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ABSTRACT  

   

In this dissertation, remote plasma interactions with the surfaces of low-k 

interlayer dielectric (ILD), Cu and Cu adhesion layers are investigated. The first 

part of the study focuses on the simultaneous plasma treatment of ILD and 

chemical mechanical polishing (CMP) Cu surfaces using N2/H2 plasma processes. 

H atoms and radicals in the plasma react with the carbon groups leading to carbon 

removal for the ILD films. Results indicate that an N2 plasma forms an amide-like 

layer on the surface which apparently leads to reduced carbon abstraction from an 

H2 plasma process. In addition, FTIR spectra indicate the formation of hydroxyl 

(Si-OH) groups following the plasma exposure. Increased temperature (380 °C) 

processing leads to a reduction of the hydroxyl group formation compared to 

ambient temperature processes, resulting in reduced changes of the dielectric 

constant. For CMP Cu surfaces, the carbonate contamination was removed by an 

H2 plasma process at elevated temperature while the C-C and C-H contamination 

was removed by an N2 plasma process at elevated temperature. The second part of 

this study examined oxide stability and cleaning of Ru surfaces as well as 

consequent Cu film thermal stability with the Ru layers. The ~2 monolayer native 

Ru oxide was reduced after H-plasma processing. The thermal stability or 

islanding of the Cu film on the Ru substrate was characterized by in-situ XPS. 

After plasma cleaning of the Ru adhesion layer, the deposited Cu exhibited full 

coverage. In contrast, for Cu deposition on the Ru native oxide substrate, Cu 

islanding was detected and was described in terms of grain boundary grooving 

and surface and interface energies. The thermal stability of 7 nm Ti, Pt and Ru 
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interfacial adhesion layers between a Cu film (10 nm) and a Ta barrier layer (4 

nm) have been investigated in the third part. The barrier properties and interfacial 

stability have been evaluated by Rutherford backscattering spectrometry (RBS). 

Atomic force microscopy (AFM) was used to measure the surfaces before and 

after annealing, and all the surfaces are relatively smooth excluding islanding or 

de-wetting phenomena as a cause of the instability. The RBS showed no 

discernible diffusion across the adhesion layer/Ta and Ta/Si interfaces which 

provides a stable underlying layer. For a Ti interfacial layer RBS indicates that 

during 400 °C annealing Ti interdiffuses through the Cu film and accumulates at 

the surface. For the Pt/Cu system Pt interdiffuion is detected which is less evident 

than Ti. Among the three adhesion layer candidates, Ru shows negligible 

diffusion into the Cu film indicating thermal stability at 400 °C.  
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Chapter 1 

INTRODUCTION 

1.1 Background 

Introduced in 1965, Moore’s law indicates the numbers of transistors and 

resistors incorporated in a chip will approximately double every 18 months [1]. 

Over the last five decades, semiconductor industries have progressed through a 

continuous reduction of device dimensions and increase in device speed and 

density [2, 3]. Consequently, due to the rapid development of the technology, the 

interconnect metal lines have become narrower, and the interlayer dielectric 

thickness has decreased [4]. These changes have eventually resulted in resistance-

capacitance (R-C) delay in signal propagation [5]. To solve the problem and meet 

the requirement of increased electronic device density, new metals for 

interconnect technology have been developed. As a result, alloyed Al with lower 

resistivity Cu was used to mitigate electromigration effects [6]. Gradually, the 

semiconductor industry was able to adopt low-resistivity Cu to replace 

conventional and alloyed Al [7, 8]. As for the interlay dielectric (ILD), the first 

Cu interconnect technology was based on SiO2 as the ILD.   

However, for the 90 nm technology node and beyond, SiO2 ILD dielectrics 

have been replaced by lower dielectric constant materials (k less than 3.9) [9]. Fig. 

1 [10] shows a cross sectional 3D image of a 90 nm IBM microprocessor 

containing several hundred million integrated devices and 10 levels of 

interconnect wiring. The interconnect processes are designated as bank-end-of-

the-line (BEOL) technology. The introduction of the low dielectric constant 



  2 

materials as the ILD alleviates R-C delay due to the metal/dielectrics 

interconnection. 

In addition, low-k materials are required for low power consumption for 

ultra large scale integrated (ULSI) circuits [11]. Besides signal delay, power 

consumption is a major concern for interconnects. The increased frequency and 

higher densities in devices lead to a significant increase in power consumption. 

The power consumption is given by  

P=αCfV
2
                 (1.1) 

where P is the power consumption, α is the wire conductivity, f is the frequency, 

V is the voltage for the power supply and C is the capacitance of the transistor 

[12]. Evidently, if the dielectric constant of the ILD is reduced, the energy 

consumption can be reduced.  

Therefore, the International Technology Roadmap for Semiconductors 

(ITRS) projected that the insulator dielectric constant implemented at a given 

technology node should be  2.6-2.9 for 45 nm in 2011, 2.4-2.8 for 32 nm  in 2012, 

and 1.9-2.2 for 19 nm in 2016 [13]. The fact that these dielectrics have already 

been implemented into current microchips is promising for the significance of 

these low-k materials. 
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Fig. 1.1 Cross-sectional 3D image of a 90 nm IBM microprocessor [10]. 

Due to these changes in new interconnect technology development, the 

BEOL manufacturing has changed substantially. First, the Cu dual-damascene 

processing has been developed [14]. In the processing, both the vias and the 

trenches are patterned in the low-k dielectrics before depositing the metal. Second, 

while Al is a metal that can be directly plated onto SiO2, it is not currently 

possible to directly plate Cu on SiO2. Al has good adhesion to a SiO2 surface and 

it resists diffusion into the wafer [15]. In contrast, Cu does not show strong 

interface bonding with SiO2 and it also displays diffusion into Su. The Cu dual-

damascene processing follows following steps. The Cu liner or barrier is first 

deposited by physical vapor deposition (PVD), chemical vapor deposition (CVD) 

or atomic layer deposition (ALD). The deposited barrier is then covered by a 

copper seed layer. The final step is to electroplate Cu onto the surface and over-

fill the remaining structures [16]. The excess Cu in the field region is removed by 
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a chemical–chemical–mechanical polishing (CMP) process [17]. The result is that 

the planarized wires are embedded in a low-k dielectrics insulator. A post-CMP 

cleaning process is then required since various contaminants remain on the copper 

and exposed ILD surfaces (Fig 1.2) [18]. 

 

Fig. 1.2 Schematic of the Cu interconnect structure after CMP processes. 

In addition, with continued device scaling, plasma dry etching/cleaning 

processes exhibit obvious technical advantages such as improved accuracy, 

stability and reproducibility [19]. Also, the plasma dry etching/cleaning technique 

has economic and environmental advantages. It is a relatively less costing, lower 

pollution and programmable processing approach compared with conventional 

wet etching/cleaning. However, incorporation of low-k materials as ILD layers 

brings about great challenges when various plasma-based processing and cleaning 

methods are applied to manufacturing of the Cu interconnect technology [20, 21].  

Overall, the performance of Cu interconnect structure is currently limited 

by resistance (due to the surface oxide formed during the CMP processes) as well 

as adhesion and diffusion at the dielectric copper interface (due to poor adhesion 
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and significant diffusion to the dielectrics). Various plasma and gas treatments of 

the Cu surface after CMP have been demonstrated and utilized to remove the Cu-

oxide as well as improve adhesion and electromigration performance of the 

interface between the Cu and capping layer [22]. Unfortunately, the low-k 

dielectrics, especially the porous low-k dielectrics that are now being 

implemented as the ILD in Cu interconnects, are susceptible to plasma damage, 

including pore collapse, carbon group abstraction, moisture uptake and the 

consequent increase of the dielectric constant [23-25]. In this thesis, a detailed 

study is performed to examine the combined impact of plasma treatments on the 

surfaces and interfaces of low-k ILD, Cu, and Cu adhesion. 

1.2 Dielectric constant and low-k materials 

The Clausius-Mosotti equation describes the relation of the dielectric 

constant of a material to the polarizability of the atoms or molecules. The 

Clausius-Mosotti’s relation is represented by: 





iiN

k

k




3

4

2

1

               
(1.2) 

where k is the dielectric constant, α is polarizability of the atom or molecule, and 

N is the number of atom or molecules per unit volume [12]. This formula 

provides a guide to developing approaches to reduce the dielectric constant of a 

material. For SiO2 based dielectrics, the dielectric constant value can be reduced 

by replacing Si-O bonds (polarizability/unit volume = 0.123 [26]) with lower 

polarizability bonds such as Si-CH3 (polarizability/unit volume = 0.076 [26]). The 

dielectric constant value can be again reduced by decreasing the density of the 
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material. In this approach, porosity is introduced into the material to prepare 

lower dielectric constant  films. Fig. 1.3 shows a schematic of the structure of two 

different low-k dielectrics materials [27]. 

 

Fig. 1.3 Diagram of (a) network structure of SiCOH film; (b) porous cage 

network structure of SiCOH film [27]. 

The first commercial introduction of a low-k interlayer dielectric occurred 

around 2000. The process basically replaced SiO2 with fluorosilicate glass for the 

180 nm technology node [10]. Since that time, the dielectric constant has been 

further decreased by using ILDs with carbon groups. These ILDs are composed of 

hybridized carbons such as Si-CH3 to replace the Si-O [28]. The deposition 

method of choice for this class of materials is plasma-enhanced chemical vapor 

deposition (PECVD) at various pressures, power and substrate temperature, and 

bias. The 32 nm technology node and below specifies the integration of dielectric 

materials with a k value within the range of 2.4-2.2 [12]. To further lower the 

dielectric constant for PECVD materials, porosity has been introduced into the 

films. This modification leads to a decrease of the film density, therefore reducing 
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the total number of polar molecules N per unit volume, as anticipated from 

equation 1.2 [26].  

1.3 Post CMP plasma processing 

As discussed above, the solution to upcoming generation of ULSI is the 

utilization of a multilevel metallization scheme where interconnections are made 

through trenches and vias in the different dielectric layers. For such a scheme to 

work, it is important that each level is flat to enable the lithographie and 

patterning processes. Several planarization techniques have been used for 

dielectric and metal surfaces. At present, the current technique that has proven 

capable of achieving the requisite planarity is chemical mechanical polishing 

(CMP). 

Chemical mechanical polishing is a process that is used for planarization 

and consequent interconnect pattern formation. A schematic of the Cu 

interconnect structure after CMP process is shown in Fig. 1.4. Mechanical and 

chemical interactions with a patterned wafer surface introduce damage and 

contamination on both the ILD and Cu surfaces [18]. The polishing slurries are 

typically comprised of low density solids, such as fumed alumina or colloidal 

silica. These slurries contain additional chemicals such as nitric acid, peroxide or 

ammonium hydroxide based solutions [17]. A post-CMP process after Cu 

electroplating and CMP processes is required for removal of organic residuals 

remaining on the ILD surface, and also to reduce the Cu oxide [22]. Moreover, 

due to different removal rates, the triangle area, shown in Fig 1.4, contains surface 

oxide which leads to de-wetting phenomenon during thermal processing 
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afterwards [29]. An O2 plasma is used for photoresist removal, however, a H2-

containing plasma is preferred for the post CMP plasma processing to remove 

hydrocarbon contamination while not simultaneously damaging the ILD. 

 

Fig 1.4 (a) Schematic illustration of the Cu/low-k ILD surfaces after CMP process; 

(b) Ideal condition of Cu fill after thermal process; (c) Indication of Cu de-wetting 

after thermal process.  

1.4 Cu thermal stability 

The enhanced atomic displacement and the accumulated effect of mass 

transport under the influence of an electric field (mainly, electric current) are 

called electromigration. For example, in the 45 nm technology node, the Cu 

(a) 

(b) 

(c) 
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interconnect carry a typical current of 1 mA, which can be translated into a 

current density of ~10
6
 A/cm

2
. Such high current density can induce mass 

transport in the conducting lines in the device and lead to void formation and 

extrusion predominately in regions of poor adhesion. Electromigration in Cu lines 

occurs predominately by surface diffusion which has a lower activation energy 

than grain boundary diffusion [15]. Thus, adhesion and thermal stability between 

Cu and the adhesion/barrier layer become technical issues. 

The reliability of interconnect structures with a multi-layer barrier 

structure is significantly determined by the stability of the bi-layer interfaces [11] 

due to the effect of Cu electromigration. The stability is essentially determined by 

interface interdiffusion and Cu film wettability on the underlying layer. In this 

thesis, I focus the research on these two determinants of Cu thermal stability. 

1.5 Brief description of the Chapters 

Cu interconnects and low-k dielectric materials have been introduced into 

the current and next generation of integrated circuit technology to reduce R-C 

delays and energy consumption. Incorporation of these new materials in new 

state-of-the-art manufacturing, brings new advantages, and new challenges. The 

background of Cu interconnects and low-k dielectrics have been described in 

Chapter 1. In this thesis, I focus on the plasma surface interactions at metal and 

interlayer dielectric (ILD) surfaces. 

Chapter 2 describes the experimental facilities and characterization 

equipment used to analyze the results, including: a) the remote plasma surface 

processing system; b) the surface characterization equipment, x-ray photoelectron 
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spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and atomic 

force microscopy (AFM); (c) the in-situ metal thin film deposition system, 

electron beam evaporation. 

