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ABSTRACT 

 

Forrest Research estimated that revenues derived from mobile devices will grow at an 

annual rate of 39% to reach $31 billion by 2016. With the tremendous market growth, 

mobile banking, mobile marketing, and mobile retailing have been recently introduced to 

satisfy customer needs. Academic and practical articles have widely discussed unique 

features of m-commerce. For instance, hardware constraints such as small screens have 

led to the discussion of tradeoff between usability and mobility. Needs for 

personalization and entertainment foster the development of new mobile data services. 

Given distinct features of mobile data services, existing empirical literature on m-

commerce is mostly from the consumer side and focuses on consumer perceptions toward 

these features and their adoption intentions. From the supply side, limited data 

availability in early years explains the lack of firm-level studies on m-commerce. Prior 

studies have shown that unclear market demand is a major reason that hinders firms’ 

adoption of m-commerce. Given the advances of smart phones, especially the 

introduction of the iPhone in 2007, firms recently have started to incorporate various 

mobile information systems in their business operations. The study uses mobile retailing 

as the context and empirically assesses firms’ migration to this new sales venue with a 

unique cross-sectional dataset. Despite the distinct features of m-commerce, m-Retailing 

is essentially an extended arm of e-Retailing. Thus, a dependency perspective is used to 

explore the link between a firm’s e-Retail characteristics and the migration to m-Retailing. 

Rooted in the innovation diffusion theory, the first stage of my study assesses the 

decision of adoption that indicates whether a firm moves to m-Retailing and the extent of 
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adoption that shows a firm’s commitment to m-Retailing in terms of system 

implementation choices. In this first stage, I take a dependency perspective to examine 

the impacts of e-Retail characteristics on m-Retailing adoption. The second stage of my 

study analyzes conditions that affect business value of the m-Retail channel. I examine 

the association between system implementation choices and m-Retail performance while 

analyzing the effects of e-Retail characteristics on value realization. The two-stage 

analysis provides an exploratory assessment of firm’s migration from e-Retailing to m-

Retailing. 
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Chapter 1 

INTRODUCTION 

Mobile commerce (or m-commerce) is an emerging subset of e-commerce that refers 

to the use of wireless devices to conduct e-commerce activities over the mobile network 

and the Internet (OECD, 2007). Ushered in by the advances of smart phones like iPhones 

and other mobile devices, m-commerce has been experiencing tremendous growth over 

the past few years. According to the Forrester Research (2011), m-commerce was 

estimated to have generated $6 billion in revenues in 2011; the upward trend will likely 

continue, projected at an annual growth rate of 39% to reach $31 billion by 2016. 

Since mobility relaxes the constraints of time and space, and it leads to new value 

propositions (Balasubraman et al., 2002), researchers have widely discussed unique 

features of mobile devices that are different from those of other consumer electronics 

products. Examining the nature of mobile services, Varshney and Vetter (2002) and 

Tiwari et al. (2006) identify and classify several important mobile information systems 

such as mobile banking, mobile retailing, and mobile office. Despite the enormous sales 

potential of m-commerce, limitations of hardware and concerns for privacy and security 

associated with mobile devices impose new challenges on the adoption and success of m-

commerce (Tarasewich et al., 2002). The rapid growth rate and corresponding challenges 

of m-commerce raise a practical need to examine how firms respond to the emerging 

mobile sales channel. However, prior literature on m-commerce has focused on 

customers’ acceptance of and responses to mobile data services. Most studies to date 

have used psychometric models (i.e., survey-based approaches) to articulate the 
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behavioral intentions of consumers. Few studies have examined antecedents and 

consequences of m-commerce at the organizational level. Conducting firm-level analysis 

is crucial for managers to better understand whether and what associations exist among 

organizational characteristics, choices of mobile information systems, and business 

outcomes.  

Driven by practical and academic needs, my dissertation empirically assesses firms’ 

migration from e-Retailing to m-Retailing. In the context of my study, m-Retailing refers 

to the selling of goods and services over mobile networks to consumers. Grounded on the 

innovation diffusion theory and IT innovation literature, the study examines firms’ 

adoption decisions as well as the extent of adoption, and extends to business value of m-

Retailing. While IT innovation research has predominantly focused on the adoption 

decision (Zhu and Kraemer, 2005), the innovation diffusion theory suggests that a firm’s 

innovation adoption is a two-stage model consisting of an initiation stage for making 

adoption decisions and an implementation stage for employing innovations. It is only 

recently that researchers have started to recognize and forestall the pro-innovation 

assumption that is inherently made in the prior literature and that presumes innovations 

would be beneficial to all potential adopters at all times. To address the deficiency 

resulting from this pro-innovation assumption, Fichman (2004) and Zhu and Kraemer 

(2005) urge researchers to explore whether, when and how firms acquire performance 

benefits from innovation adoption.  

The dependency view is reflected in the notion that m-Retailing is an extended arm of 

e-Retailing and essentially shares many of its features, functions, and underlying 
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capabilities. Most existing studies stress distinct attributes of m-commerce in order to 

contrast from e-commerce and identify its specific drivers of success. The emphasis on 

their differences is understandable but should not be restrictive. Some conceptual 

frameworks have also been proposed to illuminate the tight link between e-commerce and 

m-commerce (e.g., Wu and Hisa, 2004; Okazaki, 2005) and the authors encourage 

researchers to further explore this link, either theoretically or empirically.  

So far, very few empirical studies on m-commerce in the IS literature have looked 

into how structures in the e-commerce landscape impact the behavior and performance of 

the m-commerce initiatives. Among the exceptions, Wei and Ozok (2005) illustrate the 

link by analyzing functions between e-Ticketing and m-Ticketing websites of 27 major 

airlines. Lin (2012) instead assesses the link from the customer side and shows that 

customers’ perceived e-service quality has influences on m-service quality and m-loyalty. 

Motivated by the call for investigation into link between e-commerce and m-commerce 

and by the limited empirical evidence available, this dissertation attempts to address the 

following research questions: 

 How do firms migrate from e-Retailing to m-Retailing? 

 What are the influences of firms’ e-Retail characteristics on their m-Retailing 

adoption? 

 How do firms realize business value from their adoption of m-Retailing? 

The first part of my empirical analysis addresses two related ways through which 

firms embrace the m-Retail channel: adoption and the extent of adoption. The adoption 

refers to the decision of whether a firm moves to the m-Retail channel. The extent of 
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adoption shows a firm’s commitment to m-Retail channel and thus reflects the extent to 

which a firm chooses to invest in system functions of the m-Retail channel. These two 

adoption measures complement each other. While the adoption decision indicates a firm’s 

behavior in a dichotomous manner, the extent of adoption quantifies a firm’s level of 

involvement in m-Retailing. 

System functions are the medium to engage online customers. Firms need to consider 

system implementations that take into account the unique features and hardware 

limitations of mobile devices, and make appropriate technological investments to 

maximize consumer shopping experiences and in turn generate revenues. Existing studies 

on m-commerce are mostly conducted from the customer perspective, and a majority of 

these individual-level analyses emphasize user-related factors such as the need for 

personalization. Some exceptions have explored service-related factors such as system 

quality (e.g., Lee et al., 2009). Since these exceptions are still at the individual level and 

related to customer perceptions, the dissertation aims to extend the literature to the firm-

level analysis by focusing on firms’ extent of adoption in terms of system implementation 

choices. 

From a dependency perspective, I explore the influences of a firm’s e-Retail 

characteristics on its m-Retail adoption decision and extent of adoption. Specifically, I 

examine the e-Retail dependency from both operation and customer dimensions. 

Operating characteristics such as technology competency, firm types and economies of 

scale are discussed in the IT innovation literature. In the research context, I explore a 

firm’s accumulated e-Retail resources through measures of e-Retail functions, e-Retailer 
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types, and e-Retail market share. A firm’s resources related to customer demand and 

preferences, however, are rarely considered in the literature. In this study, I examine how 

greater demand from younger populations (Anckar and D’Incau, 2002) and customer 

preferences for small order value due to security concerns, short duration of usage 

occasion, and hardware constraints of mobile devices (Shankar and Balasubramanian, 

2009) take effect through e-Retail shopper age and e-Retail order value.  

The second part of my empirical analysis tackles the pro-innovation assumption 

inherent in the literature (Fichman, 2004) by examining specific conditions leading to 

business value generated from the m-Retail channel. Extending the dependency 

viewpoint, I examine the influences of e-Retail characteristics on the performances of the 

mobile sales channel. In addition, I examine the impacts of a firm’s extent of adoption 

(i.e., system implementation choices) on the value of the m-Retail channel.  

Using a cross-sectional dataset of e-Retailers in the U.S. and European markets, I find 

that firms’ migration to m-Retailing in terms of adoption, extent of adoption, and value 

realization are closely related to its e-Retail characteristics. The finding suggests that 

firms with advantages of operating resources regarding technology competency to 

provide digitalized services, economies of scale, and physical outlets tend to grasp at 

market opportunities enabled by m-Retailing and hence are more likely to adopt m-

Retailing. After adoption, those firms with an operational edge are also willing to invest 

more in system development. Interestingly, in order to capitalize on the young generation 

who use mobile data services extensively and to maximize the conversion rate of small-

value orders that fit with the nature of instant shopping in m-commerce, adopting firms 
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with younger e-Retail shopper age and smaller e-Retail order value also engage more in 

system development.  

Business value provides justification for IT innovation adoption. Firms with strong 

operating resources in e-Retailing, such as experiences in providing digitalized services, 

accumulated reputation of service quality from e-Retail markets, strong market 

establishment in e-Retailing, and physical outlets, are found to be leaders in m-Retailing 

as well. Retail chains, however, have lower conversion rate on average. Firms with e-

Retail characteristics that match with customer preferences of the m-Retail channel can 

benefit from their existing e-Retail resources. Firms with smaller e-Retail order value are 

found to have higher m-Retail conversion rate. Firms with younger e-Retail shopper age 

are associated with higher m-Retail sales and traffic. Firms, however, need to be aware of 

the economic dimensions and ramifications of the two customer-oriented e-Retail 

resources. Due to the income effect, a firm with high e-Retail shopper age is found to 

have a higher conversion rate. Because of the price effect, a firm with larger e-Retail 

order value is found to have higher sales. Finally, a firm’s extent of adoption in terms of 

information functions and mobile applications is positively related to m-Retail 

performances. 

The rest of the dissertation is organized as follows. Chapter 2 provides a review of the 

relevant literature. Chapter 3 presents the theoretical framework and research hypotheses, 

which are followed by data description and variable definitions in Chapter 4. The 

estimation methodologies, data analysis, and empirical results are presented in Chapter 5. 

Chapter 6 discusses the findings obtained from the two different stages of analysis. I 
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conclude by deriving implications and specifying limitations and hence potential topics 

for future research in Chapter 7. 
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Chapter 2 

LITERATURE REVIEW 

2.1 M-Commerce 

Clarke (2001) summarizes value propositions for m-commerce in four dimensions: 

ubiquity, localization, personalization, and convenience. Each dimension is associated 

with a group of mobile applications that manifest the specified value proposition, such as 

mobile payments for convenience and mobile advertising for personalization. Anckar and 

D’Incau (2002) identify five distinct value contexts of mobile data services in terms of 

time-sensitivity, location-based services, spontaneity, entertainment needs, and efficiency 

needs. Aside from opportunities, limitations of small screens, low-resolution displays, 

bandwidth, connection instability, and vulnerability in information security are also 

recognized for mobile devices and well discussed in the m-commerce literature (e.g., 

Tarasewich et al., 2002; Siau and Shen, 2003; Lee and Benbasat, 2003).  

