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ABSTRACT

Adaptive processing and classification of electrocardiogram (ECG) signals

are important in eliminating the strenuous process of manually annotating ECG

recordings for clinical use. Such algorithms require robust models whose pa-

rameters can adequately describe the ECG signals. Although different dynamic

statistical models describing ECG signals currently exist, they depend consider-

ably on a priori information and user-specified model parameters. Also, ECG

beat morphologies, which vary greatly across patients and disease states, cannot

be uniquely characterized by a single model.

In this work, sequential Bayesian based methods are used to appropriately

model and adaptively select the corresponding model parameters of ECG signals.

An adaptive framework based on a sequential Bayesian tracking method is pro-

posed to adaptively select the cardiac parameters that minimize the estimation

error, thus precluding the need for pre-processing. Simulations using real ECG

data from the online Physionet database demonstrate the improvement in perfor-

mance of the proposed algorithm in accurately estimating critical heart disease

parameters. In addition, two new approaches to ECG modeling are presented us-

ing the interacting multiple model and the sequential Markov chain Monte Carlo

technique with adaptive model selection. Both these methods can adaptively

choose between different models for various ECG beat morphologies without re-

quiring prior ECG information, as demonstrated by using real ECG signals.

A supervised Bayesian maximum-likelihood (ML) based classifier uses the

estimated model parameters to classify different types of cardiac arrhythmias.

However, the non-availability of sufficient amounts of representative training data

and the large inter-patient variability pose a challenge to the existing supervised

learning algorithms, resulting in a poor classification performance. In addition,
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recently developed unsupervised learning methods require a priori knowledge on

the number of diseases to cluster the ECG data, which often evolves over time.

In order to address these issues, an adaptive learning ECG classification method

that uses Dirichlet process Gaussian mixture models is proposed. This approach

does not place any restriction on the number of disease classes, nor does it require

any training data. This algorithm is adapted to be patient-specific by labeling or

identifying the generated mixtures using the Bayesian ML method, assuming the

availability of labeled training data.
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Chapter 1

INTRODUCTION

Electrocardiogram (ECG) signals represent the temporal recordings of electrical

activity caused by the constant depolarization and repolarization of cardiac cells

during each heart beat. Analysis of ECG recordings is the principal tool used in

the diagnosis of cardiac abnormalities and disorders. A variety of signal processing

techniques have been used over the years to directly help with classification of ECG

signals by constructing modeling and classification algorithms, or to indirectly aid

this process by denoising the ECG signal, enhancing signal quality etc. Some of

these techniques include eliminating parasitic signals, detecting cardiac cycles,

identifying significant complexes or waves, and selecting distinctive feature sets

to classify cardiac abnormalities [2].

1.1 ECG Signal Modeling

A crucial step in the classification of ECG signals is the modeling and extraction

of information about the signals using the model parameters (feature extraction).

The task of ECG modeling, in particular, has resulted in various parametric rep-

resentations. Early precedents for such representations of ECG signals using sig-

nal processing techniques were set by employing orthonormal basis functions [3].

Karhunen-Loeve basis functions which form a set of orthonormal basis functions

were used in [4, 5] to optimally represent the ECG signals. Chebyshev polyno-

mials of the first class were used as the orthonormal basis functions in [6] for

ECG signal representation. Other orthonormal basis function representations of

ECG signals included the use of Hermite polynomials and time-warped polyno-

mials. In [7–9], the similarity of Hermite polynomials to the shape of the QRS

complexes in an ECG signal was exploited and the shape of each ECG beat was

characterized using the coefficients of the Hermite basis functions. In [10], the

differences between the morphologies present in an ECG waveform were exploited
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by delineating the signal and modeling the different segments of the signal using

Hermite functions of different orders, depending on the presence of smooth waves

or sharp peaks. A new class of orthogonal basis functions based on time-warped

polynomials were introduced in [11], wherein, the interbeat interval in the ECG

signals was represented using an optimally time-warped polynomial.

In addition, ECG signals were studied using autoregressive models in [12]

and linear prediction techniques in [13]. Other ECG models utilized the concept of

data flow graphs that depend upon the time intervals of the different segments in

the ECG signals (P wave, QRS wave, T wave etc.) [14], and principal component

analysis that extracts the QRS complex of the ECG signal as the component with

the largest variance [15].

Several of the later works on ECG signal modeling have used mathematical

representations and fitted these functions to the different fiducial points in ECG

signals. In [16], Gaussian Mesa functions and Bi-Gaussian functions were used

to fit ECG signals. In [17–19], ECG data was delineated and the various ECG

complexes were modeled either by using straight lines or parabolas. In all of

these aforementioned works, preprocessing of the ECG signals was necessary to

delineate them into the different waves and complexes, such as the P wave, QRS

complex etc., and model them using different functions.

Recently, the advent of statistical signal processing techniques has led to

the application of sequential Bayesian methods, such as the Kalman filter (KF)

[20], extended Kalman filter (EKF) [21], particle filter (PF) [21,22] etc., to several

ECG signal processing algorithms, with analysis not being confined to modeling

and parameter estimation alone. In particular, noise artifacts and interference

effects have been eliminated from the ECG data in [23, 24] and [25] using the

KF and EKF, in order to enhance the quality of the recorded ECG data. In

addition, Bayesian methods have also been used for estimating the heart rate from
2



ECG signals, since abnormalities in the heart rate often indicate the presence of

arrhythmias. For example, in [26, 27], a KF was used to estimate the heart rate

from noisy measurements obtained from multiple fused sensors. In [28], the heart

rate variability was calculated from the parameters of a non-linear autoregressive

model, estimated using a Kalman smoother.

The dynamical nature of the ECG parameters can be best exploited by

the use of statistical models and sequential Bayesian estimation techniques for

ECG signal modeling. A joint statistical framework was used in [29] to estimate

cardiovascular parameters from multiple signal sources including ECG, arterial

blood pressure, intracranial pressure and pulse oximetry signals. In particular,

in [29], an EKF was used to estimate the parameters of the cardiovascular signals

that were decomposed into cardiac and respiratory components by the algorithm.

The ECG signal was represented as a linear combination of weighted frequency

harmonics, and the parameters such as the harmonic weights, frequencies and

phases were estimated using the EKF. The same formulation was also employed

in [30], wherein relevant cardiac parameters and weights of the harmonic model

were tracked using both an EKF and a marginalized PF. This model relied heavily

on user-specified model paramaters, such as the noise variances, as well as a priori

information, such as the number of multi-harmonic components present in the

data and the mean cardiac frequency.

In [31], the ECG beats were modeled as a trajectory moving around a unit

circle in a three-dimensional (3-D) coordinate plane. The trajectory was repre-

sented by a system of coupled ordinary differential equations, the solution to which

resulted in modeling each ECG beat as a sum of five Gaussian functions. This

model was integrated in [23,24,32] with a non-linear Bayesian filtering framework

such as the EKF to perform ECG denoising by estimating the parameters of the

Gaussian functions and reconstructing the original ECG signal. This approach
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also depended upon a priori information about the underlying dynamics of the

ECG signal and needed non-linear solvers in the preprocessing stage to initialize

the tracking filter. It was observed that the model was not robust to initialization

errors and was also unable to track parameters for ECG signals with abnormalities

that appear intermittently in only a few ECG cycles.

1.2 ECG Modeling Contributions

In this work, the focus is on ECG signal modeling methods that:

(a) are robust to initialization errors,

(b) do not require pre-processing steps, a priori information or user-defined pa-

rameters, and

(c) do not use a single representation to describe ECG signals, which can differ

greatly across individuals and disease states.

First, using the multi-harmonic ECG model, an adaptive parameter esti-

mation technique to dynamically select key parameters, such as the number of

harmonics and mean frequency, by minimizing the mean-squared error (MSE) be-

tween the actual and reconstructed signals is proposed. This adaptivity leads to

an improvement in the estimation accuracy of critical heart disease parameters.

The designed algorithm uses the EKF to track multi-harmonic ECG model pa-

rameters while adaptively selecting the number of harmonics and mean frequency

at each time step. Numerical results obtained using real ECG data corroborate

the fact that the performance of the adaptive algorithm working under dynamic

selection is superior to that of the algorithm using fixed parameters [33].

In addition, two novel ECG modeling methods that enable the representa-

tion of ECG fiducial points using multiple models that can account for variations

in morphology across different individuals and cardiac abnormalities, are also pro-
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posed. The first modeling method leverages the multiple-mode flexibility of the in-

teracting multiple model (IMM) [34] framework to adaptively model ECG signals

by using polynomial-order representations that best fit them. The evolving ECG

signal dynamics are allowed to switch between three different modes of opera-

tion (linear, quadratic, and cubic polynomials) according to first-order Markovian

transition probabilities and without requiring prior information or pre-processing

initialization steps [35]. The IMM-based ECG model assumes that the model

parameters vary slowly between time steps. In high noise scenarios, however,

tracking performance can degrade due to the sensitivity of the IMM algorithm

to the choice of the transition probability matrix. The second modeling method

is based on a sequential Bayesian parameter estimation and simultaneous model

selection [36] framework, which does not rely on Markovian mode transition prob-

abilities. For the ECG modeling algorithm in this work, sequential Markov chain

Monte Carlo (SMCMC) filtering is used to estimate ECG parameters that are

assumed to be static over a time segment; the length of this time segment is

determined adaptively using the model likelihood function. Multiple models are

used to characterize different ECG signal morphologies with polynomials of dif-

ferent orders. Using real ECG data, it is demonstrated that different ECG signals

types can be tracked effectively with this algorithm and exhibit the preference

of distinct models depending on the ECG morphology [37]. Both ECG model-

ing methods allow for model parameters that can be used to distinguish between

different types of ECG signals.

1.3 ECG Classification

Cardiovascular disease is considered to be the principal source of death and dis-

ability around the world [38]. ECG signals provide a powerful and non-invasive

tool for the diagnosis of cardiac diseases, majority of which are preventable and

non-life threatening upon timely diagnosis. In order to eliminate the strenuous
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process of manual annotation of large amounts of ECG data by cardiologists, au-

tomated and computerized analysis of ECG data has gained a lot of importance.

For example, in order to diagnose certain infrequently occurring arrhythmias,

Holter ECG monitors are used to record upto a week of ECG activity, the manual

analysis of which is obviously arduous.

Several automated ECG classification algorithms have been proposed by

researchers using a number of different features to represent the ECG signals, and

numerous classification methods. Some of the features include heuristic features

based on ECG morphology, such as QRS amplitudes and durations [39, 40], time

samples selected from the QRS interval [41–43] and time samples from the QRS

complex coupled with ECG temporal features [44–48]. Reduced QRS morphology

feature sets obtained using principal component analysis of samples from the QRS

complex [49] coupled with temporal parameters [50] were also employed. Other

features include frequency based features [51], hermite polynomial coefficients

[8, 9, 52], Lyapunov exponents [53], autoregressive model coefficients [54], higher

order cumulant functions [9], wavelet transform coefficients [55–60], ECG signals

expressed as data-process streams [61], ECG signal polarograms [62, 63], fidelity

measures of cardiac parameter estimates generated using Bayesian filters [63] and

vectocardiogram maximal vector and angle [64],

Classification methods utilized include self organizing maps (SOM) [65],

SOM with learning vector quantization [47, 50, 66], self organizing networks [52],

back-propogation neural networks [8, 50], multilayer perceptron neural networks

[56], block-based neural networks [67], artificial neural networks with particle

swarm optimization [57], cross-distance analysis [43], linear discriminants [45,46,

51, 60, 64], generalized linear model [54], support vector machines (SVMs) [9, 66],

kth nearest neighbors [68], active learning techniques [48,58,59], packet-processing

concepts such as counter units and hashing functions [61], and fuzzy SVMs [49].
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In addition, Bayesian techniques such as Markov modeling [69], Kalman filtering

[70] and hidden Markov models [71] have also been used to perform ECG signal

classification.

A very common approach to designing ECG classifiers has been to employ

classification methods based on supervised learning techniques, which are trained

on large ECG datasets and thus do not require any input from an expert to

perform labeling (identification) of the different classes [8, 9, 45, 51, 68]. However,

ECG signals exhibit large variations across individuals as well as diseases. The

shape of the ECG signals and the timing of the various waveforms that comprise

the ECG signal depend on the underlying physical conditions of an individual’s

heart [72]. Thus, such algorithms do not perform well since they do not properly

account for inter-patient variation of morphologies, making the system trained on

a given set of data ineffective when tested using data that was not represented in

the training set [46].

The challenges faced by existing automatic ECG classification algorithms

are hence twofold:

(a) On one hand, the algorithms should be able to identify different classes of

diseases, given the ECG data that exhibits large variations in morphology.

For example, the morphology of a normal ECG beat in one individual will

differ greatly from the normal beat morphology of another individual, and

if the algorithm is not trained to identify such inter-patient differences in

morphology, misclassification can take place.

(b) The second challenge faced by ECG classification algorithms is the availability

of large amounts of training and testing data, and also the choice of training

data that can attempt to encompass different conditions and morphologies.

This presents difficulties in a clinical setting where speedy diagnosis is of the
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highest importance, and one cannot rely on the availability of enough training

data that covers all the waveform morphologies that might be encountered in

the ECG of all individuals.

In order to deal with these challenges, patient-specific (also known as

patient-adaptable) classifiers that can account for inter-patient variability have

been proposed. These algorithms attempt to adaptively diagnose the cardiac

conditions of an individual, rather than being based on diagnosing the cardiac

conditions of the general population. One approach to designing patient-specific

classifiers is the use of a global and local classifier approach [46, 50], wherein a

global classifier is trained on a large set of available data, while the local classifier

is trained using data from a specific patient and attempts to profile the nature

of an individual’s ECG data. In [50], a mixture-of-experts approach was utilized

to adapt the algorithm to each individual. This was done by employing a global

classifier, which is used to classify an individual’s ECG signal based on a large

existing database of ECG signals, and a local classifier that is trained specifically

using only the individual’s ECG record. The results from these two classifiers are

combined using the mixture-of-experts (MOE) approach. Although fairly good

results were achieved using this method, the method relied heavily on the presence

of a large database containing ECG data from many patients, which might not

be feasible in general. In [46], a similar global and local classifier approach was

used to propose a patient adapting ECG beat classifier. In this work, the global

classifier produced a set of beat annotations given an individual’s record, which

were validated first by an expert. These corrected annotations were then used to

train the local classifier, the output of which was then combined with that of the

global classifier to produce the final classification output. The training and testing

datasets were obtained by equally dividing the available ECG dataset. This might

lead to the absence of certain unique morphologies that could belong to a certain
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disease, from the training dataset, which could possibly result in misclassification

if the disease is present in the testing dataset.

Another approach to designing patient-specific classifiers is through the

use of neural networks whose structure can be adaptively varied depending on the

different operating environments that might be caused by inter-patient variations

in the ECG signal. In [42], a patient-independent neural network was modulated

using a three-parameter patient model to achieve adaptability. Optimization of

neural network structure for each patient was achieved using block-based neural

networks in [67], and particle swarm optimization in [57]. These algorithms used

a training set that consisted of two parts; a common set that is the same for

all patients and a patient-specific set. Although these methods achieved a good

classification performance, they still depend on the availability of a representative

common training dataset which can contain patterns that are not included in the

patient-specific training set.

Using unsupervised learning algorithms that do not rely on the availability

of separate training and testing data sets presents another method for designing

patient-specific classifiers. Clustering of the different beats present in an ECG

record using features derived from the Hermite polynomial representation of the

QRS complex of each beat was presented in [52]. In this work, unsupervised

self-organizing neural networks were employed to cluster the data into 25 groups,

and it was assumed that expert knowledge is available to perform labeling of

these clusters. In [43], a k-means clustering algorithm was first used to deter-

mine the clusters in the given data and then a classifier based on cross-distance

analysis was used to label the ECG beats in each cluster as normal or abnor-

mal. Unbalanced clustering and a fuzzy SVM were used respectively to cluster

and classify ECG data in [49]. The use of a classifier to label the clustered data

relies either on the availability of labeled data or an expert such as a cardiologist
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who can manually label each cluster. In [60], a Gaussian mixture model whose

parameters were determined using an expectation-maximization (EM) algorithm

was used to cluster ECG data. The clusters were later labeled automatically us-

ing a linear-discriminant classifier, an expert performing the task manually or a

combination of both depending on the outcome of a voting process. Although

the aforementioned clustering algorithms provide a good means to retain patient-

specific information from the ECG data, the number of clusters in the data is

assumed to be constant. If the number of clusters is fixed, it might either cre-

ate more clusters than necessary, or lead to lesser number of clusters than those

required to properly separate beats with different shapes. In [73], an attempt

was made to select the optimal number of clusters for a Gaussian mixture model

using a Bayesian selection criterion in Holter ECG signals. However, since ECG

signals are constantly evolving, the number of selected clusters might no longer

be optimal if new cardiac conditions arise.