Chapter 3 focuses on plasma induced modifications of low-k ILD 

dielectrics and contamination reduction of CMP Cu films which is motivated by 

the post-CMP processing. The scientific issue in this chapter is the determination 

of the surface reactions for N- and H- containing plasma processes with both ILD 

and CMP Cu surfaces. For the ILD films, the carbon concentration is substantially 

reduced in an H-containing plasma as indicated by FTIR analysis. The process 

results in an increase in the dielectric constant that can be attributed to moisture 

uptake in air and increased density due to structural relaxation. Moreover, 

elevated temperature (380 °C) processing and an N2 plasma pretreatment are 

investigated as approaches to minimize the low-k degradation. The elevated 

temperature enhances the stability of the low-k ILD layer by inhibiting the 

formation of polar Si-OH structures. The initial remote N2 plasma plays a role in 

protecting the low-k ILD layer by forming a densified surface. For Cu surfaces, 

the elevated temperature N2/H2 remote plasma processes that minimize ILD 

damage results in efficient contamination removal from the CMP Cu surfaces.  

In Chapter 4, both oxide stability/cleaning of Ru surfaces and the thermal 

stability of Cu on a Ru layer are presented. The scientific issue in this chapter is to 

understand the surface chemistry changes of Ru thin films due to plasma 

processing and the subsequent influences on Cu thermal stability on Ru substrates. 

In addition, the surface and interface energies have been proposed to explain the 
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experimental results. The presence of a ~2 monolayer native Ru oxide is 

determined by in-situ XPS which can be reduced after an H-plasma process while 

absorbed oxygen, presumably in the grain boundaries, remains after processing. 

The thermal stability or islanding of the Cu film on the Ru substrate is 

characterized by in-situ XPS. After plasma cleaning of the Ru adhesion layer, the 

deposited Cu exhibited full coverage. In contrast, for Cu deposition on the Ru 

native oxide substrate, Cu islanding was detected and was described in terms of 

grain boundary grooving and surface and interface energies.  

In Chapter 5, the thermal stability of 7 nm Ti, Pt and Ru interfacial 

adhesion layers between a Cu film (10 nm) and a Ta barrier layer (4 nm) have 

been investigated. This chapter is an extension of the research of chapter 4. The 

scientific issue in this chapter is the interactions at the bi-layer interfaces for of 

the thin films upon thermal processing, including the interfaces of Ta/Si, adhesion 

(Ti, Pt and Ru) layer/Ta, and Cu/adhesion layer. The Ta RBS peaks remain 

unchanged after annealing, indicating negligible diffusion at the Ta/Si and 

adhesion/Ta interfaces. For Cu/Ti/Ta system, both the XPS and RBS spectra 

indicate that Ti has accumulated on the surface after 400 °C annealing. In the 

Cu/Pt/Ta system, Pt interdiffusion was detected from both XPS and RBS. 

Moreover, it appears Ti diffused into Cu to a greater extent than Pt diffused into 

Cu. The interdiffusion could be described by the Kirkendall effect. Ru as an 

adhesion layer has a stable interface with Cu after 400 °C annealing. All the 

surfaces were relatively smooth after annealing and no significant islanding or de-

wetting was found. We proposed that a bilayer structure of 4 nm of Ta and 7 nm 
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of Ru will serve as a diffusion barrier and direct plate layer for Cu 

electrodeposition. 

In Chapter 6, the results of this dissertation are summarized, and future 

research directions are proposed. 
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Chapter 2 

DESCRIPTION OF THE SAMPLES, INSTRUMENTS AND 

CHARACTERIZATION MOTHODS 

2.1 Introduction 

The experiments in this dissertation were mainly accomplished in-situ 

using an integrated ultrahigh vacuum (UHV) system, as shown in Fig. 2.1. The in-

situ measurements were supported with other ex-situ characterization techniques. 

The materials used to study the plasma effects or thermal stability are discussed in 

this chapter. Also the details of the experimental methods and characterization are 

discussed individually. 

 

 

Fig. 2.1 Actual view and schematic illustration of the transfer line with integrated 

ultrahigh vacuum (UHV) systems. 
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The UHV system is maintained at ~5x10
-10

 Torr with multiple chambers 

interconnected through a ~20 m linear transfer line. The experiments in this study 

involve the following systems: remote H2 plasma chamber for plasma processing 

and vacuum annealing, electron beam evaporation for metal layer deposition 

(including Cu, Ru, Ti, Pt and Ta), and XPS for core level analysis. After 

completing all in-situ measurements, the low-k samples were removed and 

analyzed with RBS for film stoichiometry, Capacitance-Voltage (C-V) 

measurement for dielectric constant and FTIR for bulk bonding information. The 

multiple-layer metal films were removed from UHV system and analyzed with 

RBS for film stoichiometry and interdiffusion and AFM for surface morphology. 

2.2 The samples in this study 

2.2.1 Low-k dielectric materials and CMP Cu  

In chapter 2, the low-k dielectrics and CMP Cu surfaces are studied. This 

work investigates two different low-k films deposited on ~300 mm diameter Si 

(100) wafers by plasma-enhanced chemical vapor deposition (PECVD). The 

properties of the two ILD layers described as high carbon, low porosity (HCLP, 

k=2.55, porosity ~0) and low carbon, high porosity (LCHP, k=2.5, porosity 25%), 

are shown in Table 2.1. 

 

 

 

 

 



  17 

material k 

value 

porosity thickness chemical concentrations 

HCLP 2.55 0% 100±6 

nm 

Si (21.0%) C (40.7%) O (38.3%) 

XPS 

    Si (13%) C (37%) O (23%) H (27%) 

RBS 

LCHP 2.50 25% 100±5 

nm 

Si (26.8%) C (16.9%) O (56.3%) 

XPS 

    Si (19%) C (23%) O (38%) H (21%) 

RBS 

Table 2.1. Dielectric constant, porosity, thickness and chemical concentrations for 

the high carbon low porosity (HCLP) and low carbon high porosity (LCHP) ILD 

films. The concentrations were determined from XPS and RBS as indicated. 

The Cu thin films utilized for these experiments were prepared as follows: 

a TaN adhesion layer was plated onto 300 mm diameter (100) Si substrates with 

100 nm of thermal oxide. Then a Cu seed layer was sputter deposited onto the 

adhesion layer. The Cu film was finally electrochemically plated (ECP) on the 

seed layer. The surface was chemically mechanically polished using a Cu CMP 

process with a carbonate solution. The final Cu thickness was ~350 nm. 

2.2.2 Cu adhesion and barrier layer 

In chapter 4, the study was focused on the chemical stability of Ru oxide 

and thermally induced changes of Cu film wattability. The Ru film (provided by 

Intel) was deposited by atomic layer deposition (ALD) onto 300 mm diameter 



  18 

(100) Si wafers which had a 100 nm thermal oxide (SiO2). The films were ~8 nm 

thick. The Ru adhesion film is polycrystalline and X-ray diffraction (XRD) shows 

(100) and (101) peaks.  

In chapter 5, the study was focused on the thermal stability of 7 nm Ti, Pt 

and Ru interfacial adhesion layers between Cu film (10 nm) and a Ta barrier layer 

(4 nm). The samples were grown on 25mm dia p-type, boron doped, (100) silicon 

wafers with a resistivity of 0.006-0.01 Ω∙cm. The oxidized Si wafers were cleaned 

in an ultrasonic acetone bath for 15 min, an ultrasonic methanol bath for another 

15 min, and dried with ultra-high purity nitrogen gas. Then the Si wafer is 

transferred into the UHV system. After a 5 min remote H2 plasma cleaning, a 4 

nm Ta barrier layer was deposited on the cleaned, oxidized Si wafer followed by a 

7 nm adhesion layer (Ti, Pt and Ru respectively), and finally, the 10 nm Cu film 

was deposited. 

2.3 Remote plasma system and processing 

2.3.1 Remote plasma system 

All plasma processing was carried out in a system shown schematically in 

Fig. 2.2 which is designed for application of various gases. The experimental 

chamber is maintained at a base pressure of 7x10
−9

 Torr. The sample is held at the 

center of the chamber facing the quartz plasma tube. Gases are delivered through 

the tube using mass flow controllers. The rf power (13.56 MHz) was coupled to 

the plasma by a 12 turn copper coil which encircled the ~32 mm diameter quartz 

tube. The plasma is generated in the quartz tube and excited molecules and 

radicals are transported through the chamber to the sample. The pressure is 
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controlled through a combination of the gas flow and a throttle valve in front of 

the turbo molecular pump. The typical plasma operating conditions are 30 W rf 

power, 60 millitorr pressure and 90 standard cubic centimeter per minute (sccm) 

gas flow. The samples are heated to constant temperature (calibrated with a 

Mikron-M90Q infrared pyrometer) with a tungsten irradiation filament heater 

behind the sample holder, and the substrate temperature is monitored with a 

thermocouple behind the center of the molybdenum plate. The sample 

temperature is controlled with a Eurotherm 808 system using the thermocouple 

output. 

 

Fig 2.2 Schematic of the RF remote plasma system used in the study [1].  

2.3.2 Plasma discharge and processing 

The initial ionization and the sustainment of the plasma discharge can be 

deduced from electromagnetic theory [2]. The initial ionization is accomplished 
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by the electric field which is set up between the coils and the top flange of the 

chamber. Thus the gas molecule experience two forces. One is a pull in one 

direction on the positive charged nuclei and the other is in the opposite direction 

on the electron cloud. The combined effect of the two forces to remove an 

electron from the neutral atom which is accelerated by the rf field and after a 

breakdown event the plasma is established. It follows subsequently cascading 

ionization to an equilibrium discharge. Therefore, molecules are excited to higher 

energy states and also partially ionized. As the excited species are delivered onto 

the surface of the film, the reactions occur. This is the basic route for plasma 

processing. 

As a reference, since H2 gas plasma has been used through this study, the 

characteristics are described as follows. The previous research by Thomas 

Schneider [2] using a double Langmuir probe to determine the ion density. The 

results indicated a density of ~10
8
 cm

-3
 and ~10

6
 cm

-3
 at 15 and 300 mTorr 

respectively in the sample region. Based on the equipment geometry gas flow rate 

and processing pressure, there are ~5×10
5
 H ions striking the surface every 

second. In addition, a catalytic probe system was used to determine the atomic H 

density is ~10
11 

cm
-3

 in the sample region which indicates a rate of ~5×10
9
 /s 

arriving on the sample surface. Based on these numbers, the excited neutral 

radicals (i.e. atomic H) presumably play the most important role in the plasma 

processing. The detailed discussion will be in Chapter 3. 

2.4 Electron beam evaporation 
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The e-beam metallization system employed a five pocket Thermionics e-

GUN
TM

 evaporation source (model 100-0050, 3 kW) was installed in a chamber 

with a base pressure of 4×10
-10

 torr. The equipment is used for depositing metal 

thin films, including Ta, Ti, Ru, Pt and Cu. A typical electron gun including an 

electron emitter and metal source is shown in Fig. 2.3. 

A current passing through the tungsten filament generates an electron 

beam by thermionic electron emission. The electron beam then is accelerated by 

an electric field and confined by a magnetic field to focus onto the center of the 

selected source. In the model 100-0050, there are totally five source pockets. The 

metal sources are put inside of the crucible liners sitting in the five pockets. While 

the electron beam position is fixed, a feedthrough with bellows is utilized to 

switch between the metal sources for deposition. To obtain a controlled deposition 

flux, the emission current is varied, from 50 mA to 250 mA, depending on the 

various metals.  For each layer, a growth rate of 0.01 nm/s was maintained with a 

quartz crystal thickness rate meter (Sycon STM–100/MF).  
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Fig. 2.3 Schematic illustration of the electron beam source used for e-beam 

evaporation system. The electron emitter, crucible liner and deposition source are 

shown and the electron beam path is marked in red. 

2.5 X-ray photoelectron spectroscopy 

The XPS system is employed in this dissertation for chemical composition 

identification of the film surfaces. The photo electrons are excited by x-ray and 

collected by an electron spectrometer. The schematic of the photoemission 

process is shown in Fig. 2.4. The spectrometer records the counts of electrons 

versus kinetic energies, typically from 0 ~ 1keV. The kinetic energy (KE) is 

usually converted to binding energy (BE) by the following the relation: BE = hν – 

KE – W, where hν is the energy of the photon and W is the work function of the 

spectrometer. The binding energy is referenced to Fermi level which is defined as 

the zero binding energy. 
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Fig. 2.4 Schematic illustration of the photoemission process for XPS. 

The XPS is a surface technique because most of the electrons which are 

excited in the deep region of the sample are not emitted due to scattering and 

recombination. Only excited electrons near surface can escape from the sample. 

The dependence of the average electron escape depth versus kinetic energy is 

plotted in Fig. 2.5. The electrons generated near the sample surface will be 

emitted into the vacuum if they have sufficient kinetic energy to overcome the 

work function of the material. Many scattered electrons are also emitted, but these 

electrons show up as secondaries in the spectrum and cannot be used to describe 

the valence band electronic states. The photoelectrons are retarded to a constant 

energy (pass energy) as they reach the analyzer. The electrons from near the 

surface are emitted without energy loss.  
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Fig 2.5 Electrons average escape depth vs kinetic energy [3]. 

The XPS is performed at a base pressure of 5×10
-10

 Torr using a VG Clam 

II spectrometer operated with a Mg Kα x-ray source (hv=1253.6 eV). The pass 

energy was kept at 20 eV. The XPS spectrum of Au 4f peaks was used for 

calibration done by previous work. A correction of the binding energy by + 0.1 

eV was determined [4]. Also a full width at half maximum (FWHW) of 1.0 eV 

which can be treated as a resolution parameter of the XPS was determined. 

Typical survey scans (0-600 eV) of XPS spectra for low-k SiCOH samples 

studied in this thesis are shown in Fig 2.6. By collecting the high-resolution 

spectra for specific core levels, the changes of both binding energy and intensity 

are used for data analysis.  

