Statement 

Data reduction methods in CMM softwares are limited to lines, planes, 

circles, cylinders, and spheres. This research is focused on extending the 

capability of the CMM software in terms of handling type of geometry. A new 

computational method is developed for obtaining the least-squares fit of a set of 

points that have been measured on a line-profiles that are C
1
 and C

2
 

discontinuous. Though the method is general in terms of type of geometry, 

examples are established for convex or concave line profiles with line and arc 

segments. The results will be a ‘regression profile’, i.e. a perfect form profile of 

different size and location.  

 

Figure 1.5. Tolerance zone boundaries formed by traversing roller of size ŧ having 

its center on true profile. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1.  Feature Fitting - An optimization problem 

Fitting a substitute geometry on measured points can be considered as an 

optimization problem. The objective is to minimize distances between measured 

points and the substitute geometry to determine feature parameters. Many fitting 

objectives can be represented as specific case of a general criterion Lp norm [5]. 

In fitting problem, objective is to find the parameters of feature that minimizes the 

Lp norm: 

[
 

 
∑|  |

 

 

   

]

 
 

  

Where di is the shortest distance between i
th

 point and the substitute 

geometry, n is number of points in the measured data and p defines objective 

criterion and its value varies from 0 to . The parameters of the substitute 

geometry are the variables available for minimizing the objective function. To 

make computationally simpler, reduced form of the Lp norm can be defined as, 

∑|  |
 

 

   

  

Two types of fitting problems are popular in the CMM fitting softwares, 

the least-squares fit and the Chebyshev fit. The Lp norm gives least squares 

solution when the value of p is 2. And Chebyshev fit can be obtained by 
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substituting the value of p as . Of course, any p value between 0 to  gives a 

unique substitute geometry. Nassef and ElMaraghy [6] demonstrated that the 

optimal value of p to obtain the best fit may vary from 1 to , depends on number 

of points measured on the feature. Here the best fit means the substitute feature 

having minimum averaged error. They pointed out that despite popularity of the 

least-squares fit and the Chebyshev fit, they cannot be generalized for all 

geometric variations. For example, as shown in Table 2.1, their study shows that 

for a line feature with 60 or less number of points the best p value is 1. Whereas, 

for 80 or higher number of points, the best p value is 2 or higher. Furthermore, 

when a cylinder is tested, the best p values are different than that of the case of 

line for approximately same number of points. Hence, the best fitting function 

depends on the number of measured points relative to number of point required to 

represent the manufacture profile reasonably. 

Table 2.1 Best p values for features line, cylinder and five sided polygonal profile 

for different number of measured points. Taken from [6]. 

Line Cylinder 
Five sided polygonal profile 

(Car Door example) 

No. of measured 

points 

Best p 

value 

No. of measured 

points 

Best p 

value 

No. of measured 

points 

Best p 

value 

20 1 4 × 2 20 10 4 

40 1 4 × 4 30 20 6 

60 1 8 × 4 40   

80 2 16 × 4 40   

100 5     
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The least-squares fits is widely used in commercial CMM softwares to 

determine substitute geometry. The method is computationally faster as compared 

to Chebyshev fit. Moreover, since all measured points contribute to the fit, the 

method is less sensitive to outliers. 

The Chebyshev fit is further classified into two types: the two-sided fit and 

the one-sided fit. The objective of the two-sided fit is to obtain complete form 

variation of the feature, i.e. minimize the maximum distance between two parallel 

features that bound all measured points. An example of a two-sided fit is the two 

nearest parallel planes between which all measured points are located. Since the 

zone between two parallel features is minimized, the method is also called the 

minimum zone fit.  

The one-sided fit is used for fitting a feature on one side of the measured 

points. The substitute feature lies on one or more points such that the distance 

between the farthest measured point and the substitute feature is minimized. A 

feature of size such as a circle, a cylinder, or a sphere requires a one-sided mating 

envelope (maximum inscribed or minimum circumscribed) fit to confirm the 

feature to location and orientation tolerances. For planes, a one-sided fit can be 

used to simulate one plane of a datum reference frame that is made of three planes 

mutually perpendicular to each other. Depending upon constraints applied to the 

feature defined in the tolerance specification, the parameters of the substitute 

feature can vary. For example, an unconstrained (primary datum) plane requires 
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three points for one-sided fit, while the secondary datum constrained by the 

primary datum requires two points. 

The Chebyshev fits are very sensitive to outliers, some of which may be 

inaccurate measurements, but the tolerance practice suggests to use them because 

the method best describes the tolerance zone [1, 7]. Despite its importance, it is 

not used in commercial softwares for all types of geometries because the objective 

function becomes nonlinear and introduces many challenges, such as solution 

getting stuck in local minima [8], requirement of much more computational power 

than the least squares fits. 

Recent CMMs softwares claim capabilities of assessing lines, planes, 

circles, spheres, airfoils, gears, 2D contours and free form surfaces for 

conformance to tolerance specifications. NPL report [9] on review of recent 

CMMs capabilities shows that, for 2D contour and 3D freeform surface the CMM 

softwares evaluate deviations of the measured points from the nominal geometry. 

They do not reduce the measured data to number of parameters (usually seven or 

less) for assessment of the manufactured feature. The method proposed in this 

thesis reduces the measured points on line profile to four parameters: rotation, two 

displacements and size, such that the distances from the measured points and the 

nominal profile are minimized in least-square sense. As mentioned §§ 1.2, these 

parameters are useful to learn drift in manufacturing process. 

2.2. Feature Fitting Methods 



15 

 

Several optimization algorithms are used to fulfill different fitting 

objectives and different geometry. Mani [3] describes the practice of feature 

fitting methods that are consistent with the GD&T standards. The types of 

tolerances considered are form, orientation and size. He also demonstrated that, 

CMM softwares supplied by different vendors use different feature fitting 

algorithms that lead to inconsistent results. Moreover, depending upon the 

algorithm used, the result may or may not be Chebyshev fit that is consistent with 

the ASME standard. 

Murthy and Abdin [10] suggest three optimization methods for minimum 

zone evaluation, Monte-Carlo, Simplex search and Spiral search. The types of 

geometries used are planar, cylindrical and spherical. The effectiveness of each 

method varies based on type of geometry considered for fitting. In general, 

computational requirement of such methods increases rapidly as number of 

feature parameters increases. They suggest, as used by many researchers, to use 

normal least square fit as best initial guess for those iterative methods. 

A minimum zone fit is difficult to achieve because of non-linearity in the 

problem formulation. Iterative methods are computationally expensive and still do 

not guarantee the exact solution. Carr and Ferreira [11, 12] solve the non-linear 

optimization problem by sequence of linear programs that converges to non-linear 

optimization. The term that makes the optimization problem non-linear in the 

formulation is equality constrain ||T|| = 1 or Tx
2
 + Ty

2
 + Tz

2
 = 1. Where, T is 

direction vector of the solution i.e. minimum zone. For example, for flatness 
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problem, T is normal vector of mid-plane of the two parallel planes departed as 

close as possible, enclosing all points between them. Now consider a rigid body 

transformation matrix that transforms the solution and the point data in first 

quadrant. Hence, for Tx ≥ 0, Ty ≥ 0 and Tz ≥ 0, the equality constraint implies 

inequality constrain Tx + Ty + Tz ≥ 1. The method is applied to lines, planes, axes, 

and circular features for form assessment. 

Another method dealing with nonlinear optimization is Levenberg-

Marquardt method described in a technical report by Madsen et al [13]. It is 

combination of gradient method and Gauss-Newton method to exploit benefits of 

both, and minimizes the objective function in least-square sense. When the 

current iteration is far from the solution, gradient method is utilized, for good 

convergence. But, when it is close to the optimum point, gradient method 

becomes very slow. Hence, Gauss-Newton method is applied, which provides 

close to quadratic solution when the current iteration is close to the final solution. 

Shakarji [8] presents Chebyshev algorithms developed at the National 

Institute of Standard and Technology (NIST). Parameterizations for a line, a 

plane, a circle, a sphere, a cylinder, and a cone are given to solve the optimization 

problem. Simulated annealing is used that not only search a non-linear function in 

downhill direction but also allows occasional uphill moves to avoid arriving at 

local minima. 

The number of sampling points plays a significant role in precise 

assessment of the manufactured profile. On the other hand, the inspection time 
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and cost increases as the number of sampling points increases. Barari et al [14] 

propose a sampling method that uses error density function that guides for further 

sampling locations on the surface in order to achieve desired accuracy. An 

example of form variation assessment using minimum zone fit is demonstrated for 

a sculptured surface. Recently Shakarji and Srinivasan [15] presented weighted 

least-squares method, which can be utilized to complement measurements done 

on the feature are not uniform. They formulated a singular value decomposition 

(SVD) problem with weight assigned to each measured point. Higher weights are 

applied to the area from where less sampling points are collected as compared to 

the points in denser sampling area. Also if values of all the weights are equal to 

one then it becomes unweighted least-squares. 

Polini et al [16] introduce a new approach of least squares fit for specific 

class of profiles, revolute profiles, i.e. a profile that is invariant about an axis. A 

homogeneous transformation matrix is determined to transform measured data in 

order to minimize distance between the measured points and the surface in least 

squares sense. For revolute surface the transformation parameters are reduced to 

five: two rotations and three translations. The method is divided in two steps. In 

first step, four transformation parameters are determined to align the axis of the 

measured point-cloud and that of the theoretical surface. In second step, the fifth 

parameter, translation along the axis, is determined. Levenberg-Marquardt 

method is used for the minimization problem. The results are similar to those in 

[14, 15]. However, those results were for a minimum zone fit instead of least 

squares. Polini et al [16] claim that the method may be used for any type of 
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surface profile. However, the formulation and examples are presented only for 

revolute profiles. 

Choi and Kurfess [17] present a method to determine whether a point 

cloud, by homogeneous transformation, can fit into the tolerance zone for any 

kind of profile. Then the method is extended for minimum zone fit around 

measured points for profiles in [18]. The objective function is a truncated square 

function, which does not include the points between the minimum-zone 

boundaries of the current iteration. In other words, it minimize the sum of squares 

of distances between the points, that are beyond the outer boundary, and the outer 

boundary itself, and distances between points, that are inside the inner boundary, 

and inner boundary itself. A gradient-based iterative optimization method is used 

for this minimization problem. The authors claim that the method works for all 

types of profile. Examples used for demonstration are plane surface, and truncated 

cone. For the truncated cone, minimum zone is evaluated on the entire surface: 

two planar ends and the truncated cone between. 

In recent studies, the method of moving least-square (MLS) is become 

popular for surface approximation. The method involves fitting a polynomial of 

small degree (usually 2 or 3) for each point in a cloud in least square sense using 

neighboring points. However, good approximation depends on selection of 

neighboring points.  Lipman et al [19] propose a method to determine neighboring 

points that assures minimal approximation error. In another paper Lipman et al 

[20] presents fitting continuous non-smooth functions to set of data points. From 
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the metrology point of view, the method may be useful for free form surfaces. 

However, it may not be suitable for fitting a geometry that is not free form, such 

as square boss (Figure 1.3). From the metrology point of view, a profile fitted 

over points measured around the sides of square boss should be a square but can 

be bigger or smaller than the true profile. 

2.3. Tolerance Map (T-Map) 

This research is closely related to the Tolerance Map (T-Map) model for 

representing design limits to geometric manufacturing variations. Davidson and 

Shah [21] introduced the T-Map, a new mathematical model for geometric 

tolerances consistent with the ASME standard. The benefit of using this model is 

that it provides clear distinction between all the geometric tolerances, and, when 

multiple tolerances are applied to the same feature, it represents the coupling of 

variations permitted by the standard [1]. A T-Map is a hypothetical Euclidean 

point-space, the shape and size of which represents all allowable variations of a 

feature within its tolerance-zone. It is made of points; each point is obtained by 

one-to-one mapping from all the possible variations of a perfect form feature 

within its tolerance zone. The T-Map can be a closed area, a volume or a 

hypervolume of n-dimensions depending on the allowable degrees of freedom of 

the feature within its tolerance zone. For line profiles, geometric variations can be 

represented by a true profile, profiles parallel to it, and all of these displaced and 

within the tolerance zone. Each such parallel profile represents a point the T-Map 

for the line profile and tolerance specifications. Areal coordinates are used to 

build the point space of a T-Map. A brief description about areal coordinates 



20 

 

followed by T-Map for square line profiles (Figure 1.3), from [23], is given in 

following sub sections. 

2.3.1. Areal Coordinates 

Areal coordinates of a point is specified by center of mass of masses 

placed at vertices of a simplex, the ratios of which determine the position of the 

point.  Areal coordinates can be formed for n-dimensional space with n+1 basis 

points of a simplex. Consider an example of 2-D space, in which the areal 

coordinates are based on a triangle of reference as shown in Figure 2.1. The basis 

is set by the three vertices ψ1, ψ2 and ψ3 of the triangle. Consider that masses λ1, λ2 

and λ3 are located at these vertices, respectively, such that 0λλλ 321  . The 

values of masses 1, 2 and 3 determine position of any point ψ such that ψ is 

centroid of the masses. The masses 1, 2 and 3 are also known as barycentric 

coordinates. A negative value for one or more of the coordinates shows that the 

point ψ is outside of the triangle. The position of the point ψ is uniquely 

determined by the linear combination 

 

Figure 2.1. Two-simplex for areal coordinates in 2D space. 
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(λ1 + λ2 + λ3) ψ = λ1 ψ  1  + λ2 ψ  2  + λ3 ψ  3.     

Since the position of ψ depends only on two independent ratios of these 

coordinates, the coordinates are redundant. Hence an additional expression λ1 + λ2 

+ λ3 = 1 can make the system determinant. The ratios of coordinates can also be 

regarded as ratios of areas of triangles formed by connecting the point ψ to the 

vertices ψ1, ψ2 and ψ3 as shown in Figure 2.1; hence they often are named as areal 

coordinates. 

2.3.2. T-Map for square Line profiles 

In this section, development of T-Map of square line profiles is described. 

The text in this section is a short summary of the developments presented in [22], 

and Figure 2.3 (a), Figure 2.3 (b), Figure 2.4 and Figure 2.4 are taken from, [22]. 

 

Figure 1.3 (Repeated from §§1.3.1). Specification of a line profile on a square 

boss, raised from a plate [23].  
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A Tolerance-Map (T-Map) represents the freedom of a feature in its tolerance-

zone. For line-profiles, the manufacturing variations will be represented with the 

true profile and profiles parallel to it. These parallel profiles may be displaced 

from the true profile. Each point in the T-Map corresponds to any one of these 

parallel profiles or to any one of them that is displaced, yet remains within the 

tolerance-zone. Four degrees of freedom are required to specify the 

manufacturing variations of a line-profile, such as any one cross-section of the 

square boss in Figure 1.3 (repeated here for convenience). Four degrees of 

freedom, two displacements, a rotation and a size change with respect to its true 

profile correspond to four dimensions of four-dimensional (4-D) T-Map. 

Therefore, it becomes necessary to choose five of the parallel and/or displaced 

profiles as basis profiles and to define the T-Map by placing five corresponding 

basis points ψ1…ψ5 to form the vertices of a basis simplex. Five barycentric 

coordinates λ1…λ5, each one at its basis point ψi, then identify any point ψ in the 

T-Map, and each such point corresponds to one manufacturing variation (one 

profile) in the tolerance-zone. 

Of the five basis-profiles required, two will be:  ψ1, the smallest-sized 

profile, and ψ2, the largest-sized profile, i.e. the inner and outer boundaries to the 

tolerance-zone, respectively.  These are both locked in place and cannot displace.  

