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ABSTRACT 

The focus of this investigation is on the optimum placement of a limited 

number of dampers, fewer than the number of blades, on a bladed disk to induce 

the smallest amplitude of blade response. The optimization process considers the 

presence of random mistuning, i.e. small involuntary variations in blade stiffness 

properties resulting, say, from manufacturing variability. Designed variations of 

these properties, known as intentional mistuning, is considered as an option to 

reduce blade response and the pattern of two blade types (  and   blades) is then 

part of the optimization in addition to the location of dampers on the disk. 

First, this study focuses on the formulation and validation of dedicated 

algorithms for the selection of the damper locations and the intentional mistuning 

pattern. Failure of one or several of the dampers could lead to a sharp rise in blade 

response and this issue is addressed by including, in the optimization, the 

possibility of damper failure to yield a fail-safe solution. The high efficiency and 

accuracy of the optimization algorithms is assessed in comparison with 

computationally very demanding exhaustive search results. 

Second, the developed optimization algorithms are applied to nonlinear 

dampers (underplatform friction dampers), as well as to blade-blade dampers, 

both linear and nonlinear. Further, the optimization of blade-only and blade-blade 

linear dampers is extended to include uncertainty or variability in the damper 

properties induced by manufacturing or wear. It is found that the optimum 

achieved without considering such uncertainty is robust with respect to it. 
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Finally, the potential benefits of using two different types of friction 

dampers differing in their masses (  and   types), on a bladed disk are 

considered. Both A/B pattern and the damper masses are optimized to obtain the 

largest benefit compared to using identical dampers of optimized masses on every 

blade. Four situations are considered: tuned disks, disks with random mistuning of 

blade stiffness, and, disks with random mistuning of both blade stiffness and 

damper normal forces with and without damper variability induced by 

manufacturing and wear. In all cases, the benefit of intentional mistuning of 

friction dampers is small, of the order of a few percent.  
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1 – INTRODUCTION 

1.1 Motivation 

Increasing the high cycle fatigue life of blades typically implies reducing 

the amplitude of their response in some particular resonant condition. A standard 

approach to achieving this reduction is to increase blade damping through 

dedicated devices such as underplatform dampers. However, blade designs that do 

not exhibit platforms, e.g. impellers and blisks, cannot typically benefit from such 

dampers and one may then have to rely on more complex and expensive damper 

solutions, such as coatings, constrained layers, etc. which have been proposed in 

the past. To mitigate the cost of following this approach, Avalos and Mignolet [1] 

assessed the possibility of damping the response of the disk using dampers on 

only a fraction of the blades on the disk. They demonstrated that dampers 

positioned on well-chosen blades could indeed notably reduce the response of the 

entire bladed disk. However, the effect of random mistuning, small variations in 

the blade properties occurring due to manufacturing or in-service wear, may be 

quite detrimental by localizing the response and preventing the flow of energy 

around the disk to the dampers. In such cases, it was found that introducing 

intentional mistuning using 2 different types of blades, denoted as   and  , 

increases the robustness to random mistuning of the bladed disk with a few 

dampers. However, for either of these strategies, i.e. dampers on a few blades 

with or without       intentional mistuning, it is of key importance to optimize 

the locations of the dampers and, as appropriate, the intentional mistuning pattern 

for these methods to be effective. 
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Since the focus of [1] was on introducing and assessing the concepts, a 

“brute force” optimization strategy was adopted in which all combinations of 

damper locations and intentional mistuning patterns were considered. The best 

one was then simply identified as the one giving the smallest maximum blade 

response on the disk. Such an approach, referred to in the sequel as the 

“exhaustive search”, is however not feasible in practice as the optimization 

problem is combinatorial in nature, i.e. the number of cases to be considered 

grows near exponentially with the number of blades on the disk. Moreover, the 

dampers considered in [1] were assumed to be: 

(i) linear while in fact novel dampers proposed in the literature often exhibit a 

definite/strong nonlinearity e.g. coatings, impact dampers, and particle 

dampers; see [2] for a nonlinear modeling of coatings. Further, the hard 

nonlinearity of friction dampers is well recognized, see [28-35].  

(ii) pure dashpots, i.e. the model ignored any stiffness component that may be 

present in the damper model which induces an intentional mistuning effect 

when dampers are present on blades. This issue would be encountered for 

a series of damper designs, such as constrained layer systems, e.g. see [3-

6], as well as coatings, see [2, 7-10]. 

(iii) acting on single blade, i.e. blade-alone dampers. Such an assumption is not 

appropriate for example with friction dampers which typically couple two 

consecutive blades. 

(iv) all identical with well-established properties. However, uncertain 

variations in these properties from one damper to another are expected due 
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to in-service wear and/or manufacturing limitations, e.g. variations in 

thickness of coatings, differences in mass of friction dampers. 

Accordingly, the focus of the present investigation is on extending the work of [1] 

by: 

(1) introducing dedicated, fast optimization algorithms for the selection of the 

damper locations and, when appropriate, intentional mistuning pattern 

leading to the smallest amplitude of blade response on the disk, 

(2) extending the optimization algorithm of (1) to allow for a nonzero 

probability of failure of the dampers to achieve a fail-safe damper 

placement strategy, 

(3) assessing the sensitivity of the optimum damper placement, intentional 

mistuning pattern (as necessary), and performance to uncertainty on the 

damper properties, and 

(4) validating the concepts on linear blade-blade dampers as well as dampers 

with nonlinear characteristics. 

Chapters 2 and 3 of this document are focused on the development and 

validation of dedicated optimization algorithms, i.e. objectives (1) and (2) above, 

focusing on linear blade-only dampers. Chapter 4 then focuses on the application 

of the optimization algorithms developed in Chapter 2 to nonlinear dampers 

(more specifically to underplatform friction dampers) as well as to the 

consideration of blade-blade dampers, linear or nonlinear. Additionally, the 

optimization of blade-only and blade-blade linear dampers is extended to include 

uncertainty/variability in the damper properties that arise during the 
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manufacturing and/or in-service. It is found that the optimum achieved without 

considering such uncertainty/variability is robust with respect to this uncertainty.  

Finally, Chapter 5 investigates the potential benefits resulting from using 

two different types of friction dampers on a bladed disk, i.e. intentional mistuning 

using friction dampers. In this scenario, every blade or platform is equipped with 

a damper of either type   or type  , with these two types differing in their 

masses. The benefit of this strategy is measured in comparison to using identical 

dampers of optimized mass on every blade/platform, and is dependent on the 

pattern of     dampers around the disk as well as the damper masses. It is 

accordingly desirable to optimize both the pattern and the damper masses to 

obtain the largest benefit. As a discovery effort, this optimization is accomplished 

here through an exhaustive search for all patterns and on a large grid of values of 

the two damper masses. Owing to the large computational cost of this effort, only 

single degree of freedom per blade models are assumed with both blade-blade and 

blade-ground dampers and only small blade counts are considered (6 and 12 blade 

models). Three particular situations are considered: disks tuned except for the 

arrangement of     dampers, disks that also exhibit random mistuning of the 

blades’ stiffness, and, finally, disks exhibiting random mistuning of both blades’ 

stiffness and of the normal forces of the dampers. This latter situation is 

considered to include the variability induced by manufacturing and wear. In all 

cases considered, the benefit of this intentional mistuning of friction dampers is 

either zero or small, of the order of a few percent, consistently with a single data 

point reported in the literature, see [48]. 
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1.2 Cyclic Symmetry, Unintentional and Intentional Mistuning 

Bladed disks found in turbomachinery rotors have the property of 

rotational symmetry, i.e. a rotation of the system by an angle       will leave the 

system unchanged, where     
  

 
  and      is the number of blades in the 

system. The modes of vibration of such a system consist of constant amplitude 

harmonic waves travelling forward and backward around the disk. The amplitude 

of vibration of two different blades at a certain resonance will be equal but will be 

out of phase with each other. Such a system is called a tuned system, and a series 

of analyses of a single sector can be used to obtain all the information that can be 

got from an analysis of the complete assembly (see [37]).  

However, manufacturing variability and in-service wear leads to small 

difference in blade to blade properties of these bladed disk systems. These small 

variations of the geometrical and structural properties of blades (e.g. mass, 

stiffness, natural frequencies, and mode shapes) are known as unintentional or 

random mistuning. Although this random mistuning may be relatively “small” (of 

the order of a few percent), it has been shown in the literature (see [38-42]) that 

the effect of these small variations on the forced response of the blades can be 

quite large, and can lead to a localization of the response on a few blades, whose 

amplitude of response would then be much larger than their tuned counterparts. 

This increase in response can lead to a significant decrease in the fatigue life of 

bladed disks. Since the presence of random mistuning also results in the breaking 
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of the symmetry of the structure, a sector analysis can no longer be used, and the 

fully assembled structure will have to be analyzed.  

In order to mitigate the undesirable effect of random mistuning, it has 

been proposed to intentionally design bladed disks not to be tuned, see [14]. The 

term intentional mistuning is typically used to refer to such a bladed disk design. 

It has been shown that intentionally mistuning a bladed disk can reduce the 

magnification of the forced response due to unintentional mistuning. Typically, 

the introduction of intentional mistuning would involve two types of blades with 

significant differences in properties (e.g.   and   blades with     and     

difference in stiffnesses or Young’s modulus when compared to the tuned 

stiffness) arranged in some, perhaps harmonic pattern around the bladed disk.  
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2 – FORMULATION AND VALIDATION OF DEDICATED 

OPTIMIZATION ALGORITHMS 

 

2.1 Bladed Disks Considered 

The optimization problem characteristics and algorithms discussed and 

implemented here are valid for any bladed disk model and any damper design, 

e.g. a full finite element model or reduced order model, with blade-alone or blade-

blade, linear or nonlinear dampers. Here, their exemplification is carried out on 

the two bladed disk models shown in Figure 1 and Figure 2. More specifically, the 

parameters of the single degree of freedom per sector model of Figure 1 were 

selected to be                 (the tuned or baseline value of the blade 

stiffness   ),                (leading to a damping ratio of approximately 

     on all modes), and             . Further, the blade to blade coupling 

stiffness was chosen to be                which falls within the transition of 

weak to strong coupling in which regime the peak of the response amplification 

due to mistuning occurs. Finally, the disk was assumed to support        

blades in all computations.  

 
Figure 1. Single degree of freedom per sector bladed disk model (all      are 

equal) 
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Equally considered was the REDUCE reduced order model (see [11]) of 

the blisk shown in Figure 2. Note that this model is a modification of the one 

considered in [12], obtained by reducing of the number of blades from 24 to 12. 

This reduced order modeling technique is based on a component mode approach. 

The disk motions are described by the finite element modes of the disk with 

massless blades, and the blade motions are described by the summation of the 

blade deflections of these disk modes plus the finite element cantilever blade 

modes with the blade fixed at the disk-blade interface. The first   cantilevered 

blade modes and a set of    disk modes were selected to build the reduced order 

model which thus involved               degrees of freedom. The 

damping in the bladed disk was assumed to be structural damping providing a 

damping ratio of approximately        on the modes of interest. Further, each 

blade was subject to two forces of unit magnitude, one in the axial direction and 

the other in the tangential direction at a 30 degree phase angle to the axial one at a 

node on the blade tip. Both of these forces exhibited the same frequency which 

was swept in the range of  [         ]    and the distribution of the force 

magnitudes around the disk was assumed in the form of engine orders   or  . 

