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ABSTRACT

The use of electromyography (EMG) signals to characterize muscle fatigue has

been widely accepted. Initial work on characterizing muscle fatigue during isometric

contractions demonstrated that its frequency decreases while its amplitude increases

with the onset of fatigue. More recent work concentrated on developing techniques

to characterize dynamic contractions for use in clinical and training applications.

Studies demonstrated that as fatigue progresses, the EMG signal undergoes a shift

in frequency, and different physiological mechanisms on the possible cause of the

shift were considered. Time-frequency processing, using the Wigner distribution

or spectrogram, is one of the techniques used to estimate the instantaneous mean

frequency and instantaneous median frequency of the EMG signal using a variety

of techniques. However, these time-frequency methods suffer either from cross-term

interference when processing signals with multiple components or time-frequency

resolution due to the use of windowing.

This study proposes the use of the matching pursuit decomposition (MPD)

with a Gaussian dictionary to process EMG signals produced during both isometric

and dynamic contractions. In particular, the MPD obtains unique time-frequency

features that represent the EMG signal time-frequency dependence without suffering

from cross-terms or loss in time-frequency resolution. As the MPD does not depend

on an analysis window like the spectrogram, it is more robust in applying the time-

frequency features to identify the spectral time-variation of the EGM signal.

i



To My children, Shota, Kurumi, Joe

and

My husband, Jon and My parents.

ii



ACKNOWLEDGEMENTS

First, I would like to thank Dr. Antonia Papandrou-Suppappola for giving

me the opportunity to do this work. Her guidance, support and encouragement were

always there when I needed it. I would like to thank Dr. Narayan Kovvali for helping

me to understand the material and MATLAB programming. Every day I had many

questions. I would like to thank Dr. Jitendran Muthuswamy for his interest in my

research and for agreeing to serve as a member of my committee. I would like to

thank Dr. Veronica Santos for letting me use her laboratory and instruments and

supporting my study. Graduate students in Dr. Papandrou-Suppappola’s laboratory

and Dr. Santos’s laboratory, thank you for your support. I would like to thank my

children, Shota, Kurumi, and Joe for supporting this work by doing all the tasks

around the house for me and taking extra responsibilities. Finally, I would like to

thank my husband, Jon, for support, encouragement, and guidance.

iii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER .

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Proposed Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 ELECTROMYOGRAPHY AND MUSCLE FATIGUE . . . . . . . . . . . 5

2.1 Electromyography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Muscle Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 TIME-FREQUENCY PROCESSING OF SEMG SIGNALS . . . . . . . . 10

3.1 Instantaneous Mean and Median Frequency . . . . . . . . . . . . . . 10

3.2 Short time Fourier Transform . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Quadratic TFRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 TIME-FREQUENCY PROCESSING USING MATCHING PURSUIT DE-

COMPOSITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Matching Pursuit Decomposition Algorithm . . . . . . . . . . . . . . 19

4.2 Instantaneous Frequency Using the MPD . . . . . . . . . . . . . . . . 24

5 USE OF MPD FOR SEMG PROCESSING . . . . . . . . . . . . . . . . . 27

5.1 MPD-based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Instantaneous Frequency From Features . . . . . . . . . . . . 27

5.2 Isometric contraction data analysis . . . . . . . . . . . . . . . . . . . 29

5.3 Dynamic contraction data analysis . . . . . . . . . . . . . . . . . . . 44

6 RESULTS AND DISCUSSION OF RESEARCH STUDY . . . . . . . . . . 55

6.1 Experimental Process for sEMG Measurements . . . . . . . . . . . . 55

6.1.1 Study Participants . . . . . . . . . . . . . . . . . . . . . . . . 55
iv



CHAPTER Page

6.1.2 Equipment Used in the Experiment . . . . . . . . . . . . . . . 55

6.1.3 Experimental Data Collection Process . . . . . . . . . . . . . 56

6.2 MPD Processing of sEMG Signal from Isometric Contractions . . . . 58

6.3 MPD Processing of sEMG Signals from Dynamic Contraction . . . . 69

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 85

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2 Recommendation for Future Work . . . . . . . . . . . . . . . . . . . . 85

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

v



LIST OF TABLES

Table Page

5.1 Energy for each segment for all subjects during isometric contraction . . 36

5.2 Energy for each cycle for all subjects during dynamic contraction . . . . 52

6.1 Summary of Subject Information . . . . . . . . . . . . . . . . . . . . . . 57

6.2 The result of modifiedWAIF for constant isometric contraction. Thr=threshold. 63

6.3 Result of the IMNF for constant isometric contraction. W. size is window

size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4 Result of the IMDF for constant isometric contraction. W. size is window

size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5 The result of modified WAIF for dynamic contraction. Thr is threshold

value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.6 The relative change and average relative from the result of modified WAIF

for dynamic contraction. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.7 Result of the IMNF for dynamic contraction. . . . . . . . . . . . . . . . . 77

6.8 Result of the IMDF for dynamic contraction. . . . . . . . . . . . . . . . . 78

vi



LIST OF FIGURES

Figure Page

2.1 The model for the generation of the EMG signal obtained from [1] . . . . 6

4.1 Example of a Gaussian atom in the MPD dictionary. The Gaussian atom

is g(t) = 1
11
e25t

2
cos (6πt). The σ is one of the parameters for selecting

Gaussian atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Example of MPD: (a) original signal, (b)-(f) are the extracted Gaussian

atoms, (g) original signal (blue line) and MPD approximation (red line)

of signal after 5 iterations, (h) MPD-TFR . . . . . . . . . . . . . . . . . 23

5.1 Example of modified WAIF . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Isometric contraction original signal for all subjects . . . . . . . . . . . . 30

5.3 Isometric contraction original signal of FT for all subjects . . . . . . . . 31

5.4 Isometric contraction after preprocessed for all subject . . . . . . . . . . 32

5.5 Isometric contraction after preprocessed signal of FT for all subjects . . . 33

5.6 Signal after pre-process each step for subject 2 . . . . . . . . . . . . . . . 34

5.7 FT signal of after pre-process each step for subject 2 . . . . . . . . . . . 35

5.8 MPD algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.9 MPD approximation and MPD-TFR with 1% and 5% maximum energy

threshold during isometric contraction for subject 2. . . . . . . . . . . . . 39

5.10 Thresholds for coefficient value to calculate modified WAIF . . . . . . . . 41

5.11 Result of modified WAIF during isometric contraction for subject 4. It

was computed with different thresholds and different computing windows,

1, 1.5, 2. 2.5 and 3 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.12 Dynamic contraction preprocessing in time domain for subject 5 . . . . . 44

5.13 Dynamic contraction preprocessing in frequency domain for subject 5 . . 45

5.14 Dynamic contraction original signal for all subjects . . . . . . . . . . . . 46

5.15 Dynamic contraction original signal of FFT for all subjects . . . . . . . . 47

5.16 Dynamic contraction sEMG signal after preprocessed for all subjects . . 48
vii



Figure Page

5.17 Dynamic contraction FFT of signal after preprocessed for all subjects . . 49

5.18 Each cycle of dynamic contraction for subject 2 . . . . . . . . . . . . . . 50

5.19 Each cycle of dynamic contraction for subject 4 . . . . . . . . . . . . . . 50

5.20 MPD approx signal with threshold 95% for subject 2 . . . . . . . . . . . 53

5.21 MPD approx signal with threshold 99% for subjet 2 . . . . . . . . . . . . 53

6.1 The MPD approximation of sEMG signal (red line) and real sEMG signal

(blue line)was plotted together. (a) subject 1 (b) subject 2 . . . . . . . . 58

6.2 The MPD-TFR plots for Isometric contraction for all subjects . . . . . . 60

6.3 Spectrogram with three different window sizes, 75 ms, 1s, and 3.6 s for

subject 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4 Modified WAIF for different coefficients (dot) with linear regression lines

(solid line) for subject 1, 2, and 3 during isometric contraction . . . . . . 66

6.5 Modified WAIF for different coefficients (dot) with linear regression lines

(solid line) for subject 4 and 5 during isometric contraction . . . . . . . . 67

6.6 Spectrogram for different windows with linear regression lines for subject

2 and 5 for isometric contraction . . . . . . . . . . . . . . . . . . . . . . 68

6.7 The MPD approximation of sEMG signal (red line) and real sEMG signal

(blue line) for dynamic contraction was plotted together. (a) subject 2

(b) subject 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.8 MPD-TFR for dynamic contraction for subject 4 . . . . . . . . . . . . . 71

6.9 Spectrogram with Gaussian window 75ms for subject 4 during dynamic

contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.10 Spectrogram with Gaussian window 500ms for subject 4 during dynamic

contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.11 Modified WAIF for dynamic contraction for different coefficients with

linear regression lines for subject 1 . . . . . . . . . . . . . . . . . . . . . 79

viii



Figure Page

6.12 Modified WAIF for dynamic contraction for different coefficients with

linear regression lines for subject 2 . . . . . . . . . . . . . . . . . . . . . 79

6.13 Modified WAIF for dynamic contraction for different coefficients with

linear regression lines for subject 3 . . . . . . . . . . . . . . . . . . . . . 80

6.14 Modified WAIF for dynamic contraction for different coefficients with

linear regression lines for subject 4 . . . . . . . . . . . . . . . . . . . . . 80

6.15 Modified WAIF for dynamic contraction for different coefficients with

linear regression lines for subject 5 . . . . . . . . . . . . . . . . . . . . . 81

6.16 IMNF and IMDF for different windows with linear regression lines for

subject 2 for dynamic contraction . . . . . . . . . . . . . . . . . . . . . . 81

6.17 IMNF and IMDF for different windows with linear regression lines for

subject 4 for dynamic contraction . . . . . . . . . . . . . . . . . . . . . . 82

ix



Chapter 1

INTRODUCTION

1.1 Overview and Motivation

Most people have experienced muscle fatigue at one time or another. People

know when they have fatigue but it is not easy to measure and quantify. If a reliable

and reproducible measurement process can be developed, it will have wide ranging

applications. Monitoring the localized fatigue of muscles could be a very important

tool for workers who perform repetitive physical tasks and for athletes who are train-

ing to improve their performance. Such a measurement can help to avoid injury due

to muscle fatigue and over use. Also, in rehabilitation medicine, monitoring mus-

cle fatigue is very important especially for patients with neuromuscular problems.

The efficacy of exercise treatment depends on exercising the muscle that needs the

therapy. In some cases, other muscles may compensate for the weak muscle during

treatment, denying the targeted muscle the therapy required by proper exercising.

Monitoring muscle fatigue using EMG technology is one way to evaluate the therapy

being used.

