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ABSTRACT  

   

Tesla turbo-machinery offers a robust, easily manufactured, extremely 

versatile prime mover with inherent capabilities making it perhaps the best, if not 

the only, solution for certain niche applications. The goal of this thesis is not to 

optimize the performance of the Tesla turbine, but to compare its performance 

with various working fluids.  

Theoretical and experimental analyses of a turbine-generator assembly 

utilizing compressed air, saturated steam and water as the working fluids were 

performed and are presented in this work. A brief background and explanation of 

the technology is provided along with potential applications. A theoretical 

thermodynamic analysis is outlined, resulting in turbine and rotor efficiencies, 

power outputs and Reynolds numbers calculated for the turbine for various 

combinations of working fluids and inlet nozzles.  

The results indicate the turbine is capable of achieving a turbine efficiency 

of 31.17 ± 3.61% and an estimated rotor efficiency 95 ± 9.32%. These 

efficiencies are promising considering the numerous losses still present in the 

current design.  

Calculation of the Reynolds number provided some capability to 

determine the flow behavior and how that behavior impacts the performance and 

efficiency of the Tesla turbine. It was determined that turbulence in the flow is 

essential to achieving high power outputs and high efficiency. Although the 

efficiency, after peaking, begins to slightly taper off as the flow becomes 

increasingly turbulent, the power output maintains a steady linear increase.  
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CHAPTER 1 

THE TESLA TURBINE 

1.1   Background 

Patented in 1913 [1], the Tesla turbine, also referred to as a flat-plate 

turbine or boundary layer turbine, is a fairly simple device with few moving parts 

and was invented by Nikola Tesla. The turbine consists of a series of flat, round 

plates fixed to a shaft housed within a plenum chamber. Work is produced when 

the working fluid is introduced tangentially at the outer edge of the plates and 

exits the turbine at exhaust ports located near the center of the disks. A schematic 

provided by Tesla as part of his U.S. patent for the turbine is shown in Figure 1. 

When work is applied to the shaft, the device then acts as a pump or compressor 

pushing fluid from the center to the outer edges of the disks.  

 

Figure 1 Original schematic of the Tesla turbine [1].  

The Tesla turbine was invented in order to produce power from fluid 

motion. Among the many claims made by Tesla regarding his turbine, was its 
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high power to weight ratio, a common metric used at the time to evaluate a 

turbine’s usefulness. In fact, Tesla claimed to have invented a steam Tesla turbine 

capable of producing 200 hp with only an 18-inch rotor [2]. This turbine was 

advertised as a “powerful engine” that “could be covered by a hat” [3] 

Tesla, however, was never able to achieve industrial applications of his 

device due to the relatively low turbine efficiency compared to the traditional 

bladed turbines still in use today [4]. The primary reason for this low efficiency 

has been attributed to losses at the inlet and nozzle [4,5]. Other reasons for the 

low efficiency are losses in the bearings, viscous losses in the end walls and 

dissipative losses in the plenum chamber; all of these losses reportedly reducing 

the turbine efficiency by up to 15% [6]. The turbine efficiencies reported in these 

referenced texts should not be confused with the rotor efficiency reported in this 

paper. The reported turbine efficiencies include the nozzle and the entire turbine 

in the control volume. The rotor efficiency outline in this work does not include 

the nozzle.  

Another major benefit of the Tesla turbine lies in its simple design and 

fabrication requirements. It is relatively inexpensive to manufacture due to its 

design simplicity when compared to costs associated with traditional bladed 

turbines. In fact, an adequate Tesla turbine can be made using basic tools that can 

be found in any modest machine shop.  

In recent years, the use of Tesla’s design has been gaining some ground 

for use where conventional turbines are inadequate – highly viscous fluids, fluids 

containing abrasive particles, and two-phase fluids [4].   
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1.2   How it works 

 An attractive feature of the Tesla turbine from a manufacturing standpoint 

is its simplicity. The entire turbine assembly, taken apart for ease of explanation, 

is shown in Figure 2. 

 

Figure 2 Entire Tesla turbine assembly showing the rotor blades, housing, inlet 

nozzle and exhaust. Ruler (cm) added for approximate size scale.  

The Tesla turbine design is distinguished by its use of flat, co-rotating 

disks equally spaced and fixed along the rotor shaft which can be seen in Figure 3.  

The rotor is housed by a metal casing which contains the inlet nozzle as well as 

the exhaust ports.   

When a fluid is introduced through the 

nozzle, the fluid velocity is significantly 

increased and is ejected tangentially towards the 

outer edge of the disks.  The viscosity of the 

high-speed fluid and the no-slip condition along Figure 3 Tesla turbine rotor 

with disks fixed to a shaft. 
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the disk surfaces results in momentum exchange from the fluid to the disks, 

producing shaft torque and power output.  As this exchange occurs, the fluid 

spirals towards the center of the shaft where it is exhausted through ports located 

near the center of the disks.  A schematic of Tesla turbine flow theory is shown in 

Figure 4. 

         

Figure 4 Schematic of fluid flow through the Tesla turbine. All major turbine 

components are shown and the actual rotor-housing clearance given.  

As can be seen in Figure 4, there is nothing complicated about the way a 

Tesla turbine works.  The fact that the fluid flows parallel to the turbine disks 

gives this design a distinct advantage over traditional bladed turbine; abrasive 

particulates or even water droplets can be present in the working fluid without 

risking direct impacts which could cause additional wear and damage to the disks. 

Its ability to utilize a variety of fluids without damaging the blades and its 

extremely low manufacturing cost warrant a renewed interest in the design.  
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When shaft power is supplied to 

the rotor, the Tesla device can then be 

used as a pump or a compressor [7]. The 

process is simply the reverse of the turbine 

explanation given above, with the fluid 

flow from the center outward. Figure 5 is 

the schematic provided by Tesla to explain 

his design for a Tesla style pump or 

compressor as part of an original patent.  

1.3   Potential Applications 

There has been some use of Tesla’s 

design, whether as a turbine, compressor, 

or pump; however, it hasn’t had many applications until recently due to its 

relatively low efficiency compared to traditional turbines.  It is common opinion 

that bladed turbines are unbeatable at high power outputs; however at lower 

outputs, bladeless turbines are superior [8].  The trend of efficiency vs. maximum 

power output for both types of 

turbines can be seen in Figure 6.   

