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ABSTRACT

A central concept of combinatorics is partitioning structures with given

constraints. Partitions of on-line posets and on-line graphs, which are dynamic

versions of the more familiar static structures posets and graphs, are examined.

In the on-line setting, vertices are continually added to a poset or graph while

a chain partition or coloring (respectively) is maintained.

Both upper and lower bounds for the optimum of the number of chains

needed to partition a width w on-line poset exist. Kierstead’s upper bound

of 5w−1
4 was improved to w14 lgw by Bosek and Krawczyk. This is improved

to w3+6.5 lgw by employing the First-Fit algorithm on a family of restricted

posets (expanding on the work of Bosek and Krawczyk) . Namely, the family

of ladder-free posets where the m-ladder is the transitive closure of the union

of two incomparable chains x1 ≤ · · · ≤ xm, y1 ≤ · · · ≤ ym and the set of

comparabilities {x1 ≤ y1, . . . , xm ≤ ym}.

No upper bound on the number of colors needed to color a general on-

line graph exists. To lay this fact plain, the performance of on-line coloring of

trees is shown to be particularly problematic. There are trees that require n

colors to color on-line for any positive integer n. Furthermore, there are trees

that usually require many colors to color on-line even if they are presented

without any particular strategy.

For restricted families of graphs, upper and lower bounds for the op-

timum number of colors needed to maintain an on-line coloring exist. In

particular, circular arc graphs can be colored on-line using less than 8 times

the optimum number from the static case. This follows from the work of

Pemmaraju, Raman, and Varadarajan in on-line coloring of interval graphs.
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DEDICATION

Studying mathematics is engaging in endless puzzle solving. Richard Bates

taught me, and countless other young people, this.
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Chapter 1

INTRODUCTION AND NOTATION
1.1 Basic Notation

The sets of integers, positive integers, nonnegative integers, and real numbers

will be denoted Z, Z+, N, and R. For i, j ∈ Z+ with i < j, we let

[j] = {1, 2, 3, . . . , j} and [i, j] = [j] \ [i− 1]. We take [0] to be the empty set

∅. Let U and V be sets. For k ∈ N, we use
(
U
k

)
= {S ⊆ U : |S| = k} and(

n
k

)
=
∣∣∣([n]

k

)∣∣∣ (the usual binomial coefficient). For a singleton {x}, we use the

notation U + x to mean U ∪ {x}. Similarly, we let U − x stand for U \ {x}.

Let f be a function f : U → V . For y ∈ V , we set

f−1(y) = {x ∈ U : f(x) = y}. For subsets A ⊆ U and B ⊆ V , we use

f(A) = {f(u) : u ∈ A} and f−1(B) = {u ∈ U : f(u) ∈ B} . The binary

logarithm will be written as lg.

1.2 Posets and Chain Partitions

An ordered pair P = (V,≤P ) is a poset (or partially ordered set) if V is a set

and ≤P is a relation on V so that for any x, y, z ∈ V , ≤P is

(1) reflexive (i.e.: if x ≤P x),

(2) transitive (i.e.: if x ≤P y and y ≤P z, then x ≤P z),

(3) and antisymmetric (i.e.: if x ≤P y and y ≤P x, then x = y).

We call the set V the vertices of P and ≤P the partial order of P . Unless

otherwise explicitly stated, we assume the set of vertices to be nonempty and

finite. When discussing the order of a poset P , we will use ≤P and reserve ≤

to indicate the usual order on R. We will rarely make mention of V . We
1



write u ∈ P to mean u is a vertex of P and |P | to mean the number of

vertices in P .

Let u, v ∈ P . We use u <P v to mean u ≤P v and u 6= v. If we have

u ≤P v or v ≤P u, we say u and v are comparable and write u ./P v. If u and

v are not comparable, we say u and v are incomparable and write u ‖P v. A

set U ⊆ V is a chain if for all u, v ∈ U , we have u ./P v. We denote an n

vertex chain by n. The set is an antichain if for all u.v ∈ U , we have u ‖P v.

The width of P (denoted width(P )) is the cardinality of the largest antichain

in P .

A function f : V → [n] is an n-chain partition of P if for each k ∈ [n],

f−1(k) is a chain. If n is unknown or unimportant, we may simply refer to a

chain partition. In some contexts, we will refer to f as an n-coloring or

coloring (for reasons we explain in the next section). We call the elements of

[n] chains or colors. One of the foundational theorems of Order Theory is

Dilworth’s Theorem, which characterizes the smallest n so that P has an

n-chain partition.

Theorem 1.1 (Dilworth [13]). For any poset P so that width(P ) = w is

finite, there is a w-chain partition of P . Furthermore, there is no n-chain

partition of P for n < w.

We should note that the theorem does not require |P | to be finite,

only width(P ) to be finite. A width(P )-chain partition of P is a Dilworth

partition of P . If there is a Dilworth partition of P so that vertices u and v

are in the same chain (i.e: f(u) = f(v)), then we say uv is a Dilworth edge.

Let P = (V,≤P ) be a poset with u, v ∈ P . If, we use P − u to mean

(V − u,≤P |V−u). The upset of u in P is UP (u) = {v : u <P v}, the downset
2



of u in P is DP (u) = {v : v <P u}, and the incomparability set of u in P is

IP (u) = {v : v ‖P u}. The closed upset and closed downset of u in P are,

respectively, UP [u] = UP (u) + u and DP [u] = DP (u) + u. We also define

[u, v]P = UP [u] ∩DP [v]. For U ⊆ V , use similarly define

DP (U) = ⋃
u∈U DP (u) and UP (U) = ⋃

u∈U UP (u), as well as

DP [U ] = DP (U) ∪ U and UP [U ] = UP (U) ∪ U . If U ′ ⊆ V , we take

[U,U ′]P = UP [U ] ∩DP [U ′]. The subposet of P induced by U is the poset

(U,≤P |U). We also denote this by P [U ]. If UP (u) = ∅, then u is maximal. If

DP (u) = ∅, then u is minimal. If DP [u] = P , then u is maximum, greatest, or

largest. If UP [u] = P , then u is minimum, least, or smallest. Let MaxP (U) be

the set of maximal vertices in P [U ] and MinP (U) be the set of minimal

vertices in P [U ]. In an abuse of notation, we use MaxP (P ) and MinP (P ) to

represent MaxP (V ) and MinP (V ), respectively.

Let Q = (W,≤Q) be a poset. If there is a bijection g : V → W so that

u ≤P v if and only if g(u) ≤Q g(v), then we say P and Q are poset

isomorphic (or simply isomorphic). We consider isomorphic posets to be

indistinguishable and so we write P = Q if P and Q are isomorphic. It

should be noted that this is not a universally accepted convention. If

Q = P [U ] for some U ⊆ V , we say Q is a subposet of P (some conventions

use the term induced subposet).

To represent posets visually, we will use Hasse diagrams. We refer the

reader to [51] for details regarding these diagrams.

1.3 Graphs and Coloring

An ordered pair of sets G = (V,E) is a graph if E ⊆
(
V
2

)
. We refer to V as

the vertices of G and E as the edges of G. As with posets, V will assumed to

3



be finite and nonempty unless explicitly stated otherwise. We set

|G| = |V (G)| and ||G|| = |E(G)|. When referring to an edge, we omit the

braces and comma of set notation and write uv ∈ E to mean {u, v} ∈ E. We

will assume that uu /∈ E(G). In some settings, a graph can be more broadly

defined and the structure we define here is called a simple graph. Given an

arbitrary graph H, we use V (H) to represent the set of vertices of H and

E(H) to represent the set of edges of H.

Let U ⊆ V . The subgraph of G induced by U is
(
U,
(
U
2

)
∩ E

)
, denoted

G[U ]. If ||G[U ]|| =
(
|U |
2

)
then U is a clique. If ||G[U ]|| = 0, then U is a

coclique (also commonly called an independent set or a stable set). The

clique number of G, denoted ω(G), is the cardinality of the largest clique in

G. Similarly, the coclique number of G, denoted α(G), is the cardinality of

the largest coclique in G. In the case of U = V , we may refer to G itself as a

clique or coclique.

A function f : V → [n] is a proper n-coloring of G (or simply an

n-coloring or coloring if n is unknown or unimportant) if for each k ∈ [n] the

set f−1(k) is a coclique. A more common equivalent definition is that for

each uv ∈ E we have f(u) 6= f(v). A coloring is a partitioning the vertices of

G into cocliques. However, the term “coloring” is used rather than

“partitioning” for the historical roots of the problem. In fact, the conjecture

that a mere four colors are needed to color any map so that no two adjacent

countries share a color is perhaps the second widely studied problem of

graphs, dating back to at least 1852 [21, 42] in a paper published under the

mysterious name F.G. 1 For this reason, we call the elements of [n] colors.
1Euler’s famous paper on the Seven Bridges of Königsberg in 1736 is regarded to be the

first graph theory publication [21].
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The smallest n ∈ Z+ so that G has an n-coloring is the chromatic

number of G, denoted χ(G). In contrast to chain partitioning posets, there is

no parameter for graphs that describes χ(G) exactly for a general graph G.

There are theorems that provide upper and lower bounds for χ(G), such as

Brooks’ Theorem [10], but the gap between the bounds is usually very large

when G is an arbitrary graph. There are even more theorems that show

much naïve intuition regarding χ(G) is false. We refer the interested reader

to [12, 53] for an introduction to such theorems. As a simple lower bound,

we can see that if U is a clique in G, then each vertex of U must have a

different color. Hence ω(G) ≤ χ(G). As we will see, equality does not always

hold. If ω(G[U ]) = χ(G[U ]) for all U ⊆ V , we call G a perfect graph.

Although G is an ordered pair, not a set, we will use notation for

adding or removing vertices or edges similar to that of adding or removing

singletons from a set. For uv ∈ E, let G− uv = (V,E − uv) (i.e.: the graph

G with edge uv removed). For u, v ∈ V we define G+ uv = (V,E + uv).

Note that if uv ∈ E, then G+ uv = G. Let v ∈ V and set

D = {uv : uv ∈ E}, we use G− v = (V − v, E \D).

For v ∈ V , the neighborhood of v is NG(v) = {u ∈ V : uv ∈ E} and

the closed neighborhood of v is NG[v] = NG(v) + v. If U ⊆ V , we extend

these conventions to NG(U) = ⋃
v∈U NG(v) and NG[U ] = NG(U) ∪ U . If the

graph is clear from context, we will omit the subscripts. If u ∈ N(v), then we

say u and v are adjacent or neighbors.

Take G = (V,E) and H = (W,F ) to be graphs. If there is a bijection

f : V → W so that uv ∈ E if and only if f(u)f(v) ∈ F , then G and H are

isomorphic. As with posets, we will treat two isomorphic graphs as the same

graph and write G = H (again, this is not a universally accepted
5



convention). The graph H is a subgraph of G if W ⊆ V and F ⊆ E. For

short, we sometimes say H is in G, G has H, or H ⊆ G. The subgraph is

induced if F = E ∩
(
W
2

)
. In this case, we denote H by G[W ]. If H ′ is

isomorphic to H, we observe the same conventions in referring to H ′ as a

subgraph of G without mentioning the isomorphism.

We define a few special families of graphs. The graph G is a path if

V (G) = {v1, v2, . . . , vn} and E(G) = {vivi+1 : i ∈ [n− 1]}. The endpoints (or

simply ends) of the path are v1 and vn. Sometimes we say this is a path from

v1 to vn or from vn to v1. The length of a path is ||G|| = |G| − 1. We say G is

a cycle if V (G) = {v1, v2, . . . , vn} with n ≥ 3 and

E(G) = {vivi+1 : i ∈ [n− 1]}+ vnv1. The length of a cycle is ||G|| = |G|. If G

has no cycles, we say G is a forest. If for any u, v ∈ V there is a path in G

with u and v as its endpoints, then G is connected. If G is a connected forest,

then G is a tree. If v is a vertex in a tree G so that |NG(v)| = 1, then v is a

leaf. If G is a subgraph of H and G is path or tree, then we say G is a

subpath or subtree (respectively) of H. A component of a graph H is a

maximal subset of U ⊆ V (H) so that H[U ] is connected.

Trees are a very special family of graphs with a simple elegance that

lends them to many uses. These include applications to data organization

and optimization in network problems, enumeration of various structures,

and linguistic analysis. For our purposes, trees serve as a “simplest case;” we

use trees to examine our ideas for general graphs. The following five

propositions can be found in any introductory Graph Theory text. They are

so central to the structure of trees we use them without mention.

Proposition 1.2. If G is a tree and |G| > 1, then G has at least 2 leaves.

6



Proposition 1.3. If G is a tree, |G| > 1, and v is a leaf, then G− v is a tree.

Proposition 1.4. If G is a tree and |G| > 1, then χ(G) = 2.

Proposition 1.5. If G is a tree, |G| > 1, and u, v ∈ V (G), then there is a

unique path in G with endpoints u and v.

Proposition 1.6. If G is a tree, |G| > 1, and xy ∈ E(G), then G− xy is a

forest with two components.

We have hinted at a connection between graphs and posets in the

shared use of the terms “vertices” and “colors.” For a poset P , the

cocomparability graph of P is the graph GP where V (GP ) is the set of

vertices of P and uv ∈ E(GP ) if u ‖P v. We can see that any antichain in P

is a clique in GP and any chain is a coclique in GP . Hence,

width(P ) = ω(GP ) and any n-chain partition of P is also an n-coloring of

GP . The equivalence of chain partitioning P and coloring GP lets us use the

terms interchangeably without too much abuse of terminology. Applying

Theorem 1.1 to the subposets of P , we see that GP is a perfect graph.

1.4 Digraphs

An ordered pair of sets G = (V,A) is a digraph (or directed graph) if A is a

subset of ordered pairs of elements of V . We call V the vertices of G and A

the arrows of G (to help distinguish directed graphs from simple graphs

where edges are subsets of V ). When referring to an arrow, we write −→uv ∈ A

or ←−vu ∈ A to mean (u, v) ∈ A. We assume that −→uu is not an arrow in G.

Most terminology for digraphs is the same as that used for simple graphs (if

we substitute “arrows” for “edges”) and does bear repeating here. However,

we do address paths and cycles.
7



A digraph G is a directed path if the vertices of G are {v1, v2, . . . , vn}

and the arrows are {−→vivi+1 : i ∈ [n− 1]}. We refer to v1 as the start and vn as

the end of the path. We can say this is a path from v1 to vn, but not vice

versa. The length of a directed path is |G|. A digraph G is a directed cycle if

the vertices of G are {v1, v2, . . . , vn} and the arrows are

{−→vivi+1 : i ∈ [n− 1]}+−→vnv1. The length of a directed cycle is |G|. Let G be a

directed cycle and u, v ∈ V (G). We use uGv to mean the directed subpath of

length at least 1 of G with start u and end v. Note that uGu = G. When

speaking of paths or cycles in the context of a directed graph, we will assume

we are speaking of directed paths and directed cycles.

We will only use digraphs built upon simple graphs. That is, we will

start with a simple graph and build a digraph by assigning a direction to the

edges to form arrows. We call this an orientation of a (simple) graph.

8



Chapter 2

ON-LINE PARTITIONING AND COLORING
2.1 General Algorithms and First-Fit

At first glance, Dilworth’s Theorem looks to be the final word in poset

partitioning. In many ways it is, but it is an existential theorem; it does not

indicate how one would find a Dilworth partition nor the complexity of such

a task. If |P | is finite, there are several algorithms (which are polynomial in

|P |) to find a Dilworth partition. If |P | is not finite but width(P ) is finite,

we may ask, is there an algorithm to create or maintain a chain partition

using a finite number of chains? In other words, can we maintain a partition

of a poset P if new vertices are continually appearing? To study this

question, we define a new structure. An on-line poset P≺ is a poset

P = (V,≤P ), where ≺ is a total order on V called a presentation.

An on-line chain partitioning algorithm is a deterministic algorithm A

that assigns the vertices v1 ≺ v2 ≺ · · · ≺ vn of P≺ to disjoint chains

C1, C2, . . . , Ct so that for each vi, the chain Cj to which vi is assigned is

determined solely by the subposet P [{v1, v2, . . . , vi}] (i.e: the first i vertices of

the presentation). Let χA(P≺) denote the number of (nonempty) chains that

A uses to partition P≺, and χA(P ) = max≺(χA(P≺)) over all presentations

≺ of P . For a family of posets P , let valA(P) = maxP∈P(χA(P )) and

val(P) = minA(valA(P)) over all on-line chain partitioning algorithms A. Let

Pw be the family of posets of width w. For the sake of brevity, we will abuse

notation and use valA(w) and val(w) to mean valA(Pw) and val(Pw),

respectively. Traditional chain partitioning, where an algorithm views all the

vertices of P before making a partition or is allowed to make changes to

9



earlier assignments, will be called off-line partitioning. Again, we will use the

terms partitioning and coloring interchangeably.

Informally, we may think of on-line partitioning as a game where

players Spoiler and Algorithm take turns. A positive integer w is selected by

Spoiler. In each round, Spoiler adds a vertex to a poset and reveals all

comparabilities to previously added vertices. The width of the poset must

not exceed w. Algorithm then uses a fixed set of instructions (an algorithm)

to assign the new vertex to chain in a partition of the poset that he

maintains throughout the game. Algorithm wants to maintain a partition

with few chains and Spoiler wants to force Algorithm to use many chains. In

this setting, we can think of val(w) as the largest integer m so that Spoiler

has a poset of width at most w and order of revealing the vertices that forces

Algorithm to use at least m chains. Dually, it is the smallest integer n so

that Algorithm may play the game indefinitely using only n chains for any

poset of width w and for any order in which the vertices are revealed. Spoiler

is not forced to decide on P≺ before the game starts. He may change his

mind about either ≺ or P at will, so long at the width is at most w at each

round of the game and he does not alter the previously revealed portion of

the poset.

For each w ≥ 2, it is easy to see val(w) > w. To demonstrate this, we

offer a simple strategy for Spoiler to force any on-line partitioning algorithm

A to use w + 1 chains while presenting a poset of width w. For the first w

rounds, Spoiler presents a w vertex antichain a1, a2, . . . , aw. In each of these

rounds, Algorithm must assign each of these vertices to a distinct chain. In

round w + 1, Spoiler reveals a maximum vertex u. As Algorithm wishes to

use only w chains, u must be assigned to a chain with some vertex from the

10



antichain, say ai. Spoiler then reveals v where v is greater than ai and

incomparable to all other vertices. As v is incomparable to a vertex in each

of Algorithm’s w chains, Algorithm must add another chain to his partition.

In Figure 2.1, we show seven rounds of this strategy with w = 5. From top to

bottom: the result of rounds 1-5, round 6, and round 7.

a1 a2 a3 a4 a5
u

a1 a2 a3 a4 a5
v u

a1 a2 a3 a4 a5

Figure 2.1: Spoiler’s strategy for w = 5.

Even though a Dilworth partition cannot be maintained, we still ask,

can we maintain some partition using a finite number of chains? If so, how

many chains would we need? In 1981, Kierstead [30] proved that

4w − 3 ≤ val(w) ≤ 5w−1
4 , and asked whether val(w) is polynomial in w. It

was also noted that the arguments could be modified to provide a superlinear

lower bound. Shortly after, Szemerédi proved a quadratic lower bound (see

[31]) of
(
w+1

2

)
≤ val(w). In 1997 Felsner [18] proved that val(2) ≤ 5, and in

2008 Bosek [2] proved that val(3) ≤ 16. Bosek, et al. [3] improved the lower

bound to (2− o(1))
(
w+1

2

)
. In 2010, Bosek and Krawczyk made a major

advance in the upper bound.

Theorem 2.1 (Bosek & Krawczyk [4]). val(w) ≤ w14 lgw.

11



If we require the presented poset to be from a certain family or ≺ to

have certain restrictions, there are further results. We refer the reader to [3]

for a survey.

Perhaps the simplest on-line chain partitioning algorithm is First-Fit

(FF). It assigns each new vertex vi to the chain Cj with the least index

j ∈ Z+ such that for all h < i if vh ∈ Cj then vh ./P vi. It is easy to see the

result of FF is a chain partition. It was observed in [30] that valFF(w) is

unbounded (see [31] for details). The poset that Kierstead used to obtain

this result in now part of the folklore of Order Theory and will play and

important part in much our work to come, so it bears repeating here.

Lemma 2.2. For every positive integer n there exists an on-line poset R≺n

with width 2 such that χFF(R≺n ) = n.

Proof. We define the on-line poset R≺n with Rn = (X,≤R) as follows. The

poset Rn consists of n chains X1, . . . , Xn with

Xk = xkk ≤R xkk−1 ≤R · · · ≤R xk2 ≤R xk1

and the additional comparabilities and incomparabilities given by:

xki ≥R X1 ∪X2 ∪ · · · ∪Xk−2 ∪ {xk−1
k , xk−1

k−1, . . . , x
k−1
i }

xki ‖R {xk−1
1 , xk−1

2 , . . . , xk−1
i−1 }.

Note that the superscript of a vertex indicates to which chain Xk it belongs

and the subscript is its index within that chain. We illustrate R5 in

Figure 2.2. The presentation ≺ is given by

X1 ≺ · · · ≺ Xn,

12



where the order ≺ on the vertices of Xk does not matter, but we let ≺ be

the same as ≤R on Xk.

By induction on k, it is easy to show that the width of Rn is 2, and

each vertex xki is assigned to chain Ci.