In chapter 3, the low-k ILD materials have been measured by XPS. During 

this process, insulating samples are subjected to charging effects because of their 

insulating nature. Shifting of spectra on the energy scale which leads to 
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difficulties in interpreting chemical states was observed. Essentially, the positive 

charges during the photo emission process results in positive surface charge 

accumulation. Therefore, sample surface acquires a positive potential and the 

kinetic energies of the photoelectrons are decreased by the electric field. The 

observed binding energy shifts in chapter 2 have been corrected based on the Si 

2p peak at 103.3 eV for Si-O bonding. 

 

Fig. 2.6 XPS scans of the two pristine low-k ILD materials. [1]. 

2.6 Fourier transform infrared spectroscopy 

FTIR is a technique for materials analysis where the infrared region of the 

electromagnetic spectrum is used. In this study, the FTIR was employed to 

measure the bulk bonding of the low-k ILD materials. The infrared light is 

transmitted through the sample and the characteristic wavelengths are absorbed 

corresponding to the specific bonds that are present in the materials. In this study, 

a Bruker IFS 66V/S FTIR was employed to carry out the measurements. The mid 

IR (5000-500 cm
-1

) light source was selected, and KBr was used as a beam 



  26 

splitter with a MCT detector. In this thesis, all the spectra are collected in 

transmittance mode and converted to absorbance. Spectra were recorded between 

500-5500 cm
-1

 with 4 cm
-1

 resolution and 64 scans. To characterize the low-k 

dielectrics material bulk bonding properties, a background spectrum of a bare Si 

substrate is collected as a reference spectrum. The default software, OPUS, was 

used for data manipulation, including transmittance-absorbance conversion and 

base line correction.  

Typical FTIR spectra of absorbance of ILD film after baseline correction 

are presented in Fig 2.7. In IR spectroscopy, the absorbance of a material is a 

logarithmic ratio of the radiation falling upon a material, to the radiation 

transmitted through a material which is given by: 

)/(log10 IncidentOut IIA                                   (2.1) 

where IOut is the intensity of the radiation (light) that has passed through the 

material (transmitted), and IIncident is the intensity of the radiation before it passes 

through the material (incident). Moreover, the absorbance at different 

characteristic wavelength is associated with the absorption of specific bonds. 

Therefore, the difference between the two is attributed to the absorption of the 

target film. Also, the quantitative relationship between the bond concentration and 

absorbance intensity are widely used to study the low-k materials [5-8]. 

In Chapter 3, a quantitative analysis was carried out based on the FTIR 

spectra. The relative bond concentrations after plasma processing were 

determined from the FTIR absorbance spectra. After the baseline correction and 

wavenumber selection, the target peak associated with specific bonds was plotted. 



  27 

Integrated absorption peak areas were normalized relative to that of the Si-O 

absorption band to avoid effects of possible thickness changes. The integrated 

absorption peaks were then normalized to those from the pristine film in order to 

determine the Si-CH3 concentration (~1273 cm
-1

) and the silanol group formation 

(3000 cm
-1

-3800 cm
-1

).    

 

Fig. 2.7 The FTIR transmittance of the two pristine low-k ILD materials after 

base line correction with peak assignments. [1]. 

2.7 Atomic force microscopy  

An Agilent
TM

 AFM (model 5500) is used to monitor the surface 

morphology of the metal films before and after annealing in Chapter 4 and 

Chapter 5. All measurements were performed in contact mode using a silicon 

probe over an area of 5 µm × 5 µm. The AFM employs a scanning tip attached to 

the end of the cantilever across the sample surface and monitors the charges in the 

deflection by a photodiode detector. A piezoelectric scanner controls the 
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movement of the tip and the distance between tip and sample. The force between 

the tip and the sample is kept a constant. A laser beam is reflected from the 

backside of the cantilever to the photodiode detector which records the deflection 

of the cantilever as it moves across the sample. The data processor and feedback 

electronics convert the signals and generate an image of the sample surface. In 

ambient condition, the resolution in the X and Y directions is 1-10 nm while in 

vacuum it can reach 1-4 nm [9]. 
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Chapter 3 

REMOTE H2/N2 PLASMA PROCESS FOR SIMULTANEOUS 

PREPARATION OF LOW-K INTERLAYER DIELECTRIC AND 

INTERECONNECT COPPER SURFACE 

3.1 Abstract 

This study focuses on the simultaneous plasma treatment of interlayer 

dielectric (ILD) and chemical mechanical polished (CMP) Cu surfaces using 

N2/H2 plasma processes. The modifications induced by the gas chemistries are 

investigated for two ILD films with different porosities and carbon concentrations. 

H atoms and radicals in the plasma react with the carbon groups leading to carbon 

removal for both of the ILD films. Fourier transfer infrared (FTIR) spectra show a 

greater fractional reduction of CH3 in the high porosity ILD compared to the low 

porosity ILD. Results indicate that an N2 plasma forms an amide-like layer on the 

surface which apparently leads to reduced carbon abstraction from an H plasma 

process. In addition, FTIR spectra indicate the formation of hydroxyl (Si-OH) 

groups following the plasma exposure. Increased temperature (380 °C) processing 

leads to a reduction of the hydroxyl group formation compared to ambient 

temperature processes, and the dielectric constant is increased by a smaller 

amount. It appears that the increase of the dielectric constant is mainly attributed 

to moisture uptake rather than network topography change due to carbon loss. The 

plasma experiments were repeated with CMP Cu surfaces at both ambient 

temperature and 380 °C.  The carbonate contamination was removed by an H2 
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plasma process at elevated temperature while the C-C and C-H contamination was 

removed by an N2 plasma process at elevated temperature. 

3.2 Introduction 

Low dielectric constant (low-k) materials as an interlayer dielectric (ILD) 

with copper interconnects display significant advantages for the reduction of RC 

time delays and energy consumption for future generations of silicon integrated 

circuit technology. The low-k materials incorporate low polarizability Si-C bonds 

replacing Si-O bonds, consequently reducing the dielectric constant from 3.9 to 

2.5, and the high conductivity of Cu interconnects reduces the ohmic resistance 

compared to Al or other interconnect metals. The technological motivation of this 

study is to simultaneously clean low-k ILD and chemical mechanically polished 

(CMP) Cu surfaces using a remote plasma process which minimizes the damage 

to the low-k materials. As shown schematically in Fig. 3.1, after CMP processes, 

organic contamination and Cu surface oxide accumulate on the surface. A post 

CMP cleaning step is required before the capping layer deposition to enable 

adhesion to the ILD and Cu surfaces and to achieve low resistance Cu 

interconnects. 
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Fig. 3.1 Schematic of Cu interconnects and low-k ILD after CMP. The post-CMP 

plasma process is necessary to remove surface contamination on the Cu and ILD. 

For the 32 nm technology node and beyond, the International Technology 

Roadmap for Semiconductors requires integration of dielectric materials with 

dielectric constant within 2.1-2.4 [1]. To fulfill this target, dielectric materials 

have been produced with a porosity of ~30% [2, 3]. However, the integration of 

porous, low-k materials presents challenges because of their enhanced reactivity 

to different technological processes such as ash etching, CMP, and plasma 

cleaning [4, 5]. Thus, understanding the complex interactions in plasma surface 

processes applied to porous low-k material is necessary to design future 

interconnect technologies. 

Based on the success of oxygen plasma cleaning of Si surfaces and O2 

plasma dry etching, this approach has been considered for cleaning dielectric 

surfaces. However, the exposure of a carbon containing ILD film to an O2 plasma 

environment leads to significant chemical and structural modifications [6, 7]. 

Goldman et al. [6] reported that plasma generated O radicals penetrate into the 

film and induce the removal of carbon containing groups. This carbon removal 

process also changes the porous surfaces from hydrophobic to hydrophilic which 

enhance the uptake of ambient moisture leading to a further increase in the 

dielectric constant. In addition, the porosity of the material may be changed 

through a transformation from a cage structure to a network structure. Recently, 

carbon abstraction induced by UV light exposure with an O2 gas flow has been 
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reported by Lee et al. [8], which indicates that plasma generated photons 

contribute to the  removal of the carbon groups.  

To avoid these significant oxidation effects, H2 plasma processes have 

been proposed for cleaning ILD layers [9, 10]. However, results have established 

that H radicals react with carbon groups and form volatile CH4. Formation of high 

polarizability components, such as Si-OH is a consequence of moisture absorption 

after H2 plasma treatment. These changes lead to a significant increase of the 

dielectric constant [11, 12], even though there is no additional oxygen 

incorporation during the plasma process. The absorption of water and the 

incorporation of hydrophilic OH groups lead to a much greater increase in k due 

to the high polarizability of OH groups [13] compared to the change due to the 

carbon abstraction induced network change. 

One approach to minimizing the degradation of the dielectric constant is to 

produce a densified surface that confines the radicals at the local surface and 

limits further diffusion into the ILD layer. Results have shown that UV light 

curing leads to bond rearrangement that converts the Si-O-Si bond topography 

from cage to network resulting in a densified surface layer [14]. Other studies 

have established that noble gas bombardment (Ar
+
 ions with bias) results in 

densification of the outer surface of the ILD film through energy transfer from 

kinetic collisions and excited molecules [6].  

With the limitations of O2 and H2 processes, researchers have employed N 

containing plasma processes with N2 or NH3 to passivate ILD surfaces [15, 16]. It 

has been proposed that activated molecular species (N2
*
) or radicals (N

*
) react 
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with carbon groups near the surface, forming C-N bonds which leads to a 

densified layer [16].  

Chemical mechanical polishing is a process that is used for planarization 

and consequent interconnect pattern formation. Mechanical and chemical 

interactions with a patterned wafer surface introduce damage and contamination 

on both the ILD and Cu surfaces [17]. The polishing slurries are typically 

comprised of low density solids, such as fumed alumina or colloidal silica. These 

slurries contain additional chemicals such as nitric acid, peroxide or ammonium 

hydroxide based solutions [18]. More recently, carbonate based solutions (such as 

K2CO3) have been employed [19] for copper CMP where a contamination layer 

containing carbonates and hydroxide copper-species, CuCO3•Cu(OH)2, was 

reported [20]. The post-CMP process after Cu electroplating and CMP processes 

is required for removal of organic residuals remaining on the ILD surface, and 

also to reduce the Cu oxide.  

In this study we employ a range of N2 and H2 mixed plasma processes 

applied to ILD and CMP Cu surfaces individually. The properties of the low-k 

ILD film are characterized, and the chemical interactions at the CMP Cu surfaces 

are studied as a function of plasma chemistry and substrate temperature. The 

mechanisms that lead to a clean Cu surface are explored while minimizing 

variations in two different ILD materials. 

3.3 Experiment 

3.3.1 Low-k dielectric materials and CMP Cu 
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This work investigates two different low-k films deposited on ~300 mm 

diameter Si wafers by plasma-enhanced chemical vapor deposition (PECVD). The 

properties of the two ILD layers described as high carbon, low porosity (HCLP, 

k=2.55, porosity ~0) and low carbon, high porosity (LCHP, k=2.5, porosity 25%), 

are shown in Table 1. The surface atomic concentrations were determined from 

XPS spectra where the integrated peak areas were normalized using the XPS 

sensitivity factors. The film concentrations were also obtained with Rutherford 

backscattering spectroscopy (RBS). The RBS C: Si ratio is ~2.8 for HCLP and 

~1.2 for LCHP which follows the same trend for the respective XPS ratios of ~1.9 

for HCLP and ~0.6 for LCHP. The experiments in this study employed ~100 nm 

thick LCHP and HCLP as well as 500 nm thick LCHP films. 

material k 

value 

porosity thickness chemical concentrations 

HCLP 2.55 0% 100±6 

nm 

Si (21.0%) C (40.7%) O (38.3%) 

XPS 

    Si (13%) C (37%) O (23%) H (27%) 

RBS 

LCHP 2.50 25% 100±5 

nm 

Si (26.8%) C (16.9%) O (56.3%) 

XPS 

    Si (19%) C (23%) O (38%) H (21%) 

RBS 

TABLE 3.1 Dielectric constant, porosity, thickness, and chemical concentrations 

for the high carbon low porosity (HCLP) and low carbon high porosity (LCHP) 
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ILD films. The concentrations were determined from XPS and RBS as indicated. 

The Cu thin films utilized for these experiments were prepared as follows: 

a TaN adhesion layer was plated onto 300 mm diameter (100) Si substrates with 

100 nm of thermal oxide. Then a Cu seed layer was sputter deposited onto the 

adhesion layer. The Cu film was finally electrochemically plated (ECP) on the 

seed layer. The surface was chemically mechanically polished using a Cu CMP 

process with a carbonate solution. The final Cu thickness was ~350 nm. 

3.3.2 Remote plasma processing 

The wafers are were diced into  ~ 1.5 x 1.5 cm
2
 sections and mounted onto 

a molybdenum plate using tantalum wires. The samples are transferred into 

vacuum through a UHV transfer line. All plasma processing was carried out in a 

system shown schematically in Fig. 3.2 which is designed for application of 

various gases. The experimental chamber is maintained at a base pressure of 

7x10
−9

 Torr. The sample is held at the center of the chamber facing the quartz 

plasma tube. Gases are delivered through the tube using mass flow controllers. 

