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ABSTRACT

Solution methods for certain linear and nonlinear evolution equations are presented in this dis-
sertation. Emphasis is placed mainly on the analytical treatment of nonautonomous differential
equations, which are challenging to solve despite the existent numerical and symbolic computa-
tional software programs available. Ideas from the transformation theory are adopted allowing one
to solve the problems under consideration from a non-traditional perspective.

First, the Cauchy initial value problem is considered for a class of nonautonomous and inho-
mogeneous linear diffusion-type equation on the entire real line. Explicit transformations are used
to reduce the equations under study to their corresponding standard forms emphasizing on natu-
ral relations with certain Riccati(and/or Ermakov)-type systems. These relations give solvability
results for the Cauchy problem of the parabolic equation considered. The superposition principle
allows to solve formally this problem from an unconventional point of view. An eigenfunction ex-
pansion approach is also considered for this general evolution equation. Examples considered to
corroborate the efficacy of the proposed solution methods include the Fokker-Planck equation, the
Black-Scholes model and the one-factor Gaussian Hull-White model.

The results obtained in the first part are used to solve the Cauchy initial value problem for
certain inhomogeneous Burgers-type equation. The connection between linear (the Diffusion-type)
and nonlinear (Burgers-type) parabolic equations is stress in order to establish a strong commutative
relation. Traveling wave solutions of a nonautonomous Burgers equation are also investigated.

Finally, it is constructed explicitly the minimum-uncertainty squeezed states for quantum har-
monic oscillators. They are derived by the action of corresponding maximal kinematical invariance
group on the standard ground state solution. It is shown that the product of the variances attains
the required minimum value only at the instances that one variance is a minimum and the other
is a maximum, when the squeezing of one of the variances occurs. Such explicit construction is
possible due to the relation between the diffusion-type equation studied in the first part and the
time-dependent Schrodinger equation. A modication of the radiation field operators for squeezed
photons in a perfect cavity is also suggested with the help of a nonstandard solution of Heisenberg’s

equation of motion.
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Chapter 1

INTRODUCTION

1.1 Background and Motivation

At the second half of the 16th century a remarkable letter from G.W. Lebniz to G. de I’Hospital
using special symbols to describe some partial processes could have originated the emergence of the
branch of mathematics named later Partial Differential Equations(PDEs) [25]. During the preceding
centuries, specially through the 18th century, outstanding pioneers such as Isaac Newton, James
Bernouli, Leonhard Euler, d’Alambert, J. L. Lagrange, J. Fourier, J. Hadamard and P. Laplace, to
mention some, made of PDEs the principal mode of analytical study of mechanics of continua in
the physical sciences [22], [25], [27], [74]. Throughout the years these differential equations have
become successful as models of physical phenomena. To date the study and analysis of PDEs, more
precisely the partial differential evolution equations, e.g. PDEs with time as one of the independent
variables, play a central role in the understanding of several phenomena arising not only in physics
and mathematics but also in many other ramifications of science.

The study of evolution equations such as wave, Laplace, heat, and Schrédinger equations, to
mention some, makes up a significant portion of the current frontier in the development of PDE
theory. In such a study, developing analytic solution methods have attracted much attention both
for their broad range of applicability and for the techniques developed [4], [5], [6], [22], [38], [49],
[204]. The complexity and challenges in their theoretical study have attracted much interest from
many mathematicians and scientists [236]. Besides scientific curiosity, the main source of moti-
vation behind this work arise from the challenges and complexities on the topic encountered by
the author of this dissertation throughout extensive readings and discussions on different scientific
meetings. The work presented herein focused on the analytical treatment of the following funda-

mental evolution equations: Heat equation, Burgers equation and the Schrodinger equation.
1.2 The Heat equation
The one-dimensional heat equation coupled with arbitrary initial profile,

ou 92
a%’ — rg—x;‘, u(x,0) = ¢(x) (1.1)



was investigated first by Joseph Fourier at the beginning of the 19th century in his celebrated volume
Théorie analytique de la chaleur(Analytic theory of heat), and has become a starting point for the
extensive study of parabolic equations [27], [77], [154], [178]. The heat equation is also known as
the diffusion equation and describes, in usual applications, the evolution in time of the density u of
some quantity such as chemical concentration and temperature. In the scenario in which u stands for
the temperature of certain entity, » plays the role of thermal diffusivity parameter. The heat equation
and its extensions has served, for many years, as a bridge between central mathematical issues and
practical applications. In the study of the heat equation and its extensions, the fundamental solution
has had a great theoretical and practical importance. The significance of fundamental solutions and
their importance for the solution to the Cauchy problem in general have constantly been emphasized
in the literature [27], [154], [194], [195].

A general approach to solve the Cauchy initial value problem (1.1) on R for nonnegative time is
based on the idea of the fundamental solution, idea originated from the Green’s function method for
solving boundary value problems [165]. For the heat equation, the fundamental solution measures
the effect of concentrated heat source. Formally, because of the linearity of the heat equation, the
superposition allows one to solve this initial value problem on the entire real line in the integral

form
uer) = [ KGxpno0)dy (12)

where y usually stands for a fixed shifting in the density profile. In the case of temperature dispersion
the heat will diffuse away from its initial concentration and the resulting fundamental solution, or
heat kernel, is denoted by K (x,y,#). For convenience it is assumed also that at # = O the fundamental
solution has a delta spike profile, e.g., that satisfies the delta function K(x,y,0) = 8 (x —y) deviated

for a fixed y. Thus, for each fixed y we have that the heat kernel satisfies

oK  9’K
— =r—. 1.3
o~ ae (1)
In order to specify the solution in a uniquely fashion, the density shall be required to be square

integrable, e.g.

|ty Pax < (14)



for all nonnegative ¢. It is widely known that on R the Fourier series solution to the heat equation

becomes a Fourier integral. Without loss of generality the initial condition can be written as

1 =, —
o) = G (1.5)

where @ represents the corresponding Fourier transform of ¢. Furthermore, the method of separa-

tion of variables permits one to find a separable solution to the heat equation of the form
_ 1kt ikx :
u(x,t)=e "'e with keR. (1.6)

Thus, the superposition principle allows one to presents the fundamental solution for the heat equa-

tion as a the Fourier integral

K(x,y,t —k ik o (1) dik. (1.7)

=

= — e
27 J—o

Aditionally the Fourier transform of the Dirac delta function is given by

== 1

5(K) = —— / " S(r—y)e Mdx =
27 J—o0

e 1.8
T (1.8)
when it is concentrated at x = y. Thus, substituting (1.8) into (1.7) yields

1 = ‘
K(x,y,t)=g 1 e k=) g 1.9)

and with the assistance of the following extended Gaussian integral

/oc e,ay2+bydy — \/E€b2/4a (1 10)
—0Q a

the heat kernel (1.9) becomes

1
K(x,y,t) = \/?me_(x—y)z/ht (1.11)

as expected. Consequently the solution to the Cauchy initial value problem (1.1) can be found

formally by substituting (1.11) into (1.2).
1.3 The Burgers equation

The linear heat equation (1.1) is clearly related to the nonlinear Burgers equation

NAGNTN A G (1.12)



through the well known Cole-Hopf transformation
V= —2r% (r represents the viscosity parameter) (1.13)
u

This is the simplest nonlinear diffusion equation and it is obtained by appending a linear diffusion
term to the nonlinear transport equation. Moreover, equation (1.13) linearize and transform equation
(1.12) into the heat equation (1.1). This reduction allows one to use the well known tools to treat
analytically the heat equation to deal with the Burgers equation.

In fact if the corresponding time and space derivatives of the Cole-Hopf transformation (1.13)

are performed we have that

w=—%cﬁ—w?» (1.14)
u u
2
uﬁ:fm@f+2cﬁ), (1.15)
u u
2
ity = 217 [(th) } , (1.16)
u X
_ 2
uuz—m<wmlf”M>+m[C”)}. (1.17)
u u .
After the substitution of (1.14)—(1.17) equation (1.12) reduces into
u 0%u
— =r— 1.18
o Tox (1.18)
with corresponding fundamental solution given by
K(x,y,1) = —e (x4 (1.19)
o VAt
as stated in the previous section. From the Cole-Hopf substitution it can be found also that
u(y,0) = =% 200z, (1.20)

Thus the solution of the initial value problem for (1.18) coupled with (1.20) is formally given by

R S (x—y)? 1
u(x,t) = \/érm/wexp <— Tan —%/wv(z,O)dz)dy. (1.21)

Consequently the solution to the initial value problem for the Burgers equation (1.12) is given by

d o S S
v(x,t) =— ;rtgln [/meXp <_ (x4ri)) _ 2r/QQv(z,0)dz> dy] (1.22)
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for ¢+ > 0 and suitable initial profile u#(x,0) on R as desired. It is worth to pointing out that, as with
the heat equation, the viscosity parameter » must be positive in order for the initial value problem
to be well-posed in forwards time.

There are many applications in which the Burgers equation and its extensions play a crucial
role in the understanding of the phenomena under consideration [45], [46], [79], [104], [185],
[188], [219]. Burgers equation was first introduced by Burgers to describe the one-dimensional
turbulence, and it also arise in many physical problems including sound waves in viscous medium,
waves in fluid-filled viscous elastic tubes, and magnetohydrodynamic waves in a medium with fi-
nite electrical conductivity [45]. Additionally, in fluids and gases, one can interpret the right hand
side as modeling the effect of viscosity, thus Burgers equation represents a simplified version of the

equations of viscous fluid mechanics.
1.4 The Schrédinger equation

Classical mechanics explains matter and energy only at the macroscopic level. However, the prop-
erties that govern the macroscopic systems fail to provide a consistent description of matter on
the atomic scale. The discovery of Planck’s constant was probably the first indication of the inva-
lidity of mechanically applying large-scale laws to small-scale objects [48]. In the 1920’s further
experimental facts were discovered revealing that the behavior of the microscopic particles differs
fundamentally from that of the macroscopic world. The principles of classical mechanics were
vague to examine the motion of objects at atomic levels, thus forcing eventually the abandonment
of this approach. Motivated by theoretical and experimental investigations corroborating the in-
ability of classical mechanics to describe certain microscopic phenomena, an exceptional team of
physicists and mathematicians such as Planck, Bohr, Schrodinger, Heisenberg, Born, Dirac, Pauli,
Hilbert and von Neumann among many others [38], [49], [87], [125], [153], [154], [204], started to
developed one of the greatest intellectual endeavors the 20th century, the field of quantum mechan-
ics. This theory, which deals effectively with both macroscopic and microscopic systems, was born
during the first quarter of the 20th century and resulted in a series of outstanding articles published
by Schrédinger in 1926 [194], [195], which made of wave mechanics a prominent theory. One of

his key contributions was the formulation of what is known as the Schrodinger equation, which



governs the motion of a system placed in a potential. This is one of the fundamental equations of

nonrelativistic quantum mechanics and can be written as

oy
ih—==Hy (1.23)

where H, which correspond to the Hamiltonian operator, determines the evolution of the wave
function(the complex solution of (1.23)) that represents the state of the system. This equation plays
the same role as Hamilton’s laws of motion in non-relativistic classical mechanics, and can be used
to describe the quantum dynamics of a single particle or of an ensemble of particles under the
influence of a variety of forces [93]. The square integrable wave function y contains the maximum
information that nature allows concerning the state of the physical system under study at time .

Square integrable wave functions, e.g., wave functions y with the property

/|1//|2dx < oo, (1.24)

are normalizable. This means that they become wave functions of norm unity,

/|1//|2dx: 1. (1.25)

The non-negative function |y|? is proportional to the probability that upon measurement of its
position the particle will be detected in a given domain. If at time ¢, a physical state is described by

the wave function y, the integral

[ 1vPax. (126)
D

of the full space of values of the variable x gives the probability that the measurement of this variable
at time ¢ will yield values within the domain D under consideration. It was Max Born who, at the end
of 1926, found the correct interpretation of y as a probability amplitude, by analyzing experiments
on the scattering of electrons on nuclei [93]. Instead of predicting what a particle actually does, the
equation (1.23) can only predict the possible results of a process that a particle may undergo. There
exist two variants of the Schrodinger’s equation that govern such predictions, the time dependent
and the time independent Schrodinger equations. The study of all of these variants is a vast and

diverse field in mathematical physics.



The most general form of the equation (1.23) is the time-dependent Schrédinger equation, which
determines the time evolution of the quantum system under consideration. For this case the Hamil-
tonian, which is the sum of kinetic %Vz and potential U (x,t) energy, determines the evolution in
time of the wave function. In one dimension it takes the form

2

I
H=—V? t 1.27
. +U(x,1) (1.27)

with A, m, V and U (x,1) representing the Planck’s constant, the system’s mass, the gradient operator
and the potential respectively. In coordinate representation this variant of the Schrédinger equation
can be written as

ih

" 2m

2
V [ ﬁV2+U(x,t)] v (128)

Among all the many solutions of the time dependent Schrédinger equation, one of the most useful
are the stationary states or states of definite energy, and for these states the time dependent equation
(1.28) reduces to its time independent version. It is only used when the Hamiltonian itself is not de-
pendent on time. Hence the energy operator id y/dt can then be replaced by the energy eigenvalue
E forming the eigenvalue equation Ey, = Hy,, n € N, and its solution y, is called energy eigen-
state with energy E. The explicit representation of the time-independent version of Schrodinger

equation in one dimension can be given by
h2
Ey, = [—VZ—i—U(x)] A (1.29)
2m

which is clearly an eigenvalue equation. Approximate solutions to the time-independent Schrédinger
equation are commonly used to calculate the energy levels and other properties of atoms and
molecules. The eigenvalues E are discrete, that is only certain energy values are allowed, all other
energies are forbidden. The energy eigenvalues are also eigenstate energies. The lowest eigenstate
energy is the ground state energy(n = 0), all higher energies(n > 1) are called excited state energies.

The structure of the Schrodinger equation depends on the physical situation at hand. For the
case in which the potential takes the form of a classical spring the equation (1.23) takes the name
of Quantum Harmonic Oscillator. The harmonic oscillator is of importance for general theory,

because it forms a cornerstone in the theory of radiation [48]. The quantum harmonic oscillator in



one dimension is usually written as

2 12
v _ 19 W+1mw2x2q]. (1.30)

s = " amae T2

Using the separation of variables y(x,7) = f(¢)¥(x), one have

f(t) =exp (_;ft> (131)

where E is a constant, and that

A’y 2mE  m?o*x*
— ¥ =0. 1.32
=+ (") 132
Notice that this last equation is very similar to the Hermit differential equation
¥ (x) — 2xy'x+2ny(x) =0 (1.33)

which solutions are given by the so called Hermit polynomials H, (x). This polynomials are exten-
sively used in the theory of special functions [9], [11], [163], [164] and form an orthonormal set

2

with the weight function e ™, e.g.

/ " Hy(x)Hy (x)e " dx = 0 (1.34)

where H,,(x) and H,(x) are Hermit polynomials with m # n. Similar to square integrable functions,
the weight function makes bounded the Hermit polynomials, which is a crucial property of the
wave function. Then, the next step is to make as much similar as possible equation (1.32) to (1.33).

Defining the following function:

Y, (x) = e H,(x), (1.35)

one can found that
Hy(x) = Yy (x)e" /2 (1.36)
H!'(x) = (Y (x) + Yo (x) +x¥(x)) € /% 4 x¢" 1 (V] (x) + 2, (%)) - (1.37)

By definition H,(x) = y(x), thus substituting (1.36)—(1.37) into (1.33) yields

Y, (x)+ [(2n+1) —xz] Y, (x) =0. (1.38)

8



which is very similar to (1.33). Next step is to perform the following change of variables

v(z(x)) =Y (x) (1.39)

with z = ax (o an arbitrary constant) so that

d? 5 d?

Substitution of (1.39)—(1.40) reduces equation (1.32) into

y 2E rm\1/2 ) _
after making
mk
T 1. (1.42)

Consequently, the solution of (1.41) can be written as
W(2) = ¢ ¥ 2H,(2) (1.43)

with z = ax and o can be taken from (1.42). From equations (1.38) and (1.41) one can deduce that

E = (n+1/2)h where n € N. After a normalization process [9] it can be conclude that

1 2
(7)) = —— e T ?H, 1.44
¥ (2) NG (2) (1.44)

as desired.
1.5 Organization of the rest of the Dissertation

Throughout the the rest of this dissertation the three main chapters containing the core ideas are
presented. All the three chapters deal with methods to construct solutions to the Cauchy initial value
problem for some specific evolution equations. The solution methods to solve the main equations
presented in each of the chapters are strongly related even when usual applications come from
different fields of study.

In the Chapter 2 the Cauchy initial value problem for a class of nonautonomous and inhomo-
geneous diffusion-type equations on R is considered. More specifically, explicit transformations
are used to reduce the equations under study to their corresponding standard forms and emphasize

natural relations with certain Riccati(and/or Ermakov)-type systems. Similar methods have been

9



applied to the corresponding Schrodinger equation [38], [39], [41], [42], [43], [124], [126], [133],
[149], [193], [208], [209]. Alternatively, a group theoretical approach to a similar class of partial
differential equations is discussed in Refs. [77], [154] and [178].

In the Chapter 3 preliminary results from chapter 2 are used to solve the Cauchy problem for
a certain inhomogeneous Burgers-type equation. The connection between linear (Diffusion-type)
and nonlinear (Burgers-type) parabolic equations is explored in order to establish a commutative
relation. Traveling wave solutions of a nonautonomous Burgers equation are also explored.

The Chapter 4 is utilized to describe a six-parameter family of the minimum-uncertainty squeezed
states for the harmonic oscillator in nonrelativistic quantum mechanics. They are derived by the ac-
tion of corresponding maximal kinematical invariance group on the standard ground state solution.
It is shown that the product of the variances attains the required minimum value 1/4 only at the
instances that one variance is a minimum and the other is a maximum, when the squeezing of one
of the variances occurs. The generalized coherent states are explicitly constructed and their Wigner
function is studied. The overlap coefficients between the squeezed, or generalized harmonic, and
the Fock states are explicitly evaluated in terms of hypergeometric functions. The corresponding
oscillating photons statistics are discussed and an application to quantum optics and cavity quan-
tum electrodynamics is mentioned. Explicit solutions to the Heisenberg equations for radiation field

operators with squeezing are also presented.
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Chapter 2

CAUCHY PROBLEM FOR DIFFUSION-TYPE EQUATIONS
2.1 Introduction
It is well known that the diffusion-type equations have numerous applications in different areas of
Science. Among these numerous applications, the role of fundamental solutions for these parabolic
systems is essential in probability theory [44], [112]. Thus it is natural, for example, to consider an

It diffusion process X = {X; : # > 0} which satisfies the stochastic differential equation
dX; =b(X;,t) dt+ 0o (X;,t) dW,, Xo =x, (2.1)

in which W = {W, : t > 0} is a standard Wiener process. The existence and uniqueness of solutions
to (2.1) depends on the coefficients b and . (See Ref. [112] for conditions of a unique strong

solution to (2.1).) If the equation (2.1) has a unique solution, then the expectations

u(x,t) = Ex[¢ (X,)] = E[9 (X:) [Xo = x] 2.2)
are solutions of the Cauchy problem

u; = %62 (X, 1)ty + b (x,1) uy, u(x,0)=¢(x). (2.3)

This last evolution equation is known as the Kolmogorov forward equation [44], [112]. Thus if
p(x,y,1) is the appropriate fundamental solution of (2.3), then one can compute the given expecta-

tions in (2.2) according to
Ef0 ()] = [ pryn9 ) dy 4

with Q denoting the probability space where these expectations live. In this context, the fundamental

solution is known as the probability transition density for the process and

/ép (ryt) dy = 1. 25)

See also Refs. [3] and [110] for applications to stochastic differential equations related to Fokker—
Planck and Burgers equations. The Black-Scholes model of financial markets is discussed in
Refs. [17], [96], [150], [151], [152], [213] (see also [192] for the one-factor Gaussian Hull-White

model).
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The main result of this chapter is presented in the next section with a sketch of the corresponding
proof. This section contains a solution method for certain nonautonomous and inhomogeneous
diffusion-type equations. The third section is devoted to explore, from a novel point of view, the
symmetries of the evolution equation introduced in the second section. A second solution method,
in terms of eigenfunction expansion, is introduced in the fourth section. Then several examples
are presented in order to corroborate the two proposed solution methods discussed. The chapter
is completed with key concluding remarks in the fifth section. Additional details in some of the
crucial results for this chapter are given on the last four sections in order to establish the rigorous

arguments that govern such results.
2.2 Transformation Method

The general theory of transformations is considered as a branch of analysis in the sense that it can
be developed by purely analytic methods. Some of the most powerful tools for solving problems
in physics and mathematics involve transform methods. A considerable amount of these analytic
techniques for solving a partial differential equation require reducing it down to a set of ordinary
differential equations that are hopefully easier to solve than the original partial differential equation.
In this section ideas from the theory of transformations are adopted in order to construct a method

to solve the Cauchy problem for a generalized diffusion-type equation.