Another patient-adaptive scheme was proposed in [61] to profile an indi-

vidual’s normal ECG behavior based on packet-processing concepts. Although

this technique provides a good tool to identify a person’s normal ECG behavior

it cannot provide further identification of the type of abnormalities that an indi-

vidual might exhibit. Also, if an person’s normal behavior exhibits a change due

physical activity etc., the profile of the normal behavior derived previously might

cause misclassification of normal behavior as a type of abnormality.

Using active learning and transductive transfer learning, patient-specific

classifiers were proposed in [58] and [59], respectively, to classify between normal

and ectopic ECG beats. However, these methods were only able to perform two-

class classification and although they used no patient-specific training data, a

careful choice of examples is required to build an initial training set, which might

not be possible in clinical settings. Also, other algorithms that worked with

10



a limited amount of patient-specific training data were proposed using active

learning techniques in [48].

1.4 ECG Classification and Clustering Contributions

In this work, the aim was to develop:

(a) Clustering algorithms for ECG data that do not depend on availability of a

large training database, and

(b) Patient-adaptable (patient-specific) ECG classification algorithms so that vari-

ations in ECG signals across individuals can be accounted for.

First, a Bayesian maximum-likelihood (ML) classification algorithm that

uses features based on the estimated model parameters from the proposed ECG

signal models to classify between normal sinus rhythm and different types of car-

diac arrhythmias is developed. This was done to demonstrate that the proposed

model parameters can be used for ECG arrhythmia classification. The algorithm

achieves a correct classification rate of almost 0.9 (90%) for classifying between

normal sinus rhythm and three different types of arrhythmia using the adaptively

estimated parameters from the multi-harmonic ECGmodel as features. ECGmor-

phology based features extracted from the parameters of the IMM and SMCMC

based ECG models are used to classify between normal and abnormal beats with

four different types of arrhythmia, and achieve an average correct classification

rate of 0.98 (98%).

Later an adaptive learning method based on the Bayesian nonparametric

method known as the Dirichlet process (DP) [74] is used to adaptively cluster

the ECG beats corresponding to normal sinus rhythm and different types of ar-

rhythmias. The DP is an unsupervised learning technique which does not require

separate training and testing data sets and achieves adaptability due to the fact

that it places no restrictions on the number of clusters in the ECG data, i.e.,
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the number of models that can represent the given dataset and their parameters.

ECG morphology based features from the proposed SMCMC model and temporal

information based on the RR-intervals (distance between the R-peaks of two suc-

cessive ECG beats) are used as features that form the input data set to the DP

algorithm. Assuming the availability of expert knowledge in labeling the clusters

in the ECG data, results show that on an average 98% of the major beat types are

clustered correctly. Correct classification is defined when beats are assigned to a

cluster in which a similar type of beat is dominant. In addition, in order to deal

with scenarios wherein expert knowledge to annotate ECG beats is not available,

the Bayes ML method used to perform cluster labeling is also described, and is

shown to correctly label 98.3% of the beat types for which sufficient training data

was available.

1.5 Organization

This dissertation is organized as follows. Since, the techniques employed in this

work fall under the general framework of Bayesian methods, in Chapter 2, the

framework for parameter estimation using noisy measurements is briefly discussed.

In Chapter 3, the multi-harmonic ECG model is presented and an algorithm to

adaptively estimate the model parameters is proposed. In Chapter 4, IMM-based

modeling method is discussed and the state-space framework for ECG signal mod-

eling is outlined; the SMCMC based ECG modeling method with simultaneous

model selection is described in Chapter 5. In Chapter 6, the ML classification of

different types of ECG signals using the proposed models is discussed, along with

a description of the features from the corresponding model parameter estimates

that are used by the classifier. The DP algorithm for patient-specific ECG beat

clustering along with the ECG signal features used are described in Chapter 7.

Finally, Chapter 8 outlines the major results obtained in this work and presents

avenues for future research.
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Table 1.1: List of acronyms.

Acronym Description

AR Autoregressive process

DP Dirichlet process

ECG Electrocardiogram

EKF Extended Kalman filter

EM Expectation-maximization

GMM Gaussian mixture model

GPB Generalized pseudo-Bayesian

IF Instantaneous frequency

IMH Independent Metropolis-Hastings

IMM Interacting multiple model

IMM-KF Interacting multiple model combined with the Kalman filter

KF Kalman filter

KL Kullback-Leibler

MC Monte Carlo

MCMC Markov chain Monte Carlo

ML Maximum likelihood

MSE Mean-squared error

pdf Probability density function

PF Particle filter

PVC Premature ventricular contraction

RMSE Root mean-squared error

SIS Sequential importance sampling

SMCMC Sequential Markov chain Monte Carlo
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Table 1.2: List of MIT-BIH arrhythmia notation.

Notation Description

A atrial premature beat

E Ventricular escape beats

F Fusion of normal and ventricular beats

L Left bundle branch block beats

N Normal sinus rhythm beats

P Paced beats

Q Unclassifiable beats

R Right bundle branch block beats

S Supraventrical premature beat

V Premature ventricular contraction beats

a Aberrated atrial premature beat

f Fusion of normal and paced beats

j Junctional or nodal escape beats
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Chapter 2

BAYESIAN APPROACH TO PARAMETER ESTIMATION

Bayesian estimation techniques are a group of algorithms that can extract in-

formation about a set of parameters, given noisy measurements and some prior

knowledge. The idea is to recursively estimate the unknown parameters that de-

scribe the state of a dynamic system using noisy observations made on the system

in conjunction with information about the evolution of the system [21]. This kind

of analysis of dynamic systems is made possible by employing the state-space ap-

proach, which consists of two mathematical models describing the system. The

first model, known as the state model (also known as the system model or dynamic

model), describes the evolution of the state with time. The second model relates

the noisy measurements to the state of the system and is called the measurement

model.

2.1 General Bayesian state-space framework for parameter estimation

The state and measurement models form the general state-space framework and

can be expressed for discrete-time systems as,

xk = f(xk−1) +wk−1 , (2.1)

zk = h(xk) + vk . (2.2)

Equation (2.1) describes a Markov state model, where the state vector xk repre-

sents the unknown state (set of parameters) of the system at time k, the state

transition function f(·) represents the evolution of the unknown state vector pa-

rameters with time, and vk is the process noise, that is here Gaussian with zero

mean and covariance matrix Q. The measurement model is described by (2.2),

where zk denotes the measurements at time k, h(·) is the measurement function,

and vk is the Gaussian observation noise with zero mean and covariance matrix

R. The state vector thus contains all the relevant information about the system.

15



The Bayesian approach assumes that the state and measurement model

are available in a probabilistic form and continuously updates the parameters’

posterior probability with reception of new measurements [21]. The parameter

estimates are constructed recursively using the posterior probability density func-

tion (pdf) of the state, given the sequentially obtained measurements. Thus, at

a time step k, the posterior pdf of the state xk given by p (xk|Zk), is obtained

using the set of measurements Zk = {z1, . . . , zk}. It is assumed that the initial

pdf or the prior of the state vector p (x0|z0) = p (x0), is available. The first step

in obtaining the posterior pdf of the state is the prediction stage that involves

using the state model shown in (2.1) and the pdf from the previous time k− 1 to

obtain the prior pdf as [22],

p (xk|Zk−1) =

∫
p (xk|xk−1)p (xk−1|Zk−1)dxk−1. (2.3)

In the above equation, p (xk|xk−1) represents the probabilistic model of the state

and is given by the state model in (2.1).

Using Bayes’ theorem the sequential update for the posterior pdf is then

obtained by incorporating the measurement zk that becomes available at time k,

and updating the prior pdf as [22],

p (xk|Zk) =
p (zk|xk) p (xk|Zk−1)∫
p (zk|xk) p (xk|Zk−1)

. (2.4)

This means that the posterior pdf at time k is calculated using the posterior pdf

from the previous time step k−1, by taking into account the new information ob-

tained from the current measurement using the likelihood function p (zk|xk) that

is defined using the measurement model in (2.2). In addition, the denominator in

(2.4) is a normalizing constant denoted by p (zk|Zk−1).

An analytical solution to solving (2.4) and obtaining the posterior pdf

is available only if the system and measurement models satisfy a restrictive set

of conditions. Since in a practical situation, these restrictive conditions are not
16



always satisfied, analytical approximations and suboptimal Bayesian methods can

be employed to obtain the posterior pdf [21]. In some cases, however, optimal

solutions to this problem are available under the following scenarios:

(a) The state and measurement functions of the system are linear and the noise

is Gaussian. In this case, the Kalman filter can used to recursively solve for

the posterior pdf by computing its mean and covariance, and is the optimal

estimator in the least mean-square sense [20].

(b) The state-space of the system is a finite, discrete-valued sequence, the solution

to which can be obtained using grid based search methods [21].

(c) The posterior pdf of a nonlinear dynamic system has a sufficient statistic. In

this case, Beneš [75] and Daum filters [76] can be applied to find solve for the

pdf.

But if such scenarios do not exist, especially since many systems are non-

linear in nature, the following approximations to finding the posterior pdf can be

employed.

(a) Analytical solutions such as the EKF [77], which approximate the nonlinear

functions using the Taylor series expansion, thus approximating the poste-

rior pdf as a Gaussian whose mean and covariance can be then computed

recursively as in the KF.

(b) Numerical methods that are approximate grid-search methods based on dis-

cretizing the state-space and approximating the posterior pdf as a summation

over the entire grid [21].

(c) Gaussian sum filters which approximate the posterior pdf as a weighted sum

of Gaussians instead of as a single Gaussian [78].
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(d) Unscented KF [79] that approximates the posterior pdf using a Gaussian

density which is represented using a set of deterministically chosen samples

that specify its mean and covariance.

(e) More generally, when the models are nonlinear and the noise in the models

is non-Gaussian, the posterior pdf is estimated using sequential Monte Carlo

methods [80], which include the particle filter [22], and are based on rep-

resenting the posterior pdf using a set of particles and their corresponding

weights.

2.2 General Bayesian state-space framework for parameter estimation using

multiple models

In addition, certain dynamic systems are best described using multiple operating

modes. This is based on the fact that the behavior of these systems cannot be

characterized at all times using a single model, but a finite number of models are

required to describe its behavior at different times. Such systems are referred to

as hybrid systems, whose state and measurement models exhibit an additional

dependance upon the operating model at a given time k. Parameter estimation

for such systems is done in a manner similar to recursive Bayesian estimation by

constructing the posterior pdf of the estimates from each corresponding model,

using a two-step prediction and update approach. However, the only difference is

that in addition to estimating the parameters, the model that best describes the

system at a given time also has to be estimated.

Since at each time instant k, the system depends on an additional param-

eter, which is the mode mk of the system, the general state-space equations in

(2.1) and (2.2) can be re-written for a multiple mode setup as [21],

xk = fmk
(xk−1) + gmk

(wk−1) , (2.5)

zk = hmk
(xk) + qmk

(vk) . (2.6)
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In the above equations, fmk
(xk−1) is the mode-dependent state transition function,

gmk
(wk−1) is the modeling error function, hmk

(xk) is the measurement function

and qmk
(vk) is the measurement noise function under mode mk at time k. The

system mode can be modeled by an M -state first-order Markov chain with tran-

sition probabilities πij = Pr (mk = j | mk−1 = i), given that the models i and

j were in effect at times k − 1 and k respectively, for i, j = 1, . . . ,M , where M

is the total number of models required to describe the system. The initial mode

probabilities are given by µi
0 = Pr (m0 = i) [21]. It is also assumed that the

initial pdf of the state vector p (x0,m0 = i|z0) = p (x0,m0 = i), is available for

i = 1, . . . ,M . The prediction step which yields the prior pdf is now given by [21],

p (xk,mk = j|Zk−1) =
M∑
i=1

πij

∫
p (xk|xk−1,mk = j)p (xk−1,mk−1 = i|Zk−1)dxk−1 ,(2.7)

where, p (xk|xk−1,mk = j) represents the probabilistic state model for model j

defined in (2.5) and p (xk−1,mk−1 = i|Zk−1) is the posterior pdf for model i that

was in effect at time k − 1.

Using the prior pdf, the posterior pdf is now computed in the update stage

using the most recent measurement zk as [21]

p (xk,mk = j|Zk) =
p (zk|xk,mk = j) p (xk,mk = j|Zk−1)∑M

j=1

∫
p (zk|xk,mk = j) p (xk|Zk−1)

. (2.8)

In the above equation, p (zk|xk,mk = j) is the likelihood function for model j

calculated using the corresponding measurement model defined in (2.6) and the

denominator is a normalizing constant known as the model-conditioned likelihood

denoted by p (zk|Zk−1,mk = j).

Hybrid state estimation algorithms consist of a bank of model-matched

filters each of which yields the posterior pdfs of the corresponding models as

described in (2.7) and (2.8). These model-matched filters can correspond to a

KF [34, 81, 82], EKF [34], PF [83], etc. depending on the nature of the state and
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measurement models. In addition, hybrid state estimation algorithms also need

some approach to determine the method of cooperation between each of the model-

matched filters, in order to determine the final estimate of the system that takes

into account the contribution from the estimates of each model. Some of these

approaches include the Generalized Pseudo-Bayesian (GPB) method [84–86], the

IMM algorithm [34,81,82], reversible jump Markov Chain Monte Carlo (MCMC)

[87], multiple model pruning [88] etc.

2.3 Application of Bayesian approach to ECG signal modeling

In this work, Bayesian methods are applied to model the ECG signals and esti-

mate the cardiac parameters of interest. In this case, the state vector represents

the cardiac parameters, which might vary depending on the state-space framework

used. The measurement model represents the ECG signal as a function of the cor-

responding cardiac state parameters. The KF, EKF and SMCMC methods are

used to estimate the posterior pdf of the state given the real ECG data (measure-

ments), depending on the type of state-space framework. The KF and SMCMC

methods are also combined with the IMM and reversible jump MCMC, respec-

tively, to perform simultaneous model selection for modeling the ECG signals

using multiple models without being restricted to a single mathematical model

(representation). In addition, the MCMC method method known as Gibbs sam-

pling is employed to estimate the posterior pdf of the model parameters of the

different mixtures for a DP mixture model that is used to cluster the ECG data.
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Chapter 3

ADAPTIVE PARAMETER ESTIMATION USING MULTI-HARMONIC ECG

MODEL

Adaptive parameter estimation techniques provide the flexibility to optimize the

estimator over a conceivable parameter space by minimizing the appropriate cost

function, making them extremely useful for the ECG parameter estimation prob-

lem. The shape and nature of the ECG signals vary greatly across different types

of cardiac diseases. Also, ECG signals are unique to each individual. Thus,

statistical models of ECG signals, that are constructed to estimate cardiac pa-

rameters, should take these variations into account and refrain from making overly

restrictive assumptions about these signals without requiring a priori knowledge

about the ECG signals. In order to preclude their dependence on user-defined

parameters and a priori information, statistical models of ECG signals can take

advantage of the adaptive parameter estimation framework by adaptively varying

certain parameters of the model such that a cost function is minimized.

In this chapter, adaptive parameter estimation of cardiac signal parameters

is demonstrated using the multi-harmonic components model of the ECG signal

proposed in [29,30]. The state-space model for ECG signals is first provided using

the multi-harmonic components framework. The method for adaptive parameter

estimation is outlined next, followed by simulation results which demonstrate

that the adaptive algorithm achieves better MSE performance compared to the

non-adaptive method, thus improving the estimation accuracy of the algorithm.

3.1 State-space Model using Multi-harmonic Components

Cardiac signals can be considered quasi-periodic and have been described using

a sinusoidal measurement model with multiple harmonically-related components

that vary slowly in frequency and amplitude [29,30]. Consider an ECG signal z(t)
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sampled at the rate Ts to obtain the measurement zk = z(k Ts) at time k. The

multi-harmonic measurement model for zk can be represented as [30]

zk = z̄k +

[
Nh∑
h=1

(
bk,h cos(h θk) + ck,h sin(h θk)

)]
+ vk, (3.1)

where z̄k is a low-frequency signal trend, Nh is the number of harmonics, bk,h and

ck,h are slowly-varying amplitudes corresponding to the hth harmonic, θk is the

instantaneous phase of the fundamental component at time k, and vk is zero-mean

white Gaussian measurement noise.

In order to estimate dynamic parameters of interest in (3.1) using sequen-

tial Bayesian estimation methods, a state space formulation is needed. So in

addition to the measurement equation in (3.1), a state equation for the cardiac

parameter vector of clinical significance xk = [θk fk bk ck z̄k]
T , is formulated.

Here, bk = [bk,1 . . . bk,Nh
]T , ck = [ck,1 . . . ck,Nh

]T , fk is the instantaneous fre-

quency (IF), and T denotes vector transpose. The proposed state model in [30]

models fluctuations in the instantaneous phase as a first-order approximation of

an integral of the IF; and the IF is modeled as a first-order autoregressive (AR)

process with mean cardiac frequency f̄ and AR coefficient α. The remaining state

variables are modeled by a random walk model. Thus, the state equation is given

by [30],

xk = [mod2π{θk−1 + 2π Ts fk−1} α(fk−1 − f̄) + f̄ bk−1 ck−1 z̄k−1]
T + uk−1.(3.2)

In the above equation, uk−1 = [uθk−1
ufk−1

ubk−1,1
. . . ubk−1,Nh

uck−1,1
. . . uck−1,Nh

uz̄k−1
]T

is a zero-mean white Gaussian modeling error process, and mod2π is used to keep

θk−1 within the range [0, 2π).