Abundant empirical studies on m-commerce have been conducted from consumers’ 

perspectives. Mostly, researchers use survey methods to explore consumers’ perceptions 

about unique features of mobile data services and mobile web browsing in general (e.g., 

Hong and Tam, 2006; Lee et al., 2009). In terms of merchants’ perspectives, conceptual 

frameworks have been proposed to discuss strategic implications of various m-commerce 

applications for businesses. For example, Balasubraman et al. (2002) describe values of 

m-commerce applications through a space-time matrix, and argue that values of mobile 

technologies derive from releasing business activities from time and space constraints. 

Zhang et al. (2002) identify values of m-commerce for firms by linking mobile 
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consumers to their existing services and creating more contact points with customers via 

the new mobile sales channel. 

Relatively few studies, however, have gone beyond conceptual frameworks to 

empirically explore m-commerce at the organizational level. Dahlberg et al. (2008) 

present a thorough literature review on mobile payment research and comment, 

“Surprisingly, we identified only four papers focusing exclusively on merchant… 

Merchant adoption had not been studied with quantitative data and surveys.” In the 

broader context of m-commerce, only two studies (Mallat and Tuunainen, 2008; Guo et 

al., 2010) empirically examine merchant’s adoption of m-commerce. Frolick and Chen 

(2004) discuss the immaturity of the mobile market and note that the unclear value 

propositions of m-commerce have created barriers to merchant adoption. Based on 

empirical data collected from interviews and surveys, Mallat and Tuunainen (2008) posit 

that the lack of considerable customer needs is one critical factor that inhibits firms’ 

adoptions of mobile payment services. Similarly, realizing that travel applications need to 

be location-aware, Wang and Cheung (2004) conduct in-depth interviews with a group of 

travel agency CEOs in Taiwan to explore their understanding and acceptance of m-

commerce. The authors find that the lack of market demands and unclear perceptions of 

business values from m-commerce are the two main reasons explaining low adoption 

rates by that time. 

Over time, customer preferences change and mobile technologies evolve. In a recent 

study by Forrester Research (2011), m-commerce is projected to generate $6 billion in 

revenues in 2011 and the sales will continue to rise, on average 39% a year, to $31 billion 
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by 2016. Although m-commerce only accounted for 2% of overall e-commerce sales in 

2010 (Gibson, 2011), its rapid growth rate suggests a potential to change business models 

and market structures for players, both big and small, across industries. Considering early 

innovating firms have started to use various mobile information systems to facilitate 

business operations and transactions, the dissertation focuses on early implementation of 

m-Retail channel and aims to explore firms’ adoption process as well as the value 

realization.  

2.2 Firm’s Adoption of Innovation and Value from Innovation  

2.2.1 Adoption of Innovation 

In the diffusion of innovation theory, Rogers (2003) proposes a two-stage model to 

explain the complex process of innovation adoption at the organizational level. The first 

stage is initiation in which organizations make their adoption decisions. In this stage, 

organizations first identify their problems that trigger requests for innovations (agenda-

setting), and then they search for possible solutions (matching). The second stage is 

implementation in which organizations develop and incorporate innovations into their 

business processes. In the second stage, firms actually implement innovations in their 

business operations by making necessary adjustments (restructuring), promoting 

innovations across organizations (clarifying), and finally making innovations part of the 

regular activities in organizations (routinization). Rogers’ two-stage model suggests that 

a firm’s innovation adoption process includes not only the adoption decision but also the 

extent of adoption afterwards. 
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In spite of the two stages identified, IT innovation research has predominantly 

focused on the first stage of the adoption decision and on measures such as “intent to 

adopt” and “adoption versus non-adoption” (Rogers, 2003; Zhu and Kraemer, 2005). 

While the initial adoption of an information system is crucial for its diffusion, it is firms’ 

extent of adoption of IT innovations that determines its long-term viability and eventual 

success (Bhattacherjee, 2001; Li et al, 2011). Guinea and Markus (2009) also comment 

that research on extent of adoption such as continued use has become one of “the most 

welcome developments” in recent information systems research. In the growing research 

on extent of adoption, there are two perspectives to measuring extent of adoption. The 

first stream measures extent of adoption by frequency and diversity of IT innovation 

usage. For example, Hsu et al. (2006) explore factors explaining firms’ EDI usage in 

terms of percentage of documents exchanged via EDI and number of document types 

exchanged via EDI. The second stream measures extent of adoption by development of 

IT innovation. Kowtha and Choon (2001), for instance, examine contextual factors 

influencing firms’ website development from simply providing firm information, to a 

website capable of handling business transactions, and to a website with backend 

integration.  

In the context of mobile commerce, few empirical studies at the organizational level 

are found in the literature as discussed earlier in Section 2.1. Exceptions include Mallat 

and Tuunainen (2008) who examine firms’ adoption decisions of mobile payments, and 

Guo et al. (2010) who study firms’ adoption decisions of mobile marketing platforms. 

Both of the studies are focused on adoption decision. No prior empirical work in major IS 



12 

 

publications has explored extent of adoption at the firm level. In this study, I examine 

firms’ adoption decisions as well as extent of adoption of mobile retail channels. Aside 

from dichotomous adoption decisions, I define extent of adoption in terms of a firm’s 

system implementation choices of its mobile retailing channel.  

System functions are the medium to engage online customers. Nevertheless, as 

discussed in section 2.1, prior literature mostly focuses on individuals’ perceptions about 

the value and limitations of mobile data services. Lee et al. (2009) further point out that a 

majority of these individual-level studies emphasize demand-side, i.e. user-related, 

factors such as need for personalization, social influence, and subject norms (Hong and 

Tam, 2006; Kim et al., 2007; Sheng et al., 2008). Relatively few studies look at supply-

side factors such as service-related factors. In addition, among these exceptions, 

researchers explore consumers’ perceptions about service-related factors rather than firms’ 

assessment of them. The dissertation extends the literature to a firm-level analysis and 

focuses on firms’ incentives to invest in its system functions at different levels. 

2.2.2 Value from Innovation 

In addition to adoption decision and extent of adoption, a natural follow-up question 

is how much business value is produced from IT innovation adoption. In the end, firms 

are expected to derive value from adoption of innovations. Yet, adoption in itself cannot 

guarantee satisfaction or ensure benefits. Instead, appropriate organizational capabilities 

to manage the innovation, correct configuration of the innovation, learning and 

experiences accumulated from managing the innovation, and extent of innovation 

adoption are among the factors influencing value realization for adopting firms. Recently, 
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Fichman (2004) and Zhu and Kraemer (2005) have called for researchers to explicate the 

link between adoption of IT innovation and business value produced from IT innovation. 

Fichman (2004) further suggests two promising research opportunities by exploring (1) 

the relationship between the extent of IT innovation adoption and performance impacts as 

well as (2) contextual conditions explaining business value produced from IT innovation. 

I note that the link between adoption of IT innovation and value from IT Innovation also 

relates to the literature of IT business value. Early work on IT business value focuses on 

whether IT has positive impacts on firm performance and what benefits such as 

information access and customer relations are enabled by IT usage (e.g., Brynjolffson and 

Hitt, 1996). Over time, studies on IT business value have extended to explore 

complementary or contingency factors that influence business values associated with IT 

uses (e.g., Brynjolffson and Hitt, 2000). The research inquiry on factors resulting in value 

from innovation adoption is related to the contingency view of IT business value.  

Some prior studies have explored organizational benefits from IT innovations. These 

studies examine individual applications of IT that are explicitly characterized, or could be 

potentially qualified, as innovative. The important commonality of these studies is that 

researchers investigate whether, when and, how firms innovate with IT to realize value. 

Using both primary and secondary datasets, Zhu (2004) finds that IT infrastructure is 

critical to enabling e-commerce capabilities which in turn lead to business value for firms. 

Based on a cross-country sample, Zhu and Kraemer (2005) show that e-business value is 

positively correlated with back-end system integrations as well as front-end web site 

functionalities. Whitaker et al. (2007) report that firms with broad IT application 
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deployment and a critical mass of RFID implementation spending tend to perceive early 

returns from RFID deployments. While the forgoing studies represent efforts to address 

the pro-innovation assumption in technology adoption literature, no existing studies have 

empirically assessed business value from mobile information systems and its associated 

drivers. From a merchant’s standpoint, this dissertation fills the gap in the literature by 

exploring how system implementation choices (i.e., extent of adoption) and other 

contextual factors affect business value realized from the mobile retailing channel.  

2.3 Transition to m-Retailing from an Dependency Perspective 

As e-Retailers move to m-Retailing, I adopt a dependency perspective to explore the 

relationship between e-Retailing and m-Retailing. The dependency perspective indicates 

that a firm’s intentions and initiatives to develop a new capability or adopt a new 

technology are largely a function of its prior experiences and accumulated resources 

(Nelson and Winter, 1982; Eisenhardt and Martin, 2000). Abernathy and Clark (1985) 

classify experiences and resources into operation and customer dimensions. Nelson and 

Winter (1982) suggest that firms develop routines in response to their experiences and 

these routines codify the knowledge of the firm. Schumpeter (1950) and Henderson 

(1993) both argue that established firms are better positioned than new entrants to take 

advantage of competence-enhancing innovations because established firms have 

preferential access to their accumulated resources and capabilities. The dependency 

perspective is rooted in the firm’s accumulated resources and sheds light on what sort of 

response is more likely to occur given the context in which the decision-making process 

takes place. The dependency perspective has been used to explore firms’ product 
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innovations in the photolithographic alignment equipment industry (Henderson, 1993), 

firms’ migration from EDI to open-standard inter-organizational systems (Zhu et al, 

2006), and retailers’ internet adoption in the Netherlands (Boshma and Wltevreden, 

2008), among other phenomena studied. 

Concerning the adoption and value of m-Retailing, while the use of mobile devices 

and wireless networks makes m-Retailing different from e-Retailing from technological 

aspects (Wu and Hisa, 2004), m-Retailing and e-Retailing both involve extensive on-line 

transactions and are facilitated by front-end and back-end web operations. In fact, m-

Retailing is an extended retail format that uses technological innovations to enable cyber-

shopping in the wireless domain without dampening the principles of successful e-

Retailing (e.g., efficient transaction, reliable fulfillment, etc.). From a dependency 

perspective, firms with various levels of e-Retail resources tend to respond to m-Retailing 

differently. The link between e-Retailing and m-Retailing can be a valuable resource to 

facilitate decision making for both IT managers and online marketers. In response to 

managers’ interest in knowing how e-commerce affects m-commerce (Okazaki, 2005; 

Wei and Ozok, 2005; Lin, 2012), I employ a dependency viewpoint to assess the 

transition from e-Retailing to m-Retailing.  
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Chapter 3 

RESEARCH MODEL 

3. 1 Research Framework 

As m-Retailing directly extends e-Retailing, I employ a dependency perspective to 

analyze the association between e-Retailing and m-Retailing. I assess the e-Retail 

dependency from both operation and customer dimensions. In terms of the operation 

dimension, I explore a firm’s accumulated e-Retail resources through measures of e-

Retail functions, e-Retailer types, and e-Retail market share. Regarding the customer 

dimension, I examine how customer preferences in the m-Retail channel manifest 

themselves through e-Retail shopper age and e-Retail order value.  

Grounded in the innovation diffusion theory, my dissertation explores the link 

between e-Retailing and m-Retailing in the contexts of adoption decisions, extent of 

adoption, and business value. In the first stage of adoption, on top of the dichotomous 

adoption decision, I analyze the extent of adoption based on firms’ system 

implementation choices. I focus on two distinct features of mobile devices: information 

functions and mobile application. The former is critical to m-Retail operations due to 

hardware constraints of mobile devices and the need for accessing information on the go. 

