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ABSTRACT  

   

Daily dairies and other intensive measurement methods are increasingly used to 

study the relationships between two time varying variables   and  . These data are 

commonly analyzed using longitudinal multilevel or bivariate growth curve models that 

allow for random effects of intercept (and sometimes also slope) but which do not 

address the effects of weekly cycles in the data. Three Monte Carlo studies investigated 

the impact of omitting the weekly cycles in daily dairy data under the multilevel model 

framework. In cases where cycles existed in both the time-varying predictor series ( ) 

and the time-varying outcome series ( ) but were ignored, the effects of the within- and 

between-person components of   on   tended to be biased, as were their corresponding 

standard errors. The direction and magnitude of the bias depended on the phase 

difference between the cycles in the two series. In cases where cycles existed in only one 

series but were ignored, the standard errors of the regression coefficients for the within- 

and between-person components of   tended to be biased, and the direction and 

magnitude of bias depended on which series contained cyclical components. 
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Chapter 1 

INTRODUCTION  

In psychological research, participants are often asked to retrospect over a certain 

period of time (e.g. days, weeks, or months) to provide summary accounts of their 

psychological states and experiences (Bolger, Davis, & Rafaeli, 2003). However, most 

researchers agree that responses to retrospective questions tend to be biased by cognitive 

and motivational processes (e.g., McFarlane, Martin, & Williams, 1988). Among other 

important causes of bias, like recency and salience, is the participant’s current state of 

mind (Reis & Gable, 2000). For example, summaries of mood over longer intervals tend 

to resemble the mood at the particular moment of measurement (Parkinson, Briner, 

Reynolds, & Totterdell, 1995, cited in Reis & Gable, 2000). 

Diary data provide a good way to overcome such biases, characterizing ongoing 

experience with substantially greater accuracy than recollections (Reis & Gable, 2000). 

However, daily data gathered on individuals potentially often have a weekly, monthly, or 

seasonal cycle (Velicer & Molenaar, 2012). Despite the potential prevalence of cycles in 

phenomena, they are seldom directly modeled in the analyses. When the cyclical nature 

of the data is known, the cyclical effects can be statistically controlled or even removed. 

In economics, seasonal trends can be removed from the data prior to any time series 

analysis based on a priori information, or be controlled for by including as covariates 

variables sensitive to the same cyclical effect (Velicer & Molenaar, 2012). In analyses 

using techniques other than time series analysis, cycle-related artifacts and error variance 

can be controlled for by including parameters to estimate cyclical effects. For example, 

weekly cycles can be estimated using a dummy variable corresponding to weekday and 
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weekend (Gable & Reis, 1999), six dummy variables corresponding to days of the week 

(e.g., Armeli, Carney, Tennen, Affleck, & O'Neil, 2000), or Bowerman and O’Connell’s 

(1979, cited in West & Hepworth, 1991) method of sine and cosine functions (e.g., Beal 

& Ghandour, 2011; Larsen & Kasimatis, 1990). However, when the cyclical nature of the 

data is not considered and thus not modeled, the presence of cycles in the data can 

potentially lead to problematic inferences. Little, if any, work has been done to 

systematically study the potential influence of ignoring cycles in the data on inferences 

from daily diary data.  

Among the cycles that can potentially exist in the daily diary data, the weekly 

cycle is often of most interest because our work, schooling, and life usually follow a 

weekly schedule (Beal & Ghandour, 2011; Larsen & Kasimatis, 1990). Some empirical 

daily diary studies have taken this into account, and have modeled the weekly cycles 

(e.g., Armeli et al., 2000; Beal & Ghandour, 2011; Larsen & Kasimatis, 1990; Ram, 

Chow, Bowles, Wang, Grimm, Fujita, & Nesselroade, 2005); however, the majority of 

daily diary studies have ignored the possibility of cyclical patterns in the data.  

The Profile of Weekly Cycles  

Armeli et al. (2000, Figure 1, p. 983) presented profiles of average daily stress, 

alcohol consumption, and desire to drink by day of the week. These profiles indicated 

that in real data, weekly cycles can be monotonic, in which average daily levels only 

increase (or only decrease) by day of the week and then abruptly drop off (or go up) at 

some point of the weekly cycle, or they can be similar to the standard sine wave in which 

the average daily levels will increase for some days and decrease for some other days.  
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As mentioned above, besides using dummy variables, weekly cycles can be 

modeled using a combination of sine and cosine functions (e.g., Beal & Ghandour, 2011; 

Larsen & Kasimatis, 1990). This method is very flexible in that it can be used to form 

theoretical cycles, or to mimic empirical cycles having different periods (length of a 

complete cycle, as defined by Larsen, Augustine, & Prizmic, 2009), magnitudes (vertical 

distance between the peak and the nadir of one complete cycle), and specific shapes 

(profiles). To illustrate, take the Beal and Ghandour (2011) study as an example, which 

used the sine and cosine modeling approach to model the weekly cycle in the daily 

ratings of workplace affect collected from 65 employees for 21 days assessed when they 

left work. In their study, a 2-level multilevel model was fitted to the ratings of positive 

affect (  ) and the ratings of negative affect (  ), with Level-1 being measurement 

occasions, and Level-2 being persons. Their Level-1 model for positive affect with 

standardized regression coefficients was  

            (
      

 
)         (

      

 
)            

                       ,  (1) 

and their Level-1 model for negative affect with standardized regression coefficients was 

            (
      

 
)         (

      

 
)            

                       , (2) 

where   referred to today,     referred to yesterday;     was a dummy coded predictor 

representing the influence of Hurricane Ike
1
, with values of 0 for all days prior to the 

landfall of Hurricane Ike and values of 1 for all days subsequent to it;     was the 

                                                 
1 Hurricane Ike hit the area where the study was carried out during data collection, and it could be viewed 

as a negative affective event. 
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measure of time centered at the landfall of Hurricane Ike, not using whole number values 

for each day but rather the specific timestamps for each survey completion;      
      

 
  

and    (
      

 
) referred to a sine function and a cosine function based on the     

variable
2
, respectively, and they together modeled the weekly cycle. The standardized 

regressions coefficients they reported were calculated using the following equation 

provided in Hox (2002), p.21,  

                                
                                                        

                              
, (3) 

where the standard deviation of the outcome variable is defined as the standard deviation 

of the outcome variable when time is equal to zero, which is equivalent to the square root 

of the sum of the intercept variance and the residual variance obtained from the intercept-

only model. For a time-varying predictor with only fixed effects (for example, the sine 

and cosine waves here), the standard deviation is calculated as the square root of the 

within-person variance. 

Purposes of This Study 

As described above, even though daily data gathered on individuals potentially 

often have cyclical patterns in the data, the majority of daily diary studies have ignored 

this possibility, and the potential influence of ignoring cycles on inference from repeated 

measures has not yet been systematically studied. The major goal of this study is to 

investigate (a) the effect of not modeling existing weekly cycles in daily diary data, and 

(b) factors that moderate this effect, under the longitudinal multilevel modeling 

                                                 
2 For both    and   , the unstandardized regression coefficient of the sine function was non-significant, 

whereas the unstandardized regression coefficient of the cosine function was significant. 
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framework. I examined the impact of ignoring the cyclical patterns in three Monte Carlo 

studies. 

To get a rough idea of the statistical models utilized in substantive research using 

the daily diary method, in December 2011, I examined the first 20 substantive research 

articles since Year 2000 returned by Google Scholar, using as the key words “daily diary 

method” and the exclusionary key word “event-based”. Fifteen of these published studies 

utilized a longitudinal model (multilevel model or generalized estimation equation); of 

them, the majority included at least one continuous time-varying predictor at the within-

person repeated measures level and at least one continuous time-invariant predictor at the 

between-person level. 

Hence, in this study, I focused on the common two-level growth model: Level-1 

models the within-person repeated measures, and Level-2 models the between-person 

differences. One time-varying predictor at the within-person repeated measures level and 

one time-invariant predictor at the between-person level were modeled to mimic the 

majority of published studies. I fixed the interval between two adjacent measurement 

occasions to 1 day, mimicking daily diary data, and fixed the lengths of the cycles to 1 

week, mimicking weekly cycles. In the present study, I used the combination of sine and 

cosine waves to generate weekly cycles in which the average daily levels will increase for 

some days and decrease for some other days. I limited my focus to a time-balanced 

design, and assumed that the same cycle(s) characterize the responses of all the 

participants (i.e, there are only fixed effects of cycles, but no random effects). 
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Chapter 2 

OVERVIEW OF METHODOLOGY, AND RESEARCH QUESTIONS 

The Statistical Model for Data Generation 

A longitudinal two-level model for the   series and a longitudinal two-level 

model for the   series were used as the data-generating models for the simulation studies. 

I assumed that cycles existed in both of the series, and that the cycles could be 

characterized by the same combination of sine and cosine waves (i.e., the profile/shape of 

cycles was the same in both series). In addition, I assumed that neither series had a linear 

slope of time
3
. I first present the equations for the models, followed by a description of 

the data generation process. 

The time-varying predictor. The uncentered Level-1 model for the time-varying 

predictor   can be written as 

                  
   

 
          

   

 
     , (4) 

where     is the measure on the time-varying predictor of person   on day  ,     is the 

intercept for participant  , and     and     are the weights of the sine and cosine 

functions, respectively, on the time-varying predictor   for participant  .     is the Level-

1 residual (within-person random error) for participant   on day   on the time-varying 

                                                 
3 Some of the examined substantive research considered random linear slopes of time. I conducted a pilot 

simulation study where 100 people were measured daily for 63 consecutive days on a time-varying 

predictor and a outcome variable, both of which had a random linear slope of time. The results showed that 

not modeling the weekly cycles that existed in the two series did not have any impact on the average linear 

slopes or the slope residual variance. Indeed, the length of the weekly cycles (7 days) and the number of 

days that would provide sufficient power to detect the cycles (63 days, 9 weeks in the pilot study) made it 

unlikely for any effect of not modeling the cycles on the average linear slopes or the slope residual variance 

to occur. Thus, in the present studies, I omitted the linear slopes of time from the time-varying predictor 

series and the outcome series, and only assumed random intercepts for both series. 
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predictor  . That is to say, the within-person variability of the time-varying predictor   is 

captured by    , or, the within-person component of   is  

         . (5) 

Assuming a random effect for the intercept only, the Level-2 model for the time-

varying predictor   can be written as  

 

           

       

       

, (6) 

where     is the population mean intercept of the time-varying predictor  , and     and 

    are the population mean regression weights of the sine and cosine functions.     is the 

random effect (intercept residual) representing between-person variation in  . Put 

differently, the between-person component of   can be written as 

        . (7) 

The reduced mixed model form of Equations (4) and (6) can be written as  

                 
   

 
          

   

 
           . (8) 

The outcome variable. I assumed that the within-person component of the time-

varying predictor (    ) has an impact on the within-person part of the outcome  , and 

that its between-person component (   ) has an impact on the between-person part of  , 

where   represents person  , and   represents day  . How estimates of the within- and 

between-person components of the time-varying predictor   could be obtained is 

discussed in detail in the model fitting section below. 