R5

x1
1 x2

2

x2
1x3

3

x3
2

x3
1

x4
4

x4
3

x4
2

x4
1

x5
5

x5
4

x5
3

x5
2

x5
1

Lm

x1

x2

xm−1

xm

y1

y2

ym−1

ym

Figure 2.2: Hasse diagrams of R5 and Lm.

Despite Lemma 2.2, the analysis of the performance of First-Fit on

restricted families of posets has proved very useful and interesting. For

posets P and Q, we say P is Q-free if Q is not isomorphic to any induced

subposet of P . Let Forb(Q) denote the family of Q-free posets, and

Forbw(Q) denote the family of Q-free posets with width at most w. Slightly

abusing notation, we write valFF(Q,w) for valFF(Forbw(Q)). In 2010 Bosek,

Krawczyk, and Matecki proved the following:

13



Theorem 2.3 (Bosek, Krawczyk & Matecki [5]). For every width 2 poset Q

there exists a function fQ such that valFF(Q,w) ≤ fQ(w).

Lemma 2.2 shows that the theorem cannot be extended to posets Q

with width greater than 2. For general Q the proof of the theorem gives an

exponential function fQ. However, in many cases were Q is specified,

Forb(Q,w) is either tightly bounded or known exactly. The case of Q = s + t

is especially interesting and well-studied. We will soon discuss it further.

Bosek and Krawczyk focused attention on the family of ladders. For a

positive integer m, we say poset L is an m-ladder (or L = Lm) if its vertices

are two disjoint chains x1 <L x2 <L · · · <L xm and y1 <L y2 <L · · · <L ym

with xi <L yi for all i ∈ [m] and yi ‖L xj if i ≤ j ≤ m. We provide a Hasse

diagram of L = Lm in Figure 2.2. Notice that for two consecutive chains X i

and X i+1 of Rn, the set X i ∪ (X i+1 − xi+1
i+1) induces the ladder Li in Rn. The

vertices x1, x2, . . . , xm are the lower leg and the vertices y1, y2, . . . , ym are the

upper leg of Lm. The edge xiyi is called the ith rung of Lm. We denote the

poset (ladder) P with two disjoint chains x1 <P x2 <P · · · <P xm and

y1 <P y2 <P · · · <P ym such that the subposet induced by these chains is

isomorphic to Lm with xm <P ym by Lm(x1x2 . . . xm; y1y2 . . . ym). Based on

extensive work, the following observation was made during the proof of

Theorem 2.1.

Observation 2.4 (Bosek & Krawczyk [4]). If valFF(Lm, w) is bounded from

above by a function f(m,w) then val(w) is bounded from above by

w · f(2w2 + 1, w).

Motivated by this observation, we will prove the following three

theorems.
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Theorem 2.5 (Kierstead & MES, Krawczyk). valFF(L2, w) = w2.

Theorem 2.6 (Kierstead & MES). m− 1 ≤ valFF(Lm, 2) ≤ 2m.

Theorem 2.7 (Bosek, Kierstead, Krawczyk, Matecki & MES).

wlg(m−1) ≤ valFF(Lm, w) ≤ w2.5 lgw+2 lgm.

Theorem 2.7 is used to prove the following theorem, offering a

somewhat improved upper bound from Theorem 2.1 with a significantly

simplified proof.

Theorem 2.8 (Bosek, Kierstead, Krawczyk & MES). val(w) ≤ w3+6.5 lgw.

One may ask a similar question for graphs. If a graph is revealed one

vertex at a time, is it possible to maintain a coloring using a finite number of

colors? An on-line graph G≺ is a graph G = (V,E) is a graph and ≺ is a

total order on V called a presentation. On-line graph coloring is defined in a

parallel way to on-line chain partitioning. An on-line coloring algorithm is a

deterministic algorithm A that assigns the vertices v1 ≺ v2 ≺ · · · ≺ vn of G≺

to disjoint cocliques C1, C2, . . . , Ct so that for each vi, the coclique Cj to

which vi is assigned is determined solely by the subposet G[{v1, v2, . . . , vi}]

(i.e: the first i vertices of the presentation). Let χA(G≺) denote the number

of (cocliques) chains that A uses to color G≺, and χA(G) = max≺(χ(G≺))

over all presentations ≺ of G. For a given graph G, define

χOL(G) = minA(χA(G)) over all on-line coloring algorithms. Traditional

coloring, where an algorithm views all the vertices of G before making a

partition or is allowed to make changes to earlier assignments, will be called

off-line coloring.
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For posets, we found the number of chains needed to partition P≺ can

be bounded by a function of width(P ). So, it is natural to ask is χOL(G)

bounded by a function of χ(G)? In general, this is not true. In fact, as we

will demonstrate in Chapter 6, for each n ∈ Z+ there is a tree T so that

χOL(T ) > n. As all trees with at least two vertices require only two colors in

the off-line setting, this removes any hope of bounding χOL(G) in terms of

χ(G). However, if we place restrictions on G, we can bound χOL(G).

Again echoing the notation for posets, for graphs G and H, we say G

is H-free if H is not isomorphic to any induced subgraph of G. Let Forb(H)

denote the family of H-free graphs. If H is a set of graphs, then Forb(H) is

the family of graph that are H-free for all H ∈ H. Note that H need not be

finite. The First-Fit algorithm will be used in this setting as well. In the

graph setting, FF assigns each new vertex vi to the coclique Cj, with the

least index j ∈ Z+ such that for all h < i if vh ∈ Cj then vhvi is not an edge

in G[{v1, v2, . . . , vi}]. Again, we can see the result of FF is a proper coloring.

In 1978, McDiarmid [41] showed that χFF(G) = 2χ(G) + ε for almost all

graphs G. This proof is asymptotic, so there are infinitely many graphs for

which this is not true and so the performance of FF in on-line coloring

remains an active area of research.

Gyárfás [24], and independently Sumner [52], studied Forb({T,Kt+1})

and conjectured that if T is a tree then χOL(G) is bounded for all

G ∈ Forb({T,Kt+1}). Gyárfás, Szemerédi, and Tuza [27] proved this

conjecture in the case that T has radius 2 and t = 2, Kierstead and Penrice

[34] extended their proof to all t and radius 2 trees T , and Kierstead, Penrice

and Trotter [35] proved that there is an on-line algorithm that colors every

graph in Forb({T,Kt+1}) using a bounded number of colors.
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Of particular interest is the family of cocomparability graphs.

Suppose G is a graph so that G = GP for some poset P . The First-Fit

coloring algorithm performs exactly the same on G as the First-Fit chain

partitioning algorithm performs on P . However the input P [{v1, v2, . . . , vi}]

to an on-line chain partitioning algorithm provides more information than

G[{v1, v2, . . . , vi}]. This extra information is needed for the on-line chain

partitioning algorithms in [30, 4] as well as the algorithm used to prove

Theorem 2.8. However, cocomparability graphs are a subfamily of

Forb({T,Kt+1}). Hence, the results of [34] allowed the authors to build an

on-line coloring algorithm that uses a bounded number of colors on any

cocomparability graph with bounded clique number. The number of colors

used is large enough to be called astronomical. It remains an interesting

open question to find good bounds for this on-line graph coloring problem.

A circular arc graph is the intersection graph of subpaths of a cycle.

Formally, if A1, A1, . . . , An are subpaths of a cycle C, the corresponding

circular arc graph is G = (V,E) where V = {A1, A2, . . . , An} with AB ∈ E if

and only if V (A) ∩ V (B) 6= ∅. We will refer to the any element of

{A1, A2, . . . , An} as a path rather than a subpath and use A ∩B to mean

V (A) ∩ V (B) when referring to the intersection of paths. The cycle C is the

base cycle and, to avoid confusion, we refer to V (C) as nodes and E(C) as

links. The overlap number of G, denoted ι(G) is

max{|U | : U ⊆ V (G),⋂A∈U A 6= ∅} (i.e.: the cardinality of the largest

collection of arcs that contain a common node).

We should note that the traditional definition of circular arc graphs is

geometric; arcs along the circumference of a given circle are the vertices and

their intersections determine the edges in the same fashion as our base cycle
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definition. Given a geometrically defined (finite) circular arc graph, we may

find an isomorphic circular arc graph on a base cycle using subpaths by

selecting a cycle with a node for each distinct endpoint of the set of arcs and

then mapping the arcs to subpaths in the obvious way.

A well-studied subfamily of circular arc graphs is the family of

interval graphs. If I1, I2, . . . , In is a set of subpaths of a path P , the

corresponding interval graph is G = (V,E) where V = {I1, I2, . . . , In} with

IJ ∈ E if and only if I ∩ J 6= ∅. These graphs are also more traditionally

thought of as geometric intersection graphs; in this case, as intersections of

intervals on the real line. To see that this is indeed a subfamily of the

circular arc graph, if we add a link to between the endnodes of P , we have a

base cycle without altering the structure of G.

Despite the similar definitions of circular arc and interval graphs, they

have very different properties. First, each interval graph is a cocomparability

graph of an interval order. Roughly speaking, given an interval graph G, we

may think of a base path drawn from left to right and build an interval order

P based on G. Each vertex of the graph is a vertex in the poset. For vertices

u and v we have u ≤P v if the right endpoint of u is to the left of the left

endpoint of u. If v ∩ u 6= ∅, the u ‖P v. We leave it to the reader to verify

that cycles with an odd number of vertices are not cocomparability graphs.

Any cycle may be represented as a circular arc graph and hence circular arc

graphs (as a family) are not cocomparability graphs. Furthermore, the

chromatic number, clique number, and overlap number of the graphs of these

respective families have different interactions. Suppose G is an interval

graph. The following is a well-known fact:

ι(G) = ω(G) = χ(G). (2.1)
18



When one is interested in only interval graphs, ι(G) is rarely mentioned.

Circular arc graphs, however, are not perfect. If C3 and C7 are respectively a

cycle of length 3 and a cycle of length 7, we have 2 = ι(C3) < ω(C3) = 3 and

2 = ω(C7) < χ(C7) = 3 while both are circular arc graphs (see Figure 2.3).

From this, we see circular arc graphs satisfy

ι(G) ≤ ω(G) ≤ χ(G). (2.2)

Additionally, the chromatic number of an interval graph may be found in

polynomial time where the same problem NP-hard for circular arc graphs, as

shown by Garey, et al [22].

C3 C7

Figure 2.3: ι(C3) < ω(C3) and ω(C7) < χ(C7).

Despite these differences, interval and circular arc graphs show

remarkable similarity with regard to on-line coloring. In 1981, Kierstead and

Trotter [39] showed χOL(G) = 3χ(G)− 2 for any interval graph G.

Furthermore, the algorithm that provides the upper bound is easily

understood and used. A more accessible version of this proof can be found in

[33] or [47]. Marathe, Hunt, and Ravi [40] demonstrated an algorithm A for

which χA(G) ≤ 4χ(G) for any circular arc graph G. In 1995 Ślusarek [49]
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applied a slightly modified version of the algorithm from [39] to circular arc

graphs to obtain χOL(G) = 3χ(G)− 2 for any circular arc graph G. Hence,

there is a strategy for coloring both interval graphs and circular arc graphs

on-line with identical performance. This stands in stark contrast to the

many differences in coloring these two families off-line. Of key interest is the

role of ι(G) in the upper bound: the proof of the upper bounds on χOL(G)

for both circular arc and interval graphs use ι(G) in their algorithms, even

though ι(G) ≤ χ(G) in circular arc graphs.

It is well-known and much-used that the family of interval orders is

equal to Forb(2 + 2) [20]. Recalling that poset P offers more information

than its cocomparability graph GP , we have val(Forbw(2 + 2)) ≤ 3w − 2,

using the results of [39]. Furthermore, an example from the same paper is

easily adapted to show equality. First-Fit coloring of interval orderings has

applications to polynomial time approximation algorithms [32, 33] and

Max-Coloring [44], hence, it has been an area of great interest. In 1988,

Kierstead [32] proved that valFF(2 + 2, w) ≤ 40w. This was improved in

valFF(2 + 2, w) ≤ 25.72w [36]. In 2004 Pemmaraju, Raman and K.

Varadarajan [44] introduced a beautiful new technique to show

valFF(2 + 2, w) ≤ 10w. This was quickly improved to valFF(2 + 2, w) ≤ 8w

[9, 43] with minor modifications. We will show that the proof from [44] can

be adapted to show the following.

Theorem 2.9 (Kierstead & MES). For any circular arc graph G,

χFF(G) < 8χ(G).

In 1976 Witsenhausen [54] proved 4 ≤ valFF(2 + 2, w) (Chrobak and

Ślusarek [11] independently found the same result). In 1993, Ślusarek [48]

20



improved this to 4.45 ≤ valFF(2 + 2, w). In 2010 Kierstead, D. Smith and

Trotter [50, 37] proved 5(1− o(1))w ≤ valFF(2 + 2, w).

In a natural generalization of Forb(2 + 2), there has been research

into Forb(s + t) for s, t ∈ Z+. In 2010 Bosek, Krawczyk, and Szczypka [6]

proved that valFF(t + t) ≤ 3tw2. This result plays an important role in the

proof of Theorem 2.1. Joret and Milans [29] improved this to

valFF(s + t, w) ≤ 8(s− 1)(t− 1)w. Very recently, Dujmović, Joret, and Wood

[15] proved valFF(t + t, w) ≤ 16tw. Another generalization of interval graphs

and interval orders is tolerance graphs. We refer the reader to [23] for

definitions and examples. Kierstead and Saoub [38, 46] established linear

upper bounds on the performance of FF on certain families of tolerance

graphs.

We have now discussed graphs where χOL(G) cannot be bounded by

χ(G) and families where χFF(G) is bounded (in some cases very closely) by

χ(G). As mentioned before, for each n ∈ Z+, there is a tree T so that

χFF(T ) ≥ χOL(T ) > n. Recalling χFF(T ) ≥ χFF(T≺) for any presentation ≺,

we might think of χFF(T ) as looking at a worst case. We might wonder, for a

tree with χFF(T ) = n, how likely is it χFF(T≺) = k for some k ∈ [n] and

randomly chosen presentation ≺?

For a fixed forest T , we define a probability space (ΩT ,FT ,Pr) where

ΩT = {χFF(T≺) :≺ is a presentation}, FT is the power set of ΩT , and Pr is

the probability measure. Define ȦnT to be the the event χFF(T≺) = n and AnT

to be the the event χFF(T≺) ≥ n. If n is large in comparison to |T |, we expect

the probability of AnT occurring (we will use Pr(AnT ) to denote this) to be

small. Somewhat counter to this intuition, we provide the following theorem.
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Theorem 2.10 (Kierstead, MES & Winkler). For any n ∈ Z+ there exists a

tree T with Pr(AnT ) ≥ 1/2 so that n ≥
√

1 + lg |T |.

2.2 Grundy Colorings

For an on-line graph G≺ or poset P≺, examining the performance of FF in

coloring G≺ or partitioning P≺, the presentation often becomes cumbersome.

To avoid this annoyance, we introduce the following colorings.

Definition 2.11. Let G be a graph and n ∈ Z+. A function g : V (G)→ [n]

is an n-Grundy coloring of G if the following three conditions hold.

(G1) For each i ∈ [n], the set {u ∈ V (G) : g(u) = i} is a coclique in G (i.e.:

g is an n-coloring of G).

(G2) For each i ∈ [n], there is some u ∈ V (G) so that g(u) = i (i.e.: g is

surjective).

(G3) If v ∈ V (G) with g(v) = j, then for all i ∈ [j − 1] there is some

u ∈ NG(v) such that g(u) = i.

If u ∈ V (G) and g(u) = i, we will say u is colored with i. Let the color

class i be the coclique V g
i (G) = {u ∈ V (G) : g(u) = i}. We will omit g and G

if they are clear from context. If H is a subgraph of G and

V (H) ∩ Vi(G) 6= ∅, then color i appears in H.

Let u, v ∈ V (G). If uv ∈ E(G) and g(u) < g(v), we will say u is a

g(u)-witness for v under g. If we are only concerned with one coloring

function, this will be shortened to g(u)-witness. If we are not concerned with

a specific color, we will simply say u is a witness for v. If H is a subgraph of

G and g is an n-Grundy coloring of G, we will yet again abuse notation and
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use g for the function g|V (H) : V (H)→ [n] (i.e.: the function g with domain

restricted to H). Note that g might not be an n-Grundy coloring of H.

In the following lemma, we see how a Grundy coloring allows us to

ignore presentations in examining the χFF(G).

Lemma 2.12. If G = (V,E) is a graph, then G has an n-Grundy coloring if

and only if G has a presentation ≺ so that χFF(G≺) = n. Consequently,

χFF(G) is equal to the largest n so that G has an n-Grundy coloring.

Proof. Let G be a graph and g be an n-Grundy coloring of G. We build

presentation ≺ based on g. Let V1, V2, . . . , Vn be the color classes of g. Set

V1 ≺ V2 ≺ · · · ≺ Vn. For each i ∈ [n], the order ≺ on the vertices of Vi may

be chosen arbitrarily. If g(v) = j, First-Fit will assign v to Cj because, for

each i < j, there is some vertex u ∈ Ci so that uv ∈ E with u ≺ v. Hence,

χFF(G≺) = n.

Suppose we have presentation ≺ so that χFF(G≺) = n. For each

u ∈ V , let g(u) be the index of the coclique to which u is assigned by FF.

We will show the conditions of Definition 2.11 are satisfied. The result of FF

is a coloring, so (G1) holds. Each coclique used by FF is nonempty, so (G2)

is satisfied. Suppose g(v) = j. Then v was assigned to coclique Cj. By the

definition of FF, for each i < j, there is some u ∈ Ci so that uv ∈ E with

u ≺ v. By our choice of g, we see that u is an i-witness and so (G3) holds as

well.

Let P be a poset. To analyze the performance of FF in coloring P

on-line, we will use Grundy colorings of GP . Although we could simply speak
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of a Grundy coloring of cocomparability graphs, it is worth the time to

define this type of coloring explicitly for posets.

Definition 2.13. Let P a poset and n a positive integer. The function

g : P → [n] is an n-Grundy coloring of P if the following three conditions

hold.

(P1) For each i ∈ [n], the set {u ∈ P : g(u) = i} is a chain in P (i.e.: g is

an n-coloring of P ).

(P2) For each i ∈ [n], there is some u ∈ P so that g(u) = i (i.e.: g is

surjective).

(P3) If v ∈ P with g(v) = j, then for all i ∈ [j − 1] there is some u ∈ IP (v)

such that g(u) = i.

Most of our terms for Grundy colorings of posets are parallel to those

used for Grundy colorings of graphs, but we take the time to explicitly define

them here. If u ∈ P and g(u) = i, we will say u is colored with i. Let the

color class i be the chain Pi(g) = {u ∈ P : g(u) = i}. If we are only

concerned with one coloring function, we will shorten this to Pi. If Q is a

subposet of P and Q ∩ Pi 6= ∅, then color i appears on Q.

Let u, v ∈ P . If u ‖P v and g(u) < g(v), we will say u is a

g(u)-witness for v under g. If we are only concerned with one coloring

function, this will be shortened to g(u)-witness. If we are not concerned with

a specific color, we will simply say u is a witness for v. If Q is a subposet of

P and g is an n-Grundy coloring of P , we will abuse notation and use g for

the function g|Q : Q→ [n] (i.e.: the function g with domain restricted to Q).

Note that g might not be an n-Grundy coloring of Q.
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For a poset P , we apply Lemma 2.12 to GP and arrive at the

following lemma.

Lemma 2.14. If P is a poset, then P has an n-Grundy coloring if and only

if P has a presentation ≺ so that χFF(P≺) = n. Consequently, χFF(P ) is

equal to the largest n so that P has an n-Grundy coloring.
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Chapter 3

ON-LINE COLORING OF LADDER-FREE POSETS
3.1 Proof of Theorem 2.5

We first bound the performance of First-Fit on width w posets in Forb(L2),

and then provide examples to show that our bound is tight.

Lemma 3.1. Every poset P ∈ Forbw(L2) satisfies χFF(P ) ≤ w2.

Proof. Let P be a poset of width at most w in the family Forb(L2) and g be

an n-Grundy coloring of P . Furthermore, let P be minimal with respect to

|P |, i.e.: there is no x ∈ P so that P − x has an n-Grundy coloring. Fix a

Dilworth partition C = {C1, C2, . . . , Cw} of P . We will show n ≤ w2.

Claim 3.2. For any chain C ∈ C, there is at most one color j such that

Pj ⊆ C.

Proof. Let j (if it exists) be the largest color such that Pj ⊆ C, and let

v ∈ Pj. Then Pi * C for any color i > j; if i < j then by Definition 2.13(P3),

x ‖P v for some x ∈ Pi, and so again Pi * C.

Claim 3.3. |Pn| = 1.

Proof. If u, v ∈ Pn are distinct vertices, then the poset P ′ = P − u is in

Forb(L2), g is an n-Grundy coloring of P ′ and |P ′| < |P |. This contradicts

the hypothesis that P is minimal.

Now, we will focus on the colors appearing on more than one chain of

C.
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Claim 3.4. For every k ∈ [n] and u ∈ Pk, there exists x ∈ IP (u) such that

Pk − u+ x is a chain.

Proof. Let u ∈ Pk, P ′k = Pk − u, and P ′ = P − u. Of course P ′ ∈ Forb(L2).

So the minimality of P implies that g is not an n-Grundy coloring of P ′. If

P ′k = ∅, we are done; so assume P ′k 6= ∅. Thus Definition 2.13(P1) holds for g,

and 2.13(P2) holds trivially. So 2.13(P3) fails. Thus u is the only k-witness

for some x ∈ Pi with k < i ∈ [n]. So x ∈ IP (u) and Pk − u+ x is a chain.