The rf power (13.56 MHz) was coupled to the plasma by a 12 turn copper coil 

which encircled the ~32 mm diameter quartz tube. The plasma is generated in the 

quartz tube and excited molecules and radicals are transported through the 

chamber to the sample. The pressure is controlled through a combination of the 

gas flow and a throttle valve in front of the turbo molecular pump. The typical 

plasma operating conditions are 30 W rf power, 60 millitorr pressure and 90 

standard cubic centimeter per minute (sccm) gas flow. The samples are heated to 

constant temperature (calibrated with a Mikron-M90Q infrared pyrometer) with a 
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tungsten irradiation filament heater behind the sample holder, and the substrate 

temperature is monitored with a thermocouple behind the center of the 

molybdenum plate. The sample temperature is established with a Eurotherm 808 

system using the thermocouple output. 

 

Fig. 3.2 Schematic of the rf remote plasma system used in the study. 

3.3.3 Film characterization 

After each plasma process, in-situ XPS analysis of the ILD and CMP Cu 

surfaces was carried out via UHV transfer from the remote plasma system to the 

XPS chamber. The spectra were collected using a VG Clam II spectrometer 

operating with a Mg Kα x-ray source (hv=1253.6 eV). The XPS spectra were 

shifted by ~6 eV due to charging effects. The observed charging shifts have been 

corrected based on the Si 2p peak at 103.3 eV for Si-O bonding. After removing 

the ILD samples from vacuum, FTIR was measured in transmission mode using a 

Bruker IFS 66V/S. Spectra were recorded between 500-5500 cm
-1

 with 4 cm
-1
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resolution and 64 scans. The relative bond concentrations after plasma processing 

were determined from the FTIR absorbance spectra. Integrated absorption peak 

areas were normalized relative to that of the Si-O absorption band to avoid effects 

of possible thickness changes. The integrated absorption peaks were then 

normalized to those from the pristine film in order to determine the Si-CH3 

concentration (~1273 cm
-1

) and the silanol group formation (3000 cm
-1

-3800 cm
-

1
). The dielectric constant of each film was determined before and after the 

different plasma treatments using capacitance-voltage (C-V) measurements at 1 

MHz. The experiments were carried out using a mercury probe station system 

(MSI Electronics Mercury Probe Hg412-3). Water contact angles were measured 

using a Kruss Easy Drop system, and the angles were determined from the default 

software. All values were determined from the average of multiple measurements 

and the uncertainty was determined from the standard deviation. 

3.4 Results and Discussion 

3.4.1 ILD carbon abstraction during N2/H2 plasma processes 

The XPS and FTIR of the pristine film before plasma treatment are 

displayed in Fig. 3.3 The different carbon concentration of the two 100 nm ILD 

are reflected in the respective XPS scans and FTIR spectra. The FTIR absorption 

has been normalized to the Si-O peak of the two scans such that the spectra are 

displayed as full scale. In this study FTIR absorbance and XPS spectra were 

employed to characterize the bulk and surface bonding concentrations and 

configurations, respectively. 
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Fig. 3.3 XPS and FTIR spectra characterize the surface and bulk atomic species of 

the 100 nm ILD, respectively. 

The Si-CH3 (~1273 cm
-1

) in the FTIR spectrum is typically used to 

determine the concentration of the methylated groups. The relative concentration 

of methylated groups removed from the film can be characterized by the relative 

reduction of the Si-CH3 mode absorbance. The relative Si-CH3 (1273 cm
-1

) mode 

absorbance versus the percentage of H2 in the plasma mixture is displayed in Fig. 

http://jjap.jsap.jp.ezproxy1.lib.asu.edu/archive/JJAP-38.html
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3.4. The results indicate a greater fractional reduction of CH3 in the LCHP ILD 

compared to the HCLP ILD. For both ILD layers the fractional reduction of CH3 

remains essentially constant as the hydrogen content increases. These results 

establish that hydrogen induced carbon abstraction in the high carbon (low 

porosity) film is lower than the low carbon high porosity film which indicates that 

porosity is more significant for these films.  Moreover, according to Goldman et 

al. [6], for oxygen induced carbon abstraction, oxygen radical diffusion through 

the pores is an essential factor attributed to carbon abstraction. Meanwhile, the N2 

in the plasma has a limited effect on the carbon abstraction. 

 

Fig 3.4 Relative absorbance of the Si-CH3 mode of 100 nm ILD after 5 min H2/N2 

remote plasma processes. 

The replacement reaction of CH3 groups by H atoms may occur as follows: 

Si-CH3 + 2H  Si-H + CH4 (H=-411 KJ/mol at 298 K), which is 
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thermodynamically favorable [21]. It is likely that this is a two step process: the 

first step is abstraction (Si-CH3 + H  -Si + CH4) [22, 23] resulting in the 

formation of a Si- dangling bond which is followed by absorption of H to form Si-

H [24]. To explore this possibility, the Si-H (2270-2160 cm
-1

) absorbance before 

and after processing of the LCHP films is shown in Fig 3.5. The Si-H (2270-2160 

cm
-1

) FTIR absorbance decreases as the H2 plasma concentration increases, 

however the Si-OH absorption increases substantially. The Si-H structures are not 

stable in air, and ambient moisture reacts at the Si-H sites to form Si-OH. 

 

Fig. 3.5 Absorbance of Si-H (2270-2160 cm
-1

) FTIR spectra of 100 nm LCHP 

film as a function of (N2/H2) plasma treatments. 
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It has been noted that the mixed plasma may generate additional active 

species [16] such as NH2, NH3, NH4, and N2H which could contribute to the 

following reactions [22]: 

Si-CH3 + N + 3H  Si-NH2 + CH4 (H=-137 kJ/mol at 298 K) 

Si-CH3 + NH2 + H  Si-NH2 + CH4 (H=-593 kJ/mol at 298 K) 

These reactions may contribute to the removal of the carbon groups in N2 

containing plasmas. However, the results in this study seem to indicate they are 

not significant compared to the H radical reactions. The CH3 structures in either 

ILD film are not impacted as significantly for N2 plasma exposure. The effective 

species in N2 plasmas are excited N2 molecules and a small fraction of N radicals.  

However, it has been reported that a surface amide layer containing N-C=O bonds 

is generated during exposure to an N2 plasma [16]. In support of this model, our 

in-situ XPS spectra indicate the presence of N at the surface of the low-k films.  

To further identify the bonding configurations due to N2 plasma exposure, 

longer exposures were carried out on 500 nm thick LCHP ILD films. The XPS 

scans before and after a 30 min N2 plasma exposure of the LCHP is shown in Fig. 

3.6(a). Charging effects have been accounted for by using the 103.3eV SiO2 Si 2p 

peak as the reference. The peak at 284.6 eV is attributed to C-Si and C-H bonding, 

and the peak at higher binding energy ~287.7 eV is assigned to N-C=O structures 

[25]. Moreover, the N core level at ~399.0 eV shown in Fig. 3.6(b) is indicative of 

C-N bonding [25]. The Si and O XPS peaks are shown in Fig. 3.7 (a) and (b), 

respectively. The intensity small increase after processing is attributed to the 

abstraction of carbon from the film. The film was also evaluated by FTIR, as 
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shown in Fig. 3.6(c).  The double peak structure in the range from 1680 to 1820 

cm-1 is related to saturated N-C=O aldehyde (1734 cm
-1

) and ketone (1716 cm
-1

) 

structures. Thus the XPS and FTIR data indicate that the surface layer contains 

amide like structures. This layer may act as a protective layer reducing radical 

diffusion into the film. 

 

 

Fig. 3.6 Bonding changes of LCHP ILD after 30 min N2 plasma treatment as 

displayed in (a) the C 1 s XPS spectrum; (b) the N 1 s XPS spectrum; and (c) the 

FTIR spectrum, which shows peaks associated with saturated aldehyde (1734 cm
-

1
) and saturated ketone (1716 cm

-1
) configurations. 
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Fig 3.7 XPS spectrum before and after N2 plasma treatment as displayed in (a) Si 

2 p and (b) O 1 s. 

A set of experiments has been carried out to study whether the N2 plasma 

induces a sealing effect prior to H2 plasma exposure. A time series of N2 plasma 

pre-treatments were completed on the 500 nm LCHP ILD prior to a 5 min H2 

plasma exposure. The N2 plasma pre-treatment results in a small decrease of CH3 

groups (Fig. 3.8) after H-plasma exposure. The fractional decrease increases as 

the N2 plasma exposure time increases. More importantly, compared to N2/H2 

plasma processes, the N2 plasma treatment apparently protects carbon groups 

from H radical abstraction. The fraction of carbon abstraction caused by the H2 

plasma without N2 plasma pretreatment is about 20%. In contrast, with a 5 min N2 

plasma pretreatment, the fraction is reduced to 3.3%. In addition, the H radicals 

apparently limit the N2 plasma sealing effect in mixed N2/H2 plasmas. The effect 

may be due to the high diffusivity of H radicals penetrating through the 

incompletely densified layer. The longer N2 plasma pretreatments do not provide 

increased resistance to H2 plasma exposure which indicates that the thin amide 
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layer effectively retards the H radical diffusion into the film. The longer time 

exposures are apparently less effective in sealing pores. 

 

Fig. 3.8 Relative absorbance of the Si-C/Si-O ratio after different time of N2 

plasma pretreatment followed by 5 min H2 plasma processes. 

In summary, since the thermodynamically favorable reactions leading to 

carbon removal are associated with H radicals, the presence of H2 in the plasma is 

an essential source for carbon abstraction. However, N radicals lead to the 

formation of an amide like densified surface that result in a protective layer. After 

the N2 plasma process, the surface of the ILD layer becomes hydrophilic as the 

C=O species can react with water leading to -OH termination [16]. 

3.4.2 Structural changes related to Si-OH formation in LCHP ILD 

Besides carbon abstraction, the plasma processes may also introduce other 

changes which contribute to degradation of the low-k ILD. After plasma 
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processing the FTIR spectra often indicate an absorption band between 3200 and 

3800 cm
-1

 that is assigned to hydroxyl (-OH) groups. The origin of this bond 

formation is still under debate. It has been proposed that the OH groups are 

associated with H and N reactions with Si-O-Si structures through reactions such 

as [10, 13, 26]: 

Si-O-Si +2H  Si-H + Si-OH (H=-325 kJ/mol at 298 K) 

Si-O-Si + N +2H Si-NH2 + Si-OH (H=-915 kJ/mol at 298 K) 

Si– H + H2O  Si-OH + 2H (H=-42 kJ/mol at 298 K) 

Alternatively, Lee and Grave [8] have argued that the Si-OH formation is due to 

H2O reacting with Si dangling bonds after the -CH3 groups have been abstracted 

from the ILD.  

Results presented in Fig. 3.8 indicate that for H-containing plasmas, the 

Si-OH absorption peaks increase significantly compared to the as-received films. 

In contrast, N2 plasma processes do not induce obvious water uptake or Si-OH 

formation. The dielectric constant changes significantly as the H2 fraction 

increases. After an H2 plasma treatment at RT, the dielectric constant increases to 

3.5 which is a ~40% increase. In contrast, the processes at 380 °C resulted in only 

a ~16% increase. Evidently, the water uptake is another critical factor that 

contributes to degradation. 

In general, the presence of hydrophobic surface groups leads to 

problematic metal adhesion issues. In contrast, a hydrophilic surface enables 

adhesion but results in moisture uptake leading to an increase in k. In order to 

investigate the changes in the dielectric properties due to hydroxyl formation, the 
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plasma processes were carried out at elevated temperature (380 °C), which is 

considered appropriate for low-k ILD films. 

As indicated in Fig. 3.9, the Si-OH concentration is significantly reduced 

for the sample processed at increased temperature relative to films processed at 

RT. Thus, the film processed at 380 °C apparently absorbs less water during or 

after processing. The carbon loss has been determined to be at about the same 

level for both high temperature and room temperature processes. In addition, the 

contact angle is enhanced with the 380 °C plasma process as shown in Fig. 3.10 

which also indicates the surfaces processed at increased temperature tend towards 

hydrophobic character. For the 380 °C process, the dielectric constant increase is 

only 16% after H2 plasma compared to 40% for the RT process. Consequently, if 

Si-OH formation is limited, the dielectric constant changes are also minimized. 
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Fig. 3.9 Changes of the FTIR Si-OH absorption band and dielectric constant after 

various RT and 380 °C plasma processes of the 500nm LCHP film. 

 

Fig. 3.10 Contact angle after various RT and 380 °C plasma processes of the 500 

nm LCHP film. 

The most substantial increase in k appears related to polar group formation 

(Si-OH) due to the availability of Si dangling bonds. While water readily reacts 

with these sites to incorporate OH groups, the high temperature process leads to a 

reduction in the concentration of OH which may be explained by secondary 

reactions such as Si-OH+HO-Si  Si-O-Si+H2O (H=0 kJ/mol at 298 K). Thus at 

higher temperature the transformation of 2 (Si-OH) to a Si-O-Si configuration 

would be enhanced [27], and the concentration of Si dangling bonds available for 

Si-OH polar species formation would decrease.  

3.4.3 Effects of N2/H2 plasma processing on CMP Cu surfaces 
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XPS examination of the as-received Cu surfaces indicated the presence of 

a surface oxide as well as carbon and carbon-oxide (carbonate) contamination. 

The XPS results (Fig. 3.11) show that both carbon and metal oxide contamination 

are decreased after vacuum thermal annealing. It is evident that after the 480 °C 

thermal annealing process, the surface contamination is not discerned in the XPS 

scans. However, according to ITRS 2010 interconnect processes require keeping 

the overall temperature budget below 400-450 °C [1]. Therefore, it is essential to 

optimize the N2/H2 plasma process at lower temperature. 

 

Fig. 3.11 XPS spectra of CMP Cu film before and after different thermal anneals. 

