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ABSTRACT

Test cost has become a significant portion of device cost and a bottleneck in high

volume manufacturing. Increasing integration density and shrinking feature sizes increased

test time/cost and reduce observability. Test engineers have to put a tremendous effort in

order to maintain test cost within an acceptable budget.

Unfortunately, there is not a single straightforward solution to the problem. Products

that are tested have several application domains and distinct customer profiles. Some

products are required to operate for long periods of time while others are required to be

low cost and optimized for low cost. Multitude of constraints and goals make it impossible

to find a single solution that work for all cases. Hence, test development/optimization is

typically design/circuit dependent and even process specific. Therefore, test optimization

cannot be performed using a single test approach, but necessitates a diversity of approaches.

This works aims at addressing test cost minimization and test quality improvement at

various levels. In the first chapter of the work, we investigate pre-silicon strategies, such

as design for test and pre-silicon statistical simulation optimization. In the second chapter,

we investigate efficient post-silicon test strategies, such as adaptive test, adaptive multi-site

test, outlier analysis, and process shift detection/tracking.
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CHAPTER 1

Introduction

Shrinking feature sizes and constantly increasing integration density is imposing an

immense pressure on test and testability. Recent studies and future projections showed

that test cost has continuously increased and became a significant part of device cost. The

trend in continuous feature scaling and integration force test engineers to find more efficient

methods. Efficient test methods are investigated at several levels starting from design stage

down to production test stage. This is illustrated in Figure 1. Stages of test development

and optimization are illustrated with the middle column along with the design stages and

product-time-line on the left hand side. In this work, I have concentrated on several aspect

of testing and contributed to almost all fields of test. The third column shows the specific

section addressed in this work with their respective order in the thesis.

Increasing integration not only increases the number of executed test to cover new

functionality but also reduces observability as the number if test pins remained constant

while the number of internal nodes increased. Lack of observability lead to the development

of design for test methodologies (DfT) in which testing and design steps are integrated.

Design for test mainly deals with increasing observability through enabling monitoring

internal nodes and providing built-in structures that makes testing process much easier.

Although DfT for digital circuits can be automated, automation is very difficult for analog

circuits. Analog DfT is typically circuit specific and has to be designed for each circuit. One

of the problems addressed in this work is providing a DfT method for error vector magnitude

(EVM) measurement to extract a parameter that requires a long test development and test

execution time without a DfT approach.
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Fig. 1. Design/Test time line

Test development and design are lengthy processes and are desired to be performed in

parallel in order to shorten design and verification cycle. Test development is performed in

early post silicon stage once silicon data becomes available. The data obtained from the

first batches are used to characterize the manufactured devices and design an optimal test

list. However, waiting until the post-silicon stage is not an efficient strategy. Moreover,

some of the analysis require extensive data that exacerbates the waiting period. Therefore,

test development and yield/defect oriented design evaluations are shifted to overlap with
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design stage. This corresponds to the test development process in pre-silicon stage in Figure

1.

In this stage design is evaluated using simulation and prior knowledge of the process

to estimate critical parameters such as yield and test escape rate for a given set of tests.

Estimation of these parameters is crucial to prevent yield loss and generation of an optimal

test list as diversity of devices increase with new technology nodes. However, this step is

computationally intensive. Despite of the development in computer technology, simulation

times are projected to be several hundreds of years even for a medium scale circuit. In

section 2.2, simulation bottleneck of pre-silicon evaluation is addressed and an efficient

method is proposed that greatly reduces simulation overhead.

There are two main approaches in test selection: specification based test selection and

defect based test selection. The former approach uses specification parameters that are

defined according to a standard or requested by customers for test development and opti-

mizes the test list to reduce test time. While, the latter approach deals with optimizing

the test list with respect to defects. In this work, we address defect based test selection

method in pre-silicon stage (section 2.3) proposing efficient methods that are demonstrated

using industrial circuits. We address specification based test optimization in post-silicon,

production testing stage.

1. Design for Test for Built in EVM Measurement

Due to its soft capacity and frequency diversity, orthogonal frequency division multi-

plexing (OFDM) has become the prevailing modulation scheme for modern RF transceiver

systems. Modulation accuracy, specified in terms of error vector magnitude (EVM), is

one of the most important transmitter parameter specified for OFDM transceivers. EVM

encapsulates many non-idealities of the transmitter, including inter symbol interference,
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mismatches, non-linearity, phase noise and spurs, and carrier leakage [Gu(2005)]. It is typ-

ically one of the few parameters specified for the transmitter and needs to be guaranteed.

Recently, several researchers have proposed techniques for simplified EVM measure-

ments. An optimization method for EVM measurement that reduces the overall test time

for EVM characterization is presented in [Acar et al.(2008)]. The goal is to limit the number

of symbols that need to be transmitted/received within one frame as dictated by the normal

operation mode. The complete receive operation is duplicated and conducted at the tester

using a golden receiver on the load board. In [Natarajan et al.(2008)], the authors propose

an EVM measurement method that requires less number of measurements by increasing the

sensitivity of EVM to transceiver system noise. A computationally efficient EVM measure-

ment method for phase-only modulation schemes is presented in [Helfenstein et al.(2005)].

EVM test sequence is reduced in [Acar et al.(2006)] by selecting sensitive corner cases into

the test vector. Hence, test sequence required to achieve the desired confidence level is

shrinked.

Another trend in reducing the EVM test cost is using alternate testing methods. In-

stead of modulated signals, multi-tone input signals are employed in [Halder et al.(2008)]

to estimate the EVM. Resulting waveforms are transformed into EVM through nonlinear

regression. EVM is estimated by utilizing null carriers to calculate system noise in [Sen-

guttuvan et al.(2008)]. Thus, test time required to gather adequate information from the

device is reduced. A multi-tone based method is presented in [Bhattacharya et al.(2005b)]

for Ultra Wide Bandwidth (UWB) systems.

While there has been significant progress in reducing the overhead of EVM measure-

ments, important challenges still remain, especially when it comes to multi-site testing.