Researchers have been investigating the assessment of localized muscle fatigue

in humans using surface electromyography (sEMG) signals during constant force iso-

metric contraction [1–3] and dynamic contraction [2]. As early as 1912, a physiologist

used electromyography to observe the characteristics of muscle fatigue during con-

stant force isometric contraction [1,2]. He observed a shift to lower frequencies in the

spectral content of the sEMG signal. This phenomenon was subsequently observed in

different body muscles by numerous researchers [1,2,4]. In the 1950s, it was observed

that the amplitude of the electromyography signal increases over time for an isomet-

ric contraction [1, 2, 5]. The early research was done on isometric contractions to

avoid problems associated with the signal complexity of dynamic contraction sEMG

signals. Advances in computer technology have made it possible to use digital signal
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processing methods to evaluate the spectral content of sEMG signals [2]. At first,

this kind of analysis was used on data from constant force isometric contractions

to assess fatigue [2]. During constant force isometric contraction, sEMG signals are

non- stationary, in that they have frequency components that change with time. fre-

quency component. However, the assumption of stationary for short time segments

has been applied to enable analysis as it allows the use of Fourier transforms [1,2,4].

The fast Fourier transform (FFT) was one of the tools used for this research. Us-

ing FFT confirmed the shift in the sEMG spectral content to lower frequencies as

measured by the mean frequency or the median frequency of the spectrum [6]. The

sEMG signals for dynamic contractions have components that result from changes

in the length of the muscle fibers, in the distance from the electrode to the muscle

fiber, and in the force applied by the muscle that result from change in geometry

as the exercise progresses [7]. As dynamic contractions involve non-stationary sig-

nals [2,8–10], they require analysis using more advanced signal processing techniques

such as time-frequency (TF) methods. Examples with TF methods used successfully

for sEMG analysis include the Winger distribution(WD), Choi-Williams distribu-

tion and wavelet transforms [2, 9, 10]. Even with the progress to date, researchers

continue to try to improve the reliability, reproducibility and convenience of these

analysis techniques to enable their standardization and use in clinical and training

applications [4]. Further challenges in this field are centered on four areas.

1. Improved characterization of the way that the signal changes during exercise to

improve detection of the onset of fatigue; most current techniques sample data

at various epochs to provide a quasi-stationary window of data for analysis

assuming that sEMG signals during isometric and dynamic contractions are

non-stationary [4].

2. Reduction of the variability of techniques [4, 11].

3. Simplification and standardization of the methods used; for example, different
2



techniques were recommended in [12] depending on the contraction modality.

4. Extension of signal processing methods to encompass a wider variety of move-

ments, and in particular increased angular velocity and increased force [9].

Time-frequency signal processing have been used to determine the fatigue

progress using the sEMG spectrum. These time-frequency approaches have different

disadvantages depending on the method. These disadvantages include cross terms

and poor TF resolution [2,8] that make interpretation of the results difficult. Inves-

tigators have tried a number of techniques for data collection and analysis to reduce

these effects. The results are acceptable but limited to specific situations, often re-

quiring special equipment to collect the data to minimize variability [12]. Monitoring

the change of frequency of the signal over time was implemented using the mean fre-

quency or median frequency as indicators [2]. With the use of TF methods, those

measures were replaced by instantaneous mean frequency or instantaneous median

frequency [12, 13]. The instantaneous mean frequency is the same as instantaneous

frequency which is the average frequency at each time [13]. This method works well

for monocomponent signals but problems were reported for multi component signals

due to the existence of cross terms or because the TF methods did not satisfy im-

portant signal properties [13]. A method that overcomes these problems, without

increasing complexity in data collection or analysis requirements would provide for

better means to study sEGM signal characteristics.

1.2 Proposed Work

The objective of this study is to investigate the use of the matching pur-

suit decomposition (MPD) for analyzing sEMG signals during muscle isometric and

dynamic contractions to assess localized muscle fatigue. The MPD technique has

advantages over previously investigated techniques by offering improved resolution

3



in time and frequency, especially for non-stationary signals [14]. The corresponding

MPD time-frequency representation (MPD-TFR) is implemented by summing the

weighted WD distribution TF representation of each MPD expanded signal com-

ponent. The MPD-TFR thus does not suffer from cross terms and offers high TF

resolution since these components correspond to Gaussian signals and the WD of a

Gaussian has the highest TF resolution [15]. We estimation the average frequency

from the MPD-TFR was using the weighted average instantaneous frequency method

to improve variability. This work compared the performance of MPD technique for

fatigue detection with that of existing techniques such as the spectrogram.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 discusses sEMG sig-

nals and muscle fatigue. Chapter 3 provides a background on current methods used

for processing sEMG signals to assess muscle fatigue. The methods differ based on

whether the signal originated from constant force isometric contractions or dynamic

contractions. Chapter 4 describes the matching pursuit decomposition and its use

for time-frequency signal processing. Chapter 5 provides our proposed use of the

MPD to obtain time-frequency features for sEMG signal analysis. Chapter 6 dis-

cusses and compares the analysis performance results of our work using real data,

and summary of the experimental procedures used to obtain the data is provided. It

includes summary of experimental information and procedure. Chapter 7 presents

conclusion and recommendation for future work.
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Chapter 2

ELECTROMYOGRAPHY AND MUSCLE FATIGUE

2.1 Electromyography

Electromyography (EMG) is the measurement of the electrical activity in the

muscle fibers induced by activation of the motor neurons innervating the muscle [1].

Bioelectric potential exhibits a resting potential and action potential when appropri-

ately simulated. But EMG signals contain noise due to electrical currents traveling

through different layer tissues [8]. Physiologically, an EMG signal is the summation

of the signal motor unit action potential (MUAP) for the muscle fibers activated

during a contraction. The MUAPs are the result of depolarization in muscle fibers.

This occurs when alpha-motoneurons in the spinal cord transmit a signal to activate

the muscle. Figure 2.1 shows a model of the generation of the EMG signal [1].

The alpha-motoneurons affect the output of the EMG signal shape by con-

trolling the unit firing rate with impulse timing and the number of the motor units

affected. The muscle can only continue to contract if the motor units are activated

repeatedly to sustain the effort. The series of MUAP events is called a motor unit

action potential train (MUAPT). The number of muscle fibers that are activated

and the timing of those activations affect the EMG signal [1]. In skeletal muscles,

the composition of the muscle and the blood flow are also factors that affect the

EMG signals. The muscle fibers are divided into two functional groups, slow twitch

and fast twitch or type I and type II, respectively. Type I muscle fibers are slow

twitch fibers with long contraction duration and are resistant to fatigue. The nerve

conduction velocity is lower for slow twitch muscle fibers [4]. On the other hand, the

type II muscle fibers, which are divided to type IIa and type IIb, are fast twitch with

short contraction duration. Type IIa fibers have good fatigue resistance but type

IIb, which are used for power and speed, fatigue easily [4,16]. The nerve conduction

velocity for type IIa and type IIb fibers is intermediate and high, respectively [4].
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Figure 2.1: The model for the generation of the EMG signal obtained from [1]

The components of these muscle types depend on the individual and are related to

exercise activities and aging. Researchers observed a relationship between use of

muscle types and level of muscle contractions [4]. It was shown that slow twitch

muscle fibers are depleted of glycogen at 15% to 20% of maximum voluntary con-

traction [4]. The spectrum of the sEMG signal is probably affected by both the type

of exercise and the muscle types recruited for the movement. Other physiological

and biochemical factors also affect sEMG signals. The structure of muscle fibers is

different in different muscle parts and in different individuals. The mechanism of

how these differences affect the EMG signal is not yet completely understood and is

the subject of ongoing scientific investigations [2]. Another important factor in the

collection and analysis of sEMG signals is the position of electrodes and electrode
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shape as well as the distance between muscle fiber and electrode which is related to

the thickness of the subcutaneous tissue [1, 8]. All of these factors contribute to the

complications associated with the analysis of sEMG signals.

The unit of measurement of the sEMG signal is voltage and its range is from

0 to 10 mV (+5 to -5) [8]. The sEMG signal is not only the result of the physiological

phenomena of muscle movement. It also contains noise from power line circuits and

electronic equipment, noise induced on the connecting cables as well as noise from

other sources. Electronic equipment generate noise that is very difficult to reduce or

eliminate. High quality equipment suffer from less noise but they are expensive. The

noise caused by electromagnetic radiation that could be present can affect the sEMG

signal because the amplitude can be higher than the magnitude of the original signal

by a factor of three to one [8]. The average alpha-motoneuron firing rate is 15 to 25

Hz [17], and it creates the 20 Hz signal component [8,17] which can cause the signal

to be unstable in this region. The motion artifact from the electrode interface and

movement of the electrode cable affects the low frequency region of the signal [8].

To avoid noise in the low frequency part of the signal, filtering with low-frequency

cut-off of 20 Hz is recommended [8, 17]. It is possible to eliminate some noise from

the signal but not all using filtering and skin preparation where the electrodes are

attached [18].

The position of the electrodes can also contribute to noise. One electrode is

placed on the mid line of the muscle between the myotendenous junction and the

point of innervation, perpendicular to the fibers of the muscle [17]. The electrode

for the ground is placed on the skin over the bone. Modern EMG instrumentation

amplifies and filters the signal.
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2.2 Muscle Fatigue

Fatigue occurs when a task is repeated over and over again. People can feel

fatigue, but it is very difficult to measure the magnitude of fatigue or pinpoint its

onset. Fatigue has been identified in a variety of ways. Some investigators use the

inability of the muscle to sustain the task as a measure of fatigue. Other defini-

tions use degradation of performance as an indicator of fatigue. However, the onset

of fatigue in muscles is gradual [1]. Performance changes gradually as the relaxed

muscle gradually becomes less effective and then cannot sustain contraction. This

feeling is well known to athletes in training. Thus, any scientific measure of fatigue

needs to monitor change in some muscle characteristic over time. The traditional

mechanism proposed for the cause of fatigue is the accumulation of lactic acid in

the muscle tissue. Lactic acid is a byproduct of the metabolism of sugars to provide

energy for muscle movement. Lactic acid is further decomposed to water and carbon

dioxide when it reacts with oxygen. This is the situation during aerobic exercise.