(a) O 1 s peak, (b) C 1 s peak. 

The N2/H2 plasma processes have been applied to the CMP Cu surfaces 

using the conditions studied for plasma cleaning of the ILD layers. The results for 

in-situ XPS after various N2/H2 plasma cleaning processes are indicated in Fig. 

3.12(a). The RT N2/H2 plasma processes reduced the oxide and carbon 

contamination, but significant contamination remains on the surface. Repeating 

the processes with the sample at 380 °C shows that the CMP Cu is effectively 
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cleaned using a range of N2/H2 plasma processes. Reactions that are important for 

the process are suggested below: 

CuCO3 → CO2 + CuO (heating)   2CuO + C → 2Cu + CO2 (heating) 

CO3 + 2H → CO2 + H2O (H-plasma) 

CuO + 2H → Cu + H2O (H-plasma) 

C-C + N2
*
 → C2N2    C-C + 2N → C2N2 (N-plasma) 

 

Fig. 3.12 (a) XPS spectrum of CMP Cu surfaces before and after various N2 and 

H2 plasma cleaning at 380 °C; (b) integrated XPS peaks normalized to the as 

received sample for various plasma processes at RT and 380 °C. 

Heating effectively induces the copper oxide to react with carbon contamination 

leading to a reduction in both carbon and oxide contamination. The presence of H 

radicals also contributes to the removal of carbonates and reduction of the 

remaining oxide. The reactive species reported in an N2 plasma include N
*
, N

2+
, 

N2
*
 [16, 28, 29], which may react with C-C bonded structures. Since evidence of 

N was not detected by XPS, we may assume that the product of the reaction 

evolves as a volatile gas. Fig. 3.12(b) compares the normalized integrated areas of 

the O 1s and C 1s XPS peaks for various plasma processes at RT and 380 °C. 
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(The C 1s integrated peak includes the peaks associated with carbonate and C-C 

structures.) From the results presented here, an effective cleaning process involves 

N2/H2 plasma with the sample at an elevated temperature of ~380 °C. These same 

plasma processes would also clean the ILD surfaces without substantial 

degradation, and the elevated temperature assists in removing contamination from 

the Cu surfaces. 

3.5 Summary and conclusions 

This study focused on plasma induced modifications of low-k ILD 

dielectrics and contamination reduction of CMP Cu films. For the CMP-Cu 

surfaces, vacuum annealing to 480 °C resulted in reduction of carbonate and 

surface oxide contamination. However, the low-k ILD films are not stable at this 

temperature [1].  

Consequently, a range of N2/H2 remote plasma process were applied to 

ILD layers to determine approaches to minimize degradation of the low-k 

characteristics, while identifying a process that  simultaneously reduces 

contamination on CMP-Cu surfaces. 

For the ILD films, the carbon concentration is substantially reduced in an 

H-containing plasma indicating the role of hydrogen in abstracting carbon groups. 

The process results in an increase in the dielectric constant that can be attributed 

to two effects. First, the carbon removal generates Si dangling bonds which may 

react with moisture after the sample is exposed to atmosphere. Second, at elevated 

temperature, the carbon loss can result in a change of network topography from 

cage to network and the increased density leads to an increase in the dielectric 
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constant. Meanwhile, the elevated temperature inhibits the formation of Si-OH 

structure.  In our experiments, the OH incorporation leads to a more significant 

increase in dielectric constant than the change in network topography. 

The results established that an initial remote N2 plasma plays a role in 

protecting the low-k ILD layer by forming a densified surface. The surface can 

then be exposed to an H-containing plasma with minimal degradation of the 

dielectric properties. 

The results indicated that elevated temperature N2/H2 remote plasma 

processing enhances the stability of the low-k ILD layer by inhibiting the 

formation of polar Si-OH structures. The higher temperature processes tend to a 

more hydrophobic surface condition as indicated by contact angle measurements. 

The dielectric constant measurements also indicate that the elevated temperature 

processes retain the low-k properties as compared to RT processes. Finally, the 

elevated temperature N2/H2 remote plasma processes that minimize ILD damage 

results in efficient contamination removal from the CMP Cu surfaces. Therefore, 

a range of N2/H2 plasma process at increased temperature that follow an remote 

N2 plasma pretreatment should be effective in reducing ILD damage and cleaning 

both ILD and CMP-Cu surfaces.  

While this has been an extensive study with over 100 plasma processing 

experiments, there is still room to further improve the process by optimizing the 

temperature and plasma parameters. In addition, multi-step N2/H2 plasma 

processes should also be considered. The specific reactions identified in this study 
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should help guide further improvement of the plasma process to simultaneously 

clean CMP Cu and low-k ILD. 
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Chapter 4 

CU FILM THERMAL STABILITY ON PLASMA CLEANED 

POLYCRYSTALLINE RU 

4.1 Abstract 

The first part of this study examined oxide stability and cleaning of Ru 

surfaces. The surface reactions during H2 plasma exposure of Ru polycrystalline 

films were studied using X-ray photoelectron spectroscopy (XPS). The ~2 

monolayer native Ru oxide was reduced after H-plasma processing. However, 

absorbed oxygen, presumably in the grain boundaries, remains after processing. A 

vacuum thermal anneal at 150 °C substantially removes both surface oxide and 

absorbed oxygen which is attributed to a reduction by carbon contamination. The 

second part of the study examined the thermal stability of Cu on a Ru layer. The 

thermal stability or islanding of the Cu film on the Ru substrate was characterized 

by in-situ XPS. After plasma cleaning of the Ru adhesion layer, the deposited Cu 

exhibited full coverage. In the contrast, for Cu deposition on the Ru native oxide 

substrate, Cu islanding was detected and was described in terms of grain 

boundary grooving and surface and interface energies. The oxygen in the grain 

boundary has negligible contribution to the surface energy and does not contribute 

to Cu islanding. 

4.2 Introduction 

Materials with low dielectric constants (low-k), when used as an interlayer 

dielectric (ILD) with copper interconnects, have shown significant promise in 

reducing RC time delays and energy consumption in next-generation silicon 
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integrated-circuit technology [1-3]. Traditionally, Cu interconnect technology has 

utilized a physical vapor deposition (PVD) Cu seed layer grown on a Ta/TaN 

diffusion barrier prior to the Cu electroplating process[4]. However, the relatively 

complex and thick tri-layer configuration presents scalability issues for upcoming 

interconnect technology generations [5]. Specifically, the PVD Cu process has 

limitations in providing step coverage and uniform side wall coverage. While the 

thermochemical stability and lack of active grain boundaries in Ta or TaN layers 

meet the diffusion barrier requirements for Cu films, delamination or void 

formation has been observed [6] since the native oxide results in deleterious Cu 

de-wetting or agglomeration [7]. Furthermore, a diffusion barrier with a thickness 

<5 nm is specified for the 32 nm technology node and below [5]. For a 

conventional Cu dual-damascene process, the continuous PVD Cu seed layer with 

a minimum thickness of ~30-40 nm [8] may not be appropriate for future 

technology nodes. Therefore, new barrier layer approaches are being considered 

which employ seedless direct-plate metals. 

The interconnect chapter in the International Technology Roadmap for 

Semiconductor (ITRS) [5] suggests that for the sub-22 nm nodes, the Cu 

electrochemical deposition (ECD) gap fill requirement could be achieved with the 

elimination of the current PVD Cu seed/nucleation layer and replacement of the 

TaN/Ta barrier with a material capable of supporting direct Cu electroplating. 

Thus, research has focused on the adhesion of Cu on direct platable materials such 

as W, Pd, Ir, Os and Ru. Prior results have established that W based layers 

dissolve during typical Cu electroplate conditions [9]; Pd is stable in chemical 
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solutions, but the polycrystalline structure leads to Cu interdiffusion [10]; Ir and 

Os have also been investigated because of their barrier properties with Cu while 

their effectiveness as a diffusion barrier has not been established [11, 12]. Of the 

many potential metals, ruthenium has received broad interest and is one of the 

primary direct plate materials being considered because of its lower electrical 

resistivity and negligible solubility in Cu even at 900 °C [13]. In addition, atomic 

layer deposition (ALD) based growth methods have been developed for Ru [14-

16]. 

The adhesion properties of Cu on Ru have been identified as one of the 

most important characteristics for reliable interconnects. In Cu dual-damascene 

structures, electromigration (EM) failure caused by Cu atomic diffusion of metal 

atoms under the influence of high current densities occurs predominately in 

regions of poor adhesion. EM in Cu lines occurs by surface diffusion which has a 

lower activation energy than grain boundary diffusion [17]. 

Thus, adhesion and thermal stability between Cu and the adhesion/barrier 

layer have become technology issues. In particular, the oxidation resistance of Ru 

and the impact of RuOx surface oxides on Cu wetting have not been fully 

characterized [13]. There is also a critical need to determine the degree of surface 

oxidation that limits film stability and find ways to ameliorate it once it has 

formed. The scientific issues are then 1) the identification of surface reactions 

appropriate for reduction of surface oxides [18], and 2) determination of the role 

of surface oxides in adhesion and islanding of the Cu films. The adhesion of Cu 

on Ru may be considered in terms of surface and interface energies. Kim and 
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Shimogaki [19] investigated stability of CVD Cu on both Ru and Ta layers and 

determined that CVD Cu showed relatively weaker adhesion on Ta surfaces. It 

has been suggested that lattice matching of face-centered cubic Cu (111), results 

in better adhesion to hexagonal close-packed (hcp) structure metals such as Ru 

than body-centered cubic metals such as Ta [13]. However, surface and interface 

energies are expected to provide the driving force to islanding or de-wetting even 

in the absence of film stress [20, 21]. To explore these effects in this study, the 

coverage and roughness of Cu films on Ru surfaces are characterized as a 

function of temperature and surface conditions. 

In our previous work, a remote N2/H2 plasma process has been used to 

clean CMP Cu surfaces [22]. In this study, in-situ remote plasma processing was 

also employed for surface preparation of the Ru film prior to Cu deposition. The 

wetting properties of the Cu/Ru interface have been characterized as a function of 

temperature using in situ XPS. The effects of several cleaning processes have 

been studied for polycrystalline Ru adhesion layers as well as the stability or de-

wetting characteristics of Cu on the processed Ru films. 

4.3 Experiment 

The Ru films were deposited by atomic layer deposition (ALD) onto 300 

mm diameter (100) Si wafers which had a 100 nm thermal oxide (SiO2). The 

films, which were provided by Intel, were ~8 nm thick. The Ru adhesion film is 

polycrystalline and X-ray diffraction (XRD) shows (100) and (101) peaks. The 

wafers were subsequently diced into ~ 1.5 x 1.5 cm
2
 sections and mounted onto a 
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molybdenum plate using tantalum wires. The samples were then loaded into the 

UHV transfer line system.  

The UHV system is maintained at ~5x10
-10

 Torr with multiple chambers 

interconnected through a linear transfer line. In this study, the experimental 

sequence involved in-situ plasma surface processing and/or annealing, surface 

characterization (XPS), in-situ Cu deposition (e-beam metallization), in-situ 

annealing (remote H2 plasma chamber) and surface characterization (XPS). The 

XPS scans were obtained using a VG Clam II spectrometer operated with a Mg 

Kα x-ray source (hv=1253.6 eV). The e-beam metallization system employed a 

Thermionics e-GUN
TM

 evaporation source (100-0050). The morphological 

changes of the surfaces were observed using an Agilent
TM

 AFM model 5500. 

The plasma system used for the H2 treatments is shown schematically in 

Fig. 4.1 and has been previously described [22]. Briefly, this chamber was 

designed for the application of various gases which were delivered through a 

quartz plasma tube at the top of the chamber. The ~32mm diameter quartz tube is 

encircled with a 12 turn copper coil that is coupled to a rf power (13.56 MHz) 

supply. The excited molecules and radicals were transported to the sample 

centered in the chamber below. The pressure was maintained by regulating the 

gas flow and controlling a throttle valve in front of the turbo molecular pump. 

Typical plasma operating conditions were as follows: the rf power was 

maintained at 30 W, the pressure at 60 mTorr, the temperature at room 

temperature, and the gas flow at 90 standard cubic centimeter per minute (sccm). 

The base pressure was 7x10
−9

 Torr. 
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Fig. 4.1 Schematic of the RF remote plasma chamber for surface processing and 

vacuum annealing. 

To investigate the Cu thermal stability properties on the cleaned Ru 

surfaces, a 10 nm Cu film was e-beam deposited on three different Ru substrates: 

as-received, 10 min H2 plasma processed at room temperature, and 5 min vacuum 

annealed at 150 °C. The Cu completely covered each sample such that the Ru 

layer could not be detected by XPS. After deposition, the samples were annealed 

to 450 °C, and XPS scans were repeated to evaluate the properties of Cu on Ru. 

The annealing was conducted in the plasma chamber using a tungsten irradiation 

filament heater located behind the sample holder. During annealing, the sample 

was heated to constant temperature (calibrated with a Mikron-M90Q infrared 

pyrometer), and monitored with a Eurotherm 808 thermocouple controller located 

http://jjap.jsap.jp.ezproxy1.lib.asu.edu/archive/JJAP-38.html
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behind the center of the molybdenum plate. The thermal stability properties were 

characterized using in-situ XPS and ex-situ AFM. The observation of the Ru XPS 

signal is then the signature for de-wetting of the Cu layer.  

4.4 Result and Discussion 

4.4.1 Ruthenium oxide and surface processes 

To investigate the thermo chemical stability of the Ru surface oxide, the 

Ru samples were exposed to H2 plasma processes for various times and 

characterized by XPS. Scans of the Ru 3d3/2 and 3d5/2 core levels are shown in Fig. 

