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ABSTRACT  
   

Objective: The purpose of this randomized parallel arm trial was to 

demonstrate the effects of daily fish oil supplementation (600mg per day for 

eight weeks) on body composition and body mass in young healthy women, 

aged 18-38, at a large southwestern university.  

Design: 26 non-obese (mean BMI 23.7±0.6 kg/m2), healthy women (18-

38y; mean, 23.5±1.1 y) from a southwestern Arizona university campus 

community completed the study. Subjects were healthy, non-smokers, 

consuming less than 3.5 oz of fish per week according to self-report. Participants 

were randomized to one of two groups: FISH (600 mg omega-3 fatty acids 

provided in one gel capsule per day), or CON (1000 mg coconut oil placebo 

provided in one gel capsule per day). Body weight, BMI, and percent body fat 

were measured using a stadiometer and bioelectrical impedance scale at the 

screening visit and intervention weeks 1, 4, and 8. 24-hour dietary recalls were 

also performed at weeks 1 and 8.  

Results: 8 weeks of omega-3 fatty acid supplementation did not 

significantly alter body weight (p=0.830), BMI (p=1.00), or body fat percentage 

(p=0.600) as compared to placebo. Although not statistically significant, 24-hour 

dietary recalls performed at the beginning and end of the intervention revealed a 

trend towards increased caloric intake in the FISH group and decreased caloric 

intake in the CON group throughout the course of the study (p=0.069). If 

maintained, this difference in caloric intake could have physiological relevance.  

 Conclusions: Omega-3 fatty acids do not significantly alter body weight or 

body composition in healthy young females. These findings do not refute the 
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current recommendations for Americans to consume at least 8 oz of omega-3-

rich seafood per week, supplying 250 mg EPA and DHA per day. More research is 

needed to investigate the potential for omega-3 fatty acids to modulate daily 

caloric intake.  
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Chapter 1 

INTRODUCTION 

American adults use omega-3 fatty acid supplements more than any 

other non-vitamin, non-mineral natural product available. In a 2007 survey, 37% 

of adults who had used natural products within the previous thirty days had used 

an omega-3 supplement (National Center for Complementary and Alternative 

Medicine, 2009). Omega-3 fatty acids are widely acclaimed for their anti-

inflammatory properties (Calder, 2006), and health organizations such as the 

American Heart Association and US Food and Drug Administration have 

recommended Americans include omega-3-rich foods such as fish as part of a 

well-balanced diet (Flock & Kris-Etherton, 2011; Kris-Etherton, Harris, & Appel, 

2002). Yet as obesity levels rise in the United States (Carroll & Surveys, 2010), 

the effects of increased omega-3 fatty acids on body composition in healthy 

people are unknown. 

 The ability of omega-3 fatty acids to inhibit the production of 

proinflammatory prostaglandins has been demonstrated to attenuate the severity 

of chronic inflammatory diseases such as coronary artery disease (Kris-Etherton 

et al., 2002) and rheumatoid arthritis (Calder, 2006). The omega-3 fats found in 

fish oil are also believed to have beneficial effects in autoimmune disorders, 

asthma, inflammatory bowel diseases (Calder, 2006), and some forms of cancer 

(Calder, 2006; Connor, 2000; Teitelbaum & Allan Walker, 2001), all of which are 

related to chronic inflammatory states (Calder, 2006).  

Despite the fact that obesity is a chronic inflammatory condition plaguing 

over 60% of American adults (Wyatt, Winters, & Dubbert, 2006), studies aiming 
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to demonstrate a link between fish oil intake and adiposity are inconclusive. 

Interestingly, omega-3 fatty acids have been used to increase body mass in 

patients with cancer cachexia (Colomer et al., 2007; Giacosa & Rondanelli, 2008; 

Grimble, 2003). Furthermore, one recent study demonstrated a down-regulation 

of thermogenic activity in brown adipose tissue in mice after inhibition of 

inflammatory prostaglandin production, suggesting omega-3 fatty acids may 

increase body mass and reduce basal metabolic rate (Vegiopoulos et al., 2010). 

Alternatively, a correlational study observed an inverse relationship between 

plasma omega-3 levels and body weight (Micallef, Munro, Phang, & Garg, 2009), 

and some studies have demonstrated enhanced fat loss by incorporating omega-

3 supplementation into a weight loss intervention (Hill, Buckley, Murphy, & 

Howe, 2007; Kabir et al., 2007; Noreen et al., 2010). However, others have 

found no significant changes in body mass after fish oil supplementation (Defina, 

Marcoux, Devers, Cleaver, & Willis, 2011; Fontani et al., 2005; Moore et al., 

2006; Noreen et al., 2010), or have had difficulty demonstrating these effects in 

women (Thorsdottir et al., 2007). 

In addition to these mixed results, the sample selections for most human 

interventions have made it difficult to generalize results to relatively healthy 

populations. Most clinical trials have employed subjects who are already obese or 

chronically inflamed (Hill et al., 2007; Kabir et al., 2007; Kunesová et al., 2006; 

Moore et al., 2006; Thorsdottir et al., 2007; Warner, Ullrich, Albrink, & Yeater, 

1989), and some have paired omega-3 fatty acid supplementation with a weight 

loss intervention rather than observing its effects independently (Hill et al., 2007; 

Kunesová et al., 2006; Moore et al., 2006; Thorsdottir et al., 2007; Warner et al., 
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1989). Moreover, only a few human interventions have tested these effects in 

young adults (Couet, Delarue, Ritz, Antoine, & Lamisse, 1997; Noreen et al., 

2010). One of these studies, conducted by Couet, et al., demonstrated an 

increase in fat oxidation and decrease in body fat over the course of three weeks 

when visible dietary fat was substituted with 6 grams of fish oil per day. 

However, the sample size was relatively small (seven total subjects), and only 

one female subject was used (Couet et al., 1997).  

Whether omega-3 fatty acids modulate body composition in healthy 

young women has yet to be investigated, despite the current recommendations 

for Americans to regularly consume sources of omega-3 fatty acids. More 

research is needed to determine if there are any unintended consequences of the 

current fish intake recommendations for young, healthy adult women, and how 

increased omega-3 intake may alter the susceptibility of this population to 

becoming overweight.  

Purpose of Study 

The primary objective of this randomized parallel arm trial was to 

demonstrate the effects of daily fish oil supplementation (600mg per day for 

eight weeks) on body composition and body mass in young healthy women, 

aged 18-40, at a large southwestern university.  

Research Aim & Hypothesis 

It was hypothesized that fish oil supplementation (600 mg per day) would 

have no effect on body weight or body composition by the end of the eight week 

period.  
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Definition of Terms 

• BMI: [weight (in pounds)/height (in inches)2] x 703; underweight is 

<18.5 kg/m2, normal is 18.5-24.9 kg/m2, overweight is 25.0-29.9 

kg/m2, obese is >30 kg/m2(American Dietetic Association, 2011) 

• Omega-3 fatty acids: polyunsaturated fatty acids, including alpha-

linolenic acid (ALA; 18:3 n-3), docosahexaenoic acid (DHA; 22:6 n-3), 

and eicosapentaenoic acid (EPA; 20:5 n-3) (Connor, 2000) 

• Prostaglandins: lipid mediator involved in the inflammation and 

immune response (Tilley, Coffman, & Koller, 2001) 

• Regular smoker: use of 10 or more cigarettes per day (Moran, 2004) 

• Training athlete: participating in purposeful, moderate to vigorous 

exercise more than 5 times per week 

Delimitations 

Subjects were women aged 18-38 years with no unresolved health issues. 

The participants attended a large university in the southwestern U.S.  

Exclusion criteria included regular smoking, BMI of less than 18.5 or more than 

30 kg/m2, and regular intake of omega-3 supplements and/or prescription 

medications that may interfere with body weight or inflammatory state (such as 

corticosteroids or non-steroidal anti-inflammatory drugs). Any subjects 

consuming more than 1 serving of fish or other omega-3-rich food per week, 

vegetarians, and subjects trying to lose or gain weight were also excluded. 

Furthermore, competing and/or training athletes and women who were pregnant 

or lactating were not included.  
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Limitations 

• Dietary omega-3 intake could alter inflammatory prostaglandin 

production in both the fish oil and control group. This limitation was 

minimized using a validated food frequency questionnaire to exclude 

study participants who regularly meet or exceed the American Heart 

Association’s fish intake recommendations (3.5oz of fish twice per 

week).  

• Natural fluctuations in body weight may occur due to hormonal cycles 

in women. To reduce this limitation, measurements were taken at a 

similar point in each woman’s cycle (every 4 weeks).  

• External factors such as lack of sleep or psychological stress may 

impact inflammatory state and body weight.  

• The short time period of the study may not have reflected significant 

changes in body weight or body composition. It is possible that a 

longer study period would be necessary to obtain valid and reliable 

results.  

• The subject pool was relatively small (n=26). A larger study using 

more subjects may be needed to obtain significant results.  
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Chapter 2 

LITERATURE REVIEW 

Adiposity 

 Obesity Prevalence. Over two-thirds of all American adults are either 

overweight or obese according to results from the 2007-2008 National Health 

and Nutrition Examination Survey (NHANES) (Carroll & Surveys, 2010), making a 

reduction in obesity prevalence one of the top national health objectives for 2010 

(Pisarik, 2005). Body mass index (BMI, equal to weight in kilograms divided by 

height in meters squared), is most frequently used to classify obesity (BMI ! 30 

kg/m2) and overweight (BMI 25-29.9 kg/m2) (Carroll & Surveys, 2010). 

Overweight and obesity are the result of a positive energy balance. These 

conditions are characterized by an increase in body weight, particularly in 

adiposity, and are positively correlated with morbidity, mortality, and decreased 

longevity (Pisarik, 2005). More specifically, obesity has been linked to increased 

risk of a myriad of chronic diseases, including type 2 diabetes, coronary heart 

disease, and some forms of cancer (Pisarik, 2005; Wellen & Hotamisligil, 2003). 

It is estimated that the United States spends nearly $93 billion annually due to 

obesity and its comorbidities, which is nearly 10% of the nation’s yearly health 

costs (Pisarik, 2005). The negative medical consequences linked to obesity could 

arise from the chronic, low-grade inflammatory state that seems to originate 

primarily in white adipose tissue under obesogenic conditions, ultimately leading 

to metabolic disruptions (Todoric et al., 2006; Wellen & Hotamisligil, 2003).  

White Adipose Tissue. One of the chief metabolic roles of white adipose 

tissue (WAT) is energy storage (Trayhurn & Beatie, 2001). Lipolysis (the 
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breakdown of stored fats) or lipogenesis (the synthesis of triacylglycerols for 

storage) occur depending on the body’s energy balance and corresponding 

hormonal and neural signals. For instance, during periods of negative energy 

balance and low blood glucose, a decrease in insulin and increase in glucagon 

and epinephrine stimulates the release of free fatty acids (FFAs) from WAT 

(Ahima & Flier, 2000; Gropper, Smith, & Groff, 2009). Once in circulation, FFAs 

may then be oxidized to generate usable energy in the form of adenosine 

triphosphate (ATP) (Ahima & Flier, 2000). 

WAT is primarily composed of lipid-containing cells called adipocytes, but 

also contains collagen, blood vessels, and immune cells, and functions as an 

important endocrine organ (Ahima & Flier, 2000). Even under healthy conditions, 

WAT produces potent hormones and proinflammatory molecules, termed 

adipokines, that play important roles in energy homeostasis (Wellen & 

Hotamisligil, 2003). Adiponectin and leptin are examples of adipokines released 

by WAT.  

The synthesis and release of the adipokine leptin is positively correlated 

with adiposity (Drevon, 2005). When blood glucose is elevated or when 

adipocytes are full, leptin is secreted from WAT. Leptin works to restore energy 

homeostasis by decreasing appetite and stimulating cellular glucose uptake by 

increasing insulin sensitivity (Gropper et al., 2009). Leptin takes action in the 

arcuate nucleus of the hypothalamus by stimulating anorexigenic hormones such 

as melanocyte stimulating hormone (MSH) (Gropper et al., 2009; Ronti, 

Lupattelli, & Mannarino, 2006). It also increases lipid oxidation in myocytes by 

inhibiting malonyl CoA, which is one of the first intermediates produced in fatty 
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acid synthesis. During periods of high glucose levels, malonyl CoA is elevated 

and inhibits lipid oxidation. By blocking malonyl CoA, leptin is able to increase 

rates of lipid oxidation and thus decrease lipid storage. As adipocyte size 

decreases, leptin production also decreases, and appetite inhibition is reduced 

(Gropper et al., 2009; Ronti et al., 2006).  

Adiponectin is also expressed in WAT, and appears to be protective 

against coronary heart disease and insulin resistance. Evidence suggests that 

adiponectin is able to increase insulin sensitivity by promoting lipid oxidation, 

which leads to reduced triglyceride content in hepatocytes and myocytes (Díez & 

Iglesias, 2003). Research has demonstrated a synergistic effect of adiponectin 

and leptin, as the two hormones seem to work together in order to increase 

insulin sensitivity (Ronti et al., 2006). Interestingly, adiponectin levels are lower 

in obese as compared to healthy populations, and levels seem to increase with 

weight loss. Moreover, the action of adiponectin is inhibited by inflammatory 

markers interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF- !), which are 

characteristic of obesity-related inflammation (Ronti et al., 2006).  

Brown Adipose Tissue. The presence of brown adipose tissue (BAT) is 

well known in human infants and small mammals. Its function is extremely 

different from that of WAT, as it is used by newborns and small mammals to 

generate heat and normalize core body temperature (Calder, 2006; Surette, 

2008). Studies observing cell differentiation in rodents have demonstrated a 

close relationship between BAT and muscle cells. These studies have observed 

that BAT expresses genes generally thought to be uniquely characteristic to 

myocytes, whereas WAT does not express these genes (Cypess et al., 2009). 
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Moreover, a 2008 study demonstrated that myogenic precursors in rodents 

expressing a particular myogenic transcription factor either developed into 

muscle cells or BAT, but not WAT (Seale et al., 2008).  