The result of localized muscle fatigue shows that the power spectrum of the sEMG

signal is shifted to lower frequencies. Researchers have been investigating what kind

of physiological component is affecting the power spectrum of sEMG signals. Re-

searchers found a positive correlation between the low frequency shift in the power

spectrum of the sEMG signal and the decreases in muscle fiber conduction velocity

(MFCV) during static sustain construction [19]. As lactate builds up in the muscle

cells, the pH or measure of hydrogen ions decreases causing the conduction velocity

of the de-polarization reaction to decrease. This changes the profile of the MUAP,

which affects the sEMG signal recorded from the muscle. The effects of decreased

pH on conduction velocity as well as the EMG frequency shift to lower frequencies

in [20]. Numerous studies have been done to asses localized muscle fatigue and re-

late it to sEMG signal and physiological factors, especially the effects of conduction

velocity and firing rate [2]. Other investigators believe that the decrease in pH is

8



only a factor when maximal exertion is applied [16]. For dynamic contraction, it

was shown that no change was seen in MFCV whereas median frequency (MDF) of

the power spectrum of the sEMG signal decreased from the vastus lateralis of 19

health male adults [19]. These alternate theories propose that fatigue is a complex

phenomenon with contributing factors in both the central and peripheral nervous

systems [16]. These factors include psychological factors, neural signal transmission

factors and failure of transmission of the signal from the nerve to the muscle [16]. In

any case, sEMG measurements are useful for measuring the behavior of the muscle

fibers. If reliable measurement and processing techniques are developed to measure

and characterize fatigue, they can contribute to understanding the mechanisms of

fatigue.
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Chapter 3

TIME-FREQUENCY PROCESSING OF SEMG SIGNALS

3.1 Instantaneous Mean and Median Frequency

A century ago, a physiology professor named Piper at the Royal Friedrich-

Wilhelms University in Berlin found that the spectral content of sEMG signals shifts

towards low frequencies over time during constant isometric contraction [1, 2]. In-

creased signal amplitude during constant force isometric contraction as a characteris-

tic of fatigue as well as compression of frequency toward the lower range was observed

[1, 2]. These two phenomena related to muscle fatigue manifestation are the most

popular methods of fatigue detection. In [21], the frequency of mean power or mean

frequency (MNF) was used to determine the difference between a relaxed muscle

and a fatigued muscle during constant isometric contraction. Fatigued muscles were

characterized by having power spectrum in the lower half of the frequency range,

whereas relaxed muscles were observed to have power spectrum in the upper half of

the spectrum [21]. The MNF for fatigue was lower than the MNF of relaxed mus-

cle [21]. The median frequency (MDF), the MNF, and the mode (peak) frequency

of the spectrum were investigated by theoretical analysis in [22], where it was shown

that the MDF was the preferred frequency estimate because it was least sensitive

to noise compared to the rest of the estimates [21]. The MDF and MNF are the

most widely used parameters, and they can be defined respectively as the average

frequency and a frequency point that divides power spectrum into two equal parts.

During last decade, the instantaneous mean frequency (IMNF) and instan-

taneous median frequency (IMDF) time-frequency signal processing methods were

introduced for determining localized fatigue during dynamic contraction [2]. The

MNF, MDF, IMNF, and IMDF are defined in [2] as,

MNFs(t) =

∫ fs/2

0
fS(f)df

∫ fs/2

0
S(f)df

(3.1)

10



∫ MDFs(t)

0

S(f)df =

∫

∞

MDFs(f)

S(f)df (3.2)

IMNF(t) =

∫

∞

0
fS(t, f)df

∫

∞

0
S(t, f)df

(3.3)

∫ IMDF(t)

0

S(t, f)df =

∫

∞

IMDF(t)

S(t, f)df, (3.4)

where fs is the sampling frequency, S(f) is power spectrum density of the signals,

and S(t, f) is time-dependent power spectrum density of the signal.

The methods used for estimating the power spectral density (PSD) of sEMG

signals for detection of local fatigue include the periodogram and Blackman-Tukey

method [23]. Parametric model PSD estimation methods include the autoregressive

(AR), moving average (MA), and autoregressive moving average (ARMA) meth-

ods [23]. The sEMG signal during constant force isometric contraction is not sta-

tionary since frequency changes with respect to time [2, 7, 9, 24]. However, sEMG

characteristics during constant force isometric contraction can be considered as Gaus-

sian wide-sense stationary (WSS) and band-limited with zero mean over a short seg-

ment of time [2, 12] or epoch [24, 25]. During constant force isometric contraction,

the stationary segments were shown to range from 0.5 to 2 seconds depending on the

contraction force level and muscle characteristics [9]. It was also observed that the

length changes with different levels of contractions [3]. A length of 20-40 seconds

can be WWS at 20%-30% MVC while 0.5-1.5 seconds is at 50%-80% MVC [3]. To

allow the use of any PSD estimation process, a signal needs to be time-invariant

and stationary [1, 23]. Applying PSD estimation methods to a sEMG signal, which

is non-stationary, can be done using windowing of the signal assuming stationar-

ity within the windowed segment Accuracy and reliability of the result depends on

the shape and size of the analysis window, and it affects the estimation of MNF and

MDF [26,27]. The periodogram is the most commonly used method; it is the squared

magnitude of Fourier transform of windowed segments.
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ARMA is combination of the AR and MA models and it is quite powerful [2,

24]. The selection of the order of the model affects variance and accuracy. The

estimated spectrum appears overly smooth when the order is too small. On the

other hand, the variance increases and artificial peaks appear [2,24]. The AR model

is often chosen for sEMG processing with order between 4 and 11 [2, 24].

In the time domain, the amplitude of the sEMG signal was observed during

constant force isometric contraction [1, 2, 18, 24]. The sEMG amplitude metrics in

modern digital systems are the mean absolute value (MAV) and root-mean-squared

(RMS) value. One of the main problems in the amplitude analysis method is rejecting

noise suppression; noise sources can include power line interference, electronic noise

and motion artifacts. A cascade of five sequential processing steps were developed to

form a sEMG amplitude estimate [2,18]. The steps are noise rejection and filtering,

whitening, amplitude demodulation, smoothing and linearization. The whitening

process reduces the variance of the amplitude estimation [18, 25, 28]. In most cases,

both amplitude and spectrum analysis are used together [2]. To make sEMG analysis

useful in clinical settings, joint analysis of sEMG spectrum and amplitude (JASA)

for isometric exercises was divided to four different cases to simplify analysis. It

was found that if the sEMG spectrum shifts to the higher frequency and sEMG

amplitude increases, the reason is due to the increased force. If the sEMG spectrum

shifts to a lower frequency and the sEMG amplitude decreases, the most probable

cause is a decrease in muscle force. When the sEMG spectrum shifts to a lower

frequency and the sEMG amplitude increases, then the cause is fatigue. Finally,

when the sEMG spectrum shifts to a higher frequency and the sEMG amplitude

decreases, this is an indication of recovery from fatigue. These simple rules are used

to relate changes in the spectrum and amplitude to actual muscle conditions during

isometric exercise [2]. This result was extended to extend this result to dynamic

repetitive tasks [29]. However, there simple rules could not be used for classification.
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In [29], the frequency shift by MNF and MDF could not be detected using the wavelet

transform method and a decrease in amplitude for all subject was noted due to the

absence of constant force [29]. Overall, the estimation results obtained the sEMG

spectrum content are less dependent on the force level of muscle compared to the

estimation results obtained from the sEMG amplitude and are more sensitive for

detection of muscle fatigue [30, 31].

3.2 Short time Fourier Transform

The short time Fourier transform (STFT) is a linear time-frequency repre-

sentation(TFR) that was used to study fatigue during isometric and isotonic muscle

contractions. The studies showed that the frequency content of the sEMG signal

decreased with increased fatigue [32]. The STFT assumes that the sEMG signal is

stationary over a short windowed signal segment and then analyzes each segment

with the Fourier transform [9]. TFRs represent signals in both time and frequency.

Thus, the STFT with analysis window h(t) is given by

Sx(t, f ; h) =

∫

τ

e−j2fπτx(τ)h(τ − t) dτ, (3.5)

The STFT preserves time-frequency shifts on the signal [33],

y(t) = x(t− to)e
j2πfot => Sy(t, f ; h) = Sx(t− to, f − fo; h)e

−j2πto(f−fo). (3.6)

However, the STFT does not preserve energy information and it is limited by as-

sumption of signal stationarity over the length of the window [2, 33–35]. Following

the uncertainty inequality, given as

∆T∆ω ≥
1

2
(3.7)

where ω = 2πf , if the window is chosen to have a narrow bandwidth to increase fre-

quency resolution, then the time resolution decreases since the window has long dura-

tion [30,33]. This trade off presents a problem in fatigue analysis since the desirable

use is to detect changes in the frequency content; if the changes are small, the high
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frequency resolution is needed but at the cost of low time resolution. Wavelet based

methods were also used to study frequency changes for fatigue analysis [30]. The

STFT and continuous wavelet transform (CWT) were used to analyze mechanomyo-

graphic (MMG) and sEMG signals collected from the vastus lateralis and rectus

femoris muscles during isometric ramp contractions [36]. A Hamming window of

0.6s was used by the STFT, with an overlap of 0.1 s, and the resulting TFR was

used to estimate the mean power frequency (MPF) at each time. The instantaneous

mean power frequency was calculated using the CWT and compared to the MPF

estimate of the STFT. Frequency shifting to lower frequencies was not observed

in this experiment. As TFRs, both the CWT and the STFT showed similar re-

sults, although the STFT provided better representation using fixed resolution [36].

However, the wavelet is only useful for multiresolution analysis, desiring different

frequency resolutions at different times, and this was not shown to be needed for

fatigue analysis. Note, also, that the wavelet transform also uses windowing and

thus still has time-frequency resolution trade off.

3.3 Quadratic TFRs

The spectrogram is a quadratic TFR that is obtained as the squared magni-

tude of the STFT

SPs(t,f ;h) = |Sx(t, f ; h)|
2. (3.8)

It belongs to a class of TFRs, called Cohen’s class, that preserve time-frequency

shifts on the analysis signal [35]. These TFRs are characterized by a unique kernel

φC(θ, τ) and defined as

C(t, f) =

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

e−j2π(θυ+τf−θt)φC(θ, τ)x
∗(υ −

1

2
τ)x(υ +

1

2
τ)dυdτdθ (3.9)

Based on the kernel function, a TFR can be chosen to satisfy different desirable signal

properties such as preservation of signal energy. The kernel for the spectrogram is
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in terms of its window h(t), and it is given by

φSP(θ, τ) =

∫

h∗(υ −
1

2
τ)h(υ +

1

2
τ)e−j2πθυdυ. (3.10)

Equation (3.8) can be obtained by inserting (3.10) in (3.9) [34]. The time and fre-

quency marginal properties relate to energy preservation and are thus important

to satisfy if signal information needs to be recovered. The time-marginal and fre-

quency marginal can be satisfied when φ(θ, 0) = 1 and φ(0, τ) = 1, respectively.

The spectrogram does not, in general, satisfy the marginal properties as it requires a

constraint on its window h(t). For example, for the spectrogram to satisfy the time

marginal, the window must satisfy the condition
∫

|h(t)|2ej2πθtdt = 1, for all θ. For

the spectrogram to preserve the signal’s instantaneous frequency, both φ(0, τ) = 1

and ∂
∂τ
φ(τ, υ)|τ = 0 must be satisfied; it is thus difficult to find a window size and

shape that satisfies these requirements.

Several comparisons between the STFT and other TFR methods during iso-

metric and dynamic contraction have been done. The Wigner distribution (WD),

Choi-Williams distribution (CWD) and the STFT distribution were all applied to

the sEMG signals collected from biceps brachii during an isometric contraction and

were compared in [34]. It was found that all three approaches showed the frequen-

cies decreases as time increases due to fatigue [34]. The CWD showed the shifting

of the frequency toward to lower frequencies most effectively because the spread of

frequency was less [34]. Note that all three TFRs produced different representations

in the time-frequency plane [34].