The remaining basis-profiles are based on displacements of the middle-sized 

square profile, even though the true profile in the design specification may lie at 

one boundary of the tolerance-zone or be unevenly positioned between both 

boundaries [1]. Each middle-sized square is represented by its components of 
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Figure 2.2 (a) The middle-sized profile (dashed-lined square) in the (exaggerated) 

tolerance-zone that is specified with the profile tolerance ŧ; five variational 

possibilities are labeled, three with dotted lines;  (b) One 2D cross-section of the 

corresponding T-Map that is confined to all size variations and displacements ex 

only in x-direction. Taken from [22] with minor modifications. 

eccentricity (translations), ex and ey, and its rotational displacement θ.  The basis-

profiles displaced to the limits ex = ŧ /2 and ey = ŧ /2 in the x- and y-directions are 

labeled ψ3 and ψ4, respectively, and the one rotated counterclockwise the 

maximum amount θ = ŧ /2 a is ψ5 (Figure 2.3 (a)). 

Consider just two geometric variations of the square profile in Figure 

2.3(a): its size and displacement ex in x-direction. The smallest and largest sized 

profiles ψ1 and ψ2 respectively are regarded as two points on horizontal line in T-

Map point space, as shown in Figure 2.3(b). Similarly consider ψ3 as middle sized 

profile translated in x-direction to extreme rightward by ŧ/2, and then isosceles 

triangle ψ1ψ2ψ3 in Figure 2.3(b) establishes areal coordinates for 2D T-Map space. 

Since the dashed square in Figure 2.3(a) can displace leftward by ŧ /2 also, the 
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Figure 2.3 The T-Map for all the middle-sized squares in the sharp-cornered 

tolerance-zone of Figure 2.3 (a).  Taken from [22]. 

boundary to this 2-D cross-section of the T-Map is a square of side-length ŧ / 2 . 

Notice that the middle sized profile shown in dashed line in Figure 2.3(a), 

corresponds to origin ψ12 of T-Map shown as at midpoint of line segment ψ1ψ2 in 

Figure 2.3(b). This square profile is shown in Figure 2.3 (a) with the dashed line. 

The 3-D T-Map for all the middle-sized square profiles is established with 

the four basis-points ψ12, ψ3, ψ4, and ψ5 shown in Figure 2.4. Basis-points ψ3, ψ4, 

and ψ5 are placed at the same distance ŧ /2 from the origin along the three axes of 

a rectangular Cartesian frame of reference with axes ex, and ey, and θ′. Note that 

the angular limit θ = ŧ /2 a is multiplied by the length a , i.e. θ′ = a θ so that the 

units along all axes are the same, i.e. a length [L]. Consistent units on all the axes 

permit the T-Map to be used for metric computations. 

Square profiles that are larger or smaller than the middle-sized one are 

more limited in their allowable displacements ex, ey, and θ, and the limits diminish 
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Figure 2.4 The 4-D T-Map for the square tolerance-zone in Figure 2.3 (a) and 

showing all five basis-points ψ1,…,ψ5. The 3-D base in red is 3-D T-Map for 

middle sized profile (Figure 2.4) and 2-D cross section in green is 2-D T-Map for 

considering two variations: size and displacement ex in x-direction. For clarity of 

the graphics, the scale in the direction of size (ψ1ψ2) is exaggerated. Taken from 

[22] with a minor modification. 

linearly with change in size. Therefore, the full T-Map for the square tolerance-

zone in Figure 2.3 (a) is a double hyperpyramid in 4-D that is depicted in Figure 

2.4. The base for each single hyperpyramid is the 3-D octahedron from Figure 2.3 

(b), and every other section (two are shown) at right angles to the direction of size 

is a smaller and geometrically similar octahedron. The combined basis-point ψ12, 

shown in Figure 2.3 (b), has been replaced with the individual basis points ψ1 and 

ψ2. 

There now is another way to view the objective of this research: reduce 

the measured points on one line-profile to a set of small-displacement coordinates 

that locate a single point within the T-Map of Figure 2.4. The result is an i-Map, 

that displays the quality of manufacturing relative to tolerance specifications. 
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2.4. Inspection Map (i-Map) 

An inspection map (i-Map) of a feature is a reduction of the coordinates of 

measured points on a feature on a manufactured part, or a sample of several parts, 

to a small number of parameters that corresponds to those in the T-Map for the 

feature. For all parts meeting the design specifications, an i-Map of a feature is 

subset of T-Map of the same feature. For parts not meeting the design 

specifications, the i-Map or portion of the i-Map lies outside the boundary of the 

T-Map of the same feature. As discussed in Chapter 1, a cloud of points measured 

on a feature is reduced to few parameters by feature fitting methods. These 

parameters represent the manufacturing distortions of the feature in each possible 

degree of freedom of the feature within its tolerance zone. Since the i-Map is 

established in the same coordinate frame as the T-Map, the size and location of an 

i-Map represents the degree of conformance of a sample to the design 

specifications. Consistent variations in position and size of the i-Map provide 

useful information about stability or change in manufacturing processes. 

Depending on the types of fit (see section 2.1) applied on a point-cloud, an 

i-Map can be a point or a higher dimensional geometry of the same dimension as 

that of the T-Map. For example, a two-sided fit on a point cloud produces two 

parallel boundaries within which all the measured points are located. The location 

and specification of these two boundaries forms a zone, transformed with respect 

to true profile, but enclosing all the measured points inside it. The one-to-one 

mapping of all possible variations of the feature within this zone to the point 

space forms an i-Map. The dimension of this i-Map is same as that of the T-Map 
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for the feature, but it resides within the T-Map. On other hand, a least squares fit 

and one-sided fit provide a single substitute feature rather than a zone. The 

substitute feature represents only one variation out of many possible variations 

within the tolerance zone. Hence, the least squares fit becomes a point in the T-

Map of all possible variation in the tolerance zone.  
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CHAPTER 3 

MOORE-PENROSE INVERSE AND REGRESSION LINE 

Chapters 3 and 4 establish the mathematical foundation for the least 

squares fit. Introduction of the Moore-Penrose inverse and its properties is 

provided in this chapter. Chapter 4 establishes relationships between metrology 

problem and robotics to form system of equations that is solved using the Moore-

Penrose inverse. §§3.2 is reproduced from [23]. 

3.1. Moore-Penrose Inverse (from [26]) 

For any system of equations [b] = [K′][x], there could be unique solution 

if coefficient matrix [K′] is square and nonsingular. But for rectangular matrix 

[K′]mxn, the inverse of the matrix [K′]1 
is indefinite. Penrose showed that, for 

every finite matrix [K′]mxn, where m > n, there exists unique matrix [K]
#
 that 

satisfies the four equations, 

[K]
 
[K]

 #
[K]

 
= [K]

 
,
 

[K]
# 
[K]

 
[K]

# 
= [K]

 #
,
 

([K]
 
[K]

#
)

*
 = [K]

 
[K]

#
, and

 

([K]
#
 [K])

*
 = [K]

# 
[K]. 

3.1 

 

Where [K]
*
 denotes the conjugate transpose of [K]. The matrix [K]

#
 called 

Moore-Penrose inverse, named after Moore and Penrose who presented the 

conditions (in Eqs.3.1). Uniquely Moore-Penrose inverse,  

[K′]
# 

 = {([K′]
T 

[K′])
–1 

[K′]
T}, 

For an inconsistent set of equations [b] = [K′][x] minimizes ([b]  [K′][x])
2
. This 

unique property of Moore-Penrose inverse used, in this thesis, to calculate least 
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Figure 3.1 Five points equally disposed about a line y = 1 + x/2 (solid line) in the 

xj yj-frame and the standard regression line (dashed line) for them. 

squares fits for line profile. The next section of the chapter is taken from a recent 

paper [23]. 

3.2. Regression Line using Moore-Penrose Inverse 

To understand better the meaning of the Moore-Penrose inverse, which is 

used later in the paper, we undertake a straight-line fit of n identified points in a 

plane. Considering the solution-line to be of the form y = mx + b, there are n 

linear equations that relate the xi- and yi-values. From the Gauss-Markov Theorem 

[25], the least-squares fit is obtained by minimizing the sum 

   
2

bmxy ii  
3.2

 

for i = 1…n. As one example, apply simple linear regression to the five points in 

Table 3.1 which are symmetrically disposed about the line y = 1 + x/2 in the xj yj-
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frame in Figure 3.1. When standard software (e.g. MAPLE) for linear regression 

is applied to these five points, the result is m = 24/53 and b = 69/53.  It is shown 

as the line with long dashes in Figure 3.1. 

Table 3.1. Coordinates of points for the example of least-squares fit for a line 

Point 1 2 3 4 5 

x 3 5 8 8 8 

y 3 3 4 5 6 

 

The set of n equations, which relate the n points to the linear regression 

line, may also be written 

[yi] = [K′
][$] = 



















1

1

1

  
2

1



nx

x

x

[$], 3.3 

where [yi] = [y1 … yn]
T
, [$] = [m b]

T
, and [K′] is an n × 2 rectangular coefficient 

matrix. The n linear equations are, of course, inconsistent. However, they may be 

solved for the unknowns m and b in [$] by using one of several generalized 

inverses; these give an array of inverse matrices and corresponding solutions for 

[$] [26]. Further, a special one of those inverses, the Moore-Penrose inverse 

[K′]
#
, ensures that the values m and b contained in [$] correspond to a 

minimization of the sum of the squares of all the differences yi – (mxi + b). The 

set of yi-values reside in matrix [yi] and the corresponding set of directions for 

their measurement resides in the rows of [K′].  For an overconstrained (and 
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inconsistent) set of linear equations, [K′]
#
 is formed [26] as implied in the second 

of the equations 

[$] = [K′
]

# 
[y i] = {([K′

]
T  

[K′
])

–1 
[K′

]
T}[y i]. 3.4 

When coordinates for the five points in the example above are introduced into 

matrices [K′] and [yi] of Eq 3.3, the Moore-Penrose inverse, [K′]
#
, of [K′] gives 

the same values m = 24/53 and b = 69/53 that arose from the solution using linear 

regression. For what follows in §4.2, it is helpful to note here that, when every yi 

is increased (or decreased) by the same value ∆F, Eq. 3.3 produces an unchanged 

slope m and a value for b that is increased exactly by ∆F. 

Equations 3.3 and 3.4 apply to any overconstrained set of linear equations 

and any geometric shape. However, to be useful in the setting of manufacturing 

variations and tolerance-zones, matrix [yi] must contain values that are measured 

with respect to a reference location of the given geometric shape, the rows of 

matrix [K′] must represent the corresponding directions in which the measured yi-

values (deviations) are made, and matrix [$] then contains values that describe the 

location of the least-squares fit of the geometric shape relative to the same 

reference location that was used when measuring the deviations yi. Therefore, in 

any geometric setting for which such equations might arise, Eq 3.4 relates the 

deviations of the yi-values from the least-squares location of the geometric shape. 

For the special case of linear regression in the plane of Figure 3.1, (i) the 

geometric shape is a line, (ii) its reference location is the x-axis, (iii) its least-
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squares fit is the regression line, (iv) the coordinates m and b in matrix [$] give 

the relative location of the regression line and the reference line, and (v) all the yi-

values are measured at right angles to the (reference) x-axis. 

The computed values m = 24/53 and b = 69/53 for the least-squares line in 

Figure 3.1 are not very close to the theoretical values of 1/2 and 1 because the 

reference direction for error measurement was not made at right angles to the 

theoretical geometric shape. However, a second iteration may be undertaken from 

a new reference xk yk-frame that has its xk-axis aligned with the first solution 

(dashed line in Figure 3.1). When the matrix [yi] in Eqs 3.3 and 3.4 is then formed 

from the yk-values that are computed from this new reference direction, and when 

the results are transformed from the xkyk-frame to the xjyj-frame, a revised least-

squares solution for best-fit of the points emerges: m = 0.496 and b = 1.024. 

Further, when the reference direction is the theoretical line y = 1 + x/2 in the xjyj-

frame in Figure 3.1, Eq 3.4 produces values m = 1/2 and b = 1. 
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CHAPTER 4 

METHOD OF ROBOTICS AND LEAST-SQUARES FIT FOR POINTS 

MEASURED AROUND A PROFILE 

This chapter introduces the method of robotics to obtain a regression line 

profile for the measured points. §§4.1 establishes coordinates to represent line 

profile, convenient in robotics.  In §§ 4.2, method of determining the minimum 

distance from a line, a segment of the line profile envelope, to a measured point is 

developed. Then §§4.3 introduces the system of in-parallel robot; linear actuators 

are applied at each measured point applying forces on the platform etched by the 

line profile. The displacement of each actuator is set inward and normal to the line 

segment. For a large amount of measured points, representation with an in-

parallel robot forms a set of inconsistent equations. For static equilibrium to 

occur, the platform must be displaced by a small amount, which is obtained using 

the Moore-Penrose inverse. §§ 4.1, 4.2, 4.3, 4.4 and 4.5 are reproduced from [24]. 

4.1. Profile segments as envelopes 

Given values for p, q, r and s, the equation 

0 srzqypx  4.1 

identifies all combinations of coordinates (x, y, z) of a point in a Cartesian frame 

of reference so that everyone lies on a single plane.  Therefore, the coordinates 

),,,( srqp  define the specific plane that is identified in the same Cartesian 

frame.  The location of the plane may be established with the three points where 

the coordinate axes pierce it (Figure 4.1).  By setting, say, y and z to zero in Eq. 
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4.1, the pierce-point for the x-axis is seen to be ps / . In two dimensions, the 

coordinates 
xysqp ),,(  are sufficient because 0r  for every plane, each 

plane is parallel to the z-axis (Figure 4.1), and, when viewed from its intersection 

point (at infinity) with the z-axis, each one appears as a line in the xy-plane, such 

as l  in Figure 4.1. Coordinates p and q are the direction ratios of a normal line 

that is directed from the origin and at right angles to the given line, and 

22/ qps   is the directed normal distance from the given line to the origin. 

The coordinates (p , q , s) are homogeneous for every line in the xy-plane, 

i.e. they may be scaled up or down proportionately without changing the location 

of the line (see e.g. [28]).  Therefore, coordinates ρ(p , q , s), where ρ is any real 

number, represent the same line as (p , q , s). However, for metric computations, 

such as determining the shortest distance from a line (p , q , s) to any point, the line 

 

Figure 4.1. A plane   in 3D, a plane 
xy  in 2D, and a line l  in the xy-plane 

defined by the 2D coordinates ),,( sqp  of 
xy . 
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Figure 4.2 A point P and two lines A and B in the xy-plane, each with its 

inwardly directed normal ni. 

coordinates must be normalized, i.e. ρ is chosen so that 
22/1 qp  . When ρ 

is negative, the sense of the unit normal is reversed, thereby providing a way to 

identify that side of a profile which faces inward.  For example, the point 

equations for the two lines in Figure 4.2 are 022  yx , the upper and lower 

signs, respectively, applying to lines A and B.  If these were opposite sides of a 

closed line-profile, an appropriate choice at each line for the sign and magnitude 

of its normalizing factor ρ would make the signs and magnitudes of its p- and q-

coordinates identical to the coordinates for the inward unit normals nA or nB and 

make the shortest distance from each line to the origin be equal to s.  This 

procedure gives the normalized coordinates for line A to be 5/)2 ,2 ,1() , ,( sqp  

and those for line B to be 5/)2,2,1(  , and both distances to the origin become 

5/2 s , the positive sign indicating that the sense of each measurement is 

consistent with that for its unit normal. 

Note that there is no significance of mechanics or geometry to the 

normalizing factor ρ. This is in contradistinction to a similar-looking set of three 
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(screw) coordinates that will be used in §4.3 to locate a line.  For those 

coordinates, the normalizing factor will represent either a force or the amplitude 

of a small displacement that acts along the line [28]. 

4.2. Minimum distance between an envelope and a measured point 

Given a point (x, y) and a line (p, q, s), both in a planar xy-frame, the 

equation ensuring that the point lies on the line is 0 sqypx . Further, when 

the point does not lie on the line, its minimum (normal) distance from the line is 

[28] 

;sqypxd   4.2 

this distance will be in the same units as those for x and y of a measured point 

whenever coordinates (p, q, s) are scaled so that p
2
 + q

2
 = 1, i.e. when the 

coordinates are normalized. For instance, the (directed) distance from line A in 

Figure 4.1 to point P is 55/)21211(  , and from line B it is  – 5/1 . 