Transformation to the Standard Form

The following resumes one of the most important results of this chapter.

Lemma 1. The nonautonomous and inhomogeneous diffusion-type equation

u 21/t u
o a0 55— (60 —c0)0) G+ (A )+ (05— b)) 26

where a,b,c,d, f,g are suitable functions of time t only, can be reduced to the standard autonomous

form
dv 9%

12



with the help of the following substitution:

1
(1

E=B(n)x+e(r), T=v().

u ()C,l) — e(x(t)x2+5(t)x+1€(t)v (‘S ’ T) ’

~—

Here, 1,0, B3,7,0,€, K are time dependent functions that satisfy

w
— +2a0+d=0
2u

and

d
¢ p2ca—daa? =0,
dt
dp

E—( +4a06)ﬁ:0,

dy 2
“r_ -0
I ap ,

6jf—(c—l—4aoc)5 =f—-2ag,

 +(g—2a8)p =0,

(2.8)

(2.9)

(2.10)
(2.11)
(2.12)
(2.13)
(2.14)

(2.15)

Proof. The sketch of the proof is as follows. Let S = a(¢)x> + &(¢)x + k(t) and v = v(&, T) with &

and 7 given as in (2.8). To reduce (2.6) into the standard nonautonomous form (2.7) we need the

following derivatives:

((991: _ \/% _Z'l((?)w(a'(z)x2+5’(t)x+K’(t))v
; : B0 +7 0w

‘;;‘ _ :S(t) [(20u(t)x+8(1))v+ B (t)ve]

g;‘ _ ZS a [(200(1)x+ 8(2))*v+2B (1) (200(1)x+ 8 (1)) ve |
' \/%[2a(t)v+ﬁ2(t)v<:d-

(2.16)

(2.17)

(2.18)

Direct substitution of (2.16)—(2.18) into (2.6) leads to the desired reduced form (2.7) subject to

equations (2.9)—(2.15).

13
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The transformation (2.8) allows one to replace the study of the original equation (2.6) by the
study of the well know standard autonomous form (2.7). Equation (2.10) is called the Riccati
nonlinear differential equation [171], [228], [230] and for terminology we shall refer to the system
(2.9)—(2.15) as a Riccati-type system.

The substitution (2.9) reduces the nonlinear Riccati equation (2.10) to the second order linear
equation

W —tt)u —4o(t)u =0, (2.19)

where
a

a, 5 d / d/
r(t):;+2c—4d, o(t)=ab+cd—d —&—5 =) (2.20)

Equation (2.19) shall be referred to as the characteristic equation [206].
Furthermore, it is also known [206] that the diffusion-type equation (2.6) admits a particular

solution of the form

ye L aOR B+ Oy () 221)

u() ’
provided that the time dependent functions u, o, 3,7,0,€,k satisfy the Riccati-type system (2.9)—

(2.15) (the original interpretation of this system). Alternatively, a group theoretical approach to a
similar class of partial differential equations is discussed in Refs. [77], [154] and [178].

Fundamental Solution

By the superposition principle one can formally solve the Cauchy initial value problem for the
diffusion-type equation (2.6) subject to suitable initial data u(x,0) = ¢ (x) on the entire real line

—oo < x < oo in the integral form:

ulxn) = [ Kolonr) 9(v)dy (2.22)

with the fundamental solution (heat kernel) [206]:

Ko (x,y,t) = _ 20 +Bo(Dxy+ 10 (1) 0 (1)x-e0 1)y +Ho (1) (2.23)

27 po (1)

where a particular solution of the Riccati-type system (2.10)—(2.15) is given by:

o (t) =— — (2.24)



Bo(t)zjo((tt)), h(t)zexp< /Of(c(s)zd(s)) ds), (2.25)
_d0)  a@r() , [rals)o(s)hls)
0( ) - 261(0) Ho (t) N(’) (f) 4./0 (IJ(/) (S))Z d (2.26)
_d0) 1 m()
~2a(0) 2wy (0) o (1) (2.27)
O T 46 N 86 ] ds
&= [0+ 5060 )+ £ mw| 5 em
200 g [ADOWRE) e
O . /0 o)’ (1o (5) 8y (5)) d (2.29)
"a(s)h(s) d(s)
+2/0 ul (s) [f(s)—l-a(s)g(s)] ds,
_a(po(t) o\, [fals)o(s) V8 (51 ds
() === T8 (-4 /0 o) (1o (5) 8 (5))* d (2.30)
ta(S) @ N S
w2 [ ) ) [f<s>+a(s)g< >] J

with 6 (0) = g(0) /(2a(0)), €(0) = -0 (0), x(0) = 0. Here, up and p; are the so-called standard

solutions to the characteristic equation (2.19) subject to the following initial data

Ho(0) =0, pp(0)=2a(0)#0  w(0)#0, ui(0)=0. (231

Solution (2.24)—(2.30) shall be referred to as a fundamental solution to the Riccati-type system
(2.9)—(2.15); see (2.48)—(2.52) and (2.53) for the corresponding asymptotics.
It is known that the system (2.9)—(2.15) is solvable [38], [204]. Its general solution from a

non-traditional point of view is discused in the following lemma.

Lemma 2. The Riccati-type system (2.9)—(2.15) has the following general solution:

p(r)=—=2u(0) o (1) (@ (0)+ (), (2.32)
2
@)=~ 350 o ) (233
_ B(0)Bo(1)
B(1)=—5 (0 +°},O oy (2.34)
2
() 7(0)—4(a(€) f)yo o) (2.35)



and

_ Bo (1) (8 (0) +& (1))
5=~ om0 (2.36)
e(t)=¢(0)— P 50(5(50()0—?_;?;)(;))7 (2.37)
2
€)= k(0)+ w(0) — Lo O 2.39)

in terms of the fundamental solution to the Riccati-system (2.24)—(2.30) subject to arbitrary initial

data p(0), (0), B (0), v(0), 8(0), £(0), x(0).

Proof. Relations (2.21)—(2.23) are used with the uniqueness property of the solution and the ele-

/ efay2+2by dy = \/E ebz/“, a>0. (2.39)
— oo a

Then system (2.32)—(2.38) follows and this complete the proof (see Appendix A for a detailed

mentary integral:

proof). O

Remark 1. It is worth noting that the transformation (2.8), combined with the standard heat kernel

[162]:
(&-n)’
471.(7_ TO) exp [_4(7_ TO)] (240)

for the diffusion equation (2.7) and (2.32)—(2.38), allows one to derive the fundamental solution

KO(&J’IJ') =

(2.23) of the diffusion-type equation (2.6) from a new perspective.

A detailed verification of Remark 1 is provided in Appendix B. From Lemma 2 the following

result, which is needed for the construction of the fundamental solution, is established.

Lemma 3. Solution (2.32)—(2.38) implies:

o = g 5 (7~ 10 @41
o =0 — él(yfz;(o)), (2.42)
b= 5t o) @43
»=-20 3577 .



and

ot
g =-8(0)+ (2(?;:;)()(;)) : (2.46)
Ko = kK — K (0) — 4(18(7'—87(/(2());3 : (2.47)
which gives the following asymptotics
%lt) =72 (10)z a 4Ca(((2) + 8622(?3) +ow), (2.48)
B = o~ a0 (2.49)
=7 (10)t + 4Ca((00)) * 80:2(?3) +o@), (2.50)
&= 000, ab)=-E0 100, @)
Ko (1) =0 (1) (2.52)

ast —0t.

Equations (2.41)—(2.52) are inversions of (2.32)—(2.38) and the deriviation of the asymptotics
(2.48)—(2.52) is given in the Appendix C. These formulas allows to establish the required asymptotic

of the fundamental solution (2.23):

N2
Ko (x,y,1) ~ W exp [ Sca (g))t ] (2.53)
o - o]

(Here, f ~gast— 0" iflim, o+ (f/g) =1.)

By direct substitution one can verify that the right hand sides of (2.32)—(2.38) satisfy the Riccati-
type system (2.9)—(2.15) and that the asymptotics (2.48)—(2.52) result in the continuity with respect
to initial data:

lim u(r)=p(0), limoa(r)=0(0), etc. (2.54)

t—0+t t—0+t

The transformation property (2.32)—(2.38) permits to find the solution to the Cauchy initial value
problem in terms of the fundamental solution (2.24)—(2.30), and it is referred to as a nonlinear

superposition principle for the Riccati-type system.
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2.3 Symmetries of the Nonutonomous Diffusion Equation

It is also constructive to discuss the symmetries that enjoy the nonautonomous diffusion-type equa-
tion (2.6) from the point of view of the general transformation presented in Lemma 1. In the simplest

casea=1,b=c=d=f=g=0, when u; = u,,, the Lemma 1 provides the following general

transformation
= 1 o (0)x*+38(0)x+ 82 (0)¢
e Vi (0) (1 —4a(0)1) exP( 1—4a(0)1 +K(O))
B(0)x+2B(0)5(0)¢ B2(0)1
V( 1—4a(0): +8(0)v1_4a(0)t+?’(0)> (2.55)

of the diffusion equation into itself [154], [178]. Here it was used y’ (0) = —4a (0) i (0). Among

the existent space-time transformations it includes the familiar Galilei transformations:

Vv
u(x,t) =exp <x+ t) v(x+Vt+xo,t+1), (2.56)

u(x,t) = v (Ix,1%) (2.57)
with o (0) = y(0) =8 (0) =€(0) =k (0) =0, u(0) = 1 and B (0) = [; and expansions:

1 mx? X t
_ 2.58
1+mteXp< 1+mt>v(l+mt’1+mt> (2.58)

with B(0) =1, 6(0) =€(0) =k (0) =0 and u (0) = 1, u’(0) = m. The symmetry group of the

u(x,t)=

corresponding Schrodinger equations is discussed in [77], [154], [160], [161] and [218], thus the

symmetries of Schrodinger and heat equations are closely related.

2.4 Eigenfunction Expansion and Ermakov-type System
The solution of the Cauchy initial value problem for (2.6) can be found also in terms of an eigen-
function expansion similar to the case of the corresponding Schrodinger in Refs. [126] and [208].
This method is also known as the method of Separation of Variables, and as the Fourier method.

With the assistance of the transformation (2.8), one can corroborate that equation (2.6) is equivalent

to
u 21/! u
) T E () —e()) Dt (40) — a0+ coa) )
+ ((£(t) +2coa(t)B*e) x — (b(t) — coa(t) B*) ¥*) u. (2.59)

18



Indeed, direct substitution of (2.16)—(2.18) into (2.59) allows one to reduce the nonautonomous and

inhomogeneous diffusion-type equation (2.6) into the convenient form

dv I
ot JEr co€2v (co=0,1) (2.60)
whenever the system

da 2 4
E+b—2ca—4aa = coaB”, (2.61)
d
d[: —(c+4aa)B =0, (2.62)
d
d—ty —ap?=0, (2.63)
dé 3
o~ (c+4aa)d = f—2ag+2coaf’e, (2.64)
de
s (g—2a8)B =0, (2.65)
d
di; +g6 —ad® = coaﬁ2£2 (2.66)
“/
ﬂ +2aa+d=0 (2.67)

holds. Notice also that substitution of (2.67) into (2.61) leads to the second order ordinary differen-
tial equation
2

1 —t(t)p' —do (t)u = —cop (2ap?) (2.68)

where 7(7) and o(¢) are given by (2.20). The inhomogeneous characteristic equation (2.68) is an
Ermakov nonlinear differential equation. Correspondingly, it is natural to name the extension of the
Riccati-type system (2.9)—(2.15) given by (2.61)—(2.67) as the Ermakov-type system [126], which is
integrable in quadratures in terms of solutions of the inhomogeneous characteristic equation (2.68).
The corresponding integral can be found in Refs. [64], [65]. The solution of the Ermakov nonlinear
differential equation (2.68) can be found in [126] and references therein.

When ¢y = 0 in equation (2.60) the system (2.61)—(2.67) reduces to the Riccati System (2.10)—
(2.15) with corresponding solution discussed in Lemma 2. For the case of cg = 1, the solution of

the Ermakov system (2.61)—(2.67) is presented in the following lemma.
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Lemma 4. The Ermakov-type system with co = 1 has the following solution:

(1) = o (0)1/4 (30 + @(0))> — B4(0), (2.69)
_ Bp+a)
) ot Q) — B0 270
B(t)= PO : @2.71)
V4 00+ a(0)?—B40)
1 [ora0)+1p20)
Y(6)=7(0)~;In (6 a(0)) = EﬁZ(O)] (2.72)
and
B £(0)B*(0) — 2(30 + (0)) (&0 + 5(0))
6(1) = do+po 4+ (07— BA(0) : (2.73)
ey _ BOGO) ) ~20(0) (0 +0) .
V4 (0 +a(0)) = B4(0)
B B2(0)¢(0) (80 + 5(0))
KU) = O+ g, +a<o>> —B4(0)
(0 +a(0)) [B*(0)€2(0) + (&0 + 5(0))?] 2.75)

4(10 + @(0))* — B4(0)
in terms of the fundamental solution of the Riccati-system (2.24)—(2.30) subject to arbitrary initial
data 11 (0), a(0), B (0),7(0),5(0), €(0), k(0). A sketch of the proof for this lemma can be found

in Appendix D.

Then, a particular solution of the diffusion-type equation (2.6) has the form
(0 +8x+1) —(2n+1) (y=7(0)) —(Bx+e)* /2
2"\ u\/m

where H,(x) are the Hermite polynomials [164], provided that the solution for the Ermakov-type

up(x,t) = H,(Bx+¢€) (2.76)

system (2.61)—(2.67) is given by (2.69)—(2.75). With the assistance of the superposition principle,
the equation (2.76) allows one to find the solution to the Cauchy initial value problem in terms of

eigenfunction expansion. In the corresponding eigenfunction expansion:

1))=Y catta(x,1) .77)
with
£2(0)x*+8(0)x+x(0)
1n(x,0) = e BOxe0)7 /2 (B(0)x+£(0)) (2.78)
2'n!u(0)v'm
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one can choose 6(0) = £(0) = x(0) =0, a(0) =0 and B(0) = u(0) = 1, when
/m U (x,0) uy(x,0) dx = Spp (2.79)

in view of the orthogonality property of Hermite polynomials [164]. The expansion coefficients are

given by
Cn :/ un(x,0) u(x,0) dx. (2.80)

Thus, equations (2.77)—(2.80) provide the solution of the Cauchy initial value problem for equation
(2.6) jointly with suitable initial data u(x,0). It is worth to mention that J,,, represents the familiar

Kronecker delta which is defined as:

1, ifm=n

Smn:
0, ifm#n.

2.5 Examples

Some diffusion-type equations that are important in applications are considered from a united point
of view in this section. The methods discussed previously on sections (2.2) and (2.4) are used here

in order to present the corresponding solutions.

Example 1 For the standard diffusion equation on R :

d 0?
a—l: = aa—xl;, a = constant > 0 (2.81)
the heat kernel is given by
I (x—y)’*
Ko (x,y,t) = exp | —————|, t>0. 2.82
0( Yy ) \/M p [ dat ( )

See [27], [162] and references therein for a detailed investigation of the classical one-dimensional

heat equation.

Example 2 In the mathematical description of the nerve cell a dendritic branch is typically

modeled by using cylindrical cable equation [101]:

d 02
‘ca—b; = 128—; +u, T = constant > 0. (2.83)
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The fundamental solution on R is given by

Vet T(x—y)?
K() (x,y,t) = mexp —W , > 0. (284)

(See also [97] and references therein.)

Example 3 The fundamental solution of the Fokker-Planck equation [175], [233]:

AR (2.85)
on R is given by [206]:
1 (x—ey)?
Ko (x,y,1) = ) exp [2(1 —€2t)] , t>0. (2.86)
Here,
e /2

[lim Ko (x,y,1) = y = constant. (2.87)

V2T ’

The solution of the Cauchy initial value problem for the Fokker-Planck equation on R can also
be given in terms of eigenfunction expansion with the aid of the superposition principle. In the

corresponding eigenfunction expansion:
x,t) = Z Colty (x,1) (2.88)
n=0

and after choosing §(0) = €(0) = x(0) =0, a(0) = —3/8, B(0) = 1/2 and
1 (0) = 1, the corresponding eigenfunction is given by

2+§(2n+1)<1n L+e” )

(1) = - H,,( xe’! ) (2.89)
I - 2(1+e %)
\/Z"n!\/f >(1+e2)

(2.90)
and expansion coefficients
e 2% by
/ N e Hy (5 ) u(x.0) dx. 2.91)
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Example 4 Equation

u 0%u @

r_ 2= — > 2.92
3 a8x2+(g kx)ax, a,k>0, g>0 (2.92)

corresponds to the heat equation with linear drift when g = 0 [154]. In stochastic differential
equations this equation corresponds the Kolmogorov forward equation for the regular Ornstein—

Uhlenbech process [44]. The fundamental solution is given by

\/];ekt/z
Ko(ryi) = —¢ "~ 2.93
) = it () (293)

(k (xe™ /2 —yek/2) + 2gsinh (kt/Z))2

t>0.
4ak sinh (kt) I

X exp | —
(See Refs. [44] and [206] for more details.)

Example 5 The Black-Scholes model provides a mathematical description of financial mar-
kets and derivative investment instruments [17], [150]. If S is the price of the stock, V (S,¢) is the
price of a derivative as a function of time and stock price, r is the annualized risk-free interest rate,
continuously compound, o is the volatility of stock’s returnes; this is the square root of the quadratic
variation of the stock’s log price process, the celebrated Black-Scholes equation is given by [17],

[96], [150], [152], [151], [213]:

oV 1 ,,0%V oV
av .z 2 _w=o. 2.94
8I+ZGS 552 +rS8S V=0 (2.94)

The substitution V (S,7) = v (x, T), where S = ¢* (due to Euler) and T = T — ¢ (the time to maturity),

results in the diffusion-type equation

1 1
Vi = EO'ZVxx + <I"— 262> V=1V, (2.95)

which can be transformed into the standard heat equation for variable r and ¢ with the help of

Lemma 1. The corresponding characteristic equation,
" o' ! r o
— | 4r4+2— 4 ——+— =0 2.96
o (a2 v (re 4 2 o 296
can be solved explicitly when ¢ and r are constants. The standard solutions are given by

2..2rt
)

Lo = 6> Te = (1-2r7)e””" (2.97)
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and the corresponding fundamental solution can be obtain in a closed form [17]:

e'" (x—y+(r—0'2/2)'c)2
—a—exp |- e . 1>0 (2.98)

KO (xayv T) =

from our equations (2.24)—(2.30). Then, by using initial conditions, V can be computed explicitly
in terms of the error function, leading to Black-Scholes formula [17].
It is worth adding, concluding this example, that by Lemma 1 of the current chapter the follow-

ing transformation:

v (x’ ‘L') _ ea(r)x2+6(r)x+x(r)u (5 7 TO) ’

§ = B(ox+e(r), w=r(7), (2.99)

results in ug, = ugg, where pt = 1 (0) (1 —20(0) 621-) 2% and

_a(o) _ B0
“= 1—2a(0)o?t’ = 1-2a(0)o2t’ (2.100)
_ B*(0)o*t
Yy = Y(O>+2(1—2a(0)027)’ (2.101)
~ 8(0)—2a(0) 8ot
o = 1—20(0)o2r (2.102)
_ B (0)(5(0) —&)o’t
e = £(0)+ e PTOL (2.103)
52 (0) —268(0) & +2a(0) 830t
_ 2 0
Kk = Kk(0)+0’t 21 —26:(0) 077) (2.104)
with &y = (62 /2— r) /6. The classical subsitution [17],
v=u(x+(r—o%/2)1,(6%/2) 1) e ", (2.105)

occurs when o (0) =y(0) =06 (0) =€(0) =x(0) =0and B (0) = y(0) = 1.