The characterization of isometric contractions using sEMG signals has pro-

gressed from relatively primitive methods to sophisticated use of various TFR meth-

ods. The study of muscle fatigue during dynamic contractions only started in the

last decade because the sEMG signals from dynamic contraction are very complex

due to changes in the muscle length, force and distance between electrode and muscle

during movement [3, 7]. For the non-stationary sEMG signals during dynamic con-
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traction, Cohen’s class TFRs and the wavelet transform provided useful results [2,3].

TFRs that were used to analyze EMG signals during dynamic contraction include

the smoothed-pseudo WD(SPWD), the CWD, and the Born-Jordan TFR [7, 12], as

well as the continuous wavelet transform [37].

The WD can be obtained when φWD(θ, τ) = 1; it can be defined as

WDx(t, f) =

∫

∞

−∞

x
(

t−
τ

2

)

x
(

t+
τ

2

)

e−j2πfτ dτ (3.11)

where x(t) is the signal. The WD satisfies the marginal properties, preserves fre-

quency shifts and time shifts is real-valued and it is highly localized in the time-

frequency plane [33, 38]. However, the WD suffers from interfering cross terms

when used the analyze multicomponent signals, which is the case for sEMG sig-

nals [7, 12, 33, 38]. This is a disadvantage of this method for analysis since a cross-

interference term does not have any meaning and makes interpretation difficult. Co-

hen’s class TFR formulation in refeq:spec2 provides a method to smooth the cross

terms by using the kernel as a two-dimensional lowpass filter. One example is the

SPWD that uses a time smoothing to obtain [38]

SPWVDx(t, f) =

∫∫

w (t− τ) g (f − ξ)Wx(τ, ξ)dτ dξ. (3.12)

The smoothing windows control time and frequency resolution separately. The res-

olution in time degrades as the smoothing in time increases. The same degradation

occurs for frequency as the frequency window is increased [38]. The smoothing kernel

for the CWD is

φCWD(θ, τ) = e(2πθτ)
2

/σ (3.13)

where σ is a parameter that can be selected for different levels of smoothing. The

value of σ = 1 was used sEMG signal analysis in [7]. The CWD satisfies both the

marginals and the instantaneous frequency and group delay properties [35]. Varying

the σ parameter regulates the trade off between the suppression of interference terms
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and time-frequency resolution. As σ increases, resolution increases but interference

increases as well. At high values of σ, CWD approaches the WD [9].

In [7], robustness to noise of TFRs was investigated, including Born-Jordan

TFR (BJ), CWD and WD. The kernel for the BJ TFR is

φ(θ, τ) = sin(πθτ)/(πθτ). (3.14)

The BJ TFR minimizes the variance contributed by white noise [7]. The work used

all three TFRs to calculate the root MSE from IMNF and the IMDF for four differ-

ent known signals with added noise. The result showed the IMDF using the CWD

is most preferable among those methods [7]. The goal of this study was to get re-

producible results from TFRs for assessing localized muscle fatigue during dynamic

contraction. The sEMG data was classified into slow non-stationary and fast non-

stationary. The hypothesis was that the slow non-stationary was due to fatigue in

the muscle. The fast non-stationary was attributed to biomechanical factors includ-

ing muscle length, distance of the electrode from the muscle and changes of force

on the muscle so it was proposed to eliminate the fast non-stationary portion of

the signal. To avoid the fast non-stationary, the integration of the high frequency

portion of the TFR was omitted using D’Alessio algorithm to estimate the upper

frequency of the power spectrum [7]. In addition, the contractions were classified

to highly fatiguing contractions and slowly fatiguing contractions. Highly fatiguing

contractions are defined as maximal effort contractions where only a few cycles of the

task can be performed. Slow fatiguing contractions are defined as contractions that

can be performed for an extended number of cycles. For slowly fatiguing contrac-

tions, the estimation of IMNF and IMDF was computed using the data from a fixed

portion of the exercise cycle. To further reduce variability, the result was averaged

over a few consecutive cycles. The CWD was applied to real sEMG signals of the

first dorsal interosseous muscle with these two methods described above. The result

showed decreasing IMDF as the number of the repetitions increased. The estimation
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of IMDF was affected by selecting different portions of each cycle. The standard

deviation of the IMDF was reduced by half when averaging four IMDF consecutive

repetitions [7]. The disadvantage of this approach is that it adds special equipment

and requires a custom process for each type of activity evaluated.

When the CWT was used for dynamic contraction signals, it provided better

analysis results than those of the WD and CWD [37]. In [38], the CWT, STFT

and SPWVD, were used to detect muscle fatigue combined with independent com-

ponent analysis (ICA), and artificial neural networks for isometric contraction. The

result of detection was measured by accuracy, specificity, and sensitivity and all rep-

resentations yielded similar results, revealing the possibility of detection of muscle

fatigue [38].

Hilbert-Hung transform (HHT) was used to compute the MNF during iso-

metric contractions [26] and dynamic contractions [39] and the result were compared

with those obtained using Fourier and wavelet methods. The HHT was used to avoid

the dependency of the other methods on selectable parameters; advantage of HHT is

that quasi-stationary and linearity assumptions are not required [26,39]. Comparison

showed low variability in HHT results. However, the empirical mode decomposition

(EMD), which is a basic procedure of the HHT, was called into question on theoret-

ical grounds [39].

One difficulty in analyzing sEMG signals is to identify and separate the noise

from the physiological portion of the signal, especially during dynamic contraction.

Sensitivity to noise can limit the robustness of the methods, but it is not realistic

to completely distinguish noise from the real signal in the sEMG measurements.

Another problem that many investigators encountered was the need to constantly

adjust the analysis method to get acceptable results. A more consistent method can

yield significant clinical advantages.
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Chapter 4

TIME-FREQUENCY PROCESSING USING MATCHING PURSUIT

DECOMPOSITION

4.1 Matching Pursuit Decomposition Algorithm

The matching pursuit decomposition (MPD) is an iterative algorithm that can

be used to decompose a signal into a weighted linear expansion of element functions,

selected from a complete and redundant dictionary [15]. The dictionary elements are

most often time-frequency shifted and scaled versions of a basic Gaussian atom, and

the linear expansion is formed using successive approximations of the signal with

orthogonal projections on dictionary elements. The resulting expansion provides for

highly-localized time-frequency features. This is because the decomposed elements

are Gaussian signals that are known known to be the most concentrated signals in

both time and frequency according to the uncertainty principle [35]. An example of a

basic Gaussian atom in the time domain is shown in Figure 4.1. The MDP algorithm

procedure is described next in more detail. We consider a time-varying finite-energy

signal x(t) that, can be represented using the MPD as

x(t) =

∞
∑

i=0

αigi(t). (4.1)

Here, gi(t) is the Gaussian atom that is selected at the ith MPD iteration and αi is the

corresponding expansion coefficient. The MPD dictionary consists of the elements

gθ(t) = gn,k,l(t) = g (ζl(t− τn)) e
−j2πνkt, (4.2)

where τn ∈ R, νk ∈ R, and ζl ∈ R are the nth time shift, kth frequency shift and lth

scale change, respectively, on the basic Gaussian atom g(t) = Ce−t2 and θ = [n k l]

is a vector describing all three transformation parameters. The basic Gaussian atom

g(t) is centered at the origin of the time-frequency plane and is normalized to have

unit energy using the constant C. Note that when using the MPD to process real

19



data, such as sEMG signals, then real Gaussian atoms are used to form the dictionary

of the form,

gn,k,l(t) = Ce−(ζl(t−τn))
2

cos(2πνkt). (4.3)

The iterative procedure of the MPD first projects the analysis signal x(t) = r0(t)

onto each element of the dictionary and selects gθ0(t) = g0(t) according to gθ0(t) =

argmaxθ |〈r0, gθ〉|, where 〈r0, gθ〉 =
∫

∞

−∞
r0(t)gθ(t)dt. This first extracted element,

g0(t), is the Gaussian signal component with the highest energy signal contribution.

The residual signal after the Gaussian atom extraction is r1(t) = x(t) − α0g0(t),

where α0 = 〈x, g0〉. The residual r1(t) is then decomposed in a similar manner as the

signal x(t). Similarly, at the ith iteration, i = 0, 1, . . ., we decompose the ith residual

signal ri(t) = αigi(t), where gi(t) = gθi(t) = argmaxθ |〈ri, gθ〉| and αi = 〈ri, gi〉.

The MPD signal after N iterations is given by

x(t) =
N−1
∑

i=0

αigi(t) + rN(t). (4.4)

The energy Ex of the signal with normalized unit energy basis functions gi(t)

after N MPD iterations is given by

Ex = (‖x‖2)
2 =

N−1
∑

i=0

|αi|
2 + (‖rN‖2)

2 (4.5)

where ‖x‖2 = 〈x, x〉. Although for a complete representation, an infinite

number of iterations is required [15], stopping criteria can be used to obtain a close

signal representation. For example, the iterative process can be stopped when a large

percentage of the signal’s energy has already been extracted. This threshold provides

an advantage to the MPD since it can be used to increase the signal-to-noise ratio

(SNR) based on the noise level present in the data and the stopping criteria of the

iterative algorithm [14, 15]. A quadratic time-frequency representation (TFR) can

be obtained by forming the linear combination of the Wigner distribution (WD) of
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each of the selected Gaussian atoms in the MPD expansion. The WD is defined as

WDx(t, f) =

∫

∞

−∞

.x
(

t−
τ

2

)

x
(

t+
τ

2

)

e−j2πfτ dτ. (4.6)

It provides highly localized representations in the time-frequency plane, it does not

depend on windowing, and it preserves time-frequency shifts and scale changes

y(t) = x(t− τ) → WDy(t, f) = WDx(t− τ, f), (4.7a)

y(t) = x(t)ej2πνt → WDy(t, f) = WDx(t, f − ν), (4.7b)

y(t) =
√

|ζ |x(ζt) → WDy(t, f) = WDx(tζ, f/ζ). (4.7c)

The WD of the Gaussian atoms can be found in closed-form by computing it ana-

lytically [15]

WDgθ(t, f) = Ce−2πζ2
l
(t−τn)2e−2π(f−νk)

2/ζ2
l . (4.8)

An example of an MPD signal expansion and its MPD-TFR with iteration N = 5 for

the original signal, y(t) = 0.3 exp(−t29.392) cos(2π52.5t)−0.7 exp(−(t−0.3)245.452) cos(2π152.5(t−

0.3)) + 0.5 exp(−(t + 0.25)21002). cos(2π302.5(t + 0.25)) are shown in Figure 4.2(g)

and 4.2(h), respectively.
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Figure 4.2: Example of MPD: (a) original signal, (b)-(f) are the extracted Gaussian

atoms, (g) original signal (blue line) and MPD approximation (red line) of signal

after 5 iterations, (h) MPD-TFR
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4.2 Instantaneous Frequency Using the MPD

Instantaneous frequency (IF) method is common for monitoring the frequency

changes of the signal over time for non-stationary signals. The IF provides as average

frequency at each time [40]. The traditional definition of IF for the analytic signal,

s(t) = a(t)ejϕ(t) is given by

fi(t) =
1

2π

dϕ(t)

dt
= ϕ′(t). (4.9)

The first central moment of a quadratic time-frequency representation (TFR) is IF

and it can be defined by

Fi(t) =

∫

∞

−∞
fP (t, f)df

∫

∞

−∞
P (t, f)df

. (4.10)

Note that the IF for quadratic TFRs is the exactly same as the IMNF Equation (3.3).