2 before and after 4 min H2 plasma processing. There are two major components 

that contribute to the shape of the Ru 3d5/2 core level for the as-received surface as 

shown in Fig. 4.2(a): 1) a peak at lower binding energy (280.2 eV) associated 

with metallic Ru, and 2) a peak at the higher binding energy (281.2 eV) which has 

been attributed to RuO2 (Ru
4+

). It is also likely that these samples retain some 

residual carbon contamination from the ALD deposition, but the carbon 1s peak is 

obscured by overlap with the Ru 3d3/2 signal [23]. As shown in Fig. 4.2(b), after 4 

min H2 plasma processing, the Ru 3d core levels are evident at essentially the 

same binding energy of the as-received sample with increased intensity consistent 

with oxide removal. 
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Fig. 4.2 XPS scans of the Ru 3d3/2 and 3d5/2 core levels (a) of the as-received Ru 

sample showing the fitting to the oxygen related and bulk peaks; and (b) 

comparing the as-received surface before and after H2 plasma processing (4 min). 

The presence of oxygen is confirmed by an evident O 1s peak as shown in 

Fig. 4.3(a). The O 1s peak has a component at 529.8 eV [24] which corresponds 

to oxygen atoms from RuO2 (O
2-

) and another component at 531.2 eV. This 531.2 

eV O 1s peak has been attributed to sub-surface grain boundary oxygen [23] and 

higher Ru oxidation states (RuO3 or RuO4) may also contribute.  However, the 

binding energies of the Ru 3d5/2 core level for RuO3 and RuO4 were reported to be 

282.5 eV and 283.3 eV, respectively [25], which suggests that these higher 

oxidation states are not substantially present in the films. 
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Fig. 4.3 XPS scans of the O 1s core level of (a) the as-received Ru surface; (b) 

after H2 plasma processing (1 min); (c) after H2 plasma processing (4 min); and (d) 

relative oxygen concentration vs H2 plasma exposure time. The dashed lines in (a) 

(b) and (c) show peak fittings: where the 531.2 eV feature (531.5 eV in (c)) was 

associated with grain boundary oxygen and the 529.8 eV feature was associated 

with surface oxide. 

Previous studies have described the oxygen diffusion phenomenon in Ru 

films. Iwasaki et al. [26] and Belau et al. [27] have detected the presence of the 

subsurface oxygen using angle dependent XPS spectra. Absorbed oxygen 

diffusion was also reported by Reed et al., using LEED and AES to study the 

oxygen interaction on the Ru (101) surface. Due to the non-electrovalent bond 

http://jjap.jsap.jp.ezproxy1.lib.asu.edu/archive/JJAP-38.html
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between Ru and O which results in lower electron density and higher binding 

energy, the 531.2 eV oxygen peak is most likely associated with absorbed atoms 

[25]. It is reasonable to assign these species in our case to grain boundary 

absorbed oxygen [23]. 

Upon H2 plasma exposure the two components decrease at substantially 

different rates. The intensity of the lower binding energy peak (~529.8 eV) 

decreased faster and is no longer evident after the 4 min H2 plasma process. It is 

evident that the surface RuO2 has been substantially reduced during the H2 plasma 

process [26, 28, 29]. The peak at higher binding energy (~531.2 eV), on the other 

hand, remains after the 4 min H2 plasma process (Fig. 4.3(c)). The peaks were fit 

using Gaussian functions with both peak position and peak width as variables. 

This analysis suggests that the H2 plasma treatment effectively removes the 

surface oxide layer, but residual oxygen within the bulk remains. The relative 

concentration regarding the two components are plotted vs processing time in Fig. 

4.3(d).  

In this study an as-received Ru sample was annealed in the plasma system 

under a vacuum of ~5x10
-8

 Torr. After a 5 min thermal anneal (150 °C), neither of 

the O 1s peaks (~529.8 eV and ~531.2 eV) were discerned in the XPS scans as 

shown in Fig. 4. The elevated temperature anneal results in the removal of both 

sub-surface oxide and absorbed oxygen. To understand the role of H radicals and 

the possible presence of carbon, a low-carbon Ru film was deposited in the e-

beam system on a cleaned p-type Si wafer followed by both O2 plasma and H2 

plasma processes. The XPS scans of the O 1s peak are displayed in Fig. 4.4 and 
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compared with the scans of the as-received sample which may have carbon in the 

film. The results indicate that with or without carbon, the surface oxide (529.8 eV) 

was substantially removed after H2 plasma processes indicating the role of H 

radicals in oxide reduction. Meanwhile, the residual subsurface oxygen remained 

for both samples. 

 

Fig. 4.4 XPS scans of the O 1s core level of (a) as-received Ru after H-plasma 

processing and vacuum annealing, and the carbon-free Ru film followed by 

http://jjap.jsap.jp.ezproxy1.lib.asu.edu/archive/JJAP-38.html
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oxidation and H-plasma processing; and (b) the carbon-free Ru film following 

vacuum annealing. 

The thickness of the Ru surface oxide was determined from the Ru and O 

core level scans using the following relationship [30]: 
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where ΘO is the coverage or the number of absorbed oxygen per unit area 

(atoms/cm
2
) divided by the number of Ru atoms per unit area (atoms/cm

2
). One 

monolayer coverage refers to one oxygen atom per Ru surface atom (atoms/cm
2
) 

on the c plane. The IO and IRu are the integrated areas of the O 1s peak for O
2-

 

(529.8 eV), and the Ru 3d peaks; SO (0.711) and SRu (4.273) are the XPS sensitive 

factors for O and Ru, respectively. Moreover, d (1.55 Å) is the distance between 

two O or two Ru planes [31]. Also Ru  (15 Å) is the inelastic mean free path for 

the Ru 3d photoelectrons [32]. Here,   (20°) is the angle between the analyzer 

and sample. From this analysis, the results indicate 2.1 monolayers of oxygen in 

the surface oxide. This could imply a native oxide that is about 0.6-0.75 nm thick 

[31]. It has been reported that oxygen can readily diffuse through RuO2 [33]. This 

suggests that the Ru native oxide is limited by the reaction at the Ru surface. 

During the hydrogen plasma process it appears that H radicals enable the 

removal of the surface oxide which is ~2 monolayers as noted above. One 

possible reaction route is as follows: 

RuO2 + 2H2  Ru +H2O (ΔG = -31.6 kJ/mol at 297 K). 
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Iwasaki et al. proposed [24] that H radicals combine with surface O atoms to first 

form Ru-OH, followed by formation of H2O which desorbs:  

H + RuO –> Ru-OH   Ru-OH + H –> Ru + H2O 

To follow a similar path for removal of the subsurface oxygen would involve the 

diffusion of H and/or OH into the film. The results indicate that the relative 

concentration of the grain boundary oxygen is essentially constant over the 

processing time indicating it is not reduced by the atomic hydrogen. 

While exposure to a room temperature H plasma process removes the 

surface oxides, vacuum annealing of the ALD films results in the removal of both 

the surface and grain boundary oxygen in the Ru film. However, it has been 

reported that the RuO2 surface oxide was not reduced in vacuum at temperatures 

up to 500 °C [34]. In contrast, Wang et al. [35, 36] found that CO is oxidized to 

CO2 through interaction with RuO2 at 300K. Since residual carbon may be 

expected after the ALD deposition of the Ru film, it is reasonable to propose that 

the reduction of RuO2 during vacuum annealing occurs as follows [37]: 

RuO2 + C  Ru + CO2 (ΔG = -23.7 kJ/mol at 297 K). 

The presence of carbon may also assist oxygen removal during the H-plasma 

process. To explore these possibilities, the H-plasma process and thermal 

annealing were applied to the oxidized, low carbon Ru film. The XPS scans of the 

O 1s core level are shown in Fig. 4.4. The results in Fig. 4.4(a) again show that 

the H radicals substantially remove the surface oxide while leaving the subsurface 

grain boundary oxygen. It appears that the presence of C is not necessary to 

remove the surface oxide in an H-plasma process. The results in Fig. 4.4(b) show 
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that for the low carbon Ru film, the oxygen 1s peak intensity is unchanged for 

annealing to 400 °C. This is in contrast to the results for annealing of the ALD Ru 

films where the surface oxide is reduced at 150 °C. The surface oxide of the low 

carbon Ru film was partially reduced when the annealing temperature was 

increased to 500 °C which is in a agreement with the prior report [34].  Thus, the 

room temperature H2 plasma process will reduce an oxide on Ru film surfaces 

independent of the presence of carbon contamination.  However, the presence of 

carbon in the film contributes to the reduction of the oxide at elevated 

temperatures. 

4.2.2 Cu thermal stability on Ru 

To investigate the thermal stability of Cu on Ru, various Ru/Cu interfaces 

were characterized by XPS. By comparing the intensity of the Ru 3d core level 

before and after a 450 °C anneal, morphology changes in the Cu films can be 

identified. The results for the oxidized, plasma cleaned and annealed samples are 

summarized in Fig. 4.5. After Cu deposition and before annealing, the Ru signal 

is not evident indicating that all surfaces are covered with a continuous Cu film. 

After annealing, the Ru 3d intensity increases significantly for Cu on the as-

received Ru substrate. In contrast, for Cu deposited on the Ru surface processed 

with an 10 min H2 plasma or 150 °C thermal anneal, the Ru 3d peak is not 

discerned after the 450 °C anneal. In other words, a thermally activated process 

leads to Cu island formation on the oxidized Ru surface, and this process does not 

occur on the cleaned Ru surfaces. To display the island formation morphology, 
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the surface topography of each sample was measured by AFM and the results are 

shown in Fig. 4.6. 

 

Fig. 4.5 XPS scans of the Ru 3d core level for 10 nm Cu on Ru, (a) prior to 

annealing; After annealing at 450 °C for Cu on processed Ru substrates; (b) 

150 °C thermal anneal of Ru; (c) H2 plasma processed; (d) as-received. 
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Fig. 4.6 AFM images of 10 nm Cu coated on different Ru substrates, (a) Ru as-

received, RMS = 7.0 nm; (b) Ru substrate with H2 plasma processed, RMS = 1.0 

nm; (c) Ru substrate with 150 °C thermal flash, RMS = 0.9 nm; (d) Prior to 

annealing, RMS = 0.5 nm. 

Islanding or agglomeration mechanisms are often described in terms of 

“grain boundary grooving.” Genin et al. [38] developed a numerical analysis of 

the surface evolution.  The model was adapted to explain the thermal de-wetting 

of a surface in the vicinity of a triple junction of the surfaces and grain boundary. 

Miller et al. [39] suggested grooves were formed at triple junction areas during 

film deposition, and the film thermodynamic stability was determined by the 

lowest free energy configuration of the system. If the island formation lowers the 

Equation.3
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total energy, then the film evolves toward an islanded surface when the grain size 

to film thickness ratio exceeds a critical value. 

In light of this, the results can be explained in terms of the surface and 

interface energies. The initial uniform Cu coverage on both clean and oxidized Ru 

surfaces is achieved after room temperature deposition. This is a quasi-

equilibrium stage which may have an energy barrier to further film evolution. 

Evidence of the grain structure is displayed in the AFM image, which shows 

roughness features that reflect the grain dimensions (~ 50 nm). However, during 

vacuum thermal annealing, the energy barrier is overcome, and the surface 

morphology evolves until the free energy of the system reaches its minimum. In 

the evolution from the quasi equilibrium stage, the grain boundary contact angle 

increases, and the grain boundary length decreases as the groove structure 

becomes dominant. The critical continuity condition occurs when the grain 

boundary has just disappeared (Fig. 4.7(b)), and the junction exhibits a critical 

contact angle θc. If the substrate contact angle θD is larger than θc, the grain 

boundary evolves to the substrate contact angle resulting in islanding and an 

exposed substrate (Fig. 4.7(c)). 
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Fig. 4.7 Groove structure evolution and contact angle changes due to different 

surface energies configuration (a) initial stage of groove structure formation with 

contact angle θ0; (b) critical continuity condition θC; (c) isolated Cu island 

formation when θD > θC. 

The final equilibrium condition, therefore, may be determined by the 

balance of the substrate surface energy, the interface energy, and the film surface 

energy. In order to explore this effect, another set of experiments have been 

carried out: 10 nm Cu films were deposited onto as-received Ru adhesion layers 

and then individually annealed at different temperatures (150 °C, 200 °C, 250 °C, 

Equation.3
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and 450 °C). As shown in Fig. 4.8, the Ru signal is not evident until the annealing 

temperature increases to 250 °C. Extended time annealing was carried out at 

200 °C from 30 min to 4 h, and the substrate Ru was not detected. These results 

can be described by the energy barrier shown in Fig 4.9. The evolution requires 

sufficient energy EA for Cu surface diffusion. Once the surface diffusion is 

enabled, the surface morphology configuration is ultimately defined by the 

surface and interface energies. 

 

Fig. 4.8 XPS scans of the Ru 3d core level for 10 nm Cu films on oxidized as-

received Ru substrates upon annealing as indicated. 
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Fig. 4.9 Schematic of possible reaction paths for vacuum annealing Cu films on 

Ru oxidized and clean substrates. 

Apparently, when the Ru substrates are oxidized, the reduced substrate 

surface energy due to oxidation and increased interface surface energy due to 

unsatisfied bonding lead to a relatively large contact angle. The contact angle, θD, 

of the exposed surface then exceeds the critical condition, and the surface rapidly 

islands. In contrast, when the oxide free Ru substrates are used, the substrate 

surface energy is increased and the interface surface energy is decreased 

compared to oxidized Ru leading to a smaller contact angle. The film is then 

stable against islanding. 