BAT is a strong contributor to basal energy expenditure due to its high 

expression of uncoupling protein 1 (UCP1)—a potent thermogenic mediator 

(Petrovic et al., 2010). As a proton transporter, UCP1 uncouples oxidative 

phosphorylation from ATP synthesis at the inner mitochondrial membrane. It is 

able to do so by allowing hydrogen ions that had been pumped out of the 

mitochondrial membrane by the electron transport chain to return to the 

mitochondria rather than going through ATP synthase. This decreases the 

concentration of hydrogen ions in the inner membrane space. Without this 

proton gradient, the efficiency of ATP synthesis is reduced and energy is 

transferred from food directly into heat rather than useable ATP (Celi, 2009; 

Gropper et al., 2009; Klingenberg, 2001; Seale et al., 2008). Food intake and 

exposure to cold temperatures are external stimuli that may stimulate BAT 

thermogenesis. BAT is tightly innervated by the sympathetic nervous system, 

allowing it to respond to environmental changes such as low temperatures 

(Zingaretti et al., 2009).  

Previously, it was believed that the presence of BAT in adult humans was 

rare and metabolically insignificant (Celi, 2009). However, recent research has 

demonstrated otherwise (Cypess et al., 2009; Seale et al., 2008). Studies have 

shown the presence of brown fat in the muscles of the subclavicular region, 

neck, chest, and abdomen of adult humans using computerized tomography and 

the introduction of a radioactive form of glucose (FDG) into tissues. These 
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techniques enable researchers to characterize the metabolic activity of the 

tissues (Cypess et al., 2009). Virtanen, et al. used these techniques to identify 

BAT in healthy volunteers on two occasions: once in room temperature, and the 

other in a chilled environment. All subjects demonstrated increased FDG uptake 

in subclavicular adipose. Tissue biopsy confirmed the presence of BAT in varying 

amounts in each subject. One subject was found to have 63g of BAT, which the 

authors predict would burn the caloric equivalent of over 8 pounds of white 

adipose tissue in just one year (Virtanen et al., 2009).  

Not only have studies established the presence of BAT in adults, but they 

have also demonstrated correlations between quantities of BAT and gender, age, 

and body fatness. Using FDG and positron emission tomography-computed 

tomography (PET-CT), Cypess, et al. demonstrated that the prevalence of BAT in 

women (BAT activity was detected in 7.5% of women in the study) was more 

than in men (3.1% of males in the study showed BAT activity), concluding that 

women were three times more likely to have substantial BAT than men. 

Furthermore, the authors noted that subjects under 50 years of age had the 

most detectable BAT (p<0.001), and that the amount of BAT was inversely 

correlated with obesity. It is believed that even more BAT would have been 

detected had participants been subjected to a BAT stimulus, such as a cold 

atmosphere (Cypess & Kahn, 2010; Farmer, 2009). Similar results were seen in a 

study by Zingaretti, et al., in which investigators analyzed adipose tissue samples 

from the necks of 35 patients. Zingaretti and colleagues found that 1/3 of the 

samples had regions expressing high levels of UCP1. These regions, termed “BAT 

islands,” were also much more densely innervated than WAT regions. The 
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highest levels of BAT were detected in the youngest and the leanest of the 35 

subjects; the mean BMI for subjects with UCP1 expression was 23± 1 kg/m2, 

whereas those with no UCP1 expression had a mean BMI of 26± 1 kg/m2 

(p<0.03). However, the study design did not allow the authors to separate 

leanness and age in order to deduce if it was just one of these variables or a 

combination of both that influenced UCP1 expression (Zingaretti et al., 2009).   

 

Omega-3 and Polyunsaturated Fatty Acid Overview  

Dietary Sources and Metabolism. Polyunsaturated fatty acids (PUFAs) are 

a broad classification of fatty acids that contain two or more carbon-carbon 

double bonds. They can be further classified into omega-3 (n-3 FAs) or omega-6 

fatty acids (n-6 FAs) depending on the location of their first double bond 

(Teitelbaum & Allan Walker, 2001). Although both are imperative in normal 

metabolism, n-3 and n-6 FAs must be obtained from dietary sources since 

humans lack the enzymes necessary for their de novo synthesis (El-Badry, Graf, 

& Clavien, 2007). Thus, n-3 and n-6 FAs are considered essential fatty acids 

(EFAs). EFAs have numerous biochemical roles, including energy storage, cell 

signaling, cell membrane structure, and inflammatory mediation (El-Badry et al., 

2007; Surette, 2008).   

Omega-3 fatty acids occur in foods in various structures depending on 

their original source. All n-3 FAs contain between 18 and 22 carbon atoms with 

their first double bond located at the third carbon from the methyl end of the 

carbon chain (Calder, 2006). However, eicosapentaenoic acid (EPA, 20:5 n-3) 

and docosahexaenoic acid (DHA, 22:6 n-3) are the most biologically available 
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sources of dietary n-3 FAs, and are abundant in some animal foods. EPA and 

DHA are long chain n-3 FAs in comparison to alpha linolenic acid (ALA, 18:3 n-3), 

the common short chain n-3 FA. High fat fish such as salmon and tuna are 

particularly rich in EPA and DHA (Molendi-Coste, Legry, & Leclercq, 2011), but 

limited amounts of n-3 FAs are also found in some cuts of beef, poultry, and 

eggs depending on the feeding patterns of the animal. ALA is found in plant oils, 

including walnut and flaxseed oils (Table 1) (A. P. Simopoulos, 2001a). Despite 

large disparities in n-3 FA content between fish species, marine foods generally 

have between 5 and 15 times the amount of n-3 FAs as poultry or other animal 

meats (Howe, Meyer, Record, & Baghurst, 2006). Enriched foods have also been 

developed to enhance levels of EPA and DHA in foods, or to add them to non-

animal foods (Mantzioris et al., 2000).  

Table 1. Dietary Sources of PUFAs1 
Marine Sources 
Food Source EPA + DHA (g/4oz) 2 Omega-6 FA (g/4 oz) 2 
Salmon, wild, Atlantic, 
Chinook, or Coho 

1.2-2.4 0.3-0.5 

Anchovies, Herring, or Shad 1.6-2.7 0.1-0.3 
Tuna, Bluefin, fresh 1.3-1.7 0.1 
Tuna, Albacore, canned in 
water 

1.0 0.1 

Swordfish 0.9 0.05 
Salmon, Pink, farmed 0.4 0.1 
Crab, Blue or Snow 0.4-0.5 0.08 
Tuna, light, canned in water 0.3 0.1 
Cod, Alaskan 0.2 0.03 
Shrimp 0.07 0.02 
Eggs, Meat, and Poultry 

Food Source EPA + DHA (g/4oz) 2 Omega-6 FA (g/4 oz) 2 
Egg, fresh 0.033 0.83 

Chicken, broilers or fryers, no 
skin or bone 

0.006 0.4 

Beef, flank steak 0.003 0.3 
Beef, grass fed, strip steaks, 0.002 0.1 
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lean only 
Beef, ground, 70% lean 
meat, 30% fat 

0.000 0.7 

Plant oils 
Food Source ALA (g/Tbsp) 4 LA (g/Tbsp) 4 
Flaxseed oil, cold pressed 7.3 0.004 
Canola oil 1.3 2.7 
Walnut oil 1.4 7.2 
Soybean oil 0.9 6.9 
Corn oil 0.2 7.3 
Olive oil 0.1 1.3 
Safflower oil 0.0 10.1 
Sunflower oil 0.0 3.9 
Coconut oil 0.0 0.2 
1Source: U.S. Department of Agriculture, Agricultural Research Service, Nutrient 
Data Laboratory, 2012, USDA National Nutrient Database for Standard Reference, 
Release 24, Available at: http://ndb.nal.usda.gov/. 
2Values based on 4oz raw 
3Based on 1 large egg (50g) 
41 Tbsp oil = 13.6 g 

 

Marine sources of n-3 FAs are distinct from plant sources, such as nuts, 

seeds, and soy, which supply alpha linolenic acid (ALA, 18:3 n-3) (A. P. 

Simopoulos, 2001a). ALA is believed to be one of the least usable forms of n-3 

FAs since it must be converted to the longer chain n-3 FAs (EPA and DHA) in the 

endoplasmic reticulum of hepatocytes before it can be used. The rate at which 

ALA is converted to longer chain n-3 FAs is dependent on the ratio of n-6 to n-3 

FAs available in the diet (Arterburn, Hall, & Oken, 2006). Delta-6 desaturase is 

the rate-limiting enzyme in the conversion of ALA to EPA, and adds a double 

bond to the original ALA structure. Elongases then add carbon units to the 

molecule, and delta-5 desaturase finally adds another double bond to form EPA. 

DHA is synthesized next via delta-6 desaturase and beta-oxidation (G. C. Burdge 

& Calder, 2005).  
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The conversion of ALA to EPA and DHA is relatively inefficient in humans 

(G. C. Burdge & Calder, 2005), but evidence has shown that women are more 

efficient in this conversion than men. Conversion rates of ALA to EPA and DHA 

have been shown to be up to 21% and 9%, respectively, in females, as 

compared to less than 8% and less than 4% in males (Arterburn et al., 2006). It 

is possible that the increased efficiency of this process in females may be related 

to the high demands for DHA during pregnancy (G. C. Burdge & Calder, 2005). 

The conversion rate of ALA to EPA may be further altered by dietary n-6 FA 

levels, since metabolism of linoleic acid (an n-6 FA) competes with ALA for the 

rate-limiting enzyme delta-6 desaturase.  

Linoleic acid (LA) represents the n-6 FAs and is found in high levels in 

vegetable oils such as safflower, sunflower, and corn oil (A. P. Simopoulos, 

2001b). Once in the body, LA is efficiently converted to arachidonic acid (AA). LA 

contains an 18-carbon chain, while AA contains a 20-carbon chain. Both have cis 

double bonds beginning at the sixth carbon from the methyl end of the carbon 

chain (El-Badry et al., 2007). In order to convert LA to AA, LA is first converted 

to gamma-linoleic acid (18:3 n-6) by delta-6 desaturase. Elongases then add 

carbon units to form dihomo-gamma-linoleic acid (20:3 n-6). Delta-5 desaturase 

completes the process by adding another double bond to form AA (Wall, Ross, 

Fitzgerald, & Stanton, 2010). Like EPA, AA is a critical component of cellular 

plasma membranes, and plays a major role in cell signaling and inflammatory 

processes (El-Badry et al., 2007).  

Both ALA and LA metabolism utilize the same desaturases and elongases, 

but the resulting metabolites are very different (Calder, 2006). Activity of these 
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enzymes is regulated by numerous factors, including feedback inhibition related 

to dietary intake (El-Badry et al., 2007). Igarashi and colleagues provided 

rodents with a diet very low in n-3 FA for 15 weeks and compared expression 

and activity of elongases and delta-5 and 6 desaturases. Rats fed inadequate n-3 

FA showed significantly increased expression of delta-5 and 6 desaturases and 

elongases 2 and 5 in hepatocytes (p<0.05), suggesting transcription of these 

enzymes may be upregulated during periods of low n-3 FA intake in order to 

convert ALA to EPA and DHA (Igarashi, Ma, Chang, Bell, & Rapoport, 2007).  

Desaturase activity appears to change in fasting and fed states, as insulin 

may stimulate delta-6 desaturase and glucagon may decrease both delta-5- and 

6 desaturase activity (El-Badry et al., 2007). Brenner and colleagues found that 

fasting decreased delta-6 desaturase activity, and glucose refeeding increased 

activity in rodents (Brenner, 1981). Similarly, investigators observed that diabetic 

rats had overall low delta-6 desaturase activity, but this activity was increased 

when insulin was administered (Brenner, 1981). This hormonal regulation 

appears to hold true in humans as well. Medeiros and colleagues observed delta-

5 and delta-6 desaturase activity with respect to insulin levels in obese women. A 

positive correlation was found between insulin levels and desaturase activity in 

women with hyperinsulinemia, but a negative correlation was found between 

desaturase activity and obesity (El-Badry et al., 2007; Madeiros, Liu, Park, 

Chang, & Smith, 1995). 

Interestingly, desaturase activity in males tends to be lower than that of 

females (Arterburn et al., 2006). A study by Burdge and Wootton showed that 

conversion of ALA to EPA was 2.5 times greater in young women (mean age of 
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28 years) than men of a similar age, and conversion of ALA to DHA was over 200 

times greater in young women as compared to men (G. C. Burdge & Calder, 

2005; G. C. Burdge & Wootton, 2002). Estrogen is believed to lead to increased 

lipid oxidation, which is needed in the last step of the conversion of ALA to DHA. 

Thus, higher estrogen levels in women as compared to men could allow for 

increased DHA formation. This theory was supported by a study comparing ALA 

to DHA conversion rates in women receiving oral contraceptives (a source of 

estrogen) to women not taking contraceptives. Those on contraceptives 

demonstrated 62% greater DHA synthesis compared to the control group, 

suggesting estrogen may play a role in increasing the ALA to DHA conversion 

pathway (G. Burdge, 2004).  

Current versus Historical Intakes. It is estimated that Americans currently 

consume an average of one 3.5 oz serving of seafood per week (National Center 

for Complementary and Alternative Medicine, 2009). The 2010 Dietary Guidelines 

for Americans recommend Americans increase seafood intake to approximately 8 

oz per week (supplying 250mg EPA and DHA per day), citing in particular its 

importance in cardiac health (Flock & Kris-Etherton, 2011). The American Heart 

Association confirms these recommendations, suggesting Americans consume at 

least two 3.5 oz servings of fish per week (Kris-Etherton et al., 2002). The 

current adequate intake (AI) for n-3 FAs for adults aged 19-30 years is 1.6 g/d 

for males and 1.1 g/d for females. Despite the need for ALA to be converted into 

EPA and DHA, this level does not distinguish between ALA, EPA, and DHA intakes 

(Trumbo, Schlicker, Yates, & Poos, 2002).  
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Anthropological and epidemiological studies have demonstrated 

disparities between the typical Western diet and the hunter-gatherer diets of our 

Paleolithic ancestors approximately 2.5 million-10,000 years ago (Kuipers et al., 

2010; A. Simopoulos, 2006). The modern Western diet is generally high in LA-

rich foods, including refined vegetable oils and grains, and relatively low in fiber 

and phytochemicals from unprocessed plant foods (Cordain et al., 2005). 

Conversely, the Paleolithic diet was high in ALA-rich, unprocessed plant foods 

such as nuts and seeds, and low in cereal grains and high-fat proteins (Kuipers 

et al., 2010).  

Kuipers, et al., modeled Paleolithic diets using a database of Eastern 

African foods and knowledge of typical hunter-gatherer food collection strategies. 