Claim 3.5. For any color k, |Pk| ≤ 2.

Proof. Suppose the chain Pk has distinct vertices t <P u <P v. By

Lemma 3.4, there exists x ∈ IP (u) so that x ./P t and x ./P v. As x ‖P u, we

must have t <P x <P v. So P [t, u, v, x] = L2(t, u;x, v) is an induced 2-ladder

(see Figure 3.1). This contradicts the hypothesis P ∈ Forb(L2).

t

u x

v

Figure 3.1: The subposet induced by t, u, v, and x.

Claim 3.6. For all chains A,B ∈ C, at most two colors appear on both A

and B.

Proof. Let S be the set of the colors that appear on both A and B. For a

contradiction, assume three distinct colors i < j < k are contained in S. Let

P ′ = P [Pi ∪ Pj ∪ Pk]. By Claim 3.5, each of the colors in {i, j, k} appears at
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most twice. So P ′ is contained in the chains A and B. Consider the vertices

ai, aj, ak, bi, bj, and bk where aγ ∈ A, bγ ∈ B, and g(aγ) = g(bγ) = γ for

γ ∈ {i, j, k}. As g is a Grundy coloring of P , ak and bk must have i- and

j-witnesses; so ak is incomparable to bi and bj, and bk is incomparable to aj

and ak. Similarly, aj ‖P bi and bj ‖P ai.

We also note the vertices ai, aj, and ak are pairwise comparable as

they belong to the same chain, A. Similarly, bi, bj, and bk are pairwise

comparable. As g is a Grundy coloring, for γ ∈ {i, j, k}, we have aγ ./P bγ.

Without loss of generality, we may take aj <P ak. As bk ‖P aj and

bk ./P ak, we must have bk <P ak. Also bj ‖P ak, so we must have aj <P bj.

We depict this in Figure 3.2.

A B

ak

bkaj

bj

Figure 3.2: Hasse diagram of chains A and B.

Since bj, bk ∈ IP (ai), we have aj <P ai <P ak. Similarly, we find

bk <P bi <P bj. Recall that ai and bi are comparable (see Figure 3.3). If

ai <P bi then ai < bj, a contradiction; otherwise bi < ai, and so bi < ak,

another contradiction.

By Claim 3.5, colors appear on either one or two chains in C. By

Claim 3.2, there are at most w colors that appear on exactly one chain in C.

By Claim 3.6, any pair of chains in C share at most two colors. From this, we
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ai <P bi bi <P ai

A B

ak

bkaj

bj

ai
bi

A B

ak

bkaj

bj

ai
bi

Figure 3.3: Hasse diagrams of the possible orderings of ai and bi.

conclude

n ≤ w + 2
(
w

2

)
= w2.

So χFF(P ) ≤ w2, as desired.

Now we prove a matching lower bound for Lemma 3.1.

Lemma 3.7. For each positive integer w, there exists a poset P ∈ Forb(L2)

with width(P ) = w that satisfies χFF(P ) = w2.

Proof. It suffices to build the desired poset P ∈ Forb(L2) with width(P ) = w

and a w2-Grundy coloring g of P . Arguing by induction on w, we will

construct P and g satisfying the following.

(I1) P ∈ Forb(L2).

(I2) width(P ) = w.

(I3) P has w minimal and w maximal vertices.

(I4) g is a w2-Grundy coloring of P .

The case for w = 1 is simple: P is the poset with one vertex. Clearly,

P ∈ Forb(L2), P has width one, P has one minimal and one maximal vertex,
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and P has a 1-Grundy coloring. Now, assume the inductive hypothesis holds

for all cases smaller than w.

Define a poset H and a coloring ġ of H as follows (see Figure 3.4).

(H1) The vertices of H are two w − 1 vertex antichains, A = {a1, . . . , aw−1}

and B = {b1, . . . , bw−1}, and a 2w − 1 vertex chain

C = c2w−1 <H c2w−2 <H · · · <H c2 <H c1.

(H2) For i ∈ [w − 1], c2w−i <H ai.

(H3) For i ∈ [w − 1], bi <H ci.

(H4) For all i, j ∈ [w − 1], bi <H aj.

(H5) There are no other comparabilities, except those implied by transitivity

and reflexivity.

(H6) ġ : H → [2w − 1] by:

ġ(u) =



i if u = bi for i ∈ [w − 1]

w + i− 1 if u = ai for i ∈ [w − 1]

i if u = ci for i ∈ [w − 1]

3w − i− 1 if u = ci for i ∈ [w, 2w − 1]

.

We now show that H satisfies (I1–3).

Claim 3.8. H ∈ Forb(L2), width(H) = w, and H has w minimal and w

maximal vertices.

Proof. Set Ci = {ai, bi} for i ∈ [w − 1]. Then {C,C1, C2, . . . , Cw−1} is a chain

partition of H, so it has width at most w. The set B + c2w−1 shows that

there are w minimal vertices and that the width is exactly w. The set A+ c1
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A
a15

a26
a37

a48

B
b1

1
b2

2
b3

3
b4

4

C

c1 1
c2 2
c3 3
c4 4
c5 9
c6 8
c7 7
c8 6
c9 5

Figure 3.4: Hasse diagram of H along with coloring ġ.

shows that there are w maximal vertices. Now, assume L2(pq; rs) is in H, as

in Figure 3.5. Note that q and r cannot both be from C, as C is a chain.

p

q r

s

Figure 3.5: Labeling of L2.

Thus, one of q or r, say q, must be in A ∪B. If q ∈ A, then q is maximal in

H, and so there is no vertex s in H with q ≤H s. If q ∈ B, then q is minimal

in H, and so there is no vertex p in H with p ≤H q. Thus H ∈ Forb(L2).

Claim 3.9. ġ is a (2w − 1)-Grundy coloring of H.

Proof. The definitions of H and ġ show ġ is surjective. It is also easy to

verify that each color class is a chain in H. We will now verify that each

vertex x ∈ H has a j-witness for each j ∈ [ġ(x)− 1].
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For each i ∈ [w − 1], we have ġ(bi) = i. As bi ‖H bj for j < i, each

bi ∈ B has a j-witnesses for all j ∈ [i− 1]. If i ∈ [w − 1], then ġ(ci) = i. We

have ci ‖H bj for j < i and so each ci has j-witnesses for all j ∈ [i− 1]. For

ai ∈ A, ġ(ai) = w + i− 1. We have ai ‖H cj for j ∈ [w − 1], so ai has j

witnesses for j ∈ [w − 1]. Also, for i 6= 1, ai ‖H aj for j < i so ai has

j-witnesses for j ∈ [w,w + i− 2]. If i ∈ [w, 2w − 1], then ġ(ci) = 3w − i− 1.

We have ci ‖H B, so ci has j-witnesses for j ∈ [w − 1]. Also, for i 6= 2w − 1,

ci ‖H aj for j < 2w − i+ 1, so ci has j-witnesses for

j ∈ [w, (2w − 1)− (i− w)] = [w, 3w − i− 1]. Thus, ġ is a Grundy coloring of

H.

We are now ready to build the desired poset P and the Grundy

coloring g (see Figure 3.6). By the inductive hypothesis, there is a poset P ′

and a Grundy coloring g′ satisfying (I1–4). By Dilworth’s Theorem and (I2),

there is a chain partitioning C ′ = {C ′1, C ′2, . . . , C ′w−1} of P ′. By (I3) P ′ has

w − 1 minimal and w − 1 maximal vertices. Thus every chain C ′i contains a

minimal vertex b′i and a maximal vertex a′i of P ′. Define P and g to be the

poset and coloring formed by combining H, P ′, g′ and ġ as follows (see

Figure 3.6):

(1) The disjoint union of the vertices of H and P ′ are the vertices of P .

(2) For i ∈ [w − 1], a′i <P ai.

(3) For i ∈ [w − 1], bi <P b
′
i.

(4) There are no other comparabilities, except the order relations from H

and P ′ and those implied by transitivity.
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(5) g : P → [w2] by:

g(u) =


ġ(u) if u ∈ H

g′(u) + 2w − 1 if u ∈ P ′

From now on we refer to H and P ′ as subposets of P .

P ′ H

a1 a2 a3 a4

a′1 a′2 a′3 a′4

b1 b2 b3 b4

b′1 b′2 b′3 b′4

c1

c2

c3

c4

c5

c6

c7

c8

c9

Figure 3.6: Partial Hasse diagram of P .

The next three claims complete the proof.

Claim 3.10. (I2-3) width(P ) = w = |MaxP (P )| = |MinP (P )|.

Proof. For i ∈ [w − 1], set Ci = C ′i + ai + bi. Since

bi <P b
′
i ≤P C ′i ≤P a′i <P ai,

we see Ci is a chain. Thus C = {C1, . . . , Cw−1, C} is a chain partition of P . It

follows that

w = width(H) ≤ width(P ) ≤ w and

|MinP (P )| = |MinP (H)| = w = |MaxP (H)| = |MaxP (P )|.
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Claim 3.11. (I1) P ∈ Forb(L2).

Proof. Assume L2(pq; rs) is contained in P (see Figure 3.5). By the

inductive hypothesis and Claim 3.8, at least one of the vertices p, q, r, s is in

P ′ and at least one is in H. As in the proof of Claim 3.8 the vertices of A

(respectively, B) are maximal (minimal) in P . Thus we cannot have q or r in

antichain A (antichain B). Also, we cannot have both q and r in chain C.

First suppose q and r are in P ′. Because the vertices of P ′ are

incomparable to the vertices of C, we must have p ∈ B or s ∈ A. If p ∈ B,

then p = bi for some i ∈ [w − 1]; set p′ = b′i. As UP [bi]− bi = UP [b′i], we must

have p′ = b′i <P q and p′ = b′i <P r. If s ∈ A, then s = ai for some i ∈ [w− 1];

set s′ = a′i. As DP [ai]− ai = DP [a′i], we must have q <P a
′
i = p′ and

r <P a
′
i = s′. From this, we see L2(p′q; rs), L2(pq; rs′), or L2(p′q; rs′) is in P ′,

contradicting the inductive hypothesis.

Otherwise, we may assume q ∈ P ′ and r ∈ C. If r = ci with i ∈ [w],

then q and r have no common greater vertex s. If r = ci with i ∈ [w, 2w − 1],

then q and r have no common lesser vertex p. Hence, we cannot have

L2(pq; rs) with r ∈ C and q ∈ P ′.

These contradictions complete the proof of this claim.

Claim 3.12. (I4) g is a w2-Grundy coloring of P .

Proof. We can see g is surjective. Each color class of g is a color class in ġ or

g′. By the inductive hypothesis and Claim 3.9, they are chains. So g satisfies

Definition 2.13(P1,P2).

Now consider Definition 2.13(P3). First suppose u ∈ H. We have

g(u) = ġ(u). By Claim 3.9, u has an i-witness for each i ∈ [g(u)− 1]. Now
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suppose u ∈ P ′. Note that u ‖P C. For each i ∈ [2w− 1], there is some c ∈ C

so that g(u) = i. Let j ∈ [2w, g(u)− 1]. By the inductive hypothesis, u has a

(j − 2w + 1)-witness w under g′. It follows that w is a j-witness under g.

This completes the proof of Lemma 3.7.

Proof of Theorem 2.5. By Lemma 3.1, every poset P ∈ Forb(L2) with

width(P ) = w satisfies χFF(P ) ≤ w2. By Lemma 3.7 there is a poset

P ∈ Forb(Lm) with width(P ) = w and χFF(P ) ≥ w2. Hence,

valFF(L2, w) = w2.

3.2 Proof of Theorem 2.6

In this section we consider posets in Forb(Lm) with width(P ) = 2.

Proof of Theorem 2.6. The claim is trivial if m = 1 as the posets of Forb(L1)

are antichains, and a two vertex antichain trivially has a 2-Grundy coloring.

The result for m = 2 follows from Theorem 2.5. Furthermore, the result is

tight for these cases.

Fix a positive integer m > 2. Let P be a width 2 poset in the family

Forb(Lm) and let g be an n-Grundy coloring of P . Let v ∈ Pn and select a

chain partition {A,B} of P so that v ∈ A. For each i ∈ [n− 1], v has an

i-witness. Select one witness for each color and denote the set of these

witnesses as X. Index the vertices of X as x1, x2, . . . , xn−1 so that xi <P xi+1

for each i ∈ [n− 2]. Note that the subscripts of the vertices in X denote

their order in the poset, not their color under g. For i ∈ [n− 2], let

A = {i : g(xi) < g(xi+1)} and D = {i : g(xi) > g(xi+1)}.

Lemma 3.13. If |A| = p or |D| = p, then Lp is an induced subposet of P .
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Proof. Suppose A = {a1, a2, . . . , ap} where ai < ai+1 for i ∈ [p− 1]. Let

κ ∈ A. By the definition of A, we have g(xκ) < g(xκ+1) and so xκ+1 must

have a g(xκ)-witness, yκ.

Claim 3.14. For κ ∈ A, we have the following:

(1) xκ <P yκ,

(2) v <P yκ,

(3) yκ <P yλ, with κ < λ ∈ A,

(4) yκ ‖P xλ, with κ < λ ∈ A.

Proof. See Figure 3.7. Because xκ and yκ have the same color, and yκ is a

witness for xκ+1 we have yκ ./P xκ <P xκ+1 ‖P yκ. It follows that xκ < yκ.

This shows (1).

Because width(P ) = 2 and v ∈ A, each xκ ∈ B; thus each yκ ∈ A.

Using (1) and v, yκ ∈ A, we have xκ <P yκ ./P v ‖P xκ. Thus v <P yκ,

showing (2).

As yκ, yλ ∈ A, we have yκ ./P yλ. As

xκ+1 ≤P xλ <P yλ ./P yλ ‖P xκ+1, it follows yκ <P yλ. This shows (2).

Since yκ ‖P xκ+1 ≤ xλ, xλ 6<P yκ; since by (2), xλ ‖P v <P yκ,

yκ 6<P xλ. Thus xλ ‖P yκ, and (4) holds.

The comparabilities and incomparabilities established by Claim 3.14,

show that the chains xa1 <P xa2 <P · · · <P xap and ya1 <P ya2 <P · · · <P yap

induce the ladder Lp(xa1 . . . xap ; ya1 . . . yap) in P .

A dual argument for D = {d1, d2, . . . , dp} completes the lemma.
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1

2

3

4

5

6

7v

1

1

2

2

3

4

Figure 3.7: Hasse diagram with vertices labeled by their color under g.

By our selection of X, each color in [n− 1] appears exactly once; so

g(xi) 6= g(xi+1). From this, we conclude

A ∩D = ∅, (3.1)

A ∪D = [n− 2]. (3.2)

As P ∈ Forb(Lm), Lemma 3.13 tells us |A| ≤ m− 1 and |D| ≤ m− 1.

From (3.1) and (3.2), we have

n− 2 = |A|+ |D| ≤ m− 1 +m− 1 = 2m− 2.

From this, we see n ≤ 2m.

To provide the lower bound, first, we note that if L is an m-ladder

with lower leg a1 <L a2 <L · · · <L am and upper leg b1 <L b2 <L · · · <L bm,

then |IL(am)| = |IL(b1)| = m− 1. Let R = Rm−1 be the poset used in

Lemma 2.2. By construction, for any k ∈ [m− 1] and i ∈ [k],

IR(xki ) = {xk−1
1 , xk−1

2 , . . . , xk−1
i−1 }. Hence, maxx∈R |IR(x)| = m− 2. From this,

we conclude R ∈ Forb(Lm). As demonstrated in Lemma 2.2,

χFF(R) ≥ m− 1.
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3.3 Proof of Theorem 2.7

Before we begin, we recall a well-known fact.

Proposition 3.15. Let A be an antichain in poset P . Then

UP [A] ∩DP [A] = A.

Proof of Theorem 2.7. From Theorem 2.5, we need only consider m ≥ 3. We

argue by induction on w = width(P ). The base step w = 1 is trivial. For the

induction step, assume the theorem holds for all posets of width less than w.

Consider any poset P ∈ Forb(Lm) with width(P ) = w, and let g be an

n-Grundy coloring of P . We must show that n ≤ w2.5 lgw+2 lgm.

Let A be the set of maximum antichains in P . Select A ∈ A so that

min
a∈A

g(a) = max
B∈A

min
b∈B

g(b).

In other words, A is a maximum antichain so that smallest color of a vertex

in A is as large as possible. Set

N = min
a∈A

g(a).

By our choice of A, the subposet of P induced by the vertices in

PN+1 ∪ PN+2 ∪ · · · ∪ Pn has width at most w − 1. By the inductive

hypothesis, at most valFF(Lm, w − 1) colors appear on this subposet. Hence,

n ≤ N + valFF(Lm, w − 1). (3.3)

Consider any i ∈ [N − 1] and let x be the greatest vertex of the chain

Pi. Since A is a maximum antichain, x is comparable to some a ∈ A. As g is

a Grundy coloring, and g(a) > i, there exists a witness u ∈ Pi with u ‖P a.
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Thus a ‖P u <P x ./P a, and so a <P x. Similarly, the least vertex of Pi is

less than some vertex of A. We conclude

UP (A) ∩ Pi 6= ∅ and DP (A) ∩ Pi 6= ∅. (3.4)

For i ∈ [N − 1], define q↓i to be the greatest q ∈ Pi ∩DP (A) and q↑i to

be the smallest q ∈ Pi ∩UP (A). They exist by (3.4), and are distinct, since A

is an antichain disjoint from Pi. Moreover, if the i-witness for a ∈ A is in

DP (A) then a ‖P q↓i , and if the i-witness for a ∈ A is in UP (A) then a ‖P q↑i .

It follows that:

A ⊆ I(q↓i ) ∪ I(q↑i ). (3.5)

We say a vertex x ∈ P has property (?) if |I(x) ∩ A| ≥ w/2. By (3.5)

and the pigeonhole principle, at least one of q↓i or q↑i has property (?); select

one that does, denote it by qi, and call it the near witness for color i. Let

Q = {q1, q2, . . . , qN−1}. If qi ∈ DP (A) then let ri be the smallest vertex of the

chain Pi with property (?); otherwise (when qi ∈ UP (A)) let ri be the

greatest vertex of Pi with property (?). Call ri the far witness for color i.

Let R = {r1, r2, . . . , rN−1}. The pair (qi, ri) is called the corresponding pair

for color i. Note that it is possible that qi = ri.

Let C be a chain partition of P into w chains. We will need the classic

Erdős-Szekeres Theorem [16]: for natural numbers k and `, every sequence of

k`+ 1 totally ordered terms contains a strictly increasing subsequence of

k + 1 terms or a strictly decreasing subsequence of `+ 1 terms.

Lemma 3.16. For any C ∈ C, we have

|R ∩ C| ≤ wm2(w − 1)2 valFF(Lm, bw/2c).
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Proof. Take C ∈ C. We begin by analyzing R ∩ C ∩ UP (A); later we will use

duality to draw similar conclusions about R ∩ C ∩DP (A). Label the vertices

of R ∩ C ∩ UP (A) as s1, s2, . . . , sα so that g(si) < g(si+1) for all i ∈ [α− 1].

This yields a sequence S = s1s2 . . . sα of length α. Let T = t1t2 . . . tβ be any

monotonic subsequence of S with respect to the order ≤P . For each

i ∈ [β − 1], ti+1 has a g(ti)-witness yi, since g is a Grundy coloring and

g(ti) < g(ti+1).

Claim 3.17. If T is ascending then for each i ∈ [β − 1] and j ∈ [i+ 1, β]:

(C1) ti <P yi

(C2) tj ‖P yi

(C3) If j ∈ [β − 1] (and so yj is defined) then yj 6≤P yi.

Proof. (See Figure 3.8.) Fix i ∈ [β − 1] and j ∈ [i+ 1, β]. Then

ti+1 ‖P yi ./P ti <P ti+1 ≤P tj. (3.6)

This implies ti <P yi and so (C1) holds. Both ti and tj have property (?).

Since g(ti) = g(yi), ti <P yi by (C1), and ti is the greatest vertex in its color

class with property (?), it follows that yi does not have property (?). If

yi <P tj, then DP (yi) ⊆ DP (tj), and so |A ∩DP (tj)| < w/2; this means that

yi has property (?), a contradiction. So yi 6<P tj. By (3.6), tj 6<P yi. Thus

(C2) holds. Finally, suppose j ∈ [β − 1]. If yj ≤P yi then by (C1) we have

ti+1 ≤P tj <P yj ≤P yi ‖P ti+1, a contradiction. So (C3) holds.

Claim 3.18. If T is an ascending subsequence of S then its length β is at

most m(w − 1).
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t1

t2

t3

t4

t5

t6

t7

y1

y2

y3

y4

y5

y6

a1 a2 a3 a4 A

Figure 3.8: Hasse diagram of T , A, and witnesses for T .

Proof. Since yi ‖P ti+1 ∈ C for each i ∈ [β − 1], yi /∈ C. Hence, all of

y1, y2, . . . , yβ−1 are contained in the w− 1 chains of C −C. By the pigeonhole

principle, at least (β − 1)/(w− 1) of them must be on the same chain, say D.

Set β′ = d(β − 1)/(w − 1)e and let T ′ = t′1t
′
2 . . . t

′
β′ be a subsequence of T so

that y′i (the vertex so that g(t′i) = g(y′i) and y′i is a witness for the vertex after

t′i in T ) is on D. Here we have two disjoint chains t′1 <P t
′
2 <P · · · <P t

′
β′ and

y′1 <P y
′
2 <P · · · <P y

′
β′ . The comparabilities between these chains, obtained

from Claim 3.17, show that Lβ′(t′1 . . . t′β′ ; y′1 . . . y′β′) is an induced subgraph of

P . Since P ∈ Forb(Lm), we must have β′ < m, and thus β ≤ m(w − 1).