Suppose cycles in the time-varying predictor series and the outcome series are 

synchronized (when one takes on its highest value, the other is also at the peak). When 



8 

there is no autocorrelation in the residuals of the outcome series, the Level-1 model of the 

outcome measure can be written as 

                  
   

 
          

   

 
             , (9)  

where     is the outcome measure of person   on day  ,     is the intercept for participant 

 ,     and     are the weights of the sine and cosine functions for participant  ,     is the 

regression weight of the within-person part of the time-varying predictor   for participant 

 , and     is the Level-1 residual (within-person random error) for participant   on day  , 

on the outcome variable  . Assuming a random effect for the intercept only, the Level-2 

model can be written as: 

 

                        

       

       

       

, (10) 

where   is the between-person predictor (time-invariant),     is the between-person 

component of the time-varying predictor  ,     to     are the population mean regression 

weights,     and     represent change in the outcome variable   for a 1-unit increase in 

the time-invariant predictor   and for a 1-unit increase in the between-person component 

of the time-varying predictor  , respectively, and     is the random effect (intercept 

residual) representing between-person variation in the outcome variable  . The reduced 

mixed model form of Equations (9) and (10) can be written as 

                 (
   

 
)        (

   

 
)                                . (11) 

When there is lag-1 autocorrelation [AR(1)] in the residuals of the outcome series, 

the model for the time-varying predictor stays the same, the Level-2 model of the 
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outcome variable stays the same, but the Level-1 residual term     of the outcome 

variable now satisfies (see Congdon, 2006, p. 390):  

 

                

              

                 

, (12) 

where   is the autoregressive correlation coefficient, and        is the Level-1 residual of 

person   on the first day in the simulated data. Thus, for the first day, Equation (9) can 

still be used to describe the mixed model of the outcome variable: 

                  (
      

 
)        (

      

 
)              

                        , (13) 

whereas for all other days (      in the simulated data), the mixed model of the 

outcome variable should be written as  

               (
   

 
)        (

   

 
)                        

                   . (14) 

Data Generation Process 

 I used SAS 9.2 to generate 1,000 datasets within each of the design cells. For the 

  series, I used the RANNOR function to generate a random normal variable that was 

then multiplied by the square root of the intercept residual variance in the   series, to 

form the random intercept residuals in the multilevel growth model of   (or equivalently, 

   ). For each time point, I used the RANNOR function to generate a random normal 

variable that was then multiplied by the square root of the Level-1 residual variance in   

to form the Level-1 residual at that time point (or equivalently,     ), and used the built-

in sin() and cos() functions to generate the sine and cosine waves. Then these values, as 



10 

well as the chosen values for the regression coefficients, were substituted into Equation 

(8) to generate the   series. 

For the   series, I first used the RANNOR function to generate the time-invariant 

predictor   and a random normal variable that was then multiplied by the square root of 

the intercept residual variance in the   series, to form the random intercept residuals in 

the multilevel growth model of  . For each time point, I used the RANNOR function to 

generate a random normal variable that was then multiplied by the square root of the 

Level-1 residual variance in   to form represents the Level-1 residual at that time point, 

and used the built-in sin() and cos() functions to generate the sine and cosine waves 

(taking into account the difference in phase between the cycles in   and the cycles in  ). 

When there was no autocorrelation in the residuals of the outcome series  , these values 

and the chosen regression coefficient values were substituted into Equation (11) to 

generate the   series. When there was lag-1 autocorrelation [AR(1)] in the residuals of 

the outcome series, the Level-1 residuals in   were generated according to Equation (12), 

and then the generated predictor values, the chosen regression coefficient values, and the 

generated residual values were substituted into Equations (13) and (14) to generate the   

series. The computer script used to generate the data is presented in Appendix A. 

Model Fitting Strategies 

Disaggregating the Within- and Between-Person Components of the Time-

Varying Predictor. The generated datasets were analyzed in SAS 9.2. Since it is 

assumed that the within-person component of the time-varying predictor (    ) has an 

impact on the within-person part of the outcome  , and that its between-person 

component (   ) has an impact on the between-person part of  , in this study the model 
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fitting has two steps. Step 1 involves disaggregating the time-varying predictor   into a 

within-person component (which acts as a Level-1 predictor) and a between-person 

component (which acts as an additional Level-2 predictor besides the time-invariant 

predictor  ), and Step 2 involves fitting a 2-level model for the outcome variable  . 

The standard method for disaggregating the within- and between-person effects of 

the time-varying predictor on the outcome, i.e. the person-mean centering strategy (Kreft, 

de Leeuw, & Aiken, 1995; Enders & Tofighi, 2007), implicitly makes the assumption 

that the value of the time-varying predictor is independent of time. Curran and Bauer 

(2011) realized that sometimes the time-varying predictor can have a linear slope of time. 

In such cases, they found that the person-mean centering strategy could not sufficiently 

disaggregate the within- and between-person effects of the time-varying predictor on the 

outcome, which in turn could lead to bias in parameter estimates. However, the 

possibility of the existence of cycles in both the time-varying predictor series and the 

outcome series was not considered in Curran and Bauer (2011). As is demonstrated 

below, when cycles exist in the time-varying predictor, the person-mean centering 

strategy cannot sufficiently disaggregate the within- and between-person components. 

The person-specific expected value of     as defined in Equation (8) is 

                  (   (
   

 
))       (   (

   

 
))     . (15) 

Rearranging Equation (15) and inserting sample estimates, we obtain 

  ̂    ̅   ̂    ̂  (   (
   

 
))   ̂  (   (

   

 
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
), (16) 

where  ̂   is an estimate of the between-person component of  ,        . It can be 

proved that when the number of measurement occasions (i.e. the number of days) is a 
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multiple of the length of the weekly cycle (i.e., 7 days),    (
   

 
)   , and    (

   

 
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
  . 

As is described in greater detail in the method section, this is satisfied in the present 

studies, so Equation (16) reduces to  

  ̂    ̅   ̂  . (17) 

Continuing to the expression of the within-person component, we can express the person- 

and time-specific residual defined in Equation (8) as 

  ̂    ̂    ̂    ̂     (
   

 
)   ̂     (

   

 
)   ̂  . (18) 

Inserting the sample estimate of     defined in Equation (17), Equation (18) can be re-

written as  

  ̂     ̂    ̅   ( ̂     (
   

 
)   ̂     (

   

 
)). (19) 

Now the first term contains the person-mean centered time-varying predictor  , 

but it is not an appropriate representation of the within-person component of  , as it fails 

to take into account the cyclical trend reflected in the second term. 

Though Curran and Bauer (2011) did not utilize it in their study
4
, they suggested 

that a plausible method of obtaining appropriate sample estimates of the within- and 

between-person components of the time-varying predictor would be fitting a multilevel 

growth model to the time-varying predictor and asking for the empirical Bayes estimates 

of     and    . I used this method in the pilot simulation study mentioned above, and it 

produced unbiased parameter estimates, and proper coverage rate of the 95% confidence 

intervals (which implied proper standard errors). In this study, I continued to use the 

                                                 
4 For the purpose of disaggregating the within- and between-person effects of the time-varying predictor on 

the outcome, they calculated the deviation of the time-varying predictor from the individual-specific 

regression line reflecting the growth of the time-varying predictor over time. 
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empirical Bayes estimates as appropriate sample estimates of the within- and between-

person components of the time-varying predictor  . 

Model Fitting Strategy 1: Modeling the Cycles. In this study, for each 

generated dataset, I had two model fitting strategies, where Strategy 1 estimated the 

cyclical patterns (the correct model), and Strategy 2 ignored the cyclical patterns (the 

misspecified model). As is mentioned above, in this study, Step 1 of model fitting 

involves obtaining sample estimates of the within- and between-person components of 

the time-varying predictor  , and Step 2 involves fitting a 2-level model for the outcome 

variable  . 

For Strategy 1 (when the cycles were modeled), in Step 1 of model fitting, I 

obtained the empirical Bayes estimates of the Level-1 residuals and the Level-2 intercept 

residuals from a multilevel growth model fitted to the time-varying predictor   (using 

PROC MIXED with DDFM = KenwardRoger), and took them as the sample estimates of 

the within- and between-person components. In Step 2, I fitted a multilevel growth model 

to the outcome variable   (using PROC MIXED with DDFM = KenwardRoger), with the 

Level-1 predictors being the sine wave and the cosine wave to capture the cyclical 

patterns, the estimated within-person component of the time-varying predictor (  ̂  ), 

and the Level-2 predictors of the random intercept being the time-invariant predictor   

and the estimated between-person component of the time-varying predictor (  ̂ ). 

Model Fitting Strategy 2: Not Modeling the Cycles. For Strategy 2, I ignored 

the possibility of existence of cycles in the data, mimicking most empirical studies using 

daily diary data. If cycles did not exist in the data, person-mean centering, which is the 

standard practice in empirical research, would be appropriate for getting sample estimates 
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of the within- and between-person components of the time-varying predictor   (for an 

analytic proof, see Curran & Bauer, 2011). Hence, when I ignored the possibility of 

existence of cycles in the data, I used person-mean centering in Step 1 of model fitting. In 

Step 2, I fitted a multilevel growth model to the outcome variable   (using PROC 

MIXED with DDFM = KenwardRoger), with the only Level-1 predictor being the 

person-mean centered time-varying predictor ( ̂    ̅ ), and the Level-2 predictors of the 

random intercept being the time-invariant predictor   and the person means of the time-

varying predictor ( ̅ ). 

 

I examined the impact of ignoring existing weekly cycles in daily diary data in 

three Monte Carlo studies. Studies 1 and 2 focused on situations in which cycles existed 

in both the outcome series   and the time-varying predictor series  . In Study 1, I 

manipulated the profile of cycles
5
, the synchronization of the cycles in the   series and 

the   series, the serial dependency in the   series, and the magnitude of standardized 

regression coefficient for   ̂  . In Study 2, I examined the impact of synchronization of 

the cycles in the   series and the   series in greater detail, and whether this impact would 

be moderated by the serial dependency in the   series. Study 3 probed situations where 

cycles only exist in one of the two series. In Study 3, I examined the impact of ignoring 

weekly cycles that existed only in the time-varying predictor series   or only in the 

outcome series  , and whether this impact would be moderated by the serial dependency 

in the   series. 

                                                 
5 The manipulation was simultaneously applied to both the   series and the   series. Thus, the profile of 

cycles was the same for the two series. 
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Chapter 3 

STUDY 1 

In Study 1, I assumed that cycles existed in both the outcome series and the time-

varying predictor series, and that the profile/shape of cycles was the same for the time-

varying predictor series   and the outcome series  .  

Method for Study 1 

This simulation study used a 3 (Profile of Cycles: cosine wave only, sine wave 

only with half the magnitude in the cosine wave only condition, or both sine and cosine 

waves) × 2 (Synchronization of the cycles in the two series: synchronized or 180° out of 

phase) × 2 (Serial Dependency in the outcome series: zero autocorrelation, or non-zero 

lag-1 autocorrelation) × 3 (Magnitude of Standardized Regression Coefficient for      

(the within- person component of the time-varying predictor): 0, 0.2, or 0.5) factorial 

design to generate the data.  

A total of 1000 replications were generated for each condition using SAS 9.2. 

Each dataset was then analyzed in SAS 9.2 using two model fitting strategies: (1) a 

strategy in which cycles were modeled, and serial dependency was modeled as 

appropriate according to the population model, and (2) a strategy in which cycles were 

not modeled, whereas serial dependency was modeled as appropriate according to the 

population model. Comparing results from analyses with cycles modeled versus not 

modeled will help the understanding of the impact of failure to model cycles that exist on 

inferences from repeated measures. 
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The details of each design factor and other details of the model for data generation 

used in Study 1 are described below with a justification of the values selected for the 

study, followed by a summary of key parameter values in the study.  

Details of design factors  

Profile of Cycles. A review of the daily diary literature indicated very few studies 

have considered the possibility of weekly cycles. One exception was Beal and Ghandour 

(2011), who used the sine and cosine modeling approach to model the weekly cycle in the 

daily ratings of workplace affect. I used values from this study to provide plausible 

population values for some of the key parameters in my study. In Study 1, I included a 

cosine wave only condition (with a weight of 0 of the sine function and a standardized 

weight of .07 of the cosine function in both series, mimicking the magnitudes in the Beal 

& Ghandour, 2011, study), a sine wave only condition (with a standardized weight of 

.035 of the sine function and a weight of 0 of the cosine function in both series) to study 

the effect of the magnitude of the standardized weight
6
, and a combined cosine and sine 

waves condition (with a standardized weight of .035 of the sine function and a 

standardized weight of .07 of the cosine function in both series) to mimic situations in 

which the cycle does not have a standard profile (see West & Hepworth, 1991, for an 

example). In terms of Cohen’s (1988) norms, these represent very small effect sizes for 

the cyclical effects, but effect sizes that characterize those of the Beal and Ghandour 

(2011) study. 