Interpreting the IF as the average frequency at a given time for multicomponent

signals is difficult [13, 40]. This traditional method uses the derivative of phase

(4.9) to arrive at the average frequency for a given time. This method has the

unfortunate attribute of occasionally giving a result for the average frequency that is

outside of the range of the spectrum under certain circumstances for multicomponent

systems [13, 40]. Clearly a method that gives a more reasonable result is desirable.

Another problem with instantaneous frequency is that frequency oscillations per unit

time imply that there is some non zero time over which the measurement is observed;

instantaneous implies that delta t approaches zero [13]. A multicomponent signal

can be expressed at the sum of two or more monocomponent signals and it can be

written with assumption of each signal as analytic signal,

s(t) =

2
∑

i=1

si(t), (4.11)

where si(t) = ai(t)e
j2πϕi(t).
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The WD of a multicomponent signal which consists two monocomponent

signals can be expressed as

Ws1+s2(t, f) = Ws1(t, f) +Ws2(t, f) +Ws1s2(t, f) +Ws2s1(t, f), (4.12)

where Ws1s2(t, f) and Ws2s1(t, f) are the cross term that occurs from the multicom-

ponent signal. The IF of the two component signals (4.10), obtained using the first

order moment of TFRs is given by

Fi(t) =
a21(t)fi1 + a22(t)fi2 + q(t)(fi1(t) + fi2(t))

a21(t) + a22(t) + 2q(t)
, (4.13)

where q(t) = a1(t)a2(t) cos(ϕ1(t) + ϕ2(t)). The result of the IF for the multicom-

ponent signal shows as an oscillating function and is sensitive to amplitude of the

components of the signal [41] due to amplitude modulation. This highly non-linear IF

for the multicomponent signal in Equation (4.13) does not provide a good interpre-

tation of average frequency. The weighted average instantaneous frequency (WAIF)

which can provide average frequency was given in [41]. The WAIF is defined as

fw(t) =

∑N−1
i=0 a2i (t)ϕ

′

i(t)

2π
∑N−1

i=0 a2i (t)
(4.14)

The WAIF is a summation of the individual first moment of the WD. It assumes that

at each time point, there is only one frequency and it does provide true frequency

content.

The first conditional spectral moment of the MPD-TFR result is WAIF [42].

The MPD of N iteration can be expressed as

x(t) =

N−1
∑

i=0

αigi(t) =

2N−1
∑

h=0

ah(t)e
j2πϕh(t), (4.15)
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where

ah(t) = αh
C

2
e−ζ2

h
(t−τh)

2

, h = 0, ...N − 1, (4.16a)

ah(t) = αh−N
C

2
e−ζ2

h−N
(t−τh−N )2 , h = N, ...2N − 1, (4.16b)

ϕh(t) = 2πνh(t)t, h = 0, ...N − 1, (4.16c)

ϕh(t) = −2πνh−N(t)t, h = N, ...2N − 1. (4.16d)

(4.16e)

a2h(t1) ≈ α2
h when τi = t1. The WAIF at t = t1 from the MPD-TFR with a real

Gaussian atom (4.3) can be expressed as

fw(t1) =

∑N−1
i=0 a2i (t1)ϕ

′

i(t1)

2π
∑N−1

i=0 a2i (t1)
≈

∑N−1
i=0 α2

i (t)νi
∑N−1

i=0 α2
i (t)

. (4.17)

The WAIF from the MPD gives a smoother result than the IF for multicomponent

signals [42]. MPD expansion provides all relevant TF features that can be used to

extract signal information.
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Chapter 5

USE OF MPD FOR SEMG PROCESSING

In this thesis, we apply an advanced time-frequency based signal processing

technique to increase our understanding of sEMG signals, both during isometric

and dynamic contractions. It is important to improve the processing performance

and increase the robustness of such techniques since understanding sEMG signals is

critical in many clinical applications. These applications include studying muscular

synergies in motor control during various tasks, estimating the extent of muscle

damage under different stress or fatigue activities, and extracting features for use in

the control of limb prosthesis [43].

5.1 MPD-based Approach

We propose to use the matching pursuit decomposition (MPD), presented in

Chapter 4, as a technique to process the sEMG signals. Our approach is based on

first applying the MPD with a Gaussian dictionary on a given sEMG signal to provide

a linear weighted approximation of the signal. The expansion is in terms of time-

frequency shift and scaled Gaussian atoms containing most of the signal’s energy.

In particular, the weight corresponding to each of these Gaussian atoms provides

information on how strong the signal is at the time-frequency location where the

Gaussian atom is centered.

5.1.1 Instantaneous Frequency From Features

Using the complete MPD signal expansion [15], the resulting vector of the

time shift, frequency shift and scale change parameters for each extracted Gaussian

atom provides unique time-frequency feature vectors for the expanded sEMG signal.

In our work, we use these features to obtain a weighted average estimate of the

signal’s instantaneous frequency. The WAIF in Equation (4.14) which was presented
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in Chapter 4 was used for this study. However, the WAIF fm(t) was modified to find

an average frequency over a larger time interval. The modified WAIF for the interval

was computed by using one frequency point which has the largest coefficient at each

time and its coefficient. For example, for 9 iterations of MPD in an interval, 0 to

5 seconds, only five time and frequency shift parameters and coefficient are used as

shown in Figure (5.1). The modified WAIF for this interval which is centered at 2.5

seconds is computed as fm(t) for t = 2.5 to obtain

fm(2.5) =
α1f1 + α5f5 + α9f9 + α6f6 + α3f3 + α7f7

α1 + α5 + α9 + α6 + α3 + α7
, (5.1)

using largest MPD coefficient and its frequency at each time in the interval (5.1).
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Figure 5.1: Example of modified WAIF

We used the modified WAIF for each interval to show the trend of frequency

for isometric contractions. For dynamic contractions, one frequency point, which has

the largest coefficient at a given time, was selected for that time. Then, the average

frequency for one cycle of exercise was computed using the WAIF. The average fre-

quency for each cycle was compiled to see the trend of frequency shift. A threshold

in the coefficient value was applied to avoid the signal noise. Time and frequency
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parameters for larger coefficients have more information about the signal compared

to the time and frequency parameters for smaller coefficient. It is more likely that

time and frequency parameters with smaller coefficients value correspond to noise.

However, we do not want include noise in the WAIF computation, and as a result,

several different threshold values were applied to extract the average frequency.

5.2 Isometric contraction data analysis

The original data shows 60 Hz noise and DC offset. First, the sEMG signals

collected for all subjects were pre-processed removing the power line 60 Hz noise using

a notch filter. The filter was designed as a second-order infinite impulse response

(IIR) notch digital filter. The original sEMG signals and their Fourier transform

(FT) for all subjects are shown in Figure 5.2 and Figure 5.3. After that, the data

was filtered with a highpass filter to give the range from 10 Hz to 500 Hz. This

process was done by using a 9th order Butterworth filter. The begin and end of

the data string were processed to remove data where the subject was not exercising.

Figure 5.6 shows the original signal, signal after filtering, signal after filtering and

processing to remove data during periods of no exercise and the original signal and

processed signal together for subject 2. The FT of the original signal, the signal

after filtering and processing, and both signals plotted together for subject 2 are

shown in Figure 5.7. The signal after filtering and its FT for all subjects are shown

in Figure 5.4 and Figure 5.5 respectively.
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Figure 5.2: Isometric contraction original signal for all subjects
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Figure 5.3: Isometric contraction original signal of FT for all subjects
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Figure 5.4: Isometric contraction after preprocessed for all subject
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Figure 5.5: Isometric contraction after preprocessed signal of FT for all subjects
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Figure 5.7: FT signal of after pre-process each step for subject 2
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After filtering, the data was divided into several segments of the same length

for running the MPD algorithm to avoid memory overload. The length of the seg-

ments is different from subject to subject because the time of exercise was different

for each subject. The sEMG signal can be written as

x(t) =
L−1
∑

i=0

xi(t) (5.2)

where xi(t) = x(t)((u(t − iT ) − u(t − (i + 1)T )) and T , the duration of each seg-

ment, here assumed constant. The energy of each segment was calculated and is

summarized in Table 5.1. The energy of segment i is given by

Exi
=

N−1
∑

n=0

|x(nTs)|
2, (5.3)

where Ts is the sampling period and N is number of samples in a segment. The

maximum energy indicated in bold in Table 5.1, was used to determine a threshold

value for stopping the MPD algorithm.

Sub. # subject1 subject2 subject3 subject4 subject5

segment 1 5.00×10−3 1.37×10−1 2.05×10−4 5.01×10−2 1.60×10−3

segment 2 8.80×10−3 2.32×10−1 3.35×10−4 6.06×10−2
1.70×10−3

segment 3 8.60×10−3
5.72×10−1 3.08×10−4 7.75×10−2

segment 4 1.21×10−2 5.40×10−4 1.06×10−1

segment 5 1.41×10−2
5.44×10−4 1.06×10−1

segment 6 1.58×10−2 2.96×10−4 1.23×10−1

segment 7 2.23×10−2 5.43×10−4
1.28×10−1

Table 5.1: Energy for each segment for all subjects during isometric contraction

The MPD algorithm creates a dictionary, computing a projection of signal

onto every Gaussian atom in the dictionary, selecting the dictionary atom gi(t) that

has the maximum magnitude of the projection, calculating coefficient αi and cal-

culating a residue. The residue is compared to the threshold. If the energy of the
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residue is greater than the threshold, the residue signal is then projected to the dic-

tionary. The process continues with each iteration until the energy of the residue

is less than the threshold. The diagram of the MPD algorithm summarizing all the

steps is shown in Figure 5.8. For this study, the maximum and minimum frequen-

cies in the dictionary were set 497.5 and 2.5 Hz respectively. Another parameter

for selecting the dictionary is maximum and minimum scale. The scale, σ, of the

Gaussian atom as shown in Figure 4.1. The maximum and minimum scale were set

to be 0.2 and 600, respectively. These values were determined by trial and error and

set both the isometric and dynamic contractions. MPD threshold values were set at

5% of maximum energy (bolded in Table 5.1) and 1% of maximum energy(bolded in

Table 5.1) to compare the effects of threshold value. There is not much difference

between the threshold 5% of maximum and 1% of maximum in MPD approximation

and the corresponding MPD-TFRs are shown in Figure 5.9 (a)-(c), respectively. The