The surface energy terms have been discussed to explain the thermal 

stability, grain boundary grooving and island formation. Clearly, the oxidation of 

Equation.3
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the film plays a critical role in the surface energies. We have determined that the 

Ru native oxide layer is ~2 monolayers, and after H2 plasma processing, the Ru 

oxide has been reduced, resulting in a clean metallic surface. As discussed above, 

the adsorbed oxygen remains in the film; however, a metallic Ru substrate with 

adsorbed oxygen does not result in evident Cu de-wetting upon annealing. The 

results established that the surface of the substrate is critical to Cu adhesion and 

that an oxide of ~2 monolayers influences the stability of a Cu film on the Ru 

surface. The subsurface oxygen in the grain boundaries provides a negligible 

contribution to the surface energy and the Cu thermal stability. 

4.5 Conclusion 

The RuO2 surface oxide formed on a Ru adhesion layer can be effectively 

removed using a remote H2 plasma process at room temperature. The residual O 

in the Ru after this treatment is attributed to absorbed oxygen in the subsurface 

grain boundaries. However, vacuum annealing at 150 °C substantially removes 

both the surface and subsurface oxygen. We argue that above 150 °C residual 

carbon diffuses and reacts with the oxide which desorbs as CO2. 

For Cu on an oxidized Ru surface islanding, is observed upon annealing at 

250 °C. However, Cu on a H2 plasma cleaned surface is stable to ~450 °C. The 

grain boundary grooving model has been suggested to describe the morphological 

changes. After the initial Cu deposition, a continuous film covers the substrate. As 

surface diffusion is enabled, the grain boundaries shrink, and the contact angle 

increases until the system reaches the lowest energy configuration. Once the 
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oxidized substrate is exposed, the increased interface energy and reduced 

substrate surface energy drive the system to Cu island formation. 

In this work, we conclude that a room temperature H2 plasma process 

reduces the RuO2 surface oxide on the Ru adhesion layer and substantially 

enhances the Cu film thermal stability to the point that the films are stable at 

450 °C. The presence of the surface oxide has been determined to be the critical 

aspect that leads to islanding which is attributed to a reduced Ru surface energy 

and an increased Ru/Cu interface energy. 
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Chapter 5 

THERMAL STABILITY OF TI, PT AND RU INTERFACIAL LAYERS 

BETWEEN SEEDLESS COPPER AND A TANTALUM DIFFUSION 

BARRIER 

5.1 Abstract 

The thermal stability of 7 nm Ti, Pt and Ru interfacial adhesion layers 

between Cu film (10 nm) and a Ta barrier layer (4 nm) have been investigated. 

The barrier properties and interfacial stability have been evaluated by Rutherford 

backscattering spectrometry (RBS). Atomic force microscopy was used to 

measure the surfaces before and after annealing and, all the surfaces are relatively 

smooth excluding islanding or de-wetting phenomena as a cause of the instability. 

The RBS showed no discernible diffusion across the adhesion layer/Ta and Ta/Si 

interfaces which provides a stable underlying layer. For a Ti interfacial layer RBS 

indicates that during 400 °C annealing Ti interdiffuses through the Cu film and 

accumulates at the surface. For the Pt/Cu system Pt interdiffuion is detected 

which is less evident than Ti. Among the three adhesion layer candidates, Ru 

shows negligible diffusion into the Cu film indicating thermal stability at 400 °C.  

5.2 Introduction 

Copper has been well studied as an interconnect material in advanced 

metallization technology due to its resistance to electromigration and its lower 

resistivity compared to aluminum [1-5]. Traditionally, interconnect structures 

employ Ta, TaN or TiN as a barrier layer with a physical vapor deposition (PVD) 

Cu layer that serves as a seed to Cu electrochemical deposition [1, 6, 7]. However, 
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the overall thickness of the seed and barrier configuration is typically 30-40 nm [9] 

which exceeds the requirement for the 32 nm integrated circuit technology node. 

Moreover, an ultrathin diffusion barrier (<3 nm thick and below) is needed for 

further scaling of the technology [8]. Therefore, a configuration with a Cu-

plateable layer and an ultrathin barrier is desirable to minimize the barrier 

thickness and eliminate the Cu-seed layer. 

In Cu dual-damascene structures, electromigration failure occurs 

predominately in regions of poor adhesion [10] which indicates that Cu film 

stability substantially influences the failure of the devices. The reliability of 

interconnect structures with multi-layer barrier structures is significantly 

determined by the stability of the bi-layer interfaces [11]. Thus, different direct 

Cu plate layers have been considered including W, Pd, Ir, Os, Pt, Ru and Ti [12-

18]. The stability of Cu on these layers represents the primary technical issue 

associated with this approach. The stability is essentially determined by interface 

interdiffusion and Cu film wettability on the underlying layer. In previous work, 

Kim et al. reported that the Cu contact angle changes after annealing for Ru and 

Ta substrates [17]. After thermal processing, the Cu films evolved to island 

structures which exposed the substrates. Also Adams et al. reported detecting Ti 

segregated to the Cu free surface during 500 °C annealing [19]. Therefore it is 

necessary to investigate barrier properties and Cu wettability to determine the 

applicability of each direct plate material. 

In a previous study, we reported that a 10 nm Cu film on a Ru substrate 

with a layer of native oxide tends to island after 400 °C vacuum annealing [20]. 
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The islanding was driven by surface and interface energies where the reduced 

substrate surface energy and increased interface energy led to the island formation. 

In the present work, we examine both the surface morphology evolution and 

interfacial diffusion during annealing. Ti, Pt and Ru are selected as adhesion layer 

candidates for this study. Ti has been previously investigated for improved 

wetting properties with Cu [21]. Pt is a high melting point transition metal that is 

resistant to oxidation. As a reference, Ru is included since a cleaned Ru surface 

exhibits stable interfaces with Cu films upon annealing to 450 °C [20]. 

In this study test structures have been fabricated which included a 4 nm Ta 

barrier layer deposited on an oxidized Si wafer. The metallic adhesion layer (Ti, 

Pt and Ru (7 nm)) was deposited next, followed by a 10 nm Cu film. The films 

were investigated before and after vacuum annealing at 400 °C. The stability of 

the structure was characterized by in-situ x-ray photoelectron spectroscopy (XPS), 

and ex-situ Rutherford backscattering spectrometry (RBS) and atomic force 

microscopy (AFM). 

5.3 Experimental 

The experiments were accomplished in-situ using an integrated ultrahigh 

vacuum (UHV) system. The UHV system is maintained at ~5x10
-10

 Torr with 

multiple chambers interconnected through a ~20 m linear transfer line. The 

experiments in this study involve the following systems: remote H2 plasma 

chamber for cleaning and vacuum annealing, electron beam evaporation for Ta, Ti, 

Pt, Ru and Cu film growth, and XPS for core level analysis. After completing all 
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in-situ measurements the samples were removed and analyzed with RBS for film 

stoichiometry and interdiffusion and AFM for surface morphology. 

The samples were grown on 25mm dia p-type, boron doped, (100) silicon 

wafers with a resistivity of 0.006-0.01 Ω∙cm. The oxidized Si wafers were cleaned 

in an ultrasonic acetone bath for 15 min, an ultrasonic methanol bath for another 

15 min, and dried with ultra-high purity nitrogen gas. Then the Si substrate is 

mounted onto a molybdenum sample holder using tantalum wires. After 

transferring into the UHV system, the oxidized Si (100) surfaces are cleaned 

using a remote H2 plasma process [20]. The plasma treatment conditions are as 

follows: rf power maintained at 30 W, H2 pressure of 60 mTorr, substrate at room 

temperature, and H2 gas flow of 90 standard cubic centimeter per minute (sccm).  

To investigate the thermal stability for the different interfacial adhesion 

layers, a typical multi-layer metallized structure was deposited on an oxidized Si 

substrate (Fig. 5.1). A 4 nm Ta barrier layer was deposited on the cleaned, 

oxidized Si wafer followed by a 7 nm adhesion layer (Ti, Pt and Ru respectively), 

and finally, the 10 nm Cu film was deposited. The e-beam metallization system 

employed a Thermionics e-GUN
TM

 evaporation source (model 100-0050) with a 

chamber base pressure of 4×10
-10

 torr. For each layer a growth rate of 0.01 nm/s 

was maintained with a quartz crystal thickness rate meter. After each deposition 

step, the samples were characterized by in-situ XPS. The XPS characterization is 

performed at a base pressure of 5×10
-10

 Torr using a VG Clam II spectrometer 

operated with a Mg Kα x-ray source (hv=1253.6 eV). The annealing was then 

conducted in the plasma chamber using a tungsten irradiation filament heater 
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located behind the sample holder. Samples were annealed for 30 min at 400 °C. 

During annealing, the sample was heated to constant temperature (calibrated with 

a Mikron-M90Q infrared pyrometer), and monitored with a Eurotherm 808 

thermocouple controller. The thermocouple was located behind the center of the 

Si wafer. The XPS characterization was conducted again after annealing. 

 

Fig. 5.1 A schematic of the multilayer structure with pertinent length scales. 

After in-situ XPS characterization, the samples were removed from the 

UHV system for stoichiometry and morphology measurement. A separate set of 

samples were prepared to serve as the as-deposited films for the AFM and RBS 

characterization.  The morphological changes of the surfaces were observed using 

an Agilent
TM

 AFM model 5500. The RBS spectra were obtained using a 1.7 MV 

Tandem accelerator with 2.0 and 4.3 Mev He
2+

 beams. The RUMP program was 

utilized for simulation and interpretation of RBS spectra [22]. The high energy 

and low energy cut-offs of each peak are represented respectively by projecting 

the tangent to the scan at its half maximum points to the energy scale axis. The 
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full width at half maximum (FWHM) of the peaks for the as-deposited films are 

listed in Table 5.1. The FWHM was slightly larger than the 0.002 MeV 

instrument resolution. 

 Cu Ru Ti Pt Ta 

FWHM 

(MeV) 

0.026 0.027 0.036 0.025 0.023 

Table 5.1 The FWHM of each peak in the RBS spectra before annealing. 

 

5.4 Result and Discussion 

5.4.1 XPS and AFM characterization 

To investigate the thermal stability of Cu on the various adhesion layers, 

Cu/Ti/Ta, Cu/Pt/Ta and Cu/Ru/Ta structures were deposited on oxidized Si 

wafers as described in the experimental section. XPS scans are carried out after 

the triple-layer deposition and after in-situ annealing. By comparing the XPS 

signal from the adhesion layer (Ti, Pt and Ru) before and after annealing, we are 

able to identify changes in the Cu film that occur due to the underlying adhesion 

layer. The relative surface atomic ratio before and after annealing is shown in 

Table 2. The surface atomic ratio is obtained from the integrated area of the XPS 

core levels normalized by the sensitivity factor. For Cu/Ti/Ta, the Ti 2p core level 

is weakly evident after Cu deposition, but after 400 °C annealing, the Ti 2p 

intensity increases significantly (Fig 5.2(a)). This increase in the Ti signal could 

indicate Cu film de-wetting and exposure of the Ti layer or interdiffusion of Ti 

into the Cu. For Cu/Pt/Ta, the Pt 3d core levels are not evident for the as-

deposited film. But after 400 °C annealing, the 3d core level is evident, which 
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again could indicate either islanding or interdiffusion (Fig 5.2(b)). The Cu/Ru/Ta 

structure does not show an increase in the Ru signal after 400 °C annealing, which 

is consistent with our previous result [20].  

Atomic Ratio As-deposited 400 °C annealing 

Ti/Cu <0.02 5.85 

Pt/Cu - 0.79 

Ru/Cu - <0.01 

Table 5.2 The XPS surface atomic ratio of the three films before and after 400 °C 

annealing. 
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Fig. 5.2 XPS scans of (a) Ti 2p core levels for 10 nm Cu on Ti; (b) Pt 3d core 

levels for 10 nm Cu on Pt; (c) Ru 3d core levels for 10 nm Cu on Ru. Each frame 

shows scans before and after vacuum annealing at 400 °C. 

To identify if islanding occurs, the surface morphology of each sample 

was measured by AFM, and the results are shown in Fig. 5.3. All Cu surfaces 

appear uniformly covered although surface morphology changes are evident. The 

AFM images show no clearly discernible islanding or de-wetting phenomena. 

Thus, we conclude that interfacial interdiffusion occurs during annealing of the 

structures with Ti or Pt adhesion layers. 
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Fig. 5.3 AFM images of 10 nm Cu on different adhesion layers, (a1) Ta/Ti/Cu as-

deposited, RMS = 0.61 nm; (a2) Ta/Ti/Cu 400 °C annealing, RMS = 1.47 nm; (b1) 

Ta/Pt/Cu as-deposited, RMS = 0.95 nm; (b2) Ta/Pt/Cu 400 °C annealing, RMS = 

(b2) (b1) 

(c1) (c2) 

(a2) (a1) 
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0.55  nm; (c1) Ta/Ru/Cu as-deposited, RMS = 1.33 nm; (c2) Ta/Ru/Cu 400 °C 

annealing, RMS = 1.1 nm. 

5.4.2 RBS analysis 

Fig. 5.4 shows the RBS spectra of a Cu/Ti/Ta structure before and after 

400 °C annealing. The spectrum of the as-deposited sample shows well separated 

Ti, Cu, and Ta peaks. After annealing, the Ta peak is essentially unchanged 

indicating stable Ta/Si and Ti/Ta interfaces. The stability of these interfaces is 

crucial to providing a diffusion barrier layer and a smooth substrate for Cu 

deposition. Consequently we can conclude that the Cu-related interface variations 

are due to the adhesion layer and the Cu layer. 