                                                 
6 A sine wave can be easily transformed into a cosine wave, so the difference between the sine wave only 

condition and the cosine wave only condition is the magnitude of the non-zero standardized regression 

weights. 
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Synchronization of the time-varying predictor series and the outcome series. 

In Study 1, weekly cycles existed in both the time-varying predictor series and the 

outcome series. In this case, the synchronization of these two series could be a potentially 

influential moderator of the impact of ignoring the cycles in the data on the inferences 

from the repeated measures. In the Armeli et al. (2000) study, the weekly cycles for the 

desire-to-drink series and the alcohol consumption series were approximately 

synchronized (when one took on the highest value, the other was also at the peak), 

whereas the weekly cycles for the stress series and the desire-to-drink series were 

approximately 180° out of phase (when one took on its highest value, the other was at its 

nadir). Consequently, in Study 1 I decided to have a synchronized cycles condition, 

where the cycles in the two series were in phase, and a non-synchronized condition, 

where the cycles in the two series were out of phase by 180° ( ). 

When the cycles in the outcome series and the time-varying predictor series were 

synchronized, the appropriate statistical model for data generation was described above in 

the statistical model section. When the cycles in the outcome series and the time-varying 

predictor series were not synchronized but rather out of phase by 180˚ ( ), Equation (11) 

can still be used to describe the population model for the time-varying predictor variable, 

but the model for the outcome variable needs to be written as  

               (
   

 
  )        (

   

 
  )           

                       ,  (20) 

which can be simplified to  

                 (
   

 
)        (

   

 
)                                . (21) 
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Autocorrelation of Level-1 residuals in the outcome series. Serial dependency, 

or autocorrelation of Level-1 residuals, means that the Level-1 residual error terms for 

adjacent observations may be correlated. Trends, cycles, and serial dependency are three 

sources of non-independence of residuals in temporally ordered data (West & Hepworth, 

1991). In daily diary data, even if trends of time do not exist and serial dependency (or 

autocorrelation of residuals) is modeled, unmodeled cycles may still contribute to non-

independence of the Level-1 residuals, and may lead to bias and inflated standard errors 

in the estimation of the Level-1 residual variances and even the Level-1 residual 

correlations (autocorrelations). Multilevel models typically assume that the variances of 

the residuals are constant around the regression lines at both levels 1 and 2, and one 

important source of heteroskedasticity in the Level-2 residuals is that the model may not 

be correctly specified at level 1 (West, Ryu, Kwok, & Cham, 2011). Thus, if the failure to 

model the cycles in the data has any influence on the Level-1 model, it may also have an 

effect on the Level-2 intercept residual variance. Therefore, it is of interest to examine 

whether the failure to model the cycles in the data will have any effect on the modeling of 

autocorrelation of residuals and other parameters (e.g., the Level-1 residual variance, the 

intercept residual variance, etc.) in the outcome series. In Study 1, I decided to have a 

baseline no autocorrelation condition and a non-zero lag-1 autocorrelation [AR(1)] 

condition. When there was lag-1 autocorrelation [AR(1)] in the residuals of the outcome 

series, the autoregressive correlation coefficient   was set to .80, which is within the 

range of values commonly used in past simulation studies (e.g., Kwok et al., 2007; 

Murphy, Beretvas, & Pituch, 2011; Murphy & Pituch, 2009).  
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Magnitude of standardized regression coefficient for the within-person 

component of the time-varying predictor. I chose three values for the standardized 

regression coefficient for     , the within-person component of the time-varying 

predictor: 0, .2, and .5. As is explained in greater detail below, the within-person 

component of the time-varying predictor is captured by the Level-1 residual in the time-

varying predictor series. Using a transformation of Equation (3) (see section “Summary 

of the key parameter values” below for details), the unstandardized regression coefficient 

of the within-person component of the time-varying predictor on the outcome can be 

calculated. 

Details of the population model for generating datasets 

Number of participants. The median number of participants was 118 in the 

examined substantive research articles described above (the first 20 substantive research 

articles since Year 2000 returned by Google Scholar, using as the key words “daily diary 

method” and the exclusionary key word “event-based”). Based on this, the number of 

participants in the simulation study was set to 100.  

Number of measurement occasions. From the examination of the substantive 

research articles described above, I found that the median number of measurement 

occasions per person was 18. This number is quite small; however, very few of these 

examined studies addressed the possibility of cycles in the data. In those studies that 

addressed this possibility, the number of measurement occasions were generally larger, to 

ensure enough power to detect the weekly cycles. To cite three examples, in a study 

examining how the within-person associations among stress, alcohol use, and desire to 

drink varied as a function of several factors, Armeli et al. (2000) used daily diary 
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methods to examine 88 regular drinkers over 60 days, modeling the weekly cycles in the 

data using dummy variables corresponding to each day of the week. In a study of the 

weekly cycles in the daily moods, Larsen and Kasimatis (1990) examined the daily mood 

reports of 74 undergraduates for 84 consecutive days. Ram et al. (2005) examined the 

weekly cycles in daily emotion ratings from 179 college students for 52 consecutive days. 

Based on these, in this simulation study the number of measurement occasions per person 

was fixed at 63 to ensure enough power to detect the weekly cycles. With the interval 

size being 1 day, I had 9 weeks (day 1 to day 63) represented in the data. I centered the 

time variable at day 32 such that the mean of time was 0. In this way, the value of the 

time variable   at day 1 was -31, the value of the time variable   at day 32 was 0, and the 

value of the time variable   at day 63 was 31. 

The time-invariant predictor. From my examination of the 20 substantive 

research articles described above, I found that 15 of them performed a multilevel model, 

and among these 15 articles, 2 used only binary time-invariant predictor(s), 9 used only 

continuous predictor(s), and 4 used both. It seems that the use of continuous time-

invariant predictor(s) is more common than binary time-invariant predictor(s) in 

multilevel models, and thus I decided to model a continuous time-invariant predictor. For 

simplicity, the time-invariant predictor followed a standard normal distribution. 

Standardized effect size of the time-invariant predictor and the between-

person component of the time-varying predictor. Raudenbush and Liu (2001) 

provided the equation for calculating the standardized effect size of a Level-2 predictor 

(dummy coded treatment assignment in their example) on the random effect of 

polynomial trends (intercept, linear trend, quadratic trend, etc.) in the longitudinal 
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multilevel models framework. Thus, in calculating the standardized effect size of the 

time-invariant predictor and the between-person component of the time-varying predictor 

on the random intercept and the random slope, I can make use of the following equation 

      
   

√   
, (22) 

where     is the standardized effect size for the effect of the Level-2 predictor   (    

for the time-invariant predictor,     for the between-person component of the time-

varying predictor) on the growth parameters (    for the intercept,     for the 

slope),     is the population mean change in the corresponding growth parameter for a 1-

unit change in the Level-2 predictor  , and     is the population variance of the random 

effect of the growth parameter. To simplify the study, the effects of the time-invariant 

predictor and the between-person component of the time-varying predictor on the random 

intercept had a standardized effect size of .50, a medium effect size according to Cohen 

(1988), as extended to clustered designs by Raudenbush and Liu (2000; 2001). Given the 

values of     (set to .50 in this study) and     (described in greater detail below), the 

corresponding value of     can easily be calculated.  

Level-1 residual variance in the two series. In both the time-varying predictor 

series and the outcome series, the within-person residuals were assumed to be normally 

distributed with mean equal to zero and variance equal to one (i.e.,   
    in the time-

varying predictor series, and      in the outcome series), which is the general practice 

in simulation studies within the longitudinal multilevel framework (e.g., Curran & Bauer, 

2010; Kwok et al., 2007; Murphy & Pituch, 2009).  
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The Level-2 intercept residual variance of the time-varying predictor series 

and the outcome series. In both series, the intercept residuals were assumed to be 

normally distributed with mean set to 0 and variance (     in the time-varying predictor 

series, and     in the outcome series) set to .20, consistent with parameter values used in 

past simulation studies (e.g., Kwok et al., 2007; Raudenbush & Liu, 2000).  

Magnitude of the mean intercept in the two series. For simplicity, the mean 

intercept in both series was fixed to zero in all conditions, which is a common strategy 

used in past simulation studies (e.g., Murphy et al., 2011; Murphy & Pituch, 2009).   

Estimation method 

Estimation of parameters in the multilevel modeling framework is typically done 

using maximum likelihood. In this context, statisticians distinguish between two kinds of 

maximum likelihood functions, full information maximum likelihood (FIML) and 

restricted maximum likelihood (REML). In FIML, both the regression coefficients and 

the variance components are included in the likelihood function; in contrast, in REML, 

only the variance components are included in the likelihood function, and the regression 

coefficients are estimated conditioning on the maximum likelihood estimates of the 

variance components (Raudenbush & Bryk, 2002). FIML is computationally easier, and 

an overall chi-square test based on the likelihood can be used to compare two models that 

differ in the fixed part, but estimates of variance components are generally negatively 

biased in small samples (Hox, 2002). REML partially addresses the issue, producing less 

biased estimates of variance components in small samples, but the REML log-likelihood 

can only be used to compare nested models for the covariance, not for the fixed parts. In 

this study, I fitted every model of the outcome variable   twice, once using REML and 
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once using FIML, and took the REML estimates of variance components and the FIML 

estimates of the fixed parts (fixed effects and corresponding standard errors) for final 

analyses. FIML estimates of standard errors potentially can be biased, but in the pilot 

simulation study described above (which had similar population models and same 

number of participants and number of observations as this study), no such problem was 

found when the model fitting strategy was to estimate the existing cycles. Using the 

REML estimates of variance components and the FIML estimates of the fixed parts 

should be appropriate in this study, as it mimics substantive research in which researchers 

wish to be able to construct likelihood ratio tests of the fixed effects. For the time-varying 

predictor  , in modeling strategy 1, I fitted a multilevel model using FIML to obtain 

empirical Bayes estimates of the Level-1 and Level-2 residuals (within- and between-

person components of  ). As a check, I picked two conditions and compared the REML 

versus FIML empirical Bayes estimates of these within- and between-person components 

of  ; the results showed no difference. 

Summary of the key parameter values 

A simple transformation of Equation (3) results in 

                               
                                                      

                              
, (23) 

which can be used to calculate the unstandardized regression coefficient of the sine and 

cosine functions and the within-person component of the time-varying predictor. The 

standard deviation of the outcome variable when time is equal to zero is     

√       √     √          , and the standard deviation of the time-varying 

predictor when time is equal to zero is     √  
       √     √          . 
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The sample standard deviations of the sine and cosine functions are both equal to .7128, 

and the standard deviation of the within-person component of the time-varying predictor 

(        ) is 1. Thus, in the models of both series, for the sine and cosine functions, 

when the standardized regression coefficient equals 0, the unstandardized regression 

coefficient is also 0; when the standardized regression coefficient equals .035, the 

unstandardized regression coefficient is 
              

     
      ; and when the standardized 

regression coefficient equals .07, the unstandardized regression coefficient is 

             

     
      . In the model of the outcome variable, the unstandardized regression 

coefficient of the within-person component of the time-varying predictor equals 0 when 

the standardized regression coefficient is 0, equals 
             

 
       when the 

standardized regression coefficient is .20, and equals 
             

 
       when the 

standardized regression coefficient is .50. 

A simple transformation of Equation (22) results in 

         √   , (24) 

so     and    , which represent change in the outcome variable   for a 1-unit increase in 

the time-invariant predictor   and for a 1-unit increase in the between-person component 

of  , are both equal to      ( √   )       .  

Table 1 summarizes the key parameter values in Study 1. 

Results for Study 1 

The results are presented in the following order: 1) bias of the estimates of the 

fixed effects (the mean intercept, the effect of the within-person component of the time-

varying predictor, and the effects of the time-invariant predictor and the between-person 
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component of the time-varying predictor) and their corresponding standard errors, the 

Level-1 residual variance, the Level-1 residual correlations, and the variance of the 

random intercepts, 2) empirical Type I error rate of the tests of the effect of the within-

person component of the time-varying predictor, and 3) coverage of the confidence 

intervals (CI) of the fixed effects. 