Finally, for simplicity, the response of each blade was quantified by the 2-norm of 

the 8 corresponding generalized coordinates of the reduced order model. The 

consideration of a different measure of the blade response (e.g. norm of the 

physical displacements, maximum response, or maximum stress) is readily 

accomplished. 
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The consideration of specific resonances in the blisk example was guided 

by the blade disk coupling index (see [1, 13]). This index is defined as 

 
     

  (    )    ( )

(√      )  ( )
 (1)  

where    ( )  and    (    )  denote the     nodal diameter natural frequencies 

of the tuned bladed disks with blade Young’s modulus equal, respectively, to its 

design value and to this value multiplied by the factor (    ). Note that the 

increment of Young’s modulus affects only the blades and not the disk. Then, a 

coupling index        indicates a purely blade alone mode while        

corresponds to a disk mode with rigid blades. A plot of the natural frequencies 

and coupling indices as function of the nodal diameter are shown in Figure 2(c) 

for the 12 blade disk of Figure 2(a) and (b).  

Unless otherwise specified, the linear blade-alone dampers used were 

assumed to provide a damping equivalent to 9 times the naturally existing 

damping in the blades. Thus, the combined damping ratio of the blades with 

dampers is   . Further, while considering intentional mistuning in blade 

stiffness,   and   denote blades which have natural frequencies 5% lower and 5% 

higher, respectively, than those of the tuned disk. Finally, unintentional mistuning 

was introduced as a 1% standard deviation in stiffness/Young’s modulus of the 

blade. 
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(a) 
(b) 

(c) 

Figure 2. Blisk example: (a) blisk view, (b) blade sector finite element mesh, and 

(c) natural frequencies and coupling indices vs. nodal diameter plot (box showing 

frequency range of sweep).  
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2.2 The Three Optimization Problems 

The present investigation focuses on three particular optimization 

problems, referred to as the P1, P2, and P3 problems. They correspond to the 

placement of dampers on tuned or intentionally mistuned bladed disk with or 

without considering the effects of involuntary random mistuning. More 

specifically, 

 P1 Problem: optimization of the location of   dampers on a tuned disk to 

minimize the largest blade response on the disk in a frequency sweep 

without random mistuning. 

 P2 Problem: optimization of the location of   dampers on a tuned disk to 

minimize a specific response statistic when random mistuning is present. 

Here, the minimization of the 95th percentile of the maximum amplitude 

of blade response on the disk in sweep was selected. 

 P3 Problem: optimization of the location of   dampers and the     

intentional mistuning pattern to minimize a specific response statistics 

when random mistuning is present. Here also, the minimization of the 95th 

percentile of the maximum amplitude of blade response on the disk in 

sweep was selected. 

The location of blade-alone damper will be denoted by using the blade 

number on which the dampers acts and the location of a blade-blade damper will 

be denoted by the lowest blade number of the two blades joined by the damper. 
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The optimization problem can be summarized as below, with the primary 

design variables being the locations of the dampers on the bladed disk and the 

intentional mistuning pattern when necessary.  

The objective is then the minimization of the 95th percentile of the 

maximum blade response amplitude in a frequency sweep (as determined by the 

resonance and excitation conditions on the bladed disk) in the presence of random 

mistuning. 

Design Variables 

 

(1) Locations of N dampers                 

(2) Intentional mistuning pattern                        

                      

            

 

Objective 

 

 

 

Constraints 

 

(1) Frequency range of interest Ωlower ≤ Ω ≤ Ωupper 

Ωlower and Ωupper defined according to 

resonance excitation condition on bladed 

disk 

 

2.3 Optimization Problem Characteristics 

The three optimization problems, P1, P2, and P3, defined above are all 

combinatorial in nature, i.e. they involve a finite number of possible solutions that 
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rapidly grow with the number of blades on the disk. Considering first the 

placement of the   dampers on a   bladed disks, there exist in general 

 
(
 
 
)  

  

  (   ) 
 (2)  

different combinations of damper positions. When the base bladed disk is tuned, 

there exist rotationally equivalent configurations of dampers which can be 

eliminated by enforcing that a damper be always located on the first blade. 

Accordingly, the number of combinations is reduced to 

 
(
   
   

)  
(   ) 

(   ) (   ) 
 (3)  

Even the lower value given by Eq. (3) grows very rapidly with the number   of 

blades: it is linear in   for 2 dampers, quadratic in this parameter for 3 dampers, 

and so on. Further, using Stirling’s formula, for a constant fraction   of blades 

with dampers, i.e.       , one obtains the equation below which grows 

exponentially with the number of blades on the disk. 

 
(
 
 
)  

  

√   (   ) 
       

 

  (   )   

      (   )

 (4)  

The consideration of intentional mistuning leads to an increase in the 

number of solutions by a factor approximately equal to the number of blade 

patterns, not considering the occasional existence of a few solutions that are 

rotationally equivalent. For the two blade type intentional mistuning considered 

here, this latter number has been estimated in [14] as    ⁄ . 
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Given the very large number of possible configurations of dampers, and 

    blade pattern when considering intentional mistuning, it is generally not 

feasible to optimize the placement of the dampers through an exhaustive search. 

Thus, a numerical optimization algorithm will need to be employed. In assessing 

which specific algorithm should be considered, it is useful to estimate the cost of 

a function evaluation and the complexity of the design space. 

The evaluation of a particular configuration of dampers, and intentional 

mistuning pattern when appropriate, requires the estimation of the corresponding 

95th percentile of the maximum amplitude of blade response in a frequency 

sweep which is obtained considering random mistuning in the system. Thus, a 

Monte Carlo simulation (1,000 samples were used for the blisk model and 10,000 

for the single degree of freedom model) of the full bladed disk must be carried out 

for each damper/blade pattern configuration. A convergence analysis was carried 

out, see Appendix A, and this number of Monte Carlo simulations was found to 

be adequate to characterize the response of the system well. Per se, one or a few 

such computations is now considered routine using reduced order modeling 

techniques but as a function evaluation within an optimization code, this qualifies 

as “expensive”. In this regard, depending on the reduced order modeling strategy 

selected, the reduced order model modal matrices of the entire disk may need to 

be recomputed for each dampers/blade pattern configuration. This is not 

necessary with the approach selected here (as with other methods, e.g. see [15]), 

and only a reassembly of stiffness and damping matrices was necessary for each 

dampers/blade pattern configuration before the response was evaluated. 
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Another key factor in the selection of a particular optimization algorithm 

is the complexity of the design space, i.e. the number of local extrema present and 

their respective values. This information is, in general, very difficult to estimate 

accurately unless exhaustive search results are available. Fortunately, such data 

has been generated (partially in [1]) for a few conditions of the bladed disks of 

Figure 1 and Figure 2. In this data, a local optimum was recorded when any shift 

by one blade of any single damper or the flip of any blade   into blade   or vice 

versa led to an increase in the amplitude of blade response considered (maximum 

over the disk for the P1 problem and the 95th percentile of this maximum for the 

P2 and P3 problems). The results of this analysis are shown in Figure 3 and 

provide both the number of local minima (curves labeled “Num. Min.”) and this 

number as a fraction of the number of possible configurations (curves labeled 

“Frac. Min.”) averaged over a set of P1, P2, and P3 analyses. For further clarity, 

the same results are shown in Figure 4 providing both the number of local minima 

(curves labeled “Num. Min.”) and the total number of possible configurations 

(curves labeled “Total Cases”) averaged over the same set of P1, P2, and P3 

analyses. Note the logarithmic Y-axis in Figure 4(c). 

While the number of these local minima (which includes rotationally 

equivalent optima for the P1 and P2 problems) is already significant for the P1 

and P2 problems, e.g. up to 140 on the blisk, it is even larger for the P3 problem 

due to the increased complexity of intentionally mistuned disks. Note from Figure 

3(b) and Figure 3(c) that the number of local minima may depend significantly on 

the resonant condition and the bladed disk model considered. To complete this 
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perspective, it is necessary to assess the penalty associated with reaching a local-

only minimum. To support this assessment, shown in Figure 5 are the minimum, 

average, and maximum amplification factors obtained for the P1, P2, and P3 

problems as a function of the number of blades. Clearly, reaching a local-only 

minimum may lead to a large penalty, e.g. an increase in amplitude of blade 

response up to 50%, although it is often a much smaller penalty. 
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(a) 

(b) 

(c) 

Figure 3. Number of local minima vs. number of dampers on (a) a tuned disk 

(P1 problem), (b) a randomly mistuned disk (P2 problem), and (c) an intentionally 

mistuned disk (P3 problem). Blisk reduced order model, raw number of minima 

(“Num. Min.”) and fraction of the total number of possible combinations 

(“Frac. Min.”).  
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(a) 

(b) 

 (c) 

Figure 4. Number of local minima vs. number of dampers on (a) a tuned disk 

(P1 problem), (b) a randomly mistuned disk (P2 problem), and (c) an intentionally 

mistuned disk (P3 problem). Blisk reduced order model, raw number of minima 

(“Num. Min.”) and total number of possible combinations (“Total Cases”). 
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 (a) 

 (b) 

 (c) 

Figure 5. Minimum, average, and maximum amplification factors of local minima 

vs. number of dampers on (a) a tuned disk (P1 problem), (b) a randomly mistuned 

disk (P2 problem), and (c) an intentionally mistuned disk (P3 problem). Blisk 

reduced order model.  
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2.4 Basic Optimization Strategy 

The discussion of the previous section has demonstrated that: 

(1) there is a large number of local optima to each P1, P2, and P3 optimization 

problem with largely different amplitudes of blade response. 

(2) the cost of a function evaluation is large for the P2 and P3 problems owing 

to the Monte Carlo simulations they involve. 

The property (1) indicates that local search algorithms, e.g. steepest difference, 

will typically not be successful unless they are started at initial conditions close 

enough to the global optimum. Otherwise, they will converge to one of the many 

local optima. There are a series of algorithms, e.g. simulated annealing, genetic 

algorithms, which are known to perform well in the presence of multiple local 

optima but all of these require many function evaluations. In view of property (2), 

they are thus poorly suited for the present task as they are too computational 

expensive, at least for the P2 and P3 problems. In this light, the present 

optimization problems would benefit from dedicated approaches. Hence, a two-

step algorithm was developed for the solutions of the P1, P2, and P3 problems in 

which: 

 Step 1: solve a similar yet simpler optimization problem using standard 

algorithms. 

 Step 2: proceed with a local search through a steepest descent strategy 

from a set of initial conditions resulting from the first step.  

In this light, the first step of the algorithms aims at producing “good” initial 

conditions, i.e. “close” to the optimum solution. The local search is accomplished 
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by assessing the change in amplitude of blade response induced by a shift by one 

blade of any single damper or the flip of any blade   into blade   or vice versa. 

The steepest difference is then the one leading to the largest decrease in blade 

response of all shifts and flips. This process is repeated until a minimum is 

reached for every initial condition selected and the best (lowest maximum 

response) of the converged optima is chosen as the desired solution. To minimize 

the computational effort, random mistuning, when present, was considered only in 

step 2. 

The details of the corresponding algorithms for the P1, P2, and P3 

problems are given in the ensuing sections in which validations with available 

exhaustive search data has also been carried out. 

 

2.5 P1 and P2 Two Step Optimization: Formulation and Validation 

The validation is summarized by two key numbers: the percentage of 

cases in which the optimization algorithm correctly converged to the global 

minimum and the average relative error for the cases in which the global 

minimum was not reached. 