Example 6 In the one-factor Gaussian Hull-White model [192], the state of the market, at any

instant time, is determined by one factor x. The interest rate r (), at time 7, is given by

r(t)=ro(t)+x(t), (2.106)
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where rp is a deterministic function, and x is a stochastically varying factor, which evolution is

described by the stochastic differential equation

dx(t) = —ox(t) dt+0 dB(t)

(2.107)

(x and o are real positive constants) with respect to the pricing measure Qg [192]. The expectation

value

Ty

f 1) = Eg, [ 7O 4F (2(1)) | (1) =4
satisfies the partial differential equation

O _ 1.3,
at 2 IR ox

and the terminal condition is
f(x,T)=F(x) for all x € R.
The following substitution
f(x,1) — o= K ) @ o (x,1), T=T-—t

reduces (2.109) to an autonomous form

1
8t = Engxx — Oxgyx — Xg8.

The characteristic equation, u” + 2o’ = 0, has two standard solutions:

,LLO — iz (1 _e—2ar) ‘ul — 1
20 ’
and the corresponding Green function:
Va c?
K T) = ———— a+— |7
0(x>y7 ) P 7'5(620”—1) exp +2(X2
Ot(x—yeo”)2 e%" —1
XEXP | = 3 3ar o art
02 (e*T—1) o(e*"+1)

for T > 0 can be found by the methods discussed in Section 1.2 of this chapter.
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Example 7 Assuming (formally) r = ry + 1V in the Black-Scholes equation (2.94), one gets

a nonlinear equation of the form

oV 1 ,,0%V A% oV -
at+26SaSz—i—rO(SaS—V>+r1V<SaS—V>—O. (2.115)

This modification of the Black-Scholes equation can be used for a mathematical description of
market collapse. The substitution V (S,¢) = v(x, 1), where S = ¢* and 7 = T —1, transforms (2.115)

into the generalized Burgers-Huxley equation [119], [158].

Example 8 According to Ref. [181], the propagation of nonlinear magnetosonic waves is

governed by a modified Burgers equation,

¢ 9 9*¢ _
%‘FA(TI)‘P%—B(TUT&ﬂLC(U)‘P—Oa (2.116)

where ¢ (§,n) is the amplitude of the wave, § = [k, dx+k,y — @t and ) = €x is the coordinate
streched by a smallness parameter €.

If B=Ae 1o €(9) s _the following substitution
¢ =e 0 CWds y (2 ) (2.117)

with
n
z=2E, t:/ B(7) dt (2.118)
0

transforms the nonautonomous equation (2.116) into the Burgers equation
=tV =575 (2.119)

that is completely integrable. The Burgers equation and extensions of it are studied in the next
chapter.
Further examples can be found in Refs. [44], [120], [133], [154] and [206].
2.6 Concluding Remarks
This chapter has been concerned with the Cauchy inital value problem for certain diffusion-type
equations on R. Two different methods were discussed to construct the explicit solution of the
Cauchy problem for a generalized diffusion-type equation. In the first method ideas from the trans-

formation theory were adopted to reduce down the inhomogeneous and nonautonomous master
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equation to the standard heat equation based on the fact that the emerging Riccati-type system is
completely integrable. The symmetries of the nonautonomous heat equation (2.6) were also eval-
uated from the point of view of the transformation presented in Lemma 1. In the second method
discussed the Cauchy problem was solved in terms of eigenfunction expansion following similar
published work on the case of the corresponding Schrédinger equation. The two methods discussed
allow to connect certain nonautonomous and inhomogeneous diffusion-type equation with solutions
of the Riccati-type system.

Finally, key examples were presented in order to corroborate the proposed solution methods.
Examples discussed include the cable equation which appears in different fields of Science, the
Fokker-Planck equation from Physics, the Kolmogorov forward equation from stochastic differen-
tial equations, the Black-Scholes equation and the Hull-White model from finance, among others.
The last example presented was a modified Burgers equation that is habitually used in physics to
describe the propagation of magnetosonic waves. This variety of examples confirm the utility of the

results from this chapter and the wide range of positive impact it could have is unquestionable.
2.7 Appendix A: Proof of the Lemma 2

Proof. Consider equations (2.21), (2.22) and (2.23). By (2.22) the fundamental solution of the
Cauchy initial value problem for the diffusion-type equation (2.6) subject to suitable initial data on

the entire real line —o < x < oo can be rewritten as

Kyt = [ Kolezn)K (@n0)dz (2.120)
with
1 2 2
K(x,y,t) _ ea(l)x +B () xy+y(t)y*+0(¢)x+€(t)y+K(t) (2.121)
V()
1 2 2

Ko (x,2,t) = 220 (1) +Bo (1)xz+10 (1) 2"+ 80 (1) x-+€0 (1) 2+ Ko (1) 2122

001) 27 (t) ( :

K (z,y,0) = ! e(0)22+B(0)2y+7(0)y*+8(0)z-+£(0)y+x(0) (2.123)

V1 (0)
The right hand side (RHS) of equation (2.120) is given by

oo

00X +8x+ Ko / o/ 3 g7
27mpou(0) —eo

e1(0)y* +£(0)y+x(0)

/ KO(x7Z7t)K(Z7yaO)dZ:
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where f(x,y,z) = ((0) + )z + (Box+ B(0)y + & + 5(0))z. With the aid of equality (2.39) using
a=—(a(0)+ ) and 2b = (Box+ B(0)y+ &+ 8(0)) we solve the integral

oo T (Byx+B(0)y+e)+3(0))*
/ Sy, — [T o e (2.124)

Consider in the last equality

Fi = () + B0y + Y1)y + 8(0)x + £(r)y+ k(1)

Fy = o(1)x* +7(0)y” + 8o(1)x + €(0)y + (x(0) + Ko (1))

)+
i (Bo(0)x+ B(0)y)* +2(Bo(0)x+B(0)y)(8(0) + 0(r)) +(8(0) + &0(1)?
’ —4(a(0) + (1)) '

Therefore, equation (2.120) becomes

1 F; 1 P F
1 2¢'3 (2.125)
MO OGO O

and this equality holds whenever (2.32)—(2.38) is true. Therefore, the general solution of the Riccati

system (2.9)—(2.15) is given by expressions (2.32)—(2.38) as desired.

2.8 Appendix B: Verification of Remark 1
Proof. In Lemmal the nonautonomous diffusion-type equation (2.6) is reduced to the standard heat

equation by means of

u(x,t) = A UMY (2.126)

u(r)
where & = B(¢)x+ €(r) and T = y(¢). Considering such transformation, let n = $(0)y + €(0) and

7o = ¥(0). Then the original initial data can be rewritten as

1

u(y,0) = 4O O +(0) ) 7y (2.127)
1(0)
Thus the solution in terms of & and 7 variables has the standard form
e 4(‘: ‘L'O)
/ v(n,t)d (2.128)
\/ 47r (T—10)
Notice that from (2.126)
v(E,T) = /u(t)ulx,t)e (@O +8Oxtx(D) (2.129)
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and similarly from (2.127)
v(1,%) = /1 (0)u(y,0)e (€O +5(0)y+x(0)) (2.130)
For convenience we use:

Ao = o (1)x” + Bo(£)xy+20(1)y” + 8o (t)y + €0 (t)y+ Ko (1)
Ay = () + 8()x+k(t)
Ar = a(0)y* +8(0)y + x(0)

B2x* —2BB(0)xy — B>(0)y* +2(e — £(0)) (Bx — B(0)y) + (¢ — £(0))?
4(y—7(0)) '

Then, using (2.128) it is straightforward to see that the solution can be written as

A=

1(0) / “ A—Ar—A
u(x,t) = (0 e 27 y(y, 0)dy (2.131)
®1) ()¢Mwﬁw—ﬂ®)u: 0:0)
and using equation (2.23) the solution can be rewritten as

W/_ZeAOM(y,O)dy:B(O)\/4n“(;i / A=Az (y 0y

which holds whenever the Riccati system is true. Thus, subject to suitable initial data u(y,0) the
fundamental solution of (2.6) is given by (2.23) with coefficients resulting from the last equality

due to solution of the Riccati system (2.10)—(2.15). O

2.9 Appendix C: Proof of Lemma 3

Proof. First notice that (¢(0) + %(¢)) is repeated throughout the Riccati system. From equation

(2.44) we have that

@0+ () =5 B0 213)
w0 =0 g5 Sy 215
Substitution of (2.132) into (2.41), (2.43) and (2.46) yields respectively to:
Holt) = 4 53 ()~ 70) @134
Bo(t) = (B(())ﬁ(;)()o)) (2.135)
eolt) = —8(0) + B(zo();;)() 0 ()))). (2.136)
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Now, substituting (2.132) and (2.135) into (2.42) results in

2
oo (t) = au(r) — 4(}/(5%' (2.137)

Similarly, using (2.132) and (2.135)-(2.136) into (2.45) and (2.47) results respectively in

B(r)(e(t) —€(0)) (2.138)

(e(r) —£(0)) (2.139)

as desired.
For the derivations of the corresponding asymptotics consider first the Taylor expansion of «,

B and 7y centered at 0 as follow:

B(1)
3 —0)
B2(0)+280)8'0) ¥ (0
wor ) (1 - 2v<o>> +o)
1+2(c(0) + 4a(0)(0))
4a(0)t
, @(0)+2(0)(c(0) +4a(0)x(0)
8a2(0)

oL A0 a0 5 (2.140)

() = aln)-

~a(0)+a'(0)r — (

~ a(0)+a'(0)t

+0(t)

and similarly

BB
A T OE0)
BO)+BO (| 70)
~ PO 5y 0 >(1_27(0)>+m2)
1+ (c(0) +4a(0)a(0))  d'(0)+2a(0)(c(0) + 4a(0)ax(0))
~ 2a(0)t - 442(0) +o0)
LI (C) T 2.141)

ast — 0T, In order to obtain the corresponding asypmtotic for ¥ (¢) we can follow similar procedure
as for (2.140) resulting in

() ~ — 1 N c(0) N d'(0)

Ga(0y " da(oy " 8a20) T (2.142)




Consider now equation (2.45). Then, for the asymptotic of d(¢) we have that:

flr) = 2(7(1) — 1(0))
~5(0)-F i(;),fo()o) + o)
5(0)
~ gt o(1) (2.143)
and similarly
£0(1) ~ —Zga((oo)) +0() (2.144)

as t — 0". Finally, considering the Taylor expansion of k(t) and &(r) centered at the zero, the

asymptotic for k() results in

~ ooy HOW (2.145)

ast — 07, In the case of y(¢) the corresponding expansion is given by

_ uO) OO0 |
W)= om0

2O,
ﬁZ(O)Hmt )

~2a(0)t + O(1%) (2.146)

with the aid of (2.132). Direct substitution of (2.140)-(2.146) into (2.23) results in the desired
expresion (2.53). O
2.10 Appendix D: Proof of Lemma 4

Proof. The standard oscillatory wave functions for equation (2.60) can be given by

e(ax2+5x+ K)—(2n+1)y—(Bx+¢€)?/2

Y= V2" lu\/m

where H,(x) are the Hermite polynomials, provided that solution to the Ermakov-type system is

H,(Bx+¢) (2.147)

available. Considering the heat kernel given by (2.23) with corresponding coefficients given by
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(2.24)—(2.30), we have that the corresponding Cauchy initial value problem can be solve formally

once again by the superposition principle

weon) = [ Koloyn) w(0)dy (2.148)
for certain initial data y (y,0). Particularly, using the eigenfunction (2.147) we get

vl = [ Kolxont) v (:0)d. (2.149)

Uniqueness of the Cauchy initial value problem allows one to find the desired solution. Thus, the

solution of the Ermakov-type system can be obtain by evaluating (2.149) with the help of

/ eZ*AZ(X*Y)ZHn(vY)dy

= \fl (A% - vz)%Hn (MXI) . A?>0, (2.150)
A (A2 —v2)2
with
v =a(0) (2.151)
1
A= 3B(0) = (10 + «(0)) (2.152)
Box+ &0+ 8(0) — 253} (10 + (0))
X — 7 (2.153)
£(0)
Y=yt 2 (2.154)
7T B0)
2
2242, €(0) _ €(0)
Z=2A*X>+ B200) (0 + (0)) 50) (Box+ €+ 5(0)) (2.155)
The expression for Z arise when completing the square. O
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Chapter 3

NONAUTONOMOUS BURGERS-TYPE EQUATIONS

3.1 Introduction

The study of nonlinear PDEs has been of great interest for many researchers since these models help
them to understand and describe natural phenomena quite well arising in different fields of science.
In Physics, it arose from the interest of researchers, like Isaac Newton, for the understanding of fluid
dynamics. Newton was probably the most prominent forerunner in the study of fluids. There were
many other important scientists such as Lord Kelvin, Daniel Bernoulli, Jean le Rond d’ Alambert,
and Leonard Euler who have added enormously to the understanding of fluid dynamics, however,
Euler was the most instrumental in conceptualizing the mathematical description of a fluid flow.
During the eighteen century a modification of Euler’s work by Claude-Louis Navier and George
Stokes lead to the Navier-Stokes equations. Early in the nineteen century (1904), Ludwig Prandtl
revolutionized the understanding and analysis of fluid dynamics when introduced the concept of
boundary layer in a fluid flow over a surface. Few years later, Harry Bateman (1915, [12]) first
proposed the equation
v dv I

to illustrate the possibility of the solution of a viscous fluid becoming discontinuous when the vis-
cosity term r approaches zero. This may be considered as the simplest equation combining both
nonlinear convection (v%) and diffusive effects (%)' The same equation arose from the theo-
retical study of turbulence performed by J.M. Burgers (1948, [26]). In the context of gas dynamics,
during an attempt to make equation (3.1) more tractable, Eberhard Hopf (1950, [98]) and Julian D.

Cole (1951, [36]), found independently that the expression

v _opt (3.2)
u

transforms equation (3.1) into the linear heat equation u; = uy,. Similar linearization procedures
were used previously by A.R. Forsyth (1906, [74, p. 102]), and have been also used to solve cer-
tain generalized Riccati equations [180]. Later the equation (3.1) was named Burgers equation and
transformation (3.2), which is of the Bdcklund type [180], [189], was named Cole-Hopf transfor-

mation. The equation (3.1) is nowdays one of the most fundamental nonlinear equations in the
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study of PDE’s and moreover, one of the few nonlinear solvable equations thanks to the remarkable
Cole-Hopf transformation.

The Burgers equation is well known for its theoretical and applicative interest. This nonlinear
PDE has a significant influence as a fluid dynamics model both for the understanding of a class of
physical flows and for testing various numerical methods (2008, [237]). A vast amount of literature
of numerical and analytical work regarding Burgers equation can be found in Chemistry [185], Bi-
ology [79], [104], [185], [188], [219], Engineering [45], [46], [185], [212], and in several branches
of Physics [12], [26], [36], [98], [108], [181], [185] and [229].

Recently there has been considerable attention to study the solution of extensions of viscous
Burgers equation, e.g. inhomogeneous Burgers equation, because of their applicability in diverse
areas not only in fluid dynamics [4], [5], [6], [185], but also in other fields [79], [104], [185], [188],
[219]. Solutions to the viscous Burgers equation (3.1) have been extensively investigated, see for
example [12], [26], [108], [120], and [229]. However, there haven’t been sufficient work focusing
on the study and analysis of extensions of equation (3.1) despite the enormous importance they have
in applications.

The nonautonomous and inhomogeneous extensions of equation (3.1) given by

v dv 9%y

a—t—l—v&—x—r(y—x2 = F(x,v,vy,1), (3.3)

appears in several physical frameworks [111], [132], [180], [185]. Equations of such type are of
great interest because they share, at some degree, a similar mathematical structure to Navier-Stokes
system when the driving force term F (x,v,vy,7) is nonzero [180], [232].

The inhomogeneous part is usually considered as a deterministic or stochastic force driven by
external entities [4], [5], [6], [132]. There exist a variety of physical situations in which external
forcing can be realized and is of great interest [132], [185]. In fact, the forcing term may play the
role of pressure gradient [232], could describe the dynamics of a physical system immersed in a
system with energy pumping [168], or can be considered as a damping force [143], among many
other applications.

Analytical works besides the classical well-posed problems on inhomogeneous Burgers equa-

tion (3.3) and extensions of it have been concentrated mostly in searching their corresponding exact
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solutions. Most of the analytical works for Burgers-type equations have been performed considering
the autonomous case and a few have considered the inhomogeneous case [23], [67], [170], [181],
[185], [187], [188], [231]. Analytical results for inhomogeneous and nonautonomous Burgers-type
equation are very scarce. This is indeed the great motivation to tackle these problems.

Throughout the rest of this chapter the focus will be set on the study of non-autonomous and
inhomogeneous Burgers-type equations and its relation with diffusion equations presented in the
previous chapter. The connections between linear (Diffusion-type) and nonlinear (Burgers-type)
equations will be explored in order to establish a commutative relation. Traveling wave solutions of

a nonautonomous Burgers equation are also studied.
3.2 Inhomogeneous Burgers Equation

A goal of this section is to solve the Cauchy initial value problem (IVP) for the inhomogeneous

Burgers-type equation

v Y v v
gt +af(r) (Vgx - gxz) = (1) (xgx +v> — g(t)gx +2(2b(t)x— (1)) (3.4)

coupled with certain arbitrary initial data. We shall refer to the evolution equation (3.4) as a nonau-
tonomous Burgers-type equation; see also [178] and [181]. The connection of equation (3.4) with

the master equation (2.6) of previous chapter is established in the following Lemma.

Lemma 5. The following identity holds:

Vi+a(vy — Vi) + (g — ex) vy —cv+2(f — 2bx)

:—Q(MI_QM> , (3.5)
u x
if
V= 72% (The Cole—Hopf transformation) (3.6)
and
Qu = auy, — (g —cx) uy + (d+fx—bx2) u 3.7

(a, b, c,d, f, g are functions of t only).