Assessing minimum distances at the corners of a profile can be 

problematic because the envelope tangent-lines are not segments; instead, each 

line (p, q, s) is of infinite extent. For example, point #3 in Figure 4.3 lies on 

vertical line segment located at right of the line profile, yet lies closest to the true 

profile at top most envelope-line of the profile that is horizontal. This matter will 

be resolved by assessing minimum distances from a reference-envelope that is a 

parallel curve larger than the middle-sized profile (Figure 4.3). A larger parallel 

curve is generated easily from the envelope description of a middle-sized profile 
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by increasing the value of coordinate s by the same amount for every tangent-line. 

For purposes of the profile and measured points shown in Figure 4.3, the outer 

boundary to the tolerance-zone is an acceptable reference-envelope (∆s = ŧ/2 = 

0.1mm), although a value of ∆s = 2ŧ or 3ŧ is surely better in a practical 

measurement setting to allow for some measured points to lie outside of the 

tolerance-zone. Once the correct minimum-distance direction ni and a 

corresponding distance d from the reference envelope are established for each 

point, it is easy to subtract ∆s from every distance value. 

4.3. Least-squares fit of a square line-profile to measured points 

In Figure 4.3, the middle-sized square profile (dashed line) and the 

boundaries of its tolerance-zone are shown drawn on the platform of a planar in-

parallel robot that is guided with three linear actuators that lie on the normalized 

screws $′1, $′2, and $′3.  The actuators are attached to the platform at three of the 

measured points, i.e. at A, B, and C, and the directions of the corresponding $′i are 

the same as for the inward unit normals ni from the closest side of the square to 

the (enlarged) reference envelope for the profile. For what follows in developing 

formulation for least-squares fit in this section, it is necessary to align coordinate 

frame of the measured points and coordinate frame of the geometry from which 

their deviations are measured. Each of the three linear actuators exerts a force of 

magnitude Fi′ and causes a velocity of magnitude v′i at the measured point where 

it is attached to the platform. Since speed and time are of no importance in 

measurement reduction, each v′i will be replaced with a differential displacement 

d′i of the measured point in the direction of ni. The corresponding deviation torsor 
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Figure 4.3. The line-profile (dashed line) of Figure 1.3, its tolerance-zone 

boundaries (with an exaggerated scale), and 15 measured points, all lying on 

the platform of a planar in-parallel robot which is guided by three linear 

actuators lying on the screws $′1, $′2 and $′3 at points A, B, and C; 

for the platform body is represented by [$] ≡ (0, 0, δθ; δx, δy, 0). Since 

displacements are confined to the xy-plane, the three zero-coordinates may be 

omitted. 

Each of the actuator forces in the xy-plane is represented with wrench 

coordinates, i.e. Fi′ $′i ≡ (F′i; T′i) ≡ (L′i, Mi′, 0; 0, 0, R′i), where L′i and Mi′ are the 

x- and y-components of actuator-force F′i and R′i is the moment of F′i about the 

origin, i.e. R′i = –yiL′i + xiMi′. Since all forces will lie in the xy-plane, the three 

zero-coordinates may be omitted, just as for [$]. Also, the geometry may be 

isolated from the statics by normalizing the wrench coordinates, i.e. 
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Figure 4.4. The free-body diagram of the platform carrying the profile. The 

external loads are the force F′1 acting along the screw $′1 at point A and the 

equilibrium wrench (F1;T1) exerted on the platform from the environment and 

represented with the coordinates (Fx, Fy; Tz). Also shown is the differential 

displacement vector d′1 that is aligned with $′1 at A. The shape of the platform 

ABC, and the relative location of the xy-frame are together congruent to those 

same features in Figure 4.3 

 

F ′ i$ ′ i   ≡ (L ′ i,  M ′ i ; R ′ i) ≡ F ′ i  (L ′ i, M ′ i ; R ′ i), 4.3 

this making (L′i)
2
 + (Mi′)

2
 = 1. The normalized coordinates L′i, Mi′, and R′i for 

each $′i are the scalar screw coordinates for the actuator-wrench Fi′$′i; they 

contain only geometry, i.e. direction and location of Fi′$′i. 

A free-body diagram of the platform in Figure 4.3 contains the three 

forces F′i (i = 1, 2, 3) and an equilibrium wrench, composed of a force and a 

couple, exerted on the platform from the environment.  The force and couple are 

represented with the wrench (F ; T). Consider now that all of the actuated joints 

have no force applied and are free to move except one, say $′1, shown in Figure 

4.4.  Then, the only additional loads on a free-body diagram of the platform are 

those portions of the equilibrium wrench reacting back on it from the environment 
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which are required to equilibrate F1′$′1, i.e. the force and couple (F1 ; T1) shown in 

Figure 4.4 with the components Fx, Fy, and Tz. Since the virtual work of all forces 

and moments on the free body must be zero for a kinematically admissible 

displacement of the platform arising from d′i, the system of forces and couples for 

the special case in Figure 4.4 leads to 

F1 ′d ′1 + [Tz   Fx   Fy][δθ  δx  δy]
T

 = 0, 4.4 

in which the order of the coordinates in (F1 ; T1)  has been changed to (T1 ; F1) and 

the zero-coordinates again have been omitted. The term F1′d′1 represents the 

virtual work of force F′1 with virtual displacement d′1, both in the direction of $′1, 

at point A on the platform, and the product [Tz  Fx  Fy][δθ  δx  δy]
T
 represents the 

virtual work from the equilibrium-wrench acting on the platform whose deviation 

torsor is [$] ≡ [δθ  δx  δy]
T
. 

It is helpful to shift attention to the wrench  –(T1 ; F1)  exerted on the 

environment and produced at the platform by the force F1′$′1 at A. Since the 

platform in Figure 4.4 is a two-force (two-wrench) member, with each wrench 

intensity of equal magnitude, –(T1 ; F1) ≡ –(Tz ; Fx , Fy) ≡ (R′1 ; L′1, M1′) ≡ F1′ (R′1; 

L′1, M1′).  Making this substitution in Eq. 4.4 gives 

F ′1d ′1 = F ′1[R′1 L′1, M′1][δθ  δx  δy]
T
 4.5 

for the virtual work expression when force is exerted only at $′1. Two more Eqs. 

4.5, with subscripts 2 and 3, occur when force is applied only at $′2 and only at $′3. 



41 

 

The force-amplitude at each actuated joint may be removed from each term, and 

all terms on the right come from the product of a row matrix and a column matrix 

of three elements each. When the three equations are ordered sequentially, then 

the rows of screw coordinates, when taken together, comprise a matrix [K′] that is 

formed entirely from the (normalized) coordinates for $′1, $′2 and $′3, and the 

three equations may be written 
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 4.6 

The reader familiar with robotics will recognize [K′] as a Jacobian for the 

actuators of the robot platform in which the normalized coordinates have been 

rearranged.  (For those interested in a more detailed treatment of the principles 

involved, the notation here has been made nearly consistent with that in Davidson 

& Hunt [28], §§1.6, 6.11, 8.5, and 9.6.) 

So long as the screws $′1, $′2 and $′3 are independent for the three 

measured deviations d′1, d′2, and d′3 at locations A, B, and C around the profile, the 

solution to Eq. 4.6 for [$], i.e. [$] = [K′]
–1

[d′i], is unique and all three scalar Eqs. 

4.6 are satisfied exactly. This solution ensures that d′1, d′2, and d′3 are 

kinematically consistent with the platform (profile) displacement [$]. However, in 

practical situations, there are many more measured points around a line-profile 

than three. For instance, in Figure 4.3 there are 15 points. For every additional 

point, there would be an added, and redundant, linear actuator with its normalized 



42 

 

screw $′i exerting a force of amplitude Fi′ on the platform. One example is shown 

with dashed lines at Point 11 in Figure 4.3.  Each of these additional points adds a 

row to the matrices [d′i] and [K′] in Eq. 4.6, so that, for all the measured points, 
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K''d   4.7 

Solution to Eqs. 4.7 provides [$], rigid body displacements (δθ, δx, δy) of the 

platform in plan. However, in metrology size is also an important measure of 

dimensional variation. In next section, Eqs 4.7 are modified to accommodate size 

variation. 

4.4. Adding the 4
th

 dimension for metrology 

The coordinates (δθ, δx, δy) of [$] appear only in a 3-D cross-section of 

the T-Map (Figure 2.3(b)), such as in the base of the 4-D double hyperpyramid in 

Figure 2.4; they do not represent the size of the least-squares envelope, i.e. the 

fourth dimension of the T-Map. The values for displacements d′i, then, may all 

contain a constant value ∆F that represents the change in feature size between that 

of the middle-sized profile and the least-squares profile, and they must contain a 

value ∆s that was introduced artificially in §§4.2 to establish the correct proximity 

of a measured point to the profile. For reduction of CMM data, then, each generic 

Eq 4.8 must be augmented to 
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d ′ i  = [R′ i L′ i M′ i][δθ  δx  δy]
T
 + (∆s  ∆F) 

= [R′ i  L′ i M′ i 1][δθ  δx  δy  (∆s  ∆F) ]
T
 

4.8 

(compare to yi = mxi + b in §3.2).  The scalar relation in Eq 4.8 forms the 

transition between the setting of in-parallel robotics and the setting of reducing 

CMM data to geometric variables related to Tolerance-Maps.  Now the least-

squares fit is obtained by minimizing the sum 

∑[ d ′ i   – { R′ iδθ + L′ iδx + M′ iδy + (∆s  ∆F)}]
2
 4.9 

for i = 1… n. Matrix [$] in Eq 4.7 is augmented to contain the four components 

δθ, δx, δy and (∆s  ∆F), and the matrix [K′] in Eq 4.7 is augmented on the right 

with a column of ones so that the n Eqs 4.8 (for the n measured points) produce 

the matrix equation 
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K''d  4.10 

The Moore-Penrose solution to Eq. 4.7 for [$], i.e. [$] = [K′]
#
[d′i]  (see 

Eq. 3.4), produces the least-squares location (δθ, δx, δy) and size-adjustment (∆s  

∆F) for the profile, i.e. that location and size for a profile which minimizes the 

sum in Eq 4.9. (Compare the pair of Eqs 3.2 and 3.3 to the pair 4.9 and 4.10.)  
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Note that coordinates (δθ, δx, δy) correspond to coordinates (θ, ex, ey) in the T-

Map of Figure 2.4. 

4.5. An Example of least-squares fit for square line profiles 

As one example, consider the measured points that are shown around the 

middle-sized profile in Figure 4.3. The points represent an imperfectly 

manufactured square profile. The coordinates (L′1, M1′; R′1) for the actuator 

screws at each point, and the deviations d′, are presented in Table 4.1 for each of 

the measured points; the deviations are all measured from the outer boundary of 

the tolerance-zone, so ∆s = 0.1 mm (Figure 2.3). The values in Table 4.1 are used 

to build matrices [K′] and [d′i] in Eq. (4.10).  The Moore Penrose solution of [K′] 

produces the least-squares solution 

[$]  =  [δθ  δx  δy (∆s  ∆F)]
T
  =  [0.000562  0.011858  0.013294  0.092828]

T
. 

Table 4.1. Coordinates of measured points around a manufactured square profile 

Points L′i Mi′ R′i , mm di′, mm 

1 –1 0 5 0.05 

2 –1 0 30 0.08 

3 0 –1 –40 0.02 

4 0 –1 –10 0.05 

5 0 –1 15 0.15 

6 1 0 –38 0.05 

7 1 0 –20 0.08 

8 1 0 –10 0.12 

9 1 0 11 0.14 

10 1 0 35 0.12 

11 0 1 –25 0.14 

12 0 1 4 0.13 

13 0 1 22 0.05 

14 –1 0 –30 0.08 

15 –1 0 –10 0.11 
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Figure 4.5 The resultant least-squares profile shown with the thin line. Its 

displacement from origin O is shown with the ‘+’ mark.  

The resultant least-squares profile of this solution is shown as the profile 

with the thin line in Figure 4.5. Note that the scale of the tolerance-zone is 

enlarged by a factor of 10 in Figure 4.3 and Figure 4.5, and the scale for the 

profile dimensions is diminished by a factor of 10. Consequently, the least-

squares profile is drawn at δθ = 0.0562 rad = 3.22
º
 in the counterclockwise 

direction.  Further, to make the appearance of the displaced origin '+' in Figure 4.5 

be consistent with the displayed points, its coordinates δx = 0.011858 mm and δy 

= 0.013294 mm have been scaled up by a factor of 10 with respect to the middle-

sized profile. The corresponding size adjustment from the middle-sized profile is 

∆F = 0.1 – 0.092828 = 0.007172 mm, i.e. a small growth in size. 

4.6. Exact least-squares by invoking further iterations 

As discussed in §§3.2, the least squares solution depends on initial 

condition used to determine matrices [di′] and [K′] in Eqs. 4.10. For the example 

of the linear regression in §§3.2, three iterations required to obtain solution close 
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to theoretical solution. Hence to check whether the solution §§4.5 converged, 

further iterations are carried out for the example of the square profile. 

As shown in Figure 4.6, consider the reference envelope is lying on a 

movable lamina, which contains reference frame Oj. The lamina displaces during 

each iteration by the amount of solution of the previous iteration. The same 

procedure as in §§4.2, 4.3 and 4.4 can be applied for next iterations, provided that 

the displaced outer envelope and measured points are in j-frame. The reference 

envelope is transformed by least square solution of the previous solution (δθ  δx  

δy). Coordinates of the measured points in j-frame (of the current iteration) can be 

obtained by, 
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Figure 4.6 The displaced Oj-frame and the outer envelope lying on it. The outer 

envelope is displaced by the amount of least square solution of the previous 

iteration. 
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Where, [A] is transformation matrix, and (x, y, 1) are homogenous coordinates of 

the measured point in the frame of the previous iteration. 

The minimum distances [di′] and the coordinates (L′i, Mi′; R′i) are obtained 

based on the new configuration of the reference envelope and the measured points 

in j-frame. Results of two further iterations are shown in Table 4.2. 

Table 4.2 Coordinates of measured points with respect to the latest least squares 

solution 

Points 

Iteration-2 Iteration-3 

L′i Mi′ R′i , 
mm 

di′, mm L′i Mi′ R′i , 
mm 

di′, mm 

1 -1.000 0.000 4.964 0.066 -1.000 0.000 4.964 0.066 

2 -1.000 0.000 29.964 0.082 -1.000 0.000 29.964 0.082 

3 0.000 -1.000 -40.011 0.063 0.000 -1.000 -40.011 0.063 

4 0.000 -1.000 -10.011 0.076 0.000 -1.000 -10.011 0.076 

5 0.000 -1.000 14.989 0.162 0.000 -1.000 14.989 0.162 

6 1.000 0.000 -38.009 0.067 1.000 0.000 -38.009 0.067 

7 1.000 0.000 -20.009 0.087 1.000 0.000 -20.009 0.087 

8 1.000 0.000 -10.009 0.121 1.000 0.000 -10.009 0.121 

9 1.000 0.000 10.991 0.129 1.000 0.000 10.991 0.129 

10 1.000 0.000 34.991 0.096 1.000 0.000 34.991 0.096 

11 0.000 1.000 -25.034 0.148 0.000 1.000 -25.034 0.148 

12 0.000 1.000 3.966 0.122 0.000 1.000 3.966 0.122 

13 0.000 1.000 21.966 0.032 0.000 1.000 21.966 0.032 

14 -1.000 0.000 -30.036 0.116 -1.000 0.000 -30.036 0.116 

15 -1.000 0.000 -10.036 0.135 -1.000 0.000 -10.036 0.135 

 

δθ  = 

δx = 

δy = 

∆F = 

  0.1296 e–8 

0.7470 e–5 

  0.6657 e–5 

–0.6325 e–5 
 

δθ  = 

δx = 

δy = 

∆F = 

0.3121 e–14 

0.2848 e–14 

–0.2852 e–13 

–0.1545 e–13 
 

 

Deviations of the new least square line profiles are shown at bottom of the 

table. It is observed that, the values of the least-squares solution are not 

significant even for second iteration. Notice that the practical manufacturing 

variations (di′ values) in Eq. 4.10 are typically two orders of magnitude less than 
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the nominal dimension of the profile. Hence, having small range of variation, the 

method is linear for tolerance problems. 