3.2 Framework for Adaptive Signal Parameter Estimation

As seen from the state and measurement equations for the multi-harmonic com-

ponents model of ECG signals given in Section 3.1, the model depends on user-

defined parameters, such as mean cardiac frequency and process noise variances,
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and a priori information, such as the number of harmonic components, that has

to be obtained through spectral analysis. However, the user-defined parameters

and a priori information may vary greatly from person to person, as well as across

various cardiac diseases. In the previous works of [29] and [30], only fixed values

of these parameters were used in the EKF or PF recursion when tracking the un-

known state parameters. To reduce the dependence of the system on user-defined

parameters and pre-processing steps, we employ a framework that enables adap-

tive selection of the optimum number of harmonicsNh and mean cardiac frequency

f̄ in (3.2). These two parameters are considered as the adaptive parameters of

the system.

The system parameters are adaptively optimized via selection of the pa-

rameter pair that minimizes a cost function metric. In this work, the cost func-

tion is chosen as the MSE between the actual and reconstructed signal. The

number of harmonics and mean cardiac frequency are allowed to vary in a range

[N
(min)
h , N

(max)
h ] and [f̄ (min), f̄ (max)], respectively. The ranges are chosen to rep-

resent a reasonable span of the number of multi-harmonic components and a

conceivable selection of mean frequencies. In addition, as the state and measure-

ment equations in (3.1) and (3.2) are nonlinear, the EKF tracker is utilized to

estimate the state vector over the specified ranges of the adaptive parameters.

The ECG signal is divided into segments of fixed length and adaptive

parameter selection is performed separately over each segment. With the segment

length taken as approximately equal to the beat length, this approach is feasible

for those types of ECG signals which do not usually exhibit sudden changes in

their morphologies within a beat. For each candidate parameter pair, the MSE

is calculated for the segment as the energy of the error signal normalized by the

ECG signal energy. In particular, the reconstruction MSE for the lth segment
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with Nl samples can be approximated as

MSEl =

Nl∑
k=1

(zk,l − ẑk,l)
2

Nl∑
k=1

z2k,l

. (3.3)

Here, zk,l is the kth sample in the lth segment of the actual measurements and ẑk,l

is the reconstructed signal using the state estimate. The algorithm then selects

the best (adaptive) parameter pair for the segment as the one that results in

minimum MSE.
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Figure 3.1: Surface plot of the MSE for the entire chosen range of the adaptive

parameters for a segment from a normal sinus rhythm ECG signal. The arrow

indicates the minimum MSE point for one adaptive parameter pair.

To summarize, real ECG signals (obtained from the online Physionet database

[89]) are first divided into equal length segments; the cardiovascular parameters

of the segments are then estimated using the EKF tracker. For each segment, this

estimation is performed over the range of the number of harmonics [N
(min)
h , N

(max)
h ]
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and the range of the mean cardiac frequency [f̄ (min), f̄ (max)]. The adaptive param-

eters for each segment are selected as the ones that minimize the MSE calculated

using (3.3). The estimates provided by the adaptive parameters are subsequently

used to categorize different types of ECG signals. The key steps in the adaptive

multi-harmonic ECG modeling method are shown in Algorithm 1 below.

Algorithm 1 Adaptive Multi-harmonic ECG Modeling

1. Divide the ECG signal into L equal length segments, l = 1, . . . , L.

2. In the lth segment, perform the following steps:

(a) Set the number of harmonics Nh and mean cardiac frequency f̄ in the ECG

state-space model (3.1)-(3.2) to vary within the range [N
(min)
h , N

(max)
h ] and

[f̄ (min), f̄ (max)], respectively.

(b) For each Nh and f̄ in Step 2 (a), estimate the cardiovascular parameters
of the ECG data in the lth segment (time k = 1, . . . , Nl) using the EKF
tracker [21].

(c) Using (3.3), compute the MSE between the measured ECG signal and
the reconstructed ECG signal obtained from the estimated cardiovascular
parameters.

(d) Select the best (adaptive) number of harmonics Nh and mean cardiac fre-
quency f̄ for the lth segment as those which minimize the MSE.

3.3 Simulations and Discussion

In order to demonstrate the performance of the multi-harmonic ECG model per-

forming adaptive parameter estimation, real ECG signals from the online Phys-

ionet database [89] were utilized.

The ECG signals used to demonstrate the results were obtained from the

MIT-BIH normal sinus rhythm, MIT-BIH supraventricular arrhythmia, MIT-BIH

malignant ventricular ectopy, and MIT-BIH atrial fibrillation databases [89]. The

ECG signals were sampled at 500 Hz. The EKF tracker was applied to estimate

the model parameters. The estimation was performed with the number of har-
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monics spanning the range [N
(min)
h , N

(max)
h ] = [10, 20] and mean cardiac frequency

spanning the range [f̄ (min), f̄ (max)] = [1.3, 1.5] Hz. These ranges were chosen based

on the values used for these parameters in the literature. As mentioned in Sec-

tion 3.2, the ECG signals were divided into segments of length approximately

equal to the ECG beat length. For the cases where the parameters are not varied

adaptively, the number of harmonics is kept fixed at Nh = 11 (this is the value

used in previous works [30]) and the mean cardiac frequency is set to f̄ = 1.5

Hz. For additional comparison purposes, an alternate choice is also considered for

fixed number of harmonics, as the value that was chosen most frequently by the

algorithm as the best parameter minimizing the MSE; this is referred to as the

‘best case’. The AR parameter in the model was taken as α=0.9987.

The performance of the algorithm working under adaptive conditions,

wherein the best model parameter pair (number of harmonics and mean car-

diac frequency) is selected to minimize the reconstruction MSE (3.3) at each time

step, is compared to the performance of the algorithm using a fixed set of pa-

rameters. Figures 3.2(a), 3.2(c), 3.2(e), and 3.2(g), show plots of the MSE as a

function of the segment number for ECG signals with normal sinus rhythm and

supraventricular arrhythmia, malignant ventricular arrhythmia, and atrial fibril-

lation, respectively. For the adaptive parameter case, the minimum MSE values

are shown as a function of the segment number. In the cases where the param-

eters are non-adaptive, the MSE is shown for the two fixed parameter cases as

mentioned above. It can be seen that by adaptively optimizing the model pa-

rameters, the performance of the algorithm can be improved significantly. This is

because the algorithm adaptively selects the model parameters that result in the

lowest MSE, instead of performing estimation with fixed user-defined parameter

values. Figures 3.2(b) and 3.2(d), 3.2(f), and 3.2(h), show the variation of the

optimum number of harmonics as a function of the segment number for signals
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with normal sinus rhythm, supraventricular arrhythmia, malignant ventricular

arrhythmia, and atrial fibrillation, respectively. This elucidates the adaptive abil-

ity of the algorithm in selecting the best value of the number of harmonics that

minimizes the MSE.

Figure 3.1 shows a surface plot of the MSE for the entire chosen range of

the adaptive parameters for a segment from a normal sinus rhythm ECG signal.

The plot illustrates the minimum MSE obtained for a specific parameter pair and

shows how the algorithm selects the best adaptive parameters without requiring

a priori information. Note that in the example shown, the variation of the MSE

with the mean cardiac frequency is much smaller than that with the number of

harmonics. Because of this, the variation of the optimum mean cardiac frequency

for each segment is not shown.
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(b) Normal sinus rhythm
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(c) Supraventricular arrhythmia
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(d) Supraventricular arrhythmia
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(e) Malignant ventricular arrhythmia
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(f) Malignant ventricular arrhythmia
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(g) Atrial fibrillation
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(h) Atrial fibrillation

Figure 3.2: MSE of the multi-harmonic ECG modeling algorithm with fixed and
adaptive model parameters, and variation in the optimum number of harmonics
for different types of ECG signals.
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Chapter 4

ECG MODELING USING INTERACTING MULTIPLE MODELS

The concept of multiple switching dynamic models is relevant in a number of

applications since many dynamic systems can be better characterized by a set

of possible modes of operation rather than a single mode [81]. The IMM algo-

rithm [34] can be used to describe such hybrid systems and can estimate states

and modes that transition according to a Markov process. In particular, ECG

signals fit perfectly into this framework because of their dynamical nature and

the presence of morphologies that vary between individuals and diseases. The

multiple model framework can be used to describe the ECG signal by adaptively

using different representations (models) depending on the nature of the signal,

and the IMM algorithm is used estimate the parameters of each of these models.

In this chapter, a multiple model setup for describing ECG signals is pro-

posed using the IMM framework. The IMM algorithm for dynamically changing

systems is first described, followed by the proposed state-space framework for ECG

signals. Next, the framework for modeling ECG signals using multiple models is

described in detail. Finally, simulation results showing the effectiveness of the

algorithm in tracking different types of ECG signal morphologies by adaptively

choosing the model are demonstrated using real ECG signals.

4.1 IMM Algorithm

At each time k, in a multiple mode framework the system also depends on the

system mode mk, and thus the general state-space equations can be written as [21]

xk = fmk
(xk−1) + gmk

(uk−1), (4.1a)

zk = hmk
(xk) + qmk

(vk), (4.1b)

where fmk
(·) is the mode-dependent state transition function, gmk

(·) is the model-

ing error function, hmk
(·) is the measurement function, and qmk

(·) is the measure-
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ment noise function, under mode mk at time k. The system mode is modeled by

an M -state first-order Markov chain with transition probabilities πij = Pr (mk =

j | mk−1 = i), for i, j = 1, . . . ,M . The initial mode probabilities are given by

µ
(i)
0 = Pr (m0 = i), i = 1, . . . ,M [21].

The IMM algorithm comprises of three stages, namely interaction, filtering,

and combination [34], performed at each time step k as follows. In the interaction

stage, the mixing probabilities of the system defined as µ
(i|j)
k−1 = Pr (mk−1 = i |

mk = j,Zk−1) and conditioned on the set of measurements Zk−1 = {z1, . . . , zk−1}

are first calculated using the mode probabilities µ
(i)
k−1 from the previous time step

as

µ
(i|j)
k−1 =

πij µ
(i)
k−1

M∑
i=1

πij µ
(i)
k−1

, i, j = 1, . . . ,M. (4.2)

The mixing probabilities are next used to calculate the filter input parameters

for the prediction step of the filtering stage as a weighted sum of the system

parameter estimates from the previous time step. For example, the input state

parameter to each mode-matched filter (the filter which computes the estimates

for the corresponding state model) is computed as a mixture or interaction of

previous state parameter estimates, given by

x̂
(0j)
k−1|k−1 =

M∑
i=1

µ
(i|j)
k−1 x̂

(i)
k−1|k−1, j = 1, . . . ,M, (4.3)

where x̂
(0j)
k−1|k−1 is the input state parameter for mode j and x̂

(i)
k−1|k−1 is the state

parameter estimate for mode i at the previous time k − 1.

The filtering stage can be considered as a bank of mode-matched filters,

each of which uses the current measurement zk and performs a prediction and

update step to provide an updated distribution of the system parameters at time

k under the corresponding mode of operation. The updated state parameter
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estimates are denoted by x̂
(j)
k|k, j = 1, . . . ,M . Additionally, the mode likelihoods

Λ
(j)
k = p (zk|Zk−1,mk = j), j = 1, . . . ,M, (4.4)

are calculated, typically using a Gaussian approximation as

p (zk|Zk−1,mk = j) ≈ N (zk;hj(x̂
(j)
k|k−1),S

(j)
k ) . (4.5)

In the above equation, it can be seen that the likelihood for mode j can be approx-

imated using a Gaussian density that is a function of the measurement zk with

mean hj(x̂
(j)
k|k−1) representing the estimated measurement using the corresponding

state estimate from the prediction step and a covariance S
(j)
k . The posterior mode

probabilities are updated for current time k as

µ
(j)
k =

Λ
(j)
k

M∑
i=1

πij µ
(i)
k−1

M∑
j=1

Λ
(j)
k

M∑
i=1

πij µ
(i)
k−1

, (4.6)

for j = 1, . . . ,M . In the final combination stage, the estimates from the differ-

ent mode-matched filters are weighted by the corresponding mode probabilities

and aggregated to calculate the overall estimate of the system parameters. The

combined state parameter estimate is

x̂k|k =
M∑
j=1

µ
(j)
k x̂

(j)
k|k . (4.7)

4.2 State-space Model using IMMs

To describe the ECG signals using a multiple mode setup, time-domain polynomial

functions of different orders with coefficients that vary over time were used. In

this framework each polynomial order is associated with a mode of the system’s

operation and the coefficients of the corresponding polynomial function form the

state vector. The measurement model for the time-domain ECG signal can be

written as

zk = ak,0 +
M∑

m=1

ak,m km + vk, (4.8)
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where ak,0, . . . , ak,M are the polynomial coefficients, and vk is zero-mean white

Gaussian measurement noise with variance R. The ECG signal model in (4.8)

can also be written in matrix-vector form as

zk = Hmk
xk + vk, (4.9)

where Hmk
= [1 k k2 . . . kM ], and the polynomial coefficients form the state

vector xk = [ak,0 . . . ak,M ]T . In particular, using a polynomial function of order

mk for mode mk ∈ {1, . . . ,M}, only the first mk+1 coefficients in xk are non-zero.

The state evolves in time according to a simple first-order Markov model,

given by

xk = Fmk
xk−1 +Gmk

uk−1. (4.10)

The state transition and modeling error matrices, Fmk
and Gmk

, are (M + 1) ×

(M + 1) diagonal matrices whose m′th diagonal element is given by [Fmk
]m′ =

[Gmk
]m′ = 1 for m′ = 1, . . . ,mk + 1 and [Fmk

]m′ = [Gmk
]m′ = 0 for m′ =

mk + 2, . . . ,M + 1. Thus, both Fmk
and Gmk

are mode-dependent matrices,

and are used to ensure that when the system is under mode mk, the polynomial

coefficients ak,m are zero for m > mk. The variance of the zero-mean white

Gaussian modeling error uk−1 is small, so that the model describes polynomial

coefficients varying slowly over time. The slowly varying linear, quadratic, and

cubic polynomial modes are thus used to represent the morphology of the ECG

signals over short time segments, such as the P wave, PR segment, the Q, R and

S waves of the QRS complex, etc.

4.3 Framework for ECG Modeling with IMM

As discussed in Section 4.2, the ECG signals are modeled using polynomial func-

tions of different orders. Since the IMM offers multi-mode flexibility, ECG signals

of different morphologies, even those with abrupt changes, can be modeled using
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transitioning polynomials of different orders depending on the nature of the data.

This avoids the problems encountered in [24,32], where due to phase-wrapping of

each beat of the ECG signal, abrupt morphological changes, such as premature

ventricular contractions (PVC), cannot be tracked. In addition, the proposed

model is fairly straightforward and does not require any preprocessing steps to

initialize the tracker. Also, different portions of the ECG signal, such as the P

wave, QRS complex, and T wave, do not have to be delineated before modeling

using mathematical representations as in [8, 9, 17, 19], since the system mode can

automatically adapt at each time step if the need arises.

For the real ECG data used in this work, polynomial functions of three

different orders, namely linear, quadratic, and cubic polynomials, were found to

be sufficient. Hence the number of modes (highest polynomial order) was set to

M = 3. Also, the state-space model in (4.9)and (4.10) is linear and Gaussian, and

hence a KF can be used in the filtering stage of the IMM algorithm to estimate

the unknown parameters (polynomial coefficients). This is known as the IMM-KF

algorithm [82].

Based on the parameter estimates obtained from the IMM-KF algorithm,

classification of ECG signals into different classes is proposed. Since this classi-

fication needs to be performed for each beat of the ECG data, the data is first

divided into beats based on the peak location and phase as in [32]. The IMM-KF

algorithm is re-initialized at the beginning of each new beat and parameters are es-

timated afresh. In addition, a simple low-pass filter is used to eliminate the effects

of baseline wander and power-line interference on the parameter estimates [45].

To summarize, real ECG signals (obtained from the MIT-BIH arrhythmia

database [89]) are first separated into beats based on the peak location (provided

by the MIT-BIH arrhythmia database) and phase as in [32]. The ECG beats are

then modeled using the IMM with M = 3 polynomial modes of operation, and
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the IMM-KF is used to estimate the coefficients of the polynomial used by each

mode. The estimated polynomial coefficients are subsequently used as features

in a classifier to differentiate between different types of ECG signals. The main

steps of the IMM ECG modeling method are shown in Algorithm 2 below.

Algorithm 2 IMM ECG Modeling

1. Initialize the polynomial coefficients and the transition and mode probabilities
for the M = 3 linear, quadratic, and cubic order polynomial ECG models.

2. For time k = 1, 2, . . ., perform the following steps:

(a) Compute the IMM mixing probabilities and input parameters for the M =
3 mode-matched filters using the transition and mode probabilities and
polynomial coefficients from time k − 1 via (4.2)-(4.3).