The first step of the P1 optimization algorithm (see Figure 6 for flowchart) 

is the construction of one or several tentative configurations of the   dampers 

around the disk. More specifically, a sequential construction of these 

configurations is proposed. Assuming that a good or optimum configuration of 

    dampers is known, it was suggested that a tentative initial condition for the 

  damper problem be obtained from one of the following rules: 
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(1) Rule 1: place the new damper on the blade that has the highest response 

without it but with the other dampers. 

(2) Rule 2: place the damper on the blade that leads, after its insertion, to the 

lowest highest blade response on the disk. 

(3) Rule 3: place the damper on the blade that leads, after its insertion, to the 

lowest average blade response on the disk. 

A key advantage of the sequential construction of the solutions is that it 

eliminates the combinatorial increase of the search space with the number of 

dampers. In fact, the computational effort associated with the placement of one 

additional damper decreases with increasing number of dampers. Its drawback is 

clearly that if the predicted configuration of     dampers is poor, it is likely 

that the one deduced from it for   dampers will also be poor. 

This issue has been addressed here by performing the second step of the 

algorithm not simply when the desired number of dampers   has been reached 

but rather more often –  for every         dampers. That is, position   dampers 

sequentially according to rule 1, 2 or 3, then proceed with a local search with this 

solution as initial condition. The optimum solution with   dampers thus obtained 

serves as initial condition to the sequential construction of                  

dampers. Proceed with a local search with the solution at    dampers as initial 

condition and use the optimum solution thus obtained as the initial condition to 

the sequential construction of                 dampers and so on. 

To obtain several initial conditions for the local search of step 2, each of 

the 3 rules was considered in the P1 problem leading to 3 solutions processed 
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through local search in step 2. The predicted arrangement of dampers is then, of 

the three converged solutions, the one which yields the lowest highest blade 

response  

The above algorithm was applied here to both models of Figure 1 and 

Figure 2 with both       and       and the results, see Table 1, clearly 

demonstrate that the algorithm consistently finds either the global minimum or a 

local one with a value very close to it. Note that the updating scheme, i.e. using  

   , does not always lead to a better solution, e.g. in the blisk case, after the 

local search is performed. 

The first step of the P2 optimization algorithm (see also Figure 6 for 

flowchart) is identical to the one of P1 problem as random mistuning is only 

considered in the second step, i.e. the local search. Thus, the initial conditions 

selected here were the optimum solution obtained for the P1 problem with the 

same number of dampers, i.e. the sequential construction with possible updating 

discussed above is only applied to the P1 problem. Its application to both the 

single degree of freedom per sector and blisk reduced order models consistently 

gave an excellent prediction of the global optimum, see Table 1. To support the 

benefits of the proposed P1 and P2 algorithms, the computational cost, i.e. the 

number of response evaluations, was determined for all cases analyzed as absolute 

numbers but also as percentages of the exhaustive search. The results of this 

analysis without considering updating, i.e. with       , are presented in Figure 

7, averaged over all cases analyzed. Note in both of these figures that the number 

of response evaluations does increase with increasing number of dampers (up to  
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      ) but much less rapidly than the exhaustive search, see Eq. (3), leading 

to a rapid reduction of the cost as a percentage of the exhaustive search. As   

increases past    , the computational costs, both of the algorithm and of the 

exhaustive search, decrease as the number of combinations becomes smaller 

finally reaching     for       . 
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Figure 6. Flowchart of the optimization problems. 
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Table 1. Performance of the optimization algorithms. 

 
P1 

D=1 

P1 

D=N 

P2 

D=1 

P2 

D=N 

P3 

D=1 

P3 

D=N 

S 

D 

O 

F 

Percentage 

of time the 

global min 

found 

100% 85% 100% 100% 67% 50% 

Average 

error when 

local min 

not found 

- 4.9% - - 1.5% 2% 

Maximum 

error when 

local min 

not found 

- 9.7% - - 2.2% 3% 

B 

L 

I 

S 

K 

Percentage 

of time the 

global min 

found 

91% 94% 85% 79% 66% 50% 

Average 

error when 

local min 

not found 

5.5% 3.1% 1.9% 2% 1% 0.3% 

Maximum 

error when 

local min 

not found 

10% 4.2% 5.8% 5.8% 1.6% 0.9% 

 

  



 

27 

 

 

 (a) 

(b) 

Figure 7. Computational cost of the (a) P1 and (b) P2 optimization algorithms vs. 

number of dampers, blisk and single degree of freedom per sector models. Cost 

measured by the raw number of steps and its fraction of the exhaustive search. 
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2.6 P3 Two Step Optimization: Formulation and Validation 

In addition to the three rules proposed in the previous section for the 

tentative placement of dampers, the first step of the P3 algorithm requires the 

selection of one or several intentional mistuning patterns. Such a problem has 

been addressed in [14] which focused on the selection of the best intentional 

mistuning without any dampers. In fact, a two-step approach was formulated and 

validated there that is similar to the one proposed here in which the second step is 

a local search. 

As first step in [14], two different options referred to in the sequel as step 

1(a) and step 1(b) were suggested. In step 1(a), leading to the so-called subspace 

algorithm, two or more consecutive sectors were constrained to vary in relation 

with each other. For example, two consecutive sectors could be restricted to be 

the same, either both   (  ) or   (  ). Alternatively, they could be constrained 

to be different generating the choices    and   . This approximate problem is 

similar to the one to be solved (the full problem) but with a smaller number of 

blades/sectors. This reduction in the number of sectors leads to a dramatic 

reduction in the computational cost which is approximately proportional to     ⁄   

where   is the number of sectors, i.e.        . The initial conditions to the full 

problem are thus the best solutions to the one with the constrained patterns which 

can be obtained by an exhaustive search. If the number of sectors is still too large 

to permit an exhaustive search, 3 or more blades can be linked leading to choices  

       ,           ,         , etc. 
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In step 1(b), random mistuning is not included and thus the computational 

cost is reduced by not carrying out the Monte Carlo simulation, performing only 

one computation per intentional mistuning pattern. If necessary, the solution to 

this problem can be obtained by a two-step approach based on the subspace 

algorithm thereby combining the two approaches for an even more efficient 

strategy. Given the very successful validation of these two algorithms in [14], 

they were considered here to obtain the intentional mistuning pattern and the 

location of the dampers. They were used as described above only for the 

intentional mistuning pattern. The placement of the dampers was obtained, for 

each pattern of the subspace for step 1(a) or full space for step 1(b), sequentially 

by placing one damper first, then a second, third, etc. according to rules 1, 2, or 3 

above. Further, updating every   dampers can also be performed; see Figure 6 for 

flowchart. 

Two minor variations were further considered. In the “ordered” variation, 

the best 5 intentional mistuning patterns obtained in step 1 were used as initial 

conditions while in the “no neighbor” variation, the best 5 patterns which are not 

direct neighbors were used. In this context, two solutions are direct neighbors if 

they differ by a switch of either one blade or the shift of one damper by one blade. 

These algorithms were validated in comparison with the exhaustive search 

data of [1] available for 1, 2, and 3 dampers for both models of Figure 1 and 

Figure 2; see Table 1 for the subspace method (step 1(a)). These results were 

obtained using the best solutions obtained by using the step 1 results of both  

       and         subspaces, so that 10 initial conditions were effectively 
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used. Further, only rule 2 was applied for the positioning of the dampers, it was 

found to be consistently better than rule 1. Finally, the “no neighbor” option was 

used as it led to a better final solution, almost consistently so, than the ordered 

one. 

Having successfully validated the step 1(a) based approach it was of 

interest next to assess its computational cost measured by the total number of 

function evaluations carried out (averaged over the all cases treated for each 

number of dampers). This cost is displayed in Figure 8 both in absolute numbers 

and as a fraction of the cost involved in the exhaustive search. This ratio can be 

considered as the computational efficiency of the approach. For 3 dampers, the 

approach leads to a reduction of the computation by a factor of over 100. In fact, 

this approach permits the consideration of a much large number of blades and 

dampers than was considered in [1] and some of these results are presented in the 

next few sections. 

Having validated and assessed the two-step algorithm based on step 1(a), 

it is now desired to proceed similarly with step 1(b), that is the algorithm in which 

the initial conditions used for the steepest descent search are obtained from the 

solution of the full problem but without random mistuning. The computational 

effort associated with this preliminary solution is thus smaller than the one for the 

full problem by the number of simulations used to capture the random mistuning 

effects, which is typically of the order of 100-1,000. When the number of blades 

on the disk is large, the subspace approach will typically lead to a larger saving 

because the reduction of the number of sectors, from   to        , will 



 

31 

provide a reduction of computations larger than 1,000. Nevertheless, this second 

approach for the optimization of the intentional mistuning pattern and damper 

location achieves generally good results but not as good as those obtained with 

the subspace approach used previously. 

 

 
Figure 8. Computational cost of the subspace method based on step 1(a) vs. 

number of dampers, blisk and single degree of freedom per sector models. Cost 

measured by the raw number of steps and its fraction of the exhaustive search. 
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3 – APPLICATION TO LINEAR BLADE-ONLY DAMPERS 

The availability and reliability/accuracy of the optimization algorithms 

presented in the previous chapter permits the extension of the results presented in 

[1] to a larger number of dampers than three and to assess the benefits of 

introducing the dampers but also of the benefits of using intentional mistuning. 

The corresponding results are discussed below. 

 

3.1 P3 Problem with More Than Three Dampers 

It was first desired to extend the P3 problem to a number of dampers 

larger than three which was the maximum that could be carried out with the 

exhaustive search. To this end, the subspace algorithm based on step 1(a) was 

used for both the blisk and single degree of freedom model. Shown in Figure 9 

and Figure 10 are typical plots of the 95th percentiles of the amplification factor 

divided by the corresponding value obtained without any damper for the single 

degree of freedom per sector model and the blisk respectively. Also shown on 

these figures are the solutions of the P1 and P2 problem reported in [1] also 

normalized by their own values (maximum amplitude for P1 and 95th percentile 

of max response for P2) obtained without dampers. Note that the solutions for the 

P3 problems are normalized with respect to the 95th percentile of maximum 

response of the P2 problem without dampers. 

The steady decrease of the response with increasing number of dampers is 

clearly shown on these figures for all options, intentionally tuned or mistuned. 

The benefits of using intentional mistuning can be seen by comparing the red 
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lines with the crosses. In the single degree of freedom per sector model, only a 

small improvement is achieved by varying the blade properties by choosing     

patterns. However, when analyzing the blisk model, a large improvement is 

observed when using intentional mistuning. This finding suggests that the benefits 

of using intentional mistuning in addition to optimized damper locations may be 

case dependent. The availability of the fast optimization approach developed and 

validated here makes the assessment of this benefit easier. 
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 (a) 

(b) 

Figure 9. Normalized peak response vs. number of dampers for different options, 

single degree of freedom per sector model, (a) engine order 2 excitation, 

(b) engine order 4 excitation.  
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 (a) 

 (b) 

Figure 10. Normalized peak response vs. number of dampers for different options, 

blisk model, (a) engine order 1 excitation, (b) engine order 2 excitation. 
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3.2 P2 Problem for Various Coupling Stiffnesses 

To assess the benefits of using dampers on only a few blades of 

intentionally tuned but randomly mistuned disks, it was desired to extend the 

investigation of this issue conducted in [1] focusing more specifically on the 

number of dampers needed to achieve a specific reduction in the peak response. 