Investigators found that our Paleolithic ancestors consumed significantly more n-

3 FAs and less n-6 FAs than those consuming the modern Western diet (Kuipers 

et al., 2010). The estimated n-6 FA to n-3 FA ratio of the Paleolithic diet is 

believed to have been close to 1:1, whereas the ratio in the typical Western diet 

is approximately 16:1 (A. Simopoulos, 2006).  

Perhaps the most significant changes to the food supply have occurred 

within the last two centuries with changes in food technology and agricultural 

practices. For instance, livestock was primarily grass-fed prior to the 19th century. 

This practice changed when the development of technologies such as the steam 

engine and railroad allowed for increased grain harvest, which could then be 

used as animal feed (Cordain et al., 2005). Grain-based diets led to changes in 

the fatty acid composition of meats, as grain-fed animals supply higher levels of 
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saturated and n-6 FAs than free-ranging, grass-fed animals (A. Simopoulos, 

2006).  

Furthermore, oil-seed processing led to stark increases in consumption of 

n-6 FA-rich vegetable oils in the 20th century (Cordain et al., 2005). For instance, 

soybean oil constituted approximately 0.006% of total calories consumed by 

Americans in 1909. By 1999, soybean oil consumption was over 1,000 times 

greater, comprising 7.38% of energy consumption (Blasbalg, Hibbeln, Ramsden, 

Majchrzak, & Rawlings, 2011). This increase in processed food availability is 

believed to have displaced n-3 FAs in the modern diet, causing an overall 

increase in n-6 FA and decrease in n-3 FA consumption (Blasbalg et al., 2011; 

Cordain et al., 2005).   

Despite the discrepancies between Paleolithic and modern PUFA intake, 

the human genome has only changed minimally, possibly contributing to the rise 

in chronic inflammatory conditions (Kuipers et al., 2010). The effect of this 

overabundance of n-6 FAs on biochemical processes such as gene transcription 

and regulation are unclear. Furthermore, the surplus of n-6 FA allows for 

increased production of AA metabolites, such as interleukin-6 (IL-6) and tumor 

necrosis factor alpha (TNF-!). These potent inflammatory cytokines have been 

found to lead to a prothrombotic, proaggregatory state, likely contributing to the 

development of chronic inflammatory conditions such as cardiovascular disease 

and autoimmune disorders (A. Simopoulos, 2006).  

 Observed changes in dietary n-6 to n-3 FA ratios could also explain why 

recent research has shown the Mediterranean diet to be particularly effective in 

reducing inflammatory diseases such as asthma and cardiovascular disease (A. 
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Simopoulos, 2006; A. P. Simopoulos, 2001a). Both the Paleolithic and 

Mediterranean diets are relatively high in plant foods, nuts and seeds, and 

protein sources such as fish, thus supplying significantly higher levels of mono- 

and polyunsaturated fats than the typical Western diet (A. P. Simopoulos, 

2001b). A crossover-study by Ambring, et al., demonstrated a statistically 

significant decrease in serum n-6 to n-3 phospholipid ratio when subjects were 

on a Mediterranean diet when compared to a Swedish diet. The total number of 

leukocytes was decreased by 10% (p<0.05), and the total number of platelets 

was decreased by 15% (p<0.001) after 4 weeks on the Mediterranean diet, 

suggesting a decreased risk for coronary artery disease. Investigators also 

observed a significant inverse correlation between DHA consumption and 

lymphocyte count regardless of diet (Swedish or Mediterranean), suggesting a 

link between DHA and decreased risk of coronary heart disease (Ambring et al., 

2006).  

Interestingly, a study by Kang, et al., demonstrated the capability of 

rodent cardiomyocytes to express a gene allowing for the conversion of n-6 FAs 

to n-3 FAs in order to bring the ratio closer to 1 (Kang et al., 2001). Although 

humans lack the enzymes necessary to perform this conversion, it is interesting 

that when present, these enzymes return EFA levels to a ratio similar to that 

believed to be optimal based on evolutionary studies (Kang et al., 2001).  

 
Biological Functions of PUFAs 
 

PUFAs as Energy Sources. Dietary lipids are energy dense, supplying 9 

kilocalories per gram (Brown, Isaacs, & Wooldridge, 2007). All dietary lipids, 
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whether saturated or unsaturated, undergo mitochondrial beta-oxidation (lipid 

oxidation) to generate ATP. However, evidence suggests that unsaturated fatty 

acids are more readily oxidized than saturated fatty acids of equal chain length 

(DeLany, Windhauser, Champagne, & Bray, 2000; Piers, Walker, Stoney, Soares, 

& O’Dea, 2002). There is also a positive linear relationship between the number 

of double bonds and oxidation rate of fatty acids, suggesting that saturated fatty 

acids are more likely to be stored in adipose tissue than unsaturated fatty acids 

(DeLany et al., 2000).  

Before fatty acid oxidation begins, long chain fatty acids must first be 

attached to carnitine by carnitine palmitoyl transferases (CPT) so that they may 

be transported into the mitochondrial matrix (Buckley & Howe, 2009). Here, they 

are activated to form fatty acyl-CoA (Eaton et al., 1996). The process of beta-

oxidation occurs in the mitochondria, generating energy in the form of FADH2, 

NADH, and acetyl-CoA (Eaton et al., 1996; Gropper et al., 2009).  

Effects on Gene Expression. PUFAs, including n-3 and n-6 FAs, may act as 

ligands for nuclear factors, which directly interact with DNA to regulate gene 

transcription (Bordoni, Di Nunzio, Danesi, & Biagi, 2006; Ferré, 2004). For 

instance, PUFAs are able to modulate their own metabolism by acting as ligands 

for peroxisome proliferator-activated receptors (PPARs), a family of transcription 

factors involved in inflammation and energy homeostasis (Molendi-Coste et al., 

2011).  

PPARs occur in three known isoforms: PPAR!, PPAR "/#, and PPAR$, each 

of which is transcribed from different genes. PPAR! is prevalent in hepatic, renal, 

cardiac, and skeletal muscle tissue (Ferré, 2004), and regulates expression of 
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genes involved in fatty acid transport and oxidation, inflammation, and cell 

proliferation (Stienstra, Duval, Müller, & Kersten, 2007). Because PPAR! 

increases fatty acid oxidation, its activation may lead to decreased fat storage. 

PPAR "/# is a regulator of lipid metabolism, wound healing, and development, 

and is prevalent in numerous tissues throughout the body (Ferré, 2004). Finally, 

PPAR$ occurs in four known isoforms which are widely expressed in white and 

brown adipose tissue, and to a lesser amount in immune cells (Bordoni et al., 

2006). In addition to lipid metabolism, PPAR$ plays a role in inflammation, 

adipocyte differentiation, and cell cycle regulation (Bordoni et al., 2006).  

Studies demonstrating the ability of PPARs to reduce transcription of pro-

inflammatory genes in adipocytes and hepatocytes have called attention to their 

antiobesogenic potential (Ferré, 2004). Moreover, studies have demonstrated 

that PPARs may act to decrease hypertrophy of adipocytes (Bordoni et al., 2006), 

and influence the differentiation of preadipocytes in order to form fewer 

proinflammatory, macrophage-type cells (Stienstra et al., 2007). All unsaturated 

fatty acids, including EPA, DHA, AA, and LA, have been shown to activate PPAR!, 

leading to increased expression of genes encoding enzymes needed for lipid 

oxidation (Ross, Moses, & Fearon, 1999). This leads to a consequential decrease 

in lipid accumulation in tissues (Ferré, 2004). Activation of PPAR$ by AA, DHA, 

EPA, and other PUFAs may also decrease inflammatory cytokine production in 

vasculature (Stienstra et al., 2007), and increase adipocyte secretion of 

antiobesogenic hormones such as leptin and adiponectin (Ferré, 2004).  

Long chain PUFAs, including both the n-3 and n-6 FAs, may also control 

lipid homeostasis by regulating the activation of sterol regulatory element-
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binding proteins (SREBPs) (Deckelbaum, Worgall, & Seo, 2006). SREBPs are a 

family of transcription factors important to lipid synthesis. SREBPs must be 

activated posttranscriptionally, but PUFAs have been shown to inhibit their 

activation, leading to decreased lipid synthesis (Deckelbaum et al., 2006; Eberle, 

Hegarty, Bossard, Ferre, & Foufelle, 2004).  

Incorporation into Plasma Membranes. Lipids are also incorporated into 

cellular plasma membranes, particularly in erythrocytes, platelets, and 

neutrophils, allowing them to play important roles in cell signaling (A. P. 

Simopoulos, 1999). Plasma membrane composition is reflective of dietary lipid 

intake, as n-3 and n-6 FAs compete with each other for assimilation into the 

phospholipid bilayer (Wall et al., 2010). Studies have demonstrated changes in 

erythrocyte morphology and composition in rodents after providing diets rich in 

either n-6 FAs or n-3 FAs. Increased n-3 FA consumption leads to an increased 

n-3 to n-6 FA ratio in the plasma membrane, and a consequential increase in n-3 

metabolite production (Surette, 2008; Teitelbaum & Allan Walker, 2001).  

The presence of long-chain PUFAs (including n-3 and n-6 FAs) in cell 

membranes enhances membrane fluidity. Multiple double bonds found in PUFAs 

contribute to a more disorganized plasma membrane structure. Because DHA is 

longer and contains more double bonds than EPA and AA, it is believed to create 

an even more fluid and disorganized plasma membrane structure (Gorjão et al., 

2009). This allows for improved cell-signaling by making membrane-bound 

receptors, enzymes, and transporters more accessible to signaling molecules 

such as G-proteins, kinases, and ion channels (Ross et al., 1999).  
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The PUFA (including both n-3 and n-6 FAs) content of cell membranes 

may modulate sodium and calcium channel ion pump function by stimulating 

their activity (Ross et al., 1999). Membrane-associated ion transport, which 

drives cellular processes such as metabolism, is a major contributor of the basal 

metabolic rate of mammals. Animals with high basal metabolic rates have been 

shown to have higher levels of PUFAs in their cell membranes, suggesting PUFAs 

may act as stimulators of enzymes needed in active transport and cell-signaling, 

such as calcium ATPases and sodium-potassium ATPases (Hulbert, Turner, 

Storlien, & Else, 2005). Infante, et al., demonstrated that high levels of PUFA 

(particularly n-3 FA) in the membranes of muscle cells led to increased activity of 

calcium ATPase, a major contributor to metabolism (Infante, 1987).    

Eicosanoid Synthesis. Essential fatty acids incorporated into the plasma 

membrane are also used to produce cell-signaling molecules called eicosanoids. 

Eicosanoids such as leukotrienes, prostaglandins, and thromboxanes act as cell 

mediators to modulate numerous processes such as inflammation, immunity, and 

thrombogenesis. Both EPA and AA may be used to synthesize eicosanoids, but 

the specific type of eicosanoid produced varies depending on the availability of 

free EPA and AA (Harizi, Corcuff, & Gualde, 2008). Because n-6 FAs are usually 

present in higher quantities in cell membranes, eicosanoids derived from AA are 

typically formed more readily (Harizi et al., 2008). 

Unsaturated fatty acids used for eicosanoid synthesis come from the 

phospholipids of inflammatory cell membranes. Physiological stimuli (such as 

elevated epinephrine or antigen-antibody complexes), or pathological stimuli may 

act on a specific tissue to stimulate eicosanoid production. In response, 
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phospholipase A2 (PLA2) acts on cell membranes to liberate AA or EPA from the 

phospholipid bilayer (Gropper et al., 2009; A. Simopoulos, 2006). Specifically, 

PLA2 cleaves the ester bond linking the fatty acid to the second carbon on the 

glycerol backbone, releasing a fatty acid (Gropper et al., 2009).  

AA can be converted to the 2 series of prostaglandins and the 4 series of 

leukotrienes and thromboxanes, while EPA is the precursor to the 5 series of 

leukotrienes and the 3 series of prostaglandins (Calder, 2010; Das, 2005). EPA 

and DHA may also be converted to E-series and D-series resolvins, respectively, 

which are important in inflammation suppression (C. N. Serhan et al., 2002; 

Charles N Serhan, Gotlinger, Hong, & Arita, 2004).  

The pathways converting free EPA and AA to their respective eicosanoids 

utilize many of the same major enzymes, yet those generated from EPA have 

slightly different structures and presumably weaker effects than those from AA 

(Harizi et al., 2008). If present in large quantities, AA-derived eicosanoids 

generally promote an inflamed, prothrombotic physiologic state. Conversely, 

EPA-derived eicosanoids typically have either weakly pro-inflammatory or anti-

inflammatory properties. Thus, it is believed that high dietary consumption of n-6 

FA and low n-3 FA consumption can promote inflammatory conditions (Calder, 

2006).  

Arachidonic Acid-Derived Eicosanoids. Three different classes of enzymes 

may act on free AA to produce bioactive eicosanoids: cyclooxygenases (COXs), 

lipoxygenases (LOXs) or P-450 epoxygenases (Calder, 2006). COX exists in 

different isoenzymes as either COX-1 or COX-2. COX-1 is a constitutive enzyme, 

meaning it is not controlled by induction or repression and is present at all times. 
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Conversely, COX-2 is an inducible enzyme, so the level of its expression depends 

on physiological conditions (Calder, 2006). AA-derived eicosanoids include 

leukotriences, lipoxins, prostaglandins, thromboxanes, and hydroxy fatty acids 

(Harizi et al., 2008). The COX pathways produce prostaglandins PGD2, PGE2, 

and PGF2a, prostacyclin, and the thromboxanes TXA2 and TXB2 (A. Simopoulos, 

2006). PGE2, an AA-derived eicosanoid, has received special attention for its 

powerful abilities to increase inflammation, resulting in effects such as 

vasodilation, edema, pain, and fever (Stanke-Labesque et al., 2008). The LOX 

pathway is responsible for converting AA into various leukotrienes, 

hydroxyeicosatetraenoic acids (HETEs), and lipoxins. P-450 epoxygenases 

synthesize HETEs and epoxides (Calder, 2006). The AA-derived eicosanoids, such 

as PGE2, generally have strong inflammatory potential. However, some evidence 

has shown that the lipoxins may actually decrease inflammation (Das, 2005) and 

stop neutrophil migration and adhesion (Chiang, Arita, & Serhan, 2005). 