(b) Estimate the polynomial coefficients at time k for the M = 3 modes using
the KF with the ECG state-space model (4.8)-(4.10), the input parameters
from Step 2 (a), and the ECG measurement at time k. Also calculate the
probabilities for the M = 3 polynomial modes at time k using (4.4)-(4.6).

(c) Obtain the noise-free reconstructed ECG signal at time k using the com-
bined polynomial coefficient estimate (4.7) with the measurement function
in (4.9).

Modeling ECG data via the IMM framework provides an approach to adap-

tively utilize different order polynomial representations for the ECG signals de-

pending on their morphology. The IMM based state space ECG model utilizes

switching polynomial modes with slowly-varying coefficients to represent ECG

morphologies over short time segments. As will be demonstrated in the following

Section, the algorithm can track different types of ECG signals without the need

for a priori or user-defined information.

4.4 Simulations and Discussion

The performance of the proposed IMM-KF ECG modeling method is demon-

strated using real ECG signals obtained from the MIT-BIH arrhythmia database

[89]. The sampling rate for the signals is 360 Hz. Preprocessing was carried out
34
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Figure 4.1: Original and reconstructed ECG signals using the IMM-KF algorithm
for different beat types. The letters in the square boxes are the beat labels.

to remove baseline wander and power-line interference with the help of a simple

lowpass filter [45]. The IMM-KF algorithm is initialized with mode probabili-

ties µ
(i)
0 = 1/3 (i = 1, 2, 3), and transition probabilities πij = 0.8 for i = j and

πij = 0.1 for i ̸= j (i, j = 1, 2, 3). The polynomial model coefficients were ini-

tialized using uniformly random values in [−0.5, 1.5]; it was observed that the
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Figure 4.2: Original and reconstructed ECG signals using the IMM-KF algorithm
for different beat types. The letters in the square boxes are the beat labels.

algorithm is not very sensitive to this choice.

Figures 4.1 and 4.2 shows plots of the real ECG signals along with the

reconstruction using the parameter estimates from the proposed IMM-KF ECG

model. The tracking performance of the algorithm is shown for different types of
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ECG morphologies: Figure 4.1(a) for normal sinus rhythm (N) type ECG, Figure

4.1(b) for a premature ventricular contraction (PVC) ECG (MIT-BIH arrhyth-

mia notation V), and Figures 4.2(a) and 4.2(b) for left bundle branch block (L),

right bundle branch block (R), and ventricular escape (E) signals. For clarity,

the plots show only a few seconds of the actual data duration. It can be seen

that the tracker performs well and the reconstructed signals closely match the

original ECG signals. In particular, from the tracking results for PVCs or V type

beats, which occur intermittently within the ECG signal and are characterized by

QRS complexes that do not have a fixed shape [72], it is seen that the proposed

algorithm can track abrupt changes in morphology without having a priori in-

formation about the input data. The Gaussian model based algorithm presented

in [24,32] did not have this capability of tracking abrupt changes in morphology.

37



Chapter 5

ECG MODELING USING SEQUENTIAL MARKOV CHAIN MONTE

CARLO METHOD WITH SIMULTANEOUS MODEL SELECTION

The IMM-KF method requires knowledge of the mode transition probabilities

and its performance was found to be somewhat sensitive to those parameters. An

alternate approach to this model, where the coefficients of the multi-mode polyno-

mial representations vary slowly with every time step, is to model the polynomial

coefficients as constant (static) over time segments of the ECG signals. Specifi-

cally, although ECG signals are dynamic in nature, they can be well represented

using polynomial functions of different orders with coefficients that are constant

over short time segments. So, instead of the transitioning modes utilized in the

IMM framework, the model for the system (polynomials of different orders) can

be selected for each segment. The system parameters can then be estimated using

a particle algorithm framework provided by the SMCMC filter [36].

In this chapter, a multiple model setup for describing ECG signals is pro-

posed using the SMCMC filter with simultaneous model selection using polyno-

mial functions whose coefficients are assumed to be constant over certain segments

of the signals, the lengths of which are determined adaptively. First, the concept

of the SMCMC filter working with simultaneous model selection is described. The

state-space model for ECG signals using the SMCMC filtering approach is given

next, followed by the specific steps of the proposed algorithm. The effectiveness of

the algorithm in tracking different types of ECG signal morphologies, the ability

of the framework in adaptively selecting between multiple models and the superior

performance of the multiple modeling framework are finally demonstrated with

simulations using real ECG data.
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5.1 SMCMC Filtering and Simultaneous Model Selection

In the particle filtering approach, the posterior pdf of the unknown state of the

dynamical system is represented using particles and weights. However, particle

algorithms were developed for systems where the parameters are time-varying and

dynamic in nature, and can become unstable in the presence of static parameters

[90]. To preserve the stability of the solution, ideas based on making a dynamic

parameter assumption for static parameters have been suggested using improved

mixing properties and kernel smoothing [90]. Other algorithms that do not depend

upon a dynamic assumption for static parameters, by preserving the stability

using complete rejuvenation of the particles, when required, have been discussed

in [36,91].

The algorithm of [36], referred to as the SMCMC filter, which combines

sequential importance sampling (SIS) with Markov Chain Monte Carlo (MCMC)

techniques, is utilized to estimate the parameters of the ECG signal model. The

SIS is first used to process the measured ECG samples sequentially, after which a

rejuvenation test is performed to check whether the SIS particles need rejuvena-

tion. If rejuvenation is necessary, the particles are completely rejuvenated using

MCMC methods. Thus, the three steps in the algorithm are: SIS, rejuvenation

test, and MCMC.

The first step in the SMCMC filter is to propagate the weights of the par-

ticles representing the posterior distribution by incorporating the new incoming

measurement using SIS. At time k − 1, let the posterior distribution p (x|Zk−1)

over the state vector x be represented by Ns particles x1, . . . ,xNs with weights

wk−1,1, . . . , wk−1,Ns . Since the unknown parameters are static and do not vary

with time, we drop the time subscript for x during our discussion of the SMCMC

filter, unless otherwise specified. Denoting the particle-weight pairs at time k− 1

39



by (x1, wk−1,1), . . . , (xNs , wk−1,Ns), the updated posterior density at time k using

the new measurement zk is obtained by the weight update given as [36]

wk,j ∝ p(zk|xj,Zk−1)wk−1,j, j = 1, . . . , Ns. (5.1)

Since the SIS uses a finite number of particles and the particle values are static,

as new measurements get processed the weights lose diversity over time and only

a very small percentage of weights remain non-zero. This causes the algorithm

to become unstable. In order to counter this problem the SMCMC algorithm

employs rejuvenation of particles whenever necessary. The rejuvenation test used

here is based on the Kullback-Leibler (KL) divergence, which provides a measure

of the distance between two probability distributions. Specifically, when each of

the subsequent n measurements is obtained, the KL divergence between the pos-

terior distributions p (x|Zk) and p (x|Zk+n) is computed, and rejuvenation is per-

formed if it exceeds a threshold. Since the particle-weight pairs representing these

posterior pdfs are (x1, wk,1), . . . , (xNs , wk,Ns) and (x1, wk+n,1), . . . , (xNs , wk+n,Ns),

respectively (the particles x1, . . . ,xNs do not change during the SIS step and the

weights are updated according to (5.1)), the KL divergence is simply [36]

KL (wk+n, wk) =
Ns∑
j=1

wk+n,j (logwk+n,j − logwk,j). (5.2)

During rejuvenation, a new set of particles is generated using MCMC. The in-

dependent Metropolis-Hastings (IMH) is a popular MCMC method used for its

simplicity. In the IMH method, if rejuvenation is to be performed at time k + n,

a new set of particles representing the target density p (x|Zk+n) is generated by

sampling i.i.d. from a Gaussian proposal density N (x;µx,Σx) whose mean and

covariance are computed using the most recent SIS particles and weights as [36]

µx =
Ns∑
j=1

wk+n,j xj, (5.3)

Σx =
Ns∑
j=1

wk+n,j (xj − µx) (xj − µx)
T . (5.4)
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The number of samples n processed between each rejuvenation is referred to as

the batch size.

As for the IMM based ECG model of Chapter 4, linear, quadratic and cubic

polynomials are used to model the ECG signals in the SMCMC algorithm. Model

selection is carried out in conjunction with parameter estimation in the SMCMC

filter framework. In general, assuming that there are M models H1, . . . , HM , and

denoting the parameter vector for model i as x(i), the posterior density at time k

is [36]

p(x|Zk) =
M∑
i=1

P (Hi|Zk) p(x
(i)|Zk, Hi). (5.5)

The posterior pdf p(x(i)|Zk, Hi) over the parameters can be obtained for each

model Hi using SIS as described previously. The posterior model probability

P (Hi|Zk), which is used as a weight to determine the contribution of each model

towards the final estimate, is calculated recursively as

P (Hi|Zk) ∝ p(zk|Zk−1, Hi)P (Hi|Zk−1), i = 1, . . . ,M. (5.6)

The model likelihood p(zk|Zk−1, Hi) is the expected likelihood with respect to

p(x(i)|Zk−1, Hi) and can be approximated as

p(zk|Zk−1, Hi) ≈
N

(i)
s∑

j=1

w
(i)
k−1,j p(zk|x

(i)
j ,Zk−1, Hi), (5.7)

where N
(i)
s is the number of particles used by model Hi, and x

(i)
j and w

(i)
k−1,j are

the particles and weights for model Hi at time k − 1.

5.2 State-space Model for the SMCMC Filter with Simultaneous Model

Selection

To formulate the ECG state-space model, the coefficients of the different order

polynomial representations are assumed to be constant over time segments of

the ECG signals. This is a viable assumption since certain segments of the ECG
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signals, such as the P waves, PR segment, Q waves, R waves, S waves, ST segment

and T waves, can be modeled using a single polynomial function, the order of

which depends upon the signal morphology. Instead of delineating the ECG signal

by using preprocessing algorithms, segments are used to define a time interval

over which the ECG signal model parameters are assumed to be constant. In

particular, the location of these segments is not specified a priori but rather

determined adaptively based on the measured ECG data.

Based on the assumption that model parameters are constant within a

given segment, the ECG signal is represented as

zkl = al,0 +
M∑

m=1

al,m km
l + vkl . (5.8)

Here, zkl is the klth ECG sample in the lth segment, with kl = 1, . . . , Nl, and Nl

is the total number of samples in the lth segment. The measurement noise vkl

is assumed to be white Gaussian with zero mean and variance R. The unknown

static polynomial coefficients form the state vector xl = [al,0 al,1 . . . al,M ]T in the

lth segment. In particular, under model Hi only the first i+ 1 elements of xl are

non-zero.

Since the model parameters are constant over a time segment, the state

equation is given, for the lth segment, by

xkl = xl. (5.9)

To adaptively delineate the ECG signal into segments over which the model

parameters can be assumed to be constant, the model likelihoods p(Hi|Zk) are

monitored. The model likelihoods give a measure of how well the models describe

the given data, and small likelihood values are indicative of a poor fit. Thus, if

at time k the likelihoods p(Hi|Zk) = p(zk|Zk−1, Hi) p(Hi|Zk−1) for all M models

H1, . . . , HM fall below a threshold, a new segment is started at time k+1 and the
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SMCMC particle filter algorithm is re-initialized. To obtain the noise-free recon-

structed ECG signal for a segment, the combined polynomial coefficient estimate

(5.5) is computed at final time in the segment and used with the measurement

function in (5.8).

5.3 Framework for ECG Modeling with SMCMC Filtering and Simultaneous

Model Selection

The suitable model for representing ECG data can change depending on the shape

of the ECG signal in various time segments, such as the P wave, QRS complex,

ST segment, etc. The proposed algorithm adaptively delineates the data into

segments wherein the ECG signal parameters are assumed to be static under the

SMCMC framework.

Due to the flexibility offered by the algorithm performing simultaneous

model selection, ECG signals with different shapes can be modeled, including

those with abrupt changes in morphologies. This avoids the issues faced in [24,32]

due to the inability of the algorithm to track unexpectedly changing morpholo-

gies such as PVCs in the ECG. In addition, no preprocessing steps and a priori

information is required for initialization of the algorithm. Delineation algorithms

as used in [8, 9, 17,19] are also not necessary.

Similar to the IMM-KF based algorithm proposed in Chapter 4, poly-

nomial functions of three different orders, namely linear, quadratic, and cubic

polynomials, are used to represent the ECG signals, setting the number of models

to M = 3. We use the SMCMC algorithm with simultaneous model selection to

obtain estimates of the polynomial coefficients. These estimates are used subse-

quently to perform classification of different types of ECG signals. As mentioned

earlier, since classification is performed on a beat-to-beat basis, the ECG signals

are divided into beats using the peak information of the beats provided by the

MIT-BIH database.
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To summarize, real ECG signals obtained from the MIT-BIH arrhythmia

database [89] are first processed to remove recording artifacts such as baseline

wander and power-line interference using lowpass filters as described in [45]. The

measured signals are next separated into beats using the signal peak information

and the phase of the signal as in [32]. Each ECG beat is then modeled using the

three different order polynomials. The model parameters (polynomial coefficients)

are estimated by the SMCMC algorithm that performs simultaneous model se-

lection. The estimated parameters are subsequently used as features to classify

between different types of ECG signals. The major steps in the SMCMC ECG

modeling method are shown in Algorithm 3 below.

Algorithm 3 SMCMC ECG Modeling

1. Start a new segment l. Initialize the particles and weights for the posterior
distribution over polynomial coefficients and the model probabilities for the
M = 3 linear, quadratic, and cubic order polynomial ECG models.

2. For time kl = 1, 2, . . ., for the M = 3 polynomial models perform the following
steps:

(a) Using SIS ((5.1)), compute the weights at time kl using the weights from
time kl − 1 and the ECG measurement at time kl.

(b) Calculate the KL divergence (5.2), and if it exceeds a threshold τ1 perform
rejuvenation of the particles.

(c) Compute the posterior model probabilities at time kl using the model
probabilities from time kl−1 and the model likelihoods based on the ECG
measurement at time kl using (5.6)-(5.7).

(d) Compare the model likelihoods to a threshold τ2, and if they fall below the
threshold, go to Step 3.

3. Obtain the noise-free reconstructed ECG signal for the lth segment using the
combined polynomial coefficient estimate (5.5) at final time kl = Nl with the
measurement function in (5.8). Go to Step 1.
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5.4 Simulations and Discussion

The performance of the SMCMC ECG modeling method is demonstrated using

real ECG signals from the MIT-BIH arrhythmia database [89]. All the signals are

sampled at 360 Hz. Artifacts, such as baseline wander and power-line interfer-

ence, are removed using a lowpass filter [45]. In the SMCMC filter, the particles

representing the polynomial model coefficients in a segment are initialized using

values from local linear, quadratic, and cubic polynomial approximation at the

start of the segment. The threshold τ1 = 0.1 is used in the KL divergence based

rejuvenation test, and the threshold τ2 = 10−10 is used with the model likelihoods

for defining the start of a new segment. The measurement noise variance R is

chosen to be the same for all the models and is set equal to 10−4. It must be

noted that the value of R should be set such it always exceeds the amount of

noise present in the signal, since otherwise it can leading to large tracking errors.

The prior model probabilities were set to P (Hi|Z0) = {0.9, 0.09, 0.01} for

i = 1, 2, 3 respectively. The higher order polynomial models can always track the

signals corresponding to the lower order polynomial models, using small higher

order coefficients. For example, a quadratic polynomial can be modeled using

a cubic function provided the value of the highest order coefficient of the cubic

function is close to zero. In such situations, it is natural to favor a lower order

representation, and thus larger prior probabilities are assigned to the lower order

models. This is demonstrated in Figure 5.1 using a simple example. 500 samples

of a synthetic signal that corresponds to a quadratic polynomial with a sampling

frequency of 1000 Hz are generated. The samples are generated in the time range

0.1 s to 0.6 s. Figure 5.1(a) shows the noisy data used as the algorithm input and

the reconstructed signal that was estimated using the parameter estimates from

the algorithm, which is seen to be very close to the noise-free data. The data is
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not adaptively segmented for this case since a static parameter model is valid for

the entire time range. The top plot in Figure 5.1(b) shows the model probabilities

evaluated at each time step when the prior model probabilities are all assumed

to be equal. It can be seen that the model probabilities for the quadratic and

cubic models are almost equal, since both models can represent the data with

sufficient accuracy. This means that an almost equal weighting is given to the

estimates from both these models (even though the noisy data originated from a

quadratic model) when calculating the final estimate using (5.5). This problem

can be prevented by using unequal prior model probabilities, for example, using

values P (Hi|Z0) = {0.9, 0.09, 0.01} as described previously, which helps in giving

higher preference to the lower order quadratic model over the cubic one. The

model probabilities evaluated using this biasing scheme are shown in the bottom

plot of Figure 5.1(b), from which it can be easily seen that the (simpler) quadratic

model achieves a higher probability over the cubic model.