Here the 95th percentile of the maximum amplitude of blade response on the disk 

in sweep was considered with a Monte Carlo analysis used to quantify random 

mistuning.  

Clearly, the level of blade-to-blade coupling in the system around the 

resonance of interest is a key factor in the number of needed dampers. The 

stronger the coupling is, the smaller the number of dampers should be. The single 

degree of freedom per sector model was first considered here for different values 

of the coupling stiffness. To help in the modeling of a particular family of modes 

by such a model, the natural frequency vs. number of nodal diameter plot was first 

generated, see Figure 11. Then, an exhaustive search was conducted to place 1, 2, 

3, etc., dampers on the disk to minimize the peak response without intentional 

mistuning and the ratio of the peak response to the one obtained for the disk 

without damper was computed. This process was repeated for the set of      

values of Figure 11 and for engine orders 2 and 4. Shown in Figure 12 are the 

contour plots of the reduction in amplitude obtained vs. coupling stiffness and 

number of dampers obtained for engine order 2 and 4. It can be observed that 

these two engine orders behave quite similarly. The same data is also shown in 

Figure 13 in a format similar to that of Figure 9 and Figure 10. These results 
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confirm and quantify the expectation that the number of dampers needed reduces 

as the blade-blade coupling level increases. 

 

 

 
Figure 11. Frequency vs. nodal diameter plot, single degree of freedom per sector 

model for various coupling stiffnesses    . 
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(a) 

(b) 

Figure 12. Reduction in peak response (in percentage) vs. number of dampers and 

coupling stiffness, single degree of freedom per sector model, (a) engine order 2, 

(b) engine order 4 excitation.  
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(a) 

(b) 

Figure 13. Normalized peak response vs. number of dampers for different values 

of coupling stiffness, single degree of freedom per sector model, (a) engine order 

2, and (b) engine order 4 excitation. 
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3.3 Damper Efficiency as a Function of its Damping Level 

The original discussion of [1] demonstrated the existence of an optimum 

value of the damping coefficient of the damper for the reduction of the blade 

response. This optimum resulted from two effects of the damper the first of which 

is positive and it is the dissipation of energy. The second one, is negative, and is 

the localization of the response induced by the non-uniform distribution of 

dampers which thus reduces the energy transfer around the disk necessary to 

decrease the response of all its blades. The combination of these effects had been 

studied in [1] by analyzing the reduction of the maximum amplitude of response, 

as a function of the ratio       of the single degree of freedom per blade sector 

model. Owing to the computational demand associated with the exhaustive search 

for the P2 and P3 problems, this analysis had been carried out in [1] only for the 

P1 problem, see Figure 14. These results can now be extended to the P2 and P3 

problems as well, see Figure 15 for the latter case. 

It can be noted that the appearance of the curves shown in Figure 14 and 

Figure 15 (for               ) are very similar, they both exhibit a rapid drop 

at the beginning to plateau at a rather large value of       which appears to be 

quite similar, approximately 20, for both problems and for 1, 2, or 3 dampers 

present. A key difference between them however is the ratio in amplitude 

achieved at the optimum       which is notably smaller for the P1 problem than it 

is for the P3, e.g. 0.4 for the P1 problem vs. 0.77 for the P3 one for 3 dampers. 

This result is however expected as random mistuning was shown in [1] to 

decrease the efficiency of using only a few dampers on the disk. 
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This discussion tentatively suggests that the problem of placement of 

dampers on an otherwise tuned disk (P1 problem) may be used to assess the 

efficiency of placing dampers on selected blades, even though mistuning would in 

general be present. 

 

 

 

 
Figure 14. Amplification factor of the maximum blade response vs. damper 

coefficient,    ,  single degree of freedom per sector model, and for 1, 2, and 3 

dampers of optimized locations. P1 problem,     (from [1]). 
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(a) 

(b) 

Figure 15. 95th percentile of the amplification factor of blade response vs. damper 

coefficient,    ,  single degree of freedom per sector model, and for 1, 2, and 3 

dampers of optimized locations. P3 problem, (a)    , (b)    .  
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3.4 Optimization with Nonzero Probability of Damper Failure 

The results presented in the previous section suggest that a significant 

reduction in the forced response of bladed disks may be expected as a result of the 

combination of intentional mistuning and selected dampers. Then, it could be 

argued that the reverse also holds, i.e. that if the failure of a damper occurred, a 

significant increase in response would take place and that the safe operation of the 

bladed disk might be at risk. To avoid such an outcome, it was proposed here that 

the optimization process account for the possibility of one or multiple failures and 

the associated increase in blade response. More specifically, a probabilistic 

optimization strategy similar to the one carried out in [17] for the optimal 

positioning of strain gages on blades will be formulated. This strategy proceeds as 

follows. 

The failure of a damper is a random event that affects the distribution and 

magnitude of blade amplitudes around the disk. Thus, the maximum amplitude of 

response corresponding to a particular design (i.e. a given intentional mistuning 

pattern and specified locations of the dampers) can be viewed as a random 

variable the value of which depends on the state, failed or intact, of the dampers. 

Accordingly, it is no longer appropriate to proceed with a minimization of the 

maximum amplitude of response in the absence of failure. Rather, one should 

minimize some statistics of the random maximum amplitude of response that 

encompasses all situations, failure or lack thereof of the dampers. 

Two approaches can be followed to implement such a concept. The first is 

to include the failure potential as part of the simulation process necessary to 
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account for the random mistuning. That is, in addition to generating random 

properties of the blades, the state of the dampers, failed or intact, will also be 

simulated according to the stated probability of failure, and the corresponding 

response will be evaluated. Then, the usual statistics, i.e. the 95th percentile here, 

of the response can be evaluated and their minimization performed with respect to 

the location of dampers and intentional mistuning pattern. 

Another, similar but not quite identical, approach is to recognize that the 

potential failure of the dampers creates a series of scenarios differing by how 

many and which dampers remain active. A probability can be associated with 

each scenario and the expected value over the ensemble of scenarios of a cost 

function  ( ) of the random amplitude   can be determined. Then, denoting by   

the probability of failure of a damper and assuming that the state (failed/intact) of 

different dampers are statistically independent random variables, it can be shown 

that 
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(5)  

where   [ ]  is the expected value operator. Further,   ( ( ))  denotes the cost 

function in the absence of any damper failure. Similarly,   (  
(   ))  is its value 

but for the disk in which the  th damper has failed. Next,   (   
(   ))  is the cost 

function after the  th and  th dampers have failed, and so on. 
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 It should be noted that Eq. (5) has been obtained under the assumption of 

an equal probability of failure for all dampers but it is readily extendable to the 

situation where this probability varies with damper, e.g. is dependent on either the 

blade (  or  ) on which it is installed. 

The application of Eq. (5) is limited to well specified cost functions  ( ), 

although not necessarily moments, but for   ( )       it would yield the mean 

and for  ( )        the mean square value. Using these two quantities, one can 

then easily obtain the mean plus twice or thrice the standard deviation which 

could be used as the representative amplitude for the optimization process. 

Each of the above two options to incorporate the probability of damper 

failure in the optimization process has its advantages and drawbacks. The 

incorporation of the probability of failure directly in the Monte Carlo simulation 

is convenient and permits the estimation of any statistics of the amplitude of blade 

response, e.g. mean, 95th percentile. Unfortunately, it is more challenging to use, 

e.g. larger number of samples to be considered, when the probability of damper 

failure becomes very small. This is not an issue with the formulation based on 

Eq. (5) in which the dependence on      is explicit. However, Eq. (5) is not 

applicable to the 95th percentile of the amplitude, used so far, as this quantity 

cannot in general be expressed as an expected value of a function of the random 

amplitude. 

For the probabilities of damper failure considered here, 0.01 or higher, the 

capture of failure events has not been found to be a problem with the simulation 

option and thus this approach has been followed as it permits the consideration of 



 

46 

the 95th percentile and thus a direct comparison with prior results. Then, shown in 

Figure 9 and Figure 10 is the 95th percentile of the maximum blade response 

obtained for the models of Figure 1 and Figure 2 respectively for probabilities of 

dampers failure of 0.01, 0.03 and 0.10, plotted with the results obtained without 

damper failure. As expected, an increase in the 95th percentile of the response is 

obtained when dampers can fail. The significance of this increase is however 

variable, noticeable for the one-degree-of-freedom per blade model but quite 

small for the blisk model. In fact, it seems the effect of the damper failure is 

correlated with the importance of the intentional mistuning effect: when the latter 

is strong (i.e. the blisk case), the damper failure only affects minimally the 

response. This observation seems to indicate the robustness of the intentional 

mistuning pattern. 

The probability of damper failure may be difficult to estimate in practical 

situations and thus it is of interest to assess how well the solution optimized 

without considering the possibility of this event performs when failure does take 

place. This analysis was performed first for the single degree of freedom per 

sector model, see Figure 16. Clearly, there is a notable increase in 95th percentile 

of response that results from an unexpected/unaccounted for probability of failure, 

compare the curves in blue to those in red. In such a situation, it seems important 

to account for the possibility of damper failure. 

In the case of the blisk model, however, the optimum solutions obtained 

with or without the possibility of failure were found to be same when this 

probability is small. This result is not unexpected in view of the close matching of 
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the results of Figure 10 for different probabilities of failure (0, 0.01, 0.03, and 

0.10). For this model, it was decided to plot the evolution with the probability of 

failure of the optimum solution, see Figure 17. Note on these figures that the 

regular dots correspond to the solution obtained without damper failure. The 

solutions associated with the circled dots exhibit the same intentional mistuning 

pattern as the solution without damper failure but with different locations of 

dampers. Finally, the solutions associated with the squared dots are different in 

both intentional mistuning pattern and damper location from the one obtained 

without damper failure. It is seen that for a probability of failure below 0.15, the 

damper failure affects neither the optimum intentional mistuning pattern nor the 

optimum locations of the dampers. These locations appear to be the first one to be 

affected by the probability of failure. 
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(a) 

(b) 

Figure 16. Comparison of solutions vs. number of dampers, single degree of 

freedom per sector model, (a) engine order 2 excitation, and (b) engine order 4 

excitation.  
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(a) 

(b) 

Figure 17. Comparison of solutions vs. number of dampers, blisk reduced order 

model, (a) engine order 1 excitation, and (b) engine order 2 excitation. 
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3.5 Validation of Optimization Algorithms on Larger Bladed Disk Models 

Bladed disks used in industry typically carry a larger number of blades 

than the models that were used in the previous sections. Therefore, in order to 

assess the validity of the developed optimization algorithm on bladed disks with 

larger number of blades, four further validation cases were considered. The 

assessment was done in two parts, one to test the validity of the algorithm in 

finding the correct/optimum intentional mistuning pattern/s, and the other to test 

the validity of the algorithm in finding the correct/optimum damper locations on 

the disk. 

The algorithm was first applied to an industrial 17 blade impeller, and an 

optimization of the intentional mistuning pattern was carried out both without and 

with random mistuning present in the system. This impeller shows a different 

geometry and hence a different level of blade to disk coupling than the two 

systems considered previously and is a good test case for the algorithm.  