Firms have to ensure smooth delivery of information and reduce search costs incurred by 

technological constraints (e.g., small screen size, slow network speed, etc.). The latter - 

mobile application - is a unique format that is different from a retail website and requires 

extra adjustments and development efforts. As some firms choose to stay with mobile 

websites that can be accessed by any web-enabled mobile devices, numerous companies 
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implement mobile applications in order to make mobile shopping experiences more 

accessible and interactive. Even though using information functions and mobile 

application to capture a firm’s extent of adoption is not exhaustive, analyzing the two 

relevant metrics is a useful exercise for managers and researchers to clearly understand 

mobile Retailer’s extent of adoption at a granular level of system implementation choices.  

In the second stage of value assessment, I posit that e-Retail dependency also affects 

m-Retail performance. In addition, since system designs are the medium to engage 

customers’ participation, I examine firms’ choices of system development denoted by 

features of mobile devices (i.e., extent of adoption) to study influences of these functions 

on m-Retail performance. I empirically analyze three related performance measures in 

sales, traffic and conversion rate. While the sales measure is a commonly used 

performance criteria (e.g., Zhu and Kraemer, 2005), traffic and conversion rates are also 

important but less frequently studied in online retailing (Grewal et al., 2004). In the 

following section, I explicitly hypothesize the associations between each factor and 

adoption as well as value realization (see Figure 1). 
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Figure 1. Research Framework of m-Retailing Adoption and Value 

 

3.2 Hypotheses 

Front-end functionality is the technology enabler of a firm’s digitalized services. Zhu 

and Kraemer (2002) classify a firm’s e-commerce front-end functions into four 

digitalized services dimensions: information, transaction, customization, and supplier 

support. Alternatively, Voss (2003) defines a three-layer model that categorizes 

digitalized services into foundational functionality, customer-centered functionality, and 

value-added functionality. These front-end functions are among the critical determinants 
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of firm’s technology competence to provide digitalized services. Zhu et al. (2004) and 

Zhu and Kraemer (2005) find a significant correlation between front-end functions and e-

Business value in financial and retail industries, respectively.  

As m-Retailing involves digitalized services through wireless networks, firms with 

strong e-Retail functionality are expected to utilize their e-Retailing experiences to 

facilitate the development of their mobile retail channels. Wei and Ozok (2005) develop a 

list of functions that support online ticketing processes from leading e-commerce 

websites and they use the list to evaluate 27 major airlines’ mobile ticketing websites. 

They find a significant level of similarity in functions between e-Ticketing and m-

Ticketing websites of these airlines. According to Cam Fortin, the Director of Business 

Development at Wine.com, one of the critical success factors that drive mobile site 

implementation outcome is the established web functions the firm has been able to 

accumulate from its e-commerce website (Minnick, 2012). Thus, a technologically 

competent firm with better e-Retail functions is more likely to adopt m-Retailing and 

invest more in system development (extent of adoption). 

Besides, firms with comprehensive e-Retail functions are considered to be more 

technologically innovative. According to the e-service model by Voss (2003), those firms 

build upon their foundational functions and further expand to value-added ones. Hence, 

e-Retailers with stronger front-end functions and greater innovativeness are more likely 

to migrate to m-Retailing, which delivers a new channel to serve customers. Given their 

inclination to proactively offer technology-enabled services, those innovative firms are 

also more willing to invest in advanced system design such as development of mobile 
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applications. Finally, customers derive their perceived e-service quality based on e-

Retailers’ front-end functions (Heim and Field, 2007). Since perceived service quality 

can be transferred from one channel to another, customers may use a firm’s m-Retail 

channel because they have favorable perceived service quality in its e-Retail channel (Lin, 

2012). Therefore, firms with well-established front-end functionality can benefit from 

their accumulated reputation of service quality in e-Retailing to achieve superior 

performance in m-Retailing. Taken together, I hypothesize the effect of e-Retail 

functionality on m-Retail adoption as follows: 

H1: Firms’ e-Retail functions are positively associated with their adoption decisions 

of mobile retail channel. 

H2: Firms’ e-Retail functions are positively associated with their extent of adoption 

of mobile retail channel. 

H3: Firms’ e-Retail functions are positively associated with their performances of 

mobile retail channel (sales, traffic, and conversion rate).  

Among different types of e-Retailers, retail chain is the store-based e-Retailer with 

potential cross-channel synergies between virtual and physical channels (Berman and 

Thelen, 2004; Xia and Zhang, 2010). For example, JCPenney, Walgreens, and Office 

Depot have increased customer visits to their physical outlets by tightening the 

cooperation between their web sites and physical stores, such as allowing online 

inventory data lookup for each store location and online prescription pickup at the chosen 

physical store (Gulati and Garino, 2000; Porter, 2001; Berner, 2007). In addition, with 

physical outlets, retail chains can provide online customers with a free option of “ship to 
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store.” Moreover, some retail chains upgrade the option with additional convenience. 

Shoppers can buy products online, schedule a pickup time, and have employees meet 

them curbside with their purchased goods (Tuttle, 2012). Product return is another critical 

concern in online retailing because returns occur more frequently in Internet retailing 

than in traditional retailing (Xia and Zhang, 2010). The store format also allows retail 

chains to provide the service of “return to store,” which helps retail chains build 

advantages in e-Retail operations (Vishwanath and Mulvin, 2001).   

Since m-Retailing involves online transactions with wireless networks, retail chains 

can extend such store-based synergies from e-Retailing to m-Retailing. Both options of 

in-store pickups and return/exchange are also applicable to m-Retailing, perhaps even to 

a greater extent due to mobility and physical proximity enabled by mobile devices. The 

new mobile channel also brings extra traffic to physical outlets. Customers can browse 

and check out products through mobile sites at anytime from anywhere, especially when 

they receive location-based services like promotions and advertisements on such 

platforms as iAd and AdMob. Afterwards, they can go to the physical outlets nearby to 

touch and feel products and to make sure they fit with their taste or size. Alternatively, 

after browsing products on their mobile devices, customers can go to physical outlets and 

purchase the products right away without waiting for deliveries (The Economist, 2012). 

This combination of location and mobility fulfills the so-called “instant gratification” that 

is said to characterize the Millennial and younger generations.  

Overall, when compared with other non-store e-Retailers (i.e., catalog retailers, web-

only retailers, and manufacturers), retail chains with their physical store presence are in a 
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better position to create cross-channel synergies when they step into the mobile channels. 

Therefore, retail chains are hypothesized to be more likely to adopt an m-Retail channel 

(adoption decision) and invest more in system development (extent of adoption) to 

exploit the potential of this new sales channel. Because of the aforementioned synergies, 

retail chains are also expected to enjoy higher m-Retail sales, traffic, and conversion rate. 

H4: Compared with the other firm types, retail chains are more likely to adopt mobile 

sales channel.  

H5: Compared with the other firm types, retail chains invest more in m-Retailing 

platforms (extent of adoption). 

H6: Compared with the other firm types, retail chains have better performances of 

mobile sales channel. 

E-Retail market share represents a firm’s relative size/scale in the product category. 

In order to achieve a significant size/scale in a product market, a firm needs to acquire 

and deploy corresponding resources and capabilities. For example, Grewal et al. (2004) 

argue that economic reward alone is not a strong enough incentive to maintain a stable 

customer base online when competition is only a click of mouse or a touch of screen 

away. Instead, reliable order fulfillment and customer trust are two equally important 

drivers for determining the success of online transactions. The former increases online 

customer satisfaction and the latter reduces perceived risks associated with online 

transactions. Zhu (2004) and Zhu and Kraemer(2005) use survey methods to evaluate 

firms in the retail industry and find that firms with tight electronic integration of back-end 

infrastructures, such as inventory and order fulfillment, are found to have better e-Retail 
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and overall financial performances. Hulland et al. (2007) find that e-Retailers’ brand 

management and customer service capabilities are positively associated with their e-

Retail performances. Since a mobile retail channel extends e-Retailing and represents the 

next generation of online shopping platform, these core e-Retail capabilities are critical to 

the success of m-Retailing as well. Arguably, firms can extend their e-Retail advantages 

into the m-Retail arena by leveraging their existing organizational e-commerce 

competencies. 

I thus hypothesize that firms with significant e-Retail market share and accumulated 

resources are inclined to take initiatives to adopt m-Retail channels. In addition, firms’ 

extents of adoption can vary with their system implementation choices. Firms that 

perceive more benefits accumulated from e-Retail channels have incentives and resources 

to offer more advanced m-Retail system functions. Finally, firms can benefit from the 

experiences and capabilities acquired from e-Retail channels and achieve better 

performances in m-Retail channels. 

H7: Firms’ e-Retail market shares are positively associated with their adoption 

decisions of mobile retail channel. 

H8: Firms’ e-Retail market shares are positively associated with their extent of 

adoption of mobile retail channel. 

H9: Firms’ e-Retail market shares are positively associated with their performances 

of mobile retail channel (sales, traffic, and conversion rate).  

According to a survey of 117 firms with mobile retail channels, 56% of them report 

that their average dollar amount of orders received through this channel is less than $75 
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dollars (Brohan, 2011). One possible explanation for the small order value is customers’ 

security concerns for mobile transactions. Customers’ perception of security uncertainty 

about mobile commerce has been found to affect their trust (Siau and Shen, 2003) as well 

as usages of mobile data services (Yun et al., 2011). As a result, customers tend to make 

purchases with small order values to reduce the potential risk. In addition, due to 

hardware constraints of mobile devices and the typically short duration of usage occasion, 

m-commerce to a great extent is about spontaneous and instant shopping (Anckar and 

D’Incau, 2002). In other words, when using the m-Retail channel, customers tend to buy 

products that involve instant decisions without significant information search and price 

comparison (Shankar and Balasubramanian, 2009). Transactions with small order values 

satisfy these spontaneous buying criteria. 

Since m-Retailing is an extended form of e-Retailing, customers’ purchase patterns 

such as order quantities for specific products and firms’ product/service offerings are not 

substantially different between the two channels. According to the earlier discussion 

about security concerns, hardware constraints, and spontaneous purchasing, a firm with 

low average order value in e-Retailing is likely to sell products that better fit with the 

mobile retail channel. Thus, those firms should have more incentives to adopt m-

Retailing and further deploy advanced system features on the mobile platform. Regarding 

firms’ performances in the m-Retail channel, I expect to observe a similar association 

between low average order value in e-Retailing and strong performances in m-Retailing. I 

thus posit the following hypotheses regarding e-Retail order value: 
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H10: Firms’ e-Retail order values are negatively associated with their adoption 

decisions of mobile retail channel. 

H11: Firms’ e-Retail order values are negatively associated with their extent of 

adoption of mobile retail channel. 

H12: Firms’ e-Retail order values are negatively associated with their performances 

of mobile retail channel (sales, traffic, and conversion rate).  

Demographic characteristics such as age and gender have been identified as key 

factors that drive IT adoption and usage (e.g., Morris and Venkatesh, 2000; Mitchell and 

Walsh, 2004). In the mobile commerce context, Anckar and D’Incau (2002) conduct a 

consumer survey in Finland and report that customer willingness to use mobile data 

services is higher for the younger generations. In a more recent survey conducted by 

National Retail Federation (2010), 26.8% of American adults with a smart phone report 

use of these devices to research or make holiday purchases, and that number jumps to 

45% among young adults from 18 to 24 years of age. Based on these surveys, young 

adults are found more likely to opt into the mobile retail channel. Progressive Grocer 

(2012) reports that young adults have stronger brand preferences compared with their 

friends and families. Moreover, the young generation tends to influence their peers’ 

purchase decisions and hence bring additional customers to a retailer through word-of-

mouth and referrals. From the firm’s perspective, offering the mobile retail channel is a 

sensible and viable strategy to improve shopping convenience and win over young 

consumers.  
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Given the evidence that young adults make up a significant proportion of potential m-

Retailing patrons, a firm is likely to adopt and invest more in the mobile retail channel 

when the average age of its existing e-Retail shoppers is young. For a firm with a 

relatively young e-Retail consumer base, it is expected that these existing young shoppers 

are also willing to experience the m-Retail channel offered by the firm. This carryover 

effect is likely to take hold in on-line retailing as customer loyalty is found to be higher 

online than offline (Shankar et al., 2003). Considering young consumers’ willingness to 

use the new mobile channel and the carryover effect, I expect firms with younger average 

age of existing e-Retail shoppers to have better performances in the mobile retail channel.  