The impact of failure to model the cycles in the data, along with the four design 

factors on the simple bias
7
 of the estimates of the parameters of interest was examined 

under the between-subjects ANOVA framework. All ANOVAs were conducted using 

SAS PROC GLM. Study 1 had 36 conditions (3 × 2 × 2 × 3) × 1000 replications × 2 

model fitting strategies = 72000 records to be submitted for analysis, resulting in very 

high power for detecting trivial effect sizes. Thus, rather than focusing on the 

significance tests, I used    >.01 (a small effect according to Cohen, 1988) as a criterion 

for effect sizes worthy of consideration, which has been used in some previous simulation 

studies (e.g., Krull & MacKinnon, 1999; Murphy et al., 2011; Murphy & Pituch, 2009). 

Despite the factor of Model Fitting Strategy being within-subjects, I analyzed the data as 

a between-subjects design, so that the impacts of all factors on the parameters of interest 

were put in a single metric and thus were comparable (Gottschall, West, & Enders, 2012; 

Kwok et al., 2007). This choice does lower the statistical power of the test of the within 

subject terms, but given the focus on η
2
 and the large number of replications, this issue 

should not be a concern.  

To allow for comparison of bias across different parameters (fixed effects and 

variances), the standardized bias was also calculated within each design cell. 

                                                 
7 The simple bias, or the raw bias, is defined as the difference between a parameter estimate and the true 

population value of that parameter. 
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Standardized bias (StdB) is defined as the deviation of the mean parameter estimate 

within each design cell from the true population value, divided by the standard deviation 

of the estimates within that design cell obtained from the correctly specified model 

(Collins, Schafer, & Kam, 2001; Enders & Tofighi, 2008). I used    ̂   
  to represent the 

sample estimate of the standard error of  ̂  , and symbols for the sample estimates of the 

standard errors of other estimated fixed effects were defined in the same manner. Relative 

bias (RB) was calculated for the estimated standard errors of the estimated fixed effects, 

as the deviation of the sample estimate of the standard error from the population value of 

the standard error within each design cell, divided by the population value. I defined the 

population value of the standard error as the average of the 1000 sample estimates of the 

standard error within that design cell obtained from the correctly specified model. Rules 

of thumb guidelines for interpreting RB values are values less than 5% represent trivial 

bias, values between 5% and 10% represent moderate bias, and values greater than 10% 

represent substantial bias (Flora & Curran, 2004). 

The type I error rate was examined for those conditions in which the true 

parameter value of     was equal to zero. The full factorial design included a total of 24 

different conditions (3 Profile of Cycle × 2 Synchronization × 2 Serial Dependency × 2 

Model Fitting Strategy) under which the empirical type I error rates could be evaluated. 

The impact of Model Fitting Strategy on the type I error inflation for detecting     was 

evaluated by comparing the empirical Type I error rate to the expected confidence 

interval from the binomial distribution. Since the nominal Type I error rate is .05, the 

standard error of the binomial distribution is √
      

 
 √

          

    
       . Thus, 
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empirical Type I error rates that fell outside of the range             were considered 

problematic.  

In addition to bias, the empirical coverage rate of the 95% CI’s was used to 

evaluate the accuracy of the estimates of the fixed effects. The empirical coverage rate 

was calculated as the proportion of CI’s that covered the population value of the 

corresponding fixed effect. If the model is correctly specified and the estimation method 

is working well, the coverage rate for the obtained 95% CI’s of the fixed effects should 

be close to the nominal coverage rate, 95%. Following Collins et al. (2001), I considered 

the estimation of a parameter problematic if the coverage of its 95% CI fell lower than 

90%. 

No problems were encountered in fitting the models; the estimation procedures 

converged in all simulation data sets. 

 Bias of  ̂  ,  ̂  ,  ̂  , and  ̂  . When the simple bias of  ̂  ,  ̂   and  ̂   were 

the dependent variables, no    of the five design factors or their interaction effects in the 

ANOVA model was larger than .01. For the simple bias of the key parameter of interest, 

 ̂  , the Synchronization Factor had an impact (        ). When the cycles in both 

series were synchronized,  ̂   was positively biased (     ̂                           ), 

whereas when the cycles were 180° out of phase,  ̂   was negatively biased 

(     ̂                                ). This was modified by a Model Fitting Strategy 

by Synchronization two-way interaction (        ). Figure 1
8
 shows simple bias of  ̂   

by Model Fitting Strategy and Synchronization, averaged over the remaining design cells. 

                                                 
8 I initially used side-by-side box plots for all effects to examine the distribution of outliers across 

conditions. Given that the distribution of outliers varied little across conditions, line graphs with 95% 

confidence intervals were displayed instead for better illustration of the mean level differences. 
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When the cycles in the two series were modeled,  ̂   was always close to its true 

parameter value. When the cycles were not modeled,  ̂   was positively biased when the 

cycles in the two series were synchronized, and negatively biased when they were 180° 

out of phase.  

 Bias of   ̂   
,   ̂   

,   ̂   
, and   ̂   

. When the simple bias of   ̂   
,   ̂   

, 

and   ̂   
 were the dependent variables, no    of the five design factors or their 

interaction effects in the ANOVA model was larger than .01. For the simple bias of 

  ̂   
, the Model Fitting Strategy Factor had an impact (        ).   ̂   

 was 

negatively biased when the cycles in both series were not modeled 

(    ̂                             , representing a moderate bias) as compared to when 

the cycles were modeled (by definition,     ̂                     ). 

 Simple bias of  ̂   and  ̂ . When the simple bias of  ̂   and  ̂  were the 

dependent variables, no    of the five design factors or their interaction effects in the 

ANOVA model was larger than .01.  

Type I error rate for  ̂  . Figure 2 shows the trellis dot plot of the empirical Type 

I error rates of  ̂  . When the cycles were modeled, the empirical Type I error rates of  ̂   

were all within the acceptable range. In contrast, when the cycles were not modeled, the 

empirical Type I error rates were higher than .064 (the upper limit of the acceptable 

range) in 6 out of 12 conditions. Looking at only conditions in which the cycles were not 

modeled, it is obvious that the empirical Type I error rates increased as the Profile of 

Cycles changed from sine wave only to cosine wave only, then to both cosine and sine 

waves. The empirical Type I error rates were all within the reasonable range when the 
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cycles only had a sine wave, whereas with other profiles of cycles, the empirical Type I 

error rates tended to be too high. Since the only difference between the sine wave only 

condition and the cosine wave only condition was the magnitude of the cyclical 

components, it seems that the magnitude of the cyclical components is playing a role 

here. Moreover, when the cycles in the two series were synchronized, the difference in 

the empirical Type I error rates of  ̂   between the both cosine and sine waves condition 

and the cosine wave only condition was larger when the Level-1 residuals in the outcome 

were independent (> .03), as compared to when the Level-1 residuals in the outcome 

were Lag-1 autocorrelated (< .005). When the cycles in the two series were not 

synchronized, this pattern was reversed: the difference in the empirical Type I error rates 

of detecting     between the both cosine and sine waves condition and the cosine wave 

only condition was smaller when the Level-1 residuals in the outcome were independent 

(< .015), as compared to when the Level-1 residuals in the outcome were Lag-1 

autocorrelated (> .025). These patterns are consistent with the analysis of the simple bias 

of  ̂  . 

Coverage of the CI’s of the fixed effects. The coverage rate of the 95% CI’s was 

equal to or above 90% for  ̂  ,  ̂  , and  ̂   in all conditions. For  ̂  , the coverage rate 

of the 95% CI’s fell below 90% in three conditions. In these three conditions, cycles in 

both series were 180° out of phase and were not modeled, the Profile of Cycles had both 

cosine and sine waves, the Standardized Regression Coefficient for      was .20 in one 

condition and .50 in the other two, and the Level-1 residuals were independent in two 

conditions and Lag-1 autocorrelated in the other one. 

Impact of misspecifying the Level-1 covariance structure 
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Thus far the results of Study 1 seem to suggest that not modeling the existing 

cycles could lead to problematic inferences. However, remembering that cycles and serial 

dependency are two of the three sources of non-independence in temporally ordered data 

(West & Hepworth, 1991), I wished to investigate two questions: (a) Whether the non-

independence arising from not modeling the cycles would be lessened by specifying a 

more general Level-1 covariance matrix in the outcome, and (b) if so, what factors would 

moderate this effect. In Study 1, there are two types of Level-1 convariance structures in 

the outcome, independent and AR(1), both of which are popular choices among 

substantive researchers analyzing daily diary data. The independence structure is nested 

under the AR(1) structure, providing a chance to examine these questions. Hence I can 

rephrase my questions thus: (a) when the Level-1 residuals in the outcome series are 

independent in the population model, can the non-independence arising from not 

modeling the cycles be absorbed by a misspecified AR(1) Level-1 covariance structure 

(serial dependency)? And (b) If so, what factors moderate this effect?  

To answer these questions, in conditions where the Level-1 residuals in the 

outcome series were independent in the population model, I adopted a third model fitting 

strategy in which the cycles in the two series were not modeled, and an AR(1) Level-1 

covariance structure in the outcome series was misspecified. Then I compared the two 

model fitting strategies that left out the cyclical components
9
. If specifying a more 

general Level-1 covariance structure would have a positive effect on the parameter 

estimates that suffered from ignoring the existing cycles, one would expect a difference 

in results from these two model fitting strategies. The results showed that specifying a 

                                                 
9 One (model fitting strategy 2) specified the correct independent Level-1 covariance matrix, whereas the 

other, model fitting strategy 3, misspecified an AR(1) structure. 
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more general AR(1) Level-1 covariance structure did not provide a remedy. The 

parameter estimates of interest, particularly those that were biased when existing cycles 

were not modeled,  ̂  ,  ̂  , their corresponding standard errors, the residual intercept 

variance  ̂   and the Level-1 residual variance  ̂ , did not differ for these two model 

fitting strategies, nor was the impact of misspecifying the Level-1 covariance structure  

moderated by any factor.  

Summary of results in Study 1 

In sum, the estimates of fixed effects, their corresponding standard errors, and the 

Level-1 and Level-2 residual covariance matrix elements were acceptable when cycles in 

both series were modeled. When the cycles were not modeled,  ̂   tended to be biased, 

and the direction of bias depended on whether the cycles in the two series were 

synchronized or not. Moreover,   ̂   
 was underestimated when the cycles were not 

modeled. When the Level-1 residuals in the outcome series were independent in the 

population model, misspecifying an AR(1) Level-1 covariance structure did not seem to 

provide a remedy to the problem arising from not modeling the cycles. 
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Chapter 4 

STUDY 2 

In Study 1 I examined conditions in which the cycles in the two series were 

synchronized versus 180° out of phase (when one took on its highest value, the other was 

at its nadir). To examine this factor in greater detail, in Study 2, I conducted additional 

simulations. For simplicity, I assumed that cycles existed in both the outcome series and 

the time-varying predictor series, and that the profiles of cycles were the same for both 

the outcome series and the time-varying predictor series, as was the case in Study 1. 

Method for Study 2 

Study 2 used a 7 (Phase Difference of the cycles in the two series: 0, 1, 2, 3, 4, 5, 

or 6 days) × 2 (Serial Dependency in the outcome series: zero autocorrelation, or non-

zero lag-1 autocorrelation) factorial design to generate the data. As was in Study 1, a total 

of 1000 replications were generated for each condition using SAS 9.2. Each dataset was 

then analyzed in SAS 9.2 with cycles modeled versus not modeled. To simplify the 

design, I fixed the standardized regression coefficient for     , the within-person 

component of the time-varying predictor, to be 0.5. The profile/shape of cycles was also 

fixed such that the cycles always had both cosine and sine components. Other details of 

the data generation model were the same as those in Study 1. 