The performance and 

efficiency of the rotor is dependent 

on a few different variables: shaft 

speed, disk inner and outer Figure 6 Efficiency vs Power output for 

both Tesla and bladed turbines [8]. 

Figure 5 Original schematic of a 

Tesla pump [7] 
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diameters, spacing between the disks, fluid properties, and flow rate [4].  In order 

to realistically utilize this technology, the turbine must be optimized to push 

efficiency values to at least 60% [10]. 

One example is the use of a Tesla turbine in a small scale Rankine 

combined heat and power cycle, as explained by Carey [10].  The article describes 

the attractiveness of using a Tesla turbine: “For solar Rankine cycle combined 

heat and power systems for residential buildings and other small-scale 

applications (producing 1–10 kW), a low manufacturing cost, robust, and durable 

expander is especially attractive.”  The author goes on to describe that, if the 

turbine properties are optimized, the device can achieve up to 80%-90% 

efficiencies in this application. 

Warren Rice refers to specific niche applications where the Tesla turbine 

may outperform traditional bladed turbines, for example, low quality steam or 

fluid with particulates [4]. The ability to produce significant power from low 

quality steam could create the possibility of small scale combined heat and power 

systems, perhaps on a residential scale, that is solar or geothermal powered.  

Utilizing the Tesla turbine as a wind turbine has also been investigated 

with a patent for this specific application held by Howard J. Fuller [9]. Fuller 

claims that his improvements to the original Tesla turbine design allows it to 

operate efficiently over wide ranges of mass flow rates, an essential feature for 

wind energy application due to the variable availability of wind.  
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1.4   Literature Review 

In the years following its invention, there was little interest in the Tesla 

turbine until the 1950’s.Since then several studies have been carried out with 

numerous of papers published on the topic; Rice’s paper referred to in this work 

has 79 references alone. Even with all this research and experimentation being 

carried out actual results are lacking. [4]  

There are a considerable number of theoretical papers written predicting 

the performance of the Tesla turbine [4, 8, 10-13]. Many of these papers limit 

their application based on flow characteristic assumptions. For most, assuming 

laminar flow greatly simplifies the mathematics involved, allowing for relatively 

straight-forward partial differential equations to govern the description of the 

flow. Typically these assumptions and analysis can only be applied to situations 

with low changes in pressure across the turbine. While there may be applications 

for extremely low pressure drops, an appreciable amount of power (kW-scale) 

could not be achieved without requiring an extremely large apparatus to 

accommodate the large flow rate while maintaining laminar flow conditions.  

Actual experimental results are difficult to obtain simply because little 

experimental data has been released. It is assumed that this is due to the fact that 

most real interest in developing the Tesla turbine are tied to a desire to 

commercialize the Tesla turbine, thereby giving the experimental data proprietary 

value. Most data that is available demonstrates small-scale power output, typically 

on the scale of 10’s of watts [2, 5, 6, 14-17]. Hoya and Guha report that although 
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Tesla reported power outputs of up to 200 hp, recent modern attempts have 

yielded generally below 2 hp [2].  

The vast majority of the experimental results published utilize air as the 

working fluid. It is the author’s opinion that the best opportunity for the Tesla 

turbine to gain significance would be related to steam or particulate laden fluid 

applications. In particular, low quality steam power generation would be an ideal 

situation. There is a definite lack of published experimental data where the 

working fluid is steam of any quality. 

1.5   Research Questions 

This work seeks to challenge the versatility of a Tesla turbine, testing it 

with a variety of working fluids under various conditions. Experiments were 

performed using the same turbine and set of nozzles using air, water and steam as 

the working fluid. No changes were made to the geometry of the turbine to 

accommodate the different fluids; for example it would be reasonable to assume 

that water would require a larger gap spacing to achieve proper fluid flow. By 

comparing the resulting efficiencies for the various fluid types, the impact of the 

turbine geometry could be qualitatively determined; given similar inlet conditions, 

if similar efficiencies were achieved this would indicate that the geometry has 

little or no impact on performance whereas, dissimilar efficiencies indicate 

definite dependence on geometry.  

Research indicated that the tesla turbine rotor is capable of achieving high 

efficiency, even 95% [4]. An attempt to verify this efficiency was made as a part 

of this work, however, actual state conditions of the fluid immediately prior to 
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entering the rotor were not measured experimentally, making it impossible to 

verify the calculated state conditions at this point. Without experimental values it 

was necessary to assume values for losses outside of the rotor. Research also 

indicated that typically losses occur in the nozzle as well as other losses occurring 

in the bearings, viscous losses at the turbine housing inner walls and losses as the 

fluid exited the rotor [4, 6]. The losses for the nozzle and the rotor could be 

calculated. The assumed value for the other losses, 15%, was in agreement with 

literature [6]. 

When the resulting turbine and rotor efficiencies and the power output 

were plotted against mass flow rate [Figure 16, Figure 17, Figure 18, Figure 19, 

Figure 20, Figure 21] the observed behavior prompted additional follow-up 

questions. What causes the observed behavior of the efficiency versus mass flow 

rate curves? What type of fluid flow is best for efficiency; laminar, transitional or 

turbulent? What type of fluid flow is best for power output?  
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CHAPTER 2 

THEORETICAL PERFORMANCE: THERMODYNAMICS 

2.1   General Assumptions 

To simplify the analysis, certain assumptions were made; some can be 

applied to the overall system and other assumptions are fluid specific (compressed 

air, steam, or liquid water). The working fluid moves through the system as a 

steady-state, steady-flow. The change in potential energy is negligible. The low 

end efficiency of 0.93 was assumed for the electric generator [19]. An additional 

15% of losses were assumed [6]. The turbine outlet pressure is equal to ambient 

(atmospheric) pressure. The fluid flow is isentropic.  

2.1.1   Compressed Air Assumptions 

The air is considered an ideal gas. During operation, the surface 

temperature of the turbine was found to be identical to the ambient temperature, 

indicating negligible heat transfer and therefore the turbine is considered to 

operate adiabatically for these experimental conditions.  