Characterization of EVM requires sending multiple signals spread over multiple frames and

4



conducting the overall receive operation including the channel characterization and syn-

chronization. The I and Q signals need to captured and analyzed at the tester requiring

access to these signals. Moreover, the complete receive operation needs to be duplicated by

the test engineer and incorporated into the test program. This operation requires complex

procedures to synchronize the transmitted and received frames and to estimate the channel

characteristics. These steps complicate the test development process and may result in long

test development times.

The need to analyze the IQ signals, rather than the bit pattern, also puts a high burden

on the tester. The IQ signals are typically digitized with a resolution of 8 bits [Saponara

et al.(2008)]. This means that measuring EVM requires 16 bits of digital bandwidth between

the tester and the device under test (DUT) just for the analog signals. As a result, multi-site

operation becomes harder.

Perhaps a more important burden is placed on the computational resources of the

tester [Srinivasan et al.(2008)]. Some of the steps of the receive operation require compute-

intensive algorithms, sometimes requiring multiple passes through the IQ samples [Acar

et al.(2008)]. This computational overhead imposes a bottleneck in increasing the multi-

site ratio during EVM testing. A potential solution to this problem has been proposed

in [Srinivasan et al.(2008)].

We take a different approach and propose to place design-for-testability techniques into

the digital base-band subsystem of the device to enable low-overhead built-in EVM testing.

The intuition is that the receiver and the transmitter of a transceiver system are designed

to perform complementary operations in the base-band and all the complex steps of the

receive operation are already implemented for this particular platform. To avoid having to

take IQ signals out of the chip, we propose a DFT approach that enables us to measure
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EVM through only the decoded bit pattern, greatly reducing the test development time

and computational burden on the tester. We propose an innovative method for measuring

EVM on-chip with very little DFT overhead. To this effect, we exploit the symbol coding

scheme and the fact that displaced symbols present deterministic bit flip characteristics

in the coded bit pattern. The DFT approach presents less than 0.05% overhead for the

transceiver excluding any DSP or controller area.

We present an analytical model that relates the EVM measurement accuracy to the

number of enhanced constellation points and a detailed analysis of the overhead imposed

by the proposed DFT scheme. We conduct experiments using both a MATLAB simulation

platform and through hardware measurements and observe that we can measure the EVM

with less than 1% error.

2. Statistical Simulation Optimization

Customers demand estimation of test quality metrics. The most prominently used

quality metric is Defective Parts Per Million (DPPM), which is defined as the number of

defective devices shipped to customers out of a million shipped devices. DPPM is generally

estimated based on available test set and failure modes. Defect escapes typically happen due

to compaction of large test lists that are not feasible to apply in high volume manufacturing.

The most widely used specification-based compaction method is using a minimum set

cover approach, which determines a subset of the original test list based on fall-out patterns.

This compaction technique can be implemented using the Integer Linear Programming

(ILP) approach [Drineas and Makris(2003)], heuristic methods [Milor(1998)], or machine

learning approaches, such as SVM (Support Vector Machine) [Biswas et al.(2005)]. Test

compaction methods reduce testing time at a cost of increasing DPPM; defect escapes

occur due to skipping the tests that are unlikely to fail but have a nonzero fail probability.
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Another form of test compaction is to use a set of alternate measurements [Haider and

Chatterjee(2005),Akbay and Chatterjee(2004)] or using dedicated built-in-self-test circuitry

that indirectly decides on the pass/fail status of the device [Hafed and Roberts(2000),

Petlenkov et al.(2008)]. For these techniques, defect escapes occur due to imperfections in

the modeling/mapping functions.

Clearly, DPPM of any given test set needs to be estimated to ensure high test quality

during the test development phase. However, estimation of DPPM is considerably difficult

since it is a complex statistical parameter. Typically, such statistical parameters are esti-

mated using Monte Carlo (MC) simulations. However, using MC simulations for accurate

DPPM estimation is unaffordable due to the need to simulate a large number of samples.

Several approaches have addressed the need to reduce the computational burden of MC

simulations. The main concern in estimating a statistical parameter is achieving the desired

precision in a small number of simulations. Precision of an unbiased estimation technique

can be measured using the variation of the estimated parameter. Therefore, the goal of

an efficient statistical parameter estimator is to yield lower variation for the same number

of simulations or same variation for less number of simulations. A re-sampling based ap-

proach is proposed in [Stratigopoulos et al.(2009b)], where a small sample set of devices is

exhaustively simulated and the result is used to synthetically generate a larger device set.

While this method is quite efficient and provides an excellent match for the bulk of the

samples, it suffers from the lack of samples at the boundaries of the process space. Thus,

for DPPM estimation, the variation can be large. Quasi Monte Carlo (QMC) sampling pro-

posed in [Singhee and Rutenbar(2010)] uses low discrepancy sequences to sample the input

space. QMC ensures even coverage of the input space but it still generates a large num-

ber of samples. Experiment design techniques, such as Taguchi based methods [D’Errico
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and Zaino(1988),Taguchi(1978)] can reduce variation in the results and ensure wide-range

coverage of the input space but are generally unaffordable for for high dimensional spaces.

In [Singhee and Rutenbar(2008)], an Extreme Value Theory (EVT) based rare event

simulation method has been proposed to estimate the tail distribution of individual spec-

ification parameters. Similarly, [Stratigopoulos and Mir(2010)] employs an EVT based

approach to estimate yield loss and test escape level for one of the tests that is replaced

with an alternative test. But, these two methods cannot be applied to DPPM estimation

for multiple dimensional output space, which requires multidimensional tail distribution

estimation.

Another way of improving efficiency in DPPM estimation is importance sampling. The

goal of importance sampling is to sample only instances that are relevant in order to improve

efficiency. In [Kanj et al.(2006)], the importance sampling concept has been applied for

SRAM circuits, where process parameters are virtually shifted to sample from the region of

interest. Unfortunately, importance sampling requires knowledge of the importance regions

in the process parameter space. For analog circuits with multiple specifications and complex

relations between process and specification parameters, finding such importance regions is

not trivial.