The Phase Difference (PD) of the cycles in the two series was operationalized as 

the number of days that the weekly cycles in the outcome lagged behind the weekly 

cycles in the time-varying predictor. Hence Equation (8) can still be used to describe the 

time-varying predictor:  

                 
   

 
          

   

 
           ,  
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whereas the model for the outcome variable should be written as  

               (
        

 
)        (

        

 
)          

                        . (25) 

When Phase Difference = 0, the cycles in the two series were synchronized. When 

Phase Difference = 1, the cycles in the outcome lagged 1 day behind those in the time-

varying predictor, and so forth. Note that since the weekly cycles have a length of 7 days, 

Phase Difference = 6 (the weekly cycle in the outcome lagged 6 days behind the 

corresponding cycle in the time-varying predictor) can also be interpreted as the weekly 

cycle in the outcome is 1 day ahead of the next weekly cycle in the time-varying 

predictor. In this sense, Phase Difference only had 4 absolute values: 0, 1, 2, and 3 days. 

This factor was crossed with autocorrelation of Level-1 residuals in the outcome series 

(Serial Dependency), to see whether the impact of Phase Difference (if there is any) 

would interact with the existence of autocorrelation of Level-1 residuals in the outcome 

series. 

Table 2 summarizes the key parameter values in Study 2. 

Results for Study 2 

No problems were encountered in fitting the models; the estimation procedures 

converged in all simulation data sets. 

 Bias of  ̂  ,  ̂  ,  ̂  , and  ̂  . When the simple bias of  ̂   and  ̂  were the 

dependent variables, no    of the three design factors or their interaction effects in the 

ANOVA model was larger than .01. Results for the simple bias of  ̂   were more 

complex. Model Fitting Strategy had an impact (        ),  ̂   was close to its true 
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parameter value when the cycles in both series were modeled (     ̂                   

    ), but negatively biased when the cycles were not modeled 

(     ̂                            ). Phase Difference also had an impact (        ), 

the smallest and greatest values (0, 1, and 6) of the phase difference between the weekly 

cycles in the two series led to less biased  ̂   (     ̂  
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  values were .102, .013, and .047, 

respectively), whereas phase difference values of 2, 3, 4, and 5 days (or the larger 

absolute values of Phase Difference) led to more biased  ̂   (     ̂  
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  values ranged from 

-.164 to -.423). These effects were modified by a Model Fitting Strategy by Phase 

Difference two-way interaction (        ). To illustrate this pattern, Figure 3 displays 

simple bias of  ̂   by Model Fitting Strategy and Phase Difference. The mean simple bias 

of  ̂   was always close to zero when the cycles were modeled. When the cycles were not 

modeled, however, the mean simple bias of  ̂   depends on the absolute values of Phase 

Difference: Phase Difference value of 0 day (synchronized cycles in the two series) led to 

positive bias in  ̂  , absolute Phase Difference value of 1 day (or, raw Phase Difference 

values of 1, and 7 days) led to mean simple bias values that were close to zero, whereas 

absolute Phase Difference values of 2 and 3 days (or, raw Phase Difference values of 2, 

3, 4, and 5 days) led to negative mean simple bias values.  

When the simple bias of  ̂  was the dependent variable, Model Fitting Strategy 

had an impact (        ).  ̂   was close to its true population value when the cycles in 

both series were modeled (     ̂                       ), but not when cycles were not 

modeled (     ̂                           ). 
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Simple bias of   ̂   
,   ̂   

,   ̂   
, and   ̂   

. When the simple bias of   ̂   
 

and   ̂   
 were the dependent variables, no    of the three design factors or their 

interaction effects in the ANOVA model was larger than .01. Results for the simple bias 

of   ̂   
 were more complex. Model Fitting Strategy had an impact (        ):   ̂   

 

was inflated biased when the cycles in both series were not modeled 

(    ̂                            ) as compared to when the cycles were modeled 

(    ̂                      by definition). Phase Difference also had an impact (   

     ): On average, the smallest and largest values of the phase difference between the 

weekly cycles in the two series led to   ̂   
 values that were least biased (    ̂   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅  all had 

an absolute value less than .001), whereas phase difference values of 2, 3, 4, and 5 days 

(or the larger absolute values of Phase Difference) led to inflated values of   ̂   
 

(    ̂   
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  values were .003, .005, .005, and .003, respectively). Beyond these results, a 

Model Fitting Strategy by Phase Difference two-way interaction was found (        ). 

Figure 4 shows simple bias of   ̂   
 by Model Fitting Strategy and Phase Difference, 

averaged over the remaining design cells. When the cycles were modeled, the average 

relative bias of   ̂   
 was 0 by definition. When the cycles were not modeled,   ̂   

 

tended to deviate from its true parameter value (defined as the average of the estimates of 

     
 within a design cell obtained from the correctly specified models), and the amount 

of deviation depended on the phase difference between the weekly cycles in the two 

series: absolute Phase Difference values of 0 day (i.e., synchronized cycles in the two 

series) led to slightly underestimated      
 (    ̂   
̅̅ ̅̅ ̅̅ ̅̅ ̅̅        ), absolute Phase 
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Difference values of 1 day (or, raw Phase Difference values of 1, and 7 days) led to   ̂   
 

values that were rather close to the true parameter value (    ̂   
̅̅ ̅̅ ̅̅ ̅̅ ̅̅        for both 

conditions), whereas absolute Phase Difference values of 2 and 3 days (or, raw Phase 

Difference values of 2, 3, 4, and 5 days) led to over-estimation of      
 (    ̂   
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  values 

ranged from .0056 to .0097)
10

.  

For the simple bias of   ̂   
, Model Fitting Strategy had an impact (        ). 

  ̂   
 was negatively biased when the cycles in both series were not modeled 

(    ̂                             , representing a moderate bias) as compared to when 

the cycles were modeled (    ̂                      by definition).  

 Simple bias of  ̂   and  ̂ . When the simple bias of  ̂   was the dependent 

variable, the    of the three design factors and their interaction effects in the ANOVA 

model were all smaller than .01. When the simple bias of  ̂  was the dependent variable, 

Model Fitting Strategy had an impact (        ). On average, not modeling the cycles 

in the two series led to relatively larger overestimation of    

(     ̂                          ), as compared to modeling the cycles 

(     ̂                      ). Phase Difference also had an impact (        ): On 

average, the smallest and largest values of the phase difference between the weekly 

cycles in the two series led to a  ̂  that was close to the population value (     ̂ ̅̅ ̅̅ ̅̅ ̅̅ ̅ values 

ranged from .006 to .115), whereas phase difference values of 2, 3, 4, and 5 days led to 

relatively larger overestimation of    (     ̂ ̅̅ ̅̅ ̅̅ ̅̅ ̅ values ranged from .241 to .386).   

                                                 
10 These mean RB values all represented trivial bias in   ̂   

 according to Flora and Curran (2004). 
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 Coverage of the CI’s of the fixed effects. The coverage rate of the 95% CI’s was 

equal to or above 90% for  ̂  ,  ̂  , and  ̂   in all conditions. For  ̂  , the coverage rate 

of the 95% CI’s fell below 90% in two conditions. In these two conditions, cycles in both 

series were not modeled, the Level-1 residuals in the outcome series were independent, 

and Phase Difference took on the largest absolute value in the design (i.e., 3 days, which 

corresponds to raw Phase Difference values of 3 and 4 days).  

Impact of misspecifying the Level-1 covariance structure 

In Study 2, to investigate whether the non-independence arising from not 

modeling the cycles would be lessened by specifying a more general Level-1 covariance 

matrix in the outcome, I again adopted the third model fitting strategy
11

 in conditions 

where the Level-1 residuals in the outcome series were independent in the population 

model. Then I compared the two model fitting strategies that left out the cyclical 

components
12

, since if specifying a more general Level-1 covariance structure could 

improve parameter estimates that suffered from not modeling the cycles, there should be 

some difference in results from these two model fitting strategies. The results showed that 

specifying a more general AR(1) Level-1 covariance structure did not improve the 

problematic parameter estimates obtained from model fitting strategy 2. The parameter 

estimates of interest, particularly those that were biased when existing cycles were not 

modeled,  ̂  ,  ̂  , the corresponding standard errors, the residual intercept variance  ̂   

and the Level-1 residual variance  ̂ , did not differ for these two model fitting strategies, 

                                                 
11 That is, the cycles in the two series were not modeled, and an AR(1) Level-1 covariance structure in the 

outcome series was misspecified. 
12 One (model fitting strategy 2) specified the correct independent Level-1 covariance matrix, whereas the 

other, model fitting strategy 3, misspecified an AR(1) structure. 
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nor was the impact of misspecifying the Level-1 covariance structure  moderated by any 

factor.  

Summary of results in Study 2 

As in Study 1, the estimates of fixed effects, their corresponding standard errors, 

and the Level-1 and Level-2 residual covariance matrix elements were acceptable when 

cycles in both series were modeled. When the cycles were not modeled,  ̂    tended to be 

biased, and the direction and magnitude of bias depended on the absolute value of the 

Phase Difference between the cycles in the two series;  ̂   was positively biased, 

     
tended to be underestimated when the cycles in the two series were synchronized, 

but overestimated when the cycles were not synchronized, and the magnitude of 

overestimation depended on the absolute value of the Phase Difference;      
 tended to 

be underestimated, and     tended to be overestimated. When the Level-1 residuals in the 

outcome series were independent in the population model, specifying an AR(1) Level-1 

covariance structure did not seem to provide a remedy to the problem arising from not 

modeling the cycles.       
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Chapter 5 

STUDY 3 

In Studies 1 and 2, cycles existed in both of the series. Realizing that there could 

be situations in real life where cycles only exist in one of the two series, I conducted 

additional simulations in Study 3 to investigate the impact of not modeling cycles that 

exist in only one of the two series.  

Method for Study 3 

Study 3 used a 2 (Existence of Cycles: only in outcome, or only in time-varying 

predictor) × 2 (Serial Dependency in the outcome series: zero autocorrelation, or non-

zero lag-1 autocorrelation) factorial design to generate the data. A total of 1000 

replications were generated for each condition using SAS 9.2. Each dataset was then 

analyzed in SAS 9.2 with cycles modeled versus not modeled. To simplify the design, I 

fixed the standardized regression coefficient for     , the within-person component of 

the time-varying predictor, to be 0.5. The profile/shape of cycles was also fixed such that 

the cycles always had both cosine and sine components. Other details of the data 

generation model were the same as those in Study 1. 

When cycles only existed in the time-varying predictor, model fitting strategies 1 

and 2 stayed the same (i.e., empirical Bayes estimates were used to represent the within-

person component and the between-person component of time-varying predictor when 

cycles were modeled, whereas the person-mean centering strategy was used when cycles 

were not modeled). When cycles only existed in the outcome series, however, for both 

model fitting strategies, person-mean centering was used to disaggregate the time-varying 

predictor. This is because in this scenario, getting empirical Bayes estimates and person-
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mean centering are essentially equivalent ways of obtaining sample estimates of the 

within- and between person components of the time-varying predictor. Thus, when cycles 

only existed in the outcome series, the only difference between model fitting strategies 1 

and 2 would be whether cycles were modeled in the outcome series.  

Table 3 summarizes the key parameter values in Study 3. 

Results for Study 3 

No problems were encountered in fitting the models; the estimation procedures 

converged in all simulation data sets. 

Simple bias of  ̂  ,  ̂  ,  ̂  , and  ̂  . When the simple bias of  ̂  ,  ̂  ,  ̂   and 

 ̂   were the dependent variables, no    of the three design factors or their interaction 

effects in the ANOVA model was larger than .01.  