EPA and DHA-Derived Eicosanoids. Metabolism of EPA and DHA are 

affected by dietary n-3 FA intake, as n-3 FAs compete with n-6 FAs for both 

incorporation into cell membranes and interaction with COX and 5-LOX (Calder, 

2006). This effect has been demonstrated in humans; for instance, fish oil 

supplementation has been shown to cause an increase in the production of 

certain leukotrienes, such as LTB5 and LTE5, and a decrease in LTB4 and 

prostaglandin E2 (PGE2) (Teitelbaum & Allan Walker, 2001; Thies et al., 2001). 

In contrast with AA-derived eicosanoids, EPA-derived eicosanoids, such as LTB5, 

exert weak inflammatory or even anti-inflammatory effects (Stanke-Labesque et 

al., 2008; Teitelbaum & Allan Walker, 2001). Moreover, EPA-derived eicosanoids 
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may antagonize the actions of AA-derived eicosanoids, ultimately limiting their 

inflammatory potential (Calder, 2010). For instance, Tull, et al., demonstrated 

through an in vitro study that generation of EPA-derived eicosanoids inhibited 

the recruitment and migration of neutrophils (Tull et al., 2009). Expression of 

leukocyte adhesion molecules, which is typically stimulated by cytokines, was 

suppressed after DHA supplementation in endothelial cells. As a result, 

inflammatory markers, including IL-1 and IL-6, were significantly decreased in 

the cells that received DHA supplementation (DeCaterina, Liao, & Libby, 2000). 

Observations such as these have led to the belief that increased n-3 FA intake 

weakens the inflammatory response (Molendi-Coste et al., 2011).  

EPA and DHA may also be used in the COX-2 pathway to produce the E-

series and D-series resolvins, respectively. Resolvins are anti-inflammatory 

mediators that have been shown to block generation of inflammatory markers 

such as TNF-! and IL-6, ultimately decreasing leukocyte recruitment and pro-

inflammatory cytokine generation (Das, 2005). Low cellular concentrations of 

resolvins may increase adherence of macrophages to endothelial cells, leading to 

endothelial injury that is characteristic of chronic inflammatory diseases such as 

coronary artery disease (Das, 2005).    

 

Inflammation 

Acute & Chronic Inflammation. Inflammation is a natural and essential 

response to physical, chemical, or biological stressors, such as injury and 

infection (Stienstra et al., 2007). In acute inflammation, leukocytes, 

macrophages, and eicosanoids are recruited to destroy injurious stimuli (Calder, 



  27 

2006). If successful, a process of tissue repair and inflammatory cell apoptosis 

follows, and homeostasis is reestablished (Jernås et al., 2006). If the harmful 

agent is not eliminated, however, chronic inflammation persists through systemic 

recruitment of macrophages and inflammatory mediators such as interleukins 6 

and 8 (IL-6 and IL-8), tumor necrosis factor-alpha (TNF-!), and C-reactive 

protein (CRP) (Monteiro & Azevedo, 2010), potentially damaging surrounding 

tissues (Wall et al., 2010).  

Anti-Inflammatory Effects of Omega-3 Fatty Acids. Omega-3 fatty acids 

have been found to attenuate the effects of some chronic inflammatory 

conditions, including rheumatoid arthritis and atherosclerosis (Monteiro & 

Azevedo, 2010). Several mechanisms have been proposed to explain the ability 

of n-3 FAs to decrease systemic inflammation both indirectly and directly.  

Because n-3 and n-6 FAs compete for assimilation into plasma 

membranes, n-3 FA intake decreases the concentration of AA in tissues (Calder, 

2006). This leaves less substrate available for production of AA-derived 

eicosanoids, thereby indirectly suppressing the inflammatory response (Calder, 

2010). Furthermore, by competing with AA for metabolism through the COX and 

LOX pathways, n-3 FAs are able to decrease production of AA-derived, pro-

inflammatory eicosanoids (Tull et al., 2009; Wall et al., 2010). Instead, higher 

levels of less-potent eicosanoids, and possibly even anti-inflammatory 

eicosanoids, are produced (Calder, 2010).  

In addition to antagonizing AA-derived eicosanoid inflammation, resolvins 

and lipoxins produced from EPA and DHA have the potential to decrease 

inflammation directly by blocking cytokines and decreasing neutrophil migration 
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(Charles N Serhan et al., 2004; Wall et al., 2010). The ultimate systemic results 

of these mechanisms are evidenced by suppressed leukocyte chemotaxis and 

decreased production of reactive oxygen species and adhesion molecules 

(Calder, 2010).  

Moreover, n-3 FAs may induce anti-inflammatory effects on a genetic 

level (Calder, 2009, 2010; Wall et al., 2010). PPARs are known to antagonize the 

effects of nuclear factor kappa B (NFkB), which is a transcription factor that 

regulates the production of adhesion molecules and pro-inflammatory mediators 

(including IL-6 and TNF-!). As ligands for PPARs, PUFAs (particularly n-3 FAs) 

are able to indirectly suppress NFkB activity (Wall et al., 2010). Furthermore, 

some evidence suggests EPA may inhibit NFkB activity by altering its activation. 

Under normal conditions, NFkB is activated through phosphorylation, yet cells 

cultured with n-3 FAs demonstrated less phosphorylation of NFkB as compared 

to cells cultured with n-6 FAs (Babcock et al., 2003). Thus, n-3 FAs seem to 

reduce the ability of kinases to activate NFkB (Calder, 2009).  

 

Current Literature Studying n-3 FA Intake and Body Composition 

Animal and In Vitro Studies. Although limited, some evidence suggests n-

3 FAs may decrease basal metabolic rates in rodents, which could lead to 

decreased body mass over time. Vegiopoulos, et al., studied the role of COX-2 

(an enzyme critical to eicosanoid synthesis) in BAT activity in mice. Investigators 

found that inhibition of COX-2 led to decreased BAT thermogenesis and a 

reduction in basal metabolic rate, ultimately leading to increased adiposity. 

Proinflammatory AA-derived eicosanoids are believed to increase mitochondrial 
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thermogenesis by up-regulating UCP1. This suggests that n-3 FAs, which 

compete with AA for metabolism by COX-2, may lead to a reduction in 

thermogenesis and a consequential increase in adiposity (Vegiopoulos et al., 

2010). 

Other studies suggest dietary n-3 FA decreases adiposity. An in vitro 

study by Kim, et al., demonstrated antiadipogenic effects of DHA. Preadipocytes 

exposed to DHA displayed decreased lipid accumulation. Furthermore, DHA led 

to increased adipocyte apoptosis. Investigators reasoned that DHA was 

incorporated into cellular plasma membranes (leading to decreased 

concentration of AA in membrane phospholipids), thus decreasing production of 

AA-derived eicosanoids, which are typically associated with cell proliferation. 

Lipolysis in mature, fully differentiated adipocytes, was also stimulated after 

introduction of DHA (Kim, Della-Fera, Lin, & Baile, 2006). Thus, n-3 FAs may 

encourage adipocyte apoptosis, discourage accretion of lipids in adipocytes, and 

increase lipolysis to make fewer lipids available for adipocyte uptake.   

Animal studies have found similar results. Ruzickova, et al., found that 

when a portion of a high fat diet was replaced with EPA and DHA, rodents 

accumulated less epididymal fat and displayed less weight gain when compared 

to rodents on a control high fat diet. Observed differences could not be explained 

by variances in caloric intake, suggesting EPA and DHA may have played a role in 

the rodents’ metabolism. Based on these results, however, it is predicted that 

humans consuming 100g of fat per day would need to replace 11g of dietary fat 

with EPA/DHA in order to see a decrease in obesity (Ruzickova et al., 2004). This 
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would be equivalent to approximately 5-7 servings of oily fish per day, which far 

exceeds the current dietary recommendations (Flock & Kris-Etherton, 2011).  

Belzung, et al., observed a dose-dependent decrease in epididymal and 

peritoneal adipose tissue accretion in rodents consuming EPA and DHA as part of 

a high-fat diet. Investigators suggested that EPA and DHA may play a role in 

limiting adipocyte hypertrophy (Belzung, Raclot, & Groscolas, 1993). In a study 

by Raclot, et al., not only did investigators find that dietary n-3 FA led to 

decreased adipocyte hypertrophy in rodents, but they also found that expression 

of metabolic enzymes, including fatty acid synthase and lipoprotein lipase, 

decreased in rodents receiving EPA and/or DHA (Raclot, Groscolas, Langin, & 

Ferré, 1997). This suggests that n-3 FAs may play a role in expression of 

enzymes needed for lipogenesis and lipid oxidation (Raclot et al., 1997).  

Omega-3 fatty acids may also have implications in appetite regulation. A 

2006 study showed that rats fed EPA had increased levels of leptin (an 

anorexigenic hormone) and decreased caloric intake (Pérez-Matute, Pérez-

Echarri, Martínez, Marti, & Moreno-Aliaga, 2007). Furthermore, a study by 

Takahashi and Ide also demonstrated decreased intake and a consequential 

reduction in adiposity in mice fed an EPA/DHA-enriched diet (Takahashi & Ide, 

2000).  

Human studies showing weight gain. Although the mechanism is elusive, 

several studies in humans have demonstrated that frequent consumers of fish 

tend to weigh more (Table 2). Iso, et al., distributed food frequency 

questionnaires to healthy female registered nurses between the ages of 34 and 

59 and followed nearly 80,000 of them for 14 years. Although the primary 
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objective of the study was to observe stroke risk as related to fish consumption, 

investigators noted that women who reportedly consumed over two servings of 

fish per week (approximately 0.5 g n-3 FA per day) were more likely to be 

overweight than non-fish eaters (Iso, 2001). Because the study was a 

prospective cohort study, however, no definitive conclusions could be drawn 

about the specific effects of fish consumption.   

Fish oil supplementation (>1.5g/day, or >5 servings of fish per week) has 

been shown to be effective in treatment of cancer cachexia, a condition 

characterized by hypermetabolism, inflammation, decreased appetite, and 

marked decreases in body weight (particularly lean body mass) secondary to 

certain forms of cancer (Colomer et al., 2007). EPA and DHA found in fish oil are 

believed to decrease levels of proinflammatory cytokines, possibly leading to 

greater lean body mass accretion, although no conclusive mechanistic 

explanations have been drawn (Colomer et al., 2007; Fearon et al., 2003; 

Grimble, 2003). Fearon, et al, randomized 200 men and women with 

unresectable pancreatic cancer to either a n-3 FA supplement group (consuming 

approximately 2.2 g EPA per day) or placebo group for eight weeks. Those in the 

experimental group demonstrated increased dietary intake as compared to 

control subjects during the intervention. A significant positive correlation was 

also observed between supplement intake and gains in total body weight (r = 

0.5, p < 0.001) and lean body mass (r = 0.33, p < 0.05) only in the 

experimental group (Fearon et al., 2003).  

Similarly, a double-blind, placebo-controlled trial by Irving, et al., studied 

the effects of fish oil supplementation (1.7 g DHA plus 0.6 g EPA per day) on 



  32 

body weight and appetite in Alzheimer’s patients. Subjects receiving fish oil 

supplementation (n=89) had gained an average of 0.7 ± 2.5 kg 6 months into 

the study (p=0.02), whereas the placebo group (n=85) showed no significant 

weight change. Those in the intervention group also showed improved appetite 

after 12 months (p=0.01) based on caregivers’ ratings. Investigators also 

examined C-Reactive Protein (CRP) levels (an inflammatory marker), noting that 

weight gain increased as CRP levels decreased, indicating inflammation and 

appetite and/or weight gain may be correlated in Alzheimer’s disease patients. 

These effects were seen despite the fact that Alzheimer’s patients typically lose 

weight as the disease progresses (Irving et al., 2009).  

A similar trend was observed in a study that looked at the impact of 

dietary PUFAs on cardiovascular disease risk markers. The 24-week study 

randomly assigned overweight men and women to either the control group or 

one of four intervention groups varying by type of fish consumed (either oily fish 

supplying approximately 4.5 g EPA + DHA per week, or white fish supplying 

approximately 0.7 g EPA + DHA per week), and types of visible fats used (high in 

sunflower oil providing LA, or high in rapeseed oil, which is low in LA) for the 

duration of the study. Subjects in the oily fish/sunflower intervention group 

unexpectedly showed weight gain, while those in the white fish/sunflower group 

demonstrated weight loss, despite the fact that no significant differences in 

calorie intake were observed (Moore et al., 2006). Because the effects of n-3 FAs 

on weight were not the primary objectives of this study, however, it is difficult to 

determine whether observations resulted because of the addition of dietary fish 

oils, or because of confounding variables, such as physical activity.  
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The above studies observed the effects of fish oil on older subjects or 

subjects with chronic disease and/or inflammation. However, Damsgaard, et al., 

provided fish oil supplements to 66 young (19-40 years old), healthy men in a 

randomized, double-blind study for 8 weeks. Investigators measured 

cardiovascular disease risk markers, including body weight. Investigators showed 

that subjects receiving fish oil (1.8 g EPA + 1.1 g DHA per day provided in 

capsules) and consuming visible fats high in linoleic acid gained an average of 

0.7 kg over the course of the study (p<0.05). However, this trend was not seen 

in any other subjects, including those receiving fish oil supplements and 

consuming visible fats low in linoleic acid (Damsgaard, Frøkiaer, Andersen, & 

Lauritzen, 2008).  

Human Studies Showing Weight Loss. Some intervention studies also 

suggest a relationship between n-3 FAs and decreased body weight (Table 2). 

In a cross-sectional study, Micallef, et al., measured plasma n-3 FAs of 124 adult 

men and women (aged 18-70, healthy, overweight, and obese). Higher plasma 

n-3 FA levels were associated with healthier anthropometric measurements (BMI, 

waist circumference, and hip circumference), and obese subjects had 

significantly lower plasma n-3 FA levels when compared to healthy-weight 

individuals (Micallef et al., 2009). Although no definitive conclusions may be 

drawn from this study, the results suggest plasma n-3 FA levels may be inversely 

related to BMI.  

Hill et al. observed the effects of fish oil supplementation paired with 

exercise on body composition and cardiovascular health in adults at risk for 

cardiovascular disease. 75 subjects with a BMI >25 kg/m2 and hypertension, 
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elevated cholesterol, or high triacylglycerol levels were randomized to one of 

three intervention groups: fish oil supplementation alone (supplying ~1.9 g n-3 

FA per day), fish oil supplementation plus exercise, sunflower oil 

supplementation alone (control), or sunflower oil plus exercise. Over the course 

of the 12 week study, percent body fat was reduced only in the exercise groups, 

but those in the fish oil plus exercise group lost approximately 1.5 kg fat, which 

is significantly more than those in the sunflower oil plus exercise group (Hill et 

al., 2007). 