H13: Firms’ e-Retail average shopper ages are negatively associated with their 

adoption decisions of mobile retail channel. 

H14: Firms’ e-Retail average shopper ages are negatively associated with their 

extent of adoption of mobile retail channel. 

H15: Firms’ e-Retail average shopper ages are negatively associated with their 

performances of mobile retail channel (sales, traffic, and conversion rate).  

In prior e-commerce literature, the availability and quality of relevant information has 

been identified as a key driver of online transactions success. Customers express greater 

satisfaction when an e-commerce website provides detailed product information (Palmer, 

2002). Zhu and Kramer (2002) also find that on-line firms outperform competitors if they 

possess better information capability (e.g., providing customers with useful information). 

The notion of information capability is even more important in the context of m-Retailing 

(Venkatesh et al., 2003). While mobility and ubiquitous computing encourage customers’ 
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adoption and firms’ implementation of m-commerce, mobility/ubiquity also comes at a 

price when customers need to endure hardware limitations such as small screen and 

relatively low connection speed. These hardware constraints of mobile devices raise the 

need for efficient and effective information delivery so that customers can have easy 

access to useful product/service information.  

Zhou (2011) finds that system qualities in terms of stability, navigation and layout 

have influences on customers’ satisfactions with mobile websites. Halladay (2011) argues 

that convenient product search capability is among the critical success factors of the m-

Retail channel. These factors (e.g., layout, search, etc.) are closely related to information 

display and delivery. Thus, when firms choose to implement m-Retailing, they must 

manifest information capability through effective and reliable mobile system design. 

Specifically, m-Retailers cultivate information capability by developing system functions 

that can meet customers’ information requirements and accommodate the technical 

hardware constraints mentioned above. Zhu and Kraemer (2002) define information 

capability in terms of provision of product information online, search capability, 

availability of product review, and product support. Accordingly, I examine information 

capability by looking into system features that fall into the four dimensions they define. 

As discussed earlier, the importance of information capability is paramount for m-

Retailing. Creating and deploying an array of system functions that elevate information 

capability is expected to enhance customer participation and satisfaction and eventually 

can create more business value.  
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H16: Firms that develop mobile websites with advanced information capability 

through system features are more likely to have better performances of mobile 

retailing channels (sales, traffic, and conversion rate). 

Formats of m-Retail channels include mobile websites as well as mobile applications. 

While the former is similar to e-commerce websites, the latter is a unique feature in the 

m-commerce context. Compared with mobile websites, mobile applications have the 

advantage of providing more interactive user experiences (Chandra, 2011). For example, 

Pizza Hut provides a mobile application that allows customers to virtually build their 

pizzas and place orders (Butcher, 2009). Amazon offers a mobile application that enables 

customers to scan products in-store, compare prices on the spot, and sends purchase 

promotions to customers who checked items through the application (AisleBuyer, 2012).    

The key utility of mobile applications comes from interactivity, which facilitates two-

way communication between customers and merchants. In the e-commerce literature, 

interactivity has been found to be a driver of online transactions success (Palmer, 2002). 

Srinivasan et al. (2002) find that interactivity is an important antecedent of customer 

loyalty, which in turn has positive impacts on word-of-mouth and willingness to pay. 

Since m-Retailing is essentially another form of online retailing, interactivity also yields 

leverage that forward-looking firms should consider to capitalize on (Piccoli et al., 2004). 

Provision of mobile applications indicates a better and smoother interactive environment 

which helps bring in more customers and more sales revenue. I hypothesize the following:  

H17: Firms that choose to implement mobile applications are more likely to show 

better performances of mobile retailing channels (sales, traffic, and conversion rate).  
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Chapter 4 

DATA AND VARIABLES 

4.1 Adoption  

As one major focus of the study is to explore the dependency between e-Retailing and 

m-Retailing, I use U.S. Top 500 e-Retailers as the sample for the first stage of adoption 

study. The data set is collected from Top 500 Guide published by Internet Retailer, a 

monthly national business magazine. The Top 500 Guide provides an annual ranking of 

the largest e-Retailers in the United States and Canada based on annual online sales. To 

develop its annual ranking, Internet Retailer collects a retailer’s sales data for its e-

commerce channel from the company. When the company does not provide sales figures, 

Internet Retailer estimates sales data based on traffic, assumed conversion rate, and 

average order value. Traffic data of a retailer’s e-commerce is collected from the 

company or from third-party agencies if the company does not reveal figures. Two firms 

comSource Inc. and Nielson Online are the agencies responsible for e-commerce traffic. 

Retailers have opportunities to review and respond to their estimates. 

According to the survey conducted by Shop.org (2010), 80% of retailers still do not 

have clearly defined operations strategies for m-commerce. Since firms have just started 

to build their m-Retail channels, I look at the cross-sectional data set of top e-Retailers 

from Internet Retailer in 2010. Among these 500 firms, there are 161 firms who already 

had adopted m-Retail channels in 2010. Yet, due to missing data of variables, the data set 

for estimation consists of 456 firms and among them 152 are adopters. The firms in the 

sample are either retail chains or other non-store e-Retailers including catalog retailers, 
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manufacturers, and web-only retailers. The firms also belong to one of the following 

thirteen product markets: apparel/accessories, automotive parts/accessories, 

books/music/video, computers/electronics, flowers/gifts, food/drug, hardware/home 

improvement, health/beauty, housewares/home furnishings, jewelry, mass merchant, 

office supplies, specialty/non-apparel, sporting goods, and toys/hobbies. Table 1 provides 

descriptions about distributions of adopters and non-adopters of firms.  

Table 1. Description of adopting and non-adopting firms 

Adoption Decision Firm Type Count Example 

Adopting Firms 

(N=152) 

Retail chain 67 Best Buy 

Other non-store e-

Retailers 

85 1800Flowers.com 

Non-adopting 

firms (N=304) 

Retail chain 73 Ann Taylor 

Other non-store e-

Retailers 

231 Boston Apparel Group 

 

For the adoption study, the dependent variable m-Retail adoption is dichotomously 

defined as adopters and non-adopters. I also define extent of adoption based on firms’ 

system implementation choices. By combining with another data source, Internet 

Retailer’s Mobile Commerce Top 300 in 2011, I collect data on system implementation 

choices regarding development of mobile applications (mobile application) and product 

information navigation and presentation (count of information functions) for adopting 

firms. The Mobile Commerce Top 300 is a recently-published annual ranking of mobile 

sales channels for firms across retailing, hotel and airline industries.  

Two system implementation choices serve as dependent variables to represent a 

firm’s extent of adoption. Because of missing data, samples of the two variables are 98 
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(mobile application) and 141 (count of information functions) firms, respectively. Mobile 

application is a dummy variable that takes the value of 1 for firms with mobile 

applications and 0 otherwise. I operationalize a firm’s ability to provide product 

information through m-Retail system functions by following the metric proposed by Zhu 

and Kramer (2002). The authors define four dimensions of information capability as 

provision of product information, search capability, availability of product reviews, and 

product support. Count of information functions is the sum of m-Retail system functions 

aligned with these four dimensions (see Table 2).   

Table 2. Classification of Information System Functions 

Information Capability (Zhu and Kramer, 2002) System Functions 

Provision of Product Information - Alternate image 

- Multiple hero shots 

- Featured products 

- Product image 

Search Capability - Site search 

- Advanced site search 

- Slidebar of products 

- Barcode scan 

Availability of Product Review - Customer reviews 

Product Support - Contact us form 

 

Independent variables reflect e-Retail characteristics. The variable, e-Retail function, 

represents the intensity of a firm’s ability to provide digitalized services through system 

functions relative to its peers, and I use the estimation method by Tsai et al. (2012). I first 

take the ratio of 1 (if the firm has the feature) over the total number of firms that have the 

same feature and sum up such ratios for 60 features (Appendix A shows the complete list 

of e-Retailer functions). This ratio sum number is then normalized to show a firm’s 

relative advance compared with peers. In other words, a firm’s e-Retail function is 
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represented by Z score with consideration of average and variations of peers. Retail chain 

is a dummy variable and takes the value of 1 for retail chains and 0 for others. The 

variable, e-Retail market share, represents the percent of a firm’s e-Retail sales to total 

sales of the product market. I use e-Retail order value and e-Retail shopper age to reflect 

the extent to which a firm is susceptible to the specifics of the m-Retail channel. Since 

consumers tend to make small purchases in the m-Retail channel, e-Retail order value is 

used to measure the average dollar amount of orders that customers place through the e-

Retail channel. As young population is more likely to use mobile data services, e-Retail 

shopper age is used to indicate the average age of customers who make purchases 

through the e-Retail channel. 

Control variables include differences between public and private firms as well as 

market competition. Public firm is a dummy variable reflecting whether the firm is 

publicly traded. Public firms are believed to have access to resources such as financial 

capital more easily (Srinivasan and Moorman, 2005). Market competition is the variable 

to reflect the competitive level of a market where a firm operates. The variable is 

operationalized by Herfindahl-Hirschman index (HHI) of a firm’s e-Retail product 

market for the model of adoption decision and by the percent of e-Retailers in a product 

market that have adopted the mobile retail channel for the models of extent of adoption 

(Krishnan, 2005; Zhu et al., 2003). Table 3 lists the variables and their summary statistics 

and Table 4 shows the correlation matrix of variables.  
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Table 3. Variable Description and Summary of Statistics for Adoption Study 

Variable Description Mean S.D. Min Max 

Adoption Decision: Dependent Variable (N=456) 

M-commerce 

Adoption 

Dummy variable, 1 for 

adopters and 0 for non-

adopters 

0.3333 0.4719 0 1 

Independent Variable 

E-Retail Function Intensity of the firm’s 

ability to provide digitized 

services through e-Retail 

system functions 

-0.0196 0.9503 -2.0524 4.0068 

Retail Chain Dummy variable, 1 for 

retail chains and 0 

otherwise 

0.3070 0.4617 0 1 

E-Retail Market 

Share 

Percent of a firm’s e-Retail 

sales to total sales of the 

product market 

0.0304 0.0701 0.0004 0.6056 

E-Retail Order 

Value 

Average dollar value of 

purchases made through 

the e-Retail channel 

192.71 217.58 8 1800 

E-Retail Shopper 

Age 

Average age of e-Retail 

shoppers 

40.147 2.5180 34 47.1 

Control Variable 

Public Firm Dummy variable, 1 for 

public firms and 0 

otherwise 

0.2917 0.4550 0 1 

Market Competition  Herfindahl-Hirschman 

index (HHI) of an e-Retail 

product market  

0.1346 0.1101 0.0298 0.3822 

Extent of Adoption: Dependent Variable (Ninfo=141, and Napp=98) 

Count of 

Information 

Functions 

Count of the system 

functions designed to 

provide product 

information 

 

5.1560 1.4846 1 9 

Mobile Application Dummy variable, 1 for 

firms with mobile 

applications and 0 

otherwise 

 

0.5612 0.4988 0 1 
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Control Variable (only variables different from those of adoption decision are listed)  

Market Competition Percent of e-Retailers in a 

product market adopting m-

Retail channel 

37.843 15.195 14.58 66.67 

 

Table 4 Correlation Matrix for Adoption Study 

Variable 1 2 3 4 5 6 7 

E-Retail 

Function 

1.000       

Retail 

Chain 

0.114 1.000      

E-Retail 

Market 

Share 

0.175 0.080 1.000     

E-Retail 

Order 

Value 

-0.036 -0.098 0.072 1.000    

E-Retail 

Shopper 

Age 

0.022 -0.151 0.082 -0.008 1.000   

Public 

Firm 

0.091 0.305 0.255 0.014 -0.085 1.000  

Market 

Comp. 