Claim 3.19. If T is descending then its length β is at most
w
2m(w − 1) valFF(Lm, bw/2c).

Proof. Let P ′ be the subposet of P induced by DP [t1] ∩ UP [A]. Let B be a

maximum antichain in P ′ and let A′ = DP [B] ∩ A. Because DP [B] ⊆ DP [t1]

and t1 has property (?), we must have |A′| ≤ w/2. If |A′| < |B|, then the
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antichain (A \ A′) ∪B has more than w vertices, which is impossible as

width(P ) = w. So we have width(P ′) = |B| ≤ |A′| ≤ w/2.

For each i ∈ [β], let (vi, ti) be the corresponding pair for color g(ti),

and note that vi <P ti ≤P t1. By Dilworth’s Theorem and the pigeonhole

principle, at least β′ = d2β/we of the vertices of V = {v1, v2, . . . , vβ} must

form a chain D. Let V ′ = v′1v
′
2 . . . v

′
β′ be a sequence with v′i ∈ V ∩D and

g(v′i) < g(v′i+1) for each i ∈ [β′]. Consider any monotonic subsequence

X = x1x2 . . . xγ of V ′ with respect to ≤P . For each i ∈ [γ − 1], the vertex

xi+1 has a g(xi)-witness yi, since g is a Grundy coloring and g(xi) < g(xi+1).

Subclaim 3.20. If X is descending then for each i ∈ [γ − 1] and

j ∈ [i+ 1, γ]:

(C1) yi <P xi;

(C2) yi ∈ DP (A);

(C3) yi ‖P xj;

(C4) if j ∈ [γ − 1] (so yj is defined) then yi 6≤P yj.

Proof. Fix i ∈ [γ − 1] and j ∈ [i+ 1, γ]. Set ι = g(xi). Then

xj ≤P xi+1 ≤P xi ./P yi ‖P xi+1, (3.7)

and (C1) follows. Recall xi is the ≤P -least vertex of Pι ∩ UP (A). As yi ∈ Pι,

and by (C1) yi <P xi, we have yi ∈ DP (A); so (C2) holds.

Suppose yi ./P xj. Recall that xj ∈ UP (A), and by (C2) yi ∈ DP (A).

Since A is an antichain, yi ≤P xj. By (3.7), yi ≤P xj ≤P xi+1 ‖P yi, a

contradiction. So (C3) holds.
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Suppose j ∈ [γ − 1]. If yi ≤P yj then by (C1) and (3.7),

yi ≤P yj <P xj ≤P xi+1 ‖P yi, a contradiction. So (C4) holds.

Subclaim 3.21. If X is descending then its length γ is at most m(w − 1).

Proof. Now, as yi ‖P xi+1 for each i ∈ [γ − 1], we see that yi is not on D.

Hence, all of y1, y2, . . . , yγ−1 are contained in the w − 1 remaining chains of

C −D. By the pigeonhole principle, at least (γ − 1)/(w − 1) of them must

form a chain, E. Set γ′ = d(γ − 1)/(w − 1)e and let X ′ = x′1x
′
2 . . . x

′
γ′ be a

subsequence of X so that y′i (the vertex so that g(x′i) = g(y′i) and y′i is a

witness for the vertex after x′i in X ′) is on E. Here we have two disjoint

chains x′γ′ <P x
′
γ′−1 <P · · · <P x

′
1 and y′γ′ <P y

′
γ′−1 <P · · · <P y

′
1. By

Subclaim 3.20, Lγ′(y′γ′ , . . . y′1;x′γ′ . . . x′1) is an induced subposet of P . Since

P ∈ Forb(Lm), we must have γ′ < m. So γ ≤ m(w − 1).

Subclaim 3.22. If X is ascending then its length γ is at most

valFF(Lm, bw/2c).

Proof. For each i ∈ [γ], let (xi, t′i) be the corresponding pair for color g(xi).

Define a function c : [γ]→ [N ] by c(i) = g(xi). Then c is increasing by the

definition of V ′. Let Q be the subposet of P ′ induced by

U = ([x1, t
′
1]P ∩ Pc(1)) ∪ · · · ∪ ([xγ, t′γ]P ∩ Pc(γ)).

Finally, define g′ : U → [γ] by g′(u) = c−1 ◦ g(u). We claim that g′ is a

Grundy coloring of Q. Clearly g′ is surjective.

By our definitions of near and far witnesses, we have xγ ≤P t′γ.

Recalling that T is descending under ≤P , we have

x1 <P x2 <P · · · <P xγ ≤P t′γ <P t
′
γ−1 <P · · · <P t

′
1.
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Consider u ∈ U . By the definition of U , there exist i ∈ [γ] such that

u ∈ [xi, t′i]P and g(u) = g(xi). Thus g′(u) = c−1 ◦ g(xi) = i. If i ∈ [2, γ] and

k ∈ [i− 1] then we must show there exists z ∈ IQ(u) with g′(z) = k. As g is a

Grundy coloring of P and g(xk) < g(xi), u has a g(xk)-witness, yk. Since

u ‖P yk ./P xk <P xi <P u <P t
′
i <P t

′
k ./P yk ‖P u,

we have yk ∈ [xk, t′k]P . Thus yk ∈ U . Set z = yk. Then

g′(z) = c−1 ◦ g(yk) = c−1 ◦ g(xk) = k.

This shows that u has a k-witness in Q for every k ∈ [i− 1].

As P ∈ Forb(Lm), we have Q ∈ Forb(Lm). By the inductive

hypothesis, at most valFF(Lm, bw/2c) colors appear on Q. Thus

γ ≤ valFF(Lm, bw/2c).

By Subclaims 3.22 and 3.21, the length of every ascending

subsequence of V ′ is at most valFF(Lm, bw/2c), and every descending

subsequence has length at most m(w − 1). By the Erdős-Szekeres Theorem

we have β′ ≤ m(w − 1) valFF(Lm, bw/2tc). Thus

β ≤ w
2m(w − 1) valFF(Lm, bw/2c), proving the claim.

By the Erdős-Szekeres Theorem and Claims 3.18 and 3.19, S has

length at most
w

2m
2(w − 1)2 valFF

(
Lm,

⌊
w

2

⌋)
.

By duality, we have |R ∩ C ∩D(A)P | ≤ w
2m

2(w − 1)2 valFF(Lm, bw/2c) as

well. As R ∩ C = (R ∩ C ∩ UP (A)) ∪ (R ∩ C ∩DP (A)), we have completed

the proof of the lemma.
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Since R = ⋃
C∈C R ∩ C, Lemma 3.16 yields

N ≤ m2w4 valFF

(
Lm,

⌊
w

2

⌋)
.

By (3.3), we now have

n ≤ m2w4 valFF

(
Lm,

⌊
w

2

⌋)
+ valFF(Lm, w − 1).

Applying this recursion repeatedly yields

n ≤ m2w4 valFF

(
Lm,

⌊
w

2

⌋)
+m2(w − 1)4 valFF

(
Lm,

⌊
w − 1

2

⌋)
+ valFF(Lm, w − 2)

...

≤
∑

0≤k≤w−2
m2(w − k)4 valFF

(
Lm,

⌊
w − k

2

⌋)

≤ wm2w4 valFF

(
Lm,

⌊
w

2

⌋)
.

Recalling n = valFF(Lm, w), we see

valFF(Lm, w) ≤ m2w5 valFF

(
Lm,

⌊
w

2

⌋)
≤ m2w5m2

(
w

2

)5
valFF

(
Lm,

⌊
w

4

⌋)
...

≤ m2 lgw
(
wlgw/2

∑
0≤k≤lg w

k
)5

≤ m2 lgw
(
wlgw/2(lgw)(1+lgw)/2

)5

= m2 lgw
(
wlgw/w(1+lgw)/2

)5

≤ m2 lgww2.5 lgw.

Hence valFF(Lm, w) ≤ w2.5 lgw+2 lgm. The lower bound will be provided in

Lemma 3.23.

For posets P and Q, we define the lexicographical product P ·Q to be

the poset with vertices {(p, q) : p ∈ P, q ∈ Q} and order ≤P ·Q where
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(p1, q1) ≤P ·Q (p2, q2) if either p1 <P p2 or p1 = p2 and q1 ≤Q q2. Informally,

we may think of P ·Q as a the poset P where each vertex has been “inflated”

to a copy of Q. Any antichain {(p1, q1), (p2, q2), . . . , (pn, qn)} in P ·Q must

have either pi ‖P pj or pi = pj and qi ‖Q qj. So a maximum antichain in P ·Q

is {(p, q) : p ∈ A, q ∈ B} where A is a maximum antichain in P and B is a

maximum antichain in Q. From this, we can see

width(P ·Q) = width(P ) width(Q). (3.8)

For p, r ∈ P and u, v, s ∈ Q we have the following.

If (p, u) ./Q·P (r, s) ‖Q·P (p, v), then p = r. (3.9)

To see this, note that if p 6= r, we would have p ./P r ‖P p, which is

impossible.

If (p, u) ≤Q·P (r, s) ≤Q·P (p, v), then p = r. (3.10)

By contradiction: if p 6= r, then p <P r and r <P p. As P is a poset, we see

this cannot happen.

Define the disjoint sum P +Q to be the poset with vertices

{p ∈ P} ∪ {q ∈ Q} and order ≤P+Q where r1 ≤P+Q r2 if either r1, r2 ∈ P and

r1 ≤P r2 or r1, r2 ∈ Q and r1 ≤Q r2. Informally, we may think of P +Q as a

copy of P next to a copy of Q with no additional comparabilities. If A is an

antichain in P and B is an antichain in Q, then A ∪B is an antichain in

P +Q. It is easy to see

width(P +Q) = width(P ) + width(Q). (3.11)

We leave it to the reader to verify that both the lexicographical product and

disjoint sum are indeed posets. We will use these combinations of posets in

the next lemma.
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Lemma 3.23 (Bosek & Matecki [7]). For m,w ∈ Z+,

valFF(Lm, w) ≥ wlg(m−1).

Proof. Fix m ∈ Z+. The results of Lemma 2.5 allow us to take m > 2. We

will build a poset Qw ∈ Forb(Lm) and n-Grundy coloring h so that

width(Qw) = w and n ≥ wlg(m−1). Let Rm−1 be the poset from Lemma 2.2.

Define P to be Rm−1 with added minimum vertex 0̂. We will treat Rm−1 as a

subposet of P . By Lemma 2.2, width(Rm−1) = 2. Any antichain in R is an

antichain in P . If we have a Dilworth partition of R (with two chains), we

can add 0̂ to either chain to form a 2-chain partition of P . So, width(P ) = 2.

As IP (0̂) = ∅ and IP (x) = IR(x) for x ∈ R, following the reasoning employed

in Theorem 2.5, we see that

P ∈ Forb(Lm). (3.12)

In the construction of Rm−1, we see xm−1
m−1 is a maximum vertex. In our

construction of P , we defined 0̂ to be a minimum vertex, so

P has a maximum vertex and a minimum vertex. (3.13)

From Lemma 2.2, we know R has an m− 1-Grundy coloring f′. We extend f′

to an m− 1-Grundy coloring f of P by specifying f(0̂) = 1 and f(x) = f′(x)

for all other vertices. It is easy to see this is an m− 1-Grundy coloring. As 0̂

cannot be a witness for any vertex in P , we see χFF(R) 6< χFF(P ). Hence,

χFF(P ) = χFF(R) = m− 1. (3.14)

We will use P to build the desired poset. For w ≥ 2, define Qw as

follows (see Figure 3.9).

(Q1) Q1 is a single vertex z.
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(Q2) If w ≥ 2 is even, Qw = P ·Qw/2.

(Q3) If w ≥ 3 is odd, Qw = P ·Q(w−1)/2 +Q1 along with a minimum vertex

0̂w and a maximum vertex 1̂w.

Pw/2

Pw/2

Pw/2

Pw/2

Pw/2

Pw/2

Pw/2

Pbw/2c

Pbw/2c

Pbw/2c

Pbw/2c

Pbw/2c

Pbw/2c

Pbw/2c

1̂w

z

0̂w

even w odd w

Figure 3.9: Simplified Hasse diagrams of Qw with m = 3.

Note that Q2 = P and so we will treat Q2 as P . For w > 2, the

vertices of Qw (other than z, 0̂w, or 1̂w in the case that w is odd) have the

form (p, q) where p ∈ P and q ∈ Qbw/2c. To avoid confusion, we refer to (p, q)

as a vertex, p as the first coordinate, and q as the second coordinate. In the

case that n is odd, we refer to z as the isolated vertex. We examine the

properties of Qw in the following claims.

Claim 3.24. For each w ∈ Z+, Qw has a minimum vertex and a maximum

vertex.
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Proof. We use induction on w. For w = 1 the claim is trivial and for w = 2

we recall (3.13). Now take w > 2 and suppose the claim holds for all smaller

cases. If w is odd, the claim follows directly from (Q3). If w is even, the

inductive hypothesis tells us Qw/2 has a minimum vertex, say x. The vertex

0̂ is a minimum vertex in P , so (0̂, x) is the minimum in P ·Qw/2. Similar

reasoning using a maximum vertex from Qw/2 and xm−1
m−1 from P shows Qw

has a maximum vertex.

Claim 3.25. For each w ∈ Z+, width(Qw) = w.

Proof. This follows immediately from (3.8) and (3.11).

Claim 3.26. For each w ∈ Z+, Qw ∈ Forb(Lm).

Proof. We will use induction on w. For our bases, we see w = 1 is trivial and

w = 2 is established by (3.12). Take w > 2 and suppose the inductive

hypothesis holds for all smaller cases. Assume L is an m-ladder in Qw with

lower leg (a1, u1) <Qn (a2, u2) <Qn · · · <Qn (am, um) and upper leg

(b1, v1) <Qw (b2, v2) <Qw · · · <Qw (bm, vm). Note that z (the isolated vertex)

cannot be part of the ladder; the longest chain z belongs to has three vertices

and each vertex of an m ladder is in an m+ 1 vertex chain. If there are 2m

distinct first coordinates in the vertices of L, then these vertices would

induce an m-ladder in P , which violates (3.12). Hence, at least two vertices

of L share a first coordinate, say p ∈ P . Define Q′ = {(p, q) : q ∈ Qbw/2c}. It

is easy to see Q′ = Qbw/2c. Set x∗ and y∗ to be to be the minimum and

maximum, respectively, vertices of Q′ (which exist by Claim 3.24).

Assume only vertices of the lower leg of L are in Q′. Then there are

i < j ∈ [m] so that (ai, ui), (aj, uj) ∈ Q′. From the definition of a ladder, we
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know (ai, ui) ≤Qw (bi, ui) ‖Qw (aj, uj). From (3.9), (bi, vi) ∈ Q′. Similar

reasoning shows that Q′ does not contain only vertices from the upper leg.

Take (ai, ui), (bj, vj) ∈ Q′. We see (ai, ui) ≤Qw (am, um) ‖Qw (bj, vj) (if j < m)

or (ai, ui) ≤Qw (am, um) ≤Qw (bj, vj) (if j = m). In the former case (3.9)

shows (am, um) ∈ Q′ and in the latter case (3.10) shows (am, um) ∈ Q′.

Similarly, (ai, ui) ‖Q2 (b1, v1) ≤Qw (bj, vj) (if i > 1) or

(ai, ui) ≤Q2 (b1, v1) ≤Qw (bj, vj) (if i = 1). Again using (3.9) and (3.10), we

have (b1, v1) ∈ Q′.

For any vertex (r, s) in L so that (r, s) /∈ {(a1, u1), (bm, vm)}, we have

either (b1, v1) ≤Qw (r, s) ‖Qw (am, um) or (b1, v1) ‖Qw (r, s) ≤Qw (am, um). By

(3.9), (r, s) ∈ Q. Now, the vertices

{x∗, (a2, u2), (a3, u3), . . . , (am, um), (b1, v1), (b2, v2), . . . , (bm−1, vm−1), y∗} ⊆ Q′

induce an m-ladder in Q′, which contradicts the inductive hypothesis,

proving the claim.

Claim 3.27. For all w ∈ Z+, χFF(Qw) ≥ (m− 1)χFF(Qbw/2c) .

Proof. Let f be an m− 1-Grundy coloring of P (which exists by (3.14)) and

g be a k-Grundy coloring of Qbw/2c. For now, let us suppose w is even.

Define h : Qw → [(m− 1)k] by h((p, q)) = (f(p)− 1)k + g(q).

We will show h is a (m− 1)k-Grundy coloring. Take i ∈ [(m− 1)k].

We can find a ∈ [m− 1] and b ∈ [k] so that i = (a− 1)k + b. As f and g

satisfy Definition 2.11(G1), we have some p ∈ P and q ∈ Qw/2 so that

f(p) = a and g(q) = b. And so h(p, q) = (f(p)− 1)k + g(q) = (a− 1)k + b = i.

Thus h satisfies (G1). Now, suppose h((p, q)) = h((r, s)). This gives us

(f(p)− 1)k + g(q) = (f(r)− 1)k + g(s) and so (f(p)− f(r))k = g(s)− g(q). As
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g(q), g(s) ∈ [k], we see this is only possible if f(p)− f(r) = g(s)− g(q) = 0.

This gives us f(p) = f(r) and g(q) = g(s). Because f and g are Grundy

colorings we have p ./P r and q ./Qw/2 s. By the definition of the

lexicographical product we have (p, q) ./Qw (r, s) and so (G2) holds for h.

Now, take (r, s) so that h(r, s) = j > 1. We have unique integers c, d

so c ∈ [m− 1] and d ∈ [k] with j = (c− 1)k+ d. Hence f(r) = c and g(s) = d.

Let i < j. We will show (r, s) has an i-witness. Again, we have a ∈ [m− 1]

and b ∈ [k] so that i = (a− 1)k + b. As i < j, we must have a ≤ c. Suppose

a = c, then b < d. As g is a Grundy coloring, there is some q ∈ Qw/2 so that

g(q) = b and q ‖Qw/2 s. By the definition of lexicographical product,

(r, q) ‖Qw (r, s). As h((r, q)) = (f(p)− 1)k − g(q) = (c− 1)k + b = i, we see

(r, q) is the desired witness. Now, suppose a < c. As f and g are Grundy

colorings, there is some p ∈ P so that f(p) = a and p ‖P r and some q ∈ Qw/2

so that g(q) = b. Now, (p, q) ‖Qw (r, s) by the definition of lexicographical

product. Finally, we note h((p, q)) = (f(p)− 1) + g(q) = (a− 1)k + b = i so

(p, q) is the desired witness in this case. Hence, (G3) holds as well.

In the case that w is odd, we define h by h({0̂w, z, 1̂w}) = 1 and

h(p, q) = k(f(p)− 1) + g(q) = ak + b = i for all other vertices. Combining our

work for the case were w is even along with the fact 0̂w <Qw z <Q−w 1̂w, we

are done.

It is easy to see χFF(Q1) = 1. Taking this with (3.14) and Claim 3.27,

we have valFF(Lm, w) ≥ wlg(m−1).
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3.4 Concluding Remarks

The gap between the upper and lower bounds for valFF(Lm, 2) can probably

to closed by lowering the upper bound to m+ c for some constant c. This

will require an advancement in the sophistication of our current methods. An

improvement in gap between the upper and lower bounds for valFF(Lm, w)

will probably require changes to both bounds. From Theorem 2.6, we see

that the method used in the Lemma 3.23 cannot be used to force the lower

bound on val(Lm, w) over w1+lgm as the construction of Qw starts with a

width two poset and its Grundy coloring. The upper bound can be quickly

improved if a method for restricting the the size of N − n is found.
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Chapter 4

ON-LINE COLORING OF GENERAL POSETS
4.1 The Lattice of Maximum Antichains

We provide some background that will allow us to more clearly define a new

family of posets.

A poset P is a lattice if for any x, y ∈ P , the sets DP [x] ∩DP [y] and

UP [x] ∩ UP [y] have a maximum and minimum vertex, respectively, The

(unique) maximum vertex of DP [x] ∩DP [y] is the meet of x and y, denoted

x ∧ y. The (unique) minimum vertex of UP [x] ∩ UP [y] is the join of x and y,

denoted x ∨ y.

Let P be a finite partial order and letM be the set of maximum

antichains in P . Let A,B ∈M and define the relation vP by A vP B if

A ⊆ DP [B] (note that this is equivalent to B ⊆ UP [A]). If A vP B and

A 6= B, we write A @P B. In [14] Dilworth showed that

(M,vP ) is a lattice. (4.1)

We will abuse notation and refer to the lattice (M,vP ) asM. Let A and B

be antichains inM. AsM is a lattice, the meet and join of these antichains

are defined. We note that

A ∧B = MinP{A ∪B} (4.2)

and

A ∨B = MaxP{A ∪B}. (4.3)
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4.2 Regular Posets

In this section, we explore regular posets, a family of posets introduced and

studied by Bosek and Krawczyk [9] (the roots of regular posets are in the

local game used by Bosek in [2] to show val(3) ≤ 16).

We say a poset P is a core if its vertices can be partitioned into two

disjoint maximum antichains, A and B, so that A @P B and for any

comparable pair x ≤P y with x ∈ A and y ∈ B, xy is a Dilworth edge.