2.1.2   Steam Assumptions 

 During operation, the surface temperature of the turbine was greater than 

the ambient indicating energy transferred from the turbine to the surroundings in 

the form of heat. There was no forced air flow over the turbine and therefore the 

heat loss occurred by natural convection. The steam did behave like an ideal gas.  
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2.1.3   Water Assumptions 

The water is an incompressible fluid. During operation, the surface 

temperature of the turbine was found to be identical to the ambient temperature, 

indicating negligible heat transfer and adiabatic conditions.  

2.2   Known Variables 

Various fluid properties were either measured directly or determined using 

values found in literature or values found using the thermophysical property 

lookup feature in the Engineering Equation Solver software provided by Arizona 

State University.  

The surface temperature of the turbine was found using a thermal imager. 

For the air and water tests K-type thermocouples measured the temperature at the 

turbine inlet, exhaust and the surroundings. For the steam tests a combination 

pressure and temperature gauge was located just prior to the steam entering the 

nozzle. The ambient pressure is taken to be 101.325 kPa. 

2.2.1   Known Compressed Air Variables 

A vertical rotameter was used to determine the volumetric flow rate of the 

air. The ideal gas assumption provided the following fluid property constants: Cp 

= 1005 J kg
-1

K
-1

, k = 1.4, and R = 287 J kg
-1

 K
-1 

[20]. The measured temperatures 

were unchanged from the inlet to the exhaust.  

2.2.2   Known Steam Variables 

 For the steam testing the pressure/temperature gauge provided enough 

information to find all other necessary thermodynamic properties by utilizing the 

Engineering Equation Solver. A K-type thermocouple was used to measure the 
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steam temperature at the turbine exhaust. The volumetric flow rate was 

determined by measuring the volume of water contained in the steam generator 

before and after each test run. Each test run was timed, so the volumetric flow rate 

was calculated by dividing the change in water volume by the time of the test.   

2.2.3   Known Water Variables 

 The inlet pressure just prior to entering the nozzle was measured with the 

use of a pressure gauge. The turbine exhausted directly to the surroundings, with 

its temperature measured with a K-type thermocouple. The measured 

temperatures were unchanged from the inlet to the exhaust. The volumetric flow 

rate was measured by collecting all of the exhausted water over 30-second 

intervals and the volume of water collected was measured. 

2.3   Fluid Flow Analysis State Points 

 

Figure 7 Schematic of nozzle and rotor identifying state points used during 

analysis. 
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 Figure 7 shows the location of the state points used during the various 

fluid analyses. Point 1 is the entrance to the shaft bored into the nozzle. Point 2 is 

located at the exit holes of the nozzle. Point 2 is also considered the inlet 

conditions for the rotor. Point 3 is located at the rotor exhaust, which corresponds 

to the turbine exhaust as well.   

2.4   Air Flow Analysis 

Before reaching the rotor inlet, the fluid passes through a nozzle with 

known inlet and outlet areas.  Properties for the flow prior to passing through the 

nozzle are known, however, the flow properties at the nozzle throat and rotor inlet 

are desired for the analysis.  The flow conditions prior to the nozzle indicate that 

the nozzle flow is choked, which means that the temperature, pressure, and 

density of the air at the nozzle throat can be respectively represented by [20]: 

   
   

   
         [1] 

     (
 

   
)

 

   
      [2] 

     (
 

   
)

 

   
      [3] 

To calculate these, the stagnation properties are needed [20]: 

        
  

 

   
       [4] 

       (
  

  
)

 

   
      [5] 

       (
  

  
)

 

   
      [6] 
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With the stagnation and critical properties in hand, the nozzle outlet velocity and 

mass flow rate can be calculated as follows [20]: 

     √           [7] 

   ̇                [8] 

The rotor outlet velocity is found using the mass flow rate, density and area at the 

turbine exhaust [20]: 

      ̇ (     )⁄       [9] 

2.5   Steam Flow Analysis 

 The steam pressures and temperatures achieved during testing prohibited 

the assumption that the steam could be treated as an ideal gas. These conditions 

required the use of the Engineering Equation Software (EES) thermophysical 

properties lookup feature to facilitate analysis. The steam pressure and 

temperature values indicated that saturated vapor conditions were experienced 

during testing therefore; a specific heat ratio of 1.14 was used [20].  

 Stagnation properties at the nozzle inlet were found by first using EES to 

look up the values for the enthalpy and the entropy corresponding to the measured 

steam pressure and temperature. The stagnation enthalpy at the inlet was 

calculated by combining the enthalpy with the kinetic energy of the steam [21]: 

       
  

 

 
       [10] 

      ̇ (     )      [11] 

EES was then used to find the stagnation pressure and temperature using 

the stagnation enthalpy and the entropy as reference points.  
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 To verify that the flow at the nozzle throat is at sonic velocity, the critical-

pressure ratio was compared to the ratio of the nozzle exit-to-inlet stagnation 

pressure [21]: 

  

  
 (

 

   
)
  (   )

                            [12] 

The pressure at the throat is [21]: 

     
  

  
           [13] 

The enthalpy at the throat could then be found using EES with the throat 

pressure and the entropy as reference points. The stagnation enthalpy and throat 

enthalpy are then used to find the throat velocity [21]: 

    √  (      )      [14] 

Lastly, the rotor exit velocity of the steam is [21]: 

      ̇ (     ) 

2.6 Water Flow Analysis 

 The incompressible fluid and adiabatic turbine operation assumptions 

greatly simplified the water flow analysis. The fluid velocity is only affected by 

the area because the mass flow rate and the fluid density remain constant and is 

calculated by [22]: 

         ̇ (         )⁄      [15] 
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2.7   Mechanical Energy Analysis for Air and Steam 

The turbine acts as a control volume with one inlet and one outlet.  Under 

the assumption that the working fluid is steady-state and steady-flow, an energy 

balance is performed as follows [20, 21]: 

    ̇   ̇   ̇ (   
 

 
  

 )   ̇ (   
 

 
  

 )  [16] 

The enthalpy at state 2 was found using the critical temperature T* for air and the 

throat pressure and entropy for steam at the nozzle. Solving for the fluid work and 

accounting for the 15% other losses produces [20, 21]: 

  ̇        ̇ [(     )  
 

 
(  

    
 )             ]   ̇  [17] 

For the air and water cases  ̇   . For the steam case  ̇    and is calculated 

with the procedure outlined in section 2.9. The nozzle head loss is calculated in 

section 2.10.  