0.127 0.002 0.219 0.037 0.253 -0.017 1.000 
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4.2 Value 

To construct the data set for the second stage of value study, I collect m-Retail 

performance data from Internet Retailer’s Mobile Commerce Top 300 in 2011. Mobile 

Commerce Top 300 provides an annual ranking of mobile sales channels for firms across 

retailing, hotel and airline industries. Internet Retailer collects sales data for a firm’s m-

commerce channels from the company. When the company does not provide sales figures, 

Internet Retailer estimates sales data based on traffic, assumed conversion rate, and 

average ticket. Traffic data of a firm’s m-commerce channels is collected from the 

company or from a third-party agency if the company does not reveal figures. Ground 

Truth is the third-party agency responsible for estimating m-commerce traffic. Retailers 

have opportunities to review and respond to their estimates. 

From the top 300 m-commerce firms, I find 100 firms are also listed in U.S. Top 500 

e-Retailers Guide and thus I have data of their e-Retail characteristics. In addition, I find 

another 37 firms listed in Internet Retailer’s Top300 Europe Guide for e-Retailers. Top 

300 Europe Guide is another annual ranking published by Internet Retailer which 

provides data and ranking for the largest e-Retailers in Europe. Overall, the data set 

contains 137 firms from U.S. and various countries from Europe.  

The firms in the sample are either retail chains or other non-store e-Retailers 

including catalog retailers, manufacturers, and web-only retailers. The firms also belong 

to one of the following thirteen product markets: apparel/accessories, automotive 

parts/accessories, books/music/video, computers/electronics, flowers/gifts, food/drug, 

hardware/home improvement, health/beauty, housewares/home furnishings, jewelry, 
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mass merchant, office supplies, specialty/non-apparel, sporting goods, and toys/hobbies. 

Since m-Retailing is still in its early developing stage, the data collected is cross-sectional 

for the year of 2011. I only consider a firm’s performance of mobile sales channel to keep 

inter-firm comparisons on an equal footing. In other words, I only measure performance 

of the “mobile retail” segment of each firm. Table 5 provides descriptions of m-Retailers 

in the sample. 

Table 5. Description of m-Retailers  

M-Retailer Type Counts Examples 

Retail chains 76 Target 

Other non-store e-Retailers 61 1800Flowers.com 

Product Market of m-Retailers Counts Examples 

Mass merchant 24 Macy’s 

Apparel/accessories 46 H&M 

Automotiveparts/accessories 1 Halfords 

Books/music/video 6 Follett Higher Education Group 

Computers/electronics 15 Best Buy 

Flowers/gifts 3 1800Flowers.com 

Food/drug 4 Walgreen 

Hardware/home improvement 4 The Home Depot 

Health/beauty 6 Sephora 

Housewares/home furnishings 5 Brookstone 

Jewelry 2 Blue Nile 

Office supplies 3 Staples 

Specialty/non-apparel 9 Musician’s Friend 

Sporting goods 7 Recreational Equipment Inc 

Toys/hobbies 2 ToysRUs 

 

I measure performances of a firm’s mobile sales channels in sales, traffic, and m-

Retail conversion rate. The variable m-Retail sales represent the natural logarithm of a 

firm’s total mobile sales for the year. M-Retail traffic is measured as the natural 
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logarithm of average monthly number of unique visitors to the mobile sales channel and 

it reflects the traction of mobile site to attract potential paying customers. M-Retail 

conversion rate captures the percentage of visitors who make purchases. Similar to the 

adoption study, I explore the influences of the following e-Retail characteristics on m-

Retail performances: e-Retail function, retail chain, e-Retail market share, e-Retail order 

value, and e-Retail shopper age. 

In addition, I examine the influences of the two m-Retail system implementation 

choices: development of mobile application and a firm’s ability to provide effective 

product information through system functions. Mobile application is a dummy variable 

and takes the value of 1 for an adopting firm that chooses to implement a mobile 

application and 0 otherwise. The variable information capability reflects the intensity of a 

firm’s ability to provide accurate information through system functions relative to the 

peers. I first take the ratio of 1 (if the firm has the feature) over the total number of firms 

that have the same feature and sum up such ratios for 10 features. This ratio sum number 

is then normalized to show a firm’s relative advance compared with the peers in terms of 

information capability (Tsai et al., 2012).  

In terms of control variables, I include differences between public and private firms, 

market competition, and differences between U.S. and European markets. Similar to the 

adoption study, public firm and market competition are included in the model. Because 

firms included in the value study are in the U.S. and European markets, country is also 

included as a dummy variable to control for geographic differences between the two 

markets. It takes the value of 1 for the U.S. and 0 for European countries. Table 6 lists the 
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variables and their descriptions, and Table 7 shows the correlation matrix of variables. 

The data sample for the sales performance has 137 firms, and that for the traffic 

performance and for conversion rate has 135 firms respectively. The variable, e-Retail 

shopper age, is only available for firms in the U.S. market, and thus data samples of 

models with this variable included are down to 98 firms for m-Retail sales and 97 firms 

for traffic and conversion rate. Accordingly, the correlation between variables of e-Retail 

shopper age and country in the correlation matrix is missing. 

Table 6. Variable Description and Summary of Statistics for Value Study 

Variable Description Mean S.D. Min Max 

M-Retail Sales Natural logarithm of total 

mobile sales (thousands) 

7.9969 1.7551 4.1057 14.509 

M-Retail Traffic Natural logarithm of 

average unique visitors  

11.699 1.6768 8.0564 16.499 

M-Retail 

Conversion Rate 

Percent of visitors who 

make purchases 

1.6418 1.3613 0.26 12.5 

E-Retail Function Intensity of the firm’s 

ability to provide digitized 

services through e-Retail 

system functions 

0.6209 1.1625 -1.6808 4.6251 

Retail Chain Dummy variable, 1 for retail 

chains and 0 otherwise 

0.5547 0.4988 0 1 

E-Retail Market 

Share 

Percent of a firm’s e-Retail 

sales to total sales of the 

product market 

6.2981 10.547 0.05 60.6 

E-Retail Order 

Value 

Average dollar value of 

purchases made through the 

e-Retail channel 

175.36 129.18 32 924.6 

E-Retail Shopper 

Age 

Average age of e-Retail 

shoppers 

39.824 2.6354 34 46.3 

Information 

Capability 

Intensity of the firm’s 

ability to provide accurate 

information through system 

functions 

0.0611 2.4635 -3.0893 7.9018 

Mobile Application Dummy variable, 1 for 

firms with mobile 

applications and 0 otherwise 

0.5036 0.5018 0 1 
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Public Firm Dummy variable, 1 for 

public firms and 0 otherwise 

0.4672 0.5007 0 1 

Market 

Competition 

Percent of e-Retailers in a 

product market adopting m-

Retail channel 

34.033 14.869 7.69 66.67 

Country Dummy variable, 1 for 

firms in U.S. and 0 

otherwise 

0.7299 0.4456 0 1 

 

Table 7 Correlation Matrix for Value Study 

Variable 1 2 3 4 5 6 7 8 9 10 

E-Retail 

Function 

1.000          

Retail 

Chain 

.089 1.000         

E-Retail 

Market 

Share 

.145 .019 1.000        

E-Retail 

Order 

Value 

-.003 -.190 .034 1.000       

E-Retail 

Shopper 

Age 

.162 -.187 .204 -.102 1.000      

Info. 

Cap. 

.067 .124 .148 -.012 -.148 1.000     

Mobile 

App. 

.082 -.008 .073 -.232 .025 .093 1.000    

Public 

Firm 

-.114 .191 0.106 -.095 .003 .310 .344 1.000   

Market 

Comp. 

.003 -.163 -.116 -.111 .076 .061 .188 .240 1.000  

Country -.180 -.115 -.037 -.010 -- .062 .152 .240 .428 1.000 
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Chapter 5 

DATA ANALYSIS AND RESULTS 

5.1 Adoption 

For the adoption study, I explore both dichotomous adoption decision and extent of 

adoption. For the dichotomous adoption model, I use the logit regression for estimation. 

The logit function characterized probability of a firm to adopt m-Retail channel is 

expressed as:  

P(yi = Adoption| Xi) = 
exp( )

1 exp( )

i

i





X

X  

where yi represents a firm’s m-Retail adoption decision and Xi is the vector for 

independent variables. The logit transformation is used to represent a firm’s adoption 

decision as linear function of independent variables. The estimation model employed to 

study adoption decision of m-Retailing is specified as follows:  

Logit[P(yi = Adoption)] = 
( | )

ln( )
( | )

i i

i i

P y Adoption

P y Non Adoption



 

X

X
 

=  0 +   1 * ERetailFunctioni +   2*  RetailChaini +   3 * ERetailMarketSharei +   4 * 

ERetailOrderValuei +   5 * ERetailShopperAgei +   6 * PublicFirmi +   7 * 

MarketCompetitioni +  εi 

In terms of extent of adoption, dependent variables include the number of system 

functions related to information capability (count of information functions) and 

development of mobile applications (mobile application). Due to the nature of data, the 
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former is estimated by count data method and the latter is estimated by logit model. The 

general form of research model employed to study the two system implementation 

choices is specified as follows: 

ExtentofAdoptioni =  π0 + π 1 * ERetailingFunctioni + π 2 * RetailChaini + π 3 * 

ERetailMarketSharei + π 4 * ERetailOrderValuei + π 5 * ERetailShopperAgei + π 6 * 

PublicFirmi + π 7 * MarketCompetitioni +  εi 

For the discrete dependent variables (i.e., count of information functions), I employ 

the count data regression for estimation. The data set has two issues: under-dispersion 

and zero truncation. The issue of under-dispersion indicates that the data set has the 

distributional characteristic (i.e., mean less than variance) that requires a more flexible 

model than Poisson regression. Poisson regression is the common model used for count 

data analysis. Yet, one distinct feature of Poisson distribution is equi-dispersion 

assumption, i.e., the mean of data distribution equal to the variance. Violation of the 

assumption, either over-dispersion or under-dispersion, indicates a mismatch between 

specified distribution and observed relationship of explanatory variables and event counts 

of interest. In addition, the estimated parameter values will be more dispersed than they 

should be due to a systematic error of an incorrect functional form introduced in the 

model (Kauffman et al., 2012). Because of the restricted assumption, the Poisson 

distribution has its practical limitation. 

Zero truncation is another important issue that requires additional adjustments of the 

specified distribution. Zero truncation occurs when the dependent variable is in integer 

form but there are no zeros observed (Kauffman et al., 2012). Instances include the 
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number of songs that music lovers download from a streaming website and the number of 

information system functions m-Retailers decide to implement as in the case of my study.  

To account for under-dispersion and zero-truncation observed in the count data of 

information system functions, I apply a general form of Poisson distribution called the 

zero-truncated Conway-Maxwell-Poisson (COM-Poisson) distribution (Shmueli e t al., 

2005; Sellers and Shmueli, 2010). The functional form of the distribution is 

1
( | , ) (1 )

( !) ( , ) ( , )

iy

if y
y Z Z


 

   
   

where yi is a firm’s count of system functions, λ >0, 0  , and Z(λ, ν) = 
0 ( !)

j

j j 





 . 

Accordingly, the regression model that specifies a count dependent variable y to 

explanatory variables X is in loglinear form: log λ = X
’
β (Sellers and Shmueli, 2010). The 

parameters of β are estimated by the maximum likelihood method. 