In this work, we propose an intuitive and innovative method by combining the concepts

of importance sampling and model fitting to increase the efficiency of MC simulations.

Basically, we use a model estimator of the circuit behavior to determine the importance

region. We avoid the need for extremely accurate model generation by using adaptive guard

banding and robust model generation. In order to effectively achieve importance sampling

without the necessity of knowing the importance regions in the process space, we use the

model as a filter for an MC simulator. We evaluate generated MC samples by the model
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and simulate only those that have a potential impact on the DPPM parameter, thereby

greatly reducing the simulation effort. Hence, we do not avoid the simulation step, but

lift the heavy burden on the simulator by making informed decisions on the MC samples

through a simple model, and let the simulator work on a refined small number of device

instances.

We demonstrate our approach for a receiver front-end circuit under process variations.

Hence the failure model that we use is based on process variability. However, our approach

can be used in conjunction with any failure model to evaluate DPPM of a given test set.

This information is extremely useful during test development to make informed decisions

on the test list.

3. Defect Oriented Test Evaluation

Today’s assessment of analog test coverage consists of ad-hoc checklists of analog tests

and exercising all the analog circuitry in some manner. We have no knowledge as to

the importance of one test over another. As analog designs change to adapt to process

constraints and product requirements, evaluating test coverage during product definition

and pre-silicon validation adds value to the design and test process.

A very promising method, analog fault modeling (AFM), which enables such cover-

age assessment, has been proposed nearly two decades ago. Early work on AFM fo-

cused on parametric defects and circuit level defects. [Milor and Visvanathan(1989)] pro-

posed an approach with process variation; while [Meixner and Maly(1991)] investigated

circuit level defects. Parametric faults are typically simulated with out of tolerance devia-

tions [Soma(1991),Bishop and Ivanov(1995)], while open and short defects are simulated via

injecting respectively a large and small resistance [Azais et al.(2003),Chang et al.(2002),Se-

beke et al.(1995), Stratigopoulos et al.(2009a)]. Early work on defect modeling did not
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include the masking effect of process variation [Nagi and Abraham(1992), Voorakaranam

et al.(1997)], which is becoming increasingly prominent with more advanced processes.

Process variation is incorporated in AFM [Milor and Sangiovanni-Vincentelli(1994),Chao

et al.(1997)] at a cost of increasing computational complexity. Although AFM provides

great insight in defective behavior and test coverage, it has remained an academic research

topic due to its extensive computational requirements.

In this work, we provide a feasible implementation methodology for defect-oriented

simulations that substantially reduces the computation requirements. We exploit the hier-

archical structure of process variation to split the simulation process in multiple steps and

apply a pruning algorithm to eliminate unnecessary steps. In the first step we analyze the

impact of die-to-die variations. This first hand analysis gives us defects that have an effect

on performance. In the second step, we include within die (WID) variation for the defects

that have a possibility of resulting in specification violation.

By demonstrating the AFM approach on a commercial device, we show that fault simu-

lation is both feasible and provides invaluable information for test quality optimization and

yield improvement. The results of this defect analysis can be used for many purposes. In

this work, we analyze the coverage of the manufacturing tests based on this defect analysis.

We also present a methodology to identify sensitive nodes in the circuit, so that they can

be targeted in the layout step for yield improvement.

4. Adaptive Test

Performance of mixed-signal and RF circuits is typically defined by a large number of

diverse specifications. Some of these specifications are highly correlated, suggesting that

measuring all of them during production test is redundant and results in unacceptably

long test times. As a result, the common approach in the industry has been to collect
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statistical information on a small number of devices during characterization/production

ramp-up phase and to use this information to compact the test set to reasonable levels.

These devices serve as a training set to determine which tests to apply. Several approaches

have been proposed to use the learned information to find an efficient way of eliminating

tests. However, test compaction level and achievable test quality of these methods are

extremely limited. Constant pressure for test cost reduction necessitates replacement of

these inefficient methods with more efficient ones that can offer superior performance.We

provide a detailed discussion on the prior work in the next section.

With increasing process variations, the statistical diversity of devices also increases. In

most cases, specifications cover a wide range of distributions and there are devices that fall

further off from the nominal space. This is particularly problematic for marginal devices

that are close to the specification limits. Test compaction makes test quality metrics very

sensitive to the accuracy of correlations between the specification parameters, especially

considering that the correlations are subject to change with process shift. Even a small

error may move a device from the acceptable region to the unacceptable region and vise

verse. Devoting the same test resources to each device (i.e. applying the same test set) is

therefore not an efficient use of these resources. Marginal devices should be tested more

extensively whereas devices that conform to the learned statistical information can be passed

more easily. Such a test flow that tailors the test set for each device based on where it falls

in the process space is adaptive on a per-device basis and can potentially provide the best

test time-test quality trade-off. Recently, we have proposed several approaches with this

philosophy [Yilmaz and Ozev(2008),Yilmaz and Ozev(2009a)]. In our earlier work, we use

a simple correlator to extract this information and show the potential of improvement.

However, more elaborate and efficient methods are needed to exploit the whole potential.
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Another important issue in test compaction is monitoring process shift and efficient

re-characterization to maintain test quality level. Unfortunately process statistics are not

stationary, but shift over time. Test compaction methods typically use a single snapshot of

the process in their analysis and do not adapt to the changes. However, process statistics

are subject to change and test compaction methods have to adapt in order to maintain

characterization data representative. Failing to do so may increase misclassification rate

and greatly degrade the performance of the used test compaction method. To remedy

this problem, some production test flows incorporate mechanisms to check the validity

of learned collective statistical information periodically by subjecting a set of randomly

selected devices to more extensive testing. Several commercial vendors provide tools to

systematically adapt the test set with respect to changes in the process profiles, although

algorithms and methodologies that are used are typically not published.