However, if the number of data samples is sufficiently large, the biasing

scheme for the initial model probabilities is not necessary, since the algorithm will

have enough number of samples to infer the correct model from the data. This is

demonstrated in Figure 5.2. A synthetic quadratic polynomial is generated using

parameters similar to those used to generate the signal in Figure 5.1(a), but with

2000 samples, so that the data now spans between 0.1 to 1.1 s. Figure 5.2(a)

shows the noisy data and the reconstructed signal estimated using the algorithm

parameter estimates. The model probabilities evaluated at each time step using

equal prior model probabilities and unequal prior model probabilities with the

biasing scheme are shown in the top and bottom plot, respectively in Figure

5.2(b). It is seen that in both cases the algorithm correctly converges to the

quadratic model, since the quadratic model achieves the highest probability. It

must be noted that in the case with equal prior model probabilities, the algorithm
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converges to the correct model after a few samples have elapsed, but converges

quickly when the prior model probabilities are unequally weighed.

Since ECG signals are usually sampled at smaller sampling rates, the num-

ber of samples available in each adaptively selected segment is not sufficient for

the algorithm to infer the correct model. Thus, for demonstrating the results of

the SMCMC algorithm using real ECG signals, the biased weighing scheme for

prior model probabilities with P (Hi|Z0) = {0.9, 0.09, 0.01} for i = 1, 2, 3 is used.

Figures 5.3 and 5.4 demonstrates the tracking capability of the algorithm.

Figures 5.3(a), 5.3(b), 5.4(a), and 5.4(b), show plots of the real ECG signals

and the model reconstruction for N, L, V, R, E, and j type beats. It can be seen

that the algorithm performs well in tracking ECG signals of different morphologies

(the reconstructed signals are very close to the original ECG signals). In addition,

the proposed algorithm can easily track (without requiring a priori information)

ECG signals with abrupt changes in morphology, eg. PVCs which occur abruptly

in between beats of different types and were not tracked using the Gaussian model

for ECG signals presented in [24,32].

Figure 5.5 illustrates the model selection capability of the algorithm using

N and L type beats. In order to provide a clear illustration of the results only

a single typical beat for each ECG signal type is shown. Figures 5.5(a) and

5.5(b) show the original and reconstructed N and L type ECG beats, respectively.

The black asterisks indicate the end-times for the adaptive segments over which

the model parameters were assumed static. Figures 5.5(c) and 5.5(d) show the

selected models (linear, quadratic, or cubic polynomial models) for the segments

of the N and L type ECG beats, respectively. Here, the model numbers 1, 2,

and 3, represent linear, quadratic, and cubic order polynomials, as described in

Section 5.2. In particular, the selected models for a segment are those models

that have the highest model probability at the end of the segment. It can be
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Figure 5.1: (a) Synthetically generated noisy signal from a quadratic model and
the reconstructed signal with 500 data samples; (b) Model probabilities evaluated
using equal prior model probabilities (top) and unequal prior model probabilities
(bottom) using SMCMC algorithm with 500 data samples.

seen from the plots that the algorithm can adaptively select between the different

polynomial models based on the morphology of the ECG signal at different times.

Figures 5.5(e) and 5.5(f) show the probabilities of the linear, quadratic, and cubic
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Figure 5.2: (a) Synthetically generated noisy signal from a quadratic model and
the reconstructed signal with 2000 data samples; (b) Model probabilities evaluated
using equal prior model probabilities (top) and unequal prior model probabilities
(bottom) using SMCMC algorithm with 2000 data samples.

order polynomial models at the end of each segment. The plots show that in most

cases the algorithm converges to a specific model by the end of a segment (the

probability of one model is much higher than the others).
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Figure 5.3: Original and reconstructed ECG signals from the SMCMC filtering
algorithm with simultaneous model selection for different beat types. The letters
in the square boxes are the beat labels.

A key advantage of our algorithm is its ability to track ECG signals of

different and abruptly changing morphologies without requiring prior knowledge

about the data. We demonstrate the superior performance of the proposed method

by comparing its tracking capability and reconstruction root mean-squared error
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Figure 5.4: Original and reconstructed ECG signals from the SMCMC filtering
algorithm with simultaneous model selection for different beat types. The letters
in the square boxes are the beat labels.

(RMSE) to that obtained from the nonlinear Bayesian framework for modeling

ECG signals using Gaussian functions [24,32]. The Gaussian ECG model is chosen

for comparison since it is based upon a similar statistical framework. For both

methods, the reconstruction RMSE is calculated using Monte Carlo simulation,
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Figure 5.5: Illustration of model selection using typical ECG beats. The black
asterisks indicate the end-times of the adaptive segments over which the model
parameters were assumed static. (a), (c) and (e) N type ECG beat; (b), (d) and
(f) L type ECG beat.
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and is expressed as

RMSEk =

√√√√ 1

Nr

Nr∑
r=1

(z̃k − ẑk,r)2, (5.10)

where z̃k denotes the noise-free reference ECG signal at time k, ẑk,r is the recon-

structed ECG signal at time k for the rth Monte Carlo run, and Nr is the number

of Monte Carlo runs. The noise-free reference ECG signal is obtained by averag-

ing noisy real ECG beats of the respective type from the MIT-BIH arrhythmia

database [89] (assuming that the noise in the ECG signals is additive and inde-

pendent, the SNR increases as more signals are averaged [92]). To demonstrate

the ability of our algorithm to track abruptly changing morphologies, we created

a typical example of such morphologies with the averaged noisy real ECG beats

of N and V types. The Nr ECG signals used for modeling and reconstruction

were also obtained from the MIT-BIH arrhythmia database. Also, the RMSE

defined in (5.10) is the square root of a sample average and different from the

MSE of (3.3) which uses a time average.

Figure 5.6 shows plots of the and reconstructed ECG signals using esti-

mates from the SMCMC algorithm with simultaneous model selection and the

Gaussian ECG model, respectively, for a typical run. As seen from Figure 5.6(a),

the SMCMC filtering approach leverages its multiple model flexibility to track the

different morphologies in the data without need for pre-processing. In contrast,

from Figure 5.6(b) it can be observed that the Gaussian approach does not track

the ECG data well and misses some of the fiducial points, such as the QRS com-

plex of the first N type beat, among others. As mentioned previously, PVC beats

occur randomly within ECG beats of different types and these abrupt changes in

morphology were not tracked using the Gaussian model in [24, 32] which uses a

phase-wrapping method to generate the initial filter estimates.

Table 7.1 shows the average RMSE between the noise-free reference and
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Figure 5.6: Original and reconstructed ECG signal from a typical Monte Carlo
run.

ECG signals reconstructed using our proposed SMCMC and IMM-KF multiple

model frameworks, Gaussian ECG model [24, 32] and the SMCMC framework

when only a single fixed polynomial model is used. The fixed-order polynomial

cases are linear (M1), quadratic (M2) and cubic (M3) polynomials. The RMSE

values are calculated using (5.10) with Nr = 500 Monte Carlo runs and averaged
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Table 5.1: Comparison of average RMSE (x 10−2).

Time SMCMC IMM- Gaussian SMCMC
(seconds) KF model M1 M2 M3

0.15-0.28 2.71 2.29 6.71 3.16 3.41 3.18
0.28-0.3 2.52 1.82 8.03 2.01 2.60 2.69
0.33-0.43 22.22 22.38 25.38 23.59 23.67 23.67
0.43-0.60 1.57 1.94 7.08 2.42 2.65 2.59
0.60-0.75 1.89 1.77 2.61 2.32 2.49 2.48
0.90-1.00 28.80 27.65 35.27 36.93 36.83 36.81
1.00-1.30 22.57 22.29 39.39 32.22 32.12 32.12
1.50-1.63 1.79 1.68 2.58 2.33 2.78 2.53
1.63-1.68 3.09 2.97 3.59 3.78 3.94 3.86
1.68-1.78 10.46 10.01 13.36 11.06 11.36 11.40
1.78-1.95 8.66 9.35 11.05 9.89 10.04 10.02
1.95-2.10 1.59 1.62 2.53 2.09 2.35 2.27

over certain segments of the signal corresponding to the times indicated in the first

column of Table 7.1 (for example, the time 0.15-0.28 s corresponds to time range of

the P wave in the first N type beat of the signal). It can be observed from Table 7.1

that both the SMCMC and IMM-KF algorithms outperform the Gaussian method

by achieving a smaller reconstruction RMSE. This demonstrates that the use of

multiple models to track ECG signals can be highly advantageous, as the resulting

parameter estimation is adaptive to changes in morphology and consequently

more accurate. This is important in clinical settings because the accuracy of the

parameter estimation algorithm can greatly affect the outcome of cardiac disease

diagnosis. The advantage of using multiple models is further substantiated due

to the fact that the RMSE performance of the SMCMC and IMM-KF algorithms

using multiple polynomial orders is also observed to be superior to that of fixed-

order polynomial ECG modeling (M1, M2 and M3) with the SMCMC framework

as seen in Table 7.1. Similar results were obtained showing a better performance

for the multiple model algorithms when compared to the fixed-order polynomial

ECG modeling with the IMM-KF framework.
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Chapter 6

ECG ARRHYTHMIA CLASSIFICATION USING BAYESIAN MAXIMUM

LIKELIHOOD CLASSIFIER

ECG signals represent recordings of the electrical activity of the human heart.

Any alterations in the normal electrical pattern of the heart helps in diagnosing

the presence of cardiac abnormalities. Thus, the recorded ECG signals are a

useful diagnostic tool for identifying and analyzing the condition of an individual’s

heart. Automatic classification or screening of ECG signals is of great value to

medical practitioners since it can alleviate the potentially painstaking process of

performing this task manually. As a result, much research has been devoted to

this area, within the sphere of signal processing techniques. A number of these

techniques were discussed in Section 1.3

In this work, ECG signal classification is first performed for five different

types of ECG signals using the estimated parameters from the proposed models

as features in a simple Bayes ML classifier. This is to demonstrate the effec-

tiveness of the model parameters in being able to differentiate between different

ECG classes. In the next chapter, a patient-specific classifier based on Bayesian

nonparametric methods is proposed. In this chapter, a short insight into the

generation of ECG signals and the causes of arrhythmia is outlined first. Later,

the Bayes ML classifier is described. Finally, the features extracted from each of

the three proposed ECG model parameters are explained and the performance of

the Bayes ML classifier using these features is demonstrated for different types of

arrhythmia.
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6.1 Electrical Activity of the Heart

Figure 6.1: Depiction of electrical activity in the heart for a single cardiac cycle

(ECG beat) [1].

The electrical activity of the heart during each ECG beat begins with the depo-

larization of the pacemaker cells in the sinus node located in the top right portion

of the heart. Depolarization represents the loss of inherent negative polarity of

the cardiac cells. The depolarization and subsequent electrical activity continues

propagating from cell to cell producing a depolarization wave that proliferates

through the atria, which when recorded using electrodes placed on the surface of

the body displays a burst of electrical activity known as the P wave. The depolar-
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ization wave passes through the atrio-ventricular node that causes the electrical

activity to pause for a fraction of a second, thus giving rise the flat PR segment

in the ECG recording. Finally, the wave of depolarization reaches the ventri-

cles during which the QRS complex is recorded. As soon as the depolarization

is complete in each portion of the heart, cardiac cells restore their polarity and

the repolarization wave starts propagating in the same direction, repolarizing the

cells. The repolarization of the atria is masked by ventricular depolarization and

is thus not recorded on the ECG. However, the repolarization of the much larger

ventricles is recorded as the T wave of the ECG signal. All this activity represents

one cardiac cycle of the heart otherwise known as an ECG beat and is depicted

in Figure 6.1.

Any disturbance in the rate, regularity, site of origin or conduction of the

cardiac electrical activity is termed as an arrhythmia [72]. There are several types

of arrhythmias ranging from a relatively benign atrial fibrillation to a serious life-

threatening condition such as ventricular tachycardia which could result in sudden

cardiac death. A lot of research has been performed to automate the detection of

life-threatening conditions such as ventricular fibrillation and tachycardia [93–95].

In this work, the major focus is on arrhythmias that are not immediately life-

threatening, but could turn so if not closely monitored and treated.

6.2 Bayes Maximum-Likelihood Classification Method

The Bayes ML classifier is a supervised learning technique that works as follows.

Given a feature vector y, of dimension Ny, the Bayes ML classifier calculates

and ranks the likelihood p(y|Cq) of the feature vector conditioned on each of the

considered classes Cq, which are assumed here to follow multivariate Gaussian

distributions. Considering Nq possible classes, the likelihood of feature vector y
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in class Cq is given by

p(y|Cq) =
1

(2π)
Ny
2 |Σq|

1
2

e−
1
2
(y−µq)

T Σ−1
q (y−µq), (6.1)

for q = 1, . . . , Nq, where µq and Σq are the mean and covariance of the Gaussian

model for class Cq. The means and covariances are determined using a set of

training feature vectors from each class. For classification of a given test feature

vector y, the likelihood function in (6.1) is evaluated for each class Cq using

the corresponding mean and covariance. Equal prior probabilities are assumed

for all the classes, and the classifier output is the class C∗ that maximizes the

log-likelihood, i.e.,

C∗ = argmax
q

log p(y|Cq). (6.2)

The Nq classes here correspond to various ECG signal types, and the feature

vector y is formed using the appropriate parameter estimates that are unique to

each class, based on the proposed ECG models.

6.3 Classification with the Multi-harmonic ECG Model

Using the parameters from the adaptive multi-harmonic ECG model, four types

of ECG signals are classified. These were ECG signals with normal sinus rhythm

(Class C1) and signals with three different types of arrhythmia [72], namely

supraventricular arrhythmia (arrhythmia arising in the upper chambers of the

hearts above the ventricles, i.e., either in the atria or the atrio-ventricular node

[72], denoted as Class C2), malignant ventricular arrhythmia (arrhythmia that

originates in the ventricles and can potentially lead to cardiac arrest and hemo-

dynamic collapse [72], denoted as Class C3), and atrial fibrillation (arrhythmia

arising due to chaotic atrial activity leading to an irregular ventricular rate [72],

denoted as Class C4). Thus for this case the number of classes is Nq = 4.

In order to perform classification utilizing the estimated parameters from

the ECGmodel with multiharmonic components,the adaptively selected best ECG
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Table 6.1: Confusion matrix showing classification results using the multi-
harmonic model with adaptive parameter estimation.

Class C1 C2 C3 C4

C1 0.89 0 0 0.11
C2 0.06 0.83 0.06 0.06
C3 0 0 0.89 0.11
C4 0 0 0.11 0.89

parameter estimates are used. The best estimates correspond to the parameter

pair representing the number of harmonics and mean cardiac frequency that min-

imize the reconstruction MSE. The instantaneous cardiac frequency estimates

(given by fk in (3.2)) are used to formulate the feature vector. To classify the

four ECG signal classes, only six fk estimates from around the QRS region are

used. This limits the feature vector dimensionality to Ny = 6.

6.3.1 Classification Results

Table 6.1 shows the classification results in the form of a confusion matrix. The

(i, j)th entry of the confusion matrix shows the fraction of signals in class Ci that

are classified to class Cj. Thus, the diagonal entries of the confusion matrix give

the correct classification rates and the off-diagonal entries indicate the misclassi-

fication rates. It can be seen that the classifier performs fairly well, with a correct

classification rate of nearly 0.9 (90%) for three of the four classes used.

6.4 Classification with the IMM-KF ECG Model

Five specific types of ECG signals for classification and comparison, are considered

here thus providing Nq = 5 classes. These are the normal sinus rhythm beats (N),

two types of conduction block arrhythmias (caused due to unexpected delays in

propagation of the normal electrical activity originating in the sinus node [72]),

namely the left bundle branch block (L) and right bundle branch block (R), and

two types of escape rhythm arrhythmias (caused when electrical activity originates

in locations other than the sinus node [72]), namely the ventricular escape beat
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(E) and junctional or nodal escape beat (j). The letters used to denote each

class are the standard arrhythmia notation used by the MIT-BIH arrhythmia

database [89]. It should be noted that the conduction block arrhythmias of types

L and R are characterized by inverted R waves and presence of double R waves

(also known as RSR’ waves or “rabbit ears”) respectively, in lead V1 of the ECG

lead configuration [72]. In addition, since escape beats originate in locations other

than the sinus node, the P wave is usually absent in these signals [72]. The features

were designed for our classifier based on these characteristics of the chosen types

of ECG signals.

The estimated parameters of the IMM-KF ECG model are used to define

the features used for performing ECG signal classification. In the proposed model,

at each time k, a total of M + 1 (combined) polynomial coefficient estimates are

available. In order to limit the feature dimensionality and reduce complexity, for

the purpose of classification we only use the estimated ak,1 coefficient from the

state vector, which was found to be most distinctive for classifying the chosen

types of ECG signals. Additionally, in order to further reduce the feature vector

size, only six features are computed (Ny = 6) as follows. The first five features are

obtained from average estimates of ak,1 at five regions in the QRS complex (local

averages are used for robustness to abrupt signal changes). The sixth feature is

obtained from the mean of the ak,1 coefficients in the P wave. Note that we do

not perform QRS complex detection or wave delineation to find the location of

the P wave. Instead, the signal peak information that was employed to perform

beat separation is used. The position of the QRS complex and the P wave are

roughly estimated based on peak information by noting that the QRS interval is

about 70 ms to 120 ms long, with a PR interval of 0.12 s to 0.2 s occurring before

the QRS interval [96].
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Table 6.2: Confusion matrix showing classification results using the IMM-KF
ECG model.