Table 8 reports the estimation results for the adoption study. Model 1 is for adoption 

decision. Model 2 and Model 3 are for extent of adoption (i.e., count of information 

functions and mobile application). For the adoption decision, I refer to coefficient 

estimates in Model 1. Coefficient estimates of e-Retail function ( 1 = 0.6359, p-value = 

0.000), retail chain ( 2 = 0.5471, p-value = 0.019), and e-Retail market share ( 3 = 

0.0430, p-value = 0.073) supports hypotheses. The results reveal that a firm with better e-

Retail functions to provide digitalized services (H2), a retail-chain type of e-Retailer (H5), 

or/and a firm with stronger e-Retail performance in terms of market share (H8) is more 

likely to adopt the mobile retail channel. 
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For extent of adoption, I refer to coefficient estimates in Model 2 (information 

function) and Model 3 (mobile application). For development of information functions, I 

find that coefficient estimates of e-Retail market share (π3 = 1.3314, p-value = 0.021) 

and e-Retail shopper age (π5 = -0.0240, p-value = 0.000) support hypotheses. This 

indicates that a firm with better e-Retail performance in market share (H8) or/and 

younger average e-Retail shopper age (H14) is likely to invest more in system 

development of the m-Retail channel in terms of information capability. For development 

of mobile application, the results of Model 3 reveal that coefficient estimates of e-Retail 

functions (π1 = 0.4385, p-value = 0.040) and e-Retail order value (π4 = -0.0076, p-value 

= 0.001) support hypotheses. This suggests that a firm with better e-Retail function (H2) 

or/and lower e-Retail order value (H11) is likely to invest more in system development of 

the mobile retail channel in terms of mobile applications. Finally, I note that the control 

variable of public firm is significant and positive in all the three models.  
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Table 8. Estimation Results for Adoption Study 

Constructs Model 1  

(Binary Adoption 

Decision) 

Model 2 

(Information 

Functions) 

Model 3  

(Mobile 

Application) 

E-Retail Function 0.6359
***

 

(0.1316) 

0.0203 

(0.0590) 

0.4385
**

 

(0.2132) 

Retail Chain 0.5471
**

 

(0.2322) 

0.1908 

(0.1317) 

-0.7219 

(0.5520) 

E-Retail Market 

Share 

0.0430
*
 

(0.0239) 

1.3314
**

 

(0.6449) 

0.0234 

(0.0456) 

E-Retail Order 

Value 

-0.0003 

(0.0004) 

-0.0003 

(0.0003) 

-0.0076
***

 

(0.0022) 

E-Retail Shopper 

Age 

-0.0633 

(0.0456) 

-0.0240
**

 

(0.0063) 

-0.0819 

(0.0957) 

Public Firm 0.7344
**

 

(0.2449) 

0.3693
**

 

(0.1423) 

1.7554
***

 

(0.5002) 

Market Competition 0.4187 

(1.0572) 

0.0002 

(0.0047) 

0.0081 

(0.0215) 

Sample Size 456 141 98 

Pseudo R-squared 0.1350 0.3893 0.2081 

Standard errors in parentheses; *** for p < 0.001, ** for p < 0.05, * for p < 0.1 

 

5.2 Value 

The research model used to study performances of mobile sales channel in the second 

stage of value study is specified as follows: 

PerformanceMetrici = β0 + β1 * ERetailFunctioni + β2 * RetailChaini + β3 * 

ERetailMarketSharei + β4 * ERetailOrderValuei + β5 * ERetailShopperAgei + β6 * 

InformationCapabilityi + β7 * MobileApplicationi + β8 * PublicFirmi + β9 * 

MarketCompetitioni + β10 * Countryi +  εi 

The parameters β0 to β10 are to be estimated. The subscripts i index the firm and ε 

stands for the error terms. The dependent variable of performance metric includes sales, 
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traffic and conversion rate. In testing for multicollinearity, I checked the variance 

inflation factor (VIF) for all independent variables and confirmed that all of the VIFs are 

below 10 (Greene, 2008). Sales and traffic models are estimated using robust OLS 

regression as Wooldridge (2006) suggests that the heteroskedasticity-robust regression is 

valid irrespective of non-constant variance for the error terms. Because the distribution of 

conversion rate is right-skewed (see Figure 2), I apply the gamma generalized linear 

model (GLM) and estimate the model using the maximum likelihood method. 

 

Figure 2. Histogram of Conversion Rate (N=137) 

 

Table 9 reports the estimation results for factors that influence performances of 

mobile retail channel. Models 1 and Model 2 show results for mobile sales, Model 3 and 

Model 4 for mobile traffic, and Model 5 and Model 6 for mobile conversion rate. 

Because sample sizes of models with the variable of e-Retail shopper age included are 

reduced, hypothesis testing excluding the shopper age variable is based on models with 
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full samples. Model 1 (sales), Model 3 (traffic), and Model 5 (conversion rate) are 

models with full samples and with the variable of e-Retail shopper age excluded. Model 

2 (sales), Model 4 (traffic) and Model 6 (conversion rate) are models with the variable of 

e-Retail shopper age included.  

To test Hypothesis H3, I refer to the coefficient estimate for e-Retail function. For the 

model using mobile sales as the performance metric, the coefficient estimate is positive 

and significant for Model 1 (β1 = 0.1835, p-value = 0.073). Similar result is observed for 

Model 3 using mobile traffic as the performance metric (β1 = 0.2085, p-value = 0.083). 

The coefficient estimate, however, is insignificant for the model using conversion rate as 

the performance metric. These results reveal a positive correlation between e-Retail 

functions and m-Retail performances using mobile sales and traffic as performance 

metrics. To test Hypothesis H6, I refer to the coefficient estimate for Retail Chain. For 

Model 1 (sales), the coefficient estimate is positive and significant (β2 = 0.3835, p-value 

= 0.074). Model 3 also shows a positive and significant association for Retail Chain with 

m-Retail traffic (β2 = 0.5427, p-value = 0.023). Contrary to the hypothesis, a negative and 

significant coefficient estimate is found using the performance metric of conversion rate 

(β2 = -0.3506, p-value = 0.019). The estimation results indicate that retail chains are 

found to have better m-Retail sales and traffic but lower conversion rate compared with 

other types of e-Retailers.  

To test Hypothesis H9, I refer to the coefficient estimate for e-Retail market share. 

For the model using mobile sales as the performance metric, the coefficient estimate is 

positive and significant for Model 1 (β3 = 0.0661, p-value = 0.000). Similar results are 
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observed for models using mobile traffic and conversion rate as the performance metrics. 

For Model 3 (traffic), the coefficient estimate is positive and significant (β3 = 0.0460, p-

value = 0.000), and same is for Model 5 using conversion rate as the performance metric 

(β3 = 0.0351, p-value = 0.012). The result supports Hypothesis H9 and indicates that a 

positive correlation exists between a firm’s e-Retail market share and its m-Retail 

performance. To test Hypothesis H12, I refer to the coefficient estimate for e-Retail order 

value. For Model 5 (conversion rate), the coefficient estimate is negative and significant 

(β4 = -0.0012, p-value = 0.000). This result supports Hypothesis H12 and indicates a 

negative association between a firm’s e-Retail order value and its m-Retail conversion 

rate. For Model 1 (sales), the coefficient estimate is, nevertheless contrary to the 

hypothesis, positive and significant (β4 = 0.0018, p-value = 0.008). 

To test Hypothesis H15, I refer to the coefficient estimate for e-Retail shopper age. 

For Model 2 (sales), the coefficient estimate is negative and significant (β5 = -0.0958, p-

value = 0.039). Model 4 also shows a negative and significant association for e-Retail 

shopper age with m-Retail traffic (β5 = -0.0885, p-value = 0.078). The estimation results 

provide support for Hypothesis H15 and suggest that a negative correlation between e-

Retail shopper age and m-Retail performances using mobile sales and traffic as 

performance metrics. Nevertheless, the coefficient estimate for Model 6 using the metric 

of conversion rate is positive and significant (β5 = 0.0602, p-value = 0.043). 

To test Hypothesis H16, I refer to the coefficient estimate for information capability. 

For Model 1 (sales), the coefficient estimate is positive and significant (β6 = 0.1281, p-

value = 0.004). Similar result is observed for Model 3 using traffic as the performance 
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metric (β6 = 0.1340, p-value = 0.003). The result supports Hypothesis H16 and indicates 

that a positive correlation exists between information functions of the m-Retail channel 

and a firm’s m-Retail sales as well as its traffic. To test Hypothesis H17, I examine the 

coefficient estimate for mobile application. The coefficient estimate is positive and 

significant for Model 1 using sales as the performance metric (β7 = 0.5311, p-value = 

0.033) and for Model 5 using conversion rate as the performance metric (β7 = 0.2476, p-

value = 0.077). Table 10 summarizes the results for the adoption and value studies. 

Table 9. Estimation Results for Value Study 

Constructs Model 1 

(Sales) 

Model 2 

(Sales) 

Model 3 

(Traffic) 

Model 4 

(Traffic) 

E-Retail 

Function 

0.1835
*
 

(0.1015) 

0.2744
**

 

(0.1160) 

0.2085
*
 

(0.1194) 

0.3718
**

 

(0.1399) 

Retail Chain 0.3835
*
 

(0.2125) 

0.5337
**

 

(0.2655) 

0.5427
**

 

(0.2360) 

0.6544
**

 

(0.2840) 

E-Retail 

Market Share 

0.0661
***

 

(0.0125) 

0.0727
***

 

(0.0138) 

0.0460
***

 

(0.0123) 

0.0478
***

 

(0.0139) 

E-Retail 

Order Value 

0.0018
**

 

(0.0006) 

0.0010 

(0.0009) 

-0.0007 

(0.0007) 

-0.0013 

(0.0009) 

E-Retail 

Shopper Age 

-- -0.0958
**

 

(0.0458) 

-- -0.0885
*
 

(0.0496) 

Information 

Capability 

0.1281
**

 

(0.0437) 

0.1025
**

 

(0.0481) 

0.1340
**

 

(0.0441) 

0.1324
**

 

(0.0504) 

Mobile 

Application 

0.5311
**

 

(0.2466) 

0.4805 

(0.3136) 

0.3028 

(0.2533) 

0.2629 

(0.3116) 

Public Firm 0.8326
***

 

(0.2462) 

0.7791
**

 

(0.3272) 

0.7051
**

 

(0.2642) 

0.6297
*
 

(0.3586) 

Market 

Competition 

0.0355
***

 

(0.2515) 

0.0411
***

 

(0.0096) 

0.0310
***

 

(0.0087) 

0.0346
***

 

(0.0096) 

Country -1.3933
***

 

(0.2515) 

-- -1.2151
***

 

(0.2700) 

-- 

Sample Size 137 98 135 97 

R-squared 0.5413 0.6017 0.4521 0.5395 

Standard errors in parentheses; *** for p < 0.001, ** for p < 0.05, * for p < 0.1 
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Constructs Model 5  

(Conversion Rate) 

Model 6 

(Conversion Rate) 

E-Retail Function -0.0697 

(0.0724) 

-0.1955
***

 

(0.0454) 

Retail Chain -0.3506
**

 

(0.1492) 

-0.1988 

(0.1337) 

E-Retail Market Share 0.0351
**

 

(0.0139) 

0.0333
**

 

(0.0141) 

E-Retail Order Value -0.0012
***

 

(0.0003) 

-0.0014
***

 

(0.0003) 

E-Retail Shopper Age -- 0.0601
**

 

(0.0297) 

Information Capability 0.0146 

(0.0221) 

0.0177 

(0.0210) 

Mobile Application 0.2476
*
 

(0.1402) 

0.2455
**

 

(0.1277) 

Public Firm 0.1059 

(0.1496) 

0.0533 

(0.1648) 

Market Competition 0.0085 

(0.0055) 

0.0115
**

 

(0.0054) 

Country -0.3733
*
 

(0.2179) 

-- 

Sample Size 135 97 

R-squared 0.4472 0.5995 

Standard errors in parentheses; *** for p < 0.001, ** for p < 0.05, * 

for p < 0.1 
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Table 10. Summary Results of Hypotheses 

Variable Adoption  

 

Extent of 

Adoption  

Value  

e-Retail Function H1: supported H2: supported for 

development of 

application 

H3:  supported for sales 

and traffic 

e-Retailer Type H4: supported H5: not supported H6: supported for sales 

and traffic but opposite 

for conversion rate 

e-Retail Market 

Share 

H7: supported H8:  supported for 

information 

functions 

H9: supported 

e-Retail Order 

Value 

H10: not 

supported 

H11:  supported 

for development 

of application 

H12: supported for 

conversion rate but 

opposite for sales 

e-Retail Shopper 

Age 

H13: not 

supported 

H14:  supported 

for information 

functions 

H15: supported for 

sales and traffic but 

opposite for conversion 

rate 

Information 

Capability 

-- -- H16: supported for 

sales and traffic 

Development of 

Mobile 

Application 

-- -- H17: supported for 

sales and conversion 

rate 

 

5.3 Robustness Check 

For Model 1 on binary adoption decision in Table 6, I examine a firm’s adoption 

status in 2010 irrespective of timing of adoption. It is possible that the propensity of 

adoption is different each year. With specific information of adoption years for 106 

adopting firms, Figure 3 depicts the Kaplan-Meier curve of the adoption probability for 

422 e-Retailers in the U.S. market from 2007 to 2010.  