In Section 3.1, we present a methodology for per-device adaptive test flow using a

kernel-based estimator. We provide techniques to pre-select a number of tests to collect

essential information on each DUT. Once these tests are applied, the results are processed

to determine the next phase of testing. This process is repeated until all tests are either

applied or marked as pass without direct measurement. We also provide differential entropy

based process tracking/update mechanism to update changing process information. The

characterization data is continuously monitored for potential process shifts and updated

as necessary to maintain its representativeness. Re-learning rate is adjusted to catch-

up with the speed of change in the shifts. In order to ensure that defective devices are

screened out as much as possible, we provide a mechanism to check whether each device

conforms to the expected behavior. Suspicious devices are identified and are subject to more

extensive testing even if they pass all measured parameters. We have applied this adaptive
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technique both in simulations to a low noise amplifier (LNA) and to production data of two

diverse mixed-signal/analog devices. All three results indicate that the proposed adaptive

techniques achieve the lowest DPPM values when compared with static techniques.
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4.1. Multi-Site Adaptive Test

Yet another common industry approach to test time reduction is multi-site testing where

more than one device is tested at once. Multi-site testing is particularly attractive for analog

circuits since analog tests do not require a high pin count. A natural extension to adaptive

test is thus to apply it in a multi-site environment.

However, since multi-site testing requires placement and removal of all DUTs on the load

board at the same time, direct application of per-device adaptive test is not feasible [Yilmaz

and Ozev(2010)]. While static compaction methods easily lend themselves to linear test

time reduction with multi-site testing, adaptive test approaches suffer from sub-linear test

time reduction since all sites must finish their tests before the devices can be removed from

the tester. This invariably results in test times that approach the test time of most marginal

devices, which are tested more extensively.

In Section 3.2, we address this problem and propose a solution to multi-site adaptive

testing to reap the benefits of multi-site testing and adaptive testing at the same time. Our

method is based on the observation that devices that are tested in parallel generally originate

from the same wafer and are closely related in terms of their statistical characteristics. We

exploit this property in two ways: (1) we use a compound device approach to utilize the

information from all sites for each DUT, and (2) we use the common tested parameters of

all DUTs to screen for defects more efficiently. Experimental results based on production

data from two diverse mixed-signal circuits indicate that despite the constraints imposed

by multi-site testing, our approach helps scale the adaptive test time linearly and attain

the highest test quality compared with prior work.

14



4.2. Adaptive Quality Binning

Device cost can be minimized if only the requested amount of the produced devices

barely meet the specified performance limits. In other words, if there are multiple quality

bins, we would like to produce devices that split in these bins at a desired ratio. However,

this cannot be achieved with traditional test methods. Optimization of quality binning

can be performed production test phase. Device cost can be reduced if test resources are

distributed with respect to each device’s quality.

One approach to attack this optimization problem would be to follow a sequential ap-

proach: randomly partition devices according to a given proportion criteria, and then apply

the adaptive testing procedure described in the previous sections. Although simple and

straightforward, this approach does not guarantee a global minimum because the sequen-

tial approach assumes the DPPM and time to be independent. In fact, they are highly

correlated and this can be used to optimize the problem toward a global solution. Instead

of using two consecutive steps, we attack the problem is a single step by exploiting the

strong correlation between DPPM and test time. We use per-device measurement data to

estimate the expected defective escape probability and test time to achieve that of each

device jointly. Hence, we can estimate test time for specific DPPM ranges and bin the de-

vices not randomly but according to their behavior. If a device does not show high quality

behavior, it can be put into the lower quality bin and end testing sooner. However, if a

device is expected to have a high quality profile, it can be tested further until the desired

quality level is achieved. This approach yields lower expected test time since high quality

devices require less number of tests.

In this work, we aim at adaptively selecting a test list for each device considering

quality requirements and devoting only required amount of test resources to minimize the
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test cost. We speed bin devices according to a well known test quality metric, defective

parts per million (DPPM).

4.3. Test Quality Oriented Outlier Analysis

Circuits fail either due to process induced variations or due to inherent defects. Process-

induced failures can be tracked more easily using collective information since most test com-

paction techniques use the collective distribution of data to make test decisions [Stratigopou-

los et al.(2007),Chen and Orailoglu(2008)]. Circuits containing defects however, behave in

a random manner, invalidating learned information, and making their detection using a

reduced set less likely.

This random behavior of defective circuits can be detected through outlier analysis,

where the goal is to identify devices that behave differently from the bulk of devices. In the

context of testing, outlier analysis has many applications. It can be used in conjunction with

a test selection technique to reduce DPPM, or with alternate test techniques [Bhattacharya

et al.(2005a)], as a defect filter. In some domains, such as the automotive domain, outliers

can be outright rejected regardless of whether they pass or fail the specifications.

Four important challenges must be overcome for efficient outlier analysis. First, setting

outlier boundaries is typically difficult due to high process variations. Second, for analog

circuits outlier analysis needs to be conducted in multiple dimensions that can be easily

in the order of the hundreds. Third, process shifts may render pre-determined limits in-

valid. Fourth, inclusion of parameters that have no distinguishing capability introduces

uncertainty into the decision mechanism and diminishes the efficiency. Moreover, these

parameters depend on the population and cannot be statically determined. Various outlier
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analysis methods have been proposed in the context of testing, which address one or more

of the above-mentioned challenges.

Several methods have been proposed for variance reduction in outlier analysis in the

context of Integrated Circuit Quiescent Current (IDDQ) testing [Maxwell et al.(2000),Tu-

rakhia et al.(2005)] using current ratios, differential currents, or neighborhood information.

In [Fang et al.(2006)], an adaptive scheme is proposed, which works in one dimension.

In [Yilmaz and Ozev(2009b)], a two-dimensional static outlier analysis is used. In [Ceri-

oli(2009),Filzmoser et al.(2005),Papadimitriou et al.(2003),Pena and Prieto(2001)] present

multidimensional outlier analysis methods are proposed. However, none of the above-

mentioned techniques address all issues at once and/or cannot be easily extended for this

purpose.