2.8   Mechanical Energy Analysis for Water 

 Due to the incompressible fluid assumption for water, the mechanical 

energy equation is slightly different than equation 11 [22]:  

 ̇             ̇ [(
  

 
 

 

 
)
 
 (

  

 
 

 

 
)
 
            ] [18]  

2.9   Heat Loss Analysis 

 In the steam test, the turbine is not insulated nor does it remain at ambient 

temperature and is therefore subject to heat losses. In the absence of forced air 

flow, all heat loss occurs by natural convection.  

The film temperature of the air is required to identify the relevant air 

properties [21]: 
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   (    )  ⁄       [19] 

The orientation of the turbine during the steam tests dictates the surface 

areas used in this thermal analysis. The horizontal surfaces of the turbine can be 

calculated as: 

    (  ⁄ )
 
       [20] 

The vertical surface of the turbine is calculated as: 

               [21] 

The characteristic diameter of the turbine is [21]: 

      ⁄        [22] 

where the perimeter, P, is simply: 

            [23] 

Next the Rayleigh numbers are calculated. 

The Rayleigh number for the vertical surfaces [21]: 

           
    (    )   

 

   
     [24] 

The Rayleigh number for the horizontal surfaces [21]: 

             
    (    )    

   
     [25] 

The Nusselt numbers for the vertical, horizontal-top and horizontal-bottom 

surfaces are then calculated using the Rayleigh numbers [21]:  

           {
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With these Nusselt numbers now known, the heat transfer coefficients can 

be calculated for the vertical, horizontal-top and horizontal-bottom surfaces [21]: 

           
            

  
     [29] 

                 
                  

  
    [30] 

                    
                     

  
   [31] 

With the heat transfer coefficient calculated and the surface areas, surface 

temperatures and ambient temperatures measured the heat losses for the vertical, 

horizontal-top and horizontal-bottom surfaces [21]: 

                        (    )    [32] 

                                    (    )  [33] 

                                          (    ) [34] 

Finally, the total heat loss from the turbine is simply the sum of the heat 

losses from each surface [21]:   

 ̇                                                [35] 

2.10   Nozzle Losses 

 There are no known loss equations that can be readily applied to the 

nozzle design used in these experiments [5]. For this analysis the nozzles will be 

modeled as two consecutive entrance flows with sharp edges. The loss coefficient 

KL is 0.5 for these conditions [21]. The nozzle head loss at each sharp edged 

entrance can be calculated [21]: 

             
       

 

   
       [36] 
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2.11   Rotor Efficiency 

Although there are inherent energy losses as the fluid flows into and out of 

the rotor, Rice points out that the rotor efficiency can be very high, even above 

95% [4]. The rotor efficiency is calculated using the fluid conditions at state 

points 2 and 3 (see Figure 7).  

The actual work is found using the electrical measurements of the 

generator output and accounting for the efficiency of the generator and the 15% 

other losses. Rotor efficiency is defined as the mechanical energy output over the 

decrease in the fluid’s mechanical energy across the rotor. The actual work and 

the rotor efficiency are calculated as:  

 ̇  
    

    
 (                )     [37] 

         
 ̇

 ̇ 
       [38] 

2.12   Turbine Efficiency 

 Due to the inability to experimentally verify the fluid conditions at state 

point 2 (after the nozzle and prior to entering the rotor), it may be more accurate 

to determine the overall turbine efficiency using measured conditions at state 

points 1 and 3. This efficiency would require first calculating the work of the 

turbine from 1 to 3: 

 ̇   ̇ [(     )  
 

 
(  

    
 )]   ̇     [39] 

The turbine efficiency would then be calculated as follows: 

         
 ̇

 ̇ 
        [40] 
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 2.13   Reynolds Number 

The Reynolds number equation is relatively simple, requiring only 4 

variables and is calculated as: 

     
             

 
      [41] 

 where ρr is the fluid density, Vflow,r is the flow velocity, Lr is the length the 

flow travels and μ is the dynamic viscosity. The subscript r denotes dependence 

on the radial distance from the center of the disk. 

The geometry and flow behavior of the Tesla turbine makes calculating 

this relatively simple parameter, Rer, complicated. The density and flow velocity 

vary with the radius and the length the fluid travels is not readily measured.  

For this analysis, the pressure is assumed to vary linearly from the outer 

edge of the disks to the rotor exhaust. The flow path is assumed to travel in a 

spiral path from the outer edge of the disks to the rotor exhaust. No-slip 

conditions force the tangential velocity of the fluid to be identical to the tangential 

velocity of the disks at the disk surface. Guha et al. state that for laminar flow the 

tangential component of the fluid velocity varies by distance from the disk surface 

and can be determined given the velocity of the disk using the following equation 

[11]: 

                         
 

 
 (  

 

 
)    [42] 

where z is the distance from the disk surface and b is the gap thickness 

between adjacent disks. For these calculations Vtan is calculated at half the gap 
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thickness. The tangential velocity of the disks is easily calculated for any radial 

distance from the center of the disk by: 

                              [43] 

 where r is the disk radius and f is the frequency of the disk rotation, found 

by measuring the frequency of the electricity produced.  

 The radial component of the fluid flow is related to the mass flow rate. By 

dividing the mass flow rate by the density and peripheral area between the gaps, 

the radial velocity, Vrad, can be found at any radii from the center: 

     
 ̇

        
       [44] 

                 [45] 

 Finally, the tangential and radial components can be added together with 

vector addition to find the flow velocity: 

      √    
      

       [46] 

To simplify calculations, 

the disk can be discretized into 

bands of various radii, rd1 and rd2. 

Within these bands the flow 

conditions are taken to be 

constant. The time that the fluid 

takes to cross across this band 

can now be calculated using the 

following relationship: Figure 8 Schematic of discretized disk bands.  
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 ̇

        
       [47]   

Rearranging the derivative and integrating from 0→t and rd2→rd1 yields: 

  
         

 ̇
 (   

     
 )      [48] 

The length the fluid travels within this discretized band can now be calculated by: 

                  [49] 

Each discretized length, Ld, could then be added to all previous lengths to find the 

total length the flow had traveled: 

  ∑          [50] 

2.14   Uncertainty 

Uncertainties for calculated values were found using simple error 

propagation with known uncertainties for the measurement equipment. The error 

propagation equation used is [23]: 

   √(
  

   
)
 

 (   
)
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)
 

 (   
)
 
   (

  

   
)
 

 (   
)
 
  [51] 

where F is any equation and xn are the different variables in each equation. 