4.7. i-Map representation of the least-squares solution 

Now the manufactured line profile can be evaluated based on the tolerance 

specifications given in Figure 1.3. The four deviations (δθ δx δy ∆F) obtained in 

§§4.5 can be modeled in the T-Map for the square line profile (Figure 2.4). The 

least squares line profile will represent as a point in the T-Map. The coordinates 

of the point in T-Map are 

(θ′ ex  ey ∆F) = ( a δθ  δx  δy ∆F) = ( 0.02284  0.0119   0.0133  0.0072). 

The i-Map is drawn in the T-Map as a point as shown in Figure 4.7 using 

coordinates (0.02284, 0.0119, 0.0133, 0.0072). The 3D hyper volume with thick 

 

Figure 4.7 i-Map for the solution obtained in §§4.5; it is a point in 4D T-Map of 

square profile shown in Figure 1.3. Coordinates of i-Map are scaled for clarity. 
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lines is the T-Map of the square profile at size ∆F. 

4.8. Minimum zone – form error assessment 

Form variation, based on the least-square fit, can be determined by 

distance between two parallel boundaries, at the orientation and location as those 

of the least-squares solution, but separated by minimum distance such that all the 

measured points are in between. The method to find the two boundaries that form 

the minimum zone is described in this section. 

As shown in Figure 4.6, consider a movable lamina with origin Oj on 

which the reference envelope is lying. The lamina is displaced by the amount of 

the least-squares solution. Now the inverse transformation, as in Eq. 4.11, is 

applied to the measured points, to transform the measured points into the j-frame. 

The shortest distances, [d′i], from the measured points (on j-frame) and the 

reference envelope (in j-frame) are calculated using Eq. 4.2. Then the minimum 

 

Figure 4.8 The resultant minimum zone, based on the least-squares solution, 

shown as two parallel square boundaries. One is located on point farthest 

outward from the least-squares fit and the other is on point farthest inward. 
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zone is calculated by, 

Z = max[d ′ i] – min[d ′ i].

 

4.12 

For the problem of the square profile, the values of [d′i] are, 

[d′i]
T = [0.066, 0.082, 0.063, 0.076, 0.162, 0.067, 0.087, 0.121, 0.129,  

             0.096, 0.148, 0.122, 0.032, 0.116, 0.135] 

And the value of the minimum zone is, 

Z = 0.162 – 0.032 = 0.13 (Figure 4.8). 

4.9. Orientation zone 

It would be interesting to analyze situation when orientation of the 

minimum zone in §§4.8 is constrained with respect to Datums. Orientation zone 

can be defined by zone between two parallel curves that are separated by 

minimum distance such that all the measured points are in between, and 

orientation of the zone is constrained with respect to Datums. 

Solution to orientation zone is simplification to the least-squares fit. It can 

be obtained by reducing the [K′] matrix in Eq. 4.10 by substituting zeros in first 

column, which cause orientation change of the platform (Figure 4.3) due to 

application of the linear actuator. Corresponding changes result no orientation 

change in displacement torsor [$], i.e. δθ = 0.0 rad. Hence to determine 

orientation zone for the points measured around line profile can be obtained by 

solving simplified form of Eq. 4.10,  
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where [$]  =  [δx  δy (∆s  ∆F)]
T
. And then fitting a minimum zone based on the 

solution [$] obtained from Eq. 4.13. 

For the example of points measured around the square profile, the location 

of the solution is [δx  δy  (∆s  ∆F)] = [0.011, 0.016, 0.091]. Further, to obtained 

minimum zone distances of points from the solution are, 

[d′i]
T = [0.070, 0.100, 0.046, 0.076, 0.176, 0.048, 0.078, 0.118, 0.138, 

  0.118, 0.133, 0.123, 0.043, 0.100, 0.130] 

Hence, orientation zone can be defined as  

 

Figure 4.9 (a) The resultant orientation zone. Orientation of the solution is 

constrained; (b) The resultant positional zone. Position and orientation of the 

solution is constrained. 
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Z = max[d′i] – min[d′i] = 0.176  0.043 = 0.133 mm. 

The resultant orientation zone in Figure 4.9(a) is displaced from the origin 

O by (0.011, 0.016). And the two boundaries parallel to the solution are 0.133 mm 

apart, locked by two points farthest extreme inside and outside. 

4.10. Positional zone 

For determining positional zone both, position and orientation, of the 

minimum zone is constrained with respect to Datums. While constraining position 

and location of the solution, positional zone is defined by determining difference 

between farthest and nearest point from reference envelope (Figure 4.3), which is 

parallel to the MSP. Hence form the [d′i] values in the Table 4.1, the positional 

zone is, 

Z = max[d′i] – min[d′i] = 0.15  0.02 = 0.13. 

As shown in Figure 4.9(b), positional zone for the point measured around 

the square profile has not displacements. The positional zone is between two 

boundaries parallel to MSP are 0.13 mm apart. 

  



53 

 

CHAPTER 5 

LINE PROFILES MADE OF LINE AND ARC SEGMENTS 

In this chapter, one more difficulty is added to the problem of least-

squares shown in Chapter 4. Extending the method in Chapter 4, envelope 

equation for arc segments is developed that enables to form matrices [K′] and [d′i] 

(in Eqn. 4.10) to determine least-squares fit for profiles made of line and arc 

segments. T-Map for nonsymmetrical line profile (as shown in Figure 5.1), made 

of line and arc segments, is developed in §§5.1. Envelope equation for arc 

segment and minimum distance from measured points to it is developed. 

Envelope equation for line segment is developed in Chapter 4. Example of least-

squares fit demonstrated for points measured around the line profile. §§5.1 – 5.5 

are reproduced from [24] 

The specifications for a sample profile (raised boss) used in this chapter 

are shown in Figure 5.1.  The shape of the boss is controlled by the line-profile 

tolerance ŧ = 0.2 mm relative to the Datums A, B, and C. The specification 

establishes two parallel curves, the boundaries to the tolerance-zone, at each 

cross-section of the profile (Figure 5.2).  One is 0.1 mm larger along every line 

normal to the surface, and the other is 0.1 mm smaller, according to the ASME 

Standard [1]. 

5.1. T-Map for the sample line profile 

The purpose of this section is to supplement, and to briefly introduce, the 

developments presented in [22] to produce the Tolerance-Map (T-Map) for the 
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line-profile specified in Figure 5.1. With this T-Map it will be possible to make a 

direct comparison of a manufactured profile, as represented with a set of 

measured points, with the tolerance specifications for it. 

As mentioned in §§ 2.3, a Tolerance-Map represents the freedom of a 

feature in its tolerance-zone. For line-profiles, four independent variables are 

required to specify the manufacturing variations of a line-profile, such as any one 

cross-section of the raised boss in Figure 5.1: two translations, one rotation, and 

change in size. Correspondingly, its T-Map will be four-dimensional (4-D). 

Therefore, it becomes necessary to choose five of the parallel and/or displaced 

profiles as basis profiles and to define the T-Map by placing five corresponding 

basis points ψ1…ψ5 to form the vertices of a basis simplex. 

 

Figure 5.1. Specification for a sample raised profile having sharp corners.  Its 

shape is controlled by the profile tolerance ŧ = 0.2 mm relative to Datums A, B, 

and C. 
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The construction of the complete T-Map for the profile specified in Figure 

5.1 occurs in four stages:  produce the T-Map for the 3-D section of a square 

profile, truncate it with a rhombic prism, truncate that result with opposite 90-deg 

shells taken from the same oblique circular cylinder to account for the rounded 

corner, and lastly expand to the fourth (size) dimension. 

5.1.1. T-Maps for Square and Rectangular Line-Profiles 

The first stage of 3D T-Map for square line profiles is described in §§ 

2.3.2. The second stage in development is to account for the rectangular shape of 

the profile in Figure 5.1 and Figure 5.2.  As can be seen with Figure 5.3 and 

Figure 5.4, a fully rotated middle-sized profile still has freedom to translate in the 

longer direction, and the limit to rotations is based on the longer length b .  Four 

of the faces of the octahedral T-Map in Figure 2.3(b) have a steeper slope than 

 

Figure 5.2 Selected displaced locations for the middle-sized profile (dashed-line) 

in the (exaggerated) tolerance-zone that is specified with the profile tolerance ŧ = 

0.2mm from Figure 5.1.  (a) Two of its fully translated possibilities (dotted lines) 

at 45°.  (b) Constrained at three points of the boundary and rotated 

counterclockwise.  (c) Also constrained, but rotated clockwise. 
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they did for the square [22].  Hence, the T-Map in Figure 5.4 can be obtained by 

truncating the T-Map in Figure 2.3(b) with a rhombic prism that has its central 

axis along ex and has diagonal dimensions ŧ and ŧ /δ, where δ = ab >1, the aspect 

ratio for the rectangle. When the same foundations (basis-tetrahedron ψ12, ψ3, ψ4, 

and ψ5 and scales for overlain Cartesian  coordinates)   for   constructing  Figure 

2.3(b)  are  used  to construct the 3-D T-Map for the middle-sized rectangular 

profiles, the result is the shape shown in Figure 5.4 in which ψ5 now lies beyond 

the boundary of the T-Map.  The added two edges in the exθ′-plane correspond to 

the allowable translations of middle-sized profiles that have been rotated to a limit 

of the tolerance-zone.  For instance, the two rotated profiles (dotted lines) in 

Figure 5.3 show the limits to this translation; they correspond to the two vertices 

(heavy dots) at the front of the T-Map in Figure 5.4.   More detail for this 

construction can be found in [22]. 

 

Figure 5.3. The middle-sized profile (dashed-lined rectangle) in the (exaggerated) 

tolerance-zone that is specified with the profile tolerance ŧ , and two of its fully 

rotated variational possibilities (dotted lines).  From [22]. 
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Eight of the 10 surfaces forming the 3-D T-Map for the middle-sized 

profile in Figure 5.2 are obtained by combining the constructions for Figure 2.3(b) 

and Figure 5.4:  truncate the shape in Figure 2.3(b) with the same rhombic prism 

that has diagonal dimensions ŧ and ŧ /δ. Now, however, its central axis lies along 

the ey-axis because the y-axis in Figure 5.1 and Figure 5.2 parallels the longer 

line-segment of the profile.  This completes the second stage, and the results are 

the 8 planar faces of the T-Map boundary shown in Figure 5.5. 

5.1.2. The Invariant Point (Pole) of the Profile 

It is helpful to view the displacements ex, and ey, and θ of the profile to be 

the same as those of a moveable lamina on which the middle-sized profile (MSP) 

is etched.  For both the square and rectangular profiles, the undisplaced location, 

ψ12, is shown with a dashed line (Figure 2.3(b) and Figure 5.4).  Additionally, in 

 

Figure 5.4. That portion of the T-Map for a sharp-cornered rectangular profile 

which represents the middle-sized rectangles in the tolerance-zone of Figure 5.3.  

The two vertices at the front (with dots) correspond to the two rotated profiles 

shown in Figure 5.3.  Taken from [22]. 



58 

 

Figure 2.3(a) for the square profile, one fully rotated location (CCW) is ψ5.  For 

two such locations of a lamina, there is a unique point that does not displace.  In 

classic kinematics literature (see e.g. [29] or [30]) this point is called the ‘pole’ of 

the two locations.  For line-profiles, it is the point to which the eccentricities ex 

and ey apply in the associated T-Map, and it is this point that must be used later in 

the paper as the origin of the reference frame Ojxj yj in which all geometric 

quantities are represented:  the measured points, the geometry of the profile, the 

associated screws, and the regression (least-squares) line-profile.  For the square 

and rectangular profiles in Figure 2.3(a) and Figure 5.3, the pole is at the 

geometric center O.  However, for the rectangular profile, there is not one fully 

rotated location of the lamina that is locked in place.  Of the linear array of 

possibilities shown in Figure 5.3, we choose the one that is mid-way between the 

two dotted ones at the limits.  Note that, for both the square and rectangular 

profiles, the fully rotated lamina, which is used in defining the pole and its 

associated origin of the required coordinate system, corresponds to one of the two 

points in the T-Map where the θ′-axis pierces the boundary.  See Figure 2.3(b), 

Figure 5.4, and Figure 5.5. 

5.1.3. The T-Map for the Middle-Sized Profile in Figure 5.2 

The 3-D T-Map for the middle-sized profile in Figure 5.1 and Figure 5.2 is 

shown in Figure 5.5.  This stage is proposed by Yifie He, a graduate student at 

Design Automation Lab at ASU, and working on development of T-Map for line 

profiles. The third stage of development is about producing the specific geometry 

of the curved portions. Their shape may be found analytically by using the 
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homogeneous coordinate transformation [A] that locates the displaced lamina 

(carrying the dotted MSP in all parts of Figure 5.2) relative to the fixed (dashed) 

MSP; it transforms homogeneous coordinates of points from the displaced frame 

to the fixed frame.  From any good book on robotics, e.g. [31], 
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5.1 

where the small displacements ex, and ey, and θ locate the dotted frame relative to 

the fixed one and the origins of both frames are at the geometric centers of the 

unrounded rectangles.  The second form of [A] in Eq. 5.1 arises because angle θ is 

always very small (<0.2/80 for the profile in Figure 5.1) and only first-order small 

quantities need to be retained. 

Table 5.1 contains the coordinates of superimposed points in both the 

displaced and fixed laminae; each row represents a constraint between the 

laminae.  For instance, the third and fourth ones constrain the left and lower line-

segments to touch corners F and G, respectively, of the inner boundary (Figure 

5.2(b)).  The last row in the table contains the coordinates of the arc-center 

corresponding to the contact of a point H on the arc of the dotted MSP with the 

arc of the outer boundary (fixed) of the tolerance-zone (Figure 5.2(b) and Figure 

5.2 (c)).  The coordinates in Row 5 of Table 5.1 are related by [xHc  yHc 1]
T = [A][– 

40   – 20 1]
T
. As a consequence of the contact at point H, the displaced arc-center 
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(xHc , yHc) lies on a circle of radius ŧ /2 = 0.1 mm (Figure 5.1) and with the fixed 

center (x,y)=(– 40 , – 20), i.e. 

    
22

2040 HcHc yx  (ŧ /2)2
.  5.2 

Table 5.1 Coordinates of contacts in Figure 5.2(b) and Figure 5.2(c) 

Point 
Coordinates (x, y), mm 

In Displaced Frame In Fixed Frame 

E ( 40, yE ) ( 39.9, 59.9 ) 

Fc ( xF, 60 ) ( 39.9, 59.9 ) 

Fcc ( 40, yF ) ( 39.9, 59.9 ) 

G ( xG, 60 ) ( 39.9, 59.9 ) 

Arc-center ( 40, 20 ) ( xHc, yHc ) 

When the transformed coordinates xHc  = – 40 + 20θ + ex and yHc  = – 40θ – 20 + ey are 

combined with Eq. 5.2, and the substitution θ′ = a θ = 40θ (see §3.1) is made, the 

expression for the curved portion of the T-Map boundary for the line-profile in 

Figure 5.1 arises: 

   22

2
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Equation 5.3 is seen to represent an oblique circular cylinder of radius ŧ /2 and 

with its axis both passing through the origin and having the direction ratios ex : ey : 

θ′ :: 1/2 : 1 : 1, so giving an ex ey -section for the T-Map consistent with Fig. 9(d) in 

[22].  The curved portion of the T-Map boundary is a segment of the first-

quadrant 90° shell cut from this cylinder; with one adjacent planar surface, it 

blends with continuities C
0
 and C

1
.  The short line-segment on the top surface of 

Figure 5.5(a), and its counterpart opposite in the T-Map, identify the points 

having C
2
-discontinuity (curvature) with the blended planar face. 