5% maximum segment of energy as a threshold was used for all subjects.
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Figure 5.8: MPD algorithm
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The resulting vector of the time shift and frequency shift parameters and

coefficients are plotted in three-dimensions as shown in Figure 5.10 (a). Modified

WAIF as average of frequency was computed by using unique time-frequency feature

vectors as described in Sectoion 5.1.1. The threshold that was used for stopping the

MPD algorithm, was set to extract most information of the original sEMG signal so

there were numerous data points. To reduce the amount of data without affecting the

result, a second threshold, based on the coefficient value, was applied to calculate the

modified WAIF in the data analysis phase to minimize the data required to describe

fatigue. To extract the representation of the signal with fewer data points, several

thresholds (see Figure 5.10(b)) for coefficient values were applied.
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The Figure 5.11 shows the result of the modified WAIF with the second

thresholds, 0, 0.4, 0.6 and 0.7 and different interval lengths, 1, 1.5, 2, 2.5, and 3

seconds. The modified WAIF with threshold, 0.7 did not have enough data in the

initial exercise to calculate the WAIF as shown in Figure 5.11(h). When the threshold

value is larger, the number of data points is reduced. Different lengths of windows

were applied to determine the optimum window length. From these data points,

only one point at each frequency was chosen by picking the frequency that has a

higher coefficient. Using a window length of 2.5 seconds shows a smoother result but

also a similar trend to other window lengths as shown in Figure 5.11. The modified

WAIF with a 2.5 second window length was evaluated for different thresholds. Linear

regression was applied to find the trend of the slope using JMP. The relative change

for each linear regression line was calculated as well. A spectrogram using a Gaussian

window with window size 75 ms, 1 s, and 3.6 s without overlap was computed and

then the IMNF (3.3) and IMDF in Equation(3.3) were computed. The relative change

for each linear regression of IMNF and IMDF was calculated using MATLAB.
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(d) Modified WAIF for threshold=0.4
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Figure 5.11: Result of modified WAIF during isometric contraction for subject 4. It
was computed with different thresholds and different computing windows, 1, 1.5, 2.
2.5 and 3 seconds.
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5.3 Dynamic contraction data analysis

The original data of sEMG signal for dynamic contraction shows 60 Hz noise

and DC offset. For the analysis of dynamic contractions, the preliminary signal

preprocessing was the same as for the isometric contractions giving a signal for the

exercise portion from 10 Hz to 500 Hz. The 60 Hz power line interference was

removed as shown in Figure 5.12 in time domain and Figure 5.13 in the frequency

domain for subject 5. The original signal processed signals for all subjects are shown

in figure 5.14 and figure 5.16 respectively. The FT of the same signals for all subjects

are shown in figure 5.15 and figure 5.17.
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Figure 5.12: Dynamic contraction preprocessing in time domain for subject 5
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Figure 5.13: Dynamic contraction preprocessing in frequency domain for subject 5
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Figure 5.14: Dynamic contraction original signal for all subjects
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Figure 5.15: Dynamic contraction original signal of FFT for all subjects
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Figure 5.16: Dynamic contraction sEMG signal after preprocessed for all subjects
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Figure 5.17: Dynamic contraction FFT of signal after preprocessed for all subjects

A cycle of sEMG signal, which is defined as moving a dumbbell up and back

down, was determined manually, and it is shown in Figure 5.18 and Figure 5.19 for

subject 2 and subject 4, respectively as an example.
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Figure 5.18: Each cycle of dynamic contraction for subject 2
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Figure 5.19: Each cycle of dynamic contraction for subject 4

The energy for each cycle was calculated and the maximum energy among

them was used to set the threshold for the MPD. Table 5.2 shows the energy for

each cycle for all subjects. The maximum is indicated in bold. 1% and 5% of the

maximum energy was applied to determine a threshold for the MPD using subject 2

data. The MPD approximation of sEMG signal with a threshold value of the 5% of

maximum energy does not extract information at edge cycles as shown in Figure 5.21.
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The threshold was set to be 1% of maximum energy for all subjects during dynamic

contraction as shown in Figure 5.21.
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subject# 1 2 3 4 5

cycle 1 2.31×10−2 2.04×10−1 1.17×10−1 4.08×10−2 3.16×10−2

cycle 2 2.78×10−2 2.31×10−1 4.91×10−2 3.52×10−2 3.67×10−2

cycle 3 2.55×10−2 2.26×10−1 5.48×10−2 2.75×10−2 6.12×10−2

cycle 4 2.56×10−2 1.96×10−1 2.93×10−2 4.67×10−2 5.67×10−2

cycle 5 2.82×10−2 1.82×10−1 5.51×10−2 3.34×10−2 6.95×10−2

cycle 6 2.95×10−2 2.48×10−1 4.74×10−2 5.13×10−2 8.00×10−2

cycle 7 2.47×10−2 2.48×10−1 4.74×10−2 6.55×10−2 3.69×10−2

cycle 8 3.49×10−2 2.38×10−1 5.35×10−2 4.66×10−2 6.89×10−2

cycle 9 3.72×10−2 2.07×10−1 7.57×10−2 8.15×10−2 5.53×10−2

cycle 10 2.57×10−2 2.18×10−1 5.65×10−2 7.32×10−2 5.07×10−2

cycle 11 3.64×10−2 1.95×10−1
4.70×10−1 7.57×10−2 7.34×10−2

cycle 12 2.75×10−2 2.39×10−1 5.72×10−2 9.19×10−2 8.58×10−2

cycle 13 3.89×10−2 1.98×10−1 5.06×10−2 1.06×10−1
1.06×10−1

cycle 14 3.85×10−2 1.60×10−1 8.20×10−2
1.92×10−1

cycle 15 3.66×10−2
2.24×10−1 7.61×10−2

cycle 16 3.08×10−2 5.16×10−2

cycle 17 3.02×10−2 8.17×10−2

cycle 18 3.25×10−2 6.94×10−2

cycle 19 3.23×10−2 6.64×10−2

cycle 20 3.62×10−2 7.02×10−2

cycle 21 2.79×10−2 6.39×10−2

cycle 22 2.27×10−2 8.52×10−2

cycle 23 1.26×10−1

cycle 24 7.43×10−2

Table 5.2: Energy for each cycle for all subjects during dynamic contraction
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Figure 5.20: MPD approx signal with threshold 95% for subject 2
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Figure 5.21: MPD approx signal with threshold 99% for subjet 2

We used our MPD algorithm as before for isometric contractions except the

threshold value was now set 1% of the maximum energy. MPD was run for each

cycle to avoid memory overload. The moodified WAIF was calculated for each cycle

with a second threshold which was selected based on the values o the coefficients.

The modified WAIF was applied to detect changes in frequency with respect to time.

The slope and initial frequency of the modified WAIF for different second thresholds

were determined by linear regression using JMP. A spectrogram using a Gaussian
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window with four different durations 75 ms, 500 ms, 1000 ms and 2000 ms, was

computed for subject 1, 2, and 5. For subject 3 and 4, the Gaussian window varied

between 75 ms, 500 ms, 1000 ms and 1800 ms because the duration of the cycle time

was shorter than 2 seconds. The IMNF in (3.3) and IMDF in (3.4) were obtained

from the spectrogram. Over the cycle, IMNF and IMDF were averaged and linear

regression was computed over the whole exercise to see the trend in frequency. The

relative change of each linear regression was calculated for all subjects.
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Chapter 6

RESULTS AND DISCUSSION OF RESEARCH STUDY

6.1 Experimental Process for sEMG Measurements
6.1.1 Study Participants

Five subjects were selected from the general population of healthy persons

between the ages of 21 and 60 years old on campus at Arizona State University. This

study was approved by the Arizona State University IRB. Persons with a history of

neuromuscular impairment were excluded as were body builders to insure that the

data more closely matched the general population. The sEMG signals were recorded

from the dominant hand biceps brachii for the constant force isometric contraction

and from the non-dominant hand biceps brachii for dynamic contractions. The par-

ticipates signed a consent form.

6.1.2 Equipment Used in the Experiment

The instrumentation used was the BIO PAC Systems HLT 100C, ISP100C,

and EMG100C to collect the EMG signals. The following parameters were used for

processing:

• Sampling frequency 1000 Hz

• Lowpass filter 500 Hz

• Highpass filter 1.0 Hz

• Notch filter off

Bio-Pac EL254RT silver-silver chloride electrodes were used for this study.

The size of the electrode is 7.2 mm outer diameter and has a 4 mm recording diam-

eter. The EMG gel used in the study was Signagel GEL1.
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6.1.3 Experimental Data Collection Process

This experimental data was recorded at the Biomechatronics LAB at Arizona

State University. Subjects were asked if they were currently experiencing fatigue

in their upper body to insure that data was collected for a non fatigue condition.

Subjects were told that they can stop anytime for any reason. The skin surround-

ing the biceps brachii of the dominant hand was cleaned with rubbing alcohol. The

electrodes were placed with conductive EMG gel. The distance between electrodes

was about 5 to 7mm. A ground connection was made to the skin over the distal end

of the radius. First, the sEMG signal was recorded with the subject relaxing with

no muscle contraction for 10 seconds. Next, the maximum of the sEMG signal was

measured for the maximum voluntary contraction (MVC) for the dominant arm by

having the subject push up with a maximum force from underneath the table for

about 5 second and rest for about 5 seconds. This cycle was repeated 3 times. After

this initial evaluation, the subject rested to recover from the MVC. The subject held

a dumbbell (15 lb for female and 25 lb for male) in the dominant hand with elbow

flexed at a 90 degree angle and held that position until the subject could no longer

hold the weight. After this, the constant force isometric contraction was recorded,

the electrodes were removed and the conductive EMG gel was wiped off. Next, the

electrodes were placed with conductive gel on the non-dominant side biceps brachii

after the skin surrounding the biceps brachii was cleaned with rubbing alcohol. The

sEMG signal was collected with the subject relaxing, no contraction, for 10 seconds.

The MVC of the sEMG signal was measured for the non- dominant arm by having

the subject push up with a maximum force on the underside of the table for about

5 seconds and rest for about 5 seconds. The cycle was repeated 3 times. After the

subject was rested from the maximum voluntary contraction, the subject was asked

to cyclically move his/her arm from 180 degree angle (extended elbow) through the

56



full range of motion (flexed elbow) until the upper arm was touching the upper

body. This cycle was repeated until the subject could not lift the dumbbell further

to complete a full cycle of extension and flexion. A metronome was used to guide

the timing of the extension and flexion. The tempo of the metronome was adjusted

to the individual’s comfortable tempo. The summary of the information is shown

below in the Table 6.1.

subject # Gender time duration
isometric con-
traction (sec)

time duration
dynamic con-
traction (sec)

repetition for
dynamic con-
traction

1 female 62.471 54.184 23
2 female 20.719 47.924 14
3 male 21.259 58.277 24
4 female 50.365 33.444 14
5 male 13.322 35.054 13

Table 6.1: Summary of Subject Information
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6.2 MPD Processing of sEMG Signal from Isometric Contractions

The MPD approximation of the sEMG signals of isometric contractions for all

subjects with the threshold set to be 5% of maximum energy gave a result very close

to the orignal sEMG signal. The MPD approximation of the sEMG signal (red),

and real sEMG signal (blue), were plotted together and the plots for subject 1 and

subject 2 as examples are shown in a and b respectively in Figure 6.1 (a) and (b).
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Figure 6.1: The MPD approximation of sEMG signal (red line) and real sEMG signal

(blue line)was plotted together. (a) subject 1 (b) subject 2

The MPD-TFRs of the sEMG signals for all subjects are shown in Figure

6.2. MPD-TFRs were not normalized making direct comparison between subjects

difficult. The range of frequency was from 40 to 300 Hz, depending on the subject.