Simple bias of   ̂   
,   ̂   

,   ̂   
, and   ̂   

. When the simple bias of   ̂   
 

and   ̂   
 was the dependent variable, no    of the three design factors or their 

interaction effects in the ANOVA model was larger than .01. For the simple bias of 

  ̂   
, Existence of Cycles had an impact (        ): On average      

 was 

overestimated when cycles only existed in the outcome series   (    ̂                     

    ), but was underestimated when cycles only existed in the time-varying predictor 

series   (    ̂                          ). However, this effect was moderated by the 

Model Fitting Strategy Factor (        ), which is portrayed in Figure 5. When cycles 

only existed in the outcome series, ignoring the cycles led to overestimated      
 

(    ̂   
̅̅ ̅̅ ̅̅ ̅̅ ̅̅      , representing trivial bias) as compared to when the cycles were modeled 

(    ̂   
̅̅ ̅̅ ̅̅ ̅̅ ̅̅    by definition). When cycles only existed in the time-varying predictor, 
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ignoring the cycles led to slightly underestimated      
 (    ̂   
̅̅ ̅̅ ̅̅ ̅̅ ̅̅       , representing 

trivial bias) as compared to when the cycles were modeled (    ̂   
̅̅ ̅̅ ̅̅ ̅̅ ̅̅    by definition).  

For the simple bias of   ̂   
, Model Fitting Strategy had an impact (        ): 

On average      
 was underestimated when the cycles were not modeled 

(    ̂                             ) as compared to when the cycles were modeled 

(    ̂                      by definition). Existence of Cycles also had an impact 

(        ): On average   ̂   
 was close to the true parameter value when cycles only 

existed in the outcome series   (    ̂                         ), but underestimated when 

cycles only existed in the time-varying predictor series   (    ̂                     

     ). These effects were modified by a Model Fitting Strategy by Existence of Cycles 

interaction (        ), which is portrayed in Figure 6. When cycles only existed in  , 

on average values of   ̂   
 were identical whether the cycles were modeled or not. When 

cycles only existed in  , not modeling the cycles led to an underestimated      
 

(    ̂   
̅̅ ̅̅ ̅̅ ̅̅ ̅̅       , representing a moderate bias) as compared to when the cycles were 

modeled (    ̂   
̅̅ ̅̅ ̅̅ ̅̅ ̅̅    by definition). 

Simple bias of  ̂   and  ̂ . When the simple bias of  ̂   and  ̂  were the 

dependent variables, no    of the three design factors or their interaction effects in the 

ANOVA model was larger than .01.  

Coverage of the CI’s of the fixed effects. The coverage rate of the 95% CI’s was 

equal to or above 90% in all conditions for all the fixed effects of interest ( ̂  ,  ̂  ,  ̂  , 

and  ̂  ). 
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Impact of misspecifying the Level-1 covariance structure 

In Study 3, to investigate whether the non-independence arising from not 

modeling the cycles that existed in only one series would be lessened by specifying a 

more general Level-1 covariance matrix in the outcome, I adopted the third model fitting 

strategy
13

 in conditions where the Level-1 residuals in the outcome series were 

independent in the population model. Then I compared the two model fitting strategies 

that left out the cyclical components
14

, since if specifying a more general Level-1 

covariance structure could provide even a partial remedy, results from these two model 

fitting strategies should be different. The results showed that specifying a more general 

AR(1) Level-1 covariance structure did not improve the problematic parameter estimates 

obtained from model fitting strategy 2. The parameter estimates of interest, particularly 

those that were biased when existing cycles were not modeled,  ̂  ,  ̂  , the 

corresponding standard errors, the residual intercept variance  ̂   and the Level-1 residual 

variance  ̂ , did not differ for these two model fitting strategies, nor was the impact of 

misspecifying the Level-1 covariance structure  moderated by any factor.  

Summary of results in Study 3  

In sum, the estimates of fixed effects, their corresponding standard errors, and the 

Level-1 and Level-2 residual covariance matrix elements were acceptable when cycles 

were modeled. When the cycles were not modeled,   ̂   
 tended to be biased, and the 

direction of bias depended on which series had a cyclical component;   ̂   
was 

underestimated when cycles only existed in the time-varying predictor series, but when 

                                                 
13 That is, the cycles in the two series were not modeled, and an AR(1) Level-1 covariance structure in the 

outcome series was misspecified. 
14 One (model fitting strategy 2) specified the correct independent Level-1 covariance matrix, whereas the 

other, model fitting strategy 3, misspecified an AR(1) structure. 
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cycles only existed in the outcome series, not modeling cycles did not lead to lower 

  ̂   
. When the Level-1 residuals in the outcome series were independent in the 

population model, specifying an AR(1) Level-1 covariance structure did not seem to 

provide a partial remedy to the problem arising from not modeling the cycles. 

Sandwich Estimator: Does It Take Care of Everything? 

 Some applied researchers believe that the sandwich estimator can substantially 

improve standard errors and possibly parameter estimates. To probe whether this belief is 

correct, I selected 3 conditions from the 3 Monte Carlo studies to examine whether the 

sandwich estimator can correct for the bias in parameter estimates or standard errors due 

to ignoring the existing weekly cycles.  

From Study 1, I picked a condition where the cycles had sine and cosine waves, 

cycles in the   and   series were out of phase by 180°, the Level-1 residuals in   were 

independent, and the standardized regression coefficient for   ̂   was .50 (Condition 1), 

and fitted models using the sandwich estimator when cycles were modeled and when 

cycles were not modeled. This condition was picked because when using the model-

based estimator with DDFM = KenwardRoger, when cycles were modeled, parameter 

estimates and standard errors were proper; whereas when cycles were not modeled, this 

was one of the worst conditions for  ̂   and for  ̂  : The coverage rate of the 95% CI’s 

for  ̂   was the lowest among the conditions in Study 1, and   ̂   
 was underestimated.  

From Study 2, I picked a condition in which the cycles in   lagged 1 day behind 

the cycles in  , and the Level-1 residuals in   were independent (Condition 2) , and fitted 

models using the sandwich estimator when cycles were not modeled. This condition was 

picked because when using the model-based estimator with DDFM = KenwardRoger, 
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when the cycles were not modeled, the parameter estimates were acceptable for  ̂   (least 

biased fixed effect with smallest RB of the corresponding SE, as compared to other 

conditions in Study 2 where cycles were not modeled), but worst for  ̂   in Study 2 (most 

biased fixed effect leading to lowest coverage rate of the 95% CI’s, which was still above 

90%).  

From Study 3, I picked a condition where cycles only existed in the outcome 

series and the Level-1 residuals in   were Lag-1 autocorrelated (Condition 3), and fitted 

models using the sandwich estimator when cycles were not modeled. This condition was 

picked because when using the model-based estimator with DDFM = KenwardRoger, 

when the cycles were not modeled, the parameter estimates were acceptable for  ̂   (least 

biased fixed effect as compared to other conditions in Study 3 where cycles were not 

modeled, and   ̂   
 was unbiased).  ̂   was least biased as compared to other conditions 

in Study 3 where cycles were not modeled, but its corresponding SE had the greatest RB. 

 In running models using the sandwich estimator, I used Model Fitting Strategies 1 

(modeling the cycles) and 2 (not modeling the cycles) for Condition 1, and only Model 

Fitting Strategy 2 for Conditions 2 and 3. I specified the EMPIRICAL option in PROC 

MIXED (to invoke the sandwich estimator) and chose DDFM = BETWITHIN. When the 

EMPIRICAL option is specified, the Satterthwaite and Kenward-Roger degrees of 

freedom methods are not available, and I had to choose among CONTAIN, 

BETWITHIN, and RESIDUAL. To mimic what most substantive researchers would do 

in their data analyses, I chose DDFM = BETWITHIN, which yielded the same degrees of 

freedom (97) as the widely used statistical program HLM6 for  ̂  ,  ̂  , and  ̂  . 

Although the degrees of freedom that DDFM = BETWITHIN produced for  ̂  , 6199, 
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was not identical to that produced by HLM6, 6296, the difference was trivial given the 

very large degrees of freedom. Therefore, all other things being equal, these two degrees 

of freedom (6199 and 6296) should produce essentially the same p values. In contrast, 

DDFM = CONTAIN yielded df = 6198 for  ̂   and  ̂  , which were much larger than 

those outputted by HLM6 (even though the df for  ̂   (98) and for  ̂   (6198) were 

acceptable). DDFM = RESIDUAL on the other hand yielded the same df (6296) for  ̂  , 

 ̂  ,  ̂  , and  ̂  , which was acceptable for  ̂  , but much larger than those calculated by 

HLM6 for the other three parameters. 

 In all of the 3 conditions, on average the sandwich estimator led to smaller   ̂   
 

and   ̂   
 as compared to their counterparts using the model-based estimator with DDFM 

= KenwardRoger, but did not produce different fixed effect estimates. As a result, with 

biased fixed effect estimates (though the bias was small in some conditions) and smaller 

corresponding standard errors, the coverage rates of the 95% CI’s of  ̂   and  ̂   

decreased slightly. For these 3 conditions, Table 4 summarizes the key parameters ( ̂   

and  ̂  ) estimated using the empirical estimator, and compares them to the results using 

the model-based estimator with DDFM = KenwardRoger. For Conditions 2 and 3, results 

obtained from model fitting strategy 1 (modeling the cycles) using the model-based 

estimator with DDFM = KenwardRoger was also listed in the table to offer a comparison. 

Using the sandwich estimator does not seem to correct for biases arising from not 

modeling the existing cycles. Given this, producing smaller standard error estimates by 

using the sandwich estimator may not be very beneficial for  ̂  , since the failure to 

model cycles only led to trivial bias in   ̂   
, and the use of the sandwich estimator did 
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not produce a substantial difference in   ̂   
. For  ̂  , the use of the sandwich estimator 

when cycles were not modeled could even be harmful, because in Conditions 1 and 2 the 

failure to model cycles resulted in moderately underestimated   ̂   
, and the use of the 

sandwich estimator in these two conditions added to the negative bias in   ̂   
. 
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Chapter 6 

DISCUSSION 

The main purpose of this study was to investigate the effect of not modeling 

existing weekly cycles in daily diary data on the relationships between two time varying 

variables   (the time-varying predictor) and   (the outcome), under the longitudinal 

multilevel modeling framework. Based on my population model, I expected that the 

within-person component of   would have an impact on the within-person part of the 

outcome  , and that its between-person component would have an impact on the 

between-person part of  . The target parameters included fixed effects, their 

corresponding standard errors, the within-subject residual variance, and the random 

intercept residual variance in the model of  . The simulation results showed a general 

pattern of effects of ignoring existing cycles on the estimation of the fixed effects, their 

corresponding standard errors, and the within-subject residual variance. In cases where 

cycles existed in both the   series and the   series, ignoring the cycles generally led to 

bias in the estimated effects of both the within- and between-person components of   on 

 , and their corresponding standard errors. The direction and magnitude of the bias 

depended on the phase difference between the cycles in the two series.  

In cases where cycles existed in only one series, ignoring the cycles typically 

resulted in biased standard errors of the regression coefficients for the within- and 

between-person components of  ; the direction and magnitude of bias depended on 

which series contained cyclical components. When cycles only existed in  , ignoring the 

cycles led to positive bias in the estimated standard error of the effect of the within-

person component of   on  , but no bias in the estimated standard error of the effect of 
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the between-person component of   on  . When cycles only existed in  , ignoring the 

cycles led to negative bias in the estimated standard error of the effect of the within-

person component of   on  , and negative bias in the estimated standard error of the 

effect of the between-person component of   on  . 

Composite of Two Effects 

When cycles existed in the   series and the   series. In Study 1, there were 16 

conditions in which the standardized bias of  ̂   was greater than .40. Among these 16 

conditions, 9 had a standardized bias of  ̂  that was greater than .30 (2 additional 

conditions had a standardized bias of  ̂  that was greater than .25), even though the 

ANOVA results did not show an impact of model fitting strategy on the simple bias of 

 ̂ , according to my criterion that    >.01 indicated an appreciable effect. These 9 (or 11) 

conditions were the only conditions in Study 1 in which the standardized bias of  ̂  was 

greater than .30 (or .25). In Study 2, there were 6 conditions in which the standardized 

bias of  ̂   was greater than .40, and these were the same 6 conditions in Study 2 in 

which the standardized bias of  ̂  was greater than .40. All these conditions were 

conditions in which the existing cycles were ignored. There seems to be a correspondence 

between the bias in  ̂   and the bias in  ̂  resulting from not modeling the cycles. Failure 

to consider the cyclical components in both   and   seems to result in biased estimates of 

the within-person effect of   and overestimated Level-1 residual variance. 