The individual uncertainties,    
, for each measurement devices provided by each 

equipment manufacturer are given in Table 6. 
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CHAPTER 3 

EXPERIMENTAL SETUP 

3.1   Rotor Specifications 

 

Figure 9 Rotor schematic with relevant dimensions.  

A Tesla turbine was fitted with a nozzle at its inlet capable of accepting 

compressed air, steam or water attachments with the exhaust released to the 

surroundings. The turbine has 12 disks with a diameter of 15 cm, spaced 1.3 mm 

apart. Each disk has four 22 mm diameter exhaust holes near the turbine shaft. 

The radius from the center of the disk to the outermost edge of the exhaust holes 

is 3.45 cm. The disks are fixed to the shaft with the exhaust holes aligned. The 

turbine housing has four identical exhaust holes aligned with the holes in the 

disks.  

The disks are made of stainless steel with smooth surfaces. Stainless steel 

was chosen because it is rust-resistant, readily available and had the material 

strength to withstand the forces to which the disks are expected to be subjected. 



 24 

3.2   Nozzles 

Research indicated that the overall efficiency of the Tesla turbine is 

greatly dependent on the efficiency of the nozzle [2,5]. Two nozzles were tested 

to investigate the sensitivity of the turbine performance due to changes in the 

nozzle dimensions and design. These nozzles were not designed to achieve high 

efficiencies, instead they were designed to be easily removed and installed in the 

turbine for testing. All of the nozzles were made using brass for 

its relative low cost and availability. Brass was also selected due 

to its material strength; brass was considered strong enough to 

handle the testing pressures and temperature without experiencing 

large deformations.   

Nozzle 1 is a simple hollow cylinder with 

a 4.25 mm inner diameter shaft and six 1.00 mm 

diameter exit holes. The holes are centered 

relative to the turbine disks and were drilled in 

a straight line (see Figure 10).  

Nozzle 2 is a simple hollow cylinder with a 5.03 mm inner 

diameter shaft and four 1.65 mm diameter exit holes. The holes 

are centered relative to the turbine disks, however during 

fabrication the holes were mistakenly drilled in an irregular 

pattern (see Figure 11).  

 

 

Figure 10 

Nozzle 1 

Figure 11 

Nozzle 2 
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3.3   Turbine GenSet 

The turbine shaft is connected with the shaft of an electrical generator via 

a flexible coupling. The flexible coupling is used to transfer the mechanical 

energy while mitigating any losses due to shaft misalignment, vibrations, etc. The 

generator was previously fitted with a small internal combustion engine, which 

was removed to allow for the Tesla turbine to be used as the prime mover in its 

place. The turbine and generator are fixed together with a custom spacer that 

greatly improved the shaft alignment and reduced the intensity of vibrations 

experienced.  

 

Figure 12 Turbine GenSet with ruler (cm) added for approximate size scale. 

Because a dynamometer was unavailable for testing, the electrical output 

of the generator will be used to measure the power output of the turbine. The 

generator is designed to produce up to 1200W of electricity at 120v and 10A. The 

inner coil of the generator is limited to a rotational speed of 3600rpms to produce 

a frequency of 60hz.  
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The electrical power output of the generator was monitored with a pair of 

digital multimeters, one for voltage and the other for amperage. The multimeters 

were also used to measure temperatures and frequency. A 100 W light bulb served 

as the electrical load. 

3.4   Compressed Air Setup 

 

Figure 13 Experimental setup for compressed air testing. 

The lab building compressed air supply provided a steady flow of air at a 

fairly constant pressure. An air regulator was used to control the inlet pressure. A 

vertical rotameter was used to determine the volumetric flow rate of the air.  
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3.5   Steam Setup 

 

Figure 14 Experimental setup for saturated steam testing. 

 A steam generator was designed and built for testing this Tesla turbine. 

This generator is essentially a boiler producing saturated steam. The steam flow 

rate was calculated by measuring the change in water amounts contained in the 

system over timed intervals. Pressure and temperature gauges provided 

measurement readings prior to entering the nozzle. The turbine was oriented with 

the exhaust facing down to allow for any condensate to exit the turbine. A 

portable air compressor was used to startup the turbine to an RPM approximately 

equal to that achieved by the steam at steady-state. This was done to ensure a 

more accurate steady-state mass flow rate measurement. 
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3.6   Pressurized Water Setup 

 

Figure 15 Experimental setup for water testing. 

 A high pressure hose was fitted with attachments to allow the nozzles to 

be connected to a pressurized water line. A water pressure gauge measured the 

pressure prior to the water entering the nozzle. The turbine was oriented with the 

exhaust facing down to allow for the water to exit the turbine. The exhausted 

water was collected in a bucket over timed intervals for flow rate measurements.     
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1    Rotor Efficiency 

Figure 16 and Figure 17 shows the rotor efficiency plotted against the air 

mass flow rate. These plots exhibit an interesting behavior. Initially the efficiency 

is low and slowly rises linearly. There is a sudden jump in efficiency that occurs 

between 4 and 7 g s
-1

. After the sudden jump the efficiency continues to rise, 

reaching a maximum value of 95 ± 9.32% for both nozzles (the 101% efficiency 

for nozzle 2 obviously being unrealistic).  After briefly maintaining peak 

efficiency, Figure 16 shows a gradual decline in efficiency. Figure 17 seems to 

maintain the peak efficiency. 

 Although these plots show similar patterns, Figure 16 shows the most 

complete plot with the plot in which is then shifted to the right as the nozzle outlet 

area increase. The outlet area for nozzle 2 is approximately twice the size of 

nozzle 1, apparently causing a small shift of the plot.  

 

Figure 16 Rotor efficiency for nozzle 1 plotted against the mass flow rate for air. 
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Figure 17 Rotor efficiency for nozzle 2 plotted against the mass flow rate for air. 