The range of amplitude also depended on the subject. Subject 1, subject 2, and

subject 4 show higher amplitude at end of the signal. Subject 3 and subject 5
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showed higher amplitudes in the middle and/or at the beginning of the signal. The

highest amplitude can be seen very clearly for all subjects.

Spectrograms with a Gaussian window of duration 75 ms, 1 s, and 3.6 s, for

subject 2, are shown in Figure 6.3. The window size affects the resolution of the

spectrogram. According to the uncertainty principle in (3.7), the window size of

the spectrogram affects the resolution of time and frequency domain. The effect

of increasing the window duration causing the frequency resolution to decrease is

demonstrated in Figure 6.3.
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Figure 6.2: The MPD-TFR plots for Isometric contraction for all subjects
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(b) Spectrogram with window size 1 s
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(c) Spectrogram with window size 3.6 s

Figure 6.3: Spectrogram with three different window sizes, 75 ms, 1s, and 3.6 s for

subject 2
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The number of data points was reduced by setting a threshold for selecting the

coefficients. The MPD gives the coefficient, time shift, frequency shift and scale for

each time-frequency points selected, as shown by the MPD-TFR in Figure 5.10(a).

Several threshold coefficients were tested to see if the result could be obtained with

fewer data points. When the threshold increased, the early time segment did not have

enough points to compute the modified WAIF. The threshold value for the coefficient

and number of thresholds depend on the subject. The plot of the modified WAIF

and its linear regression line for subject 1, 2, and 3 are shown in figure 6.4. The

plot of the modified WAIF and its linear regression line for subject 4 and 5 are

shown in Figure 6.5. Table 6.2 displays the result of the modified WAIF for the

slope (sl.), average of slope (Av. sl.), standard deviation of slope (Std.sl.), initial

frequency (In.fr.), average initial frequency(Av.In.fr.), standard deviation of initial

frequency (Std.fr.), R-square (R-sq.), relative change (Re.Ch(%)) and average of

relative change (Av.Re.Ch.). The relative change was measured using a point at the

beginning of the exercise and a point at the end to form the linear regression lines for

all subjects for the isometric contraction. The modified WAIF for all subjects shows

a negative slope. The modified WAIF with threshold equal to zero, resulted in the

largest number of extracted components;the only components exclued had smaller

coefficients when there multiple frequency points at the same time as described in

Chapter 5.1.1. Comparing the modified WAIF with threshold 0 to ones with different

thresholds, the same trend was observed with the trend lines approximately parallel

for smaller coefficients. But, when the threshold was increased, beyond some limit,

changes in the slope were observed. The relative change from the modified WAIF

for subject 1, 2, and 5 reuslted in higher value as the threshold value increased.
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Thr sl. Av.sl. Std.sl. In.fr. Av.In.fr. Std.fr. R-Sq. Re.Ch(%) Av.Re.Ch.

S1 0 -0.16 -0.17 0.01 75.04 72.70 1.81 0.45 27.79 31.58
0.1 -0.17 73.18 0.52 28.37
0.15 -0.16 71.58 0.43 29.68
0.2 -0.18 71.00 0.37 40.48

S2 0 -0.20 -0.36 0.18 54.63 55.35 1.91 0.43 6.90 12.11
1 -0.22 53.18 0.51 5.97

1.25 -0.43 55.88 0.85 13.35
1.5 -0.58 57.69 0.64 22.22

S3 0 -0.43 -0.30 0.19 105.10 100.58 6.40 0.44 12.79 11.84
0.02 -0.17 96.05 0.09 10.89

S4 0 -0.46 -0.38 0.12 113.63 104.45 12.98 0.65 31.05 29.54
0.4 -0.29 95.27 0.41 28.02

S5 0 -0.66 -0.59 0.21 103.53 93.42 8.93 0.76 9.67 9.85
0.04 -0.35 90.12 0.60 5.58
0.06 -0.77 86.61 0.57 14.30

Table 6.2: The result of modified WAIF for constant isometric contraction. Thr=threshold.
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For the spectrogram, the IMNF in (3.3) and the IMDF in(3.4) and their linear

regression were computed. Plots for IMNF and IMDF for the different windows,

75 ms, 1 s, and 3.6 s and their linear regression lines for subject 2 and subject 5

are shown in Figure 6.6. Table 6.3 summarizes the IMNF results and Table 6.4

summarizes the IMDF result. Both tables show slope and initial frequency (In.fr.)

with R-square (R-Sq) and relative change (Re. Ch(%)) of the linear regression line

as measured between the beginning of the exercise and the end for all subjects for

isometric contraction. The slopes for the IMNF and IMDF show negative except for

the IMDF for subject 5. This possitive slope was obserbed for a window size, 3.6

ms which is shown in figure 6.6 (b). The result of IMNF and IMDF got decreased

as the window size increased loosing information for the early part of the cycle.The

relative change decreased as the window size in increased for all subjects. Overall,

the IMNF showed higher range than IMDF and this could be due to the fact that

the IMNF is sensitive to force output [1].

W. size Slope In. fr. R-Sq Re. Ch(%)
subject 1 75 ms -0.43 141.04 0.27 19.22

1000 ms -0.41 140.77 0.77 17.92
3600 ms -0.40 139.89 0.94 16.45

subject 2 75 ms -0.76 91.20 0.22 17.18
1000 ms -0.97 94.87 0.72 19.43
3600 ms -0.69 91.41 0.74 10.96

subject 3 75 ms -0.80 170.02 0.10 9.88
1000 ms -0.80 170.26 0.41 9.89
3600 ms -0.96 169.42 0.47 8.29

subject 4 75 ms -0.34 156.95 0.09 10.90
1000 ms -0.38 160.87 0.37 11.57
3600 ms -0.34 161.06 0.53 9.10

subject 5 75 ms -0.84 162.73 0.05 6.88
1000 ms -1.16 166.98 0.42 8.35
3600 ms -0.52 163.58 0.41 2.28

Table 6.3: Result of the IMNF for constant isometric contraction. W. size is window

size.
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W. size Slope In. fr. R-Sq Re. Ch(%)
subject 1 75 ms -0.29 99.29 0.12 18.28

1000 ms -0.27 97.47 0.47 16.90
3600 ms -0.23 96.11 0.91 13.68

subject 2 75 ms -0.34 65.06 0.04 10.72
1000 ms -0.52 67.56 0.35 14.70
3600 ms -0.49 66.50 0.43 10.71

subject 3 75 ms -0.76 134.96 0.05 11.93
1000 ms -0.83 135.26 0.32 12.31
3600 ms -1.00 133.84 0.43 10.71

subject 4 75 ms -0.37 131.84 0.05 13.96
1000 ms -0.40 136.89 0.29 14.48
3600 ms -0.27 134.09 0.24 8.83

subject 5 75 ms -0.50 125.86 0.01 5.17
1000 ms -0.85 128.29 0.21 8.05
3600 ms 0.41 121.83 0.25 -2.37

Table 6.4: Result of the IMDF for constant isometric contraction. W. size is window

size.
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Figure 6.4: Modified WAIF for different coefficients (dot) with linear regression lines
(solid line) for subject 1, 2, and 3 during isometric contraction
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Figure 6.5: Modified WAIF for different coefficients (dot) with linear regression lines

(solid line) for subject 4 and 5 during isometric contraction
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Figure 6.6: Spectrogram for different windows with linear regression lines for subject

2 and 5 for isometric contraction
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6.3 MPD Processing of sEMG Signals from Dynamic Contraction

The MPD approximation of the sEMG signals of dynamic contractions for all

subjects with the threshold set to 1% of the maximum energy gave a result very close

to the orignal sEMG signal. The MPD approximation of dynamic contraction of the

sEMG signal using the 5% threshold of the maximum energy did not adequately

extract signal information as shown in Figure 5.21. The MPD approximation of the

sEMG signal, the red line, and the real sEMG signal, the blue line, were plotted

together for subject 2 and subject 4 are shown in Figure 6.7 (a) and (b) respectively.

MPD-TFR plots for each cycle from the beginning (cycle 1) of the exercise sequence

to the end (cycle 14) for subject 4 are shown in Figure 6.8. Plots of the spectrograms

with window size 75 ms and 1000 ms for subject 4 are shown in figure 6.9 and

figure 6.10 respectively. As with isometric contractions, time resolution decreases as

the window size increases.
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Figure 6.7: The MPD approximation of sEMG signal (red line) and real sEMG signal

(blue line) for dynamic contraction was plotted together. (a) subject 2 (b) subject 4
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Figure 6.8: MPD-TFR for dynamic contraction for subject 4
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Figure 6.9: Spectrogram with Gaussian window 75ms for subject 4 during dynamic contraction
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Figure 6.10: Spectrogram with Gaussian window 500ms for subject 4 during dynamic contraction
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The modified AWIF for each cycle with different coefficient thresholds was

calculated. All results show a negative slope as exercise progressed. The frequency

and time data set was reduced by setting a threshold coefficient. For dynamic con-

tractions, the threshold was increased systematically to determine how many data

points could be eliminated before the trend became distorted. The threshold value

depends on the subject. Subject 4 and subject 5 had the same threshold. The plot

of the modified WAIF and linear regression lines for all subjects are shown from Fig-

ure 6.11 to Figure 6.15. Increasing the threshold did not change the linear regression

of the frequency change trend, but the frequency was overall lower. The range of the

initial frequency showed 50 Hz to 70 Hz for subject 1, subject 2, and subject 5. The

rest of the subjects had a higher range, 90 Hz to 170 Hz. Table 6.5 summarizes the

modified WAIF with slope (sl.), average slope (Av.sl), standard deviation of slope

(Std.sl.) initial frequency (In.fr.), average of initial frequency (Av.In.fr.), standard

deviation of frequency (Std.fr.) and R-square (R-Sq). The relative change (%)of

slope as measured from the start to the end of the exercise and the average relative

changes are shown in table 6.6. Subject 1 and subject 3 showed increasing relative

change (%) as the threshold values increased. The relative change (%) decreased as

the threshold value increased for the rest of the subjects. However, the changes in

trends of decreasing relative change are very small compared to changes where an

increase was observed.
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Thr Sl. Av.sl. Std.sl. In.fr. Av.In.fr. Std.fr. R-Sq.