In this work, we present an adaptive multidimensional outlier analysis method that

combines multiple information rich parameters and adaptively incorporates the evolving

statistics of device parameters. We model multi-dimensional data using kernel-based den-

sity estimation. In this way, we can effectively and accurately keep track of non-linear

dependencies. We propose a method to determine a subset of conducted measurements for

outlier analysis to reduce the uncertainty induced by parameters that provide no distin-

guishing information. We continuously update our profiles to keep track of shifts in the

process, which changes the outlier limits adaptively.
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The proposed method can be integrated with an adaptive test framework. We use our

earlier work [Yilmaz and Ozev(2010)] for this purpose and demonstrate how outlier analysis

can be used to reduce test time while attaining high test quality.

4.4. Efficient Process Characterization

Production test is one of the major contributors of the product cost. Typically, a large

number of specifications are tested to guarantee device functionality and this makes produc-

tion test a time consuming process. Test time is typically shortened using various methods.

Since most of the specification parameters are correlated, specification-to-specification de-

pendencies are used to shorten the test list by eliminating some of the correlated tests. This

problem is known as analog test compaction.

Various analog test compaction methods have been investigated extensively and some

form of test compaction is generally used in the industry. In the next section, we will

explain some of these approaches in detail. Generally, information that is learned from a

representative set of devices (referred to as characterization data), typically obtained during

production ramp-up, is used to improve the test time or test cost by reducing the test list

or by finding simpler tests to replace the ones on the test list.

All the statistical test compaction methods, including the set cover based methods,

rely on the accuracy and the representativeness of the characterization data set. Incorrect

characterization data may result in high misclassification rates and therefore degradation in

test quality. Unfortunately, regardless of how much information is collected on the statistical

characteristics of the devices initially, this information eventually becomes invalid, at least

partially, due to changes in the underlying process parameters. In order to maintain a high

test quality level, characterization data should be maintained up-to-date.
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Process shifts may be due to intentional adjustment by process engineers or an un-

expected behavior that alters the process statistics. Even if the changes in process level

parameters (i.e, doping density, temperature,...) are known, the effect is typically not eas-

ily predictable in terms of specification domain parameters. This necessitates re-learning

the process information to avoid any misclassification. Failing to detect a shift and take

action by updating the test engine in time may result in an increase in the misclassification

rate. However, re-characterization when the shift is not significant results in excessive over-

head. Therefore, it is important to use an optimized process shift detection and re-learning

method.

In this work, we present an efficient process tracking scheme in the the specification

parameter domain to keep characterization information valid with a very small number of

measurements. We exploit wafer-to-wafer correlations to minimize the re-learning effort.

We re-use available characterization information (outdated) and transform it to estimate

the process statistics of the target wafer that is being tested. We show that only a very

small number of samples from the target wafer are sufficient for such a transformation.

The proposed method complements test compaction efforts and can be integrated with any

such technique (e.g. [Akbay and Chatterjee(2007),Biswas and Blanton(2006),Yilmaz and

Ozev(2010),Stratigopoulos et al.(2007)]).

We use a 2-detect set-cover method for test list generation. We update test list in-

crementally for each wafer using the transformed characterization data. Thus, test list is

tailored with respect to statistics of the WUT. Since wafer-to-wafer shifts are not always

extensive, most of the existing information on which tests to include can be re-used. Thus,

most of the time, there is little computational overhead. When large-scale shifts do occur,

we deem the existing information invalid, and conduct a more comprehensive re-learning
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step. Once a test list is generated, it is applied to all devices on that wafer. Executing

a common test list enables us to easily adopt multi-site testing capability and therefore

reduce test time.

4.5. Prior Work

Over the past several decades, many approaches have been proposed to make the test

compaction process systematic and efficient. The most simplistic view of test compaction

arises from observation of fall-out patterns of individual tests. In this sense, test compaction

can be viewed as a set-cover problem wherein the goal is to select a minimal subset of

existing tests such that all fall-out cases in the training set are identified. Various algorithms

have been developed to efficiently identify this minimal cover since the set-cover problem

itself is NP-hard [Cormen et al.(1997)]. ILP-based formulation [Drineas and Makris(2003),

Stratigopoulos et al.(2007)] has been shown to produce near-optimal covers [Yilmaz and

Ozev(2009a)]. Heuristic approaches [Milor(1998), Biswas and Blanton(2006), Biswas and

Blanton(2008)] have also been proposed to identify a covering test set efficiently when the

full test set is large and ILP-formulation is no longer computationally feasible. Once a test

set is identified, test set re-ordering [Huss and Gyurcsik(1991),Jiang and Vinnakota(1999)]

is proposed to further reduce the amortized test time by applying the most likely to fail

tests first.

Machine learning methods have also been used to achieve better generalization and

more accurate modeling. The use of artificial neural networks (ANN) for this purpose is

presented in [Biswas et al.(2005)] to improve classification performance. Similar methods

for statistical modeling based on ANNs or kernel density estimation (KDE) have been

proposed in [Stratigopoulos and Makris(2005),Stratigopoulos et al.(2007)] and [Yilmaz and
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Ozev(2010)]. These methods essentially divide the high dimensional specification parameter

space using complex boundaries to achieve an optimized test set with better characterization

performance compared to the set-cover method. An adaptive test method is proposed

in [Yilmaz and Ozev(2010)] to generate a device specific separation region, which is updated

for each device, to achieve a much finer boundary and therefore superior classification

performance. Due to device-level adaptation, this method cannot be easily adopted to

multi-site testing.

Alternate test methods use non-specification to specification parameter correlations

[Bhattacharya et al.(2005a),Kupp et al.(2009)]. These approaches essentially combine the

benefits of low-cost and short test time overhead of non-specification tests and map them

onto specification domain using nonlinear transformation functions.