51 

 

 

Figure 3. Kaplan-Meier Adoption Probability (from 2007 to 2010) 

 

I use a logit model with year dummies to incorporate the discrete time effect of 

adoption in different years (Rabe-Hesketh and Skrondal, 2008). I note that data on factors 

explaining a firm’s adoption decision is cross-sectional in 2010. Since the time period is 

short and the variables of e-Retail function, retail chain, e-Retail market share, e-Retail 

order value, and e-Retail shopper age are less likely to change dramatically in four years, 

I assume the same values for the data of a firm across the four years. Still, because of this 

constant values assumption for these independent variables, this robustness check is 

deemed not perfect but informative. The estimation model employed to study adoption 

decision with timing of adoption included (d1-d3) is specified as follows:   
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Logit[P(yi = Adoption)] = 
( | )

ln( )
( | )

i i

i i

P y Adoption

P y Non Adoption



 

X

X
 

 =  0 +   1 * ERetailFunctioni +   2* RetailChaini +   3 * ERetailMarketSharei +  

  4 * ERetailOrderValuei +   5 * ERetailShopperAgei +   6 * PublicFirmi +   7 * 

MarketCompetitioni +   8-10    
 
 + εi 

Table 11 presents the results for this robustness check. Consistent with the results in 

Model 1, coefficient estimates of e-Retail function (  1 = 0.6385, p-value = 0.000), retail 

chain (  2 = 0.7321, p-value = 0.005), and e-Retail market share (  3 = 0.0438, p-value = 

0.002) are found to be positively associated with a firm’s adoption decision. While 

treating the year of 2010 as the base year, the three year dummies are observed as 

negative and significant (  8 = -4.3206, p-value = 0.000,  9 = -2.7439, p-value = 0.000,   

10 = -1.5044, p-value = 0.000). This indicates that adoption propensity varies and 

increases across years. 

Table 11. Robustness Check for Binary Adoption Model 

Var. E-

Retail 

Fun. 

Retail 

Chain 

E-Retail 

Market 

Share 

E-Retail 

Order 

Value 

E-Retail 

Shopper 

Age 

Yr-07 Yr-08 Yr-09 

Cof. 0.64
***

 

(0.11) 

0.73
**

 

(0.26) 

0.04
**

 

(0.01) 

-0.00 

(0.00) 

-0.04 

(0.05) 

-4.32
***

 

(0.77) 

-2.74
***

 

(0.39) 

-1.50
***

 

(0.27) 

Sample size: 1443; Pseudo R-squared: 0.2778 

Standard errors in parentheses; *** for p < 0.001, ** for p < 0.05, * for p < 0.1 
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Chapter 6 

DISCUSSION 

The study conducts an exploratory analysis of firms’ migration from e-Retailing to m-

Retailing. Grounded in the path dependency perspective, I propose and test a research 

model to assess how a firm’s e-Retail characteristics impact adoption decision, extent of 

adoption, and business value of m-Retailing. The research model also takes into account 

the influence of extent of adoption on value realization from the IT innovation being 

studied, i.e., the mobile Retail channel. In this chapter, I will discuss in detail the 

empirical results of the proposed model.  

6. 1 Adoption 

For the binary adoption model, I find that the three factors related to e-Retail 

operational competence (i.e., e-Retail function, e-Retailer type, and e-Retail market share) 

are significant determinants of adoption decision. An unexpected finding is that no 

significant impact on adoption decision is found associated with the two factors related to 

customer preferences (i.e., e-Retail order value and e-Retail shopper age). Although I 

hypothesize that firms with smaller order value or younger shopper age would have 

incentives and hence be more likely to adopt m-Retailing, the results suggest that 

operating resources are sufficient to distinguish adopters from non-adopters. Instead of 

discounting the influence of customer preferences on a firm’s adoption altogether, a more 

appropriate interpretation is that due to the recent emergence of m-commerce, firms are 

inclined to quickly grasp at the additional sales opportunities if they have either 

technological competence (i.e., comprehensive e-Retail functions to provide digitalized 
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services) or strong market performance in their specialized field (i.e., high market share 

and economies of scale/scope). That is, as firms sense that they have operational edge to 

fuel channel expansion and move ahead of competitors, they are willing to enter the new 

market channel even when their order value or shopper age may not fit best with mobile 

Retailing. For example, despite the wide range of shopper age their customers may show, 

retail chains as a group are still more likely to adopt m-Retailing simply because they see 

chances of creating cross-channel synergies between e-Retailing and m-Retailing in terms 

of in-store pickups, exchange and return, etc. The nature of mobility also enhances their 

location advantages as customers can browse mobile sites at anytime from anywhere, 

choose to go to physical outlets nearby to check out a product to ensure its fit, and 

purchase the product on the spot without having to wait for delivery. The significance of 

the three operation-related factors and the non-significance of the two customer-related 

factors in the adoption decision are interesting and reflect the subtle dependency 

relationship between e-Retailing and m-Retailing. 

On top of the adoption decision, my study further examines a firm’s extent of 

adoption in terms of its system development in mobile Retailing. As I focus on the 

sample of adopting firms and continue to assess the impacts of e-Retail characteristics on 

extent of adoption, their impacts observed here are different from those in the binary 

adoption model. While operating resources seem to be sufficient to differentiate adopters 

from non-adopters, factors related to customer preferences are found able to explain an 

adopting firm’s involvement and commitment in terms of system development. With 

respect to operation-oriented factors, a firm’s e-Retail market share and complementary 
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resources to support m-Retail operations have significant effects on the development of 

information functions among adopters. I also find that technologically 

innovative/competent firms with more e-Retail functions are more likely to deploy 

mobile applications. Different from the results of the adoption decision model, the 

customer dimension comes into play. E-Retail shopper age is significantly associated 

with firms’ implementation of information functions. Similarly, I find that firms with 

smaller e-Retail order value have greater odds of implementing mobile applications. 

Since spontaneous shopping decisions are more likely to take place when order value is 

small, firms are incentivized to develop mobile applications that can stimulate instant or 

impulsive shopping.  

To sum up, while operation-related factors still have effects on the extent of adoption, 

the empirical evidence suggests that customer-related factors now have impacts on the 

extent of adoption which do not manifest in the adoption decision. This difference in 

observations associated with customer-related factors is understandable. Even though 

firms with operational edge may enter the mobile domain simply for the sake of 

expansion, eventually they need to allure and satisfy customers to sustain the new mobile 

sales channel. Therefore, their system implementation choices must be driven by or 

related to customer preferences. As such, firms will be able to capitalize on the younger 

generation who use mobile data services extensively and to maximize the conversion of 

potential small-value orders. With that said, operating resources still have non-negligible 

impacts on extent of adoption. The finding makes practical sense since firms in a better 

position (i.e., high market share) or with technology competence (i.e., more e-Retail 



56 

 

functions) are expected to be more capable of trying out mobile system features. Taken 

together, the significant influences of operation- and customer-related factors on extent of 

adoption suggest support for the dependency perspective.    

6. 2 Value 

To empirically assess the link between innovation-related variables and the value of 

an IT innovation, the study demonstrates influences of a firm’s e-Retail characteristics 

and extent of adoption on value realization from adopting the m-Retail channel. In 

support of the dependency perspective, the empirical analysis shows that a firm’s e-Retail 

characteristics have substantial influences on m-Retail performance in addition to their 

impacts on m-Retail adoption decision and extent of adoption. I also find that firm’s 

extent of adoption of the new channel, i.e., the two system implementation choices, are 

significant determinants of business value in m-Retailing. Regarding value of m-

Retailing, my study focuses on three performance metrics -- sales, traffic, and conversion 

rate. While these metrics are related, influences of e-Retail characteristics and extent of 

adoption on each metric can be different. Overall, effects of explanatory factors on sales 

and traffic are similar. Interestingly, I find that conversion rate exhibits a different pattern 

from that of sales and traffic.  

All the three operation-oriented factors (i.e., e-Retail function, e-Retailer type, and e-

Retail market share) are significantly associated with firms’ performance in the mobile 

domain. On the one hand, e-Retail function indicates a firm’s technology competency to 

provide digitalized services. On the other hand, when customers have good perceptions 

about a firm’s e-service quality driven by e-service functions, customers tend to build 
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their perceived m-service quality of the firm based on their prior perceived e-service 

quality (Lin, 2012). Accordingly, the positive influence of e-Retail functions suggests 

that firms can capitalize on experiences and expertise in providing digitalized services 

and on accumulated perceived e-Retail service quality to boost mobile Retail sales and 

increase traffic volume.  

In addition, I find that e-Retail market share is positively related to m-Retail sales, 

traffic, and conversion rate. These strong effects simply support the argument that 

complementary resources to support a firm’s economies of scale in the e-Retail market 

can be leveraged in the m-Retail channel. Finally, due to their physical presence, retail 

chains have higher m-Retail sales and traffic compared with other non-store-based firms. 

Interestingly, on average retail chains exhibit lower conversion rates. While customers 

browse products through m-Retail channels on the go, they may choose to visit physical 

outlets nearby to check for product fit and/or to purchase on the spot to avoid delivery 

waiting and hence enjoy instant gratification. As a consequence, some mobile visitors are 

diverted to physical outlets and perform transactions there, causing lower conversion 

rates of the mobile Retail channel for retail chains.  

While operation-related factors can differentiate between adopters and non-adopters 

as discussed in section 6.1, the two customer-oriented characteristics (i.e., e-Retail order 

value and e-Retail shopper age) are critical determinants of mobile Retail performance. 

Essentially, a firm can benefit from its inherent resources when its e-Retail characteristics 

fit with customer preferences of m-Retail channel. For instance, I find that firms that are 

associated with smaller e-Retail order value have higher m-Retail conversion rate. This is 
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understandable since customers tend to prefer purchases with small order values in m-

Retailing due to security concerns and the nature of instant shopping. Given the fact that 

young generation is the primary customer base of m-Retailing, I also find that a firm with 

younger e-Retail shopper age allures more m-Retail traffic and attains higher sales. The 

aforementioned findings are consistent with hypotheses, but there is an economic 

dimension of the two customer-oriented resources that needs to be taken into account. 