The identification of the best intentional mistuning pattern without the 

presence of random mistuning was considered first. To aid in the comparison, an 

exhaustive search of the 7712 intentional mistuning patterns of the 17 blade 

impeller was carried out and the best five patterns obtained are tabulated in Table 

2 that follows. The optimization algorithm was then applied using the subspace 

strategy with a constraint on two consecutive sectors. Table 2 shows also the 

results of the subspace strategy. It can be observed that the subspace strategy is 

successful in converging to the optimum solution as found by the exhaustive 

search. In fact, the algorithm converges successfully to one of the top five 
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optimum patterns in a large number of cases, and in the cases where it does not 

converge to the top five solutions, the error margin between the solution found 

and the optimum is reasonably small (of the order of a few percent for most 

cases).  

 

Table 2. Performance of optimization algorithms on 17 blade industrial impeller 

Full Search AB/BA Subspace AA/BB Subspace 

Pattern Amp. 

Factor 

Pattern Amp. 

Factor 

Pattern Amp. 

Factor 

C6A2C3A

CAC2A 

0.8566 C6A2C3A

CAC2A 

0.8566 3C5A2C7

A 

0.8886 

3C7A2CA

C2A 

0.8640 CAC2AC

AC3ACA

C3A 

0.8848 3C5A2C7

A 

0.8886 

CAC2AC

AC3ACA

C3A 

0.8848 CAC2AC

AC3ACA

C3A 

0.8848 C4A3C3A

5CA 

0.9451 

3C5A2C7

A 

0.8886 C2AC2A

CA2CAC

AC3A 

0.9372 4C7A2C4

A 

0.9615 

2C6AC4A

CACA 

0.8887 C3A2CA

C2A4C3A 

0.9789 17C 1.0000 

 

 

The optimization algorithm was then used to optimize the intentional 

mistuning pattern to lead to the minimum blade response in the presence of 

random mistuning (here considered as a 2 percent standard deviation on the 

Young’s Modulus of the blade). The five best intentional mistuning patterns 

without random mistuning were considered as initial conditions for the algorithm, 

and the random mistuning was then included as part of the local search. The 
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results of the optimization are shown in Figure 18, which shows the amplification 

factor versus the level of mistuning. Also shown in the figure is the tuned system 

as well as the best three intentional mistuning patterns without random mistuning. 

It can be observed that the converged solutions of the optimization with random 

mistuning show higher response when there is no random mistuning in the 

system, but have a considerably smaller level of response at 2 percent of random 

mistuning where they were optimized. The results show the validity of the 

optimization algorithm in predicting the intentional mistuning patterns for models 

with a larger number of blades. 

 

 

Figure 18. Normalized peak response vs. level of random mistuning, 17 blade 

industrial impeller model.  
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In order to test the validity of the optimization algorithm in finding the 

correct/optimum damper locations on larger bladed disk models, three validation 

cases were considered: a 24 blade blisk, a 37 blade blisk and finally a 49 blade 

blisk. Considered here was the REDUCE reduced order model (see [11]) of the 

blisk with a modification (an increment of the number of blades from 24 to 37 and 

49) of the one considered in [12].  

Shown below are the model and results of the performance of the 

optimization algorithm for the 24 blade blisk model. The results were compared, 

as before, to an exhaustive search of all possible damper locations on the bladed 

disk. Only the P1 and the P2 problems were considered for this effort, with a 

limited number of full exhaustive search validations, due to the computationally 

demanding nature of the problem. Similar computations were carried out with 

both the 37 and 49 blade models, but without a full exhaustive search in the 

interest of time. The results show expected trends, and support the validity of the 

application of the optimization algorithm developed on larger models. 
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(c) 

Figure 19. 24 blade blisk example: (a) blisk view, (b) blade sector finite element 

mesh, and (c) natural frequencies vs. nodal diameter plot (box showing frequency 

range of sweep).  
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(a) 

  
(b) 

Figure 20. Normalized peak response vs. number of dampers for different options, 

24 blade blisk model, (a) P1 Problem, (b) P2 Problem. 
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(a) 

  
(b) 

Figure 21. Normalized peak response vs. number of dampers for different options, 

37 blade blisk model, (a) P1 Problem, (b) P2 Problem. 
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(a) 

  
(b) 

Figure 22. Normalized peak response vs. number of dampers for different options, 

49 blade blisk model, (a) P1 Problem, (b) P2 Problem.  
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4 – APPLICATION TO LINEAR BLADE-BLADE AND NONLINEAR 

FRICTION DAMPERS 

 

4.1 Linear Blade-Blade Dampers 

The original effort of [1] and the results of the previous chapter all focused 

on dampers acting on single blades, i.e. blade-alone or blade-disk dampers. There 

are however dampers (friction dampers most notably) that act between two blades 

and the question arises whether similar results as obtained for blade-alone 

dampers would be observed for blade-blade dampers. 

Accordingly, such dampers were considered and the first task was the 

determination of their performance in the absence of mistuning, both random and 

intentional, i.e. the “P1 problem” defined in the previous chapter and in [1]. In the 

absence of a physical model of a bladed disk with a blade-blade damper, the 

single degree of freedom per sector model of Figure 1 was again selected.  Then, 

shown in Figure 23 is the maximum amplification factor obtained in the P1 

problem as a function of the number of dampers used. The value of the damper 

coefficients was maintained at          (i.e. a blade in the tuned system with 

dampers would exhibit 10 times the damping it has without) to permit a 

comparison with the corresponding blade-disk dampers results, see Figure 24. 

The comparison of these results suggests that the blade-blade dampers are 

as efficient in diminishing the amplitude of blade response as their blade-disk 

counterparts. This finding of the P1 problem also holds for the P2 and P3 

problems, i.e. the 95th percentile of the maximum amplification of blade response 
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with random mistuning without or with intentional mistuning, see Figure 25, 

Figure 26, and Figure 27. In these figures, note that the single apostrophe ‘ 

following a blade type denotes the location of a blade-alone damper on the blade 

preceding it or a blade-blade damper between the two blades adjacent to the ‘. 

Further, the notation “Damp_Int_xx’ denotes the P3 problem (damper and 

intentional mistuning) with xx dampers. Finally, as in the previous blade-disk 

case, the optimization effort was carried out for a standard deviation of random 

stiffness mistuning equal to 1% of its mean value and blades   (respectively,  ) 

had natural frequencies 5% higher (respectively, lower) than the tuned blades. 

The locations of the dampers for the various solutions shown in Figure 27 are 

presented in Table 2. 

 

 

 
Figure 23. Amplification factor of the maximum blade response as a function of 

the number of optimized dampers for different values of    . P1 problem, blade-

blade dampers,     , and        .  
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Figure 24. Amplification factor of the maximum blade response as a function of 

the number of optimized dampers for different values of    . P1 problem, blade-

disk dampers,     , and         (from [1]). 

 

 
Figure 25. 95th percentile of the maximum blade response vs. standard deviation 

of random mistuning. Single degree of freedom per sector model,         , 

optimization carried out at 1%,      , with intentional mistuning level = 5%. 

Blade-disk (Damp) and blade-blade (BBDamp) dampers. 
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Figure 26. 95th percentile of the maximum blade response vs. standard deviation 

of random mistuning. Single degree of freedom per sector model,         , 

optimization carried out at 1%,      , with intentional mistuning level = 5%. 

Blade-disk (Damp) and blade-blade (BBDamp) dampers. 

 

 
Figure 27. Normalized peak response vs. number of blade-blade dampers for 

different options, single degree of freedom per sector model, engine order 2 

excitation.  
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Table 3. Optimum damper locations, system of Figure 27. 

  Blade-Disk Dampers Blade-Blade Dampers 

1
D

am
p

er
 P1 1 1 

P2 1 1 

P3 3 11 

Pt BBAAAAAAAABB BBBBBBBAAAAB 

2
 D

am
p

er
s P1 1,3 1,5 

P2 1,2 1,6 

P3 2,11 3,9 

Pt BAAAAAAAAAAB BBBAAAAAABBB 

3
 D

am
p

er
s P1 1,3,5 1,6,8 

P2 1,3,5 1,2,5 

P3 2,8,10 2,6,10 

Pt BAAAAAAABAAA BBAABBAABBAA 

4
 D

am
p

er
s P1 1,3,5,7 1,3,4,9 

P2 1,2,7,8 1,2,7,9 

P3 1,2,6,8 3,9,6,12 

Pt ABBBBBBAAAAA BBBAAABBBAAA 

5
 D

am
p

er
s P1 1,3,5,7,9 1,2,6,8,10 

P2 1,3,5,8,10 1,3,6,7,11 

P3 2,4,6,10,12 1,3,5,8,10 

Pt AAABBAAAAAAA BABABAAABABB 

6
 D

am
p

er
s P1 1,2,4,6,9,11 1,2,5,6,9,10 

P2 1,3,4,6,8,11 1,3,5,7,9,11 

P3 2,4,6,8,10,12 2,4,6,8,10,12 

Pt BAABBAABBAAB BABABABABABA 

7
 D

am
p

er
s P1 1,2,3,5,7,9,11 1,2,4,6,7,9,11 

P2 1,3,5,7,8,9,11 1,2,3,6,7,9,10 

P3 1,3,5,7,8,10,12 1,2,4,5,7,9,11 

Pt BBBBBBAAAAAA BABBABABABAB 

8
 D

am
p

er
s P1 1,2,3,5,7,9,10,11 1,2,3,5,6,7,10,11 

P2 1,3,4,6,7,9,10,11 1,2,3,4,7,8,9,10 

P3 1,2,4,5,7,8,10,12 1,2,3,5,7,8,9,11 

Pt BBBBBBAAAAAA BAABABBAABAB 

9
 D

am
p

er
s P1 1,2,3,4,6,7,8,10,12 1,2,3,5,6,7,9,10,11 

P2 1,2,3,5,6,7,9,10,11 1,2,3,5,6,7,9,10,11 

P3 1,2,4,5,7,8,9,10,12 2,3,5,6,7,8,10,11,12 

Pt BBBBBBBAAAAA BBABABBABBAA 

1
0

 D
am

p
er

s P1 1,2,4,5,6,7,8,9,11,12 1,2,3,4,5,7,8,9,10,11 

P2 1,2,3,4,5,6,8,9,10,11 1,2,3,5,6,7,8,9,10,12 

P3 1,2,3,5,6,7,8,9,11,12 1,2,3,4,5,7,8,9,10,11 

Pt ABBBBBABBBBB BABBABBABBAB 

1
1

 D
am

p
er

s P1 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11 

P2 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,12 

P3 1,2,3,4,5,7,8,9,10,11,12 1,2,3,4,5,6,8,9,10,11,12 

Pt BBABBBBBAABA BABABABBABAB 
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4.2 Optimization with Uncertainty on Dampers 

The variability of the mass and stiffness properties from one blade to 

another have long been recognized to exist and be important and these 

observations have formed the basis for mistuning analyses. The variability of the 

blades damping coefficients has also been considered, although less frequently 

(e.g. see [17,18]), and increases in blade response have also been observed, albeit 

less dramatic than those created by blade to blade stiffness and mass variations. 

These observations suggest that a variability/uncertainty in the damper 

coefficients may result to a degradation of performance, i.e. an increase in the 

maximum blade response, and ought to be accounted for in the optimization 

process. 