We now see that each of the contact constraints at points E, F, G, and H in 

Figure 5.2(b) and Figure 5.2 (c) may be formalized by relating the coordinates in 

one row of Table 5.1.  These formalizations, together with Eq. 5.3, may be used to 

confirm all the surfaces that form the right half of the boundary shown in Figure 

5.5(a).  For the Rows 1-4 of Table 5.1, it is convenient to use the inverse of 

transformation [A], i.e. 
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in which only first-order small quantities have been retained.  Taken together, the 

matrix equations are  
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The counterclockwise displacement in Figure 5.2(b) is constrained at points G and 

H, and also at point F with the coordinates in Row 3 of Table 5.1.  From Eqs. 5.5, 

the constraints at Fcc and G lead respectively to 

y

x

e

e





9.599.3960

9.599.3940




 

 

or to  

  ' 5.1 xe ŧ /2 

 'ye ŧ /2 

5.6 

The first and second of Eqs. 5.6 are seen to be algebraic representations for the 

right-front vertical face and the top-front face of the T-Map in Figure 5.5(a).  

When Eqs. 5.6 are combined with Eq. 5.3, the vertex at the front of the T-Map is 

identified (heavy dot in Figure 5.5(a)) with the coordinates (ex , ey , θ′ ) = (0.07 , 0.08 

, 0.02) mm.  It is this vertex in the T-Map that represents the dotted MSP in Figure 

5.2(b). 

cw ccw 

cw ccw 
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Using the same procedure for points E, F, and H, F now represented with 

the coordinates in Row 2 of Table 5.1, algebraic forms for the two faces at the 

top-rear and the right-rear of the T-Map emerge for Figure 5.5(a), i.e. 

  ' 5.1 xe ŧ /2 

 'ye ŧ /2 
5.7 

(Note that, in Figure 5.2(c), the inner boundary of the tolerance-zone must be 

drawn closer to the MSP, i.e. the exaggeration reduced, so that the contacts of 

constraint are realistic.) 

5.2. T-Maps for different sizes of the profile 

Consider a case when the profile size is very close to the size of the outer 

boundary of the tolerance zone. Then, the displacements of the profile are 

 

Figure 5.5. The 3-D T-Map for the middle-sized profile in Figure 5.1 and its 

tolerance-zone in Figure 5.2. (a) Aligned similarly to the T-Maps in Figure 2.3(b) 

and Figure 5.4.  (b) At an orientation that makes the cylindrical portions more 

apparent. 
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constrained only by the outer boundary; the profile never contacts with the inner 

boundary. In this section, the contacts between the profiles (of sizes ŧ/2 < F <0 

and 0 < F < ŧ/2) and boundaries of the tolerance zone are studied, and equations 

of surfaces for the corresponding T-Maps are constructed for each distinct range 

of these different sizes. The objective of this sub-section is to produce the 

morphological forms of the 3D hypersections of the 4-D T-Map over the full 

range of allowable profile size. I am grateful to Mr. Yifei He for his assistance in 

using his intersection-of-primitive method, a form of CAGD, to identify or 

confirm all of these morphological forms. 

Consider a profile of arbitrary size with its each segment denoted by 

integers (1m to 4m) and vertices denoted by alphabets (am to dm) in Figure 5.6(a). 

 

Figure 5.6. (a) The profile of arbitrary size (in dashed line) constrained between 

the two boundaries of the tolerance-zone. (b) Faces of the T-Map are formed due 

to contacts between the profile the boundaries of the tolerance zone. 
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For outer and inner boundaries of the tolerance zone, subscripts o and i are used to 

denote corresponding segments and vertices respectively. Also, as shown in 

Figure 5.6(b), the faces of the corresponding T-Map of the profile (in Figure 

5.6(a)) are denoted by, Ei –for planar faces on front side, E′i -for planar faces on 

rear side, and Ci -the cylindrical faces. Notice that the T-Map shown in Figure 

5.6(b) is identical to 3D T-Map for the MSP (Figure 5.5), and we are interested to 

study variations of it while the size of the profile varies. 

5.2.1. T-Maps for allowable profiles larger than the MSP 

Any contact between the profile and the tolerance zone boundaries restrain 

the profile motion in the direction perpendicular to the boundary tangent, at the 

contact point. The corresponding point in the T-Map space lies on one surface of 

the T-Map; for example when the profile is displaced in the x-direction till 

extreme extents and rotated CCW, because of the contact between vertex bm and 

line segment 2o of outer boundary, the corresponding point in T-Map space lies on 

face E1 (Shown in Figure 5.6(b)). Similarly, when two vertices of the displaced 

profile are in contact with boundaries simultaneously, the corresponding point in 

T-Map lies on an edge (intersection of two faces) of the T-Map; and for the three 

or more simultaneous contacts, the point lies at a vertex (intersection of three or 

more faces) of the T-Map. This subsection determines first, second and third 

contact, for the profiles larger than MSP, due to which the profile is constrained. 

Based on the contacts, the equations of surfaces of the T-Map are derived. This 

subsection is divided into four cases of extreme displacements in 45˚, 135˚, 225˚, 
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and 315˚ directions. In each case, rotations in the CCW and CW directions are 

applied to the profile until possible extent. 

Case-1: Profile is displaced in extreme upper left direction (135˚) 

Consider a profile larger than MSP (F > 0) is translated in 135˚ direction 

up to possible extent, as shown in Figure 5.7(a). The first contact occurs at vertex 

dm with outer boundary segments 4o and 3o. For convenience, contacts are denoted 

as dm4o and dm3o. When the profile is rotated in CCW direction, two immediate 

contacts dm4o, 3m3o occurs. On the other hand, when the profile is rotated in CW 

direction, two immediate contacts are dm3o and am4o. 

First, consider the CCW rotation of the profile. Due to the two contacts the 

rotation of the profile is analogous to a very small double slider mechanism with 

sliders at contacts dm4o and 3m3o (Figure 5.7(b)), sliding along the tangents to the 

tolerance zone boundary. Since the profile is a part of the link connecting two 

sliders, the profile rotates about instantaneous center P of the mechanism. For 

very small possible displacements, P (approximately) overlaps with vertex dm 

Figure 5.7(b). There are two possibilities of occurrence for the third contact 

during CCW rotation: contact 1mbi, and contact bm2o (shown in Figure 5.7(b)). For 

the occurrence of contact 1mbi, the shortest distance that the line segment 1m 

requires to displace is ŧ /2+F( ŧ /2F) = 2F, in y-direction. Because of the 

rotation about P, the contact at 1mbi satisfies equation, 
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 802 F , 5.8 

where  is angle of rotation of the profile about instantaneous center P. Here the 

second order terms are neglected. Similarly, contact for vertex bm requires to 

displaced by ŧ/2F+(ŧ/2F) = ŧ2F in x-direction for contact bm2o to occur. 

And the equation that satisfies the contact is, 

   ŧ   1202 F .
 

5.9 

From Eqs. 5.8 and 5.9, the size of the profile, at which both the contacts occurs, is 

F = ŧ /5. It is apparent that the contact 1mbi limits angle  when the size of the 

profile is F ≤ ŧ /5, and contact bm2o limits  when F ≥ ŧ /5. 

Now, we will further analyze each case for further possible rotations. For 

F ≤ ŧ /5 (when contact 1mbi occurs) further CCW rotation changes the kinematic 

configuration to that as shown in Figure 5.7(d). With rotation about the new 

instantaneous center P′, contact bm2o occurs as shown in Figure 5.7(e) so that the 

three contacts are 1mbi, bm2o and dm4o. This identifies the upper end of the vertical 

edge at the front of the 3-D hypersection. When the size of the profile is F ≥ ŧ /5, 

rotation of the profile is constrained between three contacts dm4o, bm2o and 3m3o, 

as shown in Figure 5.7(f), and the face E3 (Figure 5.6 and Figure 5.15) has 

disappeared from the T-Map. 
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When the profile is rotated in clockwise (CW) direction, based on contact 

am4o and contact dm3o the configuration of double slider mechanism is formed as 

shown in Figure 5.7(c). When the profile rotates about instantaneous center P, the 

two possible candidates for the third contact are bm1o and 4mdi. The equations 

satisfying the contact bm1o is, 

ŧ   802 F ,
 

5.10 

and contact 4mdi is, 

ŧ  120 .
 

5.11 

Solving Eqs. 5.10 and 5.11, gives the critical size at which both the contacts occur 

as, F = ŧ /6. As in Figure 5.7(g) and (h), it is apparent that for F ≤ ŧ /6, the third 

contact is 4mdi, the place at the back of the 3-D hypersection where face E1′ 

intersects the negative ′-axis. For F ≥ ŧ /6, the third contact is bm1o and, in this 

range of F, the vertical line-segment at the back of the 3-D hypersection no 

longer intersects the ′-axis. Instead, axis ′ pierce the face E4′. 

Case-2: Profile is displaced in extreme lower right direction (315˚) 

When the profile is larger than the MSP and displaced in lower right 

direction to extreme extent, the displacement is constrained by the contact 

between vertex bm and line segments 1o and 2o, as shown in Figure 5.8(a). Again, 

for two possible rotation directions: CCW and CW, corresponding double slide 

mechanisms are shown in Figure 5.8(b) and (c) respectively. While the profile  
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rotates CCW, contacts represented as sliders, are am1o and bm2o (Figure 5.8(b)). 

And the rotation of the profile will be constrained when contact dm4o occurs 

(Figure 5.8(d)). The contacts am1o, bm2o and dm4o identify the lower end of the 

vertical edge at the front of the 3-D hypersection. 

For CW rotation, contacts bm1o and 3m2o form a double slider mechanism. 

There are two possibilities for the third contact to occur: 4mdi and 3m3o. Since the 

distance between line segment 4m and vertex di is ŧ /2 + F  (ŧ /2  F) = 2F, 

contact 4mdi satisfies,  

 802 F .
 

5.12 

When the arc segment of the profile contacts tolerance zone boundaries, 

the arc center em lies on the dotted path shown in Figure 5.8(c). When it comes in 

contact with the arc segment of the outer boundary, the center em traces arc 

(dotted path in Figure 5.8(c)) with radius of (80+ŧ/2)  (80+F) = ŧ/2F. Where 

(80+ŧ/2) is radius of arc segment of outer boundary; and (80+F) is radius of the 

arc segment of the profile of size (MSP+F). Also, F carries the sense of 

direction, i.e. F is positive for the profiles larger than the MSP and negative for 

the profiles smaller than the MSP. Similarly, when the arc segment of the profile 

comes in contact with the arc segment of the inner boundary, the arc center em 

traces the arc with radius (80+F)  (80ŧ/2) = ŧ/2 + F. For this case, the arc 

center em is displaced in the downward y-direction by ŧ /2  F. Contact 3m3o 
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occurs when the arc center is lying on the upper right arc segment of the dotted 

path. Hence the contact 3m3o occurs when 

ŧ /2   80F
 

5.13 

is satisfied. From Eqs. 5.12 and 5.13, the critical size of the profile when both the 

contacts occur is F = ŧ /6. Contact 4mdi occurs when the profile size is F ≤ ŧ /6, 

and contact 3m3o occurs when F ≥ ŧ /6. 

Correspondingly, it is worth noting that the equation of cylinder for MSP 

represented in Eq. 5.3 changes based on its contact with the outer and inner 

boundaries. When the arc segment of the profile contacts the outer boundary, it 

forms a 90º cylindrical shell in first quadrant of equation, 

   22

2

1.0''
2

1
Fee yx 








  . 5.14 

When the arc segment of the profile is in contact with the inner boundary, it forms 

a 90º cylindrical shell in the third quadrant of equation, 

   22

2

1.0''
2

1
Fee yx 








  . 5.15 

These two equations are used to produce T-Map of different sizes along with 

equations of the planar faces developed later. 
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For F ≤ ŧ /6, when contact 4mdi occurs, the double slider mechanism 

configuration changes to as shown in Figure 5.8(e). When the profile rotates about 

new instantaneous center P′, two possibilities of the third contact arises: am4o and 

dm3o. When contact am4o occurs, it satisfies 

ŧ  3F   120 .
 

5.16 

Here  is the additional amount of rotation about the new instantaneous center P′ 

for the contact to occur. And when contact dm3o occurs, it satisfies 

ŧ  4F   80 .
 

5.17 

From Eqs. 5.15 and 5.16, both the contact occurs at the critical size F = ŧ/6. 

While determining amount of rotation () in equations 5.15 and 5.16 for different 

F, it is found that the contact am4o occurs when F ≤ ŧ /6 (Figure 5.8(f)), and 

dm3o occurs when F ≥ ŧ /6 (Figure 5.8(i) and (j)). However, there are some more 

details need to be address for F ≥ ŧ /6 that changes form of the T-Map. 

Let’s go back to the conclusion from Eqs. 5.12 and 5.13. For F ≥ ŧ /6, the 

second contact will be formed at 3m3o, as shown in Figure 5.8(g). The two 

possible candidates for the third contact are 4mdi and dm3o. For contact 4mdi to 

occur, vertex 4m must displace 2F−(ŧ /2−F) = 3F−ŧ /2 in the x-direction; 

where (ŧ /2−F) is the displacement of the vertex during the rotation in previous 

kinematic setting. The contact satisfies equation, 
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 3F  ŧ /2   80 .
 5.18 

Similarly, for contact dm3o the vertex dm requires to displace  ŧ−2F−(ŧ /2−F) = 

ŧ /2−F. And the contact satisfies equation,  

ŧ /2    80F .
 

5.19 

Solving Eqs. 5.18 and 5.19, the critical size when both contacts occurs is F = ŧ/4. 

For size F ≤ ŧ /4, contact 4mdi occurs that leads to configuration similar to 

as shown in Figure 5.8(e), except the instantaneous center is now denoted as P′′ 

for this third kinematic setting. From the conclusion of Eqs. 5.16 and 5.17, that 

corresponds to Figure 5.8(e), for ŧ/6 ≤ F and  F ≤ ŧ/4, further rotation about P′′ 

constrains the profile by third contact at dm3o (Figure 5.8(i)). If the profile size is 

F ≥ ŧ /4, the arc segment of the profile rolls and slide over the arc segment of the 

outer boundary, until the vertex dm contacts arc segment 3o, as shown in Figure 

5.8(j). Figure 5.8(f) and (i) conclude that contact between line segment 4m and 

vertex di occurs for the profiles of size F ≤ ŧ/4. 

When the MSP is displaced to the lower right corner of the tolerance-zone, 

its two vertical line-segments, 2m and 4m, coincide with vertical line-segments 2o 

and 4i of the tolerance-zone boundary, and segments 1m and 1o coincide; so that 

all allowable CW rotation is controlled in part by point di. However, when a 

profile only slightly larger than the MSP (e.g. F = 0.02ŧ), is displaced to the 

lower right corner, only segment 2m coincides with 2o (Figure 5.8(a)), so that CW 
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rotations from this location cannot at first be controlled by point di.  Instead, they 

are controlled partially by arc-segment 3m contacting boundary-segment 2o. This 

explains the presence of the narrow face in the 3-D hypersection labeled F = 

0.02ŧ in Figure 5.15.  Of course, with even more constrained CW rotation of the 

same profile (F = 0.02ŧ), constraint will shift from 3m-2o to 4m-di (Figure 5.8(h)), 

so the corresponding relationships among T-Map coordinates produce an edge in 

the 3-D hypersection that is parallel to the edge formed as the intersection of faces 

E1
′ and E4

′
. in Figure 5.6(b).  As F increases even more, the width of the narrow 

face in the hypersection increases, and also its shape changes from a trapezoid to 

a triangle (F = 0.25ŧ in Figure 5.15). 

Case-3: Profile is displaced in extreme upper right direction (45˚) 

The third case is when the profile is displaced at 45˚ to the greatest 

possible extent; the arc segment of the profile 3m comes in contact with the arc 

segment of the outer boundary, as shown in Figure 5.9(a). For rotations in CCW 

and CW direction, arc segment 3m at first rolls on arc segment 3o, as shown in 

Figure 5.9(b) and (c). 