When purchase quantities of two orders are equivalent, the order with higher value (i.e., 

price effects) creates higher sales revenue. This explains the finding that firms in our 

sample with large e-Retail order value also have high m-Retail sales (assuming product 

offerings of a retailer are similar for both e-Retailing and m-Retailing). In addition, 

shopper age and purchasing power in most cases are positively correlated. A customer at 

the age of 30 generally has higher purchasing power than a customer at the age of 15 

does. This provides a possible explanation for the positive association between a firm’s e-

Retail shopper age and conversion rate in the mobile sales channel when more mature 

customers with higher incomes are more likely to place an order than their younger 

counterparts. 

Finally, I find that the two system implementation choices representing a firm’s 

extent of adoption (i.e., information functions and mobile application) also have 

substantial impacts on m-Retail performance. Per information functions, a firm’s 

information capability of the m-Retail channel is positively associated with its mobile 

sales and traffic. Effective and speedy delivery of product/service information is an 

especially important system design consideration in m-Retailing given hardware 
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constraints and customer needs for accessing information when they are in motion or on 

the run. In addition, mobile application is positively related to m-Retail sales and 

conversion rate, given that mobile applications create a more interactive and facile 

shopping environment that better fulfill customer needs.  
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Chapter 7 

CONCLUSION 

Prior studies have suggested that multichannel retailers can outperform single-

channel competitors because their customers are more likely to spend money, revisit the 

store, and repeat product purchases (Kumar and Venkatesan, 2005). The emergence of m-

Retailing creates a unique opportunity for e-Retailers to exploit multichannel formats and 

further fulfill customer needs. Using a cross-sectional dataset of e-Retailers in the U.S. 

and European markets, my study provides empirical evidence to probe the transition from 

e-Retailing to m-Retailing. 

Distinct features and unique value propositions of mobile data services are discussed 

widely both in academia and practice. Nevertheless, m-Retailing is essentially an 

extended arm of e-Retailing. The dissertation shows that firms’ migration to m-Retailing 

in terms of adoption, extent of adoption, and value realization is closely related to their e-

Retail characteristics. The finding suggests that firms with advantages of operating 

resources regarding technology competency to provide digitalized services, economies of 

scale, and physical outlets tend to grasp at market opportunities offered by m-Retailing 

and thus are more apt to adopt m-Retailing. After adoption, those firms with operational 

edge are also willing to invest more in system development. Interestingly, in order to 

capitalize on the young generation who use mobile data services extensively and to 

maximize the conversion rate of small-value orders that fit with the nature of instant 

shopping in m-commerce, firms with younger e-Retail shopper age and smaller e-Retail 

order value also engage more in system development. The finding provides useful 



61 

 

information for technology vendors and promoters to identify potential adopters for 

initial set-up and to target adopters for additional value-added services in the mobile 

domain. 

Business value provides justification for IT adoption. Firms with strong operating 

resources in e-Retailing, such as experiences and expertise in providing digitalized 

services, accumulation reputation of service quality from e-Retail market, strong market 

establishment in e-Retailing, and physical outlets, are found to be leaders in m-Retailing 

as well. Retail chains, however, are found to have lower conversion rate on average. The 

silver lining is that for retail chains, lower conversion rate of the m-Retail channel may 

not be unfavorable after all when mobile visitors can help with sales of physical outlets, 

thus leading to cross-channel synergies. Contrarily, pure on-line retailers are more 

vulnerable to low conversion rates since they rely solely on the virtual channel for their 

business. Different firm types need to consider weighing and balancing performance 

metrics differently.  

Firms with e-Retail characteristics that fit with customer preferences of the m-Retail 

channel can benefit from their existing e-Retail resources. Firms with smaller e-Retail 

order value are found to have higher m-Retail conversion rate. Firms with younger e-

Retail shopper age are associated with higher m-Retail sales and traffic. Firms, however, 

need to be aware of economic dimension and interpretations of the two e-Retail 

customer-oriented resources. Due to the income effect, a firm with higher e-Retail 

shopper age is found to have a higher conversion rate. Because of the price effect, a firm 

with larger e-Retail order value is found to have higher sales. While firms benefit from 
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the fit between their e-Retail characteristics and the nature of m-Retailing (e.g., low order 

value, and young shoppers), they should consider marketing and promotion plans to 

leverage the economic dimension (i.e., price effect and income effect) and to fully exploit 

the sales potential.  

Finally, proper system implementation is also relevant to the success of m-Retailing. 

In addition to information functions that address hardware constraints and short-duration 

usage, mobile application is found associated with higher m-Retail conversion rate. 

While some firms may still choose to utilize the website as the main format for m-

Retailing, the empirical finding on conversion rate provides information for firms’ 

decisions on developing mobile application. 

My study makes several distinct contributions to the literature. First, most existing 

empirical studies on m-commerce focus on customers’ perceptions of the new sales 

channel. Discussions on firms’ strategic decisions and business value from m-commerce 

are mainly derived from conceptual frameworks or case studies, hence lacking empirical 

evidence to validate the assertions. Complementing existing literature, my paper presents 

an empirical assessment of firms’ migration to the new channel based on secondary data 

analysis.   

Second, while some prior studies use survey data to explore firms’ adoption of mobile 

information systems, my analysis contributes to the literature by looking beyond the 

conventional dichotomy of “adoption versus non-adoption” and by incorporating firms’ 

extent of adoption and business value into the research framework. As IT innovation 

diffusion involves not only initiation but routinization (Rogers, 2003), I explore a firm’s 
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extent of adoption in terms of system implementation choices. Unlike the aggregate 

usage frequency of IT innovation, system implementation choices provide a more 

detailed and granular view on extent of adoption. This level of analysis is more realistic 

and relevant to firms’ actual decision making. Nevertheless, this requirement increases 

complexity of data collection and analysis. In the emerging m-commerce research stream, 

the study serves as a launching pad to explore a firm’s extent of adoption in terms of two 

distinct features of mobile data services. Future research can extend the work by 

providing a theoretical framework to assess a firm’s system implementation choices 

regarding mobile information systems.  

The business value is deliberately examined in response to the call for linking 

innovation-related variables to performance impacts by Fichman (2004). The empirical 

findings indicate that a firm’s organizational factors in terms of e-Retail characteristics 

and its extent of adoption in terms of system implementation choices influence business 

value of adopting the IT innovation (i.e., m-Retail channel). In particular, I incorporate 

the comparatively under-studied conversion rate as one performance metric (Johnson et 

al., 2004). The pattern of conversion rate is found to be different from those of sales and 

traffic. For example, while retail chains are found to have higher mobile sales and greater 

traffic volume compared with other non-store firms, their conversion rates are on average 

lower than others’ due to traffic redirection to physical outlets. Future research on this 

conversion rate metric will be interesting and fruitful. 

Third, previous research on m-commerce has mainly focused on its distinct features 

and new value propositions (Clarke, 2001; Lee and Benbasat, 2003). Since m-Retailing 
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still involves extensive online transactions, my study complements existing literature by 

exploring the dependency relationship between e-Retailing and m-Retailing to elaborate 

on the inner workings among the associated constructs. While there are conceptual 

studies addressing the link between e-commerce and m-commerce, my dissertation 

contributes to the literature by empirically assessing this link. Specifically, I examine the 

dependency relationship from two dimensions: resources related to business operations 

and those related to customer preferences. While firm-level analysis inclines to focus on 

operation-related resources, the dimension of customer demand is often ignored by most 

firm-level studies (Witt, 2001). My study fills the literature gap by incorporating 

customer preferences into the research model and empirically testing their effects on 

adoption and value. While I find that operation-related capabilities largely determine 

firms’ participation in the IT-enabled sales channel, I also show that characteristics 

related to customer preferences are no less important than operating resources in terms of 

their contribution to the success of m-Retailing.  

Finally, when it comes to measuring extent of adoption in terms of system functions, 

counted observations are commonly collected. The often-used Poisson count data model 

is too restrictive as it only allows for no-dispersion (i.e., variance equal to mean). I 

introduce a generic count data model that accommodates over-, no-, or under-dispersion. 

I also account for the issue of zero-truncation given that an adopting firm at least has one 

system function. Empirical IS researchers who intend to explore a firm’s system 

implementation choices or need to deal with count data modeling may find the Conway-

Maxwell Poisson regression model employed in this study useful.  
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Given its exploratory nature, my study has several limitations, many of which are due 

to data unavailability and hence can be addressed by future research when more data 

become available. First, the cross-sectional research design to some extent limits the 

ability to make causal inference. I made endeavors to address the limitation by 

performing the robustness check of my adoption decision model, in which I have specific 

adoption years for 106 firms from 2007 to 2010. Yet, the robustness analysis is still 

confined by the unavailability of panel data for independent variables. A better 

understanding about causes and effects of adoption decisions will require longitudinal 

analysis. If longitudinal data become available, a temporal diffusion and business value 

analysis will derive more insights. Second, the dimensions I assess are by no means 

exhaustive. For instance, learning externalities or bandwagon effects may exist and hence 

affect other firms’ decisions to adopt mobile Retailing. Future research can explore to 

what extent a firm’s adoption is influenced by prior adopters. A follow-up study can also 

address what types of firms are prone to influences of prior adopters. The above 

discussion, however, depends on data availability of temporal history of firms’ adoption.  

Third, the sample of firms is composed of the top 500 e-Retailers list in the U.S. and 

the top 300 e-Retailers in Europe. This seeming bias is the challenge that empirical 

researchers usually encounter as firm-level data is mostly available for large and/or 

public firms. Nonetheless, the sample still has fair generalizability given that the top 500 

e-Retailers make up 75% of total e-Retail sales in the U.S. market and hence can explain 

the behaviors of firms that account for the lion’s share of the market. Last, practitioners 

have started to recognize and discuss the potential cannibalization between e-Retailing 
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and m-Retailing as mobile devices such as tablets make mobile shopping less constrained 

by hardware limitations. However, it is difficult to assess the cannibalization issue under 

this cross-sectional setting. Alternatively, since currently e-Retail and m-Retail markets 

are both still in growing stages, a plausible case is that firms with growing e-Retail sales 

would also enjoy m-Retail sales growth, leading to an increase in overall sales. In 

addition, the result shows that traffic to the m-Retail channel may bring transactions to 

physical stores. In this context, cannibalization may not be such a concern as the addition 

of m-Retail channel to the multichannel mix enables retailers to interact with customers 

constantly, and improves overall sales. Future research can extend the focus to the 

performance of the firm as a whole, preferably with data across years. Doing so will 

enhance our understanding of the overall impact of the extra m-Retail channel and 

contribute to the literature of multichannel management.  
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E-RETAIL FUNCTION LIST 
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360 degree spin Microsites Widges 

Affiliate program Mouseover Wish list 

Auction Online circular Zoom 

Blogs Online gift certificates Account status/History 

Catalog quick order Outlet center Buy online/Pick up in store 

Color swatching Pre-orders Click to call 

Coupons/Rebates Product comparisons Currency converter 

Customer reviews Product customization Estimated shipping date 

Daily/Seasonal specials Product ratings Express checkout 

Dynamic imaging Product recommendations Free return shipping 

E-mail a friend Product wikis Live chat/E-mail 

Enlarged product view Registry Order confirmation 

Frequent buyer program RSS feed Order status 

Frequently asked questions Site personalization Pre-paid labels 

Gadgets Social networking Rain checks 

Guided navigation Store locator Real-time inventory check 

Interactive catalog Syndicated content Ship to multiple addresses 

Interactive kiosks Top sellers Shipping costs calculator 

Mapping Videocasts Shipment tracking 

Mash-ups What’s new Toll-free number 

 

 