It should be pointed out that the measurement devices used during testing 

did not have the sufficient range to capture both plots completely.  It would be 

interesting to use instruments with the adequate range to determine if the 

efficiency stabilizes or continues to drop. From the available data, it appears that 

the peak efficiency is maintained over a longer range of mass flow rates with the 

larger nozzles; Figure 16 shows the peak efficiency maintained over an 

approximately 1gram per second range and Figure 17 maintains the peak 

efficiency over a range of at least 2 grams per second.  

The peak efficiencies verify Rice’s findings [4] and indicate that a Tesla 

turbine with a properly designed nozzle could effectively convert nearly all of the 

available energy from the fluid flow once it reaches the rotor. The difficulty will 

lie in designing the nozzle to produce the working fluid conditions that will allow 

the turbine to meet the load demand while maintaining the high rotor efficiency. 

Something to note regarding the impact on the nozzle losses on the efficiencies is 

that this impact was minimal. The largest decrease in efficiency was 0.5%, 
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occurring at the peak efficiency and verifying the isentropic assumption. It 

appears that this negligible impact would not hold true for much higher fluid 

velocities. For the fluid velocities experienced in this testing, the nozzle losses are 

negligible and the flow can be modeled as isentropic flow. 

Table 1 shows the peak rotor efficiencies for compressed air and water. 

The steam efficiencies were not calculated due to the extremely low power output 

and unfavorable testing conditions. 

Table 1 Peak Rotor efficiencies for each nozzle and fluid type combination. 

 Peak Rotor Efficiencies 

Nozzle Air Water 

1 95 ± 9.32% 0.29% 

2 95± 9.32% 0.49% 

 

 The rotor efficiencies with water as the working fluid are abysmal for this 

Tesla turbine. That is not to say that a hydro-Tesla turbine would perform 

horribly, only that it would need to be designed specifically for this fluid type. It 

is suggested from both this experiment and from related research that the gap 

spacing may have been insufficient for liquid water. The restricted flow would not 

have been able to achieve a fully laminar flow nor would it have sustained a high 

velocity for very long, severely limiting the power output. It may be possible to 

run a hydro-Tesla turbine on compressed air or steam; however, the opposite is 

certainly not the case.   
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4.2     Turbine Efficiency 

 During analysis questions arose concerning the reliability of the rotor 

efficiency calculations. Primarily, two main issues were of concern: 1) The flow 

conditions at state point 2 could not be verified experimentally; 2) The assumed 

value for the other losses of 15% could not be verified. For those reasons, it was 

of interest to the author what the highest overall turbine efficiency was for these 

experiments and how that efficiency compared to literature results.  

Figure 18 and Figure 19 show the overall turbine efficiency plotted against 

the air mass flow rate. The behaviors of the curves are very similar to the behavior 

seen in Figure 16 and Figure 17 for the rotor efficiencies; however the peak 

turbine efficiency only achieved 31.17 ± 3.61% for nozzle 1 and 30.53 ± 3.45% 

for nozzle 2 (ignoring, for consistency, the same point that was ignored for the 

rotor efficiency for nozzle 2). These peak efficiencies agree quite well with 

reported efficiencies in literature [5, 6].  

 

Figure 18 Overall turbine efficiency for nozzle 1 plotted against the mass flow 

rate for air.  
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Figure 19 Overall turbine efficiency for nozzle 2 plotted against the mass flow 

rate for air. 

4.3     Power Performance 

It can be observed from that as the mass flow rate increased so did the 

power output, as one would expect. Figure 20 and Figure 21 show the turbine 

work plotted against the mass flow rate. These plots clearly show a sudden 

increase in output, occurring between 4-6 g s
-1

 after which the output increases 

linearly. 

 

Figure 20 Turbine power output for nozzle 1 plotted against the mass flow rate. 
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Figure 21 Turbine power output for nozzle 2 plotted against the mass flow rate. 

 

 During testing the vertical rotameter restricted the volumetric flow rate 

and inlet pressures (maximum flow rate is 0.001573 m
3 

s
-1

 and maximum pressure 

is 614 kPa). This limited the range of mass flow rates and ultimately the 

maximum power output. When the rotameter was removed, the maximum power 

outputs that could be achieved by the available air supply were attained and are 

presented in Table 2. 

Table 2 Maximum power output achieved with the available lab air supply.  

Nozzle Inlet Pressure [kPa] Power Output [W] 

1 772.21±15.44 17.69±0.52 

2 717.05±14.34 22.03±0.64 

 

During testing it was suggested that some of the turbine housing near the 

exhaust holes be removed to improve the exhaust flow from the rotor. A 

cylindrical piece of material approximately 6.9 cm diameter and 2.5 cm thick was 

bored out resulting in a noticeable improvement in power output.  
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4.4    Reynolds Number and Flow Characteristics 

 Figure 22 and Figure 23 show the turbine efficiency plotted against the 

Reynolds number. The behavior is very similar to the other efficiency (rotor or 

turbine) curves plotted against the mass flow rate (Figure 16, Figure 17, Figure 

18, Figure 19); there is a slight increase in efficiency, followed by a sudden jump, 

a peak is reach and then a gradual tapering.  

 

Figure 22 Turbine efficiency for nozzle 1 plotted against the Reynolds number for 

air flow. 

 

Figure 23 Turbine efficiency for nozzle 2 plotted against the Reynolds number for 

air flow. 
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 The results suggest that there are regions of varying fluid flow conditions 

that provide some insight into how these conditions impact the overall 

performance and efficiency of the Tesla turbine. Figure 22 provides the clearest 

view of this changing behavior. The plot can be broken down into four distinct 

regions by Reynolds number: 1) up to ~350,000 the behavior is a smooth, low 

sloping straight line; 2) between ~350,000 to ~450,000 a sharp jump in efficiency 

is achieved; 3) between ~450,000 and ~575,000 the efficiency peaks and is 

maintained; and 4) beyond ~575,000 the efficiency begins to taper off slightly. 

These regions appear to represent: 1) laminar flow conditions; 2) transitional flow 

conditions; 3) mostly turbulent flow conditions; 4) fully turbulent flow conditions.  