In the present studies, when cycles existed in the   series but were ignored, it can 

be shown by rearranging terms in Equation (19) that the sample estimate of the within-

person component of   obtained by person-mean centering is       ̂    ̅   ̂   
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 ̂       
   

 
   ̂       

   

 
 , where  ̂   is the empirical Bayes estimate of the Level-1 

residual in the   series. That is to say, with cycles existing in the   series, person-mean 

centering resulted in an estimate of      that contains cyclical components. When cycles 

also existed in   but were not modeled,  ̂   became a complex composite of a) the 

regression coefficient of   on  ̂  , the empirical Bayes estimate of the Level-1 residual in 

the   series, and b) the regression of   on  ̂       
   

 
   ̂       

   

 
 , the cyclical 

components in     , the sample estimate of the within-person component of   obtained 

by person-mean centering. When cycles in the two series were ignored,  ̂   should be 

influenced by the magnitudes of its two components. Hence, it is not surprising that this 

composite is different from the true value of    , resulting in biased  ̂  . Moreover, the 

phase difference between the cyclical components in   and the cyclical components in 

     (which is the same as the cyclical components in the   series), should influence the 

regression coefficient of   on  ̂       
   

 
   ̂       

   

 
 , and hence influence  ̂  . 

Therefore in Studies 1 and 2 where cycles existed not only in the   series but also in the 

  series, an interaction was found between model fitting strategy and synchronization of 

the cycles in the two series (Study 1) or the phase difference between the cycles in the 

two series (Study 2). 

However, due to the different magnitudes of the regression of   on  ̂   and the 

regression of   on  ̂       
   

 
   ̂       

   

 
 , the cyclical components in   would not be 

completely accounted for by     , the person-mean centered  , especially when the 

cycles in the two series were not synchronized. In such cases, it is likely that the 

unaccounted-for cyclical components in   would leak into the Level-1 residuals in the 
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multilevel model of  , resulting in overestimated  ̂ . This in turn could lead to less 

efficient standard errors at Level-1 (e.g.,   ̂   
), and so the statistical tests of the 

corresponding Level-1 regression coefficients may have lower power. In Study 1 the 

majority of the conditions with substantial standardized bias of  ̂   and  ̂  had cycles that 

were out of phase by 180° in the two series, whereas in Study 2, the majority of the 

conditions with substantial standardized bias of  ̂   and  ̂  had cycles in the two series 

with a phase difference of 3 and 4 days (~180°).  

In Study 2 where the profile of cycles was fixed to having both sine and cosine 

waves, the ANOVA analysis revealed a material main effect of model fitting strategy on 

the simple bias in  ̂ , where  ̂  was found to be overestimated when the existing cycles 

were ignored. This main effect was not found in Study 1, probably due to the small effect 

sizes of     and     in two thirds of the conditions (where the profile of cycles was sine 

wave only or cosine wave only). Given the small magnitude of the cyclical components 

in   that were not accounted for, it is not surprising that the increase in variance of the 

Level-1 residuals was correspondingly small. 

When cycles existed in only the   series or only the   series. In Study 3 when 

cycles only existed in   but not in  , failure to model the cycles did not lead to bias in 

 ̂   (as estimates of the within-person component of   would not contain cyclical 

components). In such cases, the unaccounted for cyclical components in   leaked into the 

Level-1 residuals in the multilevel model of  , resulting in overestimated  ̂ . Although 

the ANOVA analysis did not reveal an    value greater than .01,      ̂  was .407 when 

the Level-1 residuals in   were independent in the population model, but was .158 when 

the Level-1 residuals in   were Lag-1 auto correlated in the population model. 
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In Study 3 when cycles only existed in   but not in  , not modeling the cycles 

turned  ̂   into a complex composite of a) the regression coefficient of   on  ̂   (whose 

expected value should be the true value of    , .5477), and b) the regression of   on 

 ̂       
   

 
   ̂       

   

 
 , which should be 0 since by design cycles did not existed in  . 

In such cases, even though the ANOVA analysis did not reveal an    value greater than 

.01,  ̂   was underestimated (     ̂  
 was -.371 when the Level-1 residuals in   were 

independent in the population model, but was -.236 when the Level-1 residuals in   were 

Lag-1 auto correlated in the population model). 

Bias in Estimation of the Fixed Effect Representing the Level-2  -  Relationship 

For  ̂  , the estimated fixed effect of the between-person component of   on  , 

Study 1 found a trend for an interaction between Model Fitting Strategy and Magnitude 

of Standardized Regression Coefficient for      (        ). Modeling the cycles in the 

two series always resulted in unbiased  ̂   (mean      ̂  
     , .012, and .003 when 

the standardized regression coefficient for      was 0, .20, and .50, respectively). In 

contrast, not modeling the cycles tended to lead to biased  ̂  , with the direction and 

magnitude of bias depending on the Magnitude of Standardized Regression Coefficient 

for      (mean      ̂  
      , .008, and .204 when the standardized regression 

coefficient for      was 0, .20, and .50, respectively). In Study 2 where the Magnitude of 

Standardized Regression Coefficient for      was fixed to .50 and Profile of Cycles was 

fixed to both sine and cosine waves, an impact of Model Fitting Strategy (        ) 

was found. Ignoring the existing cycles in the two series resulted in positively biased  ̂   

(mean      ̂  
     ), whereas modeling the cycles resulted in unbiased  ̂   (mean 
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     ̂  
     ). From the results of Studies 1 and 2, I conjecture that the mechanism is 

related to the Magnitude of Standardized Regression Coefficient for     . 

In Study 3, I found no effect of model fitting strategies. However, a closer 

examination revealed that when cycles only existed in   and when the Level-1 residuals 

in   were independent,  ̂   was positively biased whether or not the cycles were modeled 

(     ̂  
      in both cases). When the Level-1 residuals in   were Lag-1 

autocorrelated, whether or not the cycles that only existed in   were modeled,  ̂   was 

slightly positively biased (     ̂  
      in both cases). When cycles only existed in  , 

however, when the Level-1 residuals in   were independent,  ̂   was positively biased 

when the cycles were ignored (     ̂  
     ), but rather close to its true parameter 

value when the cycles were modeled (     ̂  
     ). When the Level-1 residuals in   

were Lag-1 autocorrelated, this pattern remained, but the magnitude of bias in  ̂   

became smaller (     ̂  
      when the cycles were ignored, and      ̂  

      

when the cycles were modeled). The conditions in Study 3 when cycles only existed in   

were the only conditions in the three Monte Carlo studies in which I used the person-

mean centering strategy to disaggregate the within- and between-person components of   

whether or not the cycles were modeled. In other conditions in Study 3 and in Studies 1 

and 2, the person-mean centering strategy was used only when the cycles were ignored, 

whereas when the cycles were modeled, the empirical Bayes estimates of the Level-1 

residuals and the Level-2 intercept residuals were taken as estimates of the within- and 

between-person components of  . Given (a) the strategies used to disaggregate the 

within- and between-person components of   and (b) the patterns of      ̂  
 in the 3 
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studies, I conjecture that the mechanism might be related to unreliability of the person 

mean in representing the between-person component of   (Lüdtke, Marsh, Robitzsch, 

Trautwein, Asparouhov, & Muthén, 2008). 

Lüdtke et al. (2008) demonstrated using mathematical derivations and  

simulations that using person means as the between-person component of a Level-1 

predictor   can result in biased estimates of the effect of   at Level-2 in the two level 

multilevel model of  , when the model of   is correctly specified. They provided an 

equation (Equation (7) in Lüdtke et al., 2008) for the expected bias in the estimates of the 

regression coefficient of   at Level-2, reproduced and adapted to the setting in the 

current studies as 

    ̂                                     
 

 
 

       

             
 . (26) 

ICC is the intraclass correlation coefficient of the Level-1 predictor  ,   is the number of 

observations within each Level-2 unit, and         and          are the true values of the 

Level-1 and Level-2 unstandardized regression coefficients for the  -  relationship. 

Lüdtke et al. (2008) did not consider potential effects like cycles since they focused on 

the classic multilevel context in which Level-1 represents persons and Level-2 represents 

groups. Hence, their mathematically derived equation for the expected bias in the 

estimates of the effect of   at Level-2 cannot be directly applied to the present studies. 

To get a better idea of the influence of the unreliability of the person means of  , 

consider a situation in which there are no cycles in the population model for either   or   

in the present studies. 
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In the present studies the number of observations within each Level-2 unit was 

held constant at 63. Since the magnitude of     was held constant at .2236, the difference 

between the Level-1 and Level-2 regression coefficients for the  -  relationship was  

-.2236, .0045, and .3241 when the Magnitude of Standardized Regression Coefficient for 

     was 0, .20, and .50
15

, respectively. If there were no cycles in the population model 

of both   and  , the ICC of    would be .167
16

. Hence, when the Magnitude of 

Standardized Regression Coefficient for      was 0, .20, and .50, the expected raw bias 

in  ̂   due to using the person mean as the between-person component of   should be  

-.016, .003, and .024, respectively. These values are very close to the mean raw bias 

values observed in the present studies. In Study 1, when the cycles were not modeled 

(hence the person mean was used as the between-person component of  ), the mean raw 

bias in  ̂   was -.015, .001, and .025, respectively (corresponding to mean      ̂  
 values 

of -.125 .008, and .204). In Study 2, when the cycles were not modeled (hence the person 

mean was used as the between-person component of  ), the mean raw bias in  ̂   

was.025 (corresponding to mean      ̂  
 value of .204). There is obvious similarity 

between the mean raw bias in  ̂   observed in Studies 1 and 2, and the expected raw bias 

in  ̂   due to using the person mean as the between-person component of   derived from 

population models of   and   that have no cycles but everything else the same as the 

settings in Studies 1 and 2. This indicates that, at least in the settings of Studies 1 and 2 

                                                 
15 These correspond to unstandardized     values of 0, .2191, and .5477, respectively. 
16 This is not very much different from the ICC of   in the present studies. Given the small magnitudes of 

cyclical components in the present studies, the influence of them on the ICC of   was in the third decimal 

place. 
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where cycles existed in both series, the bias in  ̂   mainly comes from unreliability of the 

person mean as an estimate of the between-person component of  . 

In Lüdtke et al. (2008), the Level-1 residuals in   were always independent. 

Importantly, in my Studies 1 and 2 whether the Level-1 residuals in   were independent 

or Lag-1 autocorrelated did not make any difference in terms of bias in  ̂  . In Study 3, 

however, the independence of the residuals seems to have some impact. When cycles 

only existed in   and when the Level-1 residuals in   were specified as independent (the 

person mean was used as the between-person component of   whether or not the cycles 

were modeled), the mean raw bias in  ̂   was .025 in both cases (     ̂  
      in both 

cases). When the Level-1 residuals in   were Lag-1 autocorrelated (the person mean was 

used as the between-person component of   whether or not the cycles were modeled), the 

mean raw bias in  ̂   was .014 in both cases (     ̂  
      in both cases). When 

cycles only existed in   and when the Level-1 residuals in   were independent, when the 

cycles were not modeled (hence the person mean was used as the between-person 

component of  ), the mean raw bias in  ̂   was .031 (     ̂  
     ). When the Level-

1 residuals in   were Lag-1 autocorrelated, when the cycles were not modeled (hence the 

person mean was used as the between-person component of  ), the mean raw bias in  ̂   

was .025 (     ̂  
     ). There is small deviation between the mean raw bias in  ̂   

observed in Study 3, and the expected raw bias in  ̂   due to the use of the person mean 

as the between-person component of   derived from population models of   and   that 

have no cycles but otherwise have identical parameters to those in Study 3. This pattern 

of results indicates that at least in the settings of Study 3 where cycles existed in only one 
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of the series, the series contains cyclical components and the Level-1 residual variance-

covariance structure in   potentially can influence the bias in  ̂  . Results of Studies 1 

and 2 indicate that unreliability of the person mean as an estimate of the between-person 

component of   could lead to bias in  ̂  . Results from Study 3 seem to suggest that this 

impact of unreliability in the estimate of the between-person component of   is modified 

by which cycles contains cycles and the Level-1 residual variance-covariance structure in 

 . 