35



Proof. From the Cole—Hopf transformation (3.6) we have that:

Uyt Uy Uy

Vp=—2— 42—, (3.8)
u u
1
b= 20 4 2 (3.9)
u 2
u 3 1
Vg = —2 Zcx + EWX — ZV3 (3.10)
and by virtue of (3.7) we know that
Qu = auy, — (g — cx)uy + (d + fx — bx*)u, (3.11)
Oxu = cuy+ (f —2bx)u, (3.12)
Oy = AUty — (g—cx)uxx—f—(d-i-fx—bxz)ux. (3.13)
In view of (3.8)—(3.13), the RHS of (3.5) becomes
u — Qu 2 v
—2< =0 ) =v,+ —(Qxu+ Quy)+—Qu (3.14)
u . u u
=v+c <2&) +2(f —2bx)+a (2%‘”> - (2”—”) (g—cx)
u u u
Uy 2 Uxx Uy 2
+ (2;) (d+ fx—bx")+v {a (7) —;(g—cx)%—(d—i—fx—bx )
=vi+a(vwy —vx) + (g — cx)vy — v+ 2(f — 2bx) (3.15)
as desired. Backward procedure complete the proof. OJ

The substitution (3.6) turns the non-autonomous and inhomogeneous Burgers-type equation
(3.4) into the diffusion-type equation (2.6). Thus, using the methods presented in the section (2.2)
of the second chapter of this dissertation, the solution of the corresponding Cauchy initial value

problem for equation (3.4) can be represented as

0 o 1
v(x,t) = —2£ln [/_ooKo (x,y,1)exp <—2/0 v(z,0) dz) dy] , (3.16)

where the heat kernel Ky(x,y,?) is given by (2.23), for suitable initial data v(z,0) on R. Similarly, the
diffusion-type equation (2.6) can be associated to another non-autonomous Burgers-type equation.

This relation is contained in the following result.
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Lemma 6. The nonautonomous diffusion-type equation (2.6) can be transformed to the nonau-

tonomous and inhomogeneous Burgers-type equation

U+a(UU,—Uy) = [;/(U +xUy) +§

with the aid of the extended Cole-Hopf transformation

Ux

U= —2% +2(2ax+8).
Proof. Let U= —2%. Then we have from (3.18) that
U=U-2Qax+§).
From Lemma 5 we know that

ﬁt+a<ﬁl7x—17xx> +(g—cx)Uy

Substitution of space and time derivatives of (3.19) into (3.20) leads to

B B u

from which the desired commutative relation can be established.

! 4 u, — Qu
Ut+a(UUx—Uxx)—B(U+xe)—Ux:—2< =0 > ,
X

Following the same strategy, if we consider the transformation

U=Bn)Vv(E,1)

U +2(f —2bx) :—2<”f_Q”> .

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

with & = B(¢)x+ €(t) and T = ¥(t), the corresponding space and time derivatives will be given by

Uy =B'V+B(B'x+e)WV:+BYV:
Uy = B2V:

Uee = B Vee.
Susbtitution of (3.22)—(3.25) into (3.17) yields

BV +B(B'x+€&)WVe+BYVetaP (VVe —Veg) = B'(V + BxVe) +€'BVe
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Up = QU — (g — cx)uy + (d+fmfb$2)u «— Ur = Vg

U:72%+2(2nz+5) V=-2%

U =BVI(E,T)

Uy + a(UU, — U,) = gw +alU) + S, < Ve VVe = Vi

[)’ v (E=px+eT=7)

Figure 3.1: Commutative diagram summarizing the relations between the non-autonomous and inhomoge-
neous diffusion-type equation (2.6), the linear heat equation (2.7) and the Burgers-type equations (3.17) and
(3.28). It is worth to mention that all the coefficients are time dependent.

simplifying to
BYV:+aB? (VVe —Vee) =0. (3.27)
After dividing by a3 and using (2.12), equation (3.27) reduces to the Burgers equation
Vi+VVi =V (3.28)

The connections between the inhomogeneous diffusion equation (2.6), the linear heat equation (2.7),
the Burgers equation (3.28) and the non-autonomous and inhomogeneous Burgers equation (3.17)
is portrayed in Figure 1. Equations (3.4) and (3.17) may be useful generalizations in a wide range

of physical contexts, and could be used to test certain numerical schemes.
3.3 Traveling Wave Solutions

Traveling wave solutions describe a wide class of phenomena in different areas of science. These
solutions often determine the behavior of the solutions of Cauchy-type problems [221]. The pio-
neers in studying the existence of such solutions for parabolic systems were A.N. Kolmogorov, I.G.
Petrovskii, and N.S. Piskunov. Their mathematical results in existence of traveling wave solutions
arose in connections with the 1937 Fisher’s model for a propagation of dominant genes [122, 221].
After this prominent result the study of the propagation of waves, described specifically by parabolic
equations, has become a very important subject in the understanding of many events occurring in

chemistry, biology and physics.
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Burgers equation is tremendously linked with situations involving wave phenomena. Traveling
wave argument has been extensively used by many authors to solve the Burgers equation. Consider
now the viscous Burgers equation (3.1). Following the original Bateman paper [12] with slightly

different nomenclature, equation (3.1) possesses a solution of the form:

v=F(x+V1), V = constant (3.29)

if
VF'+FF =aF", (3.30)

or
(F+V)*+A%=2aF’, (3.31)

where A is a positive constant. The solution is thus either

A _
V4V = Atan [W} (3.32)
2a
or
A—v-V A
ATy =P [a(x+Vt—c)], (3.33)

according as the + or — sign is taken. In the first case there is no definite value of v when a tends
to zero, while in the second case the limiting value of v is either A —V or A+ V according as x + V¢

is less or greater than c. The limiting form of the solution is thus discontinuous [12].

Generalized Traveling Wave Solution.

It is well known that traveling wave solutions of partial differential equations are solutions of spe-
cific shape that usually don’t change in time. The study of traveling wave transformation with
non-autonomous coefficients seems to be poorly studied in the available literature. Then, looking

for solutions to equation (3.4) in the general form
v=B@)F(B)x+y(t)=BF(z), z=PBx+y (3.34)
(B and y are functions of 7 only), one gets

F" = (co+c1)F' +FF +2cz+c3 (3.35)
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provided that

B’ =cpB, Y = coaB?, (3.36)

g=ciaP, b= _%C20B4, (3.37)
1

f= iaﬁ3 (2c27+¢3) (3.38)

(co, c1, €2, c3 are constants). Integration of (3.35) leads to:

1
F = (c0+cl)F+5F2+62z2+03z+64, (3.39)

where c4 is a constant of integration. The substitution

!/
F— _2% (3.40)

transforms the Riccati equation (3.39) into a special case of generalized equation of hypergeometric
type:

1
,u”—(co—i-cl)[.t’—i-i(czz2+03z+64),u =0, (3.41)

which can be solved in general by methods of Ref. [163]. Elementary solutions are discussed, for
example, in [119] and [120].
3.4 Concluding Remarks

In this chapter, the emphasis was devoted to the study of Burgers-type equations and its relations
with the master diffusion-type (2.6) equation presented in the second chapter of this disertation.
The results from the second chapter were the key tool to establish such relations. Traveling wave
solutions of the Burgers-type equations were also discussed in terms of the Riccati system. The
results presented in this chapter are another tool to justify the utility and efficacy of the solution
methods for the proposed generalized diffusion-type equations presented in the second chapter.
It is believed that the explicit results of this chapter could be used to corroborate the efficacy of

numerical algorithms to solve familiar systems.
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Chapter 4

THE MINIMUM-UNCERTAINTY SQUEEZED STATES FOR QUANTUM HARMONIC
OSCILLATORS

4.1 Introduction

The two previous chapters were devoted to study diffusion-type equations of the form,

u 2%u u

En :a(t)ﬁ —(g(1) —c(l)x)a—i— (d(t)+f(t)x—b(t)x*)u 4.1)

and its relation with certain Burgers-type equations. Following W. Miller in [154], the substitution
t— —it,a— —a,b— —b,c— —ic,d — —id, f — —if and g — —ig tranform the master equation
(4.1) into the one dimensional time—dependent Schrodinger equation given by,

P (92 0 J
i, = a5 Hb)Pu—i (C(f)x— d([)aZ) ~ St ig(t)a%' ¢

This equation has the most general variable quadratic Hamiltonian and has been extensively studied
[38], [39], [41], [42], [43], [124], [126], [133], [149], [193], [208], [209] due to a wide range of
applications in different areas of physics, particularly in quantum optics where it has a close relation
with the process of dynamic amplification. Another application can be found in the Casimir effect,
where coherent and squeezed states play an important role.

From the very beginning, nonclassical states of the linear Planck oscillator, in particular the
coherent and squeezed states, have been a subject of considerable interest in quantum physics [49],
[56], [80], [113], [115], [194], [195] and the references therein. They occur naturally on an atomic
scale [24], [107] and, possibly, can be observed among vibrational modes of crystals and molecules
[59], [70]. A single monochromatic mode of light also represents a harmonic oscillator system for
which nonclassical states can be generated very efficiently by using the interaction of laser light
with nonlinear optical media [21], [130], [139], [140], [142], [174], [191], [223]. Generation of
squeezed light with a single atom has been experimentally demonstrated [166]. On a macroscopic
scale, the squeezed states are utilized for detection of gravitational waves [94] below the so-called
vacuum noise level and without violation of the uncertainty relation [1], [61], [169], [216].

The past decades progress in generation of pure quantum states of motion of trapped particles

provides not only a clear illustration of basic principles of quantum mechanics, but it also manifests
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the ultimate control of particle motion. These states are of interest from the standpoint of quantum
measurement concepts and facilitate other applications including quantum computation [19], [30],
[33], [35], [78], [85], [86], [107], [129], [146], [155], [156], [167], [177], [183].

It is well known that the harmonic quantum states can be analyzed through the dynamics of a
single, two-level atom which radiatively couples to the single mode radiation field in the Jaynes—
Cummings(—Paul) model [29], [32], [106], [129], [186], [198], [220] extensively studied in the cav-
ity QED [60], [85], [172], [173]. Creation and detection of thermal, Fock, coherent, and squeezed
states of motion of a single °Be* ion confined in a rf Paul trap was reported in [146], where the
state of atomic motion had been observed through the evolution of the atom’s internal levels (e.g.,
collapse and revival) under the influence of a Jaynes—Cummings interaction realized with the ap-
plication of external (classical) fields. The distribution over the Fock states is deduced from an
analysis of Rabi oscillations.

Moreover, Fock, coherent, and squeezed states of motion of a harmonically bound cold cesium
atoms were experimentally observed in a 1D optical lattice [19], [156]. This method gives a direct
access to the momentum distribution through the square of the modulus of the wave function in
velocity space (see also [31], [32], [34], [37], [47], [86], [105], [107], [129], [167], [217] and
the references therein regarding cold trapped ions and their nonclassical states; progress in atomic
physics and quantum optics using superconducting circuits is reviewed in [76], [234]).

Recent reports on observations of the dynamical Casimir effect [123], [227] strengthen the
interest to the nonclassical states of generalized harmonic oscillators [49], [50], [54], [55], [57],
[84], [144], [145], [159], [209] and [222]. The amplification of quantum fluctuations by modulating
parameters of an oscillator is closely related to the process of particle production in quantum fields
[50], [103], [145], and [159]. Other dynamical amplification mechanisms include the Unruh effect
[215] and Hawking radiation [16], [89], [90].

The purpose of this chapter is to construct the minimum-uncertainty squeezed states for quan-
tum harmonic oscillators, which are important in these applications, in the most simple closed
form. The approach adopted here reveals the “hidden” quantum numbers/integrals of motion of the
squeezed states in terms of solution of certain Ermakov-type system [134], [135]. The correspond-

ing generalizations of Fock states, which were originally found in [147] and recently rediscovered
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in [135], are discussed in detail. As a result, the probability amplitudes of these nonclassical states
of motion are explicitly evaluated in terms of hypergeometric functions. Their experimental ob-
servations in cavity QED and quantum optics are briefly reviewed. Moreover, the radiation field
operators of squeezed photons, which can be created from the QED vacuum, are introduced by sec-
ond quantization with the aid of hidden symmetry of harmonic oscillator problem in the Heisenberg
picture.

In summary, experimental recognitions of the nonclassical harmonic states of motion have been
achieved through reconstruction of the Wigner function in optical quantum-state tomography [21],
[142], from a Fourier analysis of Rabi oscillations of a trapped atom [146], and/or by a direct obser-
vation of the square of the modulus of the wave function for a large sample of cold cesium atoms in
a 1D optical lattice [19], [156]. The theoretical consideration presented herein complements all of
these advanced experimental techniques by identifying the state quantum numbers from first prin-
ciples. This approach may provide a guidance for engineering more advanced nonclassical states.

The rest of the chapter is organized as follows. In sections 4.2 and 4.3, the minimum-uncertainty
squeezed states for the linear harmonic oscillator in the coordinate representation is described. The
generalized coherent, or TCS states, are constructed in section 4.4. In sections 4.4 and 4.5, the
Wigner and Moyal functions of the squeezed states are evaluated directly from the corresponding
wave functions and their classical time evolution is verified with the help of a computer algebra
system. The eigenfunction expansions of the squeezed (or generalized harmonic) states in terms
of the standard Fock ones are derived in section 4.6 (see also [53], [58] and the references therein
for important special cases). Some experiments on engineering of nonclassical states of motion
are analyzed in section 4.7. Here, the experimentally observed probability distributions are derived
from the explicit expression for the probability amplitudes obtained in the previous section. In
section 4.8, the radiation field quantization in a perfect cavity, which is important for applications
to quantum optics is revisited. Nonstandard solutions of the Heisenberg equations of motion for
the electromagnetic field operators, that naturally describe squeezing in the Heisenberg picture,
are found. The variance of the number operator, which together with the eigenfunction expansion
allows to compare the obtained results with experimentally observed squeezed photon statistics [21],

[191], is evaluated from first principles in section 4.9. A brief summary is provided in section 4.10.
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A convenient complex parametrization of the Schrédinger group is provided in section 4.11.
4.2 The Minimum-Uncertainty Squeezed States

The Heisenberg Uncertainty Principle is one of the fundamental laws of nature and the coherent
states that minimize this uncertainty relation are well known. But, equally important in recent
developments, minimum-uncertainty squeezed states are not so familiar outside a relatively narrow
group of experts. Here these states are constructed as explicitly as possible and some of their
remarkable features are discussed.

The time-dependent Schrodinger equation for the simple harmonic oscillator in one dimension,
20y, + Yo — X2y =0, (4.3)

has the following square integrable solution (Gaussian wave packet)

i X248 (t)x+ +
W (x,1) = oK) e—(ﬁ(l)x+s(t))2/2’ 4.4)
u(t)vn

where

w(t) = o \/B(‘)‘ sin’t + (2apsint + COSI)Z, 4.5)
apcos2t+sin2e (B 4405 —1) /4

ot (4.0)
) Bgsin2t+(2aosint+cost)2
B(1)= Po : 4.7)
\/[35‘sin2t—i-(206()sint+cost)2
1 B¢ tant
t) =Y — -arctan ——— 4.8
Y(0) == arctan -5 nr (4.8)
8 (20t sint + cost) + &2 sint
5(1) = 2w ) eoBysint @9)
By sin“t 4 (20t sint +-cost)
£(r) = € (2apsint +cost) — Podo sint7 4.10)
\/ﬁ(‘)‘sinzt—k(206()sint—i-cost)2
2 2
& & — — 06
K(t) = Ko + sin’ 1 0By (o€ — Podo) — 0t J @.11)

By sin®t + (204 sint + cost)?

1 £2B2 _ 52
+—sin2t — 0P 0 5
4 By sin®t + (20 sint 4 cost)

(1o > 0, o, Bo # 0, 1, d, €, Ko are real initial data of the corresponding Ermakov-type system; a

complex form of equations (4.5)—(4.11) is provided in section 4.11 and the invariants are given by
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(4.62)—(4.63)). It is worth to mention that this solution is invariant under the time reversal t — —t,
v — y* with ag — — 0o, % — —, & — — 0, and Ky — —kp. This quantum state is the special
case n = 0 of a ‘nonclassical’ oscillator solution found in [147], which has also been recently derived
in a unified approach to generalized harmonic oscillators (see, for example, [38], [41], [126], [135]
and the references therein). These solutions are verified by a direct substitution with the aid of
Mathematica computer algebra system [116], [117], [135], and [137]. The simplest special case
W =+Po=1and ap =y = 8 = & = kp = 0 reproduces the ground oscillator state [73], [81],
[125], [153]; see also the original Schrodinger papers [194], [195]. For the coherent states ¢op = 0
and By = £1, see [195] and a more general case when o = 0 is discussed in [92], [95]. More
details on the derivation of these formulas can be found in Refs. [134], [135], and [147]. An analog
of Berry’s phase is evaluated in Refs. [210], [211].

The “dynamic harmonic oscillator ground state” (4.4)—(4.11) is the eigenfunction,

1
E (1) yo (x,1) = AL (x,1), 4.12)

of the time-dependent dynamic invariant,

1| (p—20x—8)*
_ o

[@a(@)at (1)+a' (a))], %(E} —0,

+(Bx+e)? 4.13)

with the required operator identity [55], [57], [182]:

E
% iEH -0, H-

= (P*+x7). (4.14)

S

The time-dependent annihilation @ (¢) and creation @' (¢) operators are given by

alt) = \2 (Bx+£+ip_2§x_6>, (4.15)
a (1) = \2 (Bers—ingXS)

with p = i~19 /dx in terms of solutions (4.6)—(4.11) [135]. These operators satisfy the canonical

commutation relation,

a(at () —a (na@) =1, (4.16)



and the oscillator-type spectrum of the dynamic invariant E can be obtained in a standard way by
using the Heisenberg—Weyl algebra of the rasing and lowering operators (a “second quantization”,

the Fock states [135]). In particular,
at)Wo(x,1) =0, yo(x,r) =" W (x,1), (4.17)

with @ (1) = —7y(t) being the nontrivial Lewis phase [131], [182].

This form of quadratic dynamic invariant and the corresponding creation and annihilation oper-
ators for the generalized harmonic oscillators have been introduced recently in Ref. [182] (see also
[41], [208] and the references therein for important special cases). An application to the electro-
magnetic-field quantization and a generalization of the coherent states are discussed in Refs. [118]
(see also section 4.8) and [127], respectively.

The key ingredients, the maximum kinematical invariance groups of the free particle and har-
monic oscillator, were introduced in [7], [8], [83], [102], [160], and [161] (see also [20], [109],
[154], [178], [206], [207] and the references therein). The connection with the Ermakov-type sys-
tem allows to bypass a complexity of the traditional Lie algebra approach [134], [135] (see [66],
[128] and the references therein regarding the Ermakov equation). (A general procedure of ob-
taining new solutions by acting on any set of given ones by enveloping algebra of generators of
the Heisenberg—Weyl group is described in [57]; see also [10], [13], [55], and [147] regarding the
corresponding wavefunctions.) Finally, it is worth noting that the maximal invariance group of the
generalized driven harmonic oscillators is isomorphic to the Schrodinger group of the free particle

[134], [135], [160], and [161].
4.3 The Uncertainty Relation and Squeezing

A quantum state is said to be “squeezed” if its oscillating variances ((Ap)?) and ((Ax)?) become
smaller than the variances of the “static” vacuum state ((Ap)?) = ((Ax)?) = 1/2 (with i = 1). For
the harmonic oscillator, the product of the variances attains a minimum value only at the instances
when one variance is a minimum and the other is a maximum. If the minimum value of the product
is equal to 1/4, then the state is called a minimum-uncertainty squeezed state (see, for example,
[60], [88], [197], [202], [203], [224], and [235]). This property can be easily verified for solution
(4.4).
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According to (4.15), the corresponding expectation values oscillate sinusoidally in time

(x) = _[;0 [(2ap€y — Pody) sint + gycost], %<X> =(p), (4.18)
(p) = _[; (2000 — fodo)cost —eosindl, & (p) = —(x) (4.19)
0 t

with the initial data (x)|,_, = —&y/Bo and (p)|,_, = — (2a0& — Bodo) / Po- This provides a classical
interpretation of the “hidden” parameters.
The expectation values (x) and (p) satisfy the classical equation for harmonic motion, y” +y =

0, with the total “classical mechanical energy” given by

1 (2&080—B050)2+82 1
5 [P+ ()] = 7 A LRt | N (4.20)
=
For the standard deviations on solution (4.4)—(4.11), one gets
((Ap)*) = (p*) = (p)* 4.21)
14405+ B + (40 + By — 1) cos 2t — 4oy sin 2t
42 ’
((Ax)?) = () — (x)? (4.22)
14405+ By — (405 + By — 1) cos 2t + 4oy sin 2t
42 ’
and
1
Ap) ) (Ax)?) = —— 4.23
((Ap)") ((Ax)7) 1652 (4.23)
x [ (14408 + B3)” — (40§ + B — 1) cos2r — 4apsin2r)’|
Here,
4a? + p* 1
o, = ((Ap)*) = —F o O (Ax)?) = 257 (4.24)
1 a
Opx = E(Apr+AxAp> = E (4.25)
with two invariants:
4+ B4+1 4od+B5+1
Cp Op 1
and = GpGx — pr = Z
pr Ox



(More invariants are given by in (4.62)—(4.63).) A family of minimum-uncertainty states, when
((Ap)*) = ((Ax)?) = 1/2, is defined by taking o = 0 and B2 = 1.
By adding (4.20)—(4.22), follows that

(H) = % [(p?) + ()] (4.27)
_ L+40g B (20080 fodo) e 1
R 253 o2

for the total “quantum mechanical energy” in terms of the “hidden” parameters or integrals of
motion presented herein (the vacuum value 1/2 occurs when By = +1 and o = & = & = 0). See
also [21] and [58].