Kunesova, et al., studied the effects of n-3 FA supplementation (2.8 g 

EPA + DHA per day) and a very low calorie diet on fat oxidation in obese 

women. After the 21-day intervention, women in the placebo group lost 

significantly less weight than those receiving the fish oil, and showed lower levels 

of beta-oxidation as measured by serum beta-hydroxybutyrate levels. There was 

also an inverse relationship between phospholipid DHA change and BMI change 

(r= -0.595, p<0.008). Investigators concluded that the efficacy of a very low 

calorie diet might be enhanced when paired with fish oil supplementation. 

However, the sample size was relatively small, (n=20), and the study was 

performed in an inpatient setting, making it difficult to generalize results to a 

broader population (Kunesová et al., 2006). 

In a high-constraint crossover study by Couet, et al., 6 g/day of visible 

dietary fats were replaced by fish oils for three weeks, and consequential 

changes in metabolic rate, substrate oxidation, and body composition as 

measured by dual-energy X-ray absorptiometry (DXA) were studied. Subjects 

were young and healthy (aged 23 ± 2y; BMI 21.9 ± 1.6 kg/m2 ). All meals were 
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prepared and measured by a dietitian to ensure that caloric intake was 

accurately recorded. Although no significant difference in weight loss was 

observed, investigators observed an increase in resting metabolic rate, increase 

in fat oxidation, and a decrease in body fat mass (-0.88 ± 0.16 kg, p<0.05) 

during the fish oil intervention. Although significant, it is difficult to generalize 

these results to a broad population since it was such a high-constraint study. 

Furthermore, the sample size was relatively small (n=6), and only one subject 

was female, making it difficult to draw conclusions about the effects of n-3 FA 

supplementation on female body composition (Couet et al., 1997).  

Human Interventions Showing No Effect or Mixed Results. Not all studies 

have found a significant relationship between fish oil supplementation and 

alterations in body weight or body composition (Table 2). For instance, a 10-

week parallel-arm study randomized 32 healthy, sedentary adult males to one of 

four groups: control (usual diet and physical activity), fish oil supplementation 

(approximately 4g n-3 FA per day), exercise, or fish plus exercise group. No 

significant change in body fat percentage was found in any of the intervention 

groups (Brilla & Landerholm, 1990).   

Similarly, DeFina, et al randomized sedentary obese or overweight males 

and females (aged 30-60 years) to take either a fish oil intervention group 

(receiving 12.5 g EPA + 2.5 g DHA divided into 5 capsules per day) or placebo 

control group (1:1 ratio of soybean and corn oil in 5 capsules per day) in a 

double-blind parallel arm trial. Subjects in both groups received lifestyle 

counseling to promote weight reduction. Although subjects in both groups lost 

weight, there were no statistically significant differences in weight reduction 
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between the two groups as indicated by body weight, BMI, body fat percentage, 

or waist circumference. There were also no significant differences in resting 

metabolic rate between the two groups (Defina et al., 2011).  

Thorsdottir, et al, placed 324 overweight men and women on a weight 

loss diet and randomly assigned them to consume either 3 servings/week oily 

fish (supplying 2.1 g/d EPA + DHA), 3 servings/week lean white fish (supplying 

0.26 g/d EPA + DHA) 6 capsules of fish oil/day (supplying 1.3 g/d EPA + DHA), 

or 6 placebo oil capsules/day and no seafood. All of the men consuming seafood 

(either lean or oily fish) or taking fish oil capsules lost an average of 1 kg more 

weight than those in the placebo group. No significant differences were seen in 

women, however. The authors theorized that this gender difference could be 

related to a difference in reaction to marine foods in men an women. One 

possibility for this is that women have an enhance ability to convert ALA to DHA 

as compared to men, so supplementation of n-3 FAs may not have had as 

profound of an effect on women (Thorsdottir et al., 2007).  

Krebs, et al., compared a weight loss intervention paired with a fish oil 

supplement (1.3 g EPA + 2.9 g DHA per day) to the same intervention with a 

placebo oil supplement (2.8 g LA + 1.4 g oleic acid per day) in overweight, 

hyperinsulinemic women. Despite seeing decreased inflammatory markers and 

lipid profiles in fish oil subjects, no significant difference in weight loss was 

observed between the two groups, suggesting fish oil is effective in treatment of 

chronic inflammation and clinical manifestations associated with obesity (such as 

hyperlipidemia), but not necessarily in weight loss itself (Krebs et al., 2006). 
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Others still have only found fish oil supplementation to be effective in 

weight loss promotion only when paired with a weight loss regimen. For 

instance, Warner, et al., conducted a randomized controlled parallel-arm study 

and assigned 34 hyperlipidemic subjects to either a corn oil supplement, fish oil 

supplement, fish oil plus exercise, or control (no exercise or supplement) group. 

Over the course of the 12-week study, a significant reduction in body fat was 

observed only in those taking fish oil and exercising. However, the amount of 

fish oil supplemented per day was extremely high (14g EPA and 10g DHA/day), 

potentially introducing the risk of prolonged bleeding times, and making it 

difficult to determine whether lower levels of supplementation would be effective 

in reducing body fat (Warner et al., 1989).  

Table 2. Available Literature. Studies in humans observing the 
relationship between omega-3 fatty acids and changes in body weight and/or 
body composition.  
 
Authors 
and year 

Study 
Design 

Intervention Population Outcome 

Irving, et 
al, 2009 

Random-
ized, 
double-
blind, 
placebo-
controlled, 
parallel-arm 
trial; results 
analyzed at 
6 months 
and 12 
months 

0.6 g EPA + 
1.7 g DHA 
(experimental) 
or 0.6 g LA 
(control) per 
day 

Males and 
females with 
Alzheimer’s 
disease; mean 
age = 72.6 
years; n=204 

Fish oil group 
gained 
significantly 
more weight 
6 months into 
the study as 
compared to 
control 
subjects 

Micallef, 
et al, 2009 

Cross-
sectional  

N/A Males and 
females aged 
18-74 years; 
healthy, 
overweight, and 
obese 

Higher plasma 
n3 FA was 
related to 
healthier 
anthropo-
metric 
measure-
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ments; obese 
subjects on 
average had 
lower n3 FA 
plasma levels  

Damsga-
ard, et al, 
2008 

Random-
ized, 
double-
blind, 
placebo-
controlled, 
parallel-arm 
trial; 8 week 
intervention 

Subjects 
received 1.8 g 
EPA + 1.1 g 
DHA per day 
or 5 mL olive 
oil (placebo) in 
capsules and 
consumed 
dietary fats 
either high or 
low in LA 

Healthy young 
males, 19-40 
years; n=64 

Only subjects 
receiving fish 
oil and 
consuming 
dietary fats 
high in LA 
gained weight 

Hill, et al, 
2007 

Random-
ized, 
double-
blind, 
placebo-
controlled, 
parallel-arm 
trial; 12 
week 
intervention 

0.36 g EPA + 
1.56 g DHA 
per day 
(experimental) 
or 6 g 
sunflower oil 
per day 
(control) 
provided in 
capsules; also 
assigned to 
either a 
regular 
physical 
activity 
program or no 
physical 
activity 
program 

Males and 
females aged 
25-65 years; 
overweight or 
obese (BMI > 
25 kg/m2) with 
either 
hypertension, 
elevated 
cholesterol, or 
elevated 
triacylglycerol 
levels; n=75 

Subjects on 
an exercise 
regimen and 
fish oil 
supplement 
lost 
significantly 
more fat as 
compared to 
those 
receiving 
sunflower oil 
and exercise 

Krebs, et 
al, 2006 

Random-
ized, 
double-
blind, 
placebo-
controlled, 
parallel-arm 
trial; 24 
week 
intervention 

Subjects 
assigned to 
either weight 
loss program 
plus either 3 g 
EPA + 2.9 g 
DHA or 2.8g 
LA + 1.4g oleic 
acid per day 
provided in 
capsules 
(experimental), 

Overweight, 
hyper-
insulinemic 
adult females; 
n=116 

Decreased 
inflammatory 
markers and 
improved 
hyper-
lipidemia was 
observed, but 
there were no 
significant 
differences in 
weight loss 
between the 
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or no weight 
loss program 
plus 2.8 g LA 
+ 1.4 g oleic 
acid per day 

two groups  

Kunesova, 
et al, 2006 

Random-
ized, 
double-
blind, 
placebo-
controlled, 
parallel-arm 
trial; 3 week 
intervention 

2.8 g EPA + 
DHA per day 
(experimental) 
or saline 
(control) 
provided in 
capsules plus a 
very low 
calorie diet 

Severely obese 
adult females; 
n=20 

Subjects on a 
very low 
calorie diet 
and taking 
fish oil lost 
more weight 
and showed 
increased lipid 
oxidation as 
compared to 
the control 
group (very 
low calorie 
diet plus 
placebo) 

Moore, et 
al, 2006 

Random-
ized, 
placebo-
controlled, 
parallel-arm 
trial; 24 
week 
intervention 

4 intervention 
groups 
consumed 
either 2 
servings of oily 
fish per week 
(providing 4.5 
g EPA + DHA 
per week) or 2 
servings of 
white fish per 
week 
(providing 0.7 
g EPA + DHA 
per week) and 
replaced 
dietary fats 
with ones high 
in either n-6 
FAs or n-3 FAs. 
Control group 
received no 
intervention.   

Males and 
females aged 
35-65 years; 
overweight or 
obese (BMI 25-
40 kg/m2) with 
no other 
diagnosed 
chronic 
conditions; 
n=142 

Oily fish 
consumers 
demonstrated 
increased 
weight gain  

Fearon, et 
al, 2003 

Random-
ized, 
double-
blind, 

2 cans of a 
protein and 
energy 
supplement 

Weight-losing 
males and 
females with 
unresectable 

Positive 
correlation 
between 
supplement 
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placebo-
controlled 
trial; 8 week 
intervention 

providing 2.2 g 
EPA 
(experimental) 
per day or 0 g 
EPA per day 
(control)  

pancreatic 
cancer; n=200 

intake and 
gains in lean 
body mass 
and total body 
weight  

Iso, et al, 
2001 

Prospective 
cohort study 

N/A Healthy adult 
females, 34-59 
years 

Women 
consuming >2 
servings 
fish/wk were 
more likely to 
be overweight 
than non-fish 
eaters 

Couet, et 
al, 1997 

Crossover 
study 

6 g total n-3 
FA per day 
provided in 
capsules in 
order to 
replace 6g/d 
visible dietary 
fat 

Healthy, non-
obese young 
adults (5 males, 
1 female; age = 
23 ± 2 years; 
BMI = 21.9 ± 
1.6 kg/m2); 
n=6 

Increased 
resting 
metabolic rate 
and 
decreased fat 
mass 
deposition 
during fish oil 
intervention  

DeFina, et 
al, 2011 

Random-
ized, 
placebo-
controlled, 
parallel-arm 
trial; 6 
month 
intervention  

Subjects 
assigned to 
either fish oil 
(12.5 g EPA + 
2.5 g DHA per 
day) or 
placebo 
capsules 
(soybean and 
corn oil); all 
subjects 
received 
lifestyle 
modification 
counseling to 
promote 
weight 
reduction  

Sedentary 
overweight and 
obese males 
and females, 
aged 30-60 
years; n=81 

n-3 FA 
supplemen-
tation did not 
lead to weight 
loss as 
compared to 
placebo 

Thorsdott- 
ir, et al, 
2007 

Random-
ized, 
placebo 
controlled, 
parallel-arm 
trial; 8 week 

Subjects 
instructed to 
follow weight 
loss regimen 
and detailed 
meal plan; 

Overweight 
men and 
women (20-40 
years, BMI = 
27.5-32.5 
kg/m2); n=324 

Men 
consuming 
fish oil 
capsules or 
lean or oily 
fish lost an 



  41 

intervention  randomized to 
one of four 
diets: no 
seafood 
(control), 3 
servings/week 
lean white fish 
(providing 0.26 
g/d n-3 FA), 3 
servings/week 
oily fish 
(providing 2.1 
g/d n-3 FA), 6 
fish oil 
capsules/day 
(providing 1.3 
g/d n-3 FA)  

average of 1 
kg more 
weight after 1 
month than 
the control; 
no significant 
differences 
were seen in 
women  

Brilla & 
Landerhol
m, 1990 

Random-
ized, 
parallel-arm 
trial; 10 
week 
intervention 

Subjects 
assigned to 
either an 
aerobic 
exercise 
regimen or no 
exercise 
regimen; 
experimental 
group 
consumed 4 g 
total n3 FA per 
day in capsules 

Sedentary adult 
males, aged 19-
34 years; n=32 

No significant 
differences in 
body weight 
or 
composition in 
any groups 
(with or 
without 
exercise 
intervention) 

Warner, et 
al, 1989 

Random-
ized, 
placebo-
controlled, 
parallel-arm 
trial; 12 
week 
intervention 

14 g EPA + 10 
g DHA or 500 
mL corn oil per 
day provided 
in capsules 
plus an 
exercise 
regimen or no 
exercise 
regimen  

Males and 
females with 
hypertriglycerid
emia, aged 27-
63 years; n=34 

Only subjects 
taking fish oil 
and exercising 
lost weight  
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Chapter 3 

METHODOLOGY 

Subjects & Study Design. Healthy, non-obese women at Arizona State 

University between the ages of 18 and 38 were recruited through email using 

Arizona State University ListServs. Interested subjects were referred to an online 

survey (Appendix B) to determine eligibility based on diet, physical activity, 

smoking habits, brief medical history, and self-reported BMI. Eligible subjects 

were contacted to schedule a screening visit (study visit 1).   

During the screening visit, subjects completed a written consent 

(Appendix C). Next, subjects completed a brief medical history questionnaire 

(Appendix D) and validated omega-3 fatty acid food frequency questionnaire 

(FFQ) (Appendix E). Anthropometric measurements, including weight, height, 

and percent body fat, were also be measured. Height and weight were measured 

using a stadiometer and calibrated scale. BMI and percent body fat were 

determined using a bioelectrical impedance scale (Tanita).  