This inclusion was accomplished in a straightforward manner: random 

variations of the damper properties were included along with the random 

mistuning to obtain the 95th percentile of the response. Before proceeding with 

this revised process, it was first desired to perform a robustness analysis in which 

the optimum solutions obtained in [1] and the previous chapter was kept, but 

mistuning/variability in the damper properties was introduced. A comparison of 

the 95th percentiles of the response obtained in this manner with those obtained in 

[1] and the previous chapter would then provide an assessment of the robustness 

of the optimum solutions with respect to the damper properties variations. Shown 

in Figure 28, Figure 29, and Figure 30 are the results of this robustness analysis 

which suggest that the 20% variation introduced in the damper properties has only 

marginally affected the response. 
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This finding is rather surprising as it would seem that varying the damping 

level in the dampers should induce some difference in the overall response: an 

increase in these values should tend to decrease the largest blade response and 

similarly a decrease in the damper constant would be expected to lead to an 

increase in response of the entire disk. To better understand these results, the 

response of a particular configuration, the optimum solution of Figure 29 with 

three dampers with 3% standard deviation of random mistuning, was analyzed 

with several damper constants:       ranging from 8.2 to 11.8 (10 being the 

design point), see Figure 31. It is seen on this figure that the response of the 

highest responding blade (blade 9) is nearly independent of the value of the 

damper constant. It appears that the effect of the dampers is very much localized, 

affecting only the blades on which they are placed. This situation is not altogether 

unusual, as it was recognized in [1] that the dampers have a localization effect. 

Nevertheless, this situation is not the optimum which could have been expected in 

which a damper is affecting at least somewhat globally the disk, damping energy 

from several of its neighboring blades. 

Since the optimum damper locations and mistuning patterns seem 

insensitive to variations in the damper constants, it is expected that an 

optimization effort as in the previous chapter and [1] but with variation of damper 

properties included in the prediction of the 95th percentile of the response would 

give very similar results to those obtained in [1]. The comparison of these two 

sets of optimization results are shown in Figure 32, Figure 33, and Figure 34, 

fully confirming this expectation. 
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For completeness, a similar analysis was also conducted for the blade-

blade dampers. The results, shown in Figure 35, Figure 36, and Figure 37, 

demonstrate similar conclusion, i.e. that variations of the damper properties have 

only a marginal effect in the optimization process and that the sensitivity of the 

optimal solution to these variations is small.  
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Figure 28. 95th percentile of the maximum blade response vs. standard deviation 

of random mistuning. Single degree of freedom per sector model,         , 

optimization carried out at 1%,      , with intentional mistuning level = 5%. 

Robustness Assessment. Shown without (dashed line) and with (solid lines) 

random variations in blade-only damper properties (coefficient of variation of 

20%). 

 
Figure 29. 95th percentile of the maximum blade response vs. standard deviation 

of random mistuning. Single degree of freedom per sector model,         , 

optimization carried out at 1%,      , with intentional mistuning level = 5%. 

Robustness Assessment. Shown without (dashed line) and with (solid lines) 

random variations in blade-only damper properties (coefficient of variation of 

20%).  
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Figure 30. 95th percentile of the maximum blade response vs. standard deviation 

of random mistuning. Blisk reduced order model,         , optimization 

carried out at 1%,      , with intentional mistuning level = 5%. Robustness 

Assessment. Shown without (dashed line) and with (solid lines) random variations 

in blade-only damper properties (coefficient of variation of 20%). 
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(a) 

 
(b) 

Figure 31. (a) Amplitude of response of the 12 blades of the disk and at the 

frequency that yielded the 95th percentile of the response of Figure 29 at 3% 

standard deviation of mistuning. (b) Same as (a), zoomed. 
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Figure 32. 95th percentile of the maximum blade response vs. standard deviation 

of random mistuning. Single degree of freedom per sector model,         , 

optimization carried out at 1%,      , with intentional mistuning level = 5%. 

Optimization without (dashed line) and with (solid lines) random variations in 

blade-only damper properties (coefficient of variation of 20%). 

 

 
Figure 33. 95th percentile of the maximum blade response vs. standard deviation 

of random mistuning. Single degree of freedom per sector model,         , 

optimization carried out at 1%,      , with intentional mistuning level = 5%. 

Optimization without (dashed line) and with (solid lines) random variations in 

blade-only damper properties (coefficient of variation of 20%).  
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Figure 34. 95th percentile of the maximum blade response vs. standard deviation 

of random mistuning. Blisk reduced order model,         , optimization 

carried out at 1%,      , with intentional mistuning level = 5%. Optimization 

without (dashed line) and with (solid lines) random variations in blade-only 

damper properties (coefficient of variation of 20%). 
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Figure 35. 95th percentile of the maximum blade response vs. standard deviation 

of random mistuning. Single degree of freedom per sector model,         , 

optimization carried out at 1%,      , with intentional mistuning level = 5%. 

Robustness Assessment. Shown without (dashed line) and with (solid lines) 

random variations in blade-blade damper properties (coefficient of variation of 

20%). 

 
Figure 36. 95th percentile of the maximum blade response vs. standard deviation 

of random mistuning. Single degree of freedom per sector model,         , 

optimization carried out at 1%,      , with intentional mistuning level = 5%. 

Robustness Assessment. Shown without (dashed line) and with (solid lines) 

random variations in blade-blade damper properties (coefficient of variation of 

20%). 
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Figure 37. 95th percentile of the maximum blade response vs. standard deviation 

of random mistuning. Single degree of freedom per sector model,         , 

optimization carried out at 1%,      , with intentional mistuning level = 5%. 

Optimization without (dashed line) and with (solid lines) random variations in 

blade-blade damper properties (coefficient of variation of 20%). 
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4.3 Nonlinear Applications – Friction Dampers 

Many novel damper designs (see [1] for a short review) are expected to 

exhibit nonlinear properties and thus it was of importance to assess the adequacy 

of the algorithm of Chapter 3 to this situation and to investigate the benefits of 

using only a few nonlinear dampers on the disk, as opposed to one on each blade. 

To exemplify these issues, friction dampers were selected as they are well 

characterized and are present in a variety of engines, see [19-35] for a sample of 

the published literature on the modeling and behavior of these dampers. As a first 

validation of this application, the single-degree-of-freedom model of Sinha and 

Griffin [19] with blade-ground dampers, see Figure 38, was selected with the 

properties of Table 3. The nonlinearity of friction dampers implies that the 

determination of the response of bladed disks including them necessitates 

appropriate analytical and/or numerical techniques and algorithms. In this regard, 

the present effort is based on the harmonic balance equations of [19] which are 

assumed to adequately model the bladed disk behavior but higher order 

approximations (e.g. see [24]) or direct integration of the equations of motion can 

used instead. Further, the numerical solution of the harmonic balance equations 

was accomplished with the MATLAB function fsolve (Levenberg-Marquardt 

algorithm [36]) in a frequency marching scheme through the sweep domain, i.e. 

the results obtained at one frequency were used as initial conditions for the next 

one. This algorithm accurately recovered a series of results presented in [22]. 

The damping obtained with the friction damper in a tuned system is 

approximately 1% vs. the 0.1% obtained with the present viscous damping. While 
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the parameters of Table 3 correspond to the optimum for a damper on each blade, 

they will not in general provide the optimum damping when fewer blades, e.g. if a 

single one is installed on the disk. Indeed, the damping provided by a friction 

damper depends on the level of response of the blade on which it is attached 

which will vary with the number of dampers on the disk. To provide a meaningful 

assessment of the benefit of using fewer dampers than blades, it is thus necessary 

to proceed with an optimization of the parameters of the dampers (the normal 

force was considered here), for each number of dampers on the disk. 

 

 
Figure 38. Model of bladed disk with blade-ground friction dampers (from [19]). 

 

 

Table 4. Parameter values of the model of Figure 38. 

Property Value 

Number of Blades (N) 12 

Mass (m) 0.0114 Kg 

Damping coefficient (c) 0.143 Ns/m 

Blade-Disk Stiffness (ki) 430300 N/m 

Blade-Blade Coupling Stiffness (KC) 10000 N/m 

Blade-Disk Friction Damper Stiffness (KG) 43000 N/m 

Friction Damper Normal Force (µf FN) 1.505 N 

Forcing Amplitude (F0) 1 N 
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The optimization problem can be summarized as below, with the primary 

design variables being the locations of the dampers on the bladed disk and the 

intentional mistuning pattern when necessary. In this case of nonlinear friction 

dampers considered, the optimization process includes the optimization of the 

friction damper coefficient. 

The objective is then the minimization of the 95th percentile of the 

maximum blade response amplitude in a frequency sweep (as determined by the 

resonance and excitation conditions on the bladed disk) in the presence of random 

mistuning. 

Design Variables 

 

(1) Locations of N dampers                 

(2) Intentional mistuning pattern                        

                      

            

(3) Optimum Friction Coefficient                

 

Objective 

 

 

 

Constraints 

 

(1) Frequency range of interest Ωlower ≤ Ω ≤ Ωupper 

Ωlower and Ωupper defined according to 

resonance excitation condition on bladed 

disk 

  

 


















 freqat   blade of responsemaxmax percentile 95th min

,
j

j
b
d

i

ii
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This prior optimization was carried out through an exhaustive search 

without random or intentional mistuning, i.e. for the P1 problem. Specifically, the 

“bucket curve”, i.e. maximum amplitude of blade response over the disk vs. slip 

distance        ⁄   was established for every configuration of   identical 

dampers on the disk. The configuration and normal force yielding the lowest 

maximum amplitude of blade response over the disk was then retained as the 

optimum P1 solution for   dampers. Note that the normal force relates directly to 

the mass of the friction damper. This process was repeated for                

and led to the family of optimal bucket curves shown in Figure 39. The 

corresponding optimal slip distances are shown in Figure 40 vs. the number   of 

dampers. The behavior of these curves is expected: as the number of dampers is 

increased, the overall response level of the blades decreases and a lower normal 

force (thus smaller slip distance) must be applied to achieve the optimum 

efficiency of the damper between its fully stuck and fully slipping operations. 

These changes in response and normal force with increasing number of dampers 

are particularly notable when only a few dampers are present. The very low value 

of the optimum slip distance for 1 damper is thought to be related to the observed 

localization induced by the presence of a single damper seen in [1], Chapter 3, 

e.g. Figure 9, and Figure 10, or in Figure 23, Figure 24, and Figure 27 above. It 

appears thus that the low slip distance arises to minimize the detrimental 

localization of the response.  
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Finally, shown in Figure 41 is the corresponding maximum amplitude of 

blade response obtained without either random or intentional mistuning the 

appearance of which is very similar to the one obtained with linear dampers. 

Next, the assessment of the effects of random mistuning on this solution 

and the P2 problem was considered but without any change to the normal forces 

obtained in the P1 analysis. The corresponding 95th percentile of the 

amplification factor normalized by its value without any damper was obtained 

with the subspace algorithm of Chapter 2 and is also shown in Figure 41. Clearly, 

random mistuning leads to a reduction in the benefits of using only a few 

dampers, exactly as observed in connection with the linear damper analyses. 

Further, the introduction of intentional mistuning in addition to the friction 

dampers (the P3 problem) does increase the robustness against random mistuning 

and provides a reduction of the amplitude of blade response, see Figure 41. 

 
Figure 39. Optimum bucket curves as a function of the number of blade-ground 

friction dampers.  
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Figure 40. Optimum slip distance        ⁄   as a function of the number of 

blade-ground friction dampers. 