 The Reynolds numbers presented in the plots above are the peak Reynolds 

numbers achieved for each test condition. It should be stated that the values for 

the higher Reynolds numbers given may not be exact. This is due to the fact that 

the estimation for the tangential flow velocity of the fluid is based on laminar 

flow assumptions, a flow condition that is not likely to occur at such high 

Reynolds numbers. This laminar flow assumption for the tangential velocity 

would most likely cause the turbulent Reynolds numbers to be underestimated 

because turbulent velocities are likely to be higher than the laminar velocities.  

The Reynolds numbers also have a relationship with the outlet area of the 

nozzles. When first calculated, the Reynolds numbers for the turbine with nozzle 

1 were 1.86 times larger than the numbers for nozzle 2 with nearly identical 

efficiencies. The outlet area for nozzle 2 is 1.82 times larger than the area for 
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nozzle 1. As of this report, it is not understood completely why this relationship 

exists or what parameters link these values, but it incorporated into the Reynolds 

numbers for Figure 23. 

Comparisons between Figure 22 and Figure 23 with Figure 20 and Figure 

21 indicate that even as the efficiency stops increasing, and in fact, begins to 

decrease, the power output continues to climb linearly. This leads to the 

conclusion that the presence of turbulent flow, even at the first onset of 

transitioning from laminar to turbulent, produces the best power output for the 

Tesla turbine.  

4.5    Steam Testing Complications 

 The steam testing encountered a devastating error that could not be 

overcome by the date of this paper. The steam generator built for this testing was 

accidentally designed to produce a mass flow rate one tenth of the required 

amount to achieve maximum power output. This was the result of either bad 

communication or incorrect noting of the requirements. Either way, the error was 

not discovered until after numerous attempts to increase the rate with the available 

materials and equipment failed.  

 Even though the steam testing did not produce the desired results, it isn’t 

difficult to draw the conclusion that saturated steam at similar pressures and flow 

rates as compressed air will produce higher outputs. Consider steam and air with 

identical flow rates, pressures and temperatures. The two fluid properties that are 

most likely to impact the performance of the Tesla turbine are the enthalpy and 

the viscosity. The change in enthalpy across the rotor is higher for steam, 
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improving the output, assuming adiabatic conditions. Steam also has a higher 

viscosity, improving the transfer of energy from the fluid to the disk for the steam 

and, consequently, improving the rotor efficiency. 

Table 3 Qualitative comparison of air and steam properties most likely to affect 

rotor output and efficiency. 

Fluid conditions: Pressure at inlet = 193 kPa 

                            Pressure at outlet = 96.5 kPa 

                            Temperatures are saturation temperatures for the     

                            steam at the given pressures. 

                            Viscosity found at the average temperatures and  

                            pressures. 

Fluid Type Change in Enthalpy [kJ kg
-1

] Viscosity [N s m
-2

 10
6
] 

Air 20.71 22.18 

Steam 86.7 257.6 

   These qualitative comparisons indicate that the rotor efficiencies for the 

steam case should be at least equal to the efficiencies achieved by compressed air. 

This conclusion was used to predict necessary inlet pressures and mass flow rates 

required to achieve near maximum power outputs for this setup. These projected 

results are presented in the following section.  

4.6   Projected Saturated Steam Requirements 

 Table 4 and Table 5 present inlet pressures and mass flow rates that a 

steam generator would have to produce in order to achieve the approximate 

maximum power output for this experimental setup. The steam generator used in 

testing has an experimental mass flow rate ranging from 1.08 to 2.267 g s
-1

 with 

pressures ranging from 141.37 to 196.53 kPa. 

 These tables and the calculations that created them provide valuable 

information for future steam generator advancements. The projected working 

fluid conditions are specific to this turbine and the respective nozzles; however, 
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this information coupled with the efficiency and output behavior of the turbine 

presented in sections 4.1, 4.2 and 4.3 should be sufficient to design a steam 

generator that closely meets the required working fluid conditions at the nozzle 

inlet. 

Table 4 Projected steam requirements for the turbine using nozzle 1. For these 

projections, the turbine is considered adiabatic. These conditions would allow the 

generator to produce approximately its maximum power output.  

Nozzle 1   

Inlet Pressure [kPa] Mass Flow Rate [g/s] Rotor Power Output [W] 

273.7 13.3 1205 

446.1 16.7 1203 

618.4 18.9 1197 

790.8 20.4 1198 
 

Table 5 Projected steam requirements for the turbine using nozzle 2. For these 

projections, the turbine is considered adiabatic. These conditions would allow the 

generator to produce approximately its maximum power output. 

Nozzle 2   

Inlet Pressure [kPa] Mass Flow Rate [g/s] Rotor Power Output [W] 

273.7 16.3 1196 

446.1 20.1 1204 

618.4 22.3 1204 

790.8 23.5 1201 
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CHAPTER 5 

FUTURE WORK AND CONCLUSIONS 

5.1   Future Turbine Work 

 The high rotor efficiencies are encouraging indicators of the Tesla 

turbine’s potential. The key to advancement toward unlocking that potential 

certainly lies in mitigating all other inefficiencies surrounding the rotor. Attention 

for future work will only be paid to air and steam working fluids only because the 

author has a greater interest in developing gas or steam micro-Tesla turbines for 

small scale power production. 

 The overall turbine efficiencies were comparable to efficiencies reported 

in literature, peaking at 31.17 ± 3.61% for nozzle 1 and 30.53 ± 3.45% for nozzle 

2. If these efficiencies could be pushed higher as losses are mitigated, especially if 

achieved using low quality steam or abrasive-particulate laden heated air, the 

applications for the Tesla turbine would be apparent. 

 Rice pointed out that Tesla turbine nozzles are “necessarily long and 

inefficient” [4]. Testing revealed that even slight changes in the nozzle geometry 

directly impacted the power produced by the turbine even though the rotor 

efficiency stayed relatively high (see Table 1, Figure 16 and Figure 17). Future 

work will include designing nozzles specific to the fluid types and desired 

pressures, flow rates, velocities, etc. Both converging and converging-diverging 

nozzles will be designed to determine whether sonic or super-sonic flow produces 

the best output. The relationship between the nozzle geometry and the Reynolds 

number should also be investigated to achieve proper design of nozzles.  
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The nozzle losses produce negligible impact on the efficiencies calculated. 

This was most likely due to the relatively low fluid velocity and allows for 

isentropic flow assumptions to be valid. At much higher fluid velocities the 

nozzles losses will have a definite impact on the efficiency and must be accounted 

for.  