Bias in Estimation of the Standard Errors of the Fixed Effect Representing the 

Level-2  -  Relationship 

In Studies 1 and 2, and in Study 3 when the cycles only existed in the   series, not 

modeling the existing cycles led to similar underestimates of   ̂   
 as compared to when 

the cycles were modeled: the magnitude of the mean RB of   ̂   
 in these conditions 

were essentially the same (-.076 to -.077). That is to say, in Study 1 when the 

unstandardized regression coefficients representing the Level-1 and Level-2  -   

relationships were similar in magnitude, not modeling the cycles (or rather, using the 

person mean as an estimate of the between-person component of  ) did not lead to bias in 

 ̂  , but rather led to bias in   ̂   
. This might make the bias in   ̂   

 worthy of attention.  

The sampling variances (squared standard errors) of regression coefficients in the 

multilevel modeling framework are the diagonal elements of   ̂   ∑   
   

    
   
      , 

where           
        in the present studies.     is the 63 × k design matrix 

containing the values of the intercept and the (k-1) predictors for person   in the 63 time 

points.    is the 63 × u design matrix containing the values of predictors with random 
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effects (u=1: intercept).     is a 63 × 63 identity matrix. When cycles were not modeled, 

   which contains a column of 1’s was not changed,  ̂   was not biased,  ̂  was 

overestimated in some but not all conditions. Hence, the mechanism that led to 

underestimation of   ̂   
 when the cycles (in the   series) were ignored appears to be 

unrelated to   . The mechanism should be related to the change in the design matrix    

when cycles were not modeled versus when cycles were modeled. There were 3 changes 

in the design matrix    in Studies 1 and 2: a) the cyclical components in   were in the 

design matrix    when cycles were modeled, but not when the cycles were ignored; b) 

the predictor variable   ̂   in the design matrix    was the empirical Bayes estimate of 

the Level-1 residual in the   series (which did not include cyclical components) when 

cycles were modeled, but was     , the person-mean centered   (which included cyclical 

components) when cycles were not modeled; and c) the predictor variable   ̂  in the 

design matrix    was the empirical Bayes estimate of the Level-2 intercept residual in the 

  series (  ̅   ̂  ) when cycles were modeled, but was  ̅ , the person-mean of   when 

cycles were not modeled. In Study 3, when cycles only existed in the   series, not 

modeling cycles resulted in unbiased   ̂   
; in contrast, when cycles only existed in the   

series, not modeling cycles resulted in underestimated   ̂   
. When cycles only existed in 

the   series, there were no cyclical components in   in the design matrix    whether or 

not the cycles were modeled, so that change a) in the design matrix    should not be the 

cause of underestimated   ̂   
. This initial conclusion implies that the cause should be 

change b) or change c) in the design matrix   . However, if change b) were the cause of 

underestimated   ̂   
, in Study 1 the magnitude of the cyclical components in the   
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series (and thus person-mean centered  ) should have an impact on the magnitude of RB 

of   ̂   
. However, this result was not found in Study 1. If change c) were the cause of 

underestimated   ̂   
, this conclusion would be consistent with the finding in Lüdtke et 

al. (2008) that using the person mean as an estimate of the between-person component of 

  can substantially underestimate the associated standard error. Moreover, in Study 3 

when the cycles only existed in the   series, the person-mean centering strategy was used 

to disaggregate the within- and between-person components of  , whether or not cycles 

in   were modeled. Hence, if change c) were the cause of underestimated   ̂   
 in 

Studies 1 and 2, in Study 3 not modeling the cycles in the   series should not lead to 

smaller   ̂   
 as compared to when the cycles in   were modeled. This inference is 

consistent with the obtained findings in Study 3. Therefore, using the person mean as an 

estimate of the between-person component of   appears to lead to substantial 

underestimation of the associated standard error as compared to using the empirical 

Bayes estimates of the Level-2 intercept residuals in  . 

Some Limitations of the Present Studies 

 The effect sizes for the cyclical effects used in the present studies characterized 

those of Beal and Ghandour (2011), a substantive daily diary data study that used the sine 

and cosine modeling approach to model the weekly cycle and reported the magnitudes of 

the weekly cycle. However, these are very small effect sizes in Cohen’s (1988) terms, and 

thus some important effects may lack sufficient variability to be detected by the ANOVA 

analyses. For example, there were a few interaction effects on the simple bias of  ̂   

involving serial dependency in the outcome series or the profile of cycles with an    
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value smaller than .01 but greater than .005. There were a few main effects of (or 

interaction effect involving) the model fitting strategy on  ̂  with an    value smaller 

than .01 but greater than .005. These potentially important effects may have been masked 

by random error in the present studies. These effects should be investigated using greater 

effect sizes for the cyclical effects in the future. 

Another limitation of the present studies is that the combined sine and cosine 

functions cannot model all possible forms of weekly cycles. For example, sine and cosine 

functions cannot model the weekly cycles in the number of drinks consumed and the 

desire to drink in Armeli et al. (2000) where the highest positive value at the end of one 

cycle was followed by a negative value at the very beginning of the next cycle. Profiles 

of cycles that do not follow the sine and cosine functions could be considered in future 

simulations. 
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Figure 1. Simple bias of �̂�   by Model Fitting Strategy and Synchronization, averaged 

over the remaining design cells. The error bars represent the 95% confidence intervals. 
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  Figure 5. Simple bias of 𝑆�̂�𝛾  
 by Model Fitting Strategy and Existence of Cycles, 

averaged over the remaining design cells. The error bars represent the 95% confidence 

intervals. 
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Figure 6. Simple bias of 𝑆�̂�𝛾  

 by Model Fitting Strategy and Existence of Cycles, 

averaged over the remaining design cells. The error bars represent the 95% confidence 

intervals. 
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APPENDIX A  

SAS SCRIPT FOR DATA GENERATION 
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a) Study 1 script for conditions in which the Level-1 residuals in the outcome series 

were independent 

/* gamma_X00  -- mean intercept in the X series               */ 

/* gamma_X10  -- fixed effect for sine function in the X series */ 

/* gamma_X20  -- fixed effect for cosine function in the X series */ 

/* gamma00    -- mean intercept in the Y series    */ 

/* gamma10    -- fixed effect for sine function in the Y series */ 

/* gamma20    -- fixed effect for cosine function in the Y series */ 

/* gamma30    -- fixed effect for Xw_it in the Y series  */ 

/* gamma01    -- mean difference in intercept of Y caused by TICi */ 

/* gamma02    -- mean difference in intercept of Y caused by Xb_i */ 

/* AR1    -- Level-1 residual autoregressive correlation     */ 

 

data sample; 

* (Outer Loop) Sample the level-2 units: person; 

   do person=1 to &nperson;  *<-- nperson is the number of individuals  

 * Random effects in X, the time-varying predictor;  

      rx1=rannor(-1); 

      zeta0i=rx1*sqrt(&taux00);  *<-- zeta0i is random intercept in X, Variance = taux00; 

 * Random effects in Y, the outcome; 

      r1=rannor(-1); 

      xi_0i=r1*sqrt(&tau00);   *<-- xi_0i is random intercept in Y, Variance = tau00; 
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 * TIC: time invariant preditor; 

      TICi=rannor(-1); 

 

* (Inner loop) Within a level-2 unit, sample the level-1 units: time; 

 do time=&st_time to &end_time by 1;  

   * st_time and end_time are the first and last measurement occasions; 

  sin_Func=sin((2*CONSTANT('PI')*time)/7); 

  cos_Func=cos((2*CONSTANT('PI')*time)/7); 

  * for X; 

  eit=rannor(-1);  *<-- Level-1 residual in X, Variance equals 1; 

  Xit=&gamma_X00   

   + &gamma_X10*sin_Func + &gamma_X20*cos_Func  

   + zeta0i + eit; 

  Xb_i=zeta0i; 

  Xw_it=eit; 

  * for Y; 

  epsilon_it=rannor(-1); 

  Yit=&gamma00 + &gamma10*sin_Func + &gamma20*cos_Func  

                                    + &gamma30*Xw_it 

   + &gamma01*TICi + &gamma02*Xb_i  

   + xi_0i + epsilon_it; 

 output; 

 end;  * <-- end inner loop, go to next level-1 unit;   
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   end;  * <-- end outer loop, go to next level-2 unit; 

run; 

 

b) Study 1 script for conditions in which the Level-1 residuals in the outcome series 

were Lag-1 autocorrelated 

data sample; 

* (Outer Loop) Sample the level-2 units: person; 

   do person=1 to &nperson;   

 * Random effects in X, the time-varying predictor;  

      rx1=rannor(-1); 

      zeta0i=rx1*sqrt(&taux00);  *<-- random intercept in X, Variance = taux00; 

 * Random effects in Y, the outcome; 

      r1=rannor(-1); 

      xi_0i=r1*sqrt(&tau00);   *<-- random intercept in Y, Variance = tau00; 

 * TIC: time invariant preditor; 

      TICi=rannor(-1); 

 

* (Inner loop) Within a level-2 unit, sample the level-1 units: time; 

 epsilon_it=rannor(-1); *epsilon_i(-31); 

 do time=&st_time to &end_time by 1; 

  sin_Func=sin((2*CONSTANT('PI')*time)/7); 

  cos_Func=cos((2*CONSTANT('PI')*time)/7); 
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    * for X; 

    eit=rannor(-1);  *<-- Level-1 residual in X, Variance equals 1; 

    Xit=&gamma_X00 + &gamma_X10*sin_Func + &gamma_X20*cos_Func  

     + zeta0i + eit; 

    Xb_i=zeta0i; 

    Xw_it=eit; 

    * for Y; 

    if time = &st_time then do; * t=-31; 

       epsilon_last=0; 

       u_it=0; 

    end; 

    else do; * t>-31; 

           * value of epsilon from the previous time point; 

       epsilon_last=epsilon_it; 

       u_it=rannor(-1)*sqrt(1-&AR1**2); 

           * value of epsilon at the current time point; 

       epsilon_it=&AR1*epsilon_last + u_it; 

    end; 

    Yit=&gamma00 + &gamma10*sin_Func + &gamma20*cos_Func 

                          + &gamma30*Xw_it 

    + &gamma01*TICi + &gamma02*Xb_i  

    + xi_0i + epsilon_it; 

 output; 
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 end;  * <-- end inner loop, go to next level-1 unit;   

   end;  * <-- end outer loop, go to next level-2 unit; 

run; 

 

c) Study 2 script. The SAS script is largely the same as that in a) and in b), except that 

the cyclical components in the outcome is defined by two additional variables to 

account for the phase difference between cycles in the two series: 

* cyclical components of the outcome; 

sin_Func_DV=sin((2*CONSTANT('PI')*(time-PhaseD))/7); 

cos_Func_DV=cos((2*CONSTANT('PI')*(time-PhaseD))/7); 

 

So the Y series is generated as: 

Yit=&gamma00  

 + &gamma10*sin_Func_DV + &gamma20*cos_Func_DV + &gamma30*Xw_it 

 + &gamma01*TICi + &gamma02*Xb_i  

 + xi_0i + epsilon_it; 

 

d) Study 3 script. The SAS script is the same as that in a) and in b), except that when 

cycles only exist in the outcome series, the parameters of the cyclical components 

(gamma_X10 and gamma_X20) in generating the time-varying predictor are set to 0, 

whereas when cycles only exist in the time-varying predictor series, the parameters of 

the cyclical components (gamma_10 and gamma_20) in generating the outcome 

variable are set to 0.