Definition 4.1. Let w, n ∈ Z+ and P = (V,≤P ) be a width w poset. Let

X = {x1, x2, . . . , xn} ⊆ V be a set of n distinct vertices, and let

A = A1, A2, . . . , An be a sequence of w vertex antichains under ≤P with

Ai 6= Aj for i 6= j ∈ [n]. Then P is a regular on-line poset if it satisfies the

following properties.

(R1) V = A1 ∪ A2 ∪ · · · ∪ An.

(R2) For i ∈ [n], xi ∈ Ai and xi /∈ Aj with j ∈ [i− 1].

(R3) The set {A1, A2, . . . , An} is linearly ordered under vP .

Note that (R3) does not imply A1 vP A2 vP · · · vP An. For each i ∈ [n],

define Ap(i) to be the vP -greatest element in {A1, A2, . . . , Ai−1} so that

Ap(i) @P Ai. Similarly, define As(i) to be the vP -least element in

{A1, A2, . . . , Ai−1} so that Ai @P As(i). Note that Ap(i) does not exist if Ai is

minimal in vP and As(i) does not exist if Ai is maximal in vP .

(R4) For i 6= j ∈ [n], Ai ∩ Aj = ∅.

54



(R5) P [Ai ∪ As(i)] is a core (respectively, P [Ap(i) ∪ Ai] is a core), provided

As(i) exists (Ap(i) exists).

(R6) Suppose x <P y. If x ∈ Ai, then there is some z ∈ As(i) so that

x <P z ≤P y. If y ∈ Ai then there is some z ∈ Ap(i) so that

x ≤P z <P y.

We provide an illustration of a regular posets in Figure 4.1. We call

X the index vertices and A as the antichain presentation. These structures

will be mentioned if they will be used and omitted if they are not needed.

Informally, we will think of P as being presented one antichain at a time.

When the antichains A1, A2, . . . , Ai have been presented (for i ∈ [n]) we say

we are in the i-th round. For a vertex x ∈ P , we define A(x) to be the unique

A ∈ A so that x ∈ A. We now discuss some of the properties of regular

posets.

A3

A1

A5

A2

A6

A4

Figure 4.1: A regular poset.

Claim 4.2. Let P be a width w regular on-line poset with antichain

presentation A = A1, A2, . . . , An. Take i, j ∈ [n] with i 6= j and Ai vP Aj.

We have the following:
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(R7) P [Ai ∪ Aj] is a core.

(R8) Let t ∈ [n] be the least integer so that Ai vP At vP Aj. If x ≤P y with

x ∈ [Ai, At]P and y ∈ UP [At] (or y ∈ [At, Aj]P and x ∈ DP [At]), then

there is some vertex z ∈ At so that x ≤P z ≤P y.

Proof. We will prove both claims with i < j and leave it to the reader to use

similar reasoning to verify the claims for i > j.

To prove (R7), we employ induction on j. For the base, we take j = 2.

This implies i = 1 and p(j) = 1. By (R5), the claim holds. Suppose (R7)

holds in all smaller cases and take j > 2. We have Ai vP Ap(j) @P Aj. Take

x ∈ Ai and y ∈ Aj with x ≤P y (such a pair must exist as width(P ) = w and

Ai and Aj are w vertex antichains). By (R6), there is some z ∈ Ap(j) so that

x ≤P z ≤P y. By the inductive hypothesis, P [Ai ∪ Pp(j)] is a core and by

(R5) P [Ap(j) ∪ Aj] is a core. Let C be a Dilworth partition of P [Ai ∪ Pp(j)]

with x and z in the same chain and D be a Dilworth partition of

P [Ap(j) ∪ Aj] with z and y in the same chain. It is easy to see that

{C∆D : C ∈ C, D ∈ D, C ∩D 6= ∅}

is a Dilworth partition of P [Ai ∪ Aj] with x and y in the same chain. Hence,

P [Ai ∪ Aj] is a core, proving (R7).

We turn our attention to (R8) and again use induction on j. In the

case of j = 2, we have i = 1 and A1 = Ap(j) = At and (R8) is trivial. Now

suppose j > 2 and (R8) holds for all smaller cases. Note that At v Ap(j). If

At = Ap(j), the claim holds by (R6), so we take At @ Ap(j). If y /∈ Aj, the

claim holds by the inductive hypothesis, so we take x ∈ DP [At] and y ∈ Aj.

By (R6), there is some z′ ∈ Ap(j) so that x ≤P z′ ≤P y. By hypothesis, t is
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the least integer in [n] so that Ai vP At vP Ap(j). By the inductive

hypothesis, we have z ∈ At so that x ≤P z ≤P z′. By transitivity, we have

x ≤P z ≤P y.

We know examine ladders in regular on-line posets. Suppose Lm is a

ladder with lower leg x1, x2, . . . , xm and upper leg y1, y2, . . . , ym. We say that

Lm is canonical if A(yi) vP A(xi+1) for each i ∈ [m− 1].

Claim 4.3. Let P be a width w regular on-line poset with antichain

presentation A = A1, A2, . . . , An. If L is a subposet of P and a canonical

m-ladder, then m ≤ w.

Proof. Let the lower leg of L be x1, x2, . . . , xm and upper leg be y1, y2, . . . , ym.

We remind ourselves that y1 ‖P xi for i ∈ [2,m]. As a subclaim, we will show

that |UP [y1] ∩ A(yi)| ≥ i by induction on i. For i = 1, we have

UP [y1] ∩ A(y1) = {y1} and the subclaim holds. Now, let i > 1 and suppose

the subclaim holds. As L is a canonical ladder, we have A(yi−1) vP A(xi).

We must have DP [xi] ∩ A(yi−1) 6= ∅, or else we would have a w + 1 element

antichain A(yi−1) + xi. Let z ∈ DP [xi] ∩ A(yi−1). By transitivity, we have

z ≤P yi. Because z ∈ A(yi−1) and A(y1) vP A(yi−1), we have z /∈ DP (y1).

We also cannot have z ∈ UP (y1), or else we would have y1 ≤P z ≤P xi. This

gives us z ‖P y1. Let S = UP [y1] ∩ A(yi−1). By the inductive hypothesis, we

have |S| ≥ i− 1. By (R7), we know that P [A(yi−1) ∪ A(yi)] is a core.

Let C be a Dilworth partition of P [A(yi−1) ∪ A(yi)] with z and yi in

the same chain. Each vertex of S is matched to a distinct vertex of A(yi) in

C that is not yi (see Figure 4.2). We now have

|UP [y1] ∩ A(yi)| ≥ |S|+ 1 ≥ i− 1 + 1 = i, proving the subclaim.
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y1

z yi−1

xi

yi

A(y1)

A(yi−1)S

A(xi)

A(yi)

Figure 4.2: The intersections of UP [y1] with A(yi−1) and A(yi).

We cannot have xw+1, because A(yw) vP A(xw+1) and, by our

subclaim, A(yw) ⊂ UP [y1]. So, we would have y1 ≤P xw+1 which is impossible

as L is a ladder. This shows m < w + 1.

Claim 4.4. Let P be a width w regular on-line poset with antichain

presentation A = A1, A2, . . . , An. Let C be a Dilworth partition of P .

Suppose L is a subposet of P and a m-ladder with upper leg x1, x2, . . . , xm

and lower leg y1, y2, . . . , ym. If there are integers i < j ∈ [m] so that

A(xj) @P A(yi), then there is some A ∈ A so that |A ∩ [x1, ym]P | ≥ 1
2(j − i).

Proof. Define k = j − d1
2(j − i)e and k′ = i+ d1

2(j − i)e. Let t ∈ [n] be the

least integer so that A(xk) vP At vP A(yk′). Note that for r ∈ [k, j] and

s ∈ [i, k′], the antichains A(xr) and A(ys) are presented on or after the t-th

round. By the linear order under vP , we must have A(xj) @P At or

At @P A(yi).

Suppose we have A(xj) @P At (see Figure 4.3). Consider the

comparabilities xr ≤P yr for r ∈ [k, j]. We have xr ∈ [A(xk), At]P and

yr ∈ UP [At]. By the choice of t and (R8), there is some zr ∈ At so that

xr ≤P zr ≤P yr. Take r < r′ ∈ [k, j]. If zr = zr′ , then transitivity tells us
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xr′ ≤P yr which is impossible as L is a ladder. Hence, we have d1
2(j − i)e

distinct elements in Z = {zk, zk+1, . . . zj} ⊆ At.

yj

yk

yi

xj

xk

A(yj)

A(yk)
At

A(yi)
A(xj)

A(xk)

Z

Figure 4.3: Comparabilities of the ladder L and At.

As x1 ≤P xr ≤P zr and zr ≤P yr ≤P ym for each r ∈ [k, j], we have

Z ⊆ [x1, ym]P , proving the claim. the second, for each zr ∈ Z, select Cr ∈ C

so that zr ∈ Cr and set D = {Ck, Ck+1, . . . Cj}. As Z is an antichain, the

elements of D are pairwise distinct and we have |D| ≥ 1
2(j − i). Suppose

D ∈ D and d ∈ D. We must have d ./P z for some z ∈ Z. If d ≤P z, then we

have d ∈ DP [ym]. If z ≤P d, then we have d ∈ UP [x1]. Hence,

D ⊆ UP [x1] ∪DP [ym]. This proves the second claim.

In the case that At @P A(yi), examination of the comparabilities

xs ≤P ys for s ∈ [i, k′] yields the same conclusion.

These claims will now be used to limit the number of rungs on a

ladder in a regular on-line poset.

Lemma 4.5. Suppose P is a width w regular on-line poset with antichain

presentation A = A1, A2, . . . , An. Then P ∈ Forb(L2w2+1).
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Proof. Assume L2w(w−h)+1 is a ladder in P with lower leg x1, x2, . . . , x2w2+1,

and upper leg y1, y2, . . . , y2w2+1. By Claim 4.4, for any i < j ∈ [2w2] with

j − i > 2w, we must have A(yi) vP A(xj) or else we would have

|A ∩ [x1, y2w2+1]P | > w which is impossible. Thus, the subposet induced by

the vertices ⋃
0≤i≤w

{x2wi+1, y2wi+1}

is a canonical ladder with w + 1 rungs, which contradicts Claim 4.3, proving

the lemma.

Although L2w2+1 is not a subposet of any width w regular poset, we

will show that there exist width w regular posets with ladders whose number

of rungs is quadratic in w.

Lemma 4.6. For each integer w ≥ 2, there is a regular poset Q so that

width(Q) = w and Q /∈ Forb(Lwb(w+2)/2c).

Proof. Fix a positive integer w ≥ 2 and define h = b(w + 2)/2c. For k ∈ [w],

we define the cores I, Sk, and Tk as follows. The vertices of each of these

cores are two disjoint antichains U = {u1, u2, . . . , uw} and

V = {v1, v2, . . . , vw}. In I, the only comparabilities are ui ≤I vi for all

i ∈ [w]. For k = 1, we take S1 = T1 = I. Now fix k ∈ [2, w]. Take i ∈ [2, k]

and j ∈ [k + 1, w] (note that j is not defined for k = w). The only

comparabilities of Sk are

u1 ≤Sk
{v1, v2, . . . , vk},

ui ≤Sk
{vi−1, vi},

uj ≤Sk
vj,

60



provided that j exists. Now, take i ∈ [w − k + 1, w − 1] and j ∈ [1, w − k]

(again, j is not defined for k = w). The only comparabilities of Tk are

{uw−k+1, uw−k+2, . . . , uw} ≤Tk
vw,

{ui, ui+1} ≤Tk
vi,

uj ≤Tk
vj,

provided that j exists. See Figure 4.4 for examples. It is clear that I is a

core and it is straightforward to use induction on k to verify that Sk and Tk

are cores.

v1

u1

v2

u2

v3

u3

v4

u4

v5

u5

v6

u6

I = S1 = T1

v1

u1

v2

u2

v3

u3

v4

u4

v5

u5

v6

u6

S6

v1

u1

v2

u2

v3

u3

v4

u4

v5

u5

v6

u6

T3

Figure 4.4: Hasse diagrams of I, S6, and T4 for w = 6.

We will now build Q with antichain presentation

A = A1, A2, . . . A(2w+1)h with properties (Q1-8) as follows. To offer some

relief in dealing with subscripts, define f(i) = (2w + 1)(i− 1) + 1. To help us

keep track of comparabilities, for each Ai ∈ A, label the vertices

Ai = {ai1, ai2, . . . , aiw}.
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(Q1) For each i ∈ [h],

Af(i)+1 v Af(i)+2 v · · · v Af(i)+w v Af(i) v Af(i)+2w v Af(i)+2w−1 v · · · v Af(i)+w+1.

(Q2) For each i ∈ [h− 1], Af(i)+w+1 v Af(i+1)+1.

(Q3) For each i ∈ [h] and j ∈ [w], Q[Af(i)+j ∪ Af(i)] = Sw−j+1 with

a
f(i)+j
k = uk and af(i)

k = vk for all k ∈ [w].

(Q4) For each i ∈ [h] and j ∈ [2, w], Q[Af(i)+j−1 ∪ Af(i)+j] = I with

a
f(i)+j−1
k = uk and af(i)+j

k = vk for all k ∈ [w].

(Q5) For each i ∈ [h] and j ∈ [w + 2, 2w], Q[Af(i)+j ∪ Af(i)+j−1] = I with

a
f(i)+j
k = uk and af(i)+j−1

k = vk for all k ∈ [w].

(Q6) For each i ∈ [h] and j ∈ [w + 1, 2w], Q[Af(i) ∪ Af(i)+j] = T2w−j+1 with

a
f(i)
k = uk and af(i)+j

k = vk for all k ∈ [w].

(Q7) For each i ∈ [h− 1], Q[Af(i)+w+1 ∪ Af(i+1)] = Sw with af(i)+w+1
k = uk

and af(i+1)
k = vk for all k ∈ [w].

(Q8) For each i ∈ [h− 1], Q[Af(i)+w+1 ∪ Af(i+1)+1] = I with af(i)+w+1
k = uk

and af(i+1)+1
k = vk for all k ∈ [w].

See Figure 4.5. Although it is tedious to verify that Q is indeed a width w

regular on-line poset (we may create an index set by selecting an arbitrary

vertex from each antichain in A), it is straightforward so we leave the task to

the reader.

Now, we will show Lwh is an induced subposet of Q. The vertices

x1, x2, . . . , xwh of the lower leg and y1, y2, . . . , ywh of the upper leg are defined

by the following rules.
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A29 y15

A23

A24 x11

A18 y10

A12

A13 x6

A7 y5

A1

A2 x1

A18 y10

A19 y9

A20 y8

A21 y7

A22 y6

A12

x10 A17

x9 A16

x8 A15

x7 A14

x6 A13

Figure 4.5: Q with w = 5.

(X1) For i ∈ [h] and j ∈ [w], xw(i−1)+j = a
f(i)+j
1 .

(Y1) For i ∈ [h] and j ∈ [w], yw(i−1)+j = af(i+1)−j
w .

Part of this labeling can be seen in Figure 4.5. We must show the subposet

induced the the lower and upper leg vertices just defined is a wh-ladder.

Claim 4.7. For each k ∈ [wh], we have xk ≤Q yk.

Proof. There are integers i ∈ [h] and j ∈ [w] so that k = w(i− 1) + j. Hence,

xk = a
f(i)+j
1 and yk = af(i+1)−j

w . Note that f(i+ 1) = f(i) + 2w + 1. Let

` = 2w + 1− j. Now, we have f(i+ 1)− j = f(i) + ` with ` ∈ [w + 1, 2w].
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By the construction of Q (specifically (Q6)),

Q[Af(i) ∪ Af(i+1)−j] = Q[Af(i) ∪ Af(i)+`] = T2w−`+1 = Tj

with af(i)
w−j+1 ≤Q af(i+1)−j

w . By our construction (specifically (Q3)), we have

Q[Af(i)+j ∪ Af(i)] = Sw−j+1 with af(i)+j
1 ≤Q af(i)

w−j+1. By the transitivity of

≤Q, we have proven our claim.

From inspection of our construction (and looking back at Figure 4.5),

we see that for any antichains Ai @ Aj ∈ A, we have aik <Q a
j
k for any

k ∈ [w]. From our choices of the ladder vertices, the following claim is clear.

Claim 4.8. We have x1 <Q x2 <Q · · · <Q xwh and y1 <Q y2 <Q · · · <Q ywh.

We turn our attention to the incomparabilities of the ladder.

Claim 4.9. For each i ∈ [h], we have DQ(xw(i−1)+1) ⊇ DQ(xw(i−1)+j) and

UQ(yw(i−1)+j) ⊆ UQ(yw(i−1)+w) for any j ∈ [w].

Proof. From (X1), we see A(xw(i−1)+j) = Af(i)+j and xw(i−1)+j = a
f(i)+j
1 .

From our construction of Q (in particular (Q4)), we have

Ap(f(i)+j) = Af(i)+j−1 and DQ(xw(i−1)+j) ∩ Af(i)+j−1 = {xw(i−1)+j−1} for all

j ∈ [2, w]. By (R6), we have z ∈ DQ(xw(i−1)+j) if and only if

z ∈ DQ(xw(i−1)+1). From this, we can see

DQ(xw(i−1)+1) ⊇ DQ(xw(i−1)+2) ⊇ · · · ⊇ DQ(xw(i−1)+w). Similar reasoning

proves the second part of the claim.

Claim 4.10. If m < n ∈ [wh], then ym ‖Q xn.

Proof. By our construction, we have ym 6= xn. Let us assume ym ./Q xn.

Suppose xn <Q ym. Then we must have A(xn) v A(ym) and n−m < w.
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Hence, there there are integers i ∈ [h] and j, k ∈ [w] with j < k so that

m = w(i− 1) + j and n = w(i− 1) + k. As in the proof of Claim 4.7, set

` = 2w + 1− j so that f(i+ 1)− j = f(i) + `. From (X1) and (Y1), we have

A(xn) = Af(i)+k and A(ym) = Af(i)+`. Our construction shows that

As(f(i)+k) = Af(i) = Ap(f(i)+`). We recall Q is a regular poset, so (R6) tells us

there is some z ∈ Af(i) so that xn ≤Q z ≤Q ym. Following the methods of

Claim 4.7, (Q3), and (Q6) show us

Af(i) ∩ UQ(xw(i−1)+k) =
{
a
f(i)
1 , a

f(i)
2 , . . . , a

f(i)
w−k+1

}

and

Af(i) ∩DQ(yw(i−1)+j) =
{
a
f(i)
w−j+1, a

f(i)
j+1, . . . , a

f(i)
w

}
.

As w − k + 1 < w − j + 1, we see these sets do not overlap. Hence, our

desired z does not exist and ym ‖Q xn in this case.

Suppose ym <Q xn. We have A(ym) v A(xn). Also, this would imply

y1 ≤Q ym ≤Q xn. We will show xn /∈ UQ(y1) to provide our contradiction. By

Claim 4.9, it is sufficient to show for i ∈ [2, h] that xw(i−1)+1 /∈ UQ[yw]. Recall

that xw(i−1)+1 = a
f(i)+1
1 . So, we will show

UQ[yw] ∩ Af(i)+w+1 =
{
a
f(i)+w+1
w−2(i−1) , a

f(i)+w+1
w−2(i−1)+1, . . . , a

f(i)+w+1
w

}

for i ∈ [h− 1]. From (Q8), we see Ap(f(i+1)+1) = Af(i)+w+1 and (by our choice

of comparabilities) af(i+1)+1
k ∈ UQ[yw] ∩ Af(i+1)+1 if and only if

a
f(i)+w+1
k ∈ UQ[yw] ∩ Af(i)+w+1. If i ∈ [h− 1], then 1 < w − 2(i− 1) so this

will give us the desired result. We will use induction on i. We have

UQ[yw] ∩ Af(1)+w+1 = {af(1)+w+1
w }, establishing our base.

Suppose the inductive hypothesis holds for all cases less than i. From

(Q7), we have Ap(f(i)) = Af(i−1)+w+1 with As(f(i−1)+w+1) undefined. From our
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choice of comparabilities, we have

UQ[yw] ∩ Af(i) =
{
a
f(i)
w−2(i−2)−1, a

f(i)
w−2(i−2), . . . , a

f(i)
w

}
.

From (Q6), we have Ap(f(i)+w+1) = Af(i) with As(f(i)) undefined. From our

choice of comparabilities, we have

UQ[yw] ∩ Af(i)+w+1 =
{
a
f(i)+w+1
w−2(i−2)−2, a

f(i)+w+1
w−2(i−2)−1, . . . , a

f(i)+w+1
w

}
.

Because w− 2(i− 2)− 2 = w− 2(i− 1), our inductive hypothesis holds. And

so in this case, we again have yn ‖Q xn.

The comparabilities shown in Claims 4.7, 4.8, and 4.10 prove the

lemma.

4.3 Proof of Theorem 2.8

From Lemma 4.5 and Theorem 2.7, we know any regular poset can be

colored using FF using a bounded number of colors. However, to bound

val(w), we need to address general posets. Using methods developed by

Bosek and Krawczyk, we will show it is possible to color an arbitrary on-line

poset by maintaining and coloring an auxiliary regular poset on-line.

Proof of Theorem 2.8. We will proceed by induction on w the width of P . If

width(P ) = 1, we are done. Suppose we have a strategy to color any on-line

poset of width less that w at most w3+6.5 lgw colors. Let P be a width w

poset with arbitrary presentation ≺. We will provide an algorithm to color

P≺ on-line using several auxiliary structures.