Therefore, the upper and lower bound in the Heisenberg uncertainty relation are given by

2 2 _(14’40‘84’351)2 , _ 4oy
man [{(ap)?) (4")] = TR i o= gty @)
and
i ) (an?)] = L N
min [((ApP) (&) = 30 when tan2r = — o (429)

The explicit formulas (4.21)—(4.22) show that the product of the variances attains the minimum
value 1/4 only at the instances that one variance is a minimum and the other is a maximum as
stated in [88]. The corresponding squeezing of one of the variances is also explicitly described by

the formulas presented above. Indeed, one gets

D=

1
(403 -+ Bif — 1) cos21 — dagsin2e = & (40 + (B +1)°) " (40 + (B3 ~1)7)

under the minimization condition (4.29) and at the minimum

(ap)?) = {1+4a0 +B i(4a§+(1302+1) ) <4%+(B0_1) )é}

4[30

((Ax)%) = [1+4a0+ﬁ0 F (4a0+(50 +1) )1 <4a§+([3§—1)2)1

4[30

for all real values of our parameters. At this instant the squeezing occur:

1 1 1 1
ApYY>= (<= A<= (>=
<<p>>>2<<2>, ( >><2(>2)
(for upper and lower signs, respectively). As a result, the minimum-uncertainty squeezed states

for the simple harmonic oscillator is presented in the closed form (4.6)—(4.11) (see also [88] for
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numerical simulations). These states form a six-parameter family (a natural generalization will be
discussed in the next section). The corresponding wave function in the momentum representation is
derived by the (inverse) Fourier transform of (4.4) and (4.5)—(4.11) [135]. Experimentally observed
time-oscillations of the velocity variance [156] reveal certain damping, which can be explain in
models of quantum damped oscillators discussed in [40], [41], and [55].

Example. In a special case, one simplifies

(Ap)%)y = (P*) = (p)* = l_zzoginzt, (4.30)
0

((40%) = () = (= = @31)
0

provided that 4063 + B3 = 1. In the case of the Schrodinger ground state “static” solution [195],

when o = 8 = & = 0 and By = +1, we arrive at (x) = (p) =0 and
((8p)") = {(&x)*) = 5 (4.32)

as presented in the textbooks [73], [81], [82], [88], [125], [153]. In general, dependence on the
quantum number #, which disappears from the Ehrenfest theorem [62], [87], is coming back at the
level of the higher moments of distribution [135].
According to (4.30)—(4.31),
1 — 4o sin® 2t
4B3 ’

and the product is equal to 1/4, if sin?2s = 1. (For the coherent states o = 0 and Bo = 1, which

((Ap)*){(Ax)%) = 4of + By =1 (4.33)

describes a two-parameter family with the initial data (x)|,_, = F& and (p)|,_, = £0.)

The formulas (4.30)—(4.31) show that once again the product of the variances attains the mini-
mum value 1/4 only at the instances when one variance is a minimum and the other is a maximum
[88], [235]. The corresponding squeezing of one of the variances is also explicitly described. For

example, if sin2¢ =1,

1209 1

((89) = 55" < 5 -k

((AX)2> T%z > 5

(4.34)

provided that 0 < o < 1/2 and 403 + B = 1.
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4.4 An Extension: the TCS States

An analog of the coherent states (generalized coherent, or the TCS states in the terminology of

Ref. [235]) is constructed in the following standard manner

_ Py ¢"

1) = (5,1 435
v(xt) =e n;ow(x) = (4.35)
_ P wzw 9 (rp) 20y,

e e o Vl('xa ) \/a7 77 Ce

where { is an arbitrary complex parameter and the “dynamic” wave functions are given by equations
(1.2) and (1.16) of Ref. [135]:
ei(ax2+5x+1()+i(2n+l)y

Yo (x,1) = ¥ H,(E),  E=PBxte (4.36)

V2'n\u/m

(see also [55] and [147]), where H,, (x) are the Hermite polynomials [164]. In the explicit form

[195],

1) = 1 o (87+In) /2 i +8xtx+7) - (1 "H, ()
Y g(ﬂ)
1

_ e(nzf\n\2)/26i((xx2+5x+1<+7/)e*(é*ﬁn)z/zj 4.37)

3

and the eigenvalue problem is given by [235]:

a(t)y(x,t)=ny(x,1). (4.38)

An elementary calculation shows that on these “dynamic coherent states”,

(x) = 67(%11) ; (4.39)
()]0 \[?’C|COS(2(70+¢))—;(()),
and
_ B av2 20
0 = s+ P men+ (6 : ) (4.40)
Py = Bov2|¢|sin(2 <m+¢>>+23/2%|crcos<2<m+¢>>
(o 752)

50



if { = |{|e*?. Moreover, a direct Mathematica verification shows that these expectation values
satisfy the required classical equation for simple harmonic motion.

A similar calculation reveals that the corresponding oscillating variances ((Ap)*) and ((Ax)?)
coincide with those for the “dynamic vacuum states” given by (4.21)—(4.22). The “dynamic coher-
ent states” (4.37) are also the minimum-uncertainty squeezed states but they are not eigenfunctions
of the time-dependent dynamic invariant (4.13) when 11 # 0.

The Wigner function [91], [130], [186], [226],

1 .
Wenp) =5 [ v a2 wix-y/2)em dy, (4.41)
for the TCS states (4.37) is given by
1 n—n*)z ( n+n*>2
Wix,p)= exp|— | P+ — — , 4.42
(x,p) ziofo p[ ( =7 0 NG (4.42)
where
P P—zgx‘5, 0=PBrte. (4.43)
The formulas (4.39)—(4.40), leads to the following expression of the Wigner function:
1 —(p))? 4o 402 + B*
W (x.p) = ~exp [—(”[f;’” 3 =) ) - e <x>>2] e

in terms of the classical trajectories (x) and (p) and solutions of the Ermakov-type system (4.6)—
(4.7) provided poBy = 1. Taking into account the time-dependent variances (4.24), one gets [53],
[58], [201]:

1
W (x,p) = —exp =2 (00 (p— (1))’ =205 (p— (1)) (x— () + 0, (k= (0)°) |, (445)
where 0, 0y, and o), are given by (4.24). Then
W (x,p;t) = W (xcost — psint,xsint 4+ pcost;t = 0) (4.46)

by a direct calculation — the graph of Wigner function rotates in the phase plane without changing
its shape [201]. In a traditional approach, the quantum Liouville equation of motion for Wigner
function of the corresponding quadratic system is used in order to determine this time evolu-
tion [186]. The same result have been obtained herein directly from the wave functions. Some
Mathematica animations for the Wigner function can be found in Ref. [121]. From these anima-

tions, few snapshots are presented in Figures 4.1 — 4.3.
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Figure 4.1: The set of images (a)-(d) represent a few snapshots taken from the Mathematica movie
animation provided in [121]. From left to wright, starting with (a) they denote coherent state Wigner
Sfunction (4.44) for parameters oy = Y = & = Ko =0, Bo = 1 and 8y = 1. From (a) to (d) the density
is rotating(in phase space) clockwise in a circular manner around the origin.

Figure 4.2: The subfigures (a)-(d) represent a few snapshots taken from the Mathematica movie
animation provided in [121]. From left to wright, starting with (a) they denote squeezed coherent
state Wigner function (4.44) for parameters 0 = Yo = € = ko =0, fo = 1 and &y = 1. From (a) to
(d) the density isis rotating(in phase space) clockwise in a circular manner exactly in the origin.
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Figure 4.3: The set of subfigures (a)-(d) represent a few stills taken from the Mathematica movie
animation provided in [121]. From left to wright, starting with (a) they denote the TCS squeezed
state Wigner function (4.44) for parameters g = o = € = ko =0, Bo = 2/3 and & = 1. From (a)
to (d) the density is is rotating(in phase space) clockwise in a circular manner around the origin.
One of the corner stay at the origin and the other moves clockwise around the origin.

4.5 The Moyal Functions

The total energy of a “dynamic harmonic state” (4.36) can be presented as

1 1\ 14+402+ B¢ (2008 — Podo)” + €2
H) = — 2 2\1 - 0 0 0 4.4
) =3 0%+ ()] = (w5 ) =50 o @)
by (A.3)—(A.5) of Ref. [135].
The Moyal functions [157] for the “dynamic harmonic states” (4.36):
1 « 7 ]
Wmn(X,pJ):E/ II/;;(x+y/2at)wn(x_y/2’t)elp) dy (448)

can be evaluated in terms of Laguerre and Charlier polynomials in a standard way [164], [186]:

( l)m eZi(n—m)y

_ |
Wi (x,p,1) =~ e OB 2 \ % (4.49)

T

(e-5) wn(leg))

Once again, the time evolution of the corresponding Wigner function W, (x, p,t) is defined by
equation (4.46).

In the case of an arbitrary linear combination,
W (x,t) =Y cmYn (x,1), (4.50)
m
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the Wigner function can be obtain as a double sum of the Moyal functions:

W (x,p,t) = Zc;anmn (x,p,1). 4.51)

mn

A coherent superposition of two states with n =0 and n = 1 was experimentally realized in Ref. [156].
Moreover, the state of the electromagnetic field can be chosen anywhere between the single-photon
and squeezed state in [100].

4.6 Eigenfunction Expansions
Experimentally observed statistics for various squeezed states of photons and ions in a box [21],
[85], [129], [142], [146], [191] can be naturally explained in terms of explicit developments with
respect to the Fock states. For a linear harmonic oscillator in the coordinate representation, a general
case is discussed by using the wave functions and known expansions in Hermite polynomials [124],
[133], [164]. Group-theoretical properties are discussed elsewhere.

Familiar Expansions
For the stationary harmonic oscillator wave functions,

—x2/2
Y, (x) = —= H, (x), (4.52)

there are two well known expansions:

BN, (x+A) = Y T (A,B,T) ¥y (x), (4.53)
m=0
where
Tom (A,B,T) = / W (x) T, (x+A) dx (4.54)
l'm—n

_ b a2 v/ (lA+B)m (iA—B>n
Vm!n! V2 NG

with v = (A2 + Bz) /2 (see, for example, [133], [164] for relations with the Heisenberg—Weyl group,

Charlier polynomials, and Poisson distribution) and

Y, (Bx) = iOan(a, B) ¥, (x). (4.55)
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By the orthogonality,
Mo (0,B) = [ 3,08, (Bx) d, (4.56

and one can use the integral evaluated by Bailey:
/ e MYy, (ax)H, (bx) dx (4.57)
2m+n 1
r <m+n—|— > (az B Az)m/Z (b2 _ lz)n/Z

= gmintl 7

o ,1<1 ab )
2167 5~ - )
Semen) 2\ V@ =2 -2

ReA? > 0, if m+n is even; the integral vanishes by symmetry if m + n is odd; see Refs. [11],
[138] and the references therein for earlier works on these integrals, some of their special cases and

extensions. As a result,

My (0, B) = 2 r<m+”+1> (4.58)

m!n\w
% <

m/2 2 n/2
(55 )

<1+B2 la) (m+n+1)/

2iB
402+ (B2 — 1)

1
)
)

1-m—n

The terminating hypergeometric function can be transformed as follows

—k, —n 1
5(1_]( n)
—r, —S
r+s 1/2
—r, —S
_Wigzpl o =%, ifk=2r+1,n=2s+1.
r+s 3/2

It is valid in the entire complex plane; the details are given in Appendix B of [124]. The trans-

formation (4.59) completes evaluation of the Bailey integral (4.57) and the matrix elements (4.58)
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in terms of the hypergeometric functions. (Relations with the group SU (1,1), Meixner polyno-
mials [164], and with two special cases of the negative binomial, or Pascal, distribution [124] are

discussed elsewhere.)

Probability Amplitudes

Expansions (4.53) and (4.55) results in

n I - Cmn \Pm P} 460
Wi (x,1) N E’o (t) W (x) (4.60)
where
> 1)
Cont) = Y M (0,B) Tkn<£,,1<> (4.61)
k=0 B

2

i 2
= k:ZOka (;,6-;8,7(—(7;2) Mkn(a7ﬁ)‘

The invariants are

4o +B4+1 4o+ BF+1 S¢ €
+52+ _ 0“320+ L . (4.62)
2B 2[30 Zﬁ 250
52 5 € ( 20(8)2 g < 2006\ >
2 2 0 0 0
e+ S =8+—-5, mt+(0——F) =5+ ) (4.63)
g2 B B B By Bo
by the direct calculation. Another useful identity is given by
402+ B+ 1 402+ (B2 1)
A (B*£1) =0,+0,+1. (4.64)

232 232
Thus all arguments of the hypergeometric functions in (4.61) are constants. Moreover, the time-

dependencies of the matrix elements are given only by complex phase factors:

T <87 g, x) A . <eo, 2’;, K0> : (4.65)
€ 20 0682> . N 200 el
Tmn 776_77’(_7 :el(n m)tTm}’l<760_ 7KO_ 0)
(ﬁ B B? Bo Bo Bs
and
My, (o, B) = e~ {m+1)(y=10) p—i(nt+1/2)t %an (a0, Bo) (4.66)
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in view of the following identities

5 . o . ) 2i(y—
— 4je = — +ig i(r=m) 4.67
B (ﬁo ) 67
2oe € 20080  .& )\ _;
0——+iy = (50—+z>e " (4.68)
B B Bo Bo
1-p* L (1=B; . . a2
7 +ia = e 5 +i0 | / (2a0sint + cost + if sint) (4.69)
2 2
1+2B —io = ¢ <H—2B° ioco) / (2050 sint+cost+iﬁg sint) 4.70)

and some of their complex conjugates (see also section 4.11 for a complex parametrization of the
Schrodinger group).

Finally, the eigenfunction expansion takes the form

Y (x,1) = T Y e e AW, () 4.71)
\% m=0
where the time-independent coefficients are explicitly given by
_ v %
Cmn = ZMmk(a()aBO) Tin 8()’%7’(0 (472)
k=0

- € 200& ocoSé)
= Tm n - ) - M, n ;

in terms of the initial data/integrals of motion (of the corresponding Ermakov-type system). The
total probability amplitude is a product of two infinite matrices related to the Poisson and Pascal
distributions.

Moreover, a combination of (4.35) and (4.71) gives the eigenfunction expansion of the TCS
states. It is worth noting also that expansion (4.71) gives an independent verification of the fact that
the “missing” solutions (4.36) do satisfy the time-dependent Schrodinger equation (4.3). Indeed,

they are written as an explicit superposition of the standard solutions.
4.7 Nonclassical Harmonic States of Motion and Photon Statistics

A fundamental manifestation of the interaction between an atom and a field mode at resonance in
an ideal cavity is the Rabi oscillations [85]. The first observation of the nonclassical radiation field
of a micromaser is reported in [172] (the statistical and discrete nature of the photon field leads to
collapse and revivals in the Rabi nutation [173]). Implementation of light for purposes of quan-

tum information relies on the ability to synthesize, manipulate, and characterize various quantum
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states of the electromagnetic field. A review [142] covers the latest developments in quantum-state
tomography of optical fields and photons.

Various classes of motional states in ion traps are discussed, for example, in [129]. The expan-
sion formula (4.72) is consistent with statistics for the coherent, squeezed, and Fock states observed
in Refs. [21] and [146] for ions and photons in a box (see also [58] and [129]). A method to mea-
sure the quantum state of a harmonic oscillator through instantaneous probe-system interaction,
preventing decoherence from disturbing the measurement, is proposed in [183].

Coherent States

In breakthrough experiments of the NIST group on engineering ionic states of motion, the coher-
ent states of a single *Be™ ion confined in a Paul trap were produced from the ground state by a
spatially uniform classical driving field and by “moving standing wave” (see [129], [146] and the
references therein for details). For the data presented in [146], the authors used the first method.
The Poissonian distribution with the fitted mean quantum number 7 = 3.1 0.1 was identified from
Fourier analysis of Rabi oscillations. In our notation, g =0, fo = 1, and 1 = (5 +&7) /2.

Time evolution of the coherent state of cold Cs atoms was measured in [156]. For experimen-
tally observed coherent photon states [80], see, for example, [21] and [139].

Squeezed Vacuum and Fock States

The minimum-uncertainty squeezed state with ¥ = 8 = & = kp = 0 is called the squeezed vacuum
(see [58], [115], and [129] when o = 0). Expansion (4.71) simplifies to
i(a(n)+y(0))
Yolx,t) =S P02 4.73)
MO
=B, "
_ 1§ Vo < 2 +’“‘))
T/ Pp! +1/2
Ho p=o 27p! <]+2B02_i(x0>p

efi(2p+l/2)t lPZp (x)

provided that oy = 1. The probability distribution is restricted to the even states and given by

2p)! o,+o,—1\"
Pray — (1172) — 2( p+ O 1) (4.74)
(0p,+ 0 +1)7/7220=1/2(p1)” \ Op + Ox +

in terms of the variances (4.25). This is a special case of the negative binomial, or Pascal, distribu-

tion.
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A vacuum squeezed state of ionic motion was created in the NIST group experiments [146] by
a parametric drive at 2v (see also [86], [129] and the references therein). The data were fitted to the
vacuum state distribution (4.74) with o, + 0, = 40410 and o = 0 (corresponding to a noise level
16 dB below the zero-point variance in the squeezed quadrature component; see [129] and [146] for
more experimental details).

A vacuum squeezed state of motion of neutral Cs atoms was also generated in [156]. Here, the
cold atom sample containes about 10° atoms. Therefore a single image provides the full velocity
distribution of the quantum state and the squeezing can be readily visualized — a set of images
gives the state’s time evolution [156].

In a similar fashion, for the squeezed Fock state with n =1 and 9 = 8y = & = kp = 0, expansion

(4.71) simplifies to

ei(a(z)x2+3y(z))[3 (t)xefﬁz(f)xz/z 4.75)

I_BZ ) p
. < 20ﬂ%>

= T = /(2p+1)! <1+l3§ . >p+3/2
7_1%

iD=\ Ve

e—i(2p+3/2)t lP2p+l (x) )

2

The corresponding Pascal distribution for the odd states is given by

(4.76)

PR3/, (o toi- 1\
Pm:2p+1 = )

(0p+0x+1)pt \Op T 0+ 1

where (3/2), = 1and (3/2),=(3/2)(5/2)---(1/2+ p) . These squeezed Fock states were gener-
ated in [19] and their dynamics was analyzed in [156]. When &, # 0, displaced Fock states of the
electromagnetic field, have been synthesized in [139] (see also the references therein).