Beat type N L R E j

N 0.98 0 0 0 0.02
L 0.01 0.99 0 0 0
R 0.02 0 0.98 0 0
E 0 0 0.02 0.98 0
j 0.01 0 0 0 0.98

6.4.1 Classification Results

Table 6.2 shows the classification results in the form of a confusion matrix. It

can be seen that the classifier performs very well, achieving an average correct

classification rate of 0.98 (98%).

6.5 Classification with the SMCMC ECG Model

For classification the same five types of ECG signals used by the classifier for the

IMM-KF model, namely: normal sinus rhythm (N) signals, left bundle branch

block (L), right bundle branch block (R), ventricular escape (E), and junctional

or nodal escape (j) beats are used. This makes the number of classes Nq = 5.

The noise-free reconstructed ECG signal obtained using the estimated

polynomial coefficients parameters from the SMCMC filter with simultaneous

model selection is used to derive features for classification of the ECG signals.

As before, the feature vector dimension is limited to Ny = 6. The first five

features are obtained from averages of the reconstructed measurements at five

regions in the QRS complex. The sixth feature is obtained from the mean of the

reconstruction for the P wave.

6.5.1 Classification Results

Table 6.3 shows the classification results in a confusion matrix. It can be seen

that the classifier performs very well, with an average correct classification rate
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Table 6.3: Confusion matrix showing classification results using the SMCMC ECG
model.

Beat type N L R E j

N 0.98 0 0 0 0.02
L 0 0.99 0 0.01 0
R 0 0 0.98 0.02 0
E 0.02 0 0 0.98 0
j 0.01 0 0 0 0.99

of 0.98 (98%).

Table 6.4: Comparison of classification results.

Beat type
Correct classification rate

[8] [9] IMM-KF SMCMC

N 0.98 0.98 0.98 0.98
L 0.97 0.97 0.99 0.99
R 0.94 0.99 0.98 0.98
E 0.90 0.96 0.98 0.98
j – 0.91 0.98 0.99

The classification results from the IMM-KF and SMCMC ECG models are

compared with those presented in [8, 9] using fuzzy-hybrid neural networks and

support vector machines, respectively. These works were chosen for comparison

as they investigated the same types of arrhythmias for classification. Therein,

ECG signal delineation was first used to detect the QRS complex, followed by

Hermite polynomial fitting. The feature vector consisted of about 17 parameters

(15 Hermite polynomial coefficients and some temporal features of the actual QRS

data). Table 6.4 shows a comparison of the classification performance. It can be

seen that our classification results using the proposed multiple model methods

compare favorably with those results, despite the use of a fairly small feature set.

In particular, our results for the correct classification rates of the nodal escape (j)

type beats are considerably better because our features include information about

the P wave, which is absent in these beats [72]. This feature was not considered

in [8, 9].
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Chapter 7

PATIENT-SPECIFIC ECG ARRHYTHMIA CLUSTERING USING

BAYESIAN NON-PARAMETRIC METHODS

As described in Chapter 1, the challenges faced by ECG classification algorithms

include having the ability to classify between ECG signals that exhibit large vari-

ations of morphology, while preserving the inter-patient variability, and the non-

availability of large amounts of training and testing data to validate the algo-

rithms in a clinical setting. Although a number of algorithms based on supervised

learning methods were previously designed, these fail to account for variations

between different individuals, and hence a lot of focus is being laid on patient-

specific techniques that preserve the inter-patient differences in ECG morphology.

But patient-specific ECG classifiers [46, 50] based on global and local classifiers

and patient-adaptable neural networks [42, 57, 67] still require training data to

train the global classifiers and the neural networks, respectively. Although un-

supervised learning algorithms [43, 49, 52, 60] based on clustering different types

of ECG beats provide a good means of retaining patient-specific information and

do not require training and testing data, existing algorithms are based on use of

finite number of clusters. Since ECG data is constantly evolving, this might lead

to inadequate number of clusters.

In order to address the challenges faced by ECG classification algorithms

in general, and the drawbacks of the aforementioned works, an adaptive learning

ECG classification method that is based on a Bayesian nonparametric method

[74, 97] is proposed in this work. The adaptability of the algorithm to several

classes of diseases and changes in morphology is achieved because Bayesian non-

parametric methods place no restrictions on the models and their parameters, as

well as on the number of classes or clusters that the data might belong to. The

adaptive learning framework based on the Dirichlet process (DP) [98] is used in
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this work. To be specific, features of the ECG signal are modeled using a DP

mixture model that does not set a limit on the number of mixture components

or clusters in the ECG data. The clusters identified in the ECG data can be

labeled by an expert, or alternatively, an automated method can be used if suffi-

cient training data is available. The results of the proposed clustering algorithm

based on the DP framework are first validated assuming the cluster labels are

available and have been provided by an expert. In addition, in order to make

cluster identification automatic, the Bayesian ML method is used to identify the

cluster labels, assuming the availability of training data.

The DP adaptive learning framework is first described in this chapter along

with the blocked Gibbs sampling technique that is used to estimate the mixture

parameters. The features selected as the input data to the DP algorithm are

described next. The results of the clustering algorithm using real ECG data are

provided assuming access to cluster labels provided by an expert. Finally, the

use of the Bayesian ML method in automatically providing the cluster labels is

demonstrated.

7.1 Dirichlet Process Mixture Modeling

Nonparametric Bayesian methods offer flexibility in representing data using mod-

els that can have infinite number of parameters. The DP is one such method,

which works by placing prior distributions on parameters [74, 97]. These prior

distributions are combined with the data likelihood to obtain a mixture model

with infinite number of mixture components (clusters), which is known as the DP

mixture model [99].

Because of its highly flexible modeling properties, the DP has provided a

natural framework for application to problems such as speaker diarization [100],

music analysis [101], protein modeling [102] etc. The advantages offered by the

DP GMM when applied to the problem of ECG signal classification include no
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requirement of information about the clusters and no restrictions on their number,

in addition to requiring no separate testing and training datasets, since the clusters

are automatically learned over time from the data.

7.1.1 DP Model Formulation

In this work, a given feature vector y, corresponding to features from a single

ECG beat as described in Section 7.2 is modeled using the DP mixture model as

p (y|w,Θ) =
M∑

m=1

wm p (y|θm) . (7.1)

In the above equation, w = {w1, . . . , wM} are the mixture weights that sum

to one, Θ = {θ1, . . . ,θM} is the set of parameters characterizing the clusters,

p (y|θm) represents the pdf parametrized by θm, and M is the maximum number

of mixture components. For any given dataset or set of feature vectors Y =

{y1, . . . ,yN}, where N is the number of feature vectors, the effective number of

mixture components (≤ M), their mixture weights w, and parameters Θ have to

be estimated.

The mixtures used for the DP in this work are Gaussian mixtures, wherein

the parameters of each model are the mean and covariance of the corresponding

Gaussian. This is known as the DP Gaussian mixture modeling method (GMM),

and is referred to as the DP GMM. For a DP GMM, the pdf p (y|θm) of the mth

mixture component is specified by a Gaussian distribution with the parameters

representing the mean and covariance of the Gaussian, i.e., θm = {µm,Σm}. So,

for an Ny-dimension feature vector y, the pdf for the mth mixture component

is, p (y|θm) , N (y;µm,Σm). Rewriting (7.1) using the precision Σ−1
m for each

mixture component instead of the covariance gives,

p (y|w,µ,Σ−1) =
M∑

m=1

wmN (y;µm,Σ
−1
m ) . (7.2)
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If the number of mixture components is known, ML techniques such as

the EM algorithm [103, 104] can be utilized to estimate the parameters by max-

imizing the likelihood. In particular, the EM algorithm was employed in [60, 73]

to determine the parameters of the GMM used to represent ECG signal features.

However, if the number of mixture components is unknown, Bayesian nonpara-

metric methods using the DP framework provide a good approach to representing

such models.

The DP represents a distribution over another base distribution. It is

characterized by two parameters, namely the scalar concentration parameter α

and the base distribution G0. Any draw from a DP is an almost surely discrete

distribution represented by [97],

G ∼ DP (α,G0). (7.3)

The concentration parameter α controls the closeness of the distribution G to G0.

Since G0 is a continuous-valued distribution, separate random draws from the

distribution always return distinct values. Also, the discrete nature of G implies

that separate draws from it can correspond in value with a positive probability.

A dataset Y = {y1, . . . ,yN} can then be characterized by using the set of

parameters Θ = {θ1, . . . ,θN} described using the DP as a prior distribution as,

θn|G ∼ G, n = 1, . . . , N. (7.4)

Because of the discreteness of G, the parameters {θ1, . . . ,θN} can coincide in

value, thus inducing clustering of the corresponding data points {y1, . . . ,yN}.

The extent to which the parameters coincide in value is determined by α, with

a larger α indicating that lesser number of parameters coincide in value, i.e.,

more clusters are formed. The assignment of a given parameter θn to a cluster is

mathematically characterized using the conditional density of θn given the rest of
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the parameters Θ(−n) (other than θn), and obtained by integrating out G in (7.4)

using the Pólya-urn relation [98,105],

p (θn|Θ(−n), α,G0) =
1

α+N − 1

M∑
m=1

ν(−n)
m δ(θn,θm) +

α

α+N − 1
G0(θn). (7.5)

In the above equation, ν
(−n)
m is the number of variables in Θ(−n) equal to θm.

Note that more than one θn in {θ1, . . . ,θN} can be associated with the same

mixture parameter θm in {θ1, . . . ,θM} from (7.1). The conditional probability

given in (7.5) implies that each variable θn is assigned to an existing cluster m

(whose parameters are θm) with probability ν
(−n)
m

/
(α+N −1) or is assigned to a

new cluster with probability α
/
(α+N − 1). The tradeoff between using existing

clusters or creating new ones is determined by the concentration parameter α.

Under the DP framework, the joint distribution of the variables {θ1, . . . ,θN}

does not change even if the ordering of the variables is altered.

Since separate draws from the discrete distribution G can correspond in

value with a positive probability, there exist an infinite set of probabilities cor-

responding to the frequency of each possible value that G can return, that are

distributed according to a stick-breaking process [106], given by,

θm ∼ G0, m = 1, . . . ,∞, (7.6)

βj ∼ Beta(1, α), j = 1, . . . ,∞, (7.7)

wm = βm

m−1∏
j=1

(1− βj), m = 1, . . . ,∞, (7.8)

G(θ) =
∞∑

m=1

wm δ(θ,θm) (7.9)

The dataset Y which needs to be modeled in terms of an underlying set

of clusters, can be described as a hierarchial Bayesian model using the DP as the

prior distribution as [97],
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G ∼ DP (α,G0), (7.10)

θn|G ∼ G, n = 1, . . . , N, (7.11)

yn|θn ∼ p (yn|θn), n = 1, . . . , N. (7.12)

The above characterization implies that each yn, which is an observed data point

or feature vector belonging to the dataset Y, is associated with a set of hidden or

unknown variables θn. In other words, yn is actually drawn from a pdf p (yn|θn)

whose parameters are given by θn. The stick-breaking procedure in (7.6)-(7.9)

can be combined with (7.10)-(7.12) to give,

θm ∼ G0, m = 1, . . . ,∞, (7.13)

βj ∼ Beta(1, α), j = 1, . . . ,∞, (7.14)

wm = βm

m−1∏
j=1

(1− βj), m = 1, . . . ,∞, (7.15)

cn|w ∼ Categorical(w), n = 1, . . . , N, (7.16)

yn|cn ∼ p (yn|θcn), n = 1, . . . , N. (7.17)

In the above equations, cn is an unknown variable that indicates the cluster mem-

bership of the corresponding data point yn. Using this characterization of yn, the

general mixture model given in (7.1) can be written in terms of an infinite DP

mixture model as,

p (y|w,Θ) =
∞∑

m=1

wm p (y|θm) . (7.18)

Thus, in general M = ∞ in (7.1). However, for practical purposes M is set to

a finite value, provided that the error ϵ, due to the truncation of the number of

clusters is within tolerable limits [105]. The truncation limit is selected according

to [105],

ϵ ≈ 4N e−(M−1)/α. (7.19)
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7.1.2 Estimation of DP Model Parameters using Blocked Gibbs Sampling

As seen in Section 7.1.1, given the dataset or the set of features Y, the aim is

to infer the properties of the mixtures that constitute this data set. These prop-

erties include the effective number of mixtures, and their corresponding weights

and parameters. This can be cast as a Bayesian inference problem, where the

goal is to obtain the posterior pdf over the unknown parameters given a set of

observations, in this case, the data set Y. To be specific, given Y, the posterior

pdf p (Θ, c,w|Y), where c = {c1, . . . , cN}, has to be estimated.

Several MCMC methods [80], which generate samples from a desired pos-

terior pdf based on a constructed Markov chain, can be used for this purpose.

One such method is the Gibbs sampling method which relies on the availability of

conditional densities of each parameter given the other parameters and the data.

The Markov chain is obtained by sampling each parameter which is a random

variable conditioned on the previously sampled values of the other parameters

(random variables), and the data. In this work, the MCMC method of blocked

Gibbs sampling is used to sample from the joint distributions of sets or blocks

of the unknown random variables, given the previously sampled values of other

variables, to form the pdf of interest. The blocked Gibbs sampling algorithm that

was developed for inference in DP mixture models in [105] is employed here.

Specifically, for each iteration i in the Markov chain, i.e., each Gibbs iter-

ation, samples are drawn iteratively from the conditional pdfs of each parameter

that are conditioned on previously sampled values of the other parameters. This

can be given by [105],

θ(i)
m ∼ p (θm|c(i−1),Y), m = 1, . . . ,M, (7.20)

c(i)n ∼ p (cn|Θ(i),w(i−1),Y), n = 1, . . . , N, (7.21)

w(i)
m ∼ p (wm|c(i)), m = 1, . . . ,M. (7.22)
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The conditional posterior pdfs in (7.21)-(7.22) can be explicitly given as [105],

p (θm|c,Y) ∝ G0(θm)
∏

n:cn=m

p (yn|θm), m = 1, . . . ,M, (7.23)

p (cn|Θ,w,Y) =
M∑

m=1

(
wm p (yn|θm)

)
δ(cn,m), n = 1, . . . , N, (7.24)

p (wm|c) = βm

m−1∏
j=1

(1− βj), m = 1, . . . ,M. (7.25)

In the above equation, n : cn = m represent the indices in c = {c1, . . . , cN} for

which cn = m and

βm ∼ Beta
(
1 + νm, α +

M∑
m′=m+1

νm′

)
, (7.26)

where νq is the number of elements in c that are equal to m.

Bayesian inference provides a method to solve for the posterior pdf by mul-

tiplying the prior and the likelihood function and dividing this by a normalizing

constant which is the integration of the product of the prior and the likelihood

function over the the entire parameter space. Doing this can be computationally

expensive and analytical solutions may not always be available. An efficient way

of performing the update for the posterior pdf is by using the concept of conju-

gate priors [107]. This method relies on finding pairs of prior and posterior pdfs

which are conjugate to each other, because of which an analytical solution to the

integral becomes available. Specifically, given the likelihood p (yn|θm) in (7.23),

the base distribution or the prior G0 can be chosen appropriately, such that the

prior and posterior pdf p (θm|c,Y), belong to the same family of distributions.

This enables the update step for the posterior pdf over the parameter θ to be

performed efficiently. Such priors are referred to as conjugate priors.

Since a DP GMM is being used in this work, the likelihood p (yn|θm) in

(7.21) is a Gaussian pdf with unknown mean and precision, as seen in (7.2). It is
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assumed that the prior G0 in (7.21) is a Normal-Wishart distribution [107], i.e.,

G0(θ) , NW (µ,Σ−1 ; µN , τN , ϕW , τW) , (7.27)

where, µN , τN , ϕW and τW are hyperparameters. Specifically, ϕW (ϕW > Ny − 1)

representing the number of degrees of freedom and τW representing the symmet-

ric positive definite precision matrix are the Wishart hyperparameters and, µN ,

τNΣ−1 denoting the mean vector and the symmetric positive definite precision

matrix, respectively, where τN > 0, are the hyperparameters corresponding to the

multivariate normal (Gaussian) component of the Normal-Wishart prior.

The choice of a Normal-Wishart prior given the multivariate Gaussian

likelihood with unknown mean and precision, results in a posterior pdf that is

characterized by a Normal-Wishart distribution. Thus,

p (θ|c,Y) , NW (µ,Σ−1 ; µ̃N , τ̃N , ϕ̃W , τ̃W) , (7.28)

where µ̃N , τ̃N , ϕ̃W , and τ̃W are the updated hyperparameters of the Normal-

Wishart distribution representing the posterior pdf and are given by [107],

µ̃N =
τN µN +NµY

τN +N
, (7.29)

τ̃N = τN +N , (7.30)

τ̃W = τW +ΣY +
τN N

τN +N
(µN − µY) (µN − µY)

T , (7.31)

ϕ̃W = ϕW +N . (7.32)

In the above set of equations, µY and ΣY are the sample mean and covariance,

respectively, of the dataset or set of featuresY = {y1, . . . ,yN} withN data points.