Select k ∈ Z+ and let P be the on-line poset after k − 1 vertices have

been presented. For any variable a that represents a structure after k − 1
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vertices have been presented, we will use a+ to represent the structure after

the k-th vertex has been presented. Suppose x is the k-th vertex presented

that extends P to P+.

First, we partition the vertices of P≺ into Ẋ and X using

Algorithm 4.1:

Algorithm 4.1 Extend Ẋ and X to Ẋ+ and X+.
1: if width(P+[Ẋ + x]) = w then
2: Ẋ+ = Ẋ
3: X+ = X + x
4: Ax = an antichain of size w in P+[Ẋ + x] containing x
5: else
6: Ẋ+ = Ẋ + x
7: X+ = X
8: end if

For Ẋ, we have only one property that we are interested in. From

Algorithm 4.1, it is clear

width(P [Ẋ]) < w (4.4)

at each stage in the presentation of P . Hence, the the vertices of Ẋ can be

colored using the inductive hypothesis. All we must do is color the vertices of

X. Set |X| = `− 1 (so we have |X+| = ` if x ∈ X+).

To color the vertices of X, we will build an auxiliary poset in multiple

stages. Our goal is to build a regular on-line poset, with an index set and

antichain presentation. In the next algorithm, we will recallM, the lattice of

maximum antichains in P . We will select a set of vertices U , and a sequence

A = A1, A1, . . . , A|X| of maximum antichains that are linearly ordered under

vP .
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Algorithm 4.2 Select an antichain to extend A and U .
1: if |X+| > |X| then
2: if x ∈ DP (A) for some A ∈ A then
3: Au = minvP

{A ∈ A : x ∈ DP (A)}
4: else
5: Au = Ax
6: end if
7: if x ∈ UP (A) for some A ∈ A then
8: Ad = maxvP

{A ∈ A : x ∈ UP (A)}
9: else
10: Ad = Ax
11: end if
12: A` = (Ad ∨ (Au ∧ Ax))
13: A+ = A1, A2, . . . , A`−1, A`
14: U+ = U ∪ A`
15: else
16: A+ = A
17: U+ = U
18: end if

We illustrate Algorithm 4.2 in Figure 4.6. By inspection, we can

verify the following proposition.

Proposition 4.11. The elements of A are w vertex antichains which are

linearly ordered under vP .

x

Au

Ax

Ad

x

Au

A`

Ad

Figure 4.6: Finding A` from Ax.

The set X forms the base for the index set and A forms the base for

the antichain presentation for our auxiliary regular on-line poset. However,

they need to be modified to meet the required properties. Recall that x is

the most recently presented vertex added to X.
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Algorithm 4.3 Extend V , Y , and B and to V +, Y +, and B+.
1: if |X+| > |X| then
2: B` = {(u,A`) : u ∈ A`}
3: B+ = B1, B2, . . . , B`−1, B`

4: V + = V ∪B`

5: Y + = Y + (x,A`)
6: else
7: B+ = B
8: V + = V
9: Y + = Y
10: end if

Define the poset Q = (V,≤Q) where (v,B) ≤Q (v′, B′) if v ≤P v′ and

B vP B′. It is easy to verify that ≤Q defines a partial order on V . This will

simplify the next algorithm, where we build the regular on-line poset R with

order ≤R.

Algorithm 4.4 Maintaining the on-line poset R and order ≤R.
1: if |Y +| > |Y | then
2: for all u, v ∈ V do
3: if u ≤R v then
4: u ≤+

R v
5: end if
6: end for
7: for all u ∈ B` do
8: u ≤+

R u
9: if As(`) exists then
10: UR+(u) = ⋃

UR[v] where uv is a Q-Dilworth edge in Q[B` ∪Bs(`)]
11: end if
12: if Ap(`) exists then
13: DR+(u) = ⋃

DR[v] where vu is a Q-Dilworth edge in Q[Bp(`) ∪B`]
14: end if
15: R+ = (V +,≤+

R)
16: end for
17: else
18: ≤+

R=≤R
19: R+ = R
20: end if
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We illustrate Algorithm 4.4 in Figure 4.7 (compare this to

Figure 4.6). We examine the output of these algorithms. Some properties

can be verified by inspection.

Bs(`)

B`

Bp(`)

Q

Bs(`)

B`

Bp(`)

R+

Figure 4.7: Hasse diagrams of Q[Bp(`) ∪B` ∪Bs(`)] and R+[Bp(`) ∪B` ∪Bs(`)].

Proposition 4.12. For each B ∈ B, B is an antichain under ≤R.

Proof. This follows from inspection of Algorithm 4.4.

Claim 4.13. The relation is ≤R is on-line. That is, after each iteration of

Algorithm 4.4, we have ≤+
R=≤R on R+[V ].

Proof. Suppose V 6= V + and u, v ∈ V . Suppose u ./R v. From Line 4 in

Algorithm 4.4, we see we have u ./+
R v. Suppose we have u ‖R v. By

inspection of Algorithm 4.4, we see the only comparabilities added to form

≤+
R a between vertices of B` and V . As both u, v ∈ V and B` ∩ V = ∅, we

have u ‖+
R v.

Claim 4.14. Let i, j ∈ [`]. If (y, Ai), (z, Aj) ∈ V with (y, Ai) ≤R (z, Aj),

then (y, Ai) ≤Q (z, Aj).

Proof. We proceed by induction on `. If ` = 1 then we have i = j = 1 and so

(y, A1) ≤R (z, A1). Proposition 4.12 shows (y, A1) = (z, A1). Let ` > 1 and

suppose the claim holds for all smaller cases. If (y, Ai) = (z, Aj), we are
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done, so we take (y, Ai) 6= (z, Aj). If i = j, we are done by Proposition 4.12,

so we take i 6= j. If ` /∈ {i, j}, by Claim 4.13 and the inductive hypothesis,

we are done. Suppose j = `. We see from Line 13 in Algorithm 4.4 there is

some (u,Ap(`)) ∈ Bp(`) so that (y, Ai) ∈ DR[(u,Ap(`))] and

(u,As(`)) ≤Q (z, A`). The inductive hypothesis shows that

(y, Ai) ≤Q (u,Ap(`)) and the transitivity of ≤Q shows (y, Ai) ≤Q (z, Aj).

Similar reasoning shows the claim holds in the case i = `.

Claim 4.15. Let i, j ∈ [`]. If (y, Ai), (z, Aj) ∈ V with (y, Ai) ≤R (z, Aj),

then y ≤P z.

Proof. We proceed by induction on `. If ` = 1 then we have i = j = 1 and so

(y, A1) ≤R (z, A1). Proposition 4.12 and the definition of ≤Q show y = z. Let

` > 1 and suppose the claim holds for all smaller cases. If (y, Ai) = (z, Aj),

we are done, so we take (y, Ai) 6= (z, Aj). If i = j, we are done by

Proposition 4.12, so we take i 6= j. If ` /∈ {i, j}, by Claim 4.13 and the

inductive hypothesis, we are done. Suppose j = `. We see from Line 13 in

Algorithm 4.4 there is some (u,Ap(`)) ∈ Bp(`) so that (y, Ai) ∈ DR[(u,Ap(`))]

and (u,Ap(`)) ≤Q (z, A`). The inductive hypothesis shows that y ≤P u and

the definition of ≤Q shows u ≤P z. The transitivity of ≤P proves the claim.

Similar reasoning shows the claim hold in the case i = `.

Lemma 4.16. After each iteration of Algorithm 4.4, the order is ≤R is

reflexive, antisymmetric, and transitive.

Proof. We use induction on `. When ` = 1, we have B = B1. From

Proposition 4.12 and inspection of Algorithm 4.4, we see that R is a w vertex

antichain, thus establishing our base. Now let ` > 1 and assume the lemma

holds for ≤R. We will show it holds for ≤+
R. By the inductive hypothesis,

71



Claim 4.13, and Line 8 of Algorithm 4.4, we see ≤+
R is reflexive. By

Proposition 4.14, we see ≤+
R is antisymmetric.

It remains to show ≤+
R is transitive. Suppose we have u, y, z ∈ V +

with u ≤+
R y and y ≤+

R z. If |{u, y, z}| < 3 we are done so we will assume the

vertices are distinct. If {u, y, z} ∩B` = ∅, we are done by Proposition 4.13

and the inductive hypothesis. Suppose u ∈ B`. By Line 10 in Algorithm 4.4,

there is some v ∈ Bs(`) so that y ∈ UR[v]. As y ≤R z, by the inductive

hypothesis, we have z ∈ UR[v]. Again by Line 10 in Algorithm 4.4, we have

u ≤+
R z, as desired. Similar reasoning shows u ≤+

R z if z ∈ B`.

Suppose y ∈ B`. By Lines 10 and 13 in Algorithm 4.4, there are

vertices u′ ∈ Bp(`) so that u ∈ DR[u′] where u′y is a Dilworth edge in

Q[Bs(`) ∪B`] and z′ ∈ Bs(`) so that z ∈ UR[z′] where yz′ is a Dilworth edge in

Q[B` ∪Bs(`)]. If u′ ≤R z′, then we are done by the inductive hypothesis.

Suppose p(`) < s(`). Note that this implies p(`) = p(s(`)). Let C be a

Dilworth partition of Q[Bs(`) ∪B`] with u and u′ in the same chain and D be

a Dilworth partition of Q[B` ∪Bp(`)] with z′ and z in the same chain. The set

{C∆D : C ∈ C, D ∈ D, C ∩D 6= ∅}

is a Dilworth partition of Q[Bp(`) ∪Bs(`)] with u′ and z′ in the same chain.

Hence, u′z′ is a Dilworth edge in Q[Bp(`) ∪Bs(`)]. Recalling p(`) = p(s(`)), we

see that Line 13 in Algorithm 4.4 sets u′ ≤R z′, as desired. Similar reasoning

shows u′ ≤R z′ when p(`) > s(`).

Now that we have established R = (V,≤R) is a partial order, we will

show we have a regular poset.

Lemma 4.17. R is a width w regular on-line poset with index set Y , and

antichain presentation B = B1, B2, . . . , B`.
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Proof. We will show R = (V,≤R) has properties (R1-6) from Definition 4.1.

From the construction of V (in Line 4 in Algorithm 4.3), we see (R1) holds.

The construction of Y (in Line 5 in Algorithm 4.3) shows yi /∈ Bj for

j < i ∈ [`] (establishing (R2)). From Proposition 4.11, the definition of ≤Q,

and Claim 4.14, we see B is linearly ordered under vR (establishing (R3)).

The construction of B (in Line 2 in Algorithm 4.3) establishes (R4).

Property (R5) is clear from Lines 10 and 13 in Algorithm 4.4; a

comparability in exist in R[Bi ∪Bs(i)] or R[Bp(i) ∪Bi] only if it is a Dilworth

edge. Hence, both are cores. The same lines also establish (R6).

To show R has width w, first we note each B ∈ B is an antichain with

w vertices showing the width is at least w. To bound it from above, we will

show that for any antichain A, there is an antichain A′ so that A′ ⊆ B where

B ∈ B, |A| = |A′|, A′ ⊆ UR[A], and B = maxvR
{B(a) : a ∈ A}. We show this

by induction on |A|. When |A| = 1, then A is the desired antichain A′.

Suppose |A| > 1 and the claim hold for all smaller antichains. Select z ∈ A so

that B(z) is vR-maximal for all z ∈ A. By the inductive hypothesis, we have

the A′′, an antichain in B′ where B′ ∈ B for some B ∈ B, |A′′| = |A− x|,

A′′ ⊆ UR[A− z] and B′ vR B(z). As A is an antichain and by the transitivity

of ≤R, we see z /∈ UR[A′′]. If B′ = B(z), then A′ = A′′ + z is the desired

antichain. Suppose B′ @ A(z). By (R7), R[B′ ∪B(z)] is a core. The set of

vertices matched to A′′ together with z form the desired antichain A′. As

|B| = w for each B ∈ B, we see a |A| ≤ |B|. This shows width(R) = w.

To color of P , we color each new point x with the inductive

hypothesis if Algorithm 4.1 assigns x to Ẋ and we color x using the color

First-Fit assigns to the vertex (x,B`) in R if Algorithm 4.1 assigns x to X.

By Claim 4.15, any chain in R is a chain in P . Therefore we have a proper
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coloring of P . As R is a regular poset of width w, by Lemma 4.5, we have

R ∈ Forb(L2w2+1). By Theorem 2.7, at most w2.5 lgw+2 lg(2w2+1). As

∑
k∈[w]

k2.5 lg k+2 lg(2k2+1) ≤ w3+6.5 lgw,

we have a strategy to properly color P on-line using at most w3+6.5 lgw

colors.

4.4 Concluding Remarks

Roughly speaking, our current upper bound on val(w) relies on using simple

FF on the result of Algorithms 4.1, 4.2, 4.3, and 4.4. The number of colors

used by FF is bounded because the poset resulting from the algorithms is in

the family Forb(L2w2+1). However, the results of Lemmas 3.23 and 4.6 show

that these methods, as they stand, cannot bring the upper bound below

wlgw. Perhaps using a more sophisticated on-line algorithm on the auxiliary

regular poset R will yield an improvement.
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Chapter 5

FIRST-FIT COLORING OF CIRCULAR ARC GRAPHS
5.1 Labeling Nodes in Base Cycles

Let G be a circular arc graph with base cycle C. Select a direction for the

links of C so that G is a directed cycle. Even though C is now a directed

cycle, the structure of G will not be changed. Each path A in V (G) can be

identified with a unique pair of nodes α, β so that A = αCβ. Let α and β be

nodes in C. The positive distance from α to β, denoted α−→Cβ, is the length

of αCβ and the negative distance from α to β, denoted α←−Cβ, is the length of

βCα. In the case that α = β, we have α−→Cα = α
←−
Cα = |C| − 1. In

Figure 5.1, we have α−→Cβ = 2, α←−Cβ = 7, and highlighted path γCδ.

δ

α

β

γ

Figure 5.1: Directing the base cycle of a circular arc graph.

5.2 Proof of Theorem 2.9

Proof of Theorem 2.9. Let G = (V,E) be a circular arc graph with base

cycle C directed as in the previous section and let g be a n-Grundy coloring

of G. To each node α in C, we assign a list called a ray Rα. We say Rα is the

ray corresponding to node α. In stages, we maintain a set of surviving nodes.

If Rα is a surviving ray at stage i, then Rα(i) ∈ {H,N,D}. Once we have
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finished building the rays, we will use them to form an upper bound on n in

terms of ι(G). At stage i, the set of surviving nodes is Si. For α ∈ Si, define

the positive i neighbor of α, denoted N+
i (α), to be β ∈ Si so that α−→Cβ is as

small as possible. Similarly, define the negative i neighbor of α, denoted

N−i (α), to be β ∈ Si so that α←−Cβ is as small as possible. Note that it is

possible that N+
i (α) = N−i (α) or even, in the case that Si = {α},

N+
i (α) = α = N−i (α) .

Let Rα be a ray and 1 ≤ i ≤ j. We define

Hα(i, j) = |{` ∈ [i, j] : Rα(`) = H}| (i.e.: the number of H entries in the ray

between entry i and entry j, inclusive). Similarly, we set

Nα(i, j) = |{` ∈ [i, j] : Rα(`) = N}| and Dα(i, j) = |{` ∈ [i, j] : Rα(`) = D}|.

The set of surviving nodes and entries for the corresponding rays are

maintained in stages as follows, starting at stage 1 and ending when the set

of surviving nodes is empty. At stage 1, for each node α, if α ∈ A for some

A ∈ V1, then Rα(1) = H and α ∈ S1. At the start of stage j, suppose we

have Sj−1. If Sj−1 6= ∅, we use Algorithm 5.1 to build Sj ⊆ Sj−1 and assign

labels to some rays.
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Algorithm 5.1 Add nodes to Sj and assign entries for corresponding rays.
1: Sj = ∅
2: for α ∈ Sj−1 do
3: if there is some A ∈ Vj so that α ∈ A then
4: Rα(j) = H
5: Sj = Sj + α
6: end if
7: end for
8: for α ∈ Sj−1 \ Sj do
9: β = N+

j−1(α)
10: γ = N−j−1(α)
11: if Rβ(j) = H or Rγ(j) = H then
12: Rα(j) = N
13: Sj = Sj + α
14: end if
15: end for
16: for α ∈ Sj−1 \ Sj do
17: if there is some i ∈ [j − 1] so that 4Hα(i, j − 1) > j − i then
18: Rα(j) = D
19: Sj = Sj + α
20: end if
21: end for

We see that if α /∈ Sj, then Rα(j) is undefined. We will simply think

of undefined entries as being empty. The quantities Hα(i, j), Nα(i, j), and

Dα(i, j) are defined for any 1 ≤ i ≤ j and node α and do not depend on α

being a surviving node at a given stage.

The loops that assign entries H, N , and D are ordered so that,

roughly speaking, Algorithm 5.1 prefers to assign an H entry versus an N

entry, an N entry versus a D entry, and a D entry versus an empty entry.

Furthermore, the algorithm prefers to add a node to the next surviving set

versus leaving it out. From this, we have the following claim.

Claim 5.1. For j ≥ 1 and node α ∈ Sj, Rα(j) = H if and only if α ∈ A for

some A ∈ Vj.
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This claim immediately tells us that if Hα(1, j) = i, then there is

some U ⊆ V so that |U | = i and α ∈ ⋂A∈U A. Hence, the following claim.

Claim 5.2. For any j ≥ 1 and node α, ι(G) ≥ Hα(1, j).

Now, we will examine the connection between the rays (and their

entries) and n-Grundy coloring g.

Claim 5.3. Take i ≤ j ∈ [n]. For any A ∈ Vj we have A ∩ Si 6= ∅.

Proof. We prove this by double induction where our primary induction is on

j and secondary on i. The base of j = 1 follows from from the construction

of S1; the nodes in S1 are exactly the nodes in the paths of V1. Suppose the

primary induction holds for all cases less than j. Select A ∈ Vj. We establish

base of i = 1 of the secondary induction by using property (G3) of g: there is

some path B ∈ V1 so that A ∩B 6= ∅. As the construction of S1 adds all

nodes in B to S1, we have our base. Now, suppose the secondary hypothesis

holds for cases less than i. By property (G3) of g, there is some B ∈ Vi so

that A ∩B 6= ∅. By our primary inductive hypothesis, we have

S ′ = B ∩ Si 6= ∅. If A ∩ S ′ 6= ∅, we are done.

Suppose A ∩ S ′ = ∅. Select nodes γ and δ so that γCδ = A. We must

have exactly one of γ ∈ B or δ ∈ B; if this were not true, we would have

either A ∩B = ∅ or S ′ ⊆ B ⊆ A, both of which violate our hypotheses.

Suppose δ ∈ B. By the secondary inductive hypothesis, A ∩ Si−1 6= ∅. Select

α ∈ A ∩ Si−1 and β ∈ S ′ so that α−→Cβ is as small as possible. We must have

δ ∈ V (αCβ) ⊆ A ∪B. From our selection of α and β, we have

V (αCβ) ∩ Si−1 = {α, β}. Thus β = N+
i−1(α). Because Rβ(i) = H (by

Claim 5.1), Algorithm 5.1 adds α to Si and sets Rα(i) = N .
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We see the claim holds if γ ∈ B using similar reasoning, this time

selecting α ∈ A ∩ Si−1 and β ∈ S ′ so that α←−Cβ is as small as possible.

We show that our ray construction halts at some point. Recall that n

is the largest color used by g.

Claim 5.4. There exists an integer m > n so that Sm 6= ∅ and Sm+1 = ∅.

Proof. From Claim 5.3, Sn 6= ∅. Take α ∈ Sn and A ∈ Vn so that α ∈ A. By

Claim 5.1, we have Rα(n) = H. As 4Hα(n, n) = 4 > n− n+ 1 = 1,

Algorithm 5.1 adds α to Sn+1. Hence Sn+1 6= ∅.

Take m > n so that Sm 6= ∅ and let α ∈ Sm. Algorithm 5.1 will try to

add α to Sm+1. As Vm+1 = ∅, Claim 5.1 shows we cannot have

Rα(m+ 1) = H. Also, Rα(m+ 1) 6= N as each N entry in stage m+ 1

requires the positive m neighbor or negative m neighbor with an H entry in

stage m+ 1, which we have just shown is impossible. We must have

Rα(m+ 1) = D. Recalling Vk = ∅ for any k ∈ [n,m], Rα(k) 6= H. Hence,

maxiHα(i, n) = maxiHα(i,m). Fix i so that Hα(i, n) is as large as possible.

If m = 4Hα(i, n) + i+ 1, Algorithm 5.1 will not add α to Sm+1. Hence,

Sm+1 = ∅.

For the rest of the proof, set m so that Sm 6= ∅ and Sm+1 = ∅. For any

α ∈ Sm, we have n ≤ m = Hα(1,m) +Nα(1,m) +Dα(1,m). We now seek to

provide an upper bound on n in terms of Hα(1,m). Together with Claim 5.2,

we will have an upper bound on n in terms of ι(G). First, we bound

Dα(1,m) in terms of Hα(1,m).

Claim 5.5. For any j ≥ 1, if α ∈ Sj, then 3Hα(1, j) ≥ Dα(1, j).
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Proof. We use induction on j. The construction of S1 shows the base of

j = 1 holds. Suppose the claim holds for classes less than j. If

Rα(j) ∈ {H,N}, then Dα(1, j) = Dα(1, j − 1) and Hα(1, j) ≥ Hα(1, j − 1).

From these bounds with the inductive hypothesis, we have

3Hα(1, j) ≥ 3Hα(1, j − 1) ≥ Dα(1, j − 1) = Dα(1, j).