Exclusion criteria included regular smoking (use of >10 cigarettes per 

day), BMI >30 or BMI <18.5, regular use of omega-3 or fish oil supplements, 

vegetarian dietary patterns (excluding all fish, meat, and poultry from the diet), 

regular consumption of one or more 3.5oz servings of fish per week, and/or use 

of prescription medications that may interfere with body weight or inflammatory 

state (such as corticosteroids or non-steroidal anti-inflammatory drugs). Potential 

subjects taking birth control were excluded if they had been taking the drug for 

less than three months. Women who were pregnant or lactating, as well as 
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competing and/or training athletes were excluded. Furthermore, subjects with 

any unresolved health issues were not used in the study. Finally, anyone who 

has had the seasonal flu shot was excluded because of the accompanying study.   

To determine a sample size, a power analysis was performed using a 

probability of 0.05 and a power of 0.8, along with a verified sample size 

calculator (Schoenfeld, 2010). Based on prior human interventions testing the 

effect of a dietary supplement on body weight, an expected change of 1.9 kg 

and a standard deviation of 1.3 were used. This calculation suggested that a 

total of 18 subjects would be adequate for a randomized, parallel arm trial 

(Appendix F). A total of 35 subjects were enrolled in the study, which allowed for 

18 subjects in the fish oil group (FISH) and 17 subjects in the coconut oil placebo 

group (CON). However, 9 total subjects were lost to attrition throughout the 

study, leaving 13 subjects in each group (for a total of 26 subjects) that 

completed the study.  

Qualifying subjects entering the 8-week trial were stratified based on age, 

BMI, weight, and n-3 FA consumption as indicated by the omega-3 FFQ, and 

randomly assigned to either the experimental (fish oil, FISH) or control (placebo, 

CON) group. Random assignments to groups were performed by a coin toss.  

During the baseline study visit (study visit 2), a 24-hour recall was 

performed to understand typical dietary patterns and estimate caloric intake. 

Next, supplements were administered using a double-blind procedure to prevent 

bias during data collection and analysis. Subjects received either placebo 

(Puritan’s Pride brand, coconut oil softgels, 1000mg each) or fish oil capsules 

(EnergyFirst brand, USP-certified fish oil softgels, 400mg EPA + 200mg 
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DHA/capsule), which were similarly-sized gel capsules. Subjects were instructed 

to ingest one capsule in the morning, preferably with food, and check off each 

day that capsule was taken on provided calendar (Appendix G). Subjects also 

received booklets containing validated Godin Leisure-Time Exercise 

questionnaires to complete weekly (Appendix H) and validated daily cold 

symptom surveys for accompanying study (Appendix I) during visit 2. Subjects 

were asked to document alcohol, cigarettes, medications, and supplements used 

each day at the bottom of each cold symptom survey. An explanation of all 

questionnaires was provided during subject meetings, and a practice-run was 

completed before subjects left study visit 2. Height, weight, BMI, and percent 

body fat measurements were taken during the baseline visit (using a stadiometer 

and bioelectrical impedance scale, Tanita) and a fasting blood sample was 

collected for the accompanying study.  

Visits at weeks 4 and 8 began with body weight, percent body fat, and 

BMI measurements. Unused capsules from the previous weeks were returned 

during these visits using a double-blind procedure, and remaining study materials 

(booklets containing physical activity log and capsules for weeks 5-8) were 

distributed during the week 4 visit. A final 24-hour dietary recall and fasting 

blood sample were also performed during the final visit for the accompanying 

study (week 8). 

Compliance to capsule administration was monitored through capsule 

counts at weeks 4 and 8. Biweekly emails from a blind master list were also sent 

to all subjects to check for compliance to study protocol.  
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Statistical Analysis. SPSS Version 19.0 was used to perform statistical 

analysis, and Food Processor SQL was used to assess 24-hour recalls. Weekly 

leisure time exercise was measured in MET-hours per week, which was 

determined by multiplying the numbers of reported mild, moderate, and 

strenuous physical activity sessions by 3, 5, or 9, respectively. Unless indicated 

otherwise, data is reported as means ± standard error (SE). Differences in 

means of outcome variables were compared using 2-tailed independent t-tests, 

univariate analysis of variance, or repeated measures analysis of variance. Data 

were tested for normality, and non-parametric tests were used for data that 

were not normally distributed. Differences in variables were considered 

significant at p"0.05.  
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Chapter 4 

DATA & RESULTS 

Recruitment for this double blind, placebo-controlled, parallel-arm trial 

took place in January and February 2012. A total of 163 people completed the 

Internet survey, but only 53 were contacted for a screening visit due to exclusion 

criteria. A total of 43 females attended the initial screening visit. Of the 43 

participants screened, 35 were enrolled in the study. Participants were then 

stratified by age, body weight, BMI, and n-3 FA intake (as measured by a FFQ 

administered during the screening visit), and randomly assigned to the 

intervention (FISH) or control (CON) group. This resulted in 18 subjects in the 

FISH group and 17 subjects in the CON group. However, 8 participants dropped 

out of the study before the week 1 visit due to apparent lack of interest, 

scheduling conflicts, or loss of communication, and one participant dropped out 

after the week 4 visit due to loss of communication. Thus, 13 subjects in the 

CON group and 13 subjects in the FISH group completed the study and were 

used for data analysis. There was an overall 93.3% compliance rate in the FISH 

group and a 92.3% compliance rate in the CON group based on the number of 

capsules leftover at the mid-point (4 weeks) and end (8 weeks) of the 

intervention. Although average compliance decreased in the FISH group between 

the first and second half of the study, compliance remained above 91% for both 

groups throughout the course of the study (Table 3, Figure 1).  
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Table 3. Compliance. Average percentage of capsules taken based on 
number of capsules returned 1,2 
  Weeks 1-4 Weeks 5-8 Weeks 1-8 

FISH 94.8 ± 0.02 % 91.6 ± 0.03% 93.3 ± 0.02% 
CON 92.6 ± 0.02% 91.8 ± 0.03% 92.3 ± 0.03% 
ALL 93.7 ± 0.02% 91.7 ± 0.02% 92.8 ± 0.02% 

1FISH - fish oil group, 400mg/d EPA + 200mg/d DHA; CON - placebo 
group, 1000mg/d coconut oil; ALL – All subjects 
2Values reported as means ± SE  

 
Figure 1. Compliance to capsule administration as measured by average 
percentage of capsules taken. 
 

 

Independent t-tests showed that subjects in the FISH and CON groups 

were similar upon enrollment in the study (Table 4). The mean age of each 

group was similar (24.0 ± 1.6 years for FISH and 23.0 ± 1.7 years for CON) and 

ranged from 18-38 years in both groups. Baseline body weight, BMI, and percent 

body fat recorded at the screening visit did not differ significantly between 

groups. Omega-3 fatty acid intake as indicated by the FFQ completed at the 

screening visit (study visit 1) was also similar between the two groups. The 

mean baseline n-3 FA intake in the FISH group was 0.7 ± 0.1 g/d and 0.4 ± 0.07 
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g/d in the CON group (p=0.137). 24-hour recalls performed at the second study 

visit (Day 0 for the 8-week intervention) showed that baseline caloric and EFA 

intake was also similar between the two groups (1664 ± 117 kcal/day for FISH 

and 1742 ± 137 kcal/day for CON, p=0.669).  

Table 4. Baseline Characteristics of Participants1,2 

 All (n=26) FISH (n=13) CON (n=13) P-value 

Age (y) 23.5 ± 1.1 24.0 ± 1.6 23.0 ± 1.7 0.3393 

Weight (lb) 144.1 ± 4.4 140.7 ± 6.1 147.6 ± 6.5 0.4244 

BMI (kg/m2) 23.7 ± 0.6 23.2 ± 0.8 24.2 ± 0.9 0.4244 

Body Fat Percent 29.2 ± 1.3 28.4 ± 2.0 30.1 ± 1.8 0.5204 

Daily n-3 FA 
intake FFQ (g) 

0.6 ± 0.08 0.7  ± 0.1 0.4  ± 0.07 0.1373 

Linolenic Acid 
(g/d) 24h recall5 0.5 ± 0.1 0.5 ± 0.1 0.6 ± 0.2 0.5733 

Linoleic Acid (g/d)  
24 h recall5 4.9  ± 0.9 4.8 ± 1.2 5.0 ± 1.4 0.7783 

Daily energy 
intake (kcal/d) 

24h recall5 
1703 ± 89 1664 ± 117 1742 ± 137 0.6694 

1FISH - fish oil group, 400mg/d EPA + 200mg/d DHA; CON - placebo 
group, 1000mg/d coconut oil; ALL – All subjects 
2Values reported as means ± SE  
3Data not normally distributed; analysis by Mann Whitney test 

4Data normally distributed; analysis by independent t-test 
5Data collected immediatley prior to the start of the intervention (study 
visit 2)  

 

Changes in body weight, BMI, and percent body fat between week 8 and 

week 1 of the intervention were not strongly correlated with potential 

confounding variables, including baseline n-3 FA intake, consumption of non-

steroidal anti-inflammatory drugs (NSAIDS), prescription medications, alcoholic 

or caffeinated beverages, and exercise per week (Table 5). Baseline energy 

intake as determined by 24-hour recalls at the start of week 1 correlated 
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significantly with both body weight and BMI (p=0.048 and p=0.031, 

respectively). However, the strength of these relationships was only moderately 

positive (r=0.391 for energy intake and body weight, and r=0.425 for energy 

intake and BMI), so they were not controlled for during data analysis.  

Table 5. Potential Confounding Variables. Correlations between potential 
confounding variables and main outcome measures, n=26 

Variable 

Pearson 
correlation 

coefficient (r) P-Value 

Spearman’s 
rho 

correlation 
coefficient (r) P-Value 

Age (years) 
Weight difference -0.390 0.850 -0.129 0.531 
BMI difference -0.053 0.797 -0.148 0.472 
Body fat 

percentage 
difference 0.081 0.695 0.099 0.630 
Weight (lbs) at week 1  
Weight difference 0.086 0.675 -0.056 0.787 
BMI difference 0.089 0.666 -0.017 0.935 
Body fat 

percentage 
difference -0.009 0.966 -0.020 0.923 
Linolenic Acid Intake (g/d) at baseline (FFQ) 

Weight difference -0.214 0.293 -0.290 0.151 
BMI difference -0.244 0.230 -0.335 0.094 
Body fat 

percentage 
difference -0.033 0.873 -0.086 0.675 
Baseline Energy Intake (kcal/day, based on week 1 24-hour recall)  
Weight difference 0.391 0.048* 0.325 0.105 
BMI difference 0.425 0.031* 0.393 0.047* 

Body fat 
percentage 
difference 0.298 0.139 0.222 0.276 
Change in Energy Intake (week 8 kcal – week 1 kcal, based on 24-hour recalls 
Weight difference 0.201 0.358 0.271 0.211 
BMI difference 0.132 0.549 0.190 0.385 
Body fat 

percentage 
difference 0.149 0.497 0.180 0.412 
Capsule Compliance (% of total capsules taken) 
Weight difference 0.040 0.846 0.125 0.544 
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BMI difference 0.039 0.174 0.136 0.509 
Body fat 

percentage 
difference 0.174 0.394 0.043 0.834 
NSAIDS taken (total days consumed during study) 
Weight difference 0.077 0.708 0.069 0.736 
BMI difference 0.068 0.742 0.068 0.741 
Body fat 

percentage 
difference 0.023 0.911 0.076 0.711 
Other prescription (total days consumed during study) 
Weight difference -0.006 0.976 -0.074 0.718 
BMI difference 0.027 0.897 -0.017 0.936 
Body fat 

percentage 
difference 0.039 0.849 -0.054 0.794 
Alcohol (total days consumed during study) 
Weight difference 0.020 0.921 -0.103 0.616 
BMI difference -0.023 0.912 -0.135 0.510 
Body fat 

percentage 
difference 0.194 0.343 0.251 0.216 
Caffeine (Ave. # beverages per day) 
Weight difference 0.176 0.391 0.089 0.664 
BMI difference -0.041 0.844 0.126 0.540 
Body fat 

percentage 
difference 0.177 0.386 0.071 0.730 
Strenuous exercise (Ave. # days/wk) 
Weight difference 0.091 0.657 0.070 0.733 
BMI difference 0.056 0.784 0.013 0.949 
Body fat 

percentage 
difference 0.057 0.782 0.183 0.372 
Moderate exercise (Ave. # days/wk) 
Weight difference -0.103 0.616 -0.211 0.300 
BMI difference -0.128 0.533 -0.185 0.366 
Body fat 

percentage    
difference -0.035 0.867 0.018 0.930 
Mild exercise (Ave. # days/wk) 
Weight difference -0.062 0.765 -0.082 0.691 
BMI difference -0.071 0.730 -0.054 0.794 
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Body fat 
percentage 
difference 0.052 0.801 0.033 0.873 
Overall physical activity (METS-hours/wk)  
Weight difference 0.097 0.693 -0.006 0.981 
BMI difference 0.111 0.652 0.004 0.989 
Body fat 

percentage 
difference 0.101 0.681 0.183 0.453 
*Statistically significant at the 0.05 level 

 

After 4 weeks of the intervention, univariate analysis did not demonstrate 

significant differences in body weight or composition measurements between the 

FISH and CON groups (Table 6). Subjects in the FISH group had gained an 

average of 0.68 ± 0.61 lbs, while the CON group had lost an average of 0.49 ± 

0.59 lbs (p=0.180). Despite the weight loss demonstrated in the CON group, 

body fat percent increased by 0.015 ± 0.24% in the CON group and by 0.29 ± 

0.50% in the FISH group. However, this change was not statistically significant 

(p=0.621).  