The update step for the posterior pdf over the parameters θm = {µm,Σ
−1
m } using

the concept of conjugate priors thus just amounts to an update of the Normal-

Wishart hyperparameters given by (7.29)-(7.32).
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The complete steps of the blocked Gibbs sampling algorithm for estimating

the parameters of a DP GMM using an Ny-dimensional dataset are given in

Algorithm 4.

7.2 Framework for ECG Beat Clustering using the DP GMM

In order to cluster ECG beats using the DP GMM framework, real ECG data is

obtained from the MIT-BIH arrhythmia database [89]. The MIT-BIH arrhythmia

database consists of 48 ECG recordings that were obtained by the Beth Israel

Hospital Arrhythmia Laboratory and are each 30 min. long. These signals repre-

sent normal ECG beats along with those with several different types of arrhythmia

that were annotated by cardiologists. Four of these recordings contain paced ECG

beats (generated by an implanted pacemaker, MIT-BIH arrhythmia notation: P)

and beats that are a fusion of normal and paced beats (f), and are ignored in this

work. In addition to the N, L, R, E, j beats that were used for demonstrating

the classification performance of the Bayes ML classifier in Chapter 6, other ar-

rhythmias which include three types of supraventrical arrhythmia (arrhythmias

originating in the atria or near the atrio-ventricular junction [72]), namely, atrial

premature beat (A), aberrated atrial premature beat (a) and supraventrical pre-

mature beat (S), and one type of ventricular arrhythmia (caused due to rhythm

disturbances below the atrio-ventricular junction [72]), namely premature ventric-

ular contraction (V), were also considered for clustering using the DP algorithm.

Two other types of beats also present in the data include beats caused due to

the fusion of normal and ventricular beats (F), and unclassifiable beats (which

represent the beats that the cardiologists were not able to annotate, MIT-BIH

arrhythmia notation: Q). There were approximately 1, 500-3, 500 beats in each

record.
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Algorithm 4 Blocked Gibbs sampling for DP GMM using an Ny-dimensional
dataset Y
Repeat for i = 1, 2, . . . , Gibbs iterations:

1. Update for θ(i)
m = {µ(i)

m ,Σ−1(i)
m } ∼ p (µm,Σ

−1
m |c(i−1),Y), m = 1, . . . ,M .

(a) Let Ym = {yn : c
(i−1)
n = m} and Nm = |Ym|, for m = 1, . . . ,M .

(b) For all clusters, m = 1, . . . ,M , compute,

µym
=

1

Nm

∑
n:c

(i−1)
n =m

yn

Σym =
1

Nm

∑
n:c

(i−1)
n =m

(ym − µym
)2

µ̃N ,m =
τN µ̃N +Nmµym

τN +Nm

,

τ̃N ,m = τN +Nm ,

τ̃W,m = τW +Σym +
τN Nm

τN +Nm

(m− µym
) (m− µym

)T ,

ϕ̃W,m = ϕW +Nm .

(c) Draw samples for Σ−1(i)
m from the Wishart distribution,

W (Σ−1
m ; τ̃W,m, ϕ̃W,m), for m = 1, . . . ,M .

(d) Finally draw samples for µ
(i)
m from the Normal distribution,

N (µm; µ̃N ,m,
Σ

(i)
m

τ̃N ,m
), for m = 1, . . . ,M .

2. Update for c
(i)
n ∼ p (cn|µ(i),Σ−1(i),w(i−1),Y), n = 1, . . . , N .

(a) Let qm,n , w
(i−1)
m N (yn;µ

(i)
m ,Σ(i)

m ), m = 1, . . . ,M and n = 1, . . . , N .

(b) Normalize q′m,n = qm,n∑M
m=1 qm,n

,m = 1, . . . ,M and n = 1, . . . , N .

(c) Draw samples for c
(i)
n ∼

∑M
m=1 q

′
m,nδ(cn,m), n = 1, . . . , N .

3. Update for w
(i)
m ∼ p (wm|c(i)), m = 1, . . . ,M .

(a) Draw samples βj ∼ Beta
(
1 + νm, α +

∑M
m′=m+1 νm′

)
, where νm , |{n :

c
(i)
n = m}|, m = 1, . . . ,M .

(b) Finally evaluate w
(i)
m = βm

∏m−1
j=1 (1− βj), m = 1, . . . ,M .
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Figure 7.1: Illustration of beat types with morphological similarity and temporal
differences using N and A type beats from Record 101 of MIT-BIH arrhythmia
database.

7.2.1 Feature Design for ECG Beat Clustering

The ECG data is used as the input to the proposed SMCMC model with simulta-

neous model selection described in Chapter 5, and the estimated noise-free ECG

signals are generated for each beat, from which the features describing the ECG

morphology are obtained. The ECG signals are sampled at 360 Hz and each ECG

beat has a duration of 1 s on an average. In order to limit the feature space

size, only a fixed number of ECG morphology features are used as described in

Section 6.5. These include the mean of the reconstructed ECG signal around the

P wave and the local averages of the reconstructed ECG measurements at five

regions in the QRS complex.

In addition, since the grouping of certain arrhythmias depends upon their

timing information rather than their morphology [45, 56], temporal features are
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also included in the feature set. An important temporal feature used to distinguish

between ECG signals is the distance between successive R peaks of each ECG beat,

and is known as the RR-interval. The pre-RR and post-RR intervals are defined

as the distances between the R peak of a given beat and the R peak of the previous

beat and the next beat, respectively. In this work, the average pre-RR and post-

RR intervals, which are calculated for each ECG beat as being the local average

of the pre-RR and post-RR intervals over ten neighboring beats, are used as the

temporal features. An illustration of beats which are morphologically similar,

but have differences in temporal features is shown in Figure 7.1 with N and A

beats obtained from Record 101 of the MIT-BIH arrhythmia database. It can be

observed that both the N and A type beats have similar morphologies, but since

the A type beats occur due to premature depolarization of the atria [72], their

pre-RR and post-RR intervals are respectively, smaller and larger, when compared

to those of N type beats. Also, since certain arrhythmias such as premature

ventricular contraction give rise to QRS complexes that are wider than the QRS

complexes of other beat types [72], the QRS width (time between the QRS onset

and QRS offset) is also included in the feature set. An example of the differences

between QRS widths of V type and other beats can be seen in Figure 7.4 using

data from Record 208 of the MIT-BIH arrhythmia database. It can be seen that

the V type beat has a wider QRS complex when compared to both N and F type

beats. Thus, the feature set y of each ECG beat consists of:

(a) Mean of the noise-free reconstructed ECG samples from around the P wave.

(b) Local averages of noise-free reconstructed ECG samples at 5 points in the

QRS complex.

(c) Average pre-RR and post-RR intervals.

(d) QRS width.
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Figure 7.2: Illustration of the features used to form the feature set. The dots
denote the selected 5 points in the QRS complex for a typical case.

Also, in order to find the location of the P wave and the QRS complex,

the method described in Section 6.4 based on the R peak location and the QRS,

PR intervals can be used. However, since the aim is to differentiate between

additional ECG beat classes (in addition to those classified using the Bayes ML

classifier in Sections 6.4 and 6.5), some of which have intermittent changes in

morphology (such as the V type beats), this method is not employed. Instead,

the ECG delineation routine “ecgpuwave” based on the algorithm in [108] and

available on the online Physionet database [89] is utilized to find the onset and

offset positions of the P wave and the QRS complex. An illustration of the selected

feature set is shown Figure 7.2, wherein, the delineation of the P wave, typical

selection of 5 points in the QRS complex, the temporal features, and the QRS

width are illustrated.

For each ECG recording in the MIT-BIH arrhythmia, the dataset consists
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of the feature vectors obtained from each ECG beat as described above. Each

feature vector consists of 9 samples, and hence the dimension of each data point in

the dataset is Ny = 9. This dataset is used as the input to the DP algorithm which

then clusters the data. The number of clusters in the DP algorithm is limited by

the truncation limit in (7.19). However, the number of clusters found in the actual

dataset is lesser than total number of clusters used by the algorithm. Hence, only a

few clusters have significant mixture weights associated with them. In other words,

only a few weights out of the estimated mixture weights in w = {w1, . . . , wM} are

significant. Also, similar types of beats may be assigned to more than one cluster

if a single Gaussian is not adequate the represent all the data points corresponding

to a particular type of beat.

7.3 Cluster Labeling using Bayes ML Method

As mentioned previously, the DP only clusters the data, but does not assign labels

to the clusters obtained in the data. Once clustering is performed, the data can be

labeled using expert knowledge, if it is available. An ECG beat can then said to

be correctly classified if it falls in a cluster whose dominant beat (which represents

the beat type to which majority of the data points in the cluster belong) is of the

same type. Incorrect classification takes place when an ECG beat falls in a cluster

where it is the non-dominant beat.

In scenarios wherein external expert knowledge is not available, a super-

vised learning algorithm can be used to label the generated ECG clusters, if

training data is available. So, once each individual ECG recording is clustered us-

ing the DP algorithm, each of these clusters is labeled using a supervised learning

algorithm. Thus, this helps in preserving the inter-patient variability between the

ECG recordings of different patients and makes the algorithm patient-adaptable

by first differentiating between the beats of each individual, and then using the

supervised approach only to label these clusters.
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In this work, the Bayes ML method described in Section 6.2 is used for

this purpose. In order to make the Bayes ML method work in conjunction with

the DP algorithm, the same feature vector structure as described in Section 7.2 is

used for training. The training is performed using a portion of the data from each

recording that had not been previously clustered, and which is representative of

the beat types that were sought to be clustered. In cases where sufficient training

data is not available for a certain beat type, the beat is only labeled assuming that

expert knowledge is available (in the form of annotations already provided by the

database), and not automatically labeled using the Bayes ML method. For each

ECG recording, the testing data consists of the means of all the clusters found

by the DP algorithm. For labeling a given test feature vector (one of the cluster

means), the likelihood function in (6.1) is firstly evaluated using the corresponding

mean and covariance of each beat type used for training. Finally, the label of the

beat type whose mean and covariance maximized the log-likelihood function in

(6.2) is assigned to the cluster. This means that a single label is assigned to all

data points in the cluster, and thus if a certain data point corresponds to a beat

type whose true label is not the same as the assigned label, then it is said to be

misclassified.

7.4 Simulations and Discussion

For implementing the DP algorithm, the concentration parameter was set to α =

3. The number of mixtures in the DP is truncated to M = 41 terms by setting

the error in (7.19) to ϵ = 10−2. The Gibbs sampler was initialized by assuming

that all the data points in the given dataset fall into the same cluster. Also, the

number of iterations performed for burn-in and sample collection from the Gibbs

sampler were set to 5000 and 6500 respectively.

Firstly, results demonstrating the algorithm performance are shown as-

suming that expert knowledge is available to label the clusters. In this method,
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Figure 7.3: Example showing evaluation of performance of the DP algorithm using
the different labeling schemes discussed. The labels inside the circle which denotes
the cluster, are the true labels and the labels outside the circle in bold are the
assigned labels.

any beat that is not the dominant beat in a cluster will be considered to be mis-

classified. In other words, the expert labels the dominant beat of the cluster and

all the beats of the cluster are assigned the same label. It is assumed that expert

knowledge is available in terms of the annotations provided by the MIT-BIH ar-
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Table 7.1: Confusion matrix showing clustering results using the DP algorithm.

Beat type N L R j A a S V E F Q

N 1 0 0 0 0 0 0 0 0 0 0
L 0 0.97 0 0 0 0 0 0.03 0 0 0
R 0 0 0.99 0 0 0 0 0.01 0 0 0
j 0 0 0.02 0.98 0 0 0 0 0 0 0
A 0.01 0 0 0 0.99 0 0 0 0 0 0
a 0 0 0 0 0.07 0.93 0 0 0 0 0
S 1 0 0 0 0 0 0 0 0 0 0
V 0.02 0 0 0 0 0 0 0.98 0 0 0
E 0 0 0 0 0 0 0 0 1 0 0
F 0.03 0 0 0 0 0 0 0.46 0 0.51 0
Q 0.13 0 0 0 0 0 0 0.27 0 0 0.6

rhythmia database. This is shown in Figure 7.3(a) using a simple example with

one cluster consisting of 4 N, 3 V and 2 F (true labels) type beats. The dominant

beat of the cluster is the N type beat and hence the assigned label is N, using

which the correct classification rate of all the beats is indicated in the table at

the bottom of the figure. The results of the performance of the DP clustering

algorithm are shown in Table 7.1.

The results using the Bayes ML method for labeling the clusters (in case the

expert knowledge is not available) are outlined next. In this case, misclassification

occurs when the label assigned by the classifier to the cluster does not correspond

to the true label of any beat type present in the cluster. This is demonstrated

using an example in Figure 7.3(b). The cluster given by the DP algorithm consists

of 4 N, 3 V and 2 F (true labels) type beats. The label assigned to the cluster

using the Bayes ML classifier is F. This is different from the label assigned by

an expert as seen in Figure 7.3(a), and shows that the output of the Bayes ML

method does not necessarily depend on the dominant beat but is based on the

cluster means found by the DP. However, it must be noted that this is not always

the case, and that the label assigned by the Bayes ML method can correspond

to that assigned by the expert in other instances. Using this assigned label, the
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classification results are shown in the table given at the bottom of the figure. The

results of the performance of the Bayes ML method for labeling the clusters are

shown in Table 7.2.

Table 7.2: Confusion matrix showing cluster labeling results using the Bayes ML

method.

Beat type N L R j A V E F

N 0.99 0 0 0 0.002 0.001 0 0.007

L 0 0.97 0 0 0 0.03 0 0

R 0 0 0.99 0 0 0.01 0 0

j 0 0 0.02 0.98 0 0 0 0

A 0.02 0 0.03 0 0.97 0 0 0

V 0 0 0 0 0 0.98 0 0.02

E 0 0 0 0 0 0 1 0

F 0 0 0 0 0 0.01 0 0.99

From Tables 7.1 and 7.2, it can be seen that both the DP algorithm for

clustering ECG data and the Bayes ML method for labeling the generated cluster

perform fairly well for most of the beat types. From Table 7.1 it can be seen that

the DP correctly clusters 98% of all the considered beats, excluding F, S and Q

type beats. The performance of the DP algorithm for clustering the F type data

is less accurate when compared to that of the other beats because the F beats

are assigned to the clusters where either N or V beats are dominant, and are thus

misclassified. This is because the F type beats represent the fusion of both N

and V type beats and are morphologically very similar to both these beats, and

there exists a considerable amount of uncertainty even among doctors to annotate

them [60]. An illustration of the similarity of F type beats to both N and V

types is shown using data obtained from Record 208 of the MIT-BIH arrhythmia
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Figure 7.4: Illustration of morphological similarity of F type beats to both N and
V beat types.

database in Figure 7.4. However, from Table 7.2, it can be seen that most of the

F type beats have been labeled correctly by the Bayes ML method because the

means of the clusters found by the DP classifier are closer to the original mean

of the data with F type beats. Also, it is seen from Table 7.1 that the S type

beats are incorrectly clustered. This is because of the number of representative S
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type beats available in the entire database was very small when compared to the

number of beats corresponding to the other beat types (Only a total of 2 S type

beats were present in all the 44 records combined, in the MIT-BIH arrhythmia

database). For the same reason, the S type beats were not labeled using the Bayes

ML method. Similarly, since only a total of 15 Q type beats were present in all

the analyzed records put together, the accuracy of correctly clustering these beats

was lesser when compared to that of most of the other beat types. Thus, the Q

type beats and also the a type beats are not labeled using the Bayes ML method,

since enough training data was not available. For the considered beats, the Bayes

ML method correctly labeled 98.3% of the total number of beats.

An example of the clustering and labeling performance is shown in Figure

7.5 for Record 207 of the MIT-BIH arrhythmia database. Figure 7.5(a) shows the

different beat types of the record, with each beat type being associated with a dif-

ferent color. It must be noted that for illustrative purposes, the beats are grouped

together according to their type, but the beats occur without any particular order

in the actual ECG recording. Also, in this figure the y-axis (height of stem plot)

is not indicative of any quantity and the difference in the heights of the stem

plots for each group is only to show the differences between the memberships of

different groups. Figures 7.5(b) and 7.5(c) show the clusters that the beats have

been assigned to, and the cluster labels given by the Bayes ML method, respec-

tively. In both these figures, the color of the line indicates the true label (beat

type) for the corresponding beat, whereas the marker color indicates the cluster

label to which the corresponding beat has been assigned to. In Figure 7.5(b), it is

assumed that the dominant beat of the cluster has been labeled by an expert. A

number of observations can be made from this figure. Firstly, it can be observed

that the beats can get assigned to more than one cluster. For example, beats of

the R type were assigned to clusters 14 and 16. Secondly, errors in clustering can
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Table 7.3: Grouping of MIT-BIH arrhythmia database beat types into AAMI
recommended beat types.