Process shift adaptation for analog circuits is a relatively unexplored domain. One of the

first efforts in achieving process adaptation using a lot-to-lot update mechanism is presented

in [Benner and Boroffice(2001)]. The author proposes to re-learn the test statistics and re-

optimize the test list every time a new lot is encountered. In the next sections, we will

show that such pre-determined update frequencies can lead to either excessive overhead

or poor test quality. In [Chen and Orailoglu(2008)], test compaction is adapted to local

process changes using the process capability factor (CPK). The general strategy of process

adaptation methods is to use the CPK information to update the test list by including

marginal tests or by initiating a re-learning step. The re-learning step involves applying

a full test suite to a large set of devices as in [Chen and Orailoglu(2008)]. Although both

of these strategies offer adaptation to process shifts, their test time reduction capability is

limited. Adding marginal tests increases on-line test time since specification-to-specification

correlations are not used for test compaction. However, re-learning at a rate faster than
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the process shift speed (over learning) increases test time overhead. A continuous learning

scheme is adopted in [Gotkhindikar et al.(2011)] to update failure rate information and

achieve die-level adaptation. Test compaction rate of this method is very limited for high

yield processes.

In [Kupp et al.(2011)], incorporation of scribe-line information is investigated to reduce

test time overhead. Scribe-line measurements are correlated to the specification domain

parameters and can be used to reduce test time through mapping scribe-line data to speci-

fication domain parameters. However, generation of a function to do the mapping requires

serious computational effort. Thus, it would be prudent to do such re-learning as rarely as

possible.
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CHAPTER 2

Pre-silicon Test Strategies

1. Design for Test

In this section, we present a technique to enable accurate built-in measurement of EVM

for OFDM transceivers. This measurement technique only relies on the decoded bit pattern,

and does not require any additional test equipment. In order to accurately predict EVM

without using analog signal analysis, we intentionally code more symbols into the bit pat-

tern in test mode, which enables the decoding of IQ signals in finer granularity. We present

an innovative DFT technique to measure EVM on-chip with very little overhead. We also

provide an analytical framework to determine how the DFT technique needs to be imple-

mented. Experimental results using MATLAB simulations and hardware measurements

confirm the accuracy of the proposed technique.

1.1. OFDM Transceivers and EVM Measurement

In this work, we focus on OFDM transceivers. A generic OFDM transceiver is shown

in Figure 2. The input bit pattern is enhanced by convolutional encoding, error correction

and interleaving. The S/P block takes 2-6 bits of data (depending on mode) and converts

them into IQ symbols. The symbol mapping block codes the bit pattern into frequency

domain I and Q signals, typically 8-bits for each [Saponara et al.(2008)]. These I and Q

signals are passed through the IFFT block to generate the time domain signals, converted

into the analog domain and transferred into the RF subsystem. The receiver performs the

complementary operation.

Baseband signals are distorted by many non-idealities during the transmit/receive pro-

cess. For signals with appreciable power, the distortion stems from the transmitter’s
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(a)

(b)

Fig. 2. OFDM transceiver architecture

non-idealities, such as inter-symbol-interference (ISI), carrier leakage, DC offsets, IQ mis-

matches, and non-linearity [Gu(2005)]. Error vector magnitude is one of the metrics defined

for modulation accuracy and it is specified in standards using the OFDM scheme. EVM

basically defines the amount of displacement of the received symbol from its ideal location

in the complex IQ plane. As an example, Figure 3(a) illustrates the constellation diagram of

QAM16. Constellation points shown as circles are the ideal positions of the symbol constel-

lations. Points that are shown by plus (+) signs represent symbols that are affected due to

unwanted distortion or noise mechanisms. Impairments or induced noise result in changes

in the constellation points. Thus, the quality of the received signal can be estimated by

comparing the received symbol constellations with their ideal locations.

Figure 3(b) zooms into the area around one of these symbols. The vector between

the ideal symbol location and the received symbol location is the error vector, and the

magnitude of that is the error vector magnitude. The instantaneous EVM value is affected
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greatly by thermal noise and measurement errors. This randomness can be rather high so

the instantaneous EVM value is typically of little use. A more useful metric is the root-

mean-square of the EVM over a number of symbols. In fact, many standards define the

EVM specification based on its RMS value:

EVM =

∑Nf

i=1

√∑LP
j=1(

∑NC
k=1(Ii,j,k−I0i,j,k)2+(Qi,j,k−Q0i,j,k)

2)

LPNCP0

Nf

Where, Nf is the number of frames, LP is the length of the packet, NC is the number

of carriers, P0 is the power of constellation. Ideal position of the symbols I and Q is give

as I0 and Q0 respectively. As an example, IEEE 802.11 [iee(1999)] standard defines EVM

as the RMS of EVM values for 320 randomly selected symbols.

While the EVM is specified for OFDM transceivers, there is an inherent randomness in

the EVM parameter due to the randomness of the input pattern even when the measure-

ment errors and other factors are taken out of the equation. It has been shown in [Acar

et al.(2008)] that measurement of EVM with two random symbol sequences, each being

320 symbols long, can have as much as 1% deviation. One has to take this uncertainly into

account when designing a test approach using EVM.

1.2. EVM Calculation

Calculation of EVM requires comparison of the actual received signal with the ideal

received signal in the complex IQ plane. As such, one needs to generate the received IQ

signals, without mapping it onto the actual bit pattern.

As an example, consider the following scenario: in a QAM-16 scheme, the mapping

between the bit pattern and the symbol locations (illustrated as the circles) in the constel-

lation diagram are given in Figure 4. We want to compute the EVM associated with the
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(a) (b)

Fig. 3. (a) Constellation diagram for QAM16, (b) Definition of EVM

bit pattern (1010), which is translated into the complex base-band signal as (1.5+j0.5). We

input this signal into the transmitter under test three times. Suppose on the receiver side,

the received base-band signals correspond to (1.8+j0.3), (1.2+j0.8), and (1.5+j0.1), illus-

trated as "x" in Figure 4. The resulting RMS EVM from these symbols is 14%. If the bit

pattern is decoded however, we see that all three received symbols fall within the decision

boundary of the transmitted symbol, thus there will be no errors. This simple example

demonstrates the need to process the IQ data before it is decoded into the bit pattern to

calculate the EVM. In section 1.8.1, we show simulation results that qualitatively points

this shortcoming.