Moreover, even/odd oscillations in the photon number distribution of the squee—

zed vacuum state, which are consequence of pair-wise generation of photon, were observed in [21],
[191]. For an ideal minimum-uncertainty squeezed state zero probabilities for odd n are expected,
since the Hamiltonian describing the parametric process occurring inside the nonlinear crystal is
quadratic in the creation and annihilation operators [58]. [186]. However, the probabilities for
odd photon numbers are nonzero because the squeezed state detected there is a mixed state having

undergone losses inside the resonator and during the detection process which cause the distribution
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to smear out (see [58] and [191] for more details). The corresponding Pascal distributions (4.74)
and (4.76) have different parameter values for even and odd states, which is consistent with the
result of these experiments. Further details will be discussed elsewhere.

Engineering Mixed Squeezed States

Generation of a coherent superposition of the ground state and the first excited states of motion of

cold Cs atoms in the harmonic microtraps, namely,

Y (x,1) = coWp (x,1) +cr1y (x,1), 4.77)

where ¢y = 271/2 and c1 = 21 2em’, was reported in [156] and the corresponding time evolution
had been experimentally observed. This evolution is obviously nonclassical and contrasts with that
of a coherent state which oscillates as a classical particle without deformation (see [156] for more
details). This dynamics is consistent with the expansion (4.72) but details of these calculations will

appear elsewhere.
4.8 An Application: Cavity QED and Quantum Optics

Foundations of quantum electrodynamics and quantum optics are presented in many excellent books
and articles [2], [14], [15], [18], [48], [52], [60], [68], [69], [70], [71], [72], [80], [87], [99], [106],
[114], [115], [136], [179], [190], [196], [199], [223], [224], and [225]. Here, a modification of
the radiation field operators in a perfect cavity is suggested in order to incorporate the Schrédinger
symmetry group into the second quantization. The approach presented gives a natural description of
squeezed photons that can be created as a result of parametric amplification of quantum fluctuations
in the dynamic Casimir effect [123], [227] and are registered in quantum optics [21], [142], [166].

Radiation Field Quantization in a Perfect Cavity

In the formalism of second quantization, one expands electromagnetic fields in terms of resonant
modes of the particular cavity under consideration [60], [106], [186], [199]. The cavity is repre-
sented by a volume V, bounded by a closed surface. Let E4 (1), k% = @2 /c? be the eigenfunctions

and the eigenvalues of the corresponding boundary-value problem:
VxVxE—kE=0 inV (4.78)
nxE=0 on S,
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where n is a unit normal vector to S. The vector functions Hy (r) are related to E4 (r) by
VX Ey=koHg, VxHy =kogEq. 4.79)
The eigenfunctions are orthonormal in V :
/VEa B dV = 8y, /VHa Hp dV = S,p. (4.80)
The electric and magnetic fields are expanded in the following forms

E(r,t)=—V4nY po (t)Eq (r), (4.81)
H(r,) = VA 0aqe (1) He (r).

The total energy is given by

H? + E? 1
H = / dv =Y (pe + 03qz) (4.82)
¥4 24

and the Maxwell equations,

1 JH 1 JE
VXE=—-—— VxH=—-— 4.83
. cadt’ % cot’ (4.83)
are equivalent to the canonical Hamiltonian equations,
dt 8}705 pOCa dt aqa a%c, ( )

respectively.
In the second quantization, one replaces canonically conjugate coordinates and momenta by

time-dependent operators g (f) and pg (¢) that satisfy the commutation rules

(90 (1), qp (t)] = [pa (1), pp ()] =0, (qa (1), pp ()] = inByp. (4.85)

The time-evolution is determined by the Heisenberg equations of motion [87]:

d i d i

Epa(t)=£[pa(t), HY, EQa(’):ﬁ[Qa(f)a HY, (4.86)
with appropriate initial conditions. It is worth to mention that the standard form of Heisenberg’s
equations can be obtained by the time reversal r — —t (with g — — g, Y — —%, o — —0, and

Ko — —Kp; see below). From now on, it will be considered a single photon cavity mode, say «,

with frequency wy = 1 and use the unitsc =h = 1.

61



Nonstandard Solutions of Heisenberg’s Equations

Explicit solution of equations (4.86) for squeezed states can be found as follows

b(t) b (1) b(1)+b' (1)
)= 22 =222 0 4.87
pi =202 g =20 @87
The time-dependent annihilation b (r) and creation b' (1) operators are given by [118]
~ —2iy —20x— 8
0%215 Oh+e+#7gx), (4.88)
~ e p—20x—90
b1 t) = xX+€— i>
= (B B

in terms of solutions (4.6)—(4.11) of the corresponding Ermakov-type system. The time-independent
operators x and p obey the canonical commutation rule [x, p] = i in an abstract Hilbert space. At all
times,

A~

b@)b (1) =" ()b(1) =1. (4.89)

By back substitution, operators b (¢) and b' () are solutions of the Heisenberg equation:

d~ N d ~ -
- — el N — | BT
Sh(r) =i [b(t), H] L =i [b (1), H} : (4.90)
with the standard Hamiltonian
1
H:E@Mw% (4.91)

subject to the following initial conditions

~ =2y — 200X —
e Wo) 7 4.92)

b(()):\/i<[30x+8()+i By

b (0) = 6\2/1'; (ﬁox%—eo—ip_zz(:f_éo> )

The creation and annihilation operators (4.88) allow to incorporate the Schrédinger group of har-

monic oscillator, originally found in the coordinate representation [161], into a more abstract Heisen-
berg picture — the classical case occurs when By = 1 and oy = % = & = & = ko = 0. (For the sake
of simplicity, this works have been restricted to the case of a single photon mode with frequency

w=1)
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Dynamic Fock Space for a Single Mode

The time-dependent quadratic invariant,

2
E() = ;[WJF(;%HS)Z (4.93)
— %[E(Z)ZT(I)-FET(Z)E([)}y %(E(f»:()
with R
L [En]=0 m=1(12). (4.94)

extends the standard Hamiltonian/Number operator H for any given real values of the “hidden”
parameters/integrals of motion in the description above of the squeezed photon state. The oscillator-

type spectrum,
~ 1
B0 a(0) = (n+ 3 ) 1w @), (@95)

can be obtained by using the modified creation and annihilation operators [2]:

b ()| (1)) = Vi [yt (1)) (4.96)
b (1) [y (1)) = Vit 1 [ (1))

For the “minimum-uncertainty squeezed states”, one gets

b(1) |y (1)) =0 4.97)
with
(o 1) [ o (1)) = 4;;%* By, aoso ;%%50)2 5,1 (4.98)
in the Schrodinger picture. The generalized coherent (or TCS’s) states are given by
b(t)lw (1) = Elw() (4.99)

for an arbitrary complex § # 0.
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Expectation Values and Variances for Field Oscillators

The noncommuting electric E (r,7) and magnetic H(r,7) field operators are given by equations
(4.81) and (4.87)—(4.88) for a squeezed photon in the Heisenberg picture, which provides a more
direct analogy between quantum and classical physics [85]. The electromagnetic radiation mode in
a cavity resonator is analogous to a harmonic oscillator [88]. In the Schrédinger picture, all previous
results on the minimum-uncertainty squeezed states can be reproduced for the field oscillators in an

operator QED-style. For a single mode with @y = 1,

(E(r,1)) = —VA4rEq (v) (5, (1) |p| v (1)), (4.100)
(H(r,1)) = VArHq (r) (yi (1) Ix] wi (1),

where equations (4.18)—(4.19) hold. The corresponding variances are given (up to a normalization)
by equations (A.4)—(A.5) of Ref. [135].

The minimum-uncertainty squeezed states are identified in quantum optics [49], [88], [82],
[100] [129], [197], [200], [174], [179], [235] and in state tomography [28], [63], [130], [142]. They
are also important in the dynamical Casimir effect [50], [51], [52], [60], [76], [118], [123], [145],
[227], and [234], where the photon squeezing occurs as a result of a “parametric excitation” of

vacuum oscillations.
4.9 An Important Variance

The Hamiltonian H = ( P’ +x2) /2 can be rewritten in terms of the creation and annihilation oper-

ators (4.15) as follows:

H = <4‘x2;gH —ia> @ (1) + (mz;g“ﬂa) at (1)’ (4.101)
LWZLEH [a()a’ (1) +a' (t)a(t)]
S (o) (e
alf(e3) Gt e e

(5 208\ &
585 ) T
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and by definition:

Var H = ((H — (H))*) = (H?) — (H)?. (4.102)

Then a direct Mathematica calculation results in

2 2
(4 + (B +1) 8)B§4a3+<ﬁé—l> ) (1e1) 4
4o+ B + 1) ( (20080 — Bodo)” + &5
(e epen (Cam-hares) (s (1)

Var H =

(4.103)

* 2

for the wave functions (4.36) in terms of the invariants (4.62)—(4.63). (These calculations can be

performed in pure operator form with the help of standard relations (1.15) of Ref. [135]; see also

AT
"Ty) g
]

120 () + 20, p) () + 62 (0)?] (n+ ) ,

(4.96).) In terms of the variances,

VarH = [(cp to,)’— 1] (4.104)

N =

2

where 0, 0, and 0, are given by (4.24). When n = 0, this formula is consistent with the variance
of the number operator derived for a generic Gaussian Wigner function in Ref. [58]. A similar

expression holds for the TCS states.
4.10 Concluding Remarks

In this chapter, the nonclassical states of harmonic motion, which were originally found in [147]
(in the coordinate representation) and have been rediscovered recently in [135], in a form which
is convenient in applications to cavity QED and quantum optics, are reviewed. In particular, the
minimum-uncertainty squeezed states are studied in detail. Expansions in the Fock states are estab-
lished and their relations with experimentally observed photon statistics are briefly discussed. In the
method of second quantization, a modification of the radiation field operators for squeezed photons
in a perfect cavity is suggested with the help of a nonstandard solution of Heisenberg’s equation of
motion. These results should be of interest to everyone who studies introductory quantum mechan-

ics and quantum optics.
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4.11 Appendix A: Complex Parametrization of the Schrodinger Group

Consider the following complex-valued function:

] —1 !
z=cre" +cre ", '+7=0,

where

cr=(1+B3)/2—icg, 2= (1-PB3)/2+ia

(a+e=1 JaP-laf=4),

and

c3 = — —I&).

Bo

(4.105)

(4.1006)

(4.107)

Then equations (4.5)—(4.11) can be rewritten in a compact form in terms of the complex parameters

c1, c2, and c3. With the help of identities (4.67)—(4.70), one gets

. . 12
% =lz| = (IC1|2—|—C1c§e2” +clere 4 |Cz\2)
and
_clcEeZit — c’fcze_Z”
2|7 7
2 2
g Po_ le1]” —eal
2] 2] ’
1
Y=%-— 5 argz,
§— Po jargz * —iargz
= m (C3e +cze ) ,
e = % (c3eiargz _ C;efiargz) ,
K=Ky— é |:C§ (1 _eZiargz) _ C;Z (1 _e—2ia.rgz)] .

The inverse relations between the essential, real and complex, parameters are given by

i
a =7 (i —ciea),  Po==% le1* = Jea?,
1 i
do=£5 1P = leaf* (e3+¢5), & =5 (c3—c3).

66

(4.108)
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(4.110)

@.111)

4.112)

(4.113)

(4.114)

(4.115)

(4.116)



These formulas (4.109)—(4.114) provide a complex parametrization of the Schrodinger group of
“hidden” symmetry for the simple harmonic oscillator found in Ref. [161] (see also the explicit
action of this group in [135], specifically equation (32) there). A similar parametrization for the

wave functions (4.36) was used in Ref. [55] (see also [84]).
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Chapter 5

CONCLUSION

For centuries, the study of evolution equations has been of great interest for many mathemati-
cians. Moreover, these equations constitute a substantial portion of the current frontier in the ad-
vancement of the theory of differential equations. The construction of analytic solution methods
for these equations have attracted much attention both for their broad range of applicability and
for the techniques developed. The complexity and challenges in their theoretical study have at-
tracted much interest from many mathematicians and scientists. Motivated by such complexities
and challenges, this dissertation discussed several analytical methods to solve the initial value prob-
lem for the following fundamental evolution equations: Heat equation, Burgers equation and the
Schrodinger equation.

A method to construct the fundamental solution for a class of nonautonomous and inhomoge-
neous linear diffusion-type equation with variable coefficients on the etire real line was discussed
in Chapter 2. This method involves explicit transformations to reduce the evolution equation un-
der study to their corresponding standard forms emphasizing on natural relations with certain Ric-
cati(and/or Ermakov)-type systems. These relations give solvability results for the Cauchy problem
of the parabolic equation considered. The superposition principle allowed to solve formally this
problem from an unconventional point of view. The diffusion-type equation was first reduced to the
standard heat equation by means of an exponential transformation subject to the solvable Riccati-
system. Then a general solution of the Riccati system was presented in terms of its particular solu-
tion. This general solution was inverted and the asymptotics of this inversion resulted in the variable
coefficients of the exponential transformation. A direct substitution of these asymptotics allows one
to construct the fundamental solution for the master evolution equation considered following similar
published work on the case of the corresponding Schrédinger equation. An eigenfunction expansion
approach was also considered for this nonautonomous diffusion equation. Several examples were
considered in order to confirm the efficacy of both proposed solution methods. Among these exam-
ples is worth to mention the Fokker-Planck equation, the Black-Scholes model and the one-factor

Gaussian Hull-White model. The fundamental solution for the one-factor Gaussian Hull-White,
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which is missing in the available literature, was presented here in the most closed form. The sym-
metries of the nonautonomous diffusion-type equation were also evaluated from the point of view
of an exponential transformation.

For Chapter 3 a study of certain Burgers-type equations and the corresponding relations with
the master diffusion-type (2.6) equation was stressed. The results obtained for the diffusion-type
equation with variable coefficients were used to solve the Cauchy initial value problem for a cer-
tain nonautonomous and inhomogeneous Burgers-type equation. This Burgers-type equation was
associated to the diffusion-type equation analyzed in the second chapter by means of the celebrated
Cole-Hopf transformation, thus constructing the Kernel from the master equation. The connec-
tions between the linear (the Diffusion-type) and nonlinear (Burgers-type) parabolic equations were
also investigated in order to establish the existing relation among them. The results from the sec-
ond chapter were the key to establish such relations.Traveling wave solutions of a nonautonomous
Burgers equation were also explored in terms of the Riccati-type system. The integrability of these
Burgers-type equations with variable coefficients is not clear yet, however the methods presented
herein gave some ideas on this direction. The results presented in the third chapter justify the utility
and efficacy of the solution methods for the proposed generalized diffusion-type equations presented
in the second chapter. The author of this dissertation believe that the explicit results of this chapter
could be also used to corroborate the efficacy of numerical algorithms to solve familiar systems.

The Chapter 4 was devoted to construct explicitly the minimum-uncertainty squeezed states
for quantum harmonic oscillators in the most simple closed form. These states were derived by the
action of corresponding maximal kinematical invariance group on the standard ground state solu-
tion. It was shown that the product of the variances attains the required minimum value 1/4 only at
the instances that one variance is a minimum and the other is a maximum, when the squeezing of
one of the variances occurs. This explicit construction was possible due to the relation between the
diffusion-type equation studied in the first part and the time-dependent Schrodinger equation. The
approach adopted here reveals the “hidden” quantum numbers/integrals of motion of the squeezed
states in terms of the solution of certain Ermakov-type system. The generalized coherent states
were also explicitly constructed and their Wigner function was studied. The overlap coefficients

between the squeezed, or generalized harmonic, and the Fock states were explicitly evaluated in
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terms of hypergeometric functions.The corresponding oscillating photons statistics were discussed
and an application to quantum optics and cavity quantum electrodynamics was mentioned. Their
experimental observations in cavity QED and quantum optics were briefly reviewed. Moreover, the
radiation field operators of squeezed photons, which can be created from the QED vacuum, were
introduced by second quantization with the aid of the hidden symmetry of the harmonic oscillator
problem in the Heisenberg picture. A modification of the radiation field operators for squeezed pho-
tons in a perfect cavity was also suggested with the help of a nonstandard solution of Heisenberg’s
equation of motion. Explicit solutions to the Heisenberg equations for radiation field operators with
squeezing were also presented. The analytical solutions presented in this chapter regarding photon
statistics were experimentally realized in the works of David Wineland, NIST group, 2012 Nobel
Prize winners in physics, and by the French group Breitenbach-Schiller-Mlynek. The theoretical
consideration presented herein complements all of these advanced experimental techniques by iden-
tifying the state quantum numbers from first principles. This approach may provide a guidance for
engineering more advanced nonclassical states.

To sum up, the solution methods to the Cauchy initial value problem of the evolution equations
presented on this dissertation discussed several techniques that can shed light into other areas of
science. The association of these equations to certain Riccati/Ermakov-type systems is one of the
most important key steps in order to obtain the desired results. The applicability of the obtained
results seems to be endless. There are still several open questions about the possibility of using the
methods presented on chapter four to study the coherent states for more general harmonic oscilla-
tors. Therefore a detailed investigation on the construction of the coherent states solution for time
dependent Schrédinger equation with the most general variable could be an interest topic for further

research.

70



[1]

(2]

[11]

[12]

[13]

[14]

BIBLIOGRAPHY

J. Abadie et al., A gravitational wave observatory operating beyond the quantum shot-noise
limit, Nature Physics 7 (2011), 962-965.

A. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics, Interscience Publishers, New
York, 1965.

S. Albeverio and O. Rozanova, Suppression of unbounded gradients in an SDE associated
with Burgers equation, Trans. Amer. Math. Soc. 138 (2010) #1, 241-251.

M. J. Ablowitz, Rapidly forced Burgers equation , Applications of analytic and geometric
methods to nonlinear differential equations (1993), 81.

M. J. Ablowitz and S. De Lillo, Forced and semiline solutions of the Burgers equation, Physics
Letters A 156 (1991) #9, 483-487.

M. J. Ablowitz and S. De Lillo, The Burgers equation under deterministic and stochastic
forcing , Physica D: Nonlinear Phenomena 92 (1996) #(3-4), 245-259.

R. L. Anderson, S. Kumei, and C. E. Wulfman, Invariants of the equations of wave mechanics.
I, Rev. Mex. Fis. 21 (1972), 1-33.

R. L. Anderson, S. Kumei, and C. E. Wulfman, Invariants of the equations of wave mechanics
1I. One-particle Schrodinger equations, Rev. Mex. Fis. 21 (1972), 35-57.

G. B. Arfken, Mathematical methods for physicists, Academic Press, New York, 1970.

V. G. Bagrov, V. V. Belov and 1. M. Ternov, Quasiclassical trajectory-coherent states of a
particle in an arbitrary electromagnetic field, J. Math. Phys. 24 (1983) #12, 2855-2859.

W. N. Bailey, Some integrals involving Hermite polynomials, J. London Math. Soc. 23 (1948)
#4,291-297.

H. Bateman, Some recent researches on the motion of fluids, Monthly Weather Review 43
(1915) #4, 163-170.

V. V. Belov and A. G. Karavaev, Higher approximations for quasiclassical trajectory-coherent
states, Izvestiya Vysshikh Uchebynkh Zavedenij Fizika, 31 (1987) #10, 14-18 [in Russian];
see also English transl.: Sov. Phys. Journal 1989, 30 #10, 819-822.

V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Relativistic Quantum Theory, Pergamon
Press, Oxford, 1971.