So the claim holds in this case.

Suppose Rα(j) = D. In Algorithm 5.1, we see there is some i ∈ [j − 1]

so that 4Hα(i, j − 1) > j − i, which tells us 4Hα(i, j − 1) ≥ j − i+ 1. Because

Rα(j) = D, we have Hα(i, j − 1) = Hα(i, j). Hence, 4Hα(i, j) ≥ j − i+ 1.

There are j − i+ 1 entries in Rα between i and j (inclusive), so

Dα(i, j) +Hα(i, j) ≤ j − i+ 1 ≤ 4Hα(i, j). We now have

Dα(i, j) ≤ 3Hα(i, j). By the inductive hypothesis, we have

3Hα(1, i− 1) ≥ Dα(1, i− 1). From this, we find

3Hα(1, j) = 3Hα(1, i− 1) + 3Hα(i, j) ≥ Dα(1, i− 1) +Dα(i, j) = Dα(1, j),

proving the claim.

Now, we bound the number of N entries in a ray in Sm.

Claim 5.6. If β ∈ Sm, then Nβ(m) < m/2.

Proof. As in the proof of Claim 5.4 we note Rβ(m) = D. If Rβ(m) = H, then

4Hβ(m,m) = 4 > m−m+ 1 = 1. Algorithm 5.1 would then add β to Sm+1.

If Rβ(m) = N , there is some α ∈ Sm so that α ∈ {N+
β (m), N−β (m)} and

Rα(m) = H. Again, this would imply Sm+1 6= ∅. Hence Nβ(m) = Nβ(m− 1).

Take j ∈ [2,m− 2] and set α = N+
j−1(β) and γ = N−j−1(β). From

inspection of Algorithm 5.1, we see if Rβ(j) = N , then either Rα(j) = H or
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Rγ(j) = H. Thus, each N in Rβ requires an H entry in one of the rays

corresponding to a node in the set

{N+
2 (β), N+

3 (β), . . . , N+
m−1(β), N−2 (β), N−3 (β), . . . , N−m−1(β)}.

Let α1, α2, . . . , αa be nodes and 0 = s0 < s1 < s2 < · · · < sa < m be integers

so that αi = N+
β (`) for ` ∈ [si−1 + 1, si] and each si is as large as possible.

Similarly, let γ1, γ2, . . . , γb be nodes and 0 = t0 < t1 < t2 < · · · < tb < m be

integers so that γj = N−β (`) for ` ∈ [tj−1 + 1, tj] and each tj is as large as

possible (see Figure 5.2). We should note that it is possible that αa = γb or

αa = β = γb.

β

α1

α2α3

α4

α5/γ4

γ1

γ2

γ3

Figure 5.2: Selection of α1, α2, . . . , αa and γ1, γ2, . . . , γb.

From this, we have

Nβ(1,m) ≤
∑
i∈[a]

Hαi
(si−1 + 1, si) +

∑
j∈[b]

Hγj
(tj−1 + 1, tj).
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It does not matter if αa = γb or αa 6= γb. For i ∈ [a− 1], αi /∈ Ssi+1 (or else

we would have chosen larger si). Hence we have 4Hαi
(si−1 + 1, si) ≤ si − si−1

or else Algorithm 5.1 would add αi to Ssi+1 with Rαi
(si + 1) = D. Similarly,

for j ∈ [b− 1], we have 4Hγj
(tj−1 + 1, sj) ≤ tj − tj−1. We now have

Nβ(m) ≤ 1
4
∑
i∈[a]

si − si−1 + 1
4
∑
j∈[b]

tj − tj−1.

These sums telescope and simplify so that we have Nβ(m) ≤ sa/4 + tb/4. As

sa < m and tb < m, we have Nβ(m) < m/2.

We are ready to prove the theorem. Take β ∈ Sm. We have

Hβ(m) +Nβ(m) +Dβ(m) = m. By Claim 5.6 we have Hβ(m) +Dβ > m/2.

By Claim 5.5, we have 4Hβ(m) > m/2. Finally, by Claim 5.2 and Claim 5.4

we have ι(G) ≥ Hβ(m) > m/8 ≥ n/8. From (2.2) and Claim 2.12, we have

χFF(G) < 8ι(G) ≤ 8χ(G).

5.3 Concluding Remarks

One might ask if we can extend the methods of Pemmaraju, Raman, and

Varadarajan to a larger family of graphs. Recall our notation for circular arc

graphs from Chapter 2. Suppose V1, V2, . . . , Vn are connected subgraphs of

graph H, our base graph. The corresponding intersection graph is

G = (V,E) where V = {V1, V2, . . . , Vn} and UV ∈ E if and only if U ∩ V 6= ∅.

Can we bound the number of colors used by FF on such a graph? In general,

the answer is no. Trees can be expressed as intersection graphs and, as we

will see in the next section, the performance of FF on trees cannot be

bounded from above. However, we have seen that restricting H to paths and

cycles does bound the performce of FF. Perhaps we can find another family

of base graphs for which the performance of FF is also bounded.
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It is also possible to alter the rays and their labeling. As the method

stands, the labels are determined in an on-line manner; that is, we assign the

labels once and do not alter them. Perhaps we can modify the algorithm

that assigns labels to improve our bound or apply the method to a larger

family of graphs. Currently, we only use the labels {H,N,D}. It is possible

that using a larger family of labels can open this method up to improvement

or larger application.
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Chapter 6

FIRST-FIT COLORING OF TREES
6.1 On-Line Coloring of Trees

Trees have a relationship with Grundy colorings that allow us to exploit

inductive methods. For a graph G and Grundy coloring g, define −→G g to be

the oriented graph with vertices V (G) where −→xy is an arrow if xy ∈ E(G)

and g(x) > g(y). The following lemma is helpful in studying Grundy

colorings of trees.

Lemma 6.1. Suppose T is a forest and g is an n-Grundy coloring of T . Let
−→xy be an arrow in −→T g. If S be the component of T − xy containing y, then g

is a k-Grundy coloring of S where k = maxv∈V (S) g(v).

Proof. Fix v ∈ V (S) so that g(v) = maxu∈V (S) g(u). For each i ∈ [k], we have

Vi(S) ⊆ Vi(T ). By hypothesis, Vi(T ) is a coclique so Definition 2.11(G1)

holds. We have NS(y) = NT (y)− x. Recalling g is a Grundy coloring of T ,

we have g(NT (y)) ⊇ [k − 1]. As g(x) > k, we see g(NS(y)) ⊇ [k − 1]. Thus,

(G2) holds and (G3) holds for y. For each u ∈ V (S)− y, we have

NS(u) = NT (u) so (G3) holds for these vertices as well.

We should note that Lemma 6.1 does not hold for general graphs.

For a tree T and a vertex v, we let −→T (v) be the tree T with edges

oriented away from v. Formally, −→xy is an arrow in −→T (v) if xy ∈ E(T ) and the

distance from v to x is less than the distance from v to y. The depth of −→T (v)

is the number of vertices in the longest directed path in the directed graph.

Observation 6.2. Any path that witnesses the depth of −→T (v) starts at

vertex v.
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Although our definition of depth differs from our earlier definition of

the length of a path, the next lemma shows why we make this choice.

Lemma 6.3. Suppose T is a tree, v is a vertex of T , and g is a Grundy

coloring of T . If g(v) = k, then the depth of −→T (v) is at least k.

Proof. We prove this by induction on k. For k = 1, the lemma is trivially

true. Now suppose the lemma holds for g(v) < k. Let v be a vertex in T so

that g(v) = k. As g is a Grundy coloring, there is a vertex u ∈ N(v) so that

g(u) = k − 1. Let S be the component containing u in T − vu. As −→vu is an

arrow in −→T g, g is an m-Grundy coloring of S for some m ≥ n− 1. Let P be

a maximum path in −→S (u) (which, by Observation 6.3, starts at u). By the

inductive hypothesis, P has at least k − 1 vertices. Note that −→S (u) is

isomorphic to the subtree of −→T (v) induced by the vertices V (S). Hence,

v + P is a path in −→T v on at least k vertices.

First, we will show that for any n ∈ Z+, there is a tree T with a

n-Grundy coloring.

Construction 6.4. The tree Ψn with root ψn is defined recursively (see

Figure 6.1):

(1) Ψ1 is a single vertex ψ1.

(2) Ψn is ψn + Ψn−1 + Ψn−2 + · · ·+ Ψ1 along with edges ψiψn for each

i ∈ [n− 1].

One may easily verify that Ψn is a tree. This construction is referred

to as a broadcast tree by Farley, et al in [17] and [45]. Its recursive
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ψ5

ψ4
ψ3

ψ2
ψ1

Ψ4 Ψ3 Ψ2 Ψ1

Figure 6.1: Building Ψ5 earlier iterations.

construction motivates the proofs of the bounds of the performance of on-line

algorithms in coloring trees.

Lemma 6.5. For each n ∈ Z+, χFF(Ψn) ≥ n and |Ψn| = 2n−1.

Proof. We employ induction on n and use a slightly stronger inductive

hypothesis: for each n ∈ Z+, |Ψn| = 2n−1 and there is an n-Grundy coloring

g of Ψn so that g(ψn) = n. For n = 1, the lemma is trivial. Suppose the

lemma holds for all positive integers less than n. We will treat

Ψ1,Ψ2, . . . ,Ψn−1 as subtrees of Ψn. We have

|Ψn| = 1 +
∑

i∈[n−1]
|Ψi| = 1 +

∑
i∈[n−1]

2i−1 = 2n−1.

From the inductive hypotheses, for each i ∈ [n− 1] set gi to be an

i-Grundy coloring of Ψi with gi(ψi) = i. Define g : V (Ψn)→ [n] by

g(v) =


gi(v) if v ∈ V (Ψi)

n if v = ψn

.

There are no edges between Ψi and Ψj for i 6= j, so the inductive hypothesis

tells us V g
i is a union of cocliques for each i ∈ [n− 1]. Noting that

V g
n = {ψn}, we see Definition 2.11(G1) holds. Because g(N(ψn)) = [n], we

see (G2) holds and (G3) holds for ψn. The inductive hypothesis shows (G3)

holds for all u ∈ V (Ψn)− ψn. This gives us χFF(Ψn) ≥ n.
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Now that we have shown there are trees that force FF to use

arbitrarily many colors, we ask how many vertices are needed in a tree to

force a given number of colors.

Theorem 6.6. For any forest T , χFF(T ) ≤ lg 2|T |. Furthermore, this bound

is tight; there is a forest T so that χFF(T ) ≥ blg 2|T |c.

Proof. It suffices to prove the theorem for trees and apply the proof to the

components of a forest. Set n = χFF(T ). To demonstrate the upper bound

on n, we prove the equivalent inequality 2n−1 ≤ |T |. We proceed by

induction on n. The bound is trivial for n = 1. Now suppose the bound

holds for all positive integers less than n. Select a tree T so that χFF(T ) = n

and an n-Grundy coloring g of T . Select v ∈ V (T ) so that g(v) = n. As g is

a Grundy coloring, we have a set of vertices {u1, u2, . . . , un−1} ⊆ NT (v) so

that g(ui) = i for each i ∈ [n− 1]. We examine F , the forest created from T

by removing the edges vu1, vu2, . . . , vun−1. For each i ∈ [n− 1], let Si be the

component of F containing ui. As each edge of a tree is a cut-edge, these

components are distinct. Because −→vui is an arrow in −→T g, Lemma 6.1 shows

that g is a mi-Grundy coloring of Si where mi ≥ i. By the inductive

hypothesis, we have |Si| ≥ 2mi−1. Noting that

V (T ) ⊇ v + V (S1) ∪ V (S2) ∪ · · · ∪ V (Sn−1) with V (Si) ∩ V (Sj) = ∅ when

i 6= j, we have

|T | ≥ 1 +
∑

i∈[n−1]
|Si| ≥ 1 +

∑
i∈[n−1]

2mi−1 ≥ 1 +
∑

i∈[n−1]
2i−1 = 2n−1,

proving the upper bound.

The tree Ψn and its properties shown in Lemma 6.5 complete the

theorem.
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There is more we can say about the tree that provides the lower

bound in Theorem 6.6. Although the following construction is not strictly

necessary, it is simple and provides insight into the lower bound that leads to

Lemma 6.10.

Construction 6.7. The tree Υn is defined recursively (see Figure 6.2):

(1) Υ1 is a single vertex.

(2) Υn is Υn−1 with a leaf attached to each vertex.

One may quickly verify that Υn is a tree.

Υ4

Figure 6.2: Building Υ5 from Υ4.

Lemma 6.8. For each n ∈ Z+, χFF(Υn) = n and |Υn| = 2n−1.

Proof. We use induction on n. The case of n = 1 is trivial. Assume the

lemma holds for all positive integers less than n. We think of Υn−1 as a

subgraph of Υn. By the construction of Υn, we have

|Υn| = 2|Υn−1| = 2 · 2n−2 = 2n−1. Let g′ be an n− 1-Grundy coloring of

Υn−1. Define g : V (Υn)→ [n] by

g(v) =


g′(v) + 1 if v ∈ V (Υn−1)

1 if v ∈ V (Υn) \ V (Υn−1)
.
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The leaves added to Υn are a coclique, so V g
1 (Υn) is a coclique. For i ∈ [2, n]

we have V g
i (Υn) = V g′

i−1(Υn−1), so V g
i (Υn) is a coclique. We have established

(G1). By the inductive hypothesis, g′ is surjective on [n− 1]. By inspection

of the definition of g, we see that g is surjective on [n]. Hence, (G2) holds.

Take v ∈ V (Υn). If v ∈ V (Υn) \ V (Υn−1), then (G3) is trivial. Suppose

v ∈ V (Υn−1) with g(v) = j. Fix i ∈ [2, j − 1]. There is some u ∈ NΥn−1(v) so

that g′(u) = i− 1. Hence, we have u ∈ NΥn(v) with g(u) = i. By

construction, there is a leaf adjacent to v colored 1 by g. From this, we see

(G3) holds for all vertices of Υn.

Now, we have χFF(Υn) ≥ n. Theorem 6.6 shows χFF(Υn) = n.

The construction of the n-Grundy coloring in Lemma 6.8 provides a

hint at the following proposition.

Proposition 6.9. Suppose T is a tree with n-Grundy coloring g so that

|T | = 2n−1 and n > 1. Then a vertex u ∈ V (T ) is a leaf if and only if

g(u) = 1.

Proof. Suppose u ∈ V (T ) is a leaf. Because |NT (u)| = 1, we must have

g(u) ∈ {1, 2} by Definition 2.11(G3). Assume g(u) = 2. Let v be the unique

neighbor of u. We must have g(v) = 1. Let T ′ be the component of the forest

T − uv containing v. Note that T ′ contains all the vertices of T other than u.

Because −→uv is an arrow in −→T g, Lemma 6.1 tells us g is an n-Grundy coloring

of T ′. As |T ′| = 2n−1 − 1, Theorem 6.6 tells us T ′ cannot have an n-Grundy

coloring; this shows g(u) = 1.

Now suppose g(u) = 1. Take w ∈ Vn. As T is a tree there is a unique

vertex v ∈ NT (u) so that v is on the unique path from u to w (note that
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because n > 1, u 6= w). Assume there is some v′ ∈ NT (u) so that v 6= v′. We

again use Lemma 6.1 to see that g is an n-Grundy coloring of the component

of T − uv′ that contains w. This component has fewer that 2n−1 vertices and

Theorem 6.6 shows we have arrived at a contradiction. Hence, there is no

such v′ and we see u is a leaf.

The new construction and the preceding proposition allow us to show

the following lemma:

Lemma 6.10. For each n ∈ Z+ there is a unique tree T so that |T | = 2n−1

and χFF(T ) = n.

Proof. This lemma is equivalent to claiming T = Υn. We use induction on n.

In the case of n = 1, the tree on one vertex is the unique tree that satisfies

our conditions. Now assume the lemma holds for all cases smaller than n.

Assume we have trees S and T with respective n-Grundy colorings g and h

so that |S| = |T | = 2n−1 and S 6= T .

Take u ∈ V g
i (S) where i ∈ [2, n]. By (G3), u has a 1-witness and so,

by Proposition 6.9, u is adjacent to a leaf. Similarly, we see each vertex

v ∈ V (T ) with h(v) > 1 is adjacent to a leaf. Let S ′ to be the subtree of S

induced by all the non-leaf vertices. Similarly, let T ′ be the subtree of T

induced by all the non-leaf vertices. Define g′ : V (S ′)→ [n− 1] and

h′ : V (T ′)→ [n− 1] by g′(u) = g(u)− 1 and h′(v) = h(v)− 1. As only

vertices colored 1 by g or h were removed, it is straightforward to verify g′

and h′ are n− 1-Grundy colorings of S ′ and T ′. Also, only leaves were

removed so both S ′ and T ′ are trees. By our inductive hypothesis, we have

S ′ = T ′ = Υn−1. We see S and T are obtained from S ′ and T ′ in the same

way Υn is obtained from Υn−1, so S = T .
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Using terminology of Gyárfás and Lehel [26], for each n ∈ Z+, let the

unique tree Υn = Ψn be the canonical n-tree. In 1982, the canonical n-tree

was used by Hedetniemi, et al in [28] to show χFF(T ) can be determined in

linear time for any tree T . The properties of the canonical n-tree highlighted

in Constructions 6.4 and 6.7 are used serval times in [26], including the proof

of a version of the following lemma. We present a slightly strengthened

version here.

Lemma 6.11. Let T be a forest and let n ≥ 2 be an integer. Then T has an

n-Grundy coloring if and only if the canonical n-tree is a subtree of T .

Consequently, χFF(T ) = n if and only if n is the maximum integer so that

the canonical n-tree is a subtree of T .

Proof. It suffices to prove the lemma for trees and apply the result to the

individual components of a forest. Let Tn be the canonical n-tree and set

U = V (Tn).

First, suppose Tn ⊆ T . We show T has an n-Grundy coloring. Let g′

be an n-Grundy coloring of Tn. Define V1 = NT (U) \ U and for i > 1 set

Vi = NT (U ∪ V1 ∪ V2 ∪ · · · ∪ Vi−1) \ U ∪ V1 ∪ V2 ∪ · · · ∪ Vi−1.

See Figure 6.3. Let j be the least positive integer so that Vj+1 = ∅. For

i ∈ [j], define Wi = U ∪ V1 ∪ · · · ∪ Vi and W0 = U .

We extend g′ to g through a sequence of n-Grundy colorings

g′ = g0, g1, . . . , gj = g where gi is an n-Grundy coloring of T [Wi]. For i ∈ [j],

we define gi as follows. For each u ∈ Wi−1 set gi(u) = gi−1(u). For v ∈ Vi, set

gi(v) to be the smallest positive integer so that gi is a proper coloring of

T [Wi]. As T [Wi−1] is a tree and by the definition of Vi, v ∈ Vi has a unique
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U
V1
V2
V3

Figure 6.3: Partitioning V (T ) in U, V1, . . . , Vj.

neighbor in T [Wi−1] and no neighbors in Vi. Thus, gi(v) ∈ {1, 2}. It is easy

to see gi is an n-Grundy coloring of T [Wi].

Now suppose T has an n-Grundy coloring. We will show Tn is a

subtree of T by induction on |T |. By Theorem 6.6, the inductive base is

|T | = 2n−1 and Lemma 6.10 gives us T = Tn, establishing our base. Now,

assume there is some n so that T has an n-Grundy coloring g but Tn is not a

subtree of T . Select T so that |T | is as small as possible. Take S = −→T g. For

simplicity, we will use V (S) and V (T ) interchangeably. First, we note

|Vn| = 1. If x, y ∈ Vn are distinct vertices, Lemma 6.1 tells g is an n-Grundy

coloring of the component containing x in the forest T − y as −→yu is an arrow

in S for all u ∈ N(T ). Let x be the unique vertex in Vn.

Assume we have some u ∈ V (S) with g(u) < n so that N−S (u) = ∅

(i.e.: −→uv is an arrow in S for all v ∈ N(u)). Lemma 6.1 shows that g is an

n-Grundy coloring of the the component in T − u containing x, again

violating our hypothesis of the properties of T . Hence, we have the following.

If u ∈ V (S) with g(u) < n, then N−S (u) 6= ∅. (6.1)

Select i ∈ [n− 1] to be as large as possible so that |Vi| > 2n−i−1. Such a color
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class must exist or else we would have

|T | = |Vn|+
∑

i∈[n−1]
|Vi| ≤ 1 +

∑
i∈[n−1]

2n−i−1 = 1 +
∑

`∈[n−1]
2`−1 = 2n−1.

By our inductive base, this is impossible. By our choice of i, we have

|Vj| ≤ 2n−j−1 for j ∈ [i+ 1, n− 1]. As Vi+1, Vi+2, . . . , Vn are pairwise disjoint,

we have

⋃
j∈[i+1,n]

|Vj| ≤ 1 +
∑

j∈[i+1,n−1]
2n−j−1 = 1 +

∑
`∈[n−i−1]

2`−1 = 2n−i−1.

By property (6.1) and the pigeonhole principle, there is some j ∈ [i+ 1, n]

with w ∈ Vj so that |NT (w) ∩ Vi| ≥ 2. Suppose u, v ∈ NT (w) ∩ Vi. Take u to

be the unique vertex in NT (w) on the path from x to w and let T ′ be the

component of T − v containing x. We claim g is an n-Grundy coloring of T ′.