 

 
Figure 41. Normalized peak response vs. number of blade-ground friction 

dampers for different options, single degree of freedom per sector model, engine 

order 2 excitation.  
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Friction dampers are most often blade-blade devices and it was 

accordingly desired to repeat the above analysis with the blade-blade friction 

damper model of Figure 42 (see [19]) with the parameters of Table 3 with  

     . The optimization process of the normal force described above was 

repeated and led to the bucket curves and optimal slip distance        ⁄   vs. 

number of dampers shown in Figure 43 and Figure 44. These curves are similar to 

their blade-ground counterparts with the notable difference in Figure 44 that the 

optimum slip distance appears to have converged for 7 dampers on the disk. 

The maximum amplitude of blade response obtained with and without 

random mistuning (P1 and P2 problems) is shown in Figure 45(a). Also presented 

in this figure are a series of results for the P3 problem. These sets of results 

confirm the findings of the blade-ground friction dampers and strongly suggest 

the application of these concepts to more complex damper models. 

 

 

Figure 42. Model of bladed disk with blade-blade friction dampers (from [19]). 
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Figure 43. Optimum bucket curves as a function of the number of blade-blade 

friction dampers. 

 

 

Figure 44. Optimum slip distances        ⁄   as a function of the number of 

blade-blade friction dampers. 
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(a) 

(b) 

 

Figure 45. Normalized peak response vs. number of blade-blade friction dampers 

(a) for different options single degree of freedom per sector model, engine order 2 

excitation, (b) for different options with individual and optimized friction 

coefficients   . 
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There appears to be a noticeable feature in the scaled amplification factor 

of the P2 and P3 problems around the vicinity of 3-4 dampers, where the 

reduction in the blade response does not seem to follow the smooth decrease 

observed in previous cases. Since both the P2 and P3 optimizations were carried 

out using the optimum damper properties identified form the P1 problem, i.e. the 

“common   ”, an assessment of the effect of optimizing the damper properties 

was carried out. As an initial assessment, the response of different number of 

dampers on the bladed disk was recomputed using the optimum friction 

coefficient values corresponding to each unique damper position obtained at the 

end of the previous optimization, i.e. the P1 problem – this result can be seen in 

Figure 45 and corresponds to the “individual   ” cases. Finally, a particular 

location (at 4 dampers) was chosen and the optimization was carried out including 

the friction coefficient as a parameter in the optimization process. The single 

point marked by the black cross and labeled “optimum   ” corresponds to the 

resulting blade response. It is evident from the smaller amplitudes of blade 

response obtained in both the “individual   ” as well as the “optimum   ” cases 

that the optimization process needs to include the friction damper parameters as 

variables in addition to the damper locations and the intentional mistuning pattern.  

 Further, the optimum bucket curves for the three cases of friction 

coefficient were plotted – optimization with optimum      from the P1 problem, 

optimization with “individual   ” for the P2 problem, and optimization with 

“optimum   ” for the P2 problem, see Figure 46. Observe that indeed, when there 

is no random mistuning of the blades’ stiffness, the damper friction coefficient  
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    obtained in the P1 problem leads to a much smaller level of blade response 

than either the “individual   ” or the “optimum   ” obtained from the P2 

problem optimization. However, in the presence of random mistuning, we observe 

a noticeable increase in the response of the optimum obtained from the P1 

problem, whereas the optima obtained from the P2 problem (i.e. “individual   ” 

and “optimum   ” respectively) are considerably more robust to the presence of 

random mistuning. This observation indeed confirms that the optimization of the 

placement of friction dampers on a bladed disk must be accompanied by an 

optimization of the friction damper properties as well. 
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(a) 

  
(b) 

 

Figure 46. Bucket curves for P1 optimum, P2 “individual”, and P2 optimum 

damper locations on (a) tuned disk, and (b) tuned disk with random mistuning in 

blades’ stiffness.  
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5 – INTENTIONAL MISTUNING OF FRICTION DAMPERS 

5.1 Introduction 

Mistuning has traditionally been considered an undesirable feature in 

bladed disks as it leads most notably to an amplification of the forced response as 

compared to the tuned disk. Yet, some past investigations, e.g. [14, 43-46], have 

shown that a well selected (intentional) mistuning of the blades on a disk can lead 

to some decrease of the peak blade response and to a significant increase of the 

robustness of this forced response to additional, random, mistuning. Practical 

implementations of such a scheme are important to consider. In this context, it has 

first been proposed that the intentional mistuning be achieved through the 

combination around the disk of only two types of blades, A and B say, having 

different vibrational properties. Then, the desirable intentional mistuning can be 

obtained by optimizing the pattern of A and B blades around the disk to yield the 

smallest maximum amplitude of blade response in critical excitation conditions. 

In fact, an efficient algorithm to perform this specific optimization has been 

devised [46] and numerous validation cases have repeatedly confirmed the 

benefits of intentional mistuning. 

Another important practical aspect of this problem is how the blades A 

and B will differ. Mindful of aerodynamic constraints, much of the literature on 

this topic [43-46] has assumed that these two blade types would have the same 

geometry but would differ by mechanical properties. More specifically, stiffness 

properties, e.g. different Young’s modulus, have been proposed to avoid the 

balancing issues involved in blade to blade changes in their masses. 



 

86 

Unfortunately, varying these stiffness properties is not an easy task and this 

recognition has led some investigators to tackle the consideration of the more 

difficult blade geometry-based intentional mistuning [47]. 

One other possibility for intentional mistuning that has received very little 

attention is underplatform friction dampers when they exist. Not being effectively 

part of the blades and being away from the flow, they would represent an 

excellent intentional mistuning option if designed variations of their properties, 

e.g. their mass, around the disk can provide the desired reduction in blade 

response. A first indication of this potential has recently been provided in [48], 

reporting a reduction by about 2% of the maximum amplitude of blade response 

when using an alternate intentional mistuning pattern of the friction dampers, i.e. 

friction dampers with properties A and B arranged around the disk as ABABA...  

While 2% is only a small benefit, the observation demonstrates that a reduction in 

blade response can be achieved. Past investigations of intentional mistuning of 

blades have demonstrated that it is of key importance to optimize the pattern of A 

and B friction dampers around the disk to get its full benefit as many patterns may 

result in only a small reduction, or in fact an increase, of blade response. 

In this light, the focus of this investigation is on assessing the full benefits 

which can be obtained by optimizing the intentional mistuning patterns of friction 

dampers on bladed disks as well as the masses of the two types of dampers.  
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5.2 Bladed Disk Models & Optimization Strategy 

The present effort is one of discovery vs. application to a particular 

hardware. Accordingly, the bladed disk models used are simple ones, i.e. single 

degree of freedom blade models with blade-ground, see Figure 47(a), and blade-

blade, see Figure 47(b), dampers with the common properties of Table 5. 

 

 
(a) 

 
(b) 

 

Figure 47. Model of bladed disk with (a) blade-ground and (b) blade-blade 

friction dampers. from [19]) 

 

Table 5. Parameters values of the model of Figure 47. 

Property Value 

Number of Blades (N) 6 or 12 

Blade Mass (m) 0.0114 Kg 

Damping coefficient (c) 0.143 Ns/m 
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Blade-Disk Stiffness (ki) 430300 N/m 

Blade-Blade Coupling Stiffness (kC) 10000 N/m 

Blade-Disk Friction Damper Stiffness (kG) 

Blade-Blade Friction Damper Stiffness (kB) 

43000 N/m 

Friction Damper Normal Force (µf FN) 1.505 N 

Forcing Amplitude (F0) 1 N 

 

The system was subjected to an engine order 2 excitation and its response 

was determined using a single harmonic balance method following [19]. To 

provide the baseline data, an optimization effort was first undertaken to determine 

the damper mass yielding the smallest response for each tuned disk, i.e. with 

identical friction dampers. This analysis is most easily conducted through the 

determination of the bucket curves, see Figure 48. 
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(a) 

 
(b) 

 
(c) 
 

Figure 48. Bucket curves for the disks of Figure 47. 6-blade disk with (a) blade-

ground and (b) blade-blade dampers. (c) 12-blade disk with blade-ground 

dampers. 

0 1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-4

Friction Force R

R
e
s
p

o
n

s
e

0 1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

3.5

44
x 10

-4

Friction Force R

R
e
s
p

o
n

s
e

0 1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-4

Friction Force R

R
e
s
p

o
n

s
e



 

90 

Once the optimum damper mass was determined, patterns of A and B 

friction dampers were considered with the damper mass of A smaller than the 

optimum, i.e.              , and the one of B larger than optimum, i.e. 

             . For each pair of values of     and    , the response in 

sweep of each of the possible A/B patterns, 14 for 6 blades and 352 for 12 blades, 

was evaluated to yield the corresponding maximum amplitude of blade response. 

The lowest value of this maximum over the set of patterns was then identified and 

plotted vs.      and     . 

Such an analysis was conducted in three different situations: 

(a) Tuned Blades – Intended Friction Dampers. The blades are all the 

same and the friction dampers have indeed the properties of Table 5. 

(b) Mistuned Blades – Intended Friction Dampers. While the friction 

dampers still have the properties of Table 5, the blade are no longer identical, they 

exhibit mistuning in their stiffness. 

(c) Mistuned Blades and Friction Dampers – Both blades and the friction 

dampers have properties that vary from blade to blade although with mean values 

reflecting the A/B pattern. 

The optimization results corresponding to these situations are described in 

the ensuing sections. 
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The optimization problem can be summarized as below, with the primary 

design variable being the locations of the   and   type friction dampers on the 

bladed disk. In the effort to introduce intentional mistuning in the system with 

friction dampers, the range of variation of the friction coefficient was set to 

between 0.9 times and 1.1 times the optimum friction coefficient obtained when 

using a single type of damper optimized on all blades of the disk. 

The objective is then the minimization of the 95th percentile of the 

maximum blade response amplitude in a frequency sweep (as determined by the 

resonance and excitation conditions on the bladed disk) in the presence of random 

mistuning. 

Design Variables 

 

(1) Locations of N dampers                 

(2) Optimum pattern of 

friction dampers  

                       

                       

           

 

Objective 

 

 

 

Constraints 

 

(1) Frequency range of interest Ωlower ≤ Ω ≤ Ωupper 

Ωlower and Ωupper defined according to 

resonance excitation condition on bladed 

disk 

 


















 freqat   blade of responsemaxmax percentile 95th min j

j
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d

i

i
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(2) Friction coefficient 

(continuous) 
                   

          

where      is the optimum friction 

coefficient with the same type of friction 

damper on all blades 
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5.3 Tuned Blades – Intended Friction Dampers 

As a starting point to the investigation of the benefits of using different 

types of dampers on disks, it was assumed that the blades were all identical (tuned 

disk) and that the properties of the friction dampers were exactly as intended, i.e. 

type A or B. The results of these optimization efforts are shown in Figure 49 and 

Figure 50 for the blade-ground configurations and Figure 51 for the disk with 

blade-blade dampers. 

 
 

Figure 49. Amplification factor vs. A and B damper masses, 6-blades with blade-

ground dampers. 
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Figure 50. Amplification factor vs. A and B damper masses, 12-blades with 

blade-ground dampers. 