 

Fig. 5.4 He
2+

 RBS spectra (2 MeV) obtained from an as-deposited and 400 °C 

annealed Cu/Ti/Ta multi-layer structure. 
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After annealing, the high energy cut-off of the Ti peak has shifted 

significantly to higher energy indicating that Ti has diffused into the Cu layer. 

Meanwhile, the Cu peak shifts to lower energy after annealing indicating the Ti 

has largely accumulated on the surface. This is also supported by the XPS surface 

Ti/Cu atomic ratio which is over 5. After annealing, Ti and Cu interdiffuse, 

resulting in changes in both the XPS and RBS spectra. 

The Cu/Pt/Ta system also displays evidence of interdiffusion. Since the 

mass of Pt and Ta are close to each other, the Ta and Pt peaks overlap in the 2 

MeV spectra (Fig. 5.5(a)). With higher incident ion energy (4.3 MeV), the merged 

peaks can be distinguished as shown in Fig. 5.5(b). However, due to reduced 

energy loss as the ions pass through the film, the higher energy spectrum has 

reduced sensitivity. In the 2 MeV spectrum, the high energy cut-off of the Pt peak 

is shifted to higher energy indicating Pt is diffusing into the Cu. This is also 

consistent with the XPS result. But the peak position of Cu remains almost 

unchanged with a slight intensity drop. In the 4.3 MeV spectra, the shape of the 

Cu peak does not appear symmetric because it represents two separated Cu 

isotope peaks (Cu
63

 and Cu
65

), and the Pt high energy edge changes slightly. 

Compared with the Cu/Ti/Ta system, Pt shows reduced diffusion into the Cu layer. 

After annealing, there is an increase of the Cu/Pt surface atomic ratio (0.79) 

which may indicate surface accumulation as well, but to a lesser degree Cu/Ti. 
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Fig. 5.5 (a) 2 MeV; and (b) 4.3 MeV He
2+

 RBS spectra obtained from as-

deposited and annealed Cu/Pt/Ta multi-layer structure. 

In contrast to the results of the Ti and Pt interlayers, interdiffusion was not 

detected in the RBS spectra for the Cu/Ru/Ta system. All layer cut-offs are 
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essentially aligned, and the Cu peak intensity is essentially unchanged before and 

after annealing. This indicates a stable interface or interdiffusion that is within the 

detection limit of the RBS measurement. 

 

Fig. 5.6 He
2+

 RBS spectra (2 MeV) obtained from an as-deposited and annealed 

Cu/Ru/Ta multi-layer structure. 

From the discussion above, a 4 nm Ta barrier layer has been determined to 

form a stable interface with oxidized Si and each of the adhesion layers at 400 °C. 

Ti and Pt adhesion layers exhibit interdiffusion into Cu during 400 °C annealing, 

however, Ru exhibits improved thermal stability. 

5.4.3 Cu/Ti, Cu/Pt and Cu/Ru interdiffusion analysis 

The interdiffusion of Ti and Cu has been previously investigated by Iijima 

et al. who reported the temperature dependence of the interdiffusion coefficient in 

a Cu-Ti bilayer [23]. According to the Cu-Ti binary phase diagram [24], Ti could 
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react with Cu to form a range of solid solutions [25, 26]. Also, Shih et al. found 

considerable interdiffusion in the Cu/Pt system which was clearly evident in RBS 

spectra [27]. In the two systems, it was suggested that grain boundary diffusion 

contributes to the intermixing [24]. Because the annealing temperature is low 

compared to the Cu the melting point, the transport of solvent and solute atoms is 

likely driven by structural defects such as vacancies. The solvent and solute 

vacancies may arise during deposition and/or thermal annealing, and the diffusion 

process involves exchange of a vacancy and a neighboring solute (solvent) atom 

with a solvent (solute) atom [24]. From RBS spectra of the Cu/Pt/Ta samples, the 

low and high energy cut-offs of the Cu layer remain unchanged. There is a 

reduction of the integrated intensity of the Cu peak presumably indicating a 

decrease of the atomic density as Pt diffuses into the Cu layer.  These results can 

be well described by the Kirkendall effect where two solids interdiffuse at 

different rates [28]. In comparison with the Cu/Ti system, the diffusion of Ti in 

Cu is more extensive. 

For Cu/Ru/Ta, before and after annealing, the Cu/Ru interface appears 

stable for annealing to 400 °C [20]. Ru shows negligible solubility in Cu even at 

900°C, and based on the binary phase diagram, there are no intermetallic 

compounds between Cu and Ru [29]. The stability of the Cu-Ru interface was 

explored using photoemission electron microscopy (PEEM), where Wei et al. 

reported Cu diffusion through defects in a 1 nm Ru thin film [30]. While the Cu-

Ru system has a large positive heat of formation, He et al. showed simulations 

and results that indicated a range of metastable amorphous Cu-Ru alloys [31]. 
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Alonso et al. proposed that the Cu-Ru amorphous alloy formation arises from the 

mutual frustration between the fcc and hcp solid solutions [32]. In our XPS scans, 

Ru 3d core levels after annealing are unchanged suggesting that the formation of a 

Cu-Ru layer did not occur or was localized to a few layers at the interface. Overall, 

the Cu on a Ru adhesion layer exhibits thermal stability for annealing up to 

400 °C. 

5.5 Conclusion 

Different Cu/(Ti, Pt or Ru)/Ta multi-layer structures have been prepared 

by e-beam evaporation and characterized with XPS, AFM and RBS. The Ta RBS 

peaks remain unchanged after annealing indicating negligible diffusion at the Ta 

interfaces. The stability of these interfaces is crucial to providing a diffusion 

barrier layer and a smooth substrate for Cu deposition.  

For Cu/Ti/Ta system, both the XPS and RBS spectra indicate Ti 

accumulated on the surface after 400 °C annealing. In the Cu/Pt/Ta system, Pt 

interdiffusion was detected from both XPS and RBS. In comparison, it appears Ti 

diffused into Cu to a greater degree than Pt into Cu. The interdiffusion could be 

described by the Kirkendall effect. Ru as an adhesion layer exhibits a stable 

interface with Cu after 400 °C annealing. All the surfaces were relatively smooth 

after annealing excluding islanding or de-wetting. 

In this study, we suggest that a bilayer structure of 4 nm of Ta and 7 nm of 

Ru will serve as a diffusion barrier and direct plate layer for Cu electrodeposition. 

Combined with our previous results which reported a plasma cleaning process for 
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removal of the Ru native oxide, it appears that this Ru/Ta bilayer could replace 

the current PVD-Cu/Ta barrier layer for Cu interconnects. 
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Chapter 6 

SUMMARY AND FUTURE WORK 

6.1 Summary 

The research described in this dissertation has addressed the following 

topics: 1) The N2/H2 plasma induced modifications of low-k ILD dielectrics and 

contamination reduction of CMP Cu films. Plasma surface reactions with low-k 

ILD materials and Cu surfaces have been investigated. 2) Characterization of 

oxide stability and cleaning of Ru surfaces as well as the Cu thermal stability on 

oxidized and as-cleaned Ru adhesion layers. It was proposed that changes in 

surface and interface energy explain the stability or islanding of Cu on different 

Ru substrates. 3) Thermal stability of Ti, Pt and Ru interfacial layers (7 nm) 

between seedless copper (10 nm) and a tantalum diffusion barrier (4 nm). 

Interdiffusion between Ti-Cu and Pt-Cu after 400 °C vacuum annealing was 

observed by RBS. In addition, the accumulation of Ti and Pt onto the Cu surfaces 

after annealing was observed by XPS.  

Carbon abstraction for low-k ILD materials during a range of N2/H2 

plasma processing was evaluated and discussed. An initial N2 plasma pre-

treatment was proposed to “seal” the surface pores and protect the carbon groups. 

With the formation of N-C=O bonds at the surface, the low-k ILD surface retards 

H radical diffusion, which results in reduced carbon abstraction. It was found that 

elevated temperature enhanced the stability of the low-k ILD layer presumably by 

inhibiting the formation of polar Si-OH structures. Our experiments established 

that OH incorporation leads to a more significant increase in dielectric constant 
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than the change in network topography. The 380 °C processing temperature is 

within the overall temperature budget for interconnect processes according to 

International Technology Roadmap for semiconductors 2010. Moreover, the 

elevated temperature effectively induces the copper oxide to react with carbon 

contamination leading to a reduction in both carbon and oxide contamination. The 

presence of H radicals also contributes to the removal of carbonates and reduction 

of the remaining oxide. The active species in the N2 plasma may react with C-C 

bonded structures. Thus, the elevated temperature N2/H2 plasma processes that 

minimize ILD damage also result in efficient contamination removal from the 

CMP Cu surfaces. 

For the as-received Ru sample, the presence of oxygen is identified by an 

evident O 1s XPS peak. The O 1s peak has a component at 529.8 eV which 

corresponds to oxygen atoms from RuO2 (O
2-

) and another component at 531.2 

eV which corresponds to sub-surface grain boundary oxygen. The ~2 monolayer 

native Ru oxide was reduced after H2 plasma processing or a vacuum annealing at 

150 °C. The as-cleaned Ru surface substantially enhances the Cu film thermal 

stability to the point that the films are stable at 450 °C. The thermally induced Cu 

film islanding was detected using in-situ XPS when the presence of the Ru 3d 

core levels indicated islanding. The presence of the surface oxide has been 

determined to be the critical aspect that leads to islanding which is attributed to a 

reduced Ru surface energy and an increased Ru/Cu interface energy. A grain 

boundary grooving model has been proposed to describe the morphological 

changes. After the initial Cu deposition, a continuous film covers the substrate. As 
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surface diffusion is enabled, the grain boundaries shrink, and the contact angle 

increases until the system reaches the lowest energy configuration. Once the 

oxidized substrate is exposed, the increased interface energy and reduced 

substrate surface energy drive the system to Cu island formation. 

Different Cu/(Ti, Pt or Ru)/Ta multi-layer structures have been prepared 

and characterized with XPS, AFM and RBS. The Ta RBS peaks remain 

unchanged after annealing indicating negligible diffusion at the Ta interfaces. For 

the Cu/Ti/Ta and Cu/Pt/Ta system, after annealing, the high energy cut-off of the 

Ti or Pt peak has shifted to higher energy indicating that Ti or Pt has diffused into 

the Cu layer. Meanwhile, the Ti/Cu and Pt/Cu surface atomic ratio increased 

indicating accumulation of Ti or Pt onto the Cu surfaces. In comparison, it 

appears Ti diffused into Cu to a greater degree than Pt into Cu. These results can 

be well described by the Kirkendall effect where two solids interdiffuse at 

different rates. Ru as an adhesion layer exhibits a stable interface with Cu after 

400 °C annealing. After annealing the RBS peaks and Ru core levels remain 

essentially unchanged indicating the thermal stability. All surfaces were relatively 

smooth after annealing excluding islanding or de-wetting. It is suggested that a 

bilayer structure of 4 nm of Ta and 7 nm of Ru will serve as a diffusion barrier 

and direct plate layer for Cu electrodeposition. Combined with previous results of 

a plasma cleaning process for removal of the Ru native oxide, it appears that this 

Ru/Ta bilayer could replace the current PVD-Cu/Ta barrier layer for Cu 

interconnects. 

6.2 Future work 
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6.2.1 Plasma interaction at surface of ultra low-k ILD (k<2.2) 

Porous-SiCOH dielectric materials are being considered as low-k 

materials which could be implemented in ULSI technology. However, as 

indicated in the ITRS 2010 interconnects section, in the 19 nm technology node 

and below, a dielectric constant lower than 2.2 is has been specified. Preliminary 

results have reported deposition and processing [1-3] of ultra low-k ILD. In our 

previous study, we reported that H2 plasma processing results in significant 

carbon group abstraction and polar Si-OH formation, leading to an increase of the 

dielectric constant [4]. Thus, for post CMP cleaning processes, the simultaneous 

preparation for both CMP Cu and ultra low-k ILD surface is studied. Currently, 

the focus is on porous dielectric films with a dielectric constant of ~2.2. Due to 

increased diffusion occurring in the ultra low-k ILD films, multiple plasma 

processing steps are proposed. Also it is proposed to separate the effects induced 

by UV-light [5], ions [6] and neutral radicals [7]. A UV-light filter may be 

utilized to control the UV-light radiation and a biased substrate will be used to 

retard the ion bombardment. The surface properties for various plasma processing 

will be characterized using in-situ XPS and FTIR will be employed to monitor the 

bulk bonding changes which may determine the dielectric constant. The k value is 

determined using C-V measurements of capacitance structure. 

6.2.2 Thermochemical stability of ultra-thin direct plate Cu barrier materials 

The 2010 ITRS Emerging Research Materials chapter forecasts that < 2 

nm thick barrier materials will be needed by 2015 and < 1 nm barrier materials by 

2021. While numerous barrier materials have been suggested and evaluated, few 
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tests of these materials have been reported at thicknesses <2 nm, and there have 

been effectively no studies directly comparing performance of a range of potential 

materials. Such a comparison is needed to identify the most appropriate material 

(or class of materials). Also of vital importance is the need to understand the 

interplay between pre-barrier deposition surface preparation and the barrier 

material’s resistance to Cu diffusion [8-11]. Therefore it is proposed to complete a 

survey of materials including Ta, TaN, Ru, and several other ALD compatible 

materials and novel SAMs and other industry suggested materials. This research 

would seek to identify materials most likely for success in the < 2 nm regime.  
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