71



[15] 1. Biatynicki-Birula and Z. Biatynicki-Birula, Quantum Electrodynamics, Pergamon Press
Ltd. and PWN-Polish Scientific Publishers, Oxford, New York, Toronto, Sydney, Warszawa,
1975.

[16] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge University
Press, Cambridge, 1982.

[17] F. Black and M. Scholes, The pricing of options and corporate liabilities, The Journal of
Political Economy 81 (1973) #3, 637-654.

[18] N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields, third
edition, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, 1980.

[19] 1. Bouchoule, H. Perrin, A. Kuhn, M. Morinaga, and C. Salomon, Neutral atoms prepared in
Fock states of a one-dimensional harmonic potential, Phys. Rev. A 59 (1999) #1, R§8-R11.

[20] C. P. Boyer, R. T. Sharp, and P. Winternitz, Symmetry breaking interactions for the time de-
pendent Schrodinger equation, J. Math. Phys. 17 (1976) #8, 1439-1451.

[21] G. Breitenbach, S. Schiller, and J. Mlynek, Measurement of the quantum states of squeezed
light, Nature 387 (1997) May 29, 471-475.

[22] H. Brezis and F. Browder, Partial differential equations in the 20th century, Journal of engi-
neering mathematics 135 (1999), 76-144.

[23] P. Broadbridge, The forced Burgers equation, plant roots and Schrodinger’s eigenfunctions,
Journal of engineering mathematics 36 (1999) #6, 25-39.

[24] A. Buchleitner, D. Delandea, and J. Zakrzewski, Non-dispersive wave packets in periodically
driven quantum systems, Phys. Rep. 368 (2002), 409-547.

[25] F. Cajori, The Early History of Partial Differential Equations and of Partial Differentiation
and Integration, The American Mathematical Monthly 35 (1928) #9, 459-467.

[26] J. M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech.
1 (1948), 171-199

[27] J. R. Cannon, The One-Dimensional Heat Equation, Encyclopedia of Mathematics and Its
Applications, Vol. 32, Addison—Wesley Publishing Company, Reading etc, 1984.

[28] V. N. Chernega and V. I. Man’ko, Probability representation and state-extended uncertainty
relations, Journal of Russian Laser Research 32 (2011) #2, 125-129.

72



[29]

S. M. Chumakov, A. B. Klimov, and M. Kozierowski, From the Jaynes—Cummings model
to collective interactions, in: Theory of Nonclassical States of Light (V. V. Dodonov and
V. 1. Man’ko, Editors), Taylor & Francis, London and New York, 2003.

J. L. Cirac, Entanglement in many-body quantum systems, arXiv:1205.3742v1 [quant-ph] 16
May 2012.

J. I. Cirac, R. Blatt, A. S. Parkins, and P. Zoller, Preparation of Fock states by observing of
quantum jumps in an ion trap, Phys. Rev. Lett. 70 (1993) # 6, 762-765.

J. I. Cirac, R. Blatt, A. S. Parkins, and P. Zoller, Quantum collapse and revival in the motion
of a single trapped ion, Phys. Rev. A. 49 (1994) # 2, 1202-1207.

J. I. Cirac, R. Blatt, and P. Zoller, Nonclassical states of motion in a three-dimensional ion
trap by adiabatic passage, Phys. Rev. A. 49 (1994) # 5, R3174-R3177.

J. L. Cirac, A. S. Parkins, R. Blatt, and P. Zoller, “Dark” states of the motion of a trapped ion,
Phys. Rev. Lett. Lett. 70 (1993) # 5, 556-559.

J. L. Cirac and P. Zoller, Quantum computations with cold trapped ions, Phys. Rev. Lett. 74
(1995) # 20, 4091-4094.

J. D. Cole, On a quasi-linear parabolic equation occuring in aerodynamics, Quart. Appl.
Math. 9 (1951) #3, 225-236.

R. J. Cook, D. G. Shankland, and A. L. Wells, Quantum theory of particle motion in a rapidly
oscillating field, Phys. Rev. A 31 (1985) #2, 564-567.

R. Cordero-Soto, R. M. Lépez, E. Suazo, and S. K. Suslov, Propagator of a charged parti-
cle with a spin in uniform magnetic and perpendicular electric fields, Lett. Math. Phys. 84
(2008) #2-3, 159-178.

R. Cordero-Soto, E. Suazo and S. K. Suslov, Models of damped oscillators in quantum me-
chanics, Journal of Physical Mathematics, 1 (2009), S090603 (16 pages).

R. Cordero-Soto, E. Suazo, and S. K. Suslov, Models of damped oscillators in quantum me-
chanics, J. Phys. Math. 1 (2009), S090603 (16 pages).

R. Cordero-Soto, E. Suazo, and S. K. Suslov, Quantum integrals of motion for variable
quadratic Hamiltonians, Ann. Phys. 325 (2010) #9, 1884—-1912.

73



[42]

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators, Theoretical and
Mathematical Physics 162 (2010) #3, 286-316; see also arXiv:0808.3149v9 [math-ph] 8 Mar
2009.

R. Cordero-Soto and S. K. Suslov, The degenerate parametric oscillator and Ince’s equation,
J. Phys. A: Math. Theor. 44 (2011) #1, 015101 (9 pages); see also arXiv:1006.3362v3 [math-
ph] 2 Jul 2010.

M. Craddock, Fundamental solutions, transition densities and the integration of Lie symme-
tries, J. Diff. Egs. 207 (2009) #6, 2538-2560.

L. Debnath, Nonlinear partial differential equations for scientists and engineers , Birkhduser
Boston, 1997.

L. Debnath, Nonlinear partial differential equations for scientists and engineers , Birkhduser
Boston, 2005.

F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, Laser cooling to the zero-point
energy of motion, Phys. Rev. Lett. 62 (1989) # 4, 403—406.

P. A. M. Dirac, The Principles of Quantum Mechanics, third edition, Clarendon Press, Oxford,
1947.

V. V. Dodonov, ‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75
years, J. Opt. B: Quantum Semiclass. Opt. 4 (2002), R1-R33.

V. V. Dodonov, Current status of dynamical Casimir effect, Physica Scripta 82 (2010) #3,
038105 (10 pp).

V. V. Dodonov, A. B. Klimov, and V. I. Man’ko, Generation of squeezed states in a resonator
with a moving wall, Phys. Lett. A. 149 (1990) # 4, 225-228.

V. V. Dodonov, A. B. Klimov, and D. E. Nikonov, Quantum phenomena in nonstationary
media, Phys. Rev. A. 47 (1993) # 5, 4422-4429.

V. V. Dodonov, A. B. Kurmyshev, and V. I. Man’ko, Generalized uncertainty relation and
correlated coherent states, Phys. Lett. A. 79 (1980) # 2,3, 150-152.

V. V. Dodonov, I. A. Malkin, and V. I. Man’ko, Integrals of motion, Green functions, and
coherent states of dynamical systems, Int. J. Theor. Phys. 14 (1975) # 1, 37-54.

74



V. V. Dodonov and V. I. Man’ko, Coherent states and the resonance of a quantum damped
oscillator, Phys. Rev. A 20 (1979) # 2, 550-560.

V. V. Dodonov and V. I. Man’ko, “Nonclassical” states in quantum optics: brief historical
review, in: Theory of Nonclassical States of Light (V. V. Dodonov and V. 1. Man’ko, Editors),
Taylor & Francis, London and New York, 2003.

V. V. Dodonov and V. I. Man’ko, Invariants and correlated states of nonstationary quantum
systems, in: Invariants and the Evolution of Nonstationary Quantum Systems, Proceedings of
Lebedev Physics Institute, vol. 183, pp. 71-181, Nauka, Moscow, 1987 [in Russian]; English
translation published by Nova Science, Commack, New York, 1989, pp. 103-261.

V. V. Dodonov, O. V. Man’ko, and V. I. Man’ko, Photon distribution for one-mode mixed light
with a generic gaussian Wigner function, Phys. Rev. A 49 (1994), 2993-3001.

T. J. Dunn, I. A. Walmsley, and S. Mukamel, Experimental determination of the quantum-
mechanical state of a molecular vibrational mode using fluorescence tomography, Phys. Rev.
Lett. 74 (1995), 884-887.

S. M. Dutra, Cavity Quantum Electrodynamics : The Strange Theory of Light in a Box,
Hoboken, NJ, USA: Wiley, 2005.

T. Eberle et al., Quantum enhancement of the zero-area Sagnac interferometer topology for
gravitational wave detection, Phys. Rev. Lett. 104 (2010), 251102 (4 pages).

P. Ehrenfest, Bemerkung iiber die angendherte Giiltigkeit der klassischen Mechanik innerhalb
der Quantenmechanik, Zeitschrift fiir Physik A 45 (1927), 455-457.

C. Eichler, D. Bozyigit, C. Lang, M. Baur, L. Steffen, J. M. Fink, S. Filipp, and A. Wallraff,
Observation of two-mode squeezing in the microwave frequency domain, Phys. Rev. Lett. 107
(2011), 113601 (5 pages).

A. Erdélyi, Higher Transcendental Functions, Vols. I-111, A. Erdélyi, ed., McGraw—Hill, 1953.

A. Erdélyi, Tables of Integral Transforms, Vols. I-11, A. Erdélyi, ed., McGraw—Hill, 1954.

V. P. Ermakov, Second-order differential equations. Conditions of complete integrability,
Universita Izvestia Kiev, Series III 9 (1880), 1-25; see also Appl. Anal. Discrete Math. 2
(2008) #2, 123-145 for English translation of Ermakov’s original paper.

S. Eule and R. Friedrich, A note on the forced Burgers equation, Physics Letters A 351
(2006) #(4-5), 238-241.

75



[81]

R. P. Feynman, The Theory of Fundamental Processes, Perseus Books Publishing, Cambridge,
Massachusetts,1998.

R. P. Feynman, QED: The Strange Theory of Light and Matter, Princeton University Press,
Princeton and Oxford, 2006.

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw—Hill, New
York, 1965.

E. Fermi, Quantum theory of radiation, Rev. Mod. Phys. 4 (1932), 87-132.

E. Fermi, Notes on Quantum Mechanics, Phoenix Science Series, The University of Chicago
Press, Chicago and London, 1961.

S. Fliigge, Practical Quantum Mechanics, Springer—Verlag, Berlin, 1999.

A. R. Forsyth, Theory of Differential Equations , Cambridge University Press, 1906.

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice Hall, Inc., Englewood
Cliffs, 1964.

T. Fujii, S. Matsuo, N. Hatakenaka, S. Kurihara, and A. Zeilinger, Quantum circuit analog of
the dynamical Casimir effect, Phys. Rev. B. 84 (2011) #17, 174521 (9 pages).

L. Gagnon and P. Winternitz, Symmetry classes of variable coefficient nonlinear Schrodinger
equations, J. Phys. A: Math. Gen. 26 (1993), 7061-7076.

I. Gerhardt, G. Wrigge, G. Zumofen, J. Hwang, A. Renn, and V. Sandoghdar, Coherent
state preparation and observation of Rabi oscillations in a single molecule, Phys. Rev. A.

79 (2009) #1, 011402(R) (4 pages).

M. A. Giordano, G. Gutierrez, and C. Rinaldi, Fundamental solutions to the bioheat equation
and their application to magnetic fluid hyperthermia , International Journal of Hyperthermia
26 (2010) #5, 475-484.

R.J. Glauber, Quantum Theory of Optical Coherence: Selected Papers and Lectures, WILEY-
VCH Verlag GmbH & Co. KGaA, Weinheim, 2007.

I. I. GoI’dman and V. D. Krivchenkov, Problems in Quantum Mechanics, Dover, New York,
1993.

76



[82]

[91]

[95]

J. Guerrero, and F. F. Léopez-Ruiz, V. Aldaya, and F. Cossio, Harmonic states for the free
particle, J. Phys. A: Math. Theor. 44 (2011), 445307 (16pp); see also arXiv:1010.5525v3
[quant-ph] 1 Jul 2011.

C. H. Hagen, Scale and conformal transformations in Galilean-covariant field theory, Phys.
Rev. D 5 (1972) #2, 377-388.

G. Harari, Ya. Ben-Aryeh, and A. Mann, Propagator for the general time-dependent harmonic
oscillator with application to an ion trap, Phys. Rev. A 84 (2011) # 6, 062104 (4 pages).

S. Haroche J. M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons, Oxford
University Press, Oxford, 2006.

D. J. Heinzen and D. J. Wineland, Quantum-limited cooling and detection of radio-frequency
oscillations by laser-cooled ions, Phys. Rev. A (1990) #5, 2977-2994.

W. Heisenberg, The Physical Principles of the Quantum Theory, University of Chicago Press,
Chicago, 1930; Dover, New York, 1949.

R. W. Henry and S. C. Glotzer, A squeezed-state primer, Am. J. Phys. 56 (1988) #4, 318-328.
S. W. Hawking, Black hole explosions?, Nature, London 248 (1974), 30-31.

S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) #3, 199-
220.

M. Hillery, R. F. O’Connel, M. O. Scully, and E. P. Wigner, Distribution functions in physics:
fundamentals, Phys. Rep. 106 (1953) #3, 121-167.

K. Husimi, Miscellanea in elementary quantum mechanics: I-II, Prog. Theor. Phys. 9
(1953) #3, 238-244; Prog. Theor. Phys. 9 (1953) #4, 381-402.

H. Hoeber and A. Watcher, Compendium of theoretical physics, Springer Science+ Business
Media, Inc., New York, NY, 2006.

J. N. Hollenhorst, Quantum limits on resonant-mass gravitational-radiation detectors, Phys.
Rev. D (1979) #6, 1669—-1679.

K. Husimi and M. Otuka, Miscellanea in elementary quantum mechanics: III, Prog. Theor.
Phys. 10 (1953) #2, 173-190.

77



[96] S. L. Heston, A closed-form solution for options with stochastic volatility with applications to
bond and currency options, The Review of Financial Studies 6 (1993) #2, 327-343.

[97] M. Herrera-Valdéz and S. K. Suslov, A Graphical approach to a model of neuronal tree with
variable diameter, arXiv:1101.0296v1 [q-bio.NC] 31 Dec 2010.

[98] E. Hopf, Partial differential equation u; + uu, = u,,, Communs. Pure Appl. Math. 3 (1950) #3,
201-230.

[99] C. Itzykson and J. B. Zuber, Quantum Field Theory, Dover Publications, New York, 2005.

[100] N. Jain, S. R. Huisman, E. Bimbard, and A. I. Lvovsky, A bridge between the single-photon
and squeezed-vacuum states, Optics Express 18 (2010) #17, 18254 (6 pages).

[101] J. J. B. Jack, D. Noble and R. W. Tsien, Electric Current Flow in Excitable Cells, Oxford,
UK, 1983.

[102] R.Jackiw, Dynamical symmetry of the magnetic monopole, Ann. Phys. 129 (1980), 183-200.

[103] T. A. Jacobson, Introduction to quantum fields in curved spacetime and the Hawking effect,
arXiv:0308048v3 [gr-qc] 9 April 2004.

[104] M. S. Jafri and J. Keizer, Agonist-induced calcium waves in oscillatory cells: A biological
example of Burgers’ equation, Bulletin of mathematical biology 59 (1973) #6, 1125-1144.

[105] P.S.Jessen, C. Gerz, P. D. Lett, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw, and C. I. West-
brook, Observation of quantized motion of Rb atoms in an optical field, Phys. Rev. Lett. 69
(1992) # 1, 49-52.

[106] E. T. Jaynes and F. W. Cummings, Comparison of quantum and semiclassical radiation the-
ories with application to the beam maser, Proc. IEEE. 51 (1963) #1, 89-1009.

[107] M. Johanning, A. F. Varén, and C. Wunderlich, Quantum simulations with cold trapped ions,
J. Phys. B: At. Mol. Opt. Phys. 42 (2009), 154009 (27pp).

[108] B. B. Kadomtsev and V. 1. Karpman, Nonlinear Waves, Soviet Physics Uspekhi 14 (1971)
#1, 40-60.

[109] E. G. Kalnins and W. Miller, Lie theory and separation of variables. 5. The equations iU, +
Ue = 0 and iU, + Uy, — ¢/x*U = 0, J. Math. Phys. 15 (1974) #10, 1728-1737.

78



[110] G. S. Kambarbaeva, Some explicit formulas for calculation of conditional mathematical ex-
pectations of random variables and their applications, Moscow University Math. Bull. 65
(2010) #5, 186-190.

[111] A. A. Karabutov and O.V. Rudenko, Excitation of nonlinear acoustic waves by surface ab-
sorption of laser radiation , Moscow University Mathematics Bulletin 20 (1976) #7, 920-922.

[112] I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Second Edition, Grad.
Texts in Math., Vol. 113, Springer-Verlag, 1991.

[113] E. H. Kennard, Zur Quantenmechanik einfacher Bewegungstypen, Zeitschrift fiir Physik 44
(1927) #4-5, 326-352.

[114] J. R. Klauder, Enhanced quantization: a primer, J. Phys. A: Math. Theor. 45 (2012), 285304
(8 pages).

[115] J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum Optics, W. A. Benjamin,
Inc., New York, Amsterdam, 1968.

[116] C. Koutschan, http://hahn.la.asu.edu/"suslov/curres/index.htm; see Mathematica notebook:
Koutschan.nb; see also http://www.risc.jku.at/people/ckoutsch/pekeris/

[117] C. Koutschan and D. Zeilberger. The 1958 Pekeris-Accad-WEIZAC Ground-Breaking Col-
laboration that computed Ground States of Two-Electron Atoms (and its 2010 Redux), Math.
Intelligencer 33 (2011) #2, 52-57.

[118] S. L. Kryuchkov and S. K. Suslov, On the problem of electromagnetic-field quantization,
under preparation.

[119] N. A. Kudryashov, Methods of Nonlinear Mathematical Physics, Intellect, Dolgoprudny,
2010 [in Russian].

[120] N. A. Kudryashov and D. I. Sinelshchikov, A note on “New abandant solutions for the Burg-
ers equation”, arXiv:0912.1542v1 [nlin.SI] 8 Dec 2009.

[121] S. I Kryuchkov, S. K. Suslov and J. M. Vega-Guzman,
http://hahn.la.asu.edu/"suslov/curres/index.htm; see Mathematica notebook:  Wigner-
Summary.nb.

[122] A.N. Kolmogorov, I.G. Petrovsky and N.S. Piskunov, Investigation of the equation of diffu-
sion combined with increasing of the substance and its application to a biology problem, Bull.
Moscow State Univ. Ser. A: Math. Mech 1 (1937) #6, 1-25.

79



[123] P. Ldhteenmiki, G. S. Paraoanu, J. Hassel, and P. J. Hakonen, Dynamical Casimir effect in a
Josephson metamaterial, arXiv:1111.5608v2 [cond-mat.mes-hall] 1 Dec 2011.

[124] N. Lanfear and S. K. Suslov, The time-dependent Schrodinger equation, Riccati equation and
Airy functions, arXiv:0903.3608v5 [math-ph] 22 Apr 2009.

[125] L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Nonrelativistic Theory, Pergamon
Press, Oxford, 1977.

[126] N. Lanfear, R. M. Lopez, and S. K. Suslov, Exact wave functions for generalized har-
monic oscillators, Journal of Russian Laser Research 32 (2011) #4, 352-361; see also
arXiv:11002.5119v2 [math-ph] 20 Jul 2011.

[127] N. Lanfear, F. F. Lépez-Ruiz, S. K. Suslov, and J. M. Vega-Guzmén, Coherent states for
generalized harmonic oscillators, under preparation.

[128] P. G. L. Leach and K. Andriopoulos, The Ermakov equation: a commentary, Appl. Anal.
Discrete Math. 2 (2008) #2, 146-157.