Table 6. Mean Body Composition Differences Weeks 1-4 (difference = wk 4 - 
wk 0) 1,2 

 All (n=26) FISH (n=13) CON (n=13) P-Value3 
Effect 
Size3 

Body Weight 
(lbs) 

0.092 ± 0.43 0.68 ± 0.61 -0.49 ± 0.59 0.180 0.074 

BMI (kg/m2) 0.012 ± 0.073 0.092 ± 0.11 -0.069 ± 0.097 0.280 0.048 

Body Fat 
Percent (%) 

0.15 ± 0.27 0.29 ± 0.50 0.015 ± 0.24 0.621 0.010 
1FISH - fish oil group, 400mg/d EPA + 200mg/d DHA; CON - placebo group, 
1000mg/d coconut oil; ALL – all subjects 
2Values reported as means ± SE  
3P-value and effect size represent univariate analysis; all data are normally 
distributed; controlling for baseline energy intake did not alter results 

 

 Upon completion of the 8-week intervention, subjects in the FISH group 

had gained an average of 0.29 ± 0.45 lbs, while those in the CON group had 
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gained an average of 0.092 ± 0.67 lbs (Figure2, Figure 3). The difference in 

the change in weight between the two groups was not statistically significant 

(p=0.830). Both groups experienced nearly the same overall increase in BMI 

(0.023 ± 0.11 kg/m2 in the FISH group and 0.023 ± 0.12 kg/m2 in the CON 

group, p=1.00) (Figure 2, Figure 4). Body fat percentage also increased in 

both groups (0.48 ± 0.46% in FISH and 0.22 ± 0.18 in CON), but the difference 

in the change in body fat percentage between the two groups was not 

statistically significant (p=0.600) (Figure 2, Figure 5, and Table 7). Because 

daily caloric intake has a direct effect on body weight and composition, analysis 

of the change in body weight, BMI, and body fat percentage was reassessed 

using multivariate analysis while controlling for the difference in energy intake 

between the beginning (week 1) and end (week 8) of the intervention. However, 

there were still no significant differences in body weight or composition changes 

between the FISH and CON groups (p=0.664 for change in body weight, 

p=0.545 for BMI, and p=0.508 for body fat percent).  
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Table 7. Mean Body Composition Differences Weeks 1-8 (difference = wk 8 - 
wk 1) 1,2 

 All (n=26) 
FISH 

(n=13) 
CON 

(n=13) 
P-Value3 Effect Size3 

P-
Value4 

Effect 
Size4 

Body 
Weight 
(lbs) 

0.19 ± 
0.45 

0.29 ± 
0.63 

0.092 ± 
0.67 

0.830 0.002 0.664 0.010 

BMI 
(kg/m2) 

0.023 ± 
0.078 

0.023 ± 
0.11 

0.023 ± 
0.12 

1.00 0.000 0.545 0.019 

Body Fat 
Percent 

(%) 

0.35 ± 
0.24 

0.48 ± 
0.46 

0.22 ± 
0.18 

0.600 0.012 0.508 0.022 

1FISH - fish oil group, 400mg/d EPA + 200mg/d DHA; CON - placebo group, 
1000mg/d coconut oil; ALL – all subjects 
2Values reported as means ± SE 
3P-value and effect size represent univariate analysis; all data are normally 
distributed; controlling for baseline energy intake did not alter results 
4P-value and effect size represent multivariate analysis with the change in energy 
intake (week 8 kcal/d – week 1 kcal/d) as covariate 
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Figure 2. Changes in main outcome measures throughout the course of the 
study in the FISH and CON groups.  
 

 

 
Figure 3. Change in body weight for FISH and CON groups at the beginning, 
middle, and end of the study.  
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Figure 4. Change in body mass index for FISH and CON groups at the 
beginning, middle, and end of the study.  
 

 

Figure 5. Change in percent body fat for FISH and CON groups at the 
beginning, middle, and end of the study.  
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throughout the study (Table 8). The FISH group reported an 11% increased 

mean energy intake at week 8 as compared to week 1, while the mean caloric 

intake of the CON group decreased by approximately 13% over the course of the 

study (Figure 6). A boxplot displaying the differences in caloric intake between 

weeks 1 and 8 of the intervention is shown below (Figure 7). Although the 

changes in caloric intake differed between the FISH and CON groups, this trend 

did not achieve statistical significance when analyzed using repeated measures 

multivariate analysis of variance (p=0.069). These differences were analyzed 

again using week 1 body weight as a covariate, which caused the trend to 

further approach statistical significance (p=0.055). There were no statistically 

significant differences in linolenic or linoleic acid intake between the FISH and 

CON groups or within each group at weeks 1 and 8. Linolenic acid intake was 

also assessed using a validated FFQ, but no statistically significant differences 

between FISH and CON groups throughout the course of the study were 

observed.  



  57 

 
Table 8. Dietary Data at Weeks 0, 1, and 81,2 
 

Week 0 Week 1 Week 8 

P-Value, 
Repeated 
Measures 

Effect 
Size3 

P-Value, 
Mann-

Whitney 
Nonpara-

metric Test 
Total energy intake (kcal), 24 hour recall 
FISH ND 1664 ± 117 1853 ± 161 
CON ND 1742 ± 137 1520 ± 123 
ALL ND 1703 ± 89 1687 ± 105 

0.0694 0.131 N/A 

Linolenic acid intake (g/d), 24 hour recall 
FISH5 ND 0.48 ± 0.1 0.62 ± 0.2 
CON5 ND 0.53 ± 0.2 0.48 ±0.1 
ALL ND 0.50 ± 0.1 0.55 ± 0.1 

N/A 0.058 0.975 

Linoleic acid intake (g/d), 24 hour recall 
FISH ND 4.7 ± 1.2 5.09 ± 1.3 
CON5 ND 4.9 ± 1.4 4.53 ± 1.1 
ALL ND 5.2 ± 0.9 4.81 ± 0.8 

N/A 0.004 0.778 

Linolenic acid intake (g/d), FFQ 

FISH5 
0.68 ± 

0.2 
ND 0.58 ± 0.1 

CON5 
0.42 ± 

0.1 
ND 0.63 ± 0.2 

ALL 
0.55 ± 

0.1 
ND 0.60 ± 0.1 

N/A 0.017 0.174 

1FISH -  fish oil group (n=13), 400mg/d EPA + 200mg/d DHA; CON - placebo group 
(n=13), 1000mg/d coconut oil; ALL – all subjects (n=26); ND – No data; N/A – Not 
applicable 
2Values reported as means ± SE; values do not include additional 0.6 g/d fat 
provided by fish oil supplement for FISH subjects  
3Effect size determined using repeated measures multivariate analysis of variance  
4P=0.055 when controlling for body weight (lbs) at week 1  
5Data are not normally distributed 
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Figure 6. Comparison of mean energy intake for FISH and CON groups as 
determined by 24-hour recalls performed at the beginning and end of the study.  
 

 
 

Figure 7. Boxplot displaying the change in energy intake for subjects in the 
FISH and CON groups as determined by 24-hour recalls performed at the 
beginning and end of the study.  
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Chapter 5 

DISCUSSION 

 In this double blind, randomized, placebo-controlled trial, 8 weeks of n-3 

FA supplementation (600 mg EPA + DHA per day) did not change body weight, 

BMI, or body fat percentage in young healthy women as compared to a placebo 

(1000 mg coconut oil per day). These findings do not refute the current 

recommendations for Americans to consume at least 8 oz of fish per week, 

supplying 250 mg EPA and DHA per day (Flock & Kris-Etherton, 2011).  

Although not statistically significant, 24-hour dietary recalls performed at 

the beginning and end of the intervention revealed a trend towards increased 

daily caloric intake in the FISH group and decreased daily energy intake in the 

CON group throughout the course of the study (p=0.069). This trend approached 

significance when week 1 body weight was controlled for (p=0.055). If 

maintained, this difference in caloric intake (an average of approximately 150-

200 kcal/d) could lead to changes in body weight over time.  

Interestingly, other research has looked into the potential for n-3 FAs to 

alter caloric intake. Previous studies in our lab showed that subjects consuming 

fish as the sole source of flesh food weighed more and had higher caloric intake 

as compared to those consuming a vegetarian or regular diet. Some studies have 

observed a link between n-3 FA intake and levels of appetite-regulating 

hormones. For instance, leptin is an anorexigenic adipokine, and its synthesis is 

positively correlated with adipocyte size. Thus, leptin helps to achieve energy 

homeostasis by decreasing appetite when excess adipose tissue is present (Cave 
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et al., 2008). Drevon, et al demonstrated a decrease in leptin production after 

providing rats with high levels of n-3 FA. Investigators also observed an increase 

in lipid oxidation in rats fed high levels of n-3 FAs, and speculated that increased 

lipid oxidation may have led to reduced leptin concentration (Drevon, 2005). In 

an in vitro study, cells cultured with DHA and EPA demonstrated decreased leptin 

mRNA expression. This decrease would theoretically lead to a decline in satiety 

and increase in energy intake (Drevon, 2005). However, the levels of n-3 FAs 

provided by these studies are not physiologically relevant for humans, as they 

would require intake much higher than current recommendations.  

Research has also observed a potential link between EPA and DHA intake 

and ghrelin levels. Ghrelin is an appetite-stimulating hormone produced in the 

stomach, and appears to occur in lower levels in obese as compared to lean 

populations. Various factors are believed to influence ghrelin expression, 

including dietary fat intake. Some evidence suggests low dietary fat intake during 

periods of fasting leads to decreased ghrelin expression, which translates to a 

decline in appetite (Ramel, Parra, Martinéz, Kiely, & Thorsdottir, 2009). Thus, it 

is interesting to think that increased fat intake may lead to increased ghrelin 

production. In an 8-week randomized, placebo-controlled, parallel-arm trial, 324 

overweight adult men and women were placed on calorie-restricted diets with 

either no seafood (control, 0 g/d n-3 FAs), three servings of lean white fish per 

week (providing 0.26 g/d n-3 FAs), three servings of oily fish per week (providing 

2.1 g/d n-3 FAs), or daily fish oil capsules (providing 1.3 g/d n-3 FAs). Although 

all groups lost weight, only women in the fish oil supplementation group 

demonstrated higher ghrelin levels at the end of the intervention. This effect was 
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not seen in men (Ramel et al., 2009). Moreover, significant differences in weight 

loss as a result of EPA and DHA consumption were observed only males in the 

study, while no difference in weight loss was observed in females (Thorsdottir et 

al., 2007). Although not clear from this study, it is possible that the increased 

ghrelin observed in the women taking fish oil may have been the reason no 

significant differences in weight loss were observed. Although the increased 

ghrelin levels observed in women could have been related to calorie restriction 

and weight loss during the intervention, it is interesting to note that these effects 

were not observed in men, who experienced even more weight loss. Moreover, 

there were no statistically significant differences in weight loss between women 

in the 4 intervention groups, so it would not be logical that their ghrelin levels 

would be significantly different.  

More research is needed to identify the potential for n-3 FAs to modulate 

appetite-regulating hormones. The present study protocol only used two 24-hour 

recalls to characterize caloric intake, so it is difficult to accurately depict trends in 

energy intake, hunger, and satiety throughout the study. Because there is no 

gold standard for dietary analysis, it is difficult to draw definitive conclusions 

about appetite and caloric intake from dietary recalls alone. Furthermore, the 

validity and reliability of 24-hour recalls is limited by the memory of the 

participant and the ability of the participant to estimate portion sizes. 24-hour 

recalls also assume that the previous day accurately characterizes typical caloric 

and nutrient intake, which may lead to flawed generalizations (Thompson, Subar, 

Loria, Reedy, & Baranowski, 2010).  
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Mean caloric intake for the CON group also decreased by nearly 200 

kcal/d throughout the course of the study. This was not anticipated, as coconut 

oil does not supply EFAs and consists primarily of medium chain triglycerides and 

saturated fatty acids. Thus, 1 g of fat from coconut oil should be a trivial 

amount, and should not be an effective dose. Moreover, typical daily fat intake 

for females aged 20-39 years is approximately 67g (US Department of Health 

and Human Services, 2012).    

Interestingly, several studies have observed decreased caloric intake as a 

result of coconut oil supplementation. For instance, Assunção, et al., found that 

coconut oil may decrease carbohydrate intake by increasing insulin secretion. 

However, these effects were observed only when 30mL (approximately 28g) of 

dietary fats were replaced with coconut oil (Assunção, Ferreira, dos Santos, 

Cabral, & Florêncio, 2009). The present study provided about 3.5% of the dose 

provided by Assunção and colleagues. In a 12-week intervention, Han, et al., 

randomly assigned 40 type 2 diabetic Chinese adults to replace a portion of their 

dietary fats with either medium chain triglycerides (MCT) from coconut oil (18 

g/d) or long chain triglycerides (LCT). MCT consumption was linked to decreased 

total caloric intake and body weight in men and women (Han et al., 2007). Once 

again, however, this dose was considerably higher than the one provided by the 

present study protocol.  

In order to obtain more accurate results in future studies, blood 

concentrations of the appetite-modulating hormones leptin and ghrelin could be 

tracked. The use of several methods of dietary assessment, such as food 

records, or more frequent 24 hour recalls, would provide a more accurate 
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perception of caloric intake as related to fish oil supplementation. Participants 

could also be given questionnaires to identify perceived changes in satiety, 

hunger, or food cravings to estimate the effects of these changes in hormone 

levels, if any.  

 The direction of weight and BMI change for both the FISH and CON 

groups changed at week 4 (Figures 3, 4, and 5). It is not clear why these 

changes were observed, as average capsule compliance remained above 90% in 

both groups for both the first and second halves of the study (Table 3). It is 

possible that the metabolic response to n-3 FA supplementation changed as 

plasma levels of n-3 FAs increased and leveled off. Arterburn, et al., showed that 

plasma DHA concentrations equilibrated after 4 weeks of supplementation, which 

is the same amount of time subjects in this study had been supplementing with 

n-3 FAs before the change in trend direction was observed. However, this 

saturation point occurred in the Arterburn study after 1.2 g/d n-3 FA 

supplementation, which is twice the amount of n-3 FAs provided by this study’s 

protocol (Arterburn et al., 2006). 

 Another possibility is that dietary n-3 or n-6 FA intake changed at week 4, 

leading to a consequential change in LA-derived eicosanoid production 

(depending on the ratio of n-6 to n-3 FAs in cellular plasma membranes) at the 

mid-point of this study. Changes in dietary intake could have off-set the effects 

of the supplement, potentially modulating appetite, thermogenesis, or lipid 

homeostasis, and leading to the difference in weight changes observed between 

the first and second halves of the study. However, this study design only 
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collected information on n-3 and n-6 FA intake at the beginning and end of the 

study, so it is difficult to determine if changes occurred at the mid-point.  

 In future studies, it would be beneficial to track plasma EPA, DHA, and 

AA levels at multiple points throughout the study to ensure plasma n-3 FA levels 

are stable. This could also reveal potential changes in outcome measures once 

saturation is reached in cell plasma membranes.  

It is important to note that subjects in this study were young (23.5 ± 1.1 

years) women with a healthy BMI (23.7 ± 0.6 kg/m2) and no prior health 

conditions. It is therefore difficult to generalize these results to other 

populations, such as those with some level of chronic inflammation, older 

subjects, or overweight and obese populations. It is also not possible to 

generalize these results to male populations. This is particularly true since 

women tend to metabolize ALA (a source of n-3 FAs) more efficiently than men, 

meaning young males may respond differently to the same level of n-3 FA 

supplementation (Arterburn et al., 2006). 