 
 

Figure 51. Amplification factor vs. A and B damper masses, 6-blades with blade-

blade dampers. 
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maximum amplitude of blade response occurs in the tuned configuration, i.e. 

when all friction dampers are identical with the optimum mass obtained from the 

bucket curves of Figure 48. The pattern of response that leads to the small 

maximum response for a particular pair of damper masses, i.e.     and    , was 

found to be all A or all B for the blade-ground dampers. For blade-blade dampers, 

however, alternate mistuning of the dampers was found as a third possible 

optimum, in the part of the damper mass space marked with semicircles on Figure 

51. Note in this regard that alternating A and B friction dampers was the pattern 

observed in [48] to lead to a reduction in the response and that the dampers were 

of blade-blade type. 
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5.4 Mistuned Blades – Intended Friction Dampers 

It would seem from the above first analysis that there is no value to 

intentionally mistuning friction dampers. Such a conclusion could however be 

somewhat hasty since the true benefits of intentional stiffness mistuning of blades 

are revealed only when considering the response of mistuned disks with 

intentional mistuning of the blades’ stiffness inducing a significant increase in 

robustness with respect to random mistuning. To assess whether such a benefit 

could be obtained here, the optimization effort carried out in the previous section 

was repeated but with random mistuning in the blades’ stiffness. Specifically, a 

population of 1,000 disks was generated with the blades’ stiffness modeled as 

independent random variables with a uniform distribution and a standard 

deviation of 1% of the mean value of Table 5. The computation of the disk 

response was achieved for every disk, every       pattern of friction dampers and 

the combinations of the two damper masses as before. The 95th percentile of the 

maximum blade response was considered as the representative amplitude of 

response. 

 

Then, shown in Figure 52 is the three-dimensional plot of the tuned 

amplitude divided by lowest representative amplitude over the entire set of 

patterns for a 6-blade disk with blade-ground dampers as a function of      and 

   . This figure demonstrates that a slight benefit can be obtained by selecting 

   =0.95 and    =1.10.The corresponding pattern of A and B friction dampers 

is ABABBB. The small benefit, approximately 3.4%, of using this configuration 

of dampers is also visible in Figure 53 which displays the 95th percentile of the 
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amplification factor vs. the level of blade mistuning. Note that other patterns also 

provide a similar benefit at different mistuning levels, see Figure 53. 

 

 

 
 

Figure 52. Tuned amplitude divided by lowest representative pattern over the 

entire set of patterns vs. A and B damper masses, 6-blade disk with blade-ground 

dampers with blade-blade coupling stiffness kC = 10,000. 

 

 
 

Figure 53. 95th percentile amplification factor vs. blade mistuning level, 6-blade 

disk with blade-ground dampers with blade-blade coupling stiffness kC = 10,000. 
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The physics of random and intentional mistuned disks is known to 

dependent strongly on the blade-disk or blade-blade structural coupling. In this 

light, the above analysis was also repeated with the larger value kC = 45,430N/m 

and the corresponding results are shown in Figure 54 and Figure 55. The results 

are quite similar leading to a small benefit. 

 
 

Figure 54. Tuned amplitude divided by lowest representative pattern over the 

entire set of patterns vs. A and B damper masses, 6-blade disk with blade-ground 

dampers with blade-blade coupling stiffness kC = 45,430. 

 

 
Figure 55. 95th percentile amplification factor vs. blade mistuning level, 6-blade 

disk with blade-ground dampers with blade-blade coupling stiffness kC = 45,430. 
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Finally, the analysis was repeated for the 6-blade disk blade-blade damper 

of properties given in Table 5 and the corresponding results, shown in Figure 56 

and Figure 57, confirm the above observations of small benefit. 

 

 

 
 
 

Figure 56. Tuned amplitude divided by lowest representative pattern over the 

entire set of patterns vs. A and B damper masses, 6-blade disk with blade-blade 

dampers with blade-blade coupling stiffness kC = 10,000. 

 

 
 

Figure 57. 95th percentile amplification factor vs. blade mistuning level, 6-blade 

disk with blade-blade dampers with blade-blade coupling stiffness kC = 10,000. 
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5.5 Mistuned Blades and Friction Dampers 

The manufacturing and in-service sources of variability of the blades’ 

stiffness will also induce variability in the properties of the dampers. To include 

this aspect in the analysis, the Monte Carlo study was performed with 

independent variations of the normal force of the dampers. These quantities were 

modeled as Gamma distributed random variables with mean equal the values     

and     and with standard deviations equal to half of these values, recognizing 

the large spread of friction properties expected in practice. As in the previous 

section, the 95th percentile of the maximum blade response was considered as the 

representative amplitude of response. 

Shown in Figure 58 is the three-dimensional plot of the tuned amplitude 

divided by lowest representative amplitude over the entire set of patterns for a 6-

blade disk with blade-ground dampers as a function of      and    , with 

variability in the damper properties. This figure demonstrates that a slight benefit 

can be obtained by selecting    =1 and    =1.3. The corresponding pattern of A 

and B friction dampers is ABBABB, and a small benefit, approximately 3.1%, of 

using this configuration of dampers is obtained. This is shown along with some 

other patterns showing similar benefit in Figure 59, which displays the 95th 

percentile amplification factor vs. the level of blade mistuning with variability in 

dampers considered.   
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Figure 58. Tuned amplitude divided by lowest representative pattern over the 

entire set of patterns vs. A and B damper masses with damper mistuning. 6-blade 

disk with blade-ground dampers with blade-blade coupling stiffness kC = 45,430. 

 

 
 
 

Figure 59. 95th percentile amplification factor vs. blade mistuning level, with 

damper mistuning, 6-blade disk with blade-ground dampers with blade-blade 

coupling stiffness kC = 45,430. 
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6 – SUMMARY 

The present effort focused on the optimal positioning of a few dampers, 

i.e. fewer than the number of blades, on a bladed disk to induce the smallest 

possible amplitude of blade response with or without involuntary, random 

mistuning. Intentional mistuning corresponding to the use of two types (  and  ) 

of blades was also considered as an option to reduce the amplitude of blade 

response. 

The optimization of the damper locations and, when appropriate, the 

intentional mistuning pattern was found to exhibit a large number of local optima 

of varying bladed disk response. This finding coupled with the expensive cost of a 

function evaluation led to the formulation of dedicated strategies to solve this 

optimization problem. These algorithms involve two steps, the first one of which 

is the selection of approximate solutions from which, in the second step, a local 

search is carried out until convergence. Three rules were proposed for the 

sequential construction of the initial damper locations while the starting 

intentional mistuning patterns could be in particular obtained through the 

“subspace” algorithm in which constraints were imposed on the blade types of 

two consecutives sectors to minimize the search space. The validation of these 

algorithms was accomplished on both a single degree of freedom per sector model 

and the reduced order model of a blisk by comparison with a limited set of 

optimum solutions obtained by an exhaustive search. A very good to excellent 

match of these exhaustive search results was obtained at a computational cost 
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which was shown to be dramatically smaller than that of the corresponding 

exhaustive search.  

Recognizing the possibility of damper failure, the optimization algorithm 

was then modified to allow for a non-zero probability of failure of the dampers 

introduced. Three different probabilities of failure (0.01, 0.03 and 0.10) were 

analyzed, and their effect on the response of the system was shown. The 

sensitivity of the intentional mistuning pattern as well as the locations of the 

dampers was also studied and the system found to be quite robust for small 

probabilities of damper failure. 

Next, the optimization of the damper locations and, when appropriate, the 

intentional mistuning pattern was first repeated with linear blade-blade dampers. 

The observations made in connection with blade-alone dampers were again found 

to hold. 

Further, the sensitivity of the optimum configuration of dampers (blade-

only or blade-blade) and intentional mistuning pattern to random variations of the 

damper coefficients was assessed to evaluate the potential effects of in-

service/manufacturing damper variability. Quite surprisingly, it was found that the 

optimum solutions of the P2 and P3 problems were very robust with respect to 

these variations and thus that they need not be considered in the optimization 

process, although their inclusion was demonstrated to be straightforward. 

Further, the extension of these concepts to nonlinear dampers was initiated 

by considering friction dampers. The nonlinearity of these dampers implies that 

the effective damping they provide depends on the bladed disk response and thus 
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implicitly on the number of dampers present. This observation demonstrated that 

an optimization of the damper properties, the normal force was selected here, 

should be carried out for each number of dampers on the disk. A process to 

accomplish this task was demonstrated which relies on the exhaustive solution of 

the P1 problem. The results obtained for both blade-ground and blade-blade 

friction dampers with optimized normal force were found to be in close agreement 

with those obtained with linear dampers. 

Finally, an investigation of the potential benefits resulting from using two 

different types of friction dampers on a bladed disk was carried out. Every blade 

or platform was equipped with a damper of either type   or   with these two 

types differing by their masses. The benefit of this strategy was measured in 

comparison with using identical dampers of optimized mass on every blade or 

platform, and is found to be dependent on the pattern of     dampers around the 

disk as well as the damper masses.  

The optimization was accomplished through an exhaustive search for all 

patterns on a grid of values of the two damper masses. As this was a discovery 

effort vs. application to a particular damper geometry, these were carried out on 

single-degree-of-freedom per sector models of both blade-ground and blade-blade 

friction dampers with small blade counts of 6 and 12 blades. In all cases 

considered, the benefit of this intentional mistuning of friction dampers is either 

zero or small, of the order of a few percent, consistently with a single data point 

reported in the literature.  
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APPENDIX A 

CONVERGENCE ANALYSIS OF NUMBER OF MONTE CARLO 

SIMULATIONS 
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The effects of random mistuning were considered in this study by carrying 

out Monte Carlo simulations to simulate statistics of the response of the bladed 

disk. As a general rule, 10000 Monte Carlo simulations were chosen for the 

single-degree-of-freedom system, and 1000 Monte Carlo simulations were chosen 

for the blisk reduced order model to be a reasonable number of simulations to 

accurately represent the statistical parameter used to quantify the response of the 

system, i.e. the 95th percentile of the maximum blade response amplitude.  

 The need for computationally quick and efficient algorithms brings up the 

question of whether it is possible to accurately quantify this 95th percentile with a 

smaller number of Monte Carlo simulations. In addition, the effect of other 

system parameters such as the intentional mistuning pattern or the damper 

locations may have an effect (positive or negative) on the number of Monte Carlo 

simulations necessary for a quantitative analysis. In order to study this, the 12 

blade blisk model of [11] was chosen and an analysis of the convergence of the 

amplification factor was carried out. The ensemble of all intentional mistuning 

patterns was considered and 10000 Monte Carlo simulations were carried out at 

each intentional mistuning pattern in the presence of random mistuning. From 

these results, the average and standard deviation of the number of simulations 

required for convergence of the amplification factor to within       of the value 

of the 95
th

 percentile at 10000 simulations was then evaluated. Figure 60 and 

Figure 61 show scatter plots of the values of the averages and standard deviations 

as a function of the amplification factor for engine orders of excitation   and  . 

This convergence analysis was repeated for engine order 1, for a few cases with 
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dampers present on the blisk in addition to the intentional and random mistuning, 

and these points are plotted as the black crosses in Figure 60. 

 
(a) 

 
(b) 

Figure 60. Scatter plots for (a) mean number of simulations to convergence and 

(b) standard deviation of number of simulations to convergence vs. amplification 

factor. Blisk model, engine order 1. 
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(a) 

 
(b) 

Figure 61. Scatter plots for (a) mean number of simulations to convergence and 

(b) standard deviation of number of simulations to convergence vs. amplification 

factor. Blisk model, engine order 2. 
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are differences observed between the two engine order cases which shows that the 

resonance condition at which the evaluations are carried out can have a significant 

effect on the number of simulations required to capture the 95
th

 percentile well. 

The addition of dampers to the optimization also seems to show a need for an 

increased number of simulations compared to the addition of just intentional 

mistuning, while still keeping below the 1000 simulations that were used in the 

simulations in this work. 