The steps involved in EVM computation can be summarized as follows:

• Detection of the start of the frame

• Estimation of the channel

• Normalizing the received signal
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Fig. 4. IQ signals, rather than IQ symbols are needed for EVM calculation

• Mapping

• Calculation the displacement of the received constellation points

• Computation of the RMS average of all errors

Since OFDM systems are coherent, the raw received signal has to be synchronized with the

transmitted signal. There is typically no standard-determined procedure. Typically, signal

processing methods are used to capture the start of the frame by using short and long

training sequences with custom signal processing methods [Liu(2003),Hanzo et al.(2003)].

Illustration of an OFDM sequence is given in Figure 5. One method to locate the starting

point is to use the auto-correlation function of the short signals contained in the header of

the packet to coarsely determine and confine the search region [Acar et al.(2008)]. Achiev-

able phase resolution of this method is limited due to noise. Therefore, additional steps

are used to exactly point the start of the frame. Fine tuning is achieved through utilizing

cyclic redundancy of long signals.
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The next step is estimation of the channel. Estimation of the channel is done using

the long symbols of the header, as has been suggested in the standard. Long symbols

contain predefined values of the same power, -1 and +1, with zero mean. If the channel is

frequency selective, long symbols obtained at the receiver side are of non-even energy. Since

each carrier is modulated with these zero-mean constant-energy signals, channel can be

estimated at all points of the carriers. Estimation of the channel is followed by normalizing

the signal using this channel model. Thus, effect of the channel on the received signal is

removed.

The next step is mapping the symbols obtained in the previous step onto the constella-

tion diagram. Although channel is estimated in order to remove its effect, it is not possible

to recover the transmitted symbols with no error. Noise and system non-idealities that are

explained in detail in the following sections, prevent error free detection of the symbols.

EVM is basically a measure of the amount of displacement of the received symbol from its

ideal constellation point. RMS value of the errors of all received symbols are averaged and

normalized using the total constellation power in order to obtain the EVM value.

1.3. Challenges in Measuring EVM

One of the challenges in measuring EVM is the test development time. A re-

ceiver/transmitter requires a complementary functioning test equipment to measure the

functionality of the device. For instance, testing of a transmitter requires down-converting

equipment and ATE (Automatic Test Equipment) programmed to decode the modulated

Fig. 5. OFDM sequence
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signal and analyze the distortion of the base-band signal. Calculating the EVM perfor-

mance of a device requires either generation or analysis of RF domain signals. If all the

RF/analog signal generation is done by the tester, multi-site operation would not be pos-

sible since testers typically have very limited parallelization capability when it comes to

RF/analog signal analysis. This bottleneck can be eliminated by employing fully charac-

terized down-converters and up-converters [Srinivasan et al.(2008),Acar et al.(2008)].

Another difficulty of calculating EVM is the computational burden required to pro-

cess and analyze the test signals. The first step of EVM calculation is the determi-

nation of the frame start. This step typically requires computationally intensive opera-

tions [Liu(2003),Hanzo et al.(2003)]. While there is no standard algorithm for this process,

the common thread in various proposed approaches is that they require multiple passes

through the received data. In [Srinivasan et al.(2008)], the authors aim at solving this

computational bottleneck problem by including DSPs on the load board. In this way, com-

plex operations of the receiver base-band can be offloaded to these DSPs, relieving the

tester. While very effective, such a test development effort requires extensive knowledge of

modulation/demodulation schemes as well as programming and debugging of the DSPs in

addition to the tester. These steps complicate the test development process.

Luckily, the transceiver itself is fully capable of performing these operations and they are

typically implemented in hardware, so no additional software is needed. Thus, we propose

to use the receiver of an identical transceiver to perform these complex steps on the load

board.
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1.4. Built-in EVM Measurement Set-Up

As explained in the previous section, for EVM calculation, access to IQ signal informa-

tion, rather than the decoded bit pattern is necessary. One solution that comes to mind

would be to provide external access to points J and K, in the digital subsystem in Figure

2. However, this approach would require that 16 bits of data be taken off-chip. Moreover,

these bits need to be interfaced with the tester, placing a bottleneck in terms of pin count.

Our goal is to measure the EVM on-chip by accessing the output of the de-mapper (L and

M) and provide a singe output that indicates the pass/fail state of the device.

1.4.1. Proposed Built-in EVM Measurement Set-Up. We propose to leave the job of

synchronization, and similar computation intensive operations to the device designed to

complement the DUT. The symbol pattern obtained at the output of the QAM mapper

block (points L and M in Figure 2(a)) is used to estimate the EVM value.

Clearly, the receiver that is used to extract the data introduces some level of distortion.

When the signal power is appreciable, as will be the case in a test environment, the EVM

contribution of the receiver is typically small [Gu(2005)] and can be decoupled from the

measurement result. Since the receiver on the load board can be fully characterized, the

following simple expression is sufficient to eliminate the effect of the receiver.

EVM2
TX = EVM2 − EVM2

RX (2.1)

It should be noted that unless very accurate RF instrumentation is used to directly

analyze the transmitter output, the devices on the load board always impose additional

error, and these errors need to be decoupled from the measurement results in the same

manner.
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Fig. 6. EVM and quantized EVM comparison without DFT

1.4.2. Built-in Measurement Concept. Since we use the decoded symbol pattern (L and

M) instead of using the signals at the output of the FFT block (J and K), the EVM value

calculated using our method is slightly different from the standard EVM. We virtually map

the decoded bit pattern to the constellation space and compare the locations of the received

and transmitted symbols. If the received symbol is identical to the transmitted symbol, the

instantaneous EVM is zero, and if they are not identical, the instantaneous EVM is given

by the distance of these symbols. We call the resulting EVM value from such quantized

information as EVMQ.