[129] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Quantum dynamics of single trapped
ions, Rev. Mod. Phys. 75 (2003) #1, 281-324.

[130] U. Leonhard and H. Paul, Measuring the quantum state of light, Prog. Quant. Electr. 19
(1995), 89-130.

[131] H. R. Lewis, Jr., and W. B. Riesenfeld, An exact quantum theory of the time-dependent har-
monic oscillator and of a charged particle in a time-dependent electromagnetic field, J. Math.
Phys. 10 (1969) #8, 1458—-1473.

[132] S. De Lillo, The Burgers equation under multiplicative noise, Physics Letters A 188
(1994) #(4-6), 305-308.

[133] R.M. Lépez and S. K. Suslov, The Cauchy problem for a forced harmonic oscillator, Revista
Mexicana de Fisica, 85 (2009) #2, 195-215; see also arXiv:0707.1902v8 [math-ph] 27 Dec
2007.

[134] R. M. Lépez, S. K. Suslov, and J. M. Vega-Guzman, On the harmonic oscillator group,
arXiv:1111.5569v2 [math-ph] 4 Dec 2011.

[135] R. M. Lépez, S. K. Suslov, and J. M. Vega-Guzmén, On a hidden symmetry of quantum har-
monic oscillators, Journal of Difference Equations and Applications, iFirst article, 2012, 1-
12: http://www.tandfonline.com/doi/abs/10.1080/10236198.2012.658384#preview; see also
arXiv:1112.2586v2 [quant-ph] 2 Jan 2012.

80



[136] W. H. Louisell, Quamtum Statistical Properties of Radiation, Wiley, New York, 1973.

[137] R. M. Lopez, S. K. Suslov, and J. M. Vega-Guzman,
http://hahn.la.asu.edu/"suslov/curres/index.htm; see Mathematica notebook: Harmoni-
cOscillatorGroup.nb.

[138] R. D. Lord, Some integrals involving Hermite polynomials, J. London Math. Soc. 24 (1948)
#2,101-112.

[139] A. I. Lvovsky and S. A. Babichev, Synthesis and tomographic characterization of the dis-
placed Fock state of light, Phys. Rev. 66 (2002), 011801(R) (4 pages).

[140] A. L. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, Quantum
state reconstruction of the single-photon Fock state, Phys. Rev. Lett. 87 (2001) #5, 050402 (4
pages).

[141] A. I Lvovsky and J. Mlynek, Quantum-optical catalysis: generating nonclassical states of
light by means of linear optics, Phys. Rev. Lett. 88 (2002) #25, 250401 (4 pages).

[142] A. L Lvovsky and M. G. Raymer, Continuous-variable optical quantum-state tomography,
Rev. Mod. Phys. 81 (2009), January—March, 299-332.

[143] W. P. M. Malfliet, A systematic method for the solution of some nonlinear evolution equa-
tions. 1. The Burgers equations , Journal of Physics A: Mathematical and General 13 (1980),
29209.

[144] 1. A. Malkin and V. I. Man’ko, Dynamical Symmetries and Coherent States of Quantum
System, Nauka, Moscow, 1979 [in Russian].

[145] V. I. Man’ko, The Casimir effect and quantum vacuum generator, Journal of Soviet Laser
Research 12 (1991), 383-385.

[146] D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, Generation of
nonclassical motional states of a trapped atom, Phys. Rev. Lett. 76 (1996) #11, 1796-1799.

[147] M. E. Marhic, Oscillating Hermite—Gaussian wave functions of the harmonic oscillator, Lett.
Nuovo Cim. 22 (1978) #8, 376-378.

[148] J. D. Murray, Mathematical Biology, Springer-Verlag, New York, 2001.

81



[149] M. Meiler, R. Cordero-Soto, and S. K. Suslov, Solution of the Cauchy problem for a time-
dependent Schrodinger equation, J. Math. Phys. 49 (2008) #7, 072102: 1-27; see also arXiv:
0711.0559v4 [math-ph] 5 Dec 2007.

[150] R. C. Merton, Theory of rational option pricing, The Bell Journal of Economics and Man-
agement Science 4 (1973) #1, 141-183.

[151] R. C. Merton, Option pricing when underlying stock returns discontinous, Journal of Finan-
cial Economics 3 (1976), 125-144.

[152] R. C. Merton, The impact on option pricing of specification error in the underlying stock
price returns, The Journal of Finance 31 (1976) #2, 333-350.

[153] E. Merzbacher, Quantum Mechanics, 3rd edition, John Wiley & Sons, New York, 1998.

[154] W. Miller, Jr., Symmetry and Separation of Variables, Encyclopedia of Mathematics and Its
Applications, Vol. 4, Addison—Wesley Publishing Company, Reading etc, 1977.

[155] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, Demonstration of
a fundamental quantum logic gate, Phys. Rev. Lett. 75 (1995) #25, 4714-4717.

[156] M. Morinaga, 1. Bouchoule, J.-C. Karam, and C. Salomon, Manipulation of motional quan-
tum states of neutral atoms, Phys. Rev. Lett. 83 (1999) #20, 4037-4040.

[157] J. E. Moyal, Quantum mechanics as a statistical theory, Proc. Camb. Phil. Soc. 49 (1947),
99-124.

[158] J.D. Murray, Mathematical Biology , Springer-Verlag, N. Y., 2001.

[159] P.D. Nation, J. R. Johansson, M. P. Blencowe, and F. Nori, Stimulationg uncertainty: Ampli-
fying the quantum vacuum with superconducting circuits, Rev. Mod. Phys. 84 (2012), January—
March, 1-24.

[160] U. Niederer, The maximal kinematical invariance group of the free Schrodinger equations,
Helv. Phys. Acta 45 (1972), 802-810.

[161] U. Niederer, The maximal kinematical invariance group of the harmonic oscillator, Helv.
Phys. Acta 46 (1973), 191-200.

[162] A. F. Nikiforov, Lectures on Equations and Methods of Mathematical Physics, Intellect,
Dolgoprudnii, 2009 [in Russian].

82



[163] A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics, Birkhiuser,
Basel, Boston, 1988.

[164] A. E Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a
Discrete Variable, Springer—Verlag, Berlin, New York, 1991.

[165] PJ. Olver, Introduction to Partial Differential Equations, under construction, 2012.

[166] A. Ourjoumtsev, A. Kubanek, M. Koch, C. Sames, P. W. H. Pinkse, G. Rempe, and K. Murr,
Observation of squeezed light from one atom excited with two photons, Nature 474 (2011),
623-626.

[167] W. Paul, Electromagnetic traps for charged and neutral particles, Rev. Mod. Phys. 62
(1990) #3, 531-540.

[168] S.V. Petrovskii, Exact solutions of the forced Burgers equation , Technical Physics 44
(1999) #8, 878-881.

[169] I. Pikovski, M. R. Vanner, M. Aspelmeyer, M. S. Kim, and C. Brukner, Probing Planck-scale
physics with quantum optics, Nature Physics 8 (2012), 393-397.

[170] C. S. Rao and M. K. Yadav, On the Solution of a Nonhomogeneous Burgers Equation ,
International Journal of Nonlinear Science 10 (2010) #2, 141-145.

[171] W.T. Raid, Riccati Differential Equations, Academic Press, New York, 1972.

[172] G.Rempe, F. Schmidt-Kaler, and H. Walther, Observation of sub-Poissonian photon statistics
in a micromaser, Phys. Rev. Lett. 64 (1990) #23, 2783-2786.

[173] G. Rempe, H. Walther, and N. Klein, Observation of quantum collapse and revival in a one-
atom maser, Phys. Rev. Lett. 58 (1987) #4, 353-356.

[174] J. Ries, B. Brezger, and A. 1. Lvovsky, Experimental vacuum squeezing in rubidium vapor
via self-rotation, Phys. Rev. A 68 (2003), 025801 (4 pages).

[175] H. Risken, The Fokker—Planck Equation. Methods of Solution and Applications, Second
Edition, Springer—Verlag, New York, 1989.

[176] J. M. Romero, O. Gonzilez-Gaxiola, J. Ruiz de Chavez, The Black-Scholes Equation and
Certain Quantum Hamiltonians, International Journal of Pure and Applied Mathematics (1J-
PAM) 67 (2011) #2; see also: arXiv:1002.1667v2 [math-ph] 12 Jan 2011.

83



[177] Ch. Roos, Th. Zeiger, H. Rohde, H. C. Nigerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler,
and R. Blatt, Quantum state engineering on an optical transition and decoherence in a Paul
trap, Phys. Rev. Lett. 83 (1999) #23, 4713-4716.

[178] S. Rosencrans, Perturbation algebra of an elliptic operator, J. Math. Anal. Appl. 56
(1976) #2, 317-329.

[179] D. J. Rowe, The two-photon laser beam as a breathing mode of the electromagnetic field,
Can. J. Phys. 56 (1978), 442-446.

[180] P. L. Sachdev, Nonlinear Diffusive Waves, Cambridge University Press, Cambridge, 1987.

[181] J. 1. Sakai, Nonlinear magnetosonic waves propagating perpendicular to a magnetic neutral
sheet, Astrophysics and Space Science 23 (1973), 285-300.

[182] B. Sanborn, S. K. Suslov, and L. Vinet, Dynamic invariants and Berry’s phase for generalized
driven harmonic oscillators, Journal of Russian Laser Research 32 (2011) #5, 486—494; see
also arXiv:1108.5144v1 [math-ph] 25 Aug 2011.

[183] M. F. Santos, G. Giedke, and E. Solano, Noise-free measurement of marmonic oscillators
with instantaneous interactions, Phys. Rev. Lett. 98 (2007), 020401 (4 pages).

[184] J. E. Santos, N. M. R. Peres and J. M. B. L. dos Santos, Evolution of squeezed states under
the Fock-Darwin Hamiltonian, Physical Review A 80 (2009) #5, 053401.

[185] A.H. Salas, Symbolic computation of solutions for a forced Burgers equation, Applied Math-
ematics and Computation 216 (2010) #1, 18-26.

[186] W. P. Schleich, Quantum Optics in Phase Space, Wiley—Vch Publishing Company, Berlin
etc, 2001.

[187] A. Schulze-Halberg, New exact solutions of the non-homogeneous Burgers equation in (1+
1) dimensionst , Physica Scripta 75 (2007) 531.

[188] S. Setayeshgar and A. J. Bernoff, Scroll waves in the presence of slowly varying anisotropy
with application to the heart, Physical review letters 88 (2002) #2 28101.

[189] L. U. Zhuo-Sheng, An explicit Biicklund transformation of Burgers equation with applica-
tions, Communications in Theoretical Physics 44 (2005), 987.

[190] L. I Schiff, Quantum Mechanics, third edition, McGraw-Hill, New York, 1968.

84



[191] S. Schiller, G. Breitenbach, S. F. Pereira, T. Miiller, and J. Mlynek, Quantum statistics of the
squeezed vacuum by measurement of the density matrix in the number state representation,
Phys. Rev. Lett. 77 (1996) #14, 2933-2936.

[192] A.N. Sengupta, Pricing Derivatives. The Financial Concepts Underlying the Mathematics of
Pricing Derivatives, McGraw-Hill, New York, 2005.

[193] E. Suazo and S. K. Suslov, Cauchy problem for Schrodinger equation with variable quadratic
Hamiltonians, under preparation.

[194] E. Schrodinger, Quantisierung als Eigenwertproblem II, Annalen der Physik, 79 (1926),
489-527; see also Collected Papers on Wave Mechnics, Blackie & Son Ltd, London and Glas-
cow, 1928, pp. 13—40, for English translation of Schrodinger’s original paper.

[195] E. Schrédinger, Der stetige Ubergang von der Mikro-zur Makro Mechanik, Die Naturwis-
senshaften, 14 (1926), 664—666; see also Collected Papers on Wave Mechnics, Blackie & Son
Ltd, London and Glascow, 1928, pp. 41-44, for English translation of Schrédinger’s original

paper.

[196] R. Schiitzhold, G. Plunien, and G. Soff, Trembling cavities in the canonical approach, Phys.
Rev. A 57 (1998) #4, 2311-2318.

[197] E. Shchukin, T. Kiesel, and W. Vogel, Generalized minimum-uncertainty squeezed states,
Phys. Rev. A 79 (2009), 043831 (7 pages).

[198] B. W. Shore and P. L. Knight, The Jaynes—Cummings model, J. Mod. Opt. 40 (1993) #7,
1195-1238.

[199] J. C. Slater, Microvawe Electronics, D. van Nostrand Co. Inc., New York, chapter 4, 1950.

[200] R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valleys, Observation of
squeezed states generated by four-wave mixing in an optical cavity, Phys. Rev. Lett. 55
(1985) #22, 2409-2412.

[201] S. Stenholm, Amplification of squeezed states, Optics Communications 58 (1986) #3, 177—
180.

[202] D. Stoler, Equivalence Classes of Minimum Uncertainty Packets, Phys. Rev. D 1 (1970) #12,
3217-3219.

[203] D. Stoler, Equivalence Classes of Minimum Uncertainty Packets. II, Phys. Rev. D 4
(1971) #6, 1925-1926.

85



[204] E. Suazo (2008). Fundamental solutions of some evolution equations (Doctoral Dissertation)
Arizona State University, Tempe, Arizona.

[205] E. Suazo and S. K. Suslov, Soliton-like solutions for nonlinear Schrodinger equation with
variable quadratic Hamiltonians, Journal of Russian Laser Research 33 (2012) #1, 63-82;
arXiv:1010.2504v4 [math-ph] 24 Nov 2010.

[206] E. Suazo, S. K. Suslov, and J. M. Vega-Guzman, The Riccati equation and a diffusion-type
equation, New York J. Math. 17a (2011), 225-244.

[207] E. Suazo, S. K. Suslov, and J. M. Vega-Guzméan, The Riccati system and a diffusion-type
equation, arXiv: 1102.4630v1 [math-ph] 22 Feb 2011.

[208] S. K. Suslov, Dynamical invariants for variable quadratic Hamiltonians, Physica Scripta 81
(2010) #5, 055006 (11 pp); see also arXiv:1002.0144v6 [math-ph] 11 Mar 2010.

[209] S. K. Suslov, On integrability of nonautonomous nonlinear Schrodinger equations, Proc.
Amer. Math. Soc. 140 (2012) #9, 3067-3082; see also arXiv:1012.3661v3 [math-ph] 16 Apr
2011.

[210] S. K. Suslov, The Berry phase for simple harmonic oscillators, arXiv:1112.2418v1 [quant-
ph] 12 Dec 2011.

[211] S. K. Suslov, http://hahn.la.asu.edu/"suslov/curres/index.htm; see Mathematica notebook:
BerrySummary.nb.

[212] T. Yang and J.M McDonough, Solution and transcritical bifurcation of Burgers equation,
Chinese Physics B 20 (2011), 020504.

[213] T. Tao, The Black-Scholes equation, http://terrytao.wordpress. com/2008/07/01/the-black-
scholes-equation/.

[214] D. A. Trifonov Generalized uncertainty relations and coherent and squeezed states, J. Opt.
Soc. Am. A 17 (2011) #12, 2486-2495.

[215] W. G. Unruh, Notes on black-hole evaporation, Phys. Rev. D 14 (1976) #4, 870-892.

[216] H. Vahlbruch, M. Mehmet, S. Chelkowski et al, Observation of Squeezed Light with 10-dB
Quantum-Noise Reduction, Phys. Rev. Lett. 100 (2008), 033602 (4 pages).

[217] P. Verkerk, B. Lounis, C. Salomon, and C. Cohen-Tannoudji, Dynamics and spatial order of
cold Cesium atoms in a periodic optical potential, Phys. Rev. Lett. 68 (1992) #26, 3861-3864.

86



[218] L. Vinet and A. Zhedanov, Representations of the Schrodinger group and matrix orthogonal
polynomials, J. Phys. A: Math. Theor. 44 (2011) #35, 355201 (28 pages)

[219] A. A. Karabutov and O.V. Rudenko, Constructing Soliton and Kink Solutions of PDE Models
in Transport and Biology , Symmetry, Integrability and Geometry: Methods and Applications
2 (2006).

[220] W. Vogel and R. L. de Matos Filho, Nonlinear Jaynes-Cummings dynamics of a trapped ion,
Phys. Rev. A 52 (1995) #5, 4214-4217.

[221] A. I Volpert and V. A. Volpert, Traveling wave solutions of parabolic systems , AMS Book-
store 140, 1994.

[222] V. 1. Vysotskii, M. V. Vysotskyy, and S. V. Adamenko, Formation and application of corre-
lated states in nonstationary systems at low energies of interacting particles, J. Exp. Theor.
Phys.—JETP 114 (2012) #2, 243-252.

[223] D. F. Walls, Squeezed states of light, Nature 306 (1983) November 10, 141-146.

[224] D. F. Walls and G. J. Milburn, Quantum Optics, Springer, Berlin, Heidelberg, 2008.

[225] S. Weinberg, The Quantum Theory of Fields, volumes 1-3, Cambridge University Press,
Cambridge, 1998.

[226] E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (1932),
749-759.

[227] C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori,
and P. Delsing, Observation of the dynamical Casimir effect in a superconducting circuit, Na-

ture 479 (2011) November 17, 376-379.

[228] G. N. Watson, A Treatise on the Theory of Bessel Functions, Second Edition, Cambridge
University Press, Cambridge, 1944.

[229] G. B. Whitham, Linear and Nonlinear Waves, Wiley, John & Sons, New York, 1999.

[230] E.T. Whittaker and G. N. Watson, A Course of Modern Analysis, Fourth Edition, Cambridge
University Press, Cambridge, 1927.

[231] T. Xu, C.Y. Zhang, J. Li, X. H. Meng, H. W. Zhu, and B. Tian Tian, Symbolic computation on
generalized Hopf-Cole transformation for a forced Burgers model with variable coefficients
from fluid dynamics , Wave motion 44 (2007) #4 262-270.

87



[232] T. Yang and J. M. McDonough, Solution filtering technique for solving Burgers equation,
Special issue of Discrete and Continuous Dynamical Systems (2002).

[233] S. Yau, Computation of Fokker—Planck equation, Quart. Appl. Math. 62 (2004) #4, 643—-650.

[234] J. Q. You and F. Nori, Afomic physics and quantum optics using superconducting circuits,
Nature 474 (2011), 589-597.

[235] H. P. Yuen, Two-photon coherent states of the radiation field, Phys. Rev. A 13 (1976) #6,
2226-2243.

[236] S.Zheng, Nonlinear evolution equations, Chapman & Hall/CRC., New York, vol. 133, 2004.

[237] J. Zhao, S. Bao and Y. Li, Exponential Integral Methods for Burgers Equation, Seventh
IEEE/ACIS International Conference on Computer and Information Science (2008), 421-426.

88



BIOGRAPHICAL SKETCH

José M. Vega-Guzman was born in Ponce, Puerto Rico on 1982. Being the fifth of eight siblings,
he grew up in the south of the island and gained primary and secondary education from the public
education system of Juana Daz, PR. Afterwards, he completed on 2005 his undergraduate studies
in Mathematical Education at the University of Puerto Rico, Cayey Campus(UPRC). During under-
graduate years he developed a strong passion for the analysis and applications of differential equa-
tions. After, he moved to the state of Arizona and completed a Master degree in Natural Sciences in
the Department of Mathematics(School of Mathematics and Statistical Sciences) at Arizona State
University. Subsequently, he started his Ph.D. in the Applied Mathematics for the Life and Sci-
ences(AMLSS) program in SHESC at ASU. He was awarded the Bernd Aullbach Prize for Students
on October 2012 in the Symposium on Differential Equations in Novacella, Italy. He has served as
a Research Assistant in the Mathematical Computational and Modeling Sciences Center(MCMSC)
at Arizona State University.

89