There are three possibilities of occurrence of contacts: bm2o, 1mbi and dm4o 

(Figure 5.9(b)), while the profile rotates CCW. The contact bm2o will occur first, 

since  the  (shortest)  distance  for  vertex  bm  requires  to  travel  is  ŧ / 2F  

(ŧ/2F) 2/ , which is smallest among the all three contacts. Moreover, the vertex 

bm is farthest from the instantaneous center, hence, covers the largest distance 

during the profile rotation. 
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Figure 5.9. (a) The profile of size F ≥ 0 is displaced in extreme upper right 

direction (45˚); (b) The profile rotates in CCW direction about P at contact 3m3o; 

(c) The profile rotates in CW direction about P at contact 3m3o; (d) For CCW 

rotation, second contact occur at bm2o; (e) If F ≤ 0.207ŧ, second contact 1mbi 

occurs; (f) The oration is constrained by contact dm4o, for the configuration in (e); 

(g) If F ≥ 0.207 ŧ contact 2m2o constrain rotation of the profile; (h) For CW, the 

arc segment of the profile rolls over the arc segment of the outer envelope that 

result into migration of the first contact from 3m3o to dm3o; (i) Second contact 

occurs when vertex am contact line segment 4o; (j) If F ≤ ŧ /6, CW rotation will 

be constrained similar to in Figure 5.7(g); (k) If F ≥ ŧ /6, CW rotation will be 

constrained similar to in Figure 5.7(h).  
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The double slider mechanism formed due to the two contacts, 3m3o and 

bm2o, is shown in Figure 5.9(d). Contacts dm4o and 1mbi, are next candidates for 

occurrence of the third contact. Based on their distance from P, vertex dm and a 

point on line segment 1m travel 0.5(ŧ /2F(ŧ /2F) 2/ ), until contact bm2o 

occurs, in the direction normal to the tangents. After the occurrence of contact 

bm2o, the contact 1mbi occurs when, 

0.073ŧ  + 1.853F = 120
 

5.20 

satisfies, and contact dm4o occurs when, 

0.78ŧ   1.561F = 120
 

5.21 

satisfies. Solving equalities in Eqs. 5.20 and 5.21, critical size at which both the 

contacts occur is F = 0.207ŧ. At this value of F = 0.207ŧ, the edge between 

faces E1 and E3 reduces to a point so that faces E1, E2, and E3 together with 

cylindrical shell C1 have a common vertex. Of course, this corresponds to the 

result in Case-1 (F = 0.2ŧ) at which face E3 vanishes with increasing F. 

Although the two results F = 0.207ŧ and F = 0.2ŧ for the differential size at 

which Face E3 vanishes appear inconsistence their difference arise because of 

second-order influence. Note that F = 0.207ŧ arose from an analysis using 

cylindrical surface C1 along with two planar faces E1 and E3, but F  = 0.2ŧ arose 

from two planar faces E2 and E3. As shown in Figure 5.9(e), for F ≤0.207ŧ third 

contact occurs at 1mbi. Further rotation changes double slider mechanism 
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configuration, and the rotation of the profile constrained as shown in Figure 

5.9(f). For F ≥0.207ŧ third contact dm4o occurs and constrains the rotations as 

shown in Figure 5.9(g). 

For CW rotation, the configuration is shown in Figure 5.9(c). Since two 

arc segments are in contact, the profile rolls until contact dm3o occurs (Figure 

5.9(h)). Then it will rotate about the contact dm3o until the second contact am4o 

occurs (Figure 5.9(i)). At this moment, two possible contacts for further CW 

rotation are 4mdi and bm1o. Contact 4mdi occurs when it satisfies  

2F = 120.
 

5.22 

Here  is further additional amount of rotation about the new instantaneous center 

P′′ for the next contact to occur. Contact bm1o occurs when it satisfies, 

0.333ŧ  + 0.666F = 80.
 

5.23 

Solving equalities in Eqs. 5.22 and 5.23, the critical size at which both the 

contacts occur is F = ŧ /6. For F ≤ ŧ /6, the rotation of the profile will be 

constrained by the third contact 4mdo, which is equivalent to Figure 5.7 (g). For 

F ≥ ŧ /6, the rotation of the profile will be constrained by the third contact bm1o, 

which is equivalent to Figure 5.7 (h). 

Case-4: Profile is displaced in extreme lower left direction (225˚) 

For profiles larger than the MSP and displaced in 225˚ direction, there are 

two possibilities of the first contact as shown in Figure 5.10(a): contact 3m3i when 
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two arcs are in contact, and contact amao when vertex am is incident with vertex ao. 

The critical size when both the contacts occurs satisfies, 

80+F(80ŧ /2) = 2 (ŧ /2F)). 

or 

F + ŧ /2 = 2 (ŧ /2F)). 

5.24  

Here, the terms in left hand side is distance covered by the profile when the arc 

segments are in contact, and the term in right hand side is distance covered by the 

profile when vertex am is incident with vertex ao. Solving Eq. 5.24 provides the 

critical size F = 0.0858ŧ. It is apparent that for F ≤ 0.0858ŧ contact 3m3i occurs, 

and contact amao occurs when F ≥ 0.0858ŧ. 

For the case of F ≤ 0.0858ŧ, when the profile is rotated in CCW, as 

shown in Figure 5.10(b) the profile rotates about instantaneous center P, located 

at contact 3m3i. Three vertices, dm, am and bm may come in contact with the outer 

envelope during CCW rotation. Notice that vertices dm and am travels same 

distance to form contact. Moreover, they are at equal distances from P. Hence 

contacts dm4o and am1o occurs, when it satisfies, 

ŧ/2  F 
2

1
 (ŧ/2 + F) = 40,

 5.25 

and contact bm2o occurs when it satisfies, 

ŧ/2  F +
2

1
(ŧ/2 + F) = 80.

 5.26 
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Solving Eqs. 5.25 and 5.26, the critical size when the profile is constrained by all 

three contact is F = 0.179/ŧ. Contacts dm4o and am1o occur when F ≥ 0.179/ŧ, 

and bm2o occurs when F ≤ 0.179/ŧ. But, for this case (F > 0), contacts dm4o 

and am1o occur at same time and forms mechanism as shown in Figure 5.10(c). 

Such configuration makes the arc segment of the profile 3m to depart from the arc 

segment of the inner envelope 3i and allows further rotation of the profile. Hence 

as shown in Figure 5.10(c) and (e), with further rotation about new instantaneous 

center P′, the profile will be constrained by third contact bm4o. On the other hand, 

for profiles of size F ≥ 0.0858ŧ, as shown in Figure 5.10(d), vertices dm and am 

contact with line segments 4o and 1o respectively. The rotation of the profile about 

P forms third contact bm1o. This conclude that for this case, CCW rotation of all 

the profiles F > 0, are constrained by three contacts dm4o, am1o and bm2o, which 

represents a vertex at lower end of the vertical edge at the front of the 3D 

hypersection.. 

For CW rotation, when profile size F ≤ 0.0858ŧ, as shown in  Figure 

5.10(f), the profile rotates about instantaneous center P at contact 3m3i. It is 

obvious that the second contact will occur when vertex am contacts line segment 

4o (Figure 5.10(g)). Now the profile will rotate about new instantaneous center 

P′′, until contact bm1o occurs. Further rotation detach the arc segment 3m from arc 

segment 3o and forms double slider mechanism as shown in Figure 5.10(h). 

Further rotation about new instantaneous center P′′′, as shown in Figure 5.10(j), 

the profile will be constrained by three contacts am4o, bm1o and 4mdi. 
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For F ≥ 0.0858ŧ and CW rotation of the profile, two vertices am and bm 

contacts 4o and 1o as shown in Figure 5.10(i). The third contact may occur either 

when line segment 4m contact vertex di or when vertex dm contact arc segment 3o. 

For contact 4mdi occurs when it satisfies, 

ŧ = 120,
 

5.27 

And contact dm3o occurs when it satisfies, 

ŧ  2F = 80,
 

5.28 

From Eqs. 5.27 and 5.28, the critical size when both the contact 4mdi and dm3o 

occur is F = ŧ/6.  If the of the profiles is F ≤ ŧ/6, the rotation is constrained by 

three contacts am4o, bm1o and 4mdi (Figure 5.10(j)), and if F ≥ ŧ/6 the rotation is 

constrained by the three contacts am4o, bm1o and dm3o (Figure 5.10(k)). 

Summary of the contacts: 

From the four cases of profile size F ≥ 0, contacts are summarized in 

Table 5.2. Notice that the two contact: 1mbi and 4mdi do not occurs after certain 

F. Based on the contacts, equation of faces of the T-Maps are determined, using 

inverse transformation (Eq. 5.4), for the contacts 1mbi and 4mdi, and forward 

transformation (Eq. 5.1) for the remaining contacts. Following the similar 

procedure as in 5.1.3, algebraic equations of planes on T-Map, corresponding to 

each contact, are obtained as shown in last column of Table 5.2. 
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1
Table 5.2 Coordinates of contacts abstracted for profile size F>0, from Figure 

5.7 to Figure 5.10. 

Face 

ids in 

Fig.5.6 

Con

-tact 

Size 

limitation for 

contacts 

Coordinates (x, y), mm Refer 

Figure 

Equation of 

planes/Cylinders 
In Displaced Frame 

In Fixed 

Frame 

E2 dm4o  (40F, 60+F) (40.1, ydm4o) 5.7(e),(f) ex1.5′ = ŧ/2F 

E3′ dm3o  (40F, 60+F) (xdm3o,60.1) 5.7(g),(h) ey′ = ŧ/2F 

E2′ am4o  (40F, 60F) (40.1, yam4o) 5.7(g),(h) ex+1.5′=ŧ/2+F 

E1 bm2o  (40+F, 60F) (40.1, ybm2o) 5.8(d) ex+1.5′ = ŧ/2F 

E5′ 3m2o  (40+F, 20) (40.1, y3m2o) 5.8(c) ex+0.5′ = ŧ/2F 

E1′ 4mdi F≤ ŧ /4 (40F, y4mdi) (39.9, 59.9) 5.8(i) ex1.5′ = ŧ/2+F 

E4 am1o  (40F, 60F) (xam1o,60.1) 5.8(d) ey′ = ŧ/2+F 

E4′ bm1o  (40+F, 60F) (xbm1o,60.1) 5.8(i),(j) ey+′ = ŧ/2+F 

E3 1mbi F ≤ 0.207ŧ (x1mbi, 60F) (39.9, 59.9) 5.9(f) ey+′ = ŧ/2+F 

C1 3m3o     
 

 2

2

2

1.0                 

''
2

1

F

ee yx











   

C2 3m3i F ≤ 0.0858ŧ    
 

 2

2

2

1.0              

''
2

1

F

ee yx











   

 

5.2.2. T-Maps for profiles smaller than the MSP 

For profile size F ≤ 0, all the possible contact are analyzed in four cases, 

same way as for the profile size F ≥ 0. The Figures for the four cases are shown 

from Figure 5.11 to Figure 5.14. From these cases, contact and their coordinates, 

                                                 
1
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in displaced frame and fixed frame, are shown in Table 5.3. The contacts are 

obtained from the cases such that, they occurs for largest variations of size. 

Table 5.3 Coordinates of contacts abstracted for profile size F<0, from Figure 

5.11 to Figure 5.14. 

Face 

ids in 

Fig.5.6 

Con

-tact 

Size 

limitation for 

contacts 

Coordinates (x, y), mm Refer 

Figure 

Equation of 

planes/Cylinders In Displaced 

Frame 

In Fixed 

Frame 

E3 1mbi  (x1mbi, 60F) (39.9, 59.9) 5.11(g),(h) ey+′ = ŧ/2+F 

E1 4mai  (40F, y4mai) (39.9, 59.9) 5.13(g),(e) ex+1.5′ = ŧ/2+F 

E2′ 2mbi  (40+F, y2mbi) (39.9, 59.9) 5.11(j) ex+1.5′=ŧ/2F 

E3′ 1mai  (x1mai, 60F) (39.9, 59.9) 5.11(j) ey′ = ŧ/2+F 

E5 2m3i  (40+F, y2m3i) (39.9, 20) 5.11(b) ex+0.5′=ŧ/2F 

E1′ 4mdi  (40F, y4mdi) (39.9, 59.9) 5.12(g),(h) ex1.5′ = ŧ/2+F 

E2 dm4o F ≥  ŧ / 4 (40F, 60+F) (40.1, ydm4o) 5.11(d),(g) ex1.5′=ŧ/2+F 

E4′ bm1o F ≥ 0.207ŧ (40+F, 60F) (xbm1o,60.1) 5.14(i) ey+′ = ŧ/2+F 

E4 3mdi  (x3mdi, 60+F) (39.9, 59.9) 5.12(c),(d) ey′ = ŧ/2F 

C1 3m3o F≥0.0858ŧ   

 

 

 2

2

2

1.0               

''
2

1

F

ee yx











 

 

C2 3m3i    

 

 

 2

2

2

1.0                

''
2

1

F

ee yx
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5.2.3. The 4-D T-Map for the profile specified in Figure 5.1 

In the construction, line-profiles that are larger or smaller than the middle-

sized one are more limited in their allowable displacements ex, ey, and θ. Based on 

the equations derived in Table 5.2 and Table 5.3, 3-D hyper sections of the 4D T-

map are shown in Figure 5.15. The 3-D T-Map for MSP, shown in center, is 

largest among all the hyper sections. Others are smaller as the size grows (on right 

hand side in Figure 5.15) or as size diminishes (on left hand side in Figure 5.15). 

Two types of faces are found from Table 5.2 and Table 5.3, one type of 

faces shrink as the profile size changes from zero, and other type of faces expand. 

Consider 3D T-Map as close convex shape made of many faces. Then the faces 

that are expanding disappear after certain sizes of the profile. Referring face 

notations in Figure 5.6, faces E1′, E3 and C2, which correspond to contacts 4mdi, 

1mbi, 3m3i in Table 5.2, vanish when the profile size grows (shown in Figure 5.15). 

Similarly faces E2, E4′ and C1, which correspond to contacts dm4o, bm1o, 3m3o in 

Table 5.3, vanish when the profile size decreases. 

Also, Notice the small face immerged, on 3-D T-Map for F > 0, on right 

hand side, and grows as the size increases. This face represents contact between 

arc segment of the profile (3m) and line segment (2o) of the outer boundary, during 

CW rotations, as shown in Figure 5.8(c). This face is not present in T-Map for 

MSP because on the other side the line segment 4m comes in contact with vertex 

di as the profile rotates in CW direction. 

 



91 

 

5.3. Profile segments as an envelope 

An easy way to establish the shortest distance between a point and a curve 

is to minimize the distance from the point to nearby tangents to the curve.  

Therefore, the subsections below establish the envelope equation for a circular arc 

anywhere in an xy-plane. Determining envelope coordinates for a line is described 

in §§4.1. 

5.3.1. Envelope Equation for an Arc-Segment 

Figure 5.16 shows a circle of radius r, three lines tangent to it, and two 

frames of reference.  The circle has its center at the origin of the k-frame, but it is 

displaced from the origin of the j-frame.  When every tangent to the circle is 

identified with its inward normal, the envelope-equation of the circle in the k-

frame is )( 2222

kkk qprs  ; for normalized coordinates it specializes to sk = ± r. 

Adapting the homogeneous transformation in Eq. 5.1, the matrix 

 

Figure 5.16  A circle with three tangent lines, and two distinct reference frames. 



92 

 



















100

10

01

][ jk

jk

jk y

x

A  

is used in the equation [xj  yj 1]
T = [Ajk] [xk yk 1]

T
 to transform the homogenous 

coordinates (xk , yk , 1) of a point in the k-frame to their values in the translated j-

frame.  However, it also may be used in the matrix equation [pk qk sk]= [pj qj 

sj][Ajk] to transform the homogeneous coordinates (pj , qj , sj) of a line in the j-

frame to the corresponding values in the k-frame [28].  The results are pk = pj, qk = 

qj, and sk = pj xjk + qjyjk + sj. Hence, presuming that the coordinates (pj , qj , sj) are 

normalized, the envelope equation for any circle in the j-frame is  

rsyqxp jjkjjkj  , 
5.29 

where the upper and lower signs, respectively, correspond to all unit normals 

pointing inward and outward.  Further, for a circular arc that is identified by a 

range of polar angle about the origin of the k-frame (e.g. 0 ≤ α ≤ π/2, as in Figure 

5.2), the corresponding ranges of pk and qk remain the same allowable ranges for 

pj and qj in the j-frame. 