sub 1

0 -0.25 -0.23 0.02 61.71 53.27 5.18 0.66
0.5 -0.20 54.20 0.50
0.75 -0.21 51.91 0.41
1 -0.24 50.06 0.31

1.25 -0.22 48.45 0.15

sub 2

0 -0.12 -0.11 0.02 59.84 54.29 3.34 0.60
1 -0.12 54.91 0.61
2 -0.13 52.96 0.69
2.5 -0.08 51.93 0.38
3 -0.09 51.83 0.22

sub 3

0 -0.49 -0.41 0.06 158.94 144.02 10.47 0.54
0.01 -0.41 143.56 0.51
0.02 -0.38 137.60 0.41
0.03 -0.35 135.97 0.28

sub 4

0 -1.65 -1.43 0.21 125.40 113.82 11.50 0.88
0.25 -1.53 123.17 0.85
0.5 -1.54 116.36 0.78
0.75 -1.32 105.72 0.69
1 -1.14 98.47 0.55

sub 5

0 -0.50 -0.37 0.11 74.33 66.37 6.28 0.79
0.25 -0.42 70.27 0.79
0.5 -0.41 66.96 0.69
0.75 -0.24 60.96 0.55
1 -0.29 59.33 0.42

Table 6.5: The result of modified WAIF for dynamic contraction. Thr is threshold

value.
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Threshold Relative Change(%) Average Relative Change
subject 1 0 41.73 44.99

0.5 24.54
0.75 34.89
1 53.99

1.25 69.79
subject 2 0 11.31 11.20

1 11.16
2 13.27
2.5 9.59
3 10.68

subject 3 0 18.08 18.90
0.01 17.26
0.02 17.91
0.03 22.36

subject 4 0 43.65 43.06
0.25 43.95
0.5 42.69
0.75 42.79
1 42.22

subject 5 0 24.57 21.00
0.25 21.93
0.5 23.44
0.75 14.04
1 21.03

Table 6.6: The relative change and average relative from the result of modified WAIF
for dynamic contraction.
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The slopes for linear regression of IMNF and IMDF are negative except for

IMNF and IMDF with window size 2 seconds for subject 2. The summary of IMNF

is in Table 6.7 including slope, initial frequency (In.fr), R-square (R-Sq), and rela-

tive change (%) (Re.Ch(%)) of slope as measured from the start to the end of the

exercise. The summary of IMDF is in Table 6.8 including slope, initial frequency

(In.fr), R-square (R-Sq), and relative change (%) (Re.Ch(%)) of slope as measured

from the start to the end of the exercise. The range of initial frequency for IMDN

for all subjects is from 100 Hz to 200 Hz. The relative change for IMNF showed an

increasing trend only for subject 1 and subject 3. The range of intial frequency for

IMDF for all subjects is from 60 Hz to 190 Hz. Overall, the IMDF is lower than

IMNF. The relative change for IMDF showed that it increased when the window size

increased for most subjects. The plots of IMNF and IMDF from the spectrogram

for subject 2 and subject 5 for dynamic contraction are shown in Figure 6.16 and

Figure 6.17 respectively.

W size Slope In. fr. R-Sq Re.Ch(%)
subject 1 75 ms -0.18 97.75 0.47 9.34

500 ms -0.32 101.85 0.62 15.97
1000 ms -0.34 104.29 0.71 16.46
2000 ms -0.34 107.34 0.65 16.05

subject 2 75 ms -0.18 100.17 0.52 8.22
500 ms -0.20 102.02 0.47 8.98
1000 ms -0.28 103.18 0.68 12.41
2000 ms 0.06 97.62 0.03 -2.83

subject 3 75 ms -0.15 212.77 0.14 3.95
500 ms -0.29 204.80 0.31 7.83
1000 ms -0.30 203.35 0.33 8.28
1800 ms -0.49 201.81 0.48 13.58

subject 4 75 ms -1.22 156.76 0.93 23.99
500 ms -1.50 166.01 0.89 28.15
1000 ms -1.42 169.19 0.81 25.82
18000 ms -1.50 168.80 0.83 27.83

subject 5 75 ms -0.65 117.77 0.81 17.65
500 ms -0.74 119.53 0.79 20.10
1000 ms -0.66 115.09 0.70 18.55
2000 ms -0.61 121.44 0.70 16.42

Table 6.7: Result of the IMNF for dynamic contraction.
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W size Slope In. fr. R-Sq Re.Ch(%)
subject 1 75 ms -0.15 66.71 0.49 11.72

500 ms -0.34 72.07 0.68 23.92
1000 ms -0.30 72.69 0.62 20.92
2000 ms -0.26 74.55 0.51 17.79

subject 2 75 ms -0.09 66.10 0.34 6.14
500 ms -0.09 67.18 0.23 6.67
1000 ms -0.16 67.63 0.46 10.81
2000 ms 0.19 62.38 0.33 -13.29

subject 3 75 ms -0.15 189.20 0.08 4.29
500 ms -0.36 175.33 0.30 11.50
1000 ms -0.44 176.08 0.45 14.02
1800 ms -0.46 168.48 0.39 15.43

subject 4 75 ms -1.33 132.67 0.92 31.20
500 ms -1.60 142.90 0.85 34.98
1000 ms -1.49 144.33 0.78 32.14
1800 ms -1.74 150.27 0.84 36.13

subject 5 75 ms -0.65 87.38 0.79 24.12
500 ms -0.75 89.91 0.70 26.89
1000 ms -0.59 86.08 0.63 22.21
2000 ms -0.50 89.38 0.42 18.11

Table 6.8: Result of the IMDF for dynamic contraction.
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Figure 6.11: Modified WAIF for dynamic contraction for different coefficients with

linear regression lines for subject 1
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Figure 6.12: Modified WAIF for dynamic contraction for different coefficients with

linear regression lines for subject 2
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Figure 6.13: Modified WAIF for dynamic contraction for different coefficients with

linear regression lines for subject 3
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Figure 6.14: Modified WAIF for dynamic contraction for different coefficients with

linear regression lines for subject 4
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Figure 6.15: Modified WAIF for dynamic contraction for different coefficients with

linear regression lines for subject 5
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Figure 6.16: IMNF and IMDF for different windows with linear regression lines for

subject 2 for dynamic contraction
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Figure 6.17: IMNF and IMDF for different windows with linear regression lines for

subject 4 for dynamic contraction

6.4 Discussion

For all subjects, the MPD using a threshold that corresponded to 5% of

maximum energy showed a result that extracted most of the orignal sEMG signals

generated during isometric contraction. Figure 6.1 shows the original signal com-

pared to the signal extracted by MPD for subjects 1 and 2. They are very similar.

A comparison of the MPD and the spectrogram shows the advantages of the MPD

since changing the window of the spectrogram result in a differnt representation of

the same signal. The MPD-TFR for isometric contraction and dynamic contrac-

tion in Figure 6.2 and 6.8 shows the complexity of sEMG signals and their localized

frequency, with respect to time. The spectrogram in Figure 6.3 for isometric and

Figure 6.9 and 6.10 for dynamic contractions shows the strong dependence of the

result on the window sizes. When the window size increases, the time localization is

lost due to the uncertainty principle. Specially, MPD-TFR analysis of contraction

signal data displays localized frequency characteristics as a function of time with

more information than the spectrogram. Several thresholds for calculating modified

WAIF during isometric exercise were investigated, using 4 different thresholds for
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subject 1 and subject 2 and 2 different thresholds for the rest of the subjects. As the

threshold values increased, the number of data points decreases. At a high threshold

value, the number of data points was not sufficient to calculated the modified WAIF

in beginning of the experiment. For dynamic contraction, the modified WAIF was

calculated for each cycle so number of data points was evenly distributed even though

the threshold decreases. The last point of the modified WAIF during isometric con-

traction showed a large drop in frequency for subject 1 as fatigue increased rapidly.

This phenomena was also observed for the last cycle of modified WAIF during dy-

namic contraction where the average frequency dropped dramatically in subject 1

and subject 3. This correlates well to the fatigue experienced by the subject. This

trend was not observed from the IMNF and IMDF result. The IMNF and IMDF that

were obtained by spectrogram during isometric and dynamic contractions show that

the range of the frequency for IMNF was higher than for IMDF. IMNF and IMDF

with 75 ms window length for isometric contraction were very noisy. For isometric

contraction, IMNF and IMDF with different window sizes displayed approximately

the same slope for all, so relative change of IMFN and IMDF for isometric contrac-

tion is reported as one value as shown in the table. IMDF for isometric contraction

with largest window size obtained positive slope. IMDF and IMNF for dynamic

contraction with largest window size shows positive slope. Isometric and dynamic

contractions of IMDF shows positive slope at largest window size. The interpreta-

tion of the data is strongly dependent on the window size that is chosen, making the

results unreliable. This shows the window size effect that it has been addressed by

other researchers. The relative change of modified WAIF for isometric contraction

shows different values with threshold but, for dynamic contraction shows consis-

tent change with different threshold. The relative change between IMNF and IMDF

and modified WAIF for isometric contraction shows the relative change of modified

WAIF was higher than the relative change of IMNF and IMDF. The relative change
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between IMNF and IMDF and modified WAIF for dynamic contraction shows the

relative change of modified WAIF is higher than the relative change of IMNF and

IMDF except for subject 5.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusion

The analysis of sEMG signals with MPD gives results that are consistent

with previously reported results using other analysis techniques that demonstrated

lower frequency spectral content from sEMG signals as muscles fatigue occurs. The

results from spectrograms both during isometric and dynamic contractions shows a

shift of frequency spectral content to lower bands except for long window sizes. The

trends for modified WAIF obtained by MPD and the IMNF and IMDF obtained

by spectrogram were similar. The average of the relative change for both isometric

and dynamic contractions from modified WAIF is higher than the relative change

from IMNF and IMDF. This result could be related to resolution problem with the

spectrogram method. This study shows that MPD can be used to analyze both

isometric and dynamic contractions. This study demonstrated that MPD can pre-

cisely extract information from the raw sEMG signal in frequency and time. The

reliability of MPD over the spectrogram method is demonstrated as it is free from

the windowing effects seen in the spectrogram. It showed high potential of MPD for

application for diagnostics in clinical settings where a robust method is required.

7.2 Recommendation for Future Work

In this study, localized muscle fatigue in biceps brachii was investigated to

determine if the MPD technique works in this application. A sample size of five

subjects was used. The high potential of MPD technique in this application was

demonstrated in this study. The next steps will be to expand the study to more

samples with different voluntary muscle levels to establish a dictionary for MPD.

Selecting the correct dictionary for the MPD could reduce the computation require-

ments. Quantitative investigation of the characteristics of muscle fatigue with MPD

can be used to detect fatigue in clinical applications.
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