For each k ∈ [n] we have Vk(T ′) ⊆ Vk(T ), so (G1) holds. For all

y ∈ V (T ′)− w, we have NT ′(y) = NT (y). This establishes (G3) for all

vertices other than w. To show (G3) holds for w, note that

NT ′(w) = NT (w)− v, and by our choice of w, we have u ∈ NT (w) with

g(u) = g(v). The neighborhood of x shows (G2) holds. By the inductive

hypothesis, T ′ has the desired subtree. We have our desired contradiction

and we see T must have Tn as a subtree.

Now, we turn our attention to algorithms other than FF. In 1988,

Gyárfás and Lehel [25], showed for any n ∈ Z+ and any on-line coloring

algorithm, there is a tree that requires n colors. In 1990, the same authors

strengthened the result in [26] to show results equivalent to the following

lemma and theorem. We offer a different proof.

Lemma 6.12 (Gyárfás & Lehel [26]). For any on-line coloring algorithm A,

there is a subforest T of the canonical n-tree so that χA(T ) ≥ n.
93



Proof. Using the terminology of Spoiler and Algorithm from our

introduction, we will provide a strategy for Spoiler to present a subforest of

Ψn so that Algorithm uses n colors. Suppose A is an on-line coloring

algorithm. We will use induction on n with a strengthened inductive

hypothesis as follows: For positive integer n and arbitrary set of colors Cn so

that |C| = n− 1, Spoiler has a strategy Sn(Cn) that presents a subforest of

Ψn, halts with A uses a color not in Cn, and the final vertex presented may

be taken as ψn (the root of Ψn). Without loss of generality, we make take

C = [k − 1]. We may think of this as Spoiler relabeling the colors used by A

by the order they are introduced.

For n = 1, the strategy S1([0]) is presenting a single vertex. As A

must use a color (which Spoiler relabels as 1) and Ψ1 is a single vertex, we

have established our base. Now, suppose the hypothesis holds for all cases

smaller than n. To form Sn([n− 1]), Spoiler builds a forest

F1 + F2 + · · ·+ Fn−1 so that for each i ∈ [n− 1], Fi is formed using

Si([i− 1]). By the inductive hypothesis, each Fi is a subforest of Ψi.

Furthermore, each root vertex ψi is colored i. To complete Sn([n− 1]),

Spoiler presents a vertex ψn adjacent to ψ1, ψ2, . . . , ψn−1. As each Fi is a

subforest of Ψi and ψn is adjacent to only ψi, from Construction 6.14 we see

we have a subforest of Ψn. Furthermore, for each i ∈ [n− 1], ψn is adjacent

to a vertex A has colored i and so ψn must be colored with a new color,

which without loss of generality we take to be n.

Lemmas 6.11 and 6.12 provide a theorem:

Theorem 6.13 (Gyárfás & Lehel [26]). For any tree T , we have

χFF(T ) ≤ minA χA(T ) = χOL(T ).
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6.2 Proof of Theorem 2.10

Take T to be a forest and n ∈ Z+. If n is large in comparison to |T |, we

expect the probability of AnT (recall the definition of AnT from Chapter 2) to

be small. To lend credence to our intuition, we look deeper into the

canonical n-tree with a third construction.

Construction 6.14. The tree Φn with root φn and semiroot φ̄n is defined

recursively (see Figure 6.4):

(1) Φ1 is the single vertex φ1.

(2) Φ2 is the edge φ2φ̄2.

(3) Φn is Φn−1 + Φ′n−1 (two disjoint copies of Φn−1) along with edge

φn−1φ
′
n−1. Set φn = φn−1 and φ̄n = φ′n−1.

φ5 = φ4

φ̄4

φ̄5 = φ′4

φ̄′4

Φ4 Φ′4

Figure 6.4: Building Φ5 from Φ4 and Φ′4.

Again, it is easy to show that Φn is a tree. Although Gyárfás and

Lehel did not explicitly use this construction, they employed its “left/right”

structure in some of their proofs in [26]. As we will see, this structure

highlights the fact that in any n-Grundy coloring of a canonical n-tree, either

φn or φ̄n can be colored n. We go slightly further and offer the following

lemma to classify all n-Grundy colorings of the canonical n-tree.
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Lemma 6.15. For each integer n ≥ 2, we have |Φn| = 2n−1 and there are

exactly two distinct n-Grundy colorings g and h of Φn. Furthermore, we may

specify V g
n = {φn}, V g

n−1 = {φ̄n}, V h
n = {φ̄n}, and V h

n−1 = {φn}.

Proof. We will use induction on n. The base of n = 2 is trivial. Suppose the

lemma holds for all integers smaller than c. From Construction 6.14, we see

|Φn| = |Φn−1 + Φ′n−1| = 2n−2 + 2n−2 = 2n−1. Again, we treat Φn−1 and Φ′n−1

as subgraphs of Φn. Let ĝ and ǧ be n− 1-Grundy colorings of Φn−1 and Φ′n−1

(respectively) provided by the inductive hypothesis satisfying

(1) ĝ(φn−1) = ǧ(φ′n−1) = n− 1,

(2) ĝ(φ̄n−1) = ǧ(φ̄′n−1) = n− 2.

The inductive hypothesis tells us the color classes n and n− 1 for both ĝ and

ǧ consist of one vertex each. Define g and h as follows:

g(v) =


ĝ(v) if v ∈ V (Φn−1)− φn−1

n if v = φn−1 = φn

ǧ(v) if v ∈ V (Φ′n−1)

,

h(v) =


ǧ(v) if v ∈ V (Φ′n−1)− φ′n−1

n if v = φ′n−1 = φ̄n

ĝ(v) if v ∈ V (Φn−1)

.

We will show that g is an n-Grundy coloring Assume we have uv ∈ E(Φn) so

that g(u) = g(v). We cannot have φn ∈ {u, v} as V g
n (Φn) = {φn}. If

uv ∈ E(Φn−1) (where φn /∈ {u, v}) this contradicts the hypothesis that ĝ is a

Grundy coloring. We arrive at the same contradiction if uv ∈ E(Φ′n−1). This

eliminates all possible edges in Φn, so our assumption is false and we see

(G1) holds. As ǧ is surjective on [n− 1] and g(φn) = n, we see (G2) holds.
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We have {u1, u2, . . . , un−2} ⊆ NΦn−1(φn−1) so that ĝ(ui) = g(ui) = i for each

i ∈ [n− 2]. We can see φ̄n is an n− 1-witness for φn under g, so φn has a

witness for each color in [n− 1]. Note that φn = φn−1 is not a witness for any

vertex in any of the colorings ĝ, ǧ, or g. Furthermore, no other colorings

have been altered and so (G3) holds for all other vertices of Φn from the

inductive hypothesis. We leave it to the reader to follow the same reasoning

to see h is an n-Grundy coloring as well.

Now, suppose f is an n-Grundy coloring of Φn. Let u ∈ V f
n−1 and

v ∈ V f
n so that uv ∈ E(Φn) (such a pair of vertices must exist as f is

surjective and any every vertex in V f
n has an n− 1-witness). Let Su and Sv

be the components of T − uv containing u and v (respectively). Because −→uv

is an arrow in −→T f, Lemma 6.1 tells us fu is an n− 1-Grundy coloring of Su.

As |Sv| < 2n−1, Theorem 6.6 tells us f is not an n-Grundy coloring of Sv. We

can see this is because v has no n− 1 witness. Define fu : V (Su)→ [n− 1]

and fv : V (Su)→ [n− 1] by

fu(x) = f(x),

fv(x) =


f(x) if x 6= v

n− 1 if x = v
.

We have seen that Lemma 6.1 shows fu is an n− 1-Grundy coloring fo Su.

We leave it to the reader to verify that fv is an n− 1-Grundy coloring of Sv.

By Theorem 6.6, we must have |Su|, |Sv| ≥ 2n−2. So, we have

|Su| = |Sv| = 2n−2 and Su = Sv = Φn−1. Without loss of generality, we may

take Su = Φn−1 with u = φ′n−1 and Sv = Φn−1 with v = φn−1. From our

inductive hypothesis, we have {fu, fv} = {ĝ, ǧ}. By the constructions of g and

h, we see f ∈ {g, h}.
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Now that we have a firm grasp of not only the structure of a

canonical n-tree but also any accompanying n-Grundy coloring, we can

examine the probability that FF uses n colors on this tree in a random

presentation of the vertices.

Lemma 6.16. For a positive integer n ≥ 2, if T is the canonical n-tree, then

Pr(AnT ) = (1/2)2n−1−2.

Proof. By Lemma 6.10, we may focus on Φn and use the results of

Lemma 6.15. Let Bn be the event that FF colors φn with n and let B̄n be

the event that FF colors φ̄n with n in Φ≺n (for some arbitrarily chosen ≺).

We will use B′n for the event that FF colors φ′n with n and B̄′n be the event

that FF colors φ̄′n with n in Φ′≺n (for some arbitrarily chosen ≺).

In the proof of Lemma 6.15, we saw that and n+ 1-Grundy coloring

of Φn+1 requires either φn+1 or φ′n+1 to be colored n+ 1. We conclude

Pr(An+1
T ) = Pr(Bn+1 ∪ B̄n+1). As demonstrated in the proof of Lemma 6.15,

if the edge φn+1φ̄n+1 is removed form Φn+1 then an n+ 1-Grundy coloring g

of Φn+1 can be used to create n-Grundy colorings of Φn and Φ′n so that both

φn and φ′n are colored n. Similarly, if we have n-Grundy colorings of Φn and

Φ′n so that both φn and φ′n are colored n, we can build two n+ 1-Grundy

colorings of Φn+1, one where φn+1 is colored n+ 1 and one where φ̄n+1 is

colored n+ 1. From this, we can see Pr(Bn+1 ∪ B̄n+1) = Pr(Bn ∩B′n).

Furthermore, as Φn and Φ′n have no edges between them, the events Bn and

B′n are independent. Hence, Pr(An+1
T ) = Pr(Bn) Pr(B′n).

We examine the relationships between Bn+1, Bn, and B′n. First, as

Φn = Φ′n, we have Pr(Bn) = Pr(B′n). Suppose both φn and φ′n are colored n

by FF in a presentation ≺ of Φn+1 − φnφ′n (recall φn+1φ̄n+1 = φnφ
′
n), then
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one of φn+1 or φ̄n+1 is colored n+ 1 in Φ≺n+1. We have φn+1 colored n if and

only if φ̄n+1 ≺ φn+1 and φ̄n+1 colored n if and only if φn+1 ≺ φ̄n+1. There is a

natural bijection between the presentations of the former and the latter

cases. From this we see Pr(Bn+1) = (1/2) Pr(Bn) Pr(B′n) = (1/2) Pr(Bn)2.

Knowing that Pr(B1) = 1, we solve this recurrence to find

Pr(Bn) = (1/2)2n−1−1. Recalling Pr(An+1
T ) = Pr(Bn) Pr(B′n) = Pr(Bn)2, and

(making adjustments for indices) we have completed the proof.

The preceding lemma is perhaps not surprising. We can see that if u

is a leaf in the canonical n-tree T and v is a unique neighbor FF will use

fewer than n colors on T≺ if v ≺ u. This restriction alone means

χFF(T≺) < n for a large number of presentations of T . However, we will

show there are trees with a structure that forces FF to use many colors over

a larger set of presentations.

Proof of Theorem 2.10. First, we recursively build a tree Sn with root rn.

Informally speaking, we desire this tree to have the property that if rn is

≺-greater than most of the vertices of Sn (for some arbitrarily chosen ≺),

there is a probability bounded from below that FF colors rn with n. Using

discrete probability could become cumbersome, so we opt to determine ≺

using continuous probabilities. Let f : V (Sn)→ [0, 1] be a uniform

distribution. We will take u ≺ v if f(u) < f(v). We say such a presentation

is induced by f . We can see each ≺ is equally likely to be selected by f .

To build Sn and investigate its properties, we will need the quantities

εn = 1
2n−1 , pn = 1

2n−1 , and, mn = 22n−3.

We start by defining S1 to be a single vertex. For n ≥ 2 set m = mn+1 − 1

and define Sn+1 to be mn+1 disjoint copies of Sn which are labeled
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S0
n, S

1
n, S

2
n, . . . , S

m
n with respective roots r0

n, r
1
n, r

2
n, . . . , r

m
n along with edges

r0
nr

1
n, r

0
nr

2
n, . . . , r

0
nr

m
n . We set rn+1 = r0

n (see Figure 6.5). This construction

makes it easy to see Sn+1 is a a tree. We will also use S̄n to be the forest

Sn − rn.

rn+1 = r0
n r1

n
rmn

S0
n S1

n Smn

Figure 6.5: Building Sn+1 from m copies of Sn.

Take f be a uniform distribution of the vertices of Sn to [0, 1]. Let Xn

be the event that in the presentation of S̄n induced by f there is a set

Wn = {w1, w2, . . . , wn−1} ⊆ NSn(rn) of distinct vertices so that:

(W1) f(Wn) ⊆ [1, 1− εn).

(W2) For each i ∈ [n− 1], FF assigns wi color i.

Let Yn be the event that f(rn) ≥ 1− εn. In Xn, it may seem strange focus on

S̄n rather than Sn. If f(rn) < 1− εn−1 then the colors of the vertices in Wn

might be altered. Our choice to work with S̄n makes Xn and Yn independent

events, removing a layer of complexity in calculating probabilities.

Informally, we may think of FF ignoring rn when looking at event Xn.

By induction on n, we will show Pr(Xn) ≥ pn and the depth of
−→
S n(rn) is n. The trivial case of n = 1 and the slightly less trivial case of

n = 2 establish our base. Suppose the hypothesis holds for all cases smaller

than n+ 1. Let f : V (Sn+1)→ [0, 1] be a uniform distribution. The inductive
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hypothesis tells us there is probability at least pn that there exists a set of

distinct vertices W ′
n+1 = {w1, w2, . . . , wn−1} ⊆ NS0

n
(rn+1) so that

f(W ′
n+1) ⊆ [1, 1− εn) and wi is assigned color i for each i ∈ [n− 1] when FF

ignores rn+1, as in the definition of Xn. If there is some rin (with i ∈ [m])

assigned color n with f(rin) ∈ [1, 1− εn+1), then we may add this vertex to

W ′
n+1 to form the desired set Wn+1. Here, we should note that the inductive

hypothesis and Lemma 6.3, the maximum color FF can assign rin in S̄n is n.

To express this mathematically, for each i ∈ [m], we let Zi be the

event FF assigns rin color n (where FF still ignores rn+1) and f(rin) < εn+1. If

one of Z1, Z2, . . . , Zm occurs, we have the desired rin to add to W ′
n+1. The

events Z1, Z2, . . . , Zm are independent trials (there are no edges between Sin

and Sjn when i 6= j). We can also note Pr(Zi) = Pr(Zj) (because Sin = Sjn)

for i, j ∈ [m]. Hence, the probability of at least one of Z1, Z2, . . . , Zm

occurring is

1−
(
1− Pr(Z1

) (
1− Pr(Z2)

)
· · · (1− Pr(Zm)) = 1−

(
1− Pr(Z1)

)m
.

The probability of the existence of W ′
n+1 and the occurrence of any Zi are

independent events. This gives us Pr(Xn+1) ≥ pn
(
1− (1− Pr(Z1))m

)
.

Let Y i be the event f(rin) ∈ [1− εn, 1− εn+1). As f is uniform,

Y 1, Y 2, . . . , Y m are independent and

Pr(Y i) = Pr(Y j) = (1− εn+1)− (1− εn) = εn+1. Echoing our earlier

notation, for i ∈ [m], we take X i to be the event Xn occurs in Sin (recalling

that FF is ignoring rin). If events X i and Y i occur, then Zi occurs. Hence,

Pr(Zi) ≥ Pr(X i ∩ Y i). Noting that FF ignores rin in Xn, the events X i and

Y i are independent. We have Pr(Zi) ≥ Pr(X i ∩ Y i) = Pr(X i) Pr(Y i) = pnεn.
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We have

1−
(
1− Pr(Z1)

)m
≥ 1− (1− pnεn)m

and so Pr(Xn+1) ≥ pn (1− (1− pnεn)m). Substituting our definitions for

εn+1, pn, and m = mn+1 − 1, we have

Pr(Xn+1) ≥ 1
2n−1

[
1−

(
1− 1

2n
1

2n−1

)22n−1−1]
= 1

2n−1

[
1−

(
1− 1

22n−1

)22n−1−1]
.

If the quantity
(
1− 1

22n−1

)22n−1−1
is at most 1/2 for n ∈ Z+, then we

have Pr(Xn+1) ≥ 1
2pn = pn+1. To show this is true, define

F (n) =
(

1− 1
22n−1

)22n−1−1
, G(n) =

(
1− 1

22n−1

)22n−1

, and H(n) =
(

1− 1
22n−1

)−1
.

We verify F (1) = 1/2. We take D = {n ∈ R : n ≥ 2}. We will use basic

methods of calculus. We have

max
n∈D

F (n) = max
n∈D

G(n)H(n) ≤
(

max
n∈D

G(n)
)(

max
n∈D

H(n)
)
.

Through straightforward but tedious calculations, we see G′(n) > 0 and

H ′(n) < 0 for all n ∈ D. So G(n) is increasing on D. Recalling

limh→∞
(
1− 1

h

)h
= 1

e
, we see G(n) is bounded from above by 1

e
. As H(n) is

decreasing on D, its maximum is at the least element of D and so

maxn∈DH(n) = H(2) = 8/7. Thus maxn∈D F (n) ≤ 8/7
e
≈ .42043 < 1

2 . This

proves the desired bound for Pr(Xn+1).

By the inductive hypothesis, the depth of −→S i
n(rin) is n for 0 ≤ i ≤ m.

Fix some i ∈ [m]. Let P be a path on n vertices in −→S i
n(rin) starting at rin.

Noting that −→S i
n(rin) is isomorphic to the subtree of −→S n+1(rn+1) induced by

the vertices of Sin, we see that rn+1 + P is a directed path on n+ 1 vertices.

Hence, the depth of −→S n+1(rn+1) is at least n+ 1. To show the depth is

exactly n+ 1, assume there is a path Q in −→S n+1(rn+1) on n+ 2 vertices. By
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the construction of Sn+1, this path must be contained entirely in S0
n or have

n+ 1 vertices in Sin for some i ∈ [m]. The first case is impossible by our

inductive hypothesis. The second case would require −→S i
n(rin) to have a path

on n+ 1 vertices and this would violate our inductive hypothesis. This shows

our desired hypotheses hold for all n.

We are now ready to use the tree Sn to build the desired trees to prove

the theorem. For some uniform distribution f : V (Sn)→ [0, 1]. If rn has

distinct neighbors u1, u2, . . . , un−1 so that f(ui) < f(rn) and ui is assigned

color i for each i ∈ [n− 1], then FF assigns rn color n. By our earlier work,

we see the probability of this occurring is at least Pr(Xn ∩ Yn) = pnεn.

Let tn = 22n−2. Take n to be a fixed positive integer greater than 1.

Define T̄ to be the disjoint union of t = tn copies of Sn labeled S1
n, S

2
n, . . . , S

t
n

with respective roots r1
n, r

2
n, . . . , r

t
n. Define T to be T̄ along with edges rinri+1

n

for i ∈ [t− 1] (see Figure 6.6). Again, it is easy to see from the construction

that T is also a tree.

r1
n r2

n rtn

S1
n S2

n Stn

Figure 6.6: Building T from t copies of Sn.

Let f : V (T̄ )→ [0, 1] be a uniform distribution. For each i ∈ [t], let Zi

be the event that FF assigns rin color n. We will bound the probability that

at least one of the evens Z1, Z2, . . . , Zt occurs. As T̄ is a collection of disjoint

trees, we can see the events Z1, Z2, . . . , Zt are independent. Hence

1− (1− Pr(Z1)) (1− Pr(Z2)) · · · (1− Pr(Zt)) = 1− (1− Pr(Z1))t .
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From our work with Sn, we see

1− (1− Pr(Z1))t ≥ 1− (1− εnpn)t = 1−
(

1− 1
22n−2

)22n−2

.

As before, we recognize (1− 1
22n−2 )22n−2 ≤ 1

e
< 1

2 . Hence, Pr(An
T̄

) ≥ 1/2.

Suppose FF assigns color n to vertex rin ∈ V (T̄ ) in the presentation

≺. We claim FF uses color n when T is presented using ≺. If rin is colored

with n, we are done. Suppose rin is not colored with n. We see that this must

be because ri−1
n or ri+1

n (if they exist) are assigned color n. In either case,

color n is used in coloring T . Hence Pr(AnT ) ≥ Pr(An
T̄

) ≥ 1/2.

To complete the theorem, we examine |T |. Let sn = |Sn|. The

construction of Sn shows sn = (22n−3)sn−1 for n > 1 with s1 = 1. Solving this

recurrence shows sn ≤ 2(n−1)2 . The construction of T shows

|T | ≤ sntn = 2(n−1)222n−2 = 2n2−1. Solving for n, we see n ≥
√

1 + lg |T |.

6.3 Concluding Remarks

When coloring trees on-line the “worst cases” are thoroughly understood,

but there are still many questions when it comes to the “random” setting.

For a tree T , define

AvgFF(T ) = 1
n!
∑
≺
χFF(T≺)

where the sum ranges over all presentations ≺ of V (T ), which is the average

number of colors used by FF on T . Is there a parameter that would let us

find either lower or upper bounds for AvgFF(T )? Or perhaps there is a

specific subtree analogous to the canonical n-tree? Although trees are simple

structures, AvgFF(T ) offers many puzzles.
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