5.4. Minimum distance between an envelope and a measured point 

Method of determining minimum distance between a measured point and a 

line segment is described in §§4.2. This subsection describes about how to 

determine minimum distance between a measured point and arc segment. 
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 Given a point (xj , yj) and a line (pj , qj , sj), both in a planar j-frame, the 

equation ensuring that the point lies on the line is pjxj + qjyj + sj = 0, a reduced form 

of Eq. 4.1. Further, when the point does not lie on the line, its minimum (normal) 

distance from the line is [28] 

d = p jx j + q jy j + s j  .  5.30 

Distance d will be in the same units as those for xj and yj of a measured point 

whenever coordinates (pj , qj , sj) are scaled so that pj
2
 + qj

2
 = 1, i.e. when the 

coordinates are normalized. For a circular arc, the minimum distance is obtained 

as an extreme value using Lagrange multipliers.  The dependent variable to be 

minimized is d, the two independent variables are pj and qj, and one constraint 

function among pj and qj is 0122  jj qp .  It is first helpful to combine Eqs. 

5.29 and 5.30 to eliminate coordinate sj.  Then 

d = p j(x j  –  x jk)   + q j(y j  –  y jk) + r  . 5.31 

Following the procedure of Lagrange multipliers, the function F = d + λ  is 

formulated using d from Eq. 5.31.  The two derivative expressions  ∂F / ∂pj = 0  

and  ∂F / ∂qj = 0 lead to 

02  jjkj pxx  

                                  and 

02  jjkj qyy , 

5.32 
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these two equations ensuring that an extreme value of d is identified.   The four 

equations;  i.e.  Eq. 5.31,  the constraint  = 0, and the two Eqs. 5.32; may be 

solved for the four variables d, pj, qj, and the Lagrange multiplier λ.  The most 

important solutions are for the direction of the inward unit normal (pj , qj) and the 

minimum distance d of the measured point (xj , yj) from the circular arc.  When 

arranged for sequential computation, these solutions are 

    ,  2 22

jkjjkj yyxx   

  ,2/ jjkj xxp   

  ,2/ jjkj yyq   and 

    ,jjkjjjkj qyypxxrd   

 

5.33 

where only the positive sign should be used for the square root.  For those 

measured points lying inside the profile, Eqs. 5.33 produce a positive number for 

d, and for the points lying outside, d will be negative. When desired, the 

corresponding coordinate sj for the tangent line may be obtained from Eq. 5.29. 

As discussed in §§4.2, since envelope equation of the line profile treat line 

segments infinite length it may be problematic to assess minimum distances for 

points at the corners of a line profile. Hence, for convex profile an easy way is to 

assess minimum distances from a reference envelope that is a parallel curve larger 

than the true profile. 

5.5. Fit of a line-profile to measured points by the least-squares method 
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Figure 5.17. The line-profile (dashed line) of 5.1, its tolerance-zone boundaries 

(with an exaggerated scale), and 17 measured points, all lying on the platform of a 

planar in-parallel robot which is guided by three linear actuators lying on the 

screws $′1, $′2 and $′3 at points A, B, and C; 

The method of Moore-Penrose to obtain least-squares fit is general and 

can be used for any kind of profiles. Set up of Moore-Penrose inverse and 

robotics is built in §§4.4 and 4.5. Once minimum distances from measured points 

to the reference envelope, and corresponding inward normal vectors are 

calculated Eq. 4.10 can be used to determine least squares fit for measured point 

around line profile  

As one example, consider the 17 measured points around the theoretical 

profile as shown in Figure 5.17. The points represent an imperfectly manufactured 

profile formed from a rectangle that has been modified with one rounded corner. 

The coordinates (R′i ; L′i , Mi′) for the actuator screws at each point, and the 

deviations d′i, are presented in Table 5.4 for each of the measured points.  The 

deviations are all measured from the outer boundary of the tolerance-zone, so ∆s 
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= 0.1 mm (Figure 5.17), and the screw coordinates are computed in the Ojxj yj-

frame, in which origin Oj is at the pole for the middle-sized profile (§5.1.2).   The 

values in Table 5.4 are used to build matrices [K′] and [d′i] in Eq. (4.10).  The 

Moore Penrose solution of [K′] produces the least-squares result 

[$]  =  [δθ  δx  δy   (∆s – ∆F )]
T
 

       =  [–0.0006684   –0.0194883   0.0228764   0.0868641]
T
. 

The resultant least-squares profile of this solution is shown as the profile 

with the thin line in Figure 5.18. Note that the scale of the tolerance-zone is 

enlarged by a factor of 10 in Figure 5.17 and Figure 5.18, and the scale for the 

profile dimensions is diminished by a factor of 10. Consequently, the least-

squares profile is drawn at δθ = –0.06684 rad that represents a rotation of 3.8
0   

 in 

the clockwise direction.  Further, to make the appearance of the displaced origin 

'+' in Figure 5.18 be consistent with the displayed points at the exaggerated scale, 

its coordinates  δx = –0.0194883  mm and δy = 0.0228764 mm have been scaled 

 
Figure 5.18 The resultant least-squares profile shown with the thin line. Its 

displacement from origin O is shown with the ‘+’ mark. 
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up by a factor of 10 with respect to the middle-sized profile. The corresponding 

size adjustment from the middle-sized profile is ∆F = 0.1 – 0.08686 = 0.01314 

mm., a small growth in size. And, finally, the coordinates (ex , ey , θ′ , ∆F ) of the i-

Map point, corresponding to the above solution, are, respectively, –0.0195 mm, 

0.0229 mm, –0.0267 mm, and 0.0131 mm, when rounded to three significant 

figures.  Coordinate  θ′ = a δθ = 40 δθ for the line-profile in Figure 5.1. 

Table 5.4 Coordinates of measured points around manufactured line profile 

Point R′i L′i M′i d′i 

1 –3.916 –0.930 –0.367 0.083 

2 6.853 –0.815 –0.579 0.054 

3 23.842 –0.518 –0.855 0.020 

4 33.955 –0.243 –0.970 0.075 

5 –59.970 1 0 0.130 

6 –40.000 1 0 0.100 

7 –20.000 1 0 0.120 

8 0.000 1 0 0.020 

9 20.000 1 0 0.050 

10 42.000 1 0 0.040 

11 –40.000 0 1 0.070 

12 –20.000 0 1 0.070 

13 0.000 0 1 0.170 

14 30.000 0 1 0.120 

15 –53.000 –1 0 0.150 

16 –30.000 –1 0 0.170 

17 –14.611 –0.991 –0.130 0.133 

 

5.6. Validation using known solution of circle from NIST 

The method of least squares is verified with test cases for a circle 

published by National Institute of Standards and Technology (NIST) [32]. One of 

the datasets contains coordinates for 38 points, measured around a cylinder in a 
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plane perpendicular to its axis. As shown in Table 5.5 the coordinates of points in 

k-frame, are the data from NIST. NIST assessed the data in terms of location ( in 

Table 5.5 Coordinates of the measured points around circle, mm. For circle R′i=0. 

Points Coord. in k-frame Coord. in j-frame 

xi yi xi yi L′i M′i d′i 

1 -555.168 21.976 5.152 -12.264 -0.387 0.922 1.698 

2 -553.188 22.943 7.131 -11.298 -0.534 0.846 1.640 

3 -551.396 24.253 8.923 -9.988 -0.666 0.746 1.607 

4 -549.864 25.847 10.455 -8.394 -0.780 0.626 1.593 

5 -548.622 27.660 11.697 -6.580 -0.872 0.490 1.579 

6 -547.754 29.683 12.566 -4.557 -0.940 0.341 1.633 

7 -547.212 31.849 13.108 -2.391 -0.984 0.179 1.676 

8 -547.083 34.028 13.236 -0.213 -1.000 0.016 1.762 

9 -547.275 36.231 13.045 1.991 -0.989 -0.151 1.804 

10 -547.803 38.303 12.516 4.063 -0.951 -0.309 1.841 

11 -548.636 40.333 11.683 6.092 -0.887 -0.462 1.824 

12 -549.791 42.172 10.528 7.931 -0.799 -0.602 1.819 

13 -551.191 43.842 9.129 9.601 -0.689 -0.725 1.752 

14 -552.870 45.264 7.449 11.024 -0.560 -0.829 1.695 

15 -554.766 46.421 5.553 12.180 -0.415 -0.910 1.613 

16 -556.826 47.201 3.493 12.961 -0.260 -0.966 1.577 

17 -559.004 47.577 1.315 13.337 -0.098 -0.995 1.598 

18 -561.220 47.615 -0.901 13.374 0.067 -0.998 1.595 

19 -563.390 47.237 -3.071 12.996 0.230 -0.973 1.646 

20 -565.454 46.493 -5.135 12.253 0.387 -0.922 1.715 

21 -567.395 45.433 -7.075 11.193 0.534 -0.845 1.759 

22 -569.088 44.082 -8.769 9.842 0.665 -0.747 1.818 

23 -570.568 42.497 -10.249 8.257 0.779 -0.627 1.839 

24 -571.799 40.689 -11.480 6.448 0.872 -0.490 1.833 

25 -572.726 38.722 -12.407 4.482 0.941 -0.340 1.808 

26 -573.377 36.626 -13.058 2.386 0.984 -0.180 1.726 

27 -573.656 34.460 -13.336 0.220 1.000 -0.016 1.662 

28 -573.533 32.239 -13.214 -2.001 0.989 0.150 1.635 

29 -573.068 30.070 -12.749 -4.171 0.950 0.311 1.586 

30 -572.214 28.059 -11.895 -6.181 0.887 0.461 1.595 

31 -571.011 26.181 -10.692 -8.060 0.799 0.602 1.611 

32 -569.511 24.585 -9.192 -9.656 0.689 0.724 1.668 

33 -567.762 23.242 -7.443 -10.998 0.560 0.828 1.720 

34 -565.818 22.200 -5.499 -12.040 0.415 0.910 1.764 
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35 -563.743 21.532 -3.423 -12.708 0.260 0.966 1.839 

36 -561.629 21.145 -1.310 -13.096 0.100 0.995 1.839 

37 -559.446 21.101 0.873 -13.139 -0.066 0.998 1.832 

38 -557.274 21.345 3.046 -12.895 -0.230 0.973 1.750 

plane) and size of the circle that represents least square fit to the measured points. 

To be consistent with the data and the solution provided by NIST, the size for a 

circle can be represented as absolute parameter, i.e. radius or diameter, unlike the 

size for profiles as in §§4.5 and 5.5. Also, it is obvious that the orientation is 

invariant for a circle. 

As shown in Figure 5.19, the measured points provided by NIST are 

located in k-frame (Table 5.5), which is far from approximate center of the circle 

at Oj, where we wish to place the origin of the j-frame. The best guess of location 

of the j-frame with respect to the k-frame (xjk, yjk), is the geometric center 

(arithmetic mean) of the measured points in k-frame i.e. (560.31927 mm, 

34.24053 mm). The coordinates of the measured points in j-frame are also shown 

 

Figure 5.19 The measured points in k-frame. The j-frame is formed at the 

geometric center (arithmetic mean) of the measured points. 
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in Table 5.5. To ensure that the size of the reference envelope bounds all the 

measured points inside, its radius is assume to be R = 15.00 mm and its center 

coincides with Oj. With inward deviations all measured from this reference 

envelope, the least squares solution obtained by Moore-Penrose inverse is  

(δθ δx δy ∆F) = (0,   0.00154 mm,   0.00151 mm,   1.70922 mm). 

Considering the initial position and size of the reference envelope the center of 

the least squares circle is located in k-frame at (xjk + δx, yjk + δy) = (560.31773 

mm , 32.23902 mm). And diameter of the circle is 2*(R + ∆F) = 26.58156 mm.  

The corresponding results reported by NIST for, the coordinates of the center of 

the least squares fit circle are (560.31773 mm, 34.23902 mm), and the diameter 

is 26.58155 mm. It is apparent that the results of the proposed method are quite 

consistent with the NIST results. 
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CHAPTER 6 

PARTITIONING METHOD FOR LINE PROFILES WITH CONCAVITY 

In this chapter, more general forms of line-profiles are considered. In 

addition to the methods used in Chapters 4 and 5 for convex profiles, this chapter 

introduces a way to treat concave profiles by partitioning the measured points in 

order to choose the correct tangent line among several parallel ones, this way, the 

correct minimum distance is obtained from a measured point to the reference 

envelope. 

The search algorithm for determining the shortest distance (shown in 

§§4.2 and §§5.4) between every measured point and the envelope profile works 

for convex profiles. The envelope equation (Eq. 4.2) treats every tangent as 

infinitely long. Concave profiles contain at least one bitangent or tangent that 

intersects the profile. Hence, as per the envelope representation, one or more 

envelope tangents intersect with segments other than neighbors. If proper care is 

not taken, the measured points that are closest to a particular segment may be 

detected in proximity of another segment. Hence, a method is developed to 

partition both the envelope representation of the profile and the measured points 

to handle such problem for line profiles with concavity. 

Two examples that illustrate the problem are shown in Figure 6.1. The 

tangents to line segments S3 and S5 intersect with the line segment S8. Due to the 

intersection, some of the points that belong to S8 may be detected in proximity of 

S3 or S5. Further, when two parallel segments are separated by a small value 
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Figure 6.1 Specification of a profile with concavity. 

 (tolerance ŧ), such as segments S2 and S6 in Figure 6.1, the same problem occurs. 

As per the dimensions in the drawing, S2 is 0.1 mm offset inwards with respect to 

S6. In addition, the tolerance zone is offset by 0.1 mm on both sides of the 

nominal profile. Hence, the envelope representation of the middle-sized profile 

(MSP) for S6 is collinear with the outer tolerance-zone boundary at S2. The points 

measured at S2 that are far from middle-sized profile (near the outer envelope) 

could be recognized in proximity of S6. 

6.1. Partition zone for a profile segment 

To handle concave profiles, a partition zone is formed around each 

segment of the MSP such that partition zones of any two segments never overlap. 

In addition, no measured point should lie outside the total area formed by the 

partition zones of all the segments. In other words, each measured point lies in 
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one of the partition zones, and is considered closest to the segment associated 

with that partition zone. 

Typically, a partition zone is made of four sides. Two sides are parallel to 

the MSP segment, but further away than the boundaries to the tolerance zone. One 

is outside of MSP and another is inside such that, all the points corresponding to 

the segment are between them. Hopefully, the offset value of tolerance ŧ is enough 

to capture all the points. However, 2ŧ or 3ŧ can also be used until the partition 

zone does not overlap with other partition zones. The other two sides are lines that 

bisect the angles formed between each end of the profile segment and the adjacent 

segment. These four sides produce a bounded partition zone. Such partition zones 

for segments S4 and S5 are shown in Figure 6.2(a) and (b) respectively. For an arc 

segment, the partition zone is made of both lines and arcs. 

6.2. Points interior to the partition zone 

Once partition zones for all profile segments have been formed, each point 

 

Figure 6.2 Partition zones for arc segment S4 in (a) and line S5 in (b).  
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Figure 6.3 (a) Ray intersects line segment; (b) Ray does not intersect line 

segment; (c) Ray direction is parallel to the profile tangent. 

is checked for within which partition zone it is lying. The point interior to a 

partition zone is determined by ray tracing method. If any arbitrary ray originating 

from a point intersects the boundary segments of the partition zone an odd 

number of times, then the point lies inside the zone, else it is outside the zone 

[33]. For example, a ray originating from a point inside the partition zone in 

Figure 6.2(a) intersects the boundary thrice. The intersection between a ray and 

partition zone boundary is formulated in the following subsections. Since the 

profiles considered here are made of lines and arcs, the Ray-Line intersection and 

the Ray-Arc intersection is derived. 

6.2.1. Ray-Line intersection: 

Any line passing through a point can be defined in parametric form as, 

vuP ss )( .
 