There are a number of reasons why significantly different changes in 

body weight may not have been observed between FISH and CON groups. 

Because the women used in this trial were healthy and non-obese (BMI = 23.7 ± 

0.6 kg/m2), baseline inflammation might not have been extreme enough to be 

manipulated by n-3 FA supplementation. A majority of studies observing 

significant results studied obese or chronically inflamed populations (Hill et al., 

2007; Krebs et al., 2006; Kunesová et al., 2006; Moore et al., 2006; Warner et 

al., 1989). Thus, there may have been a more pronounced effect of n-3 FAs on 

suppressing inflammation in these previous studies.  
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Moreover, it is possible that n-3 FA supplementation may have had 

multiple contradictory effects on metabolism and appetite, leading to no 

significant changes overall. Previous studies have hypothesized a number of 

mechanisms by which n-3 FAs may modulate weight and body composition in a 

positive or negative direction. These mechanisms include increased lipid 

oxidation, upregulation of UCP1 to increase thermogenesis, decreased resting 

metabolic rate due to inflammation suppression, or increased appetite due to 

increased ghrelin production and decreased leptin production. It is unclear under 

which conditions and to what degree these metabolic changes occur, so it is 

possible that multiple changes could have led to an insignificant net weight 

change.  

It is also possible that the n-3 FA supplements altered body composition 

but not overall body weight. This was seen in the Couet, et al. study, which 

observed no significant change in body weight but a decrease in body fat 

accretion when subjects ingested n-3 FAs (Couet et al., 1997). Percent body fat 

was measured in the present study at weeks 1, 4, and 8 using bioelectrical 

impedance analysis (BIA), and revealed no significant changes between weeks 1 

and 8. BIA is a relatively inexpensive, convenient, and noninvasive method for 

measuring body fatness, but the precision and validity of these results can be 

limited by individual variations in body shape and hydration status (Kyle et al., 

2004). Dual energy X-ray absortiometry (DXA), which was used in the Couet, et 

al. study, is generally revered as the gold standard for body composition 

measurement. However, this method is costly and requires trained personnel. A 

combination of multiple measures of body composition, such as skin fold tests, 
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waist circumference measurements, and BIA might have been more effective in 

detecting body composition changes.  

Finally, the amount of n-3 FA provided in this study (600 g/d) was 

relatively low. Other studies have demonstrated significant changes in body 

weight after supplementation of more than 2-3 g/d fish oils (Couet et al., 1997; 

Kunesová et al., 2006) and studies in rodents have used even higher doses 

(Flachs et al., 2006). It is possible that a subtherapeutic dose, such as the one 

provided in this study, may be ineffective in altering body weight. However, 

therapeutic doses seem impractical, as they exceed recommendations from the 

American Heart Association and USDA. They also likely require administration of 

multiple pills each day, or consumption of several servings of oily fish per day. 

For some consumers, this could be unrealistic. Furthermore, therapeutic doses of 

fish oils could lead to unwanted side-effects such as prolonged bleeding time 

(Iso, 2001) or gastrointestinal symptoms (National Center for Complementary 

and Alternative Medicine, 2009).  

Limitations. This trial has several limitations. The 8-week intervention was 

relatively short compared to other studies, especially since weight can fluctuate 

substantially due to factors such as hydration. The study protocol also did not 

include testing participants’ baseline EFA levels. If the women already had 

adequate n-3 FA and cells were at saturation, it is possible that supplementation 

may not have had any profound effects. Additionally, the potential metabolic 

changes that could incur with decreased inflammation may result in subtle 

changes in energy balance or adiposity that would not be evident in just a few 

weeks. A longer intervention may make these subtle changes more apparent.  



  67 

Despite the goal to enroll 40 females in the trial, only 26 completed the study 

due to scheduling and recruitment restrictions, which may have made it difficult 

to observe significant changes.  

Strengths. Participants were screened for a number of exclusion criteria 

prior to enrollment in the study. These criteria included frequent fish 

consumption, regular smoking, BMI of less than 18.5 or more than 30, and 

regular intake of omega-3 supplements and/or prescription medications that 

could have interfered with body weight or inflammatory state (such as 

corticosteroids or non-steroidal anti-inflammatory drugs). These exclusion criteria 

helped to ensure subjects were relatively similar upon enrollment in the study, 

and minimized the potential for prior conditions or lifestyles to interfere with the 

study protocol. Since physical activity was monitored weekly with the Godin 

Leisure-Time Exercise questionnaire, change in physical activity was eliminated 

as a potential confounding variable. Furthermore, the double-blind nature of this 

trial minimized bias by preventing investigators and participants from knowing 

what treatment they were receiving. 

Conclusion. This randomized controlled trial suggests that daily 

supplementation of n-3 FA (600 mg/d EPA + DHA) for 8 weeks does not lead to 

changes in body weight, BMI, or percent body fat in young healthy women as 

compared to placebo. These results do not refute the recommendation for 

Americans to increase weekly seafood consumption to approximately 8 oz fish 

per week. However, further research is needed to investigate the effects of n-3 

FAs on appetite, as well as the effects of prolonged supplementation on body 

weight and body composition.  
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CONSENT FORM 
Nutrient Supplementation and Health Parameters 

 
INTRODUCTION 
The purposes of this form are to provide you (as a prospective research study 
participant) information that may affect your decision as to whether or not to participate 
in this research and to record the consent of those who agree to be involved in the 
study. 
 
RESEARCHERS 
Dr. Carol Johnston, Director of the Nutrition Program at Arizona State University, as well 
as Nutrition graduate students, Megan Gutierrez and Bianca Teran, have invited your 
participation in a research study. 
 
STUDY PURPOSE 
The purpose of the research is to examine the effect of nutrient supplementation in 
young college females, 18-40 years old, on immune function and overall health. 
 
DESCRIPTION OF RESEARCH STUDY 
If you decide to participate, then as a study participant you will join a study to evaluate 
the effect of ingestion of a supplement daily for 8 weeks on health markers. You will be 
instructed to complete a one-page questionnaire daily regarding illness. If you are 
interested in joining the study, you will be asked to come to an initial screening where 
your height and weight will be measured and you will complete a health history and diet 
quality questionnaires. If you are eligible for the study, you and the other participants will 
be randomly assigned in either the control (placebo) or experimental (nutrient 
supplement) group. Subjects will be asked to visit the research site on 3 occasions at 0, 
4, and 8 weeks. At weeks 0, 4, and 8 you will be weighed. At weeks 0 and 8 a fasting 
blood sample will be drawn. At each blood sampling approximately 4 tablespoons of 
blood will be collected.  At weeks 4 and 8 you will complete a diet quality questionnaire 
and you will need to bring in your daily survey booklet with your supplement pack.  
 
If you say YES, then your participation will last for 8 weeks at the Downtown Phoenix 
campus at Arizona State University. Approximately 40 subjects will be participating in 
this study locally. 
 
RISKS 
There may be a slight chance of gastrointestinal distress when taking the supplement on 
an empty stomach. This risk is reduced if you ingest the supplement with a meal and 
consume plenty of water. Blood draws may cause light-headedness or temporary 
bruising. A nurse or trained phlebotomist will be performing the blood draws. 
 
BENEFITS  
Although there may be no direct benefits to you, the possible benefit of your participation 
is that you will be able to experience what it is like to be a part of a research study that 
may provide new evidence to support the health of many college women.   
 
NEW INFORMATION 
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If the researchers find new information during the study that would reasonably change 
your decision about participating, then they will provide this information to you. 
 
CONFIDENTIALITY 
All information obtained in this study is strictly confidential unless disclosure is required 
by law. The results of this research study may be used in reports, presentations, and 
publications, but the researchers will not identify you. Your name will not be associated 
with any data related to the study. In order to maintain confidentiality of your records, 
you will be assigned to a subject 
number by Dr. Carol Johnston, which will be used throughout the course of the study to 
identify you. Only Dr. Johnston will have access to subject names and their 
corresponding codes.  
 
WITHDRAWAL PRIVILEGE 
It is ok for you to say no. Even if you say yes now, you are free to say no later, and 
withdraw from the study at any time. Your decision will not affect your relationship with 
Arizona State University or otherwise cause a loss of benefits to which you might 
otherwise be entitled.  
 
COSTS AND PAYMENTS 
The researchers want your decision about participating in the study to be absolutely 
voluntary, yet they recognize that your participation may pose some costs such as 
inconvenience and a small time commitment. In order to help defray your costs, you will 
receive a $10 Target gift card at week 4 and a $15 Target gift card at week 8 visits for a 
total of $25. 
 
COMPENSATION FOR ILLNESS AND INJURY 
If you agree to participate in the study, then your consent does not waive any of your 
legal rights. However, no funds have been set aside to compensate you in the event of 
injury.  
 
VOLUNTARY CONSENT 
Any questions you have concerning the research study or your participation in the study, 
before or after your consent, will be answered by Dr. Carol Johnston, Principal 
Investigator and Professor of Nutrition at ASU (480-727-1713), Megan Gutierrez, 
Graduate Student (440-452-5142), or Bianca Teran, Graduate Student (520-370-2441). 
 
If you have questions about your rights as a subject/participant in this research, or if you 
feel you have been placed at risk; you can contact the Chair of the Human Subjects 
Institutional Review Board, through the ASU Office of Research Integrity and Assurance, 
at 480-965 6788.   
 
This form explains the nature, demands, benefits and any risk of the project.  By signing 
this form you agree knowingly to assume any risks involved.  Remember, your 
participation is voluntary.  You may choose not to participate or to withdraw your consent 
and discontinue participation at any time without penalty or loss of benefit.  In signing 
this consent form, you are not waiving any legal claims, rights, or remedies.  A copy of 
this consent form will be given (offered) to you.   
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Your signature below indicates that you consent to participate in the above study.   
 
___________________________ _________________________ _____ 
Subject's Signature   Printed Name    Date 
 
Preferred contact: phone and/or email:  
 
_________________________________________ 
 
INVESTIGATOR’S STATEMENT 
"I certify that I have explained to the above individual the nature and purpose, the 
potential benefits and possible risks associated with participation in this research study, 
have answered any questions that have been raised, and have witnessed the above 
signature. These elements of Informed Consent conform to the Assurance given by 
Arizona State University to the Office for Human Research Protections to protect the 
rights of human subjects. I have provided (offered) the subject/participant a copy of this 
signed consent document." 
 
Signature of Investigator______________________________________      
 
Date_____________ 
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APPENDIX D 
 

MEDICAL HISTORY QUESTIONNAIRE 
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APPENDIX E 

FOOD FREQUENCY QUESTIONNAIRE 
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APPENDIX F 

POWER ANALYSIS 
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Investigators Study 
Design 

Total 
Number of 
Subjects 
Used 

Standard 
Deviation 

Change in 
Body 
Weight 
(kg) 

Calculated 
Sample 
Size 

Basu, et al.  Parallel 35 0.7 2.5 6 
Thom, E Parallel  40 2.0 3.5 14 
Couet, et al.  Crossover 6 0.62 0.7 28 
Blankson, et al. Parallel 60 2.0 0.8 200 
Average 35 1.3 1.9 62 



 94 

 
APPENDIX G 

CAPSULE CALENDAR 
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APPENDIX H 

PHYSICAL ACTIVITY LOG 
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Godin Leisure-Time Exercise Questionnaire 
 
 

1. During a typical 7-Day period (a week), how many times on the average 
do you do the following kinds of exercise for more than 15 minutes during 
your free time (write on each line the appropriate number). 
 
 

      Times Per 
       Week: 

 
a) STRENUOUS EXERCISE  

(HEART BEATS RAPIDLY)             __________ 
(e.g., running, jogging, hockey, football, soccer, 
squash, basketball, cross country skiing, judo, 
roller skating, vigorous swimming, 
vigorous long distance bicycling) 

 
 
b) MODERATE EXERCISE 

(NOT EXHAUSTING)             __________ 
(e.g., fast walking, baseball, tennis, easy bicycling, 
volleyball, badminton, easy swimming, alpine skiing, 
popular and folk dancing) 

 
 
c) MILD EXERCISE 

(MINIMAL EFFORT)              __________ 
(e.g., yoga, archery, fishing from river bank, bowling, 
horseshoes, golf, snow-mobiling, easy walking) 

 
 
 
 
2. During a typical 7-Day period (a week), in your leisure time, how often 
do you engage in any regular activity long enough to work up a sweat 
(heart beats rapidly)? 
 

             OFTEN   SOMETIMES  NEVER/RARELY 

 

1.      2.     3. !
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APPENDIX I 

 
COLD SYMPTOM SURVEY 
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APPENDIX J 

METHODOLOGY TIMELINE 
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• Sent to Arizona State University ListServs 
• Inclusion based upon: 

• Gender (women) 
• Age (18-40 years old) 
• Non-obese 

• Invitation to Complete Internet Survey 

Initial Contact: Email   

• Exclusion based upon:  
• Smoking Habits (>10 cigarettes/day) 
• Vigorous physical activity (> 5 times/week) 
• Regular fish consumption (>1 serving/week) 
• Fish oil supplementation 
• Seafood Allergies 
• Seasonal flu shot 
• Pregnant or lactating 

Internet Survey 

• Informed Consent 
• Medical History Questionnaire 
• Omega-3 Food Frequency Questionnaire 
• Height & Weight 
• Percent Body Fat and BMI (Tanita) 

Study Visit 1: Screening 

• Weight & Percent Body Fat (Tanita) 
• 24-hr Recall 
• Fasting Blood Sample 
• Survey Booklet Distribution and Explanation 
• Capsule Distribution and Explanation 

Study Visit 2: Baseline 

• Weight & Percent Body Fat (Tanita) 
• Collect Remaining Capsules 
• Collect Booklets (Weeks 0-4) 
• Distribute Weeks 5-8 Material (Surveys and 

Capsules) 
• Distribute $10 Gift Cards 

Study Visit 3: Week 4 

• Weight & Percent Body Fat (Tanita)  
• 24-hr Recall 
• Omega-3 Food Frequency Questionnaire 
• Fasting Blood Sample  
• Collect Remaining Capsules 
• Collect Booklets (Weeks 5-8) 
• Distribute $15 Gift Cards 

Study Visit 4: Week 8 