 During the testing carried out in this work, turbine insulation was minimal 

or non-existent. These conditions did not affect the air and water tests because 

heat loss was found to be negligible. However, in the case of steam, heat loss 

calculations indicated a substantial loss of overall power for the turbine. Future 

work should include properly insulating the turbine before additional steam 

testing is carried out.  

 Exhaust flow losses are another source of inefficiencies that could be 

addressed. During testing some improvement was made to the exhaust flow by 

removing a cylindrical piece of material from the inner housing wall directly 

facing the rotor outlet. This small change created a noted improvement in the 

overall power output. Additional improvements to the exhaust flow should be 

pursued.  

Two ideas for exhaust improvement were formulated and will be 

investigated. The first includes staggering the exhaust hole alignment in the disks. 

The idea behind this is two-part: one, the staggered holes will allow the turbine to 

better capitalize on the rotation motion of the fluid as it approaches the exhaust; 

two, in the amount of time it takes for the fluid to reach the adjacent disk, the disk 

will have time to rotate to better align the fluid flow with the exhaust hole of the 
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adjacent disk. The second improvement includes fixing the disks to a hollow 

shaft. The hollow shaft would have exhaust ports at the disk gaps making the 

shaft itself the rotor exhaust. 

5.2   Future Steam Generator Work 

 A new steam generator will need to be designed and built. The results of 

this work presented in Table 4 and Table 5 provide much better estimates for the 

turbine requirements. Additionally, the specifications will need to be adjusted 

especially for any nozzle improvements.  

 The new steam generator should also include a true superheat stage to 

allow for a wider range of steam properties testing. To model a solar thermal 

application, the steam generators boiler stage should match the output of 

concentrating solar collectors. If the superheat conditions vastly improve the 

turbine performance, design of a solar thermal power generator with a 

combustible fuel power super heater will be pursued.  

5.3   Primary Application: Future Solar Power Unit Work 

 A solar thermal power unit could be capable of running on low quality, 

saturated steam utilizing the Tesla turbine. One of the major benefits of designing 

a Rankine system that runs at saturated steam conditions is the significant 

reduction in condensing requirements after the turbine. In the testing the steam, 

the exhaust fluid temperature was approximately 100 °C and could possibly be air 

cooled if an exhaust attachment with high heat transfer capabilities were designed. 

Perhaps an aluminum tube fitted with several fins having air forced over it with a 

fan. 
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 A closed loop design needs to be fully designed to allow for minimal fluid 

losses from the system. Once an exhaust attachment is designed, exhaust and inlet 

pressures as well as flow rates will be known for selection of an adequate pump.  

 An air-cooled, closed loop Rankine power system would be an attractive 

product especially in arid environments where water scarcity is a serious issue.  

5.4   Other Potential Applications to Investigate 

 A couple of valid questions were asked during review of this paper: “Why 

the emphasis on solar thermal power?  Given the inexpensive cost of natural gas 

these days, would it be better to focus on natural gas powered systems, or perhaps 

a hybrid solar thermal/natural gas system?” The answer is definitely. The process 

of redesigning the steam generator, which now runs on propane and could just as 

easily run on natural gas, will inherently make progress on a combustible gas 

fueled system. In fact, the ideal system would include not only a hybrid solar 

thermal/natural gas system, but combined heat and power capabilities as well. 

This type of setup could eliminate the need for batteries as the primary back up 

power source, instead relying on the natural gas to run the system during loss of 

solar resources. 

5.5   Future Analysis 

 The discovery of the impact of the flow conditions on the turbine 

performance and efficiency is fascinating. Further testing must be performed to 

verify the validity of this behavior. North indicated that there may exist a 

“turbulent band” around the edge of the turbine disks that is responsible for the 

bulk of the power output for the turbine [14]. The velocity profile results from 
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Lampart et al. lend some credence to the possibility of these “turbulent bands” 

[8]. The current mathematical model the author used to find the peak Reynolds 

numbers used in Figure 22 and Figure 23 is capable of calculating the Reynolds 

numbers at various radii of the disks. The results suggest that there is flow 

behavior at some radii that could indicate the presence of a “turbulent band”. A 

more detailed analysis needs to be performed before these results are made public. 

For the needs of this paper, the estimate peak Reynolds numbers suffice.   

5.6   Conclusions 

The Tesla turbine proved to be versatile prime mover, able to produce 

power from a range of working fluids. Experimental test results indicated that this 

particular turbine is best suited for ideal gas or steam, but performed poorly as a 

hydro-turbine. The ability of this turbine to accept saturated vapor steam gives 

merit to the possibility of small-scale Rankine power systems becoming a viable 

option for residential scale power production.  

The performance of the Tesla turbine was not optimized, but the turbine 

rotor efficiency and power outputs were presented for two different nozzles used 

in testing. The experiments confirmed that turbine efficiencies can exceed 30%. 

An estimated rotor efficiency of 90-95% was also achieved, given certain 

assumptions. This moderate turbine efficiency and the potentially outstanding 

rotor efficiency is encouraging and further research and development on the 

turbine should be pursued to mitigate other sources of inefficiencies limiting the 

turbines overall performance.  
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It was determined that turbulence in the flow is essential to achieving high 

power outputs and high efficiency. Although the efficiency, after peaking, begins 

to slightly taper off as the flow becomes increasingly turbulent, the power output 

maintains a steady linear increase.
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APPENDIX A  

TABLE OF UNCERTAINTIES FOR MEASUREMENT DEVICES 
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Table 6 Uncertainties for measurement devices used during testing. The 

uncertainty values were reported by the device manufacturer. 

Measurement Device Variable Uncertainty,    
 

Digital Multimeter Voltage ±1.5% of reading 

Digital Multimeter Current ±2.5% of reading 

Digital Multimeter with Thermocouple Temperature ± 3% of reading 

Graduated Beaker Fluid Volume ± 10 mL 

Calipers Length ± 0.025 mm 

Vertical Rotometer Volumetric Flow 

rate 

± 3% of reading 

Steam Pressure/Temperature Gauge Temperature 

Pressure 

± 2% of reading 

Air Pressure Gauge Pressure ± 2% of reading 

 

 