6.1 

where, u is position vector of the point on the line, v is unit vector and determines 

direction of the line, and s is line parameter. For line segment of length L, s varies 

from 0 to L. While for a ray, u is regarded as origin of the ray, and s varies from 0 
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to ∞. For the proposed method, the origin of ray (u) is the measured point whose 

association with any partition zone is to be determined.  

To determine ray-line intersection, consider a ray 
11111 )( vuP ss   and a 

line segment
22222 )( vuP ss  , as shown in Figure 6.3(a) and (b). Solution to the 

two equations for intersection point (P1(s1) = P2(s2)) results in, 

      s1 > 0 

0 < s2 < L 

 

 

 

6.2 

The square matrix ])   ([ 21 vv  to be singular implies that the ray and the 

line segment are parallel to each other. Also notice that, the configuration in 

Figure 6.3(b) does not satisfies inequalities 0 < s2 < L, hence there is no 

intersection between the ray and the line segment. Moreover, the computation can 

be reduced by, setting the direction of ray parallel to line segment of the MSP (as 

shown in Figure 6.3(c)), because then intersections only need to be checked with 

the two angle bisectors at the ends of the line segment of the MSP. 

6.2.2. Ray-Arc intersection 

Determining Ray-Arc intersection contains two steps. In the first step, 

intersection between the ray and the circle, of which the arc is a segment, is 

determined; then in the second step, it is checked whether the intersection occurs 

on the arc segment or not. 

   12
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2
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  uuvv 
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Step-1: For a given center (c) and radius (r) (Figure 6.4), a circle can be defined as

2)()( r cPcP . Where P is any point on the circle. The intersection between 

a ray (
11111 )( vuP ss  ) and the circle can be determined by [34, 35], 

2

111111 ) () ( rss  cvucvu ,  

or in form of a quadratic equation, 

0)()()(2)( 2

1111111

2

1  rss cucuvcuvv .
 

6.3 

Equating the Eqn. 6.3 with Ax
2
 + Bx + C = 0, the value of the discriminant, 

   2

1111

2

11

2 )()()(4)(4AC4B r cucuvvvcu , 
6.4 

 

forms three possible cases relating the ray with the circle. 

Case-1: If  < 0, then there is no intersection. 

Case-2: If  = 0, then the ray is tangent to the circle. That means the point is 

outside the circle. For the proposed method, it can be considered as no 

intersection or twice intersections. 

Case-3: If  > 0, then the ray intersects the circle. 

Further, if both the values of the solution, 

 A

ACBB

A

B
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Figure 6.4 Rays P(s1) and P(s2) intersect an arc segment of a partition zone with 

center c and radius r. The arc segment progresses in the counterclockwise 

direction, from A to B. 

are positive, the ray intersects the circle twice; that implies that the point is 

outside the circle. On the other hand, if only one value is positive then there is 

only one intersection point and the point is inside the circle. 

Step-2: Once the intersection between a ray and a circle is determined, then it is 

checked whether the intersection occurs on the arc-segment, which is a part of the 

partition zone. For that, consider the arc evolves in counterclockwise direction 

around its center. For example, as shown in Figure 6.4(a), the arc starts from the 

point A – progress in the counterclockwise direction – and ends at point B. Hence, 

the chord of the arc can be defined from point A to point B. This configuration 

ensures that the arc is on the right-hand side of the chord vector. Moreover, if the 

intersection point P is on right-hand side of the chord vector then the ray 

intersects the arc. For the intersection point P, if the condition  

  

 

satisfies, then the intersection occurs on the arc-segment. 

0)()(  PAPB
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Figure 6.5 Specification for a sample concave raised profile. The concave part of 

the profile resembles the shape of a turbine blade. Its shape is controlled by the 

profile tolerance ŧ = 0.2 mm relative to Datums A, B and C. 

6.3. Line-profile with concavity – Example 

The sample concave profile (raised boss) used to demonstrate the 

partitioning method is shown in Figure 6.5. The concave part (arc segment) of the 

profile resembles one side of a turbine blade. Practically, small radiuses of 0.5 

mm at upper left and lower right corners of the profile help to smooth out the cusp 

formed due to the geometric configuration. The shape of the boss is controlled by 

the line-profile tolerance ŧ = 0.2 relative to Datums A, B and C. The specification 

establishes two parallel curves forming boundaries of the tolerance-zone at each 



109 

 

 

Figure 6.6 (a) Exaggerated tolerance-zone of the line-profile with profile 

tolerance ŧ = 0.2 mm; (b) Detailed representation of tolerance-zone at the two 

rounded corners of the line-profile. 

cross section of the profile. One is 0.1 mm larger along every line normal to the 

profile surface, and the other is smaller, according to the ASME standard [1]. For 

clarity, the exaggerated tolerance-zone for the line-profile is shown in Figure 

6.6(a), and the detail of tolerance zone at two corners is shown in Figure 6.6(b). 

The dashed arc in Figure 6.6(b) represents combined MSP at the two corners, the 

two heavy arcs and two dotted arcs are tolerance zones at the two ends. Radiuses 

at each end form arc spanning approximately 174º. 

It is helpful to view the displacements ex, and ey, and θ of the profile to be 

the same as those of a moveable lamina on which the middle-sized profile (MSP) 

is etched.  For two such locations of a lamina, there is a unique point, here called 

the invariant point, that does not displace.  For line-profiles, it is the point to 
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which the eccentricities ex and ey apply in the associated T-Map.  As suggested by 

Figure 3 and associated comments in [22], the invariant point lies at the mid-point 

of the line joining the two furthest separated rounded corners of the profile.  This 

was the basis for locating the Ojxjyj-frame shown in Figure 6.6(a). 

6.4. Minimum distance between an envelope and a measured point 

Coordinates of a line and envelope equation for an arc segment are 

developed in §§4.1 and 5.3. As per the least-squares fit method using robotics 

proposed in §§4.3, the linear actuators are applied inward normal to the envelope 

tangents at measured points. Consequently, the envelope equation (Eq. 5.29) for a 

convex arc-segment is used in a way that the unit normals are inward to the line 

profile. This subsection derives minimum distance between a measured point and 

an arc-segment that forms concave profile; for example, arc segment with radius 

of 102.2 mm in Figure 6.5. 

As described in §§4.3, the reference envelope is formed such that all the 

measured points are inside it. For an arc segment of an envelope, which forms 

concave profile, Eq. 5.29 should be used in sense that the unit normals are 

pointing outward to the arc-segment. Also, as shown in Figure 6.7, determining 

the shortest distance between a measured point and arc-segment is now 

maximization problem (as oppose of minimization problem in §§5.4); i.e. here, 

farthest distance from the measured point and the arc tangent need to be 

determined. Hence, for arc segment that forms concavity of the profile, the Eqs. 

5.33 modifies to,  
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Figure 6.7 The measured point lies outside the arc-segment that forms concave 

profile. The unit outward normal is used to specify arc-tangent. 
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6.5 

where the negative sign is used for the square root, for the maximization problem. 

Also, in sense of outward unit normals, the term r becomes negative. 

6.5. An example of least-squares for a concave line profile 

As an example, the part specified in Figure 6.5, was manufactured by 

Austin Pezella, a graduate student in Design Automation Lab. He then measured 

the coordinates of points on the profile shape with respect to Datums A, B and C. 

The measured points, middle-sized profile and reference envelope are shown in 

Figure 6.8. The coordinates of the measured points (shown in Table 6.1) are 

center of the stylus, of diameter 6 mm, used for measurements. Consequently, the 
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Figure 6.8 The measured point around the sample profile, the reference envelope 

and middle-sized profile. Angle bisectors in dotted lines are shown to distinguish 

partition zones (circled numbers). 

reference envelope considered here is 3.5 mm (i.e. s = 3.5 mm) outside of the 

theoretical profile to make sure that all the measured points are inside it. 

The MSP and the reference envelope are used to form the partition zones 

for the concave line-profile in Figure 6.5. The measured points are 3 mm (stylus 

radius) further from the middle-sized profile; hence they lie between the MSP and 

the reference envelope. Then, the association between each measured point and a 

profile segment is formed, if the point lies inside the partition zone associated to 

the segment (§§6.2). In Figure 6.5, five Partition zones are distinguished by thin 

dotted lines segments (angle bisectors). Moreover, Table 6.1 shows association 

between the measured points and the partition zones. The shortest distances and 
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the line coordinates (shown in Table 6.1) of linear actuators are calculated for 

each measured point (using Eqs. 5.30, 5.33 and 6.5) to form the matrix equation 

of least-squares Eq. 4.10. The Moore Penrose solution of [K′] produces the least-

squares result 

[$]  =  [δθ  δx  δy   (∆s – ∆F )]
T
 

       =  [0.00147   –0.33231   –0.06121   2.71490]
T
. 

The solution profile is displaced from its origin Oj by δx = –0.33231 and 

δy = –0.06121. It is rotated by δθ = 0.00147 rad = 0.0842º. The size adjustment is 

∆F = 3.5 – 2.71490 = 0.7851 mm larger than the middle sized profile. Note that 

this value puts the least-squares profile well outside the tolerance zone 

specification in Figure 6.5. It is not known whether the large ∆F value is a result 

of difficulty in calibrating the milling machine used to make the profile or in 

calibrating the CMM used to make the measurements. 

Table 6.1 Coordinates of measured points around manufactured concave line-

profile 

Point 

Coordinates of 

measured points Segment L′i M′i R′i  mm d′i  mm 

xi mm yi mm 

1
*
 10.046 88.107 1 0.125 -0.992 32.084 0.365 

2 6.891 80.664 2 1.000 0.000 -33.164 0.391 

3 6.901 72.990 2 1.000 0.000 -25.490 0.401 

4 6.915 66.193 2 1.000 0.000 -18.693 0.415 

5 6.927 58.261 2 1.000 0.000 -10.761 0.427 

6 6.939 49.637 2 1.000 0.000 -2.137 0.439 

7 7.000 37.830 2 1.000 0.000 9.670 0.499 
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8 7.021 29.171 2 1.000 0.000 18.329 0.520 

9 7.039 21.492 2 1.000 0.000 26.008 0.538 

10 7.064 15.794 2 1.000 0.000 31.706 0.564 

11 8.014 7.888 2 0.000 1.000 -39.486 1.388 

12 11.053 7.092 3 0.000 1.000 -36.447 0.592 

13 17.170 7.098 3 0.000 1.000 -30.330 0.598 

14 23.164 7.100 3 0.000 1.000 -24.336 0.600 

15 29.755 7.110 3 0.000 1.000 -17.745 0.610 

16 35.982 7.121 3 0.000 1.000 -11.518 0.621 

17 43.058 7.135 3 0.000 1.000 -4.442 0.635 

18 50.669 7.151 3 0.000 1.000 3.169 0.651 

19 58.480 7.167 3 0.000 1.000 10.980 0.667 

20 64.685 7.208 3 0.000 1.000 17.185 0.708 

21 71.596 7.222 3 0.000 1.000 24.096 0.722 

22 78.315 7.243 3 0.000 1.000 30.815 0.743 

23 83.061 7.294 3 0.000 1.000 35.561 0.794 

24 84.394 7.342 3 0.000 1.000 36.894 0.842 

25
*
 88.019 10.640 4 -0.999 -0.040 -38.445 0.478 

26 81.975 14.395 5 -0.281 -0.960 -42.395 0.913 

27 76.047 16.298 5 -0.341 -0.940 -37.469 0.949 

28 68.776 19.228 5 -0.414 -0.911 -31.063 0.979 

29 61.446 22.875 5 -0.487 -0.874 -24.169 1.026 

30 55.532 26.419 5 -0.546 -0.838 -18.239 1.047 

31 50.119 30.174 5 -0.600 -0.800 -12.492 1.074 

32 43.988 35.132 5 -0.661 -0.750 -5.545 1.099 

33 36.945 41.942 5 -0.732 -0.682 3.128 1.129 

34 31.339 48.472 5 -0.788 -0.616 10.722 1.151 

35 26.547 55.081 5 -0.835 -0.550 17.851 1.187 

36 22.626 61.512 5 -0.874 -0.485 24.321 1.212 

37 19.109 68.417 5 -0.909 -0.416 30.833 1.236 

38 16.514 74.615 5 -0.935 -0.354 36.328 1.243 

39 14.894 79.224 5 -0.951 -0.308 40.222 1.246 

40 13.623 83.407 5 -0.964 -0.266 43.625 1.263 
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6.5.1. Weighted least-squares fit 

One aspect of good measurement is to have uniformly distributed 

measurements i.e. one that ‘span’ well the profile shape, so that the substitute 

feature is not influenced by a more dense cluster of measured points [15]. For a 

profile, as in Figure 6.5, it is possible to have very few measured points on 

sharply rounded corners, such as the two in Figure 6.5 rounded with radius of 0.5 

mm. In this case of measurement, only one point is measured on each corner. 

Serial numbers of those two points (#1 and #25) are superscripted with 
*
 in Table 

6.1, and also depicted in Figure 6.8. 

As suggested in [15], higher weights assigned to the measurements 

corresponding the sparser measurements can be used to compensate for non-

uniform measurement. For experiment to know influence of the weight, we 

applied doubled the weight for the measured points at each of these two corners. 

In other words, now we have total 42 measured points (as compared to 40 

measurements in previous case) with the measurements #1 and #25 each repeated 

once. Following the same procedure as earlier, the least-squares solution is, 

[$]  =  [δθ  δx  δy   (∆s – ∆F )]
T
 

       =  [0.00172   –0.31421   –0.04154   2.74019]
T
. 

Based on the location and direction of the linear actuators at the points, the 

results of location and orientation of the least-squares profile are influenced. 

Appropriate application of weight can help to reduce effect of non-uniform 

measurements.  
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CHAPTER 7 

CONCLUSION 

The method described in this thesis is an alternative to the one proposed in 

[18]: both techniques provide a rigid body transformation that locates a set of 

points that have been measured on a profile relative to a specified tolerance-zone.  

In [18] a minimum-zone capture of the points is computed, whereas here the least-

squares fit of the points is utilized.  However, in this paper another variable is 

added to the computed results, the size of the profile, so identifying a 

corresponding point (i-Map) within the T-Map as shown in Figure 4.7.  Although 

the least-squares fit is just one of several possible fits to measured points, it is an 

important one because it recognizes (a) the inter-penetration of mating surfaces 

(asperities), which violate computed minimum-zone boundaries, and (b) the 

potential existence of other points further from the intended feature than any of 

the measured ones.  Any one such point could noticeably change a computed 

minimum zone, but it would have little effect on a least-squares computation 

based on a large number of measured points.  And, of course, a minimum-zone 

may be constructed from the least-squares solution by forming parallel inner and 

outer boundaries to it to just capture all the points. 

The results of this thesis show that the T-Maps model may have broader 

application than modeling tolerances for analyses required in design.  There also 

is potential for exploiting its inherent geometry in the setting of manufacturing.  

For instance, with appropriate transformation of the data, inspection information 

from one or more manufactured parts could be represented geometrically as an 
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inspection-Map (i-Map) within the T-Map.  The measurements from one profile 

yields one i-Map point in the 4-D space of the T-Map, but a sequence of i-Map 

points, produced from measurements on a succession of parts, would yield a path 

of points internal to the T-Map.  The relationship of this i-Map to the designer’s 

intent could be represented visually as one object within another, and the position 

and trend of the i-Map path could potentially provide suggestions for changes in 

manufacturing machine settings.  And, since all such geometric relationships in a 

higher dimensional geometry may be expressed in several 2-D sections or 3-D 

visualizations on a computer screen, a machine operator would never need to 

encounter higher dimensional geometry at all. 

7.1. Future work 

The methods proposed in this thesis for finding the least-squares line-

profile from an array of measured points around it apply to any line-profile.  It 

may be formed from a combination of line-segments, circular arc-segments, 

and/or free-form segments.  It may contain C
1
- and C

2
-discontinuities.  The 

profile also may contain double tangents, i.e. have one or more concavities, such 

as with most turbomachine blades. However, there are two other aspects of this 

thesis which, at this time, limit the i-Map method. First, methods for constructing 

the T-Maps (design specifications) for line-profiles are not general, and they do 

not yet include free-form shapes. 
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