AAMI beat type MIT-BIH arrhytmia database beat type

NA N, L, R, j
SA A, a, S
VA V, E
FA F
QA P, f, Q

be noticed due to the fact that 39 L type and 1 R type beat were assigned to

cluster 16 whose dominant beat was the V type. The labels given to the clusters

using the Bayes ML method are shown in Figure 7.5(c). It can be seen that the

clusters to which most of the beats of a particular beat type are assigned to are

labeled correctly, whereas the smaller clusters are labeled erroneously. This is due

to the fact that the small amount of data in these clusters causes the cluster mean

to not be a good representation of the true value.

The Association for the Advancement of Medical Instrumentation (AAMI)

recommends the reporting of performance of algorithms designed for cardiac signal

processing using a set of pre-defined standards [109, 110]. According to these

standards, the different heart beat types from the MIT-BIH arrhythmia database

are grouped into 5 different classes. Each class can include beats of more than

one type from the MIT-BIH arrhythmia database. The grouping of the different

classes according to the AAMI practice is shown in Table 7.3, using which it can

be seen that, for example, all the beats belonging to N, L, R and j types are

grouped into a single class denoted by NA. Also, since the P and f type beats are

ignored in this work, the QA beat type only consists of Q type beats.

In order to report the performance of the proposed DP clustering algo-

rithm according to the AAMI recommended practice, it was assumed that a beat

belonging to NA, SA, VA, FA and QA types is correctly clustered if it was assigned

to a cluster where the dominant beat belonged to the corresponding type. For
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Table 7.4: Confusion matrix showing clustering results for the DP algorithm using
AAMI recommended practice.

AAMI beat type NA SA VA FA QA

NA 1 0 0 0 0
SA 0.02 0.98 0 0 0
VA 0.02 0 0.98 0 0
FA 0.03 0 0.46 0.51 0
QA 0.13 0 0.27 0 0.60

Table 7.5: Confusion matrix showing cluster labeling results with the Bayes ML
method using AAMI recommended practice.

AAMI beat type NA SA VA FA

NA 0.99 0 0.004 0.006
SA 0.01 0.99 0 0
VA 0 0 0.98 0.02
FA 0 0 0.01 0.99

example, if any of the MIT-BIH arrhythmia database beat types, N, L, R and

j, are assigned to a cluster where the dominant beat is one of these types, then

correct classification takes place. A similar method is adopted to report the per-

formance of the Bayes ML method that is used for automated labeling of the DP

clusters. It must be noted that since an insufficient number of S, a and Q type

beats are available to train the classifier, the S and a type beats are excluded

from the AAMI beat type SA, and the AAMI beat type QA is altogether ignored

for reporting the labeling results using the Bayes ML method. Using the AAMI

recommended practice, the performance of the DP clustering algorithm and the

Bayes ML method for labeling the DP clusters are given in Tables 7.4 and 7.5.

In order to compare the results in this work to existing approaches, three

approaches are chosen. These include the mixture-of-experts (MOE) approach

in [50], clustering approach based on self-organizing maps (SOM) [52] and the

linear discriminant approach in [46]. Among these works, the classifiers proposed

in [50] by Hu et al. and in [46] by de Chazal et al. were based on the global-local

classifier approach, whereas Lagerholm et al. proposed an unsupervised clustering
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method in [52]. In [50], a global classifier was first used to classify an individual’s

ECG signal based on a large existing database of ECG signals. These results were

combined with those from a local classifier that was trained specifically using data

from the an individual’s ECG record, using the MOE approach. However, the

aim in this work was to classify the ECG signals as belonging to only two classes,

namely V (premature ventricular contraction) and non-V. The performance or

error measure that was defined in this work was given by,

RMOE =
Number of true negative and true positive beats

Total number of beats
(7.33)

SOMs were used in [52] to cluster the beats from each ECG record to a pre-

defined number of clusters. It was assumed that expert knowledge was available to

perform labeling of these clusters. The dominant beat of the cluster was assigned

a label by the expert and this label was used to denote all the beats of that cluster.

In order to facilitate the comparison of results in this work to those given by the

MOE approach of [50], the performance measure used was given by,

RSOM =
Number of correctly clusteredV andE type beats

Total number of beats
(7.34)

A global classifier based on linear discriminants (LD) to classify ECG beats

into 5 classes based on the AAMI recommended practice was used in [46]. The

results of the global classifier were validated by an expert and used to train a

local classifier. The global and local classifier outputs were combined to produce

a final classification result. The results in this work were compared to those

in [50] and [52] using a performance measure based on determining the clustering

performance of the method for each of the possible 5 AAMI classes. In order to do

so, the classifier output for each heart beat was considered to be a cluster label and

the performance measure was calculated using the number of correctly clustered

V and E type beats (CCV,E) and the number of correctly clustered non-V and
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non-E type beats (CCnon−V,E) as,

RLD =
CCV,E + CCnon−V,E

Total number of beats
(7.35)

In this work, a performance measure similar to the one used in [52] and

defined in (7.34) is calculated in order to facilitate comparison. The calculations

are performed using the DP clustering results in which it was assumed that an

expert was available to label each cluster generated by the DP. The performance

measure for the proposed DP algorithm is given by,

RDP =
Number of correctly clusteredV andE type beats

Total number of beats
(7.36)

In order to facilitate a fair comparison, RDP is evaluated for only the specific ECG

records from the MIT-BIH arrhythmia database which were used in common by

the three previous works for performance evaluation and comparison.

The values of all the aforementioned performance measures are enumerated

in Table 7.5. It can be seen that the results using the proposed DP clustering

algorithm compare favorably with the previous works. However, the DP algorithm

offers a significant advantage over these other methods because it does not require

separate training and testing datasets as in [46,50], and can adaptively learn the

number of clusters from ECG data which can evolve over time without requiring

a priori information about the number of diseases as in [52].
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Table 7.6: Comparison of clustering results.

Record RMOE RSOM RLD RDP

200 0.81 0.98 0.97 1

201 0.95 0.99 – 0.99

202 0.72 0.99 0.99 1

203 0.87 0.97 – 1

205 0.97 0.99 – 0.99

207 0.88 0.97 – 1

208 0.91 0.99 – 0.97

210 0.93 0.98 0.97 0.99

213 0.92 0.98 0.99 0.96

214 0.98 0.99 1 0.99

215 0.98 0.99 – 1

219 0.97 0.99 0.99 0.95

221 0.99 1 0.99 1

223 0.94 0.99 – 0.97

228 0.99 1 0.99 0.98

231 0.99 0.99 1 1

233 0.98 0.99 0.99 1

234 0.99 1 1 1
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(b) Clusters assigned to each beat, assuming the avail-
ability of cluster labels by an expert
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(c) Clusters assigned to each beat, using cluster labels
provided by the Bayes ML method

Figure 7.5: Example of clustering and labeling performance using Record 207 of
the MIT-BIH arrhythmia database.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

In this work, the focus was on first developing statistical models for estimating

ECG signal parameters that did not require preprocessing steps for filter ini-

tialization or ECG fiducial point delineation. Constructing such models, whose

estimated parameters can later be used for automatic classification of several car-

diac diseases is very helpful, and is of great importance as it helps in avoiding

manual annotation and provides speedy diagnosis. To work towards this goal,

novel methods for modeling ECG signals and adaptive cardiac parameter estima-

tion using sequential Bayesian methods were proposed. To perform ECG signal

classification, the proposed model parameters were first used as the feature set

for a simple Bayesian ML classifier to classify between different disease types.

In addition, an adaptive learning framework based on the DP was employed to

cluster the ECG data and provided the basis for a patient-specific algorithm for

classifying between different cardiac arrhythmias.

8.1 Conclusions

(a) Adaptive parameter estimation: Current ECG statistical models exhibit

dependencies on requirement of a priori information about the ECG signals

and presence of a number of user-defined parameters. In order to avoid these

issues, a method for adaptive parameter selection using the existing multi-

harmonic ECG model [29, 30] was presented. The proposed algorithm can

adaptively select parameters such as number of harmonics and mean cardiac

frequency by minimizing the estimation MSE. Thus, the selection of the best

parameter pair which leads to an improvement in the estimation accuracy of

the cardiac signal parameters represented by the model is enabled. Results

using real ECG data from the online Physionet database [89] demonstrate
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that the performance of the adaptive algorithm, in terms of the estimation

MSE, is superior to the algorithm performance when the values of the pa-

rameter pair are fixed. It should be noted that the size of the state vector

in this model is determined by the number of harmonics Nh, and is in the

order of 2Nh +3. The use of a large number of harmonics should be avoided,

as it can potentially increase model complexity and may lead to a scenario

in which a large number of state variables have to be estimated from a given

small number of data samples in each segment.

(b) ECG classification using adaptively estimated parameters: The in-

stantaneous cardiac frequency estimates were used to classify between four

types ECG signals, including, signals with normal sinus rhythm, supraven-

tricular arrhythmia, malignant ventricular arrhythmia and atrial fibrillation.

It was seen that the classifier performed fairly well, giving nearly a 90% correct

classification rate.

(c) ECG signal modeling using multiple models with the IMM-KF algo-

rithm: Another issue faced with existing ECG models is the use of a single

representation to model different types of ECG morphologies. Since ECG

morphologies vary across different diseases this might not be a feasible option

for representing all types of ECG signals. In addition, some existing models

delineate ECG signals such that each ECG segment is modeled using a sep-

arate representation. To preclude these possibilities, two novel ECG models

based on utilizing multiple signal models were presented.

In the first proposed approach, the IMM technique was employed to model

the ECG signal using three different polynomials, namely, linear, quadratic

and cubic. The polynomial coefficients represent the model parameters and

are estimated using a KF for each model. The final IMM-KF estimate for the

polynomial coefficients is constructed as a weighted sum of estimates from
92



each model weighed by the corresponding model probabilities. Using the

IMM-KF and without requiring pre-processing the ECG data, either to de-

termine filter initialization parameters or to delineate the various segments,

we were able to closely track real ECG signals of several morphologies, includ-

ing those with abrupt changes such as PVCs. Such signals were not tracked

using the statistical framework presented in [24,32] using Gaussian functions

due to phase-wrapping of each ECG beat.

(d) ECG signal modeling using multiple models with the SMCMC al-

gorithm: The IMM-KF method however requires knowledge of the mode

transition probabilities and its performance was found to be somewhat sen-

sitive to those parameters. A second new approach to modeling ECG signals

using SMCMC with simultaneous model selection was also presented. Similar

to the IMM-KF model, the ECG signal is represented using linear, quadratic

and cubic polynomial models. The model parameters represented by the poly-

nomial coefficients are assumed to be constant over a given number of ECG

samples (designated as a segment), and the parameter and model estimates

which are obtained by the end of a segment (assumed to be the best esti-

mates) are used to represent the samples in the segment. In addition, the

ECG data is adaptively delineated into segments based on the morphology,

by monitoring the value of the model likelihood function. Using the SMCMC

approach the tracking of several different types of morphologies, including any

abruptly occurring beats was demonstrated. The model selection ability of

the algorithm using different types of ECG signals was also shown.

In addition, the proposed algorithms outperformed the estimation RMSE per-

formance of the Gaussian ECG model in [24,32], due to their ability to track

intermittently occurring beats such as PVCs. The use of multiple models was

also further substantiated by showing that the estimation RMSE of the al-
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gorithms working with simultaneous model selection is much better than the

estimation RMSE of the algorithms using a single fixed model for ECG signal

representation.

(e) ECG classification using parameter estimates from IMM-KF and

SMCMC algorithms: Classification was performed using features obtained

from both the IMM-KF and SMCMC filters with a Bayesian ML classifier.

While the ak,1 polynomial coefficient representing the slope was used to ex-

tract the feature set from the IMM-KF model estimates, in the case of the

SMCMC filter the reconstructed or estimated measurements were used. Re-

sults for classifying five ECG signal types, including, normal sinus rhythm

signals and left bundle branch block, right bundle block, ventricular escape

and junctional escape arrhythmias, were highly promising with an average

correct classification rate of 98.5%, for both models. Comparison of these

classification results with those presented in [8] and [9] using Hermite poly-

nomials in conjunction with fuzzy-hybrid neural networks and support vector

machines, revealed a comparable classification rate for all classes, with a fairly

high improvement for the classification of junctional escape (j) beats. This

was due to the fact that although the proposed classifier used a smaller di-

mension feature set, the information about the P wave, which is absent in

such type of arrhythmias, was considered.

(f) ECG clustering using adaptive learning DP framework and cluster

labeling using Bayes ML method: In order to preclude the dependence of

ECG algorithms on huge amounts of training data and to preserve the inter-

patient variability between ECG recordings from different patients, which is

lost due to the use supervised learning algorithms for ECG signal classifica-

tion, an adaptive learning method based on the DP framework is presented. In

this method, firstly, the ECG data from each patient is individually clustered
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using the DP algorithm. Since the DP algorithm does not provide labels for

the clusters, the performance of the algorithm is first reported assuming the

availability of expert knowledge, wherein the label assigned to a cluster corre-

sponds to the label given to the dominant beat of the cluster by the expert. It

is seen that the DP clustering algorithm performs fairly well correctly cluster-

ing 98% of all the considered beats, excluding the F, S and Q type beats. The

performance of the algorithm was less accurate in the case of F type beats

because their morphology closely resembled those of N and V type beats.

Also, in the case of S and Q type beats, the lesser accuracy was due to the

fact that these beats represented a very less percentage of the total number of

available beats. Later, the application of a supervised Bayes ML method for

labeling the clusters is demonstrated for situations wherein expert knowledge

might be unavailable. It was seen that the classifier correctly labeled 98.3%

of the beats (S and Q type beats were not labeled because of non-availability

of sufficient training data). Using the clustering approach thus prevents the

loss of inter-patient variability. The algorithm can be made patient-specific

by performing the labeling using the clusters specific to each patient. The

performance of the proposed DP clustering algorithm is also shown to com-

pare favorably with the performance of the algorithms in [46,50,52] using the

performance measures defined in (7.33) - (7.36). However, the DP algorithm

offers the flexibility to adaptively learn the number of clusters from the ECG

data without relying on an a priori knowledge about the number of diseases

present in the given ECG data.

8.2 Future work

(a) It was assumed that the process noise in the proposed ECG models was white

Gaussian noise. This was a sufficient assumption because the real ECG signals

obtained from the MIT-BIH arrhythmia database did not contain manifesta-
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tions of noise due to electrode movement and muscle artifact [89]. If these

manifestations arise in the ECG data, the process noise can no longer be white

Gaussian. For example, in [32], muscle artifact noise was modeled as colored

noise by altering the slope parameter of the noise spectral density function.

These scenarios present possible extensions to our proposed models.

(b) An extension to the multiple model framework proposed in this work can

be made by including models that work with different measurement noise

variances. This can ensure the choice of the best model even when the signal-

to-noise ratio is reduced. For example, if the amount of noise in the ECG

signal increases suddenly for a short duration of time, the selected measure-

ment noise variance of the model might turn out to be lesser than the actual

amount of noise present in the data, and this might lead to undesirable track-

ing results. This can be possibly avoided by using adding an extra degree

of freedom in the model selection process, which enables the selection of the

model with the appropriate amount of model noise.

(c) The features obtained from the SMCMC filter with simultaneous model selec-

tion, both for classification of ECG signals using the Bayes ML classifier and

clustering of ECG signals using the DP algorithm are based on the noise-free

reconstructed ECG signals. This is because the algorithm adaptively creates

segments of data to work with the assumption of static parameters within a

window. Thus, at the beginning of each segment all the model parameters

including the point of reference for data samples are reinitialized. So, in order

to use the polynomial coefficient estimates from different segments as features,

estimates have to be adjusted to a common point of time reference, such as

the beginning of the beat. However, by performing this adjustment to the

reference time, and using the polynomial coefficient estimates as the features,

additional distinguishing features may be obtained, and this might even lead
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to a smaller and more efficient feature set.

(d) The DP algorithm used in this work employs a GMM and thus fits a Gaussian

distribution to each of the clusters. However, the use of other distributions

such as exponential or log-normal distributions can also be investigated.

(e) The clusters in the ECG data generated by the DP algorithm are labeled au-

tomatically using the Bayes ML method when expert knowledge is assumed to

be unavailable. The Bayes ML method uses the estimated cluster means from

the DP algorithm to identify the different clusters. However, the DP algorithm

also estimates the cluster covariances. This information can also used in clus-

ter identification by employing a method such as Kullback-Leibler divergence

to label the clusters. The use of a more powerful supervised algorithm such

as hidden Markov models etc. can also be explored. A combination of expert

knowledge and supervised learning can also be used to identify or label the

clusters. This would be especially helpful when enough training data is not

available to train the supervised learning algorithm, for certain beat types.

For such beat types, expert knowledge can be used to label the corresponding

clusters, whereas the supervised learning algorithm can be employed for other

beat types for which sufficient training data is available.
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