At first glance, this calculation can be done without any changes in the digital subsystem

at all. However, the measurement error in this case would be large. As a demonstration,

Figure 6 shows the EVM measured through the traditional method by analyzing the IQ

signals and EVMQ measured by relying only on the decoded bit pattern but without any

changes in the digital subsystem. Clearly, the error of EVMQ measurement is too large
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to be of practical use. This error basically is quantization error since symbols practically

quantize the constellation space; larger symbol distances result in larger errors. One may

consider reducing the overall signal power to reduce the symbol-to-symbol distance (eg.

through an attenuator at the output of the transmitter). However, such an approach only

sensitizes the device to noise, since error vector magnitude due to all other impairments

(i.e. carrier leakage, IQ mismatch, non-linearity) are scaled with the signal power.

The key is to be able to reduce the symbol distances without reducing the signal power.

To achieve this, we need to incorporate more symbols into the constellation. We call this

process constellation enhancement and the ratio of the number of symbols in the enhanced

constellation to the number of symbols in the original constellation as constellation enhance-

ment ratio (CER). Luckily, this process requires only minor changes to the symbol map-

per/demapper, which is a small component in the digital base-band [Cabral et al.(2006)],

in addition to a few small digital blocks to enable the computation, as we will discuss in

detail in the next section.

Figure 7 demonstrates the constellation enhancement concept. In Figure 7(a), we illus-

trate one symbol location in the original constellation together with the decision boundaries

and some added noise around it. In Figure 7(b), the complex IQ plane is divided with finer

granularity and the region corresponding to the original symbol location now yields 4 sepa-

rate regions. Since decision boundaries are tightened and noise remained the same, some of

the displaced symbols fall into the neighbor regions. As illustrated in Figure 7(b), displaced

symbols are shared by the 2nd, 3rd and 4th regions in addition to its correct region. Sym-

bols that fall in wrong regions are mapped into the middle of the corresponding region. For

instance, portion of the shaded area that falls into the 3rd region are mapped to the center

of the 3rd region. Similarly, parts of the shaded area falling into the 2nd and 4th regions
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are placed at the center of the 2nd and 4th regions respectively. EVM of the symbols falling

into the 1st region is zero, since all these symbols effectively fall on the correct constellation

point. As such, the EVM associated with these symbols will be underestimated whereas

EVM associated with symbols falling into the neighboring regions is overestimated. As

the number of symbols increases, performance of the quantized EVM approaches to the

standard EVM asymptotically. However, we do not need to improve the accuracy that

much, since the standard EVM also has a certain amount of uncertainty. A more detailed

explanation of the accuracy with respect to the number of constellation points is given in

the next section.

1.5. DFT

The performance of the proposed Quantized EVM calculation depends on how finely the

complex plane is divided, hence it depends on the number of bits per symbol. The maximum

allowed number of bits per symbol in the normal mode of operation is 6. Therefore, the

complex plane is divided into 64 regions. In the test mode, we increase this number by a

factor given by the CER.

Another factor affecting the accuracy of our method is the level of EVM, which is a

function of various types of impairments and noise. As the amount of impairment and

noise increases, probability of a symbol falling in a wrong region increases and therefore

contributes to the EVM calculated using our method. If impairment and noise is low, our

method requires finer granularity in order to match the standard EVM measurement. The

key is to make the right pass/fail decision based on EVM. Therefore, for circuits with an

EVM value close to the standard limit and/or exceeding it, we would like to make accurate

measurements. For circuits where the EVM value is much lower, underestimation does not
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cause any misclassification. We make our design decisions on the DFT circuit keeping these

constraints in mind. As an example, according to the IEEE 802.11 standard [iee(1999)], the

limit on the relative constellation error for transmitter is -25dB, which corresponds to an

EVM value of 5.6%. In the following section, we investigate the granularity level needed to

match the results of our method to the standard method. In doing so, we try to match the

measured EVMQ value to the standard defined EVM value when the EVM is near 5.6%.

1.5.1. Necessary DFT Modification. The proposed method requires a slight modification

to the symbol mapper/demapper block to support grid sizes that are smaller than defined

in the communication standard, additional circuitry to calculate EVM on-chip, and a linear

feedback shift register (LFSR) to generate the pseudo-random bit sequence.

In order to enable constellation enhancement, we need to increase the number of bits

per symbol. To avoid any changes to the ADCs and DACs in the system, we still want to

keep the 8-bit representation for the IQ signals. Thus, there is a limit to how far we can

enhance the constellation. It should be noted that the limit for the overall resolution of the

EVMQ measurement is the same as the traditional measurement as long as the bit width

limitation for I and Q signals is kept constant.

The constellation enhancement ratio is clearly proportional to the increase in the bit

width of IQ symbol representation. A one-bit increase in the IQ symbol width yields a

constellation enhancement ratio of 4. If we keep the 8-bit resolution for IQ signals, the

maximum constellation enhancement ratio we can obtain is 64.

The overall DFT for built-in EVM computation is given in Figure 8. The required DFT

modification to enable constellation enhancement is to change the symbol mapping/de-

mapping blocks. We add another mode (test mode) into the symbol mapper/demapper

table to support the enhanced constellation points. The coded IQ information is supplied
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Fig. 7. Constellation enhancement by coding more symbols

Fig. 8. Proposed DFT for built-in EVM measurement. (a) EVM computation block, (b)

Symbol Mapper/Demapper

to the IFFT block in the same manner as in normal mode of operation and there are no

additional modifications in the digital base-band.

35



In order to generate the same bit stream at the transmitter and receiver, we use an LFSR

that is shared by the transmitter and the receiver. For the DUT, the LFSR generates the

transmitter bit pattern, and for the golden receiver that performs the decoding operation,

the LFSR provides the bit pattern to compare against. The generated bit pattern needs to

be padded with long and short symbols to enable the receiver synchronization. These are

deterministic symbols, and are stored in a small piece of memory to add to the incoming

bit pattern.

In order to enable the EVM computation, additional digital blocks are necessary, as

shown in Figure 8. We propose an innovative method to calculate EVM using a small

set of digital circuitry. We exploit the coding scheme employed to transmit the signals

to calculate EVM in a very efficient way. Gray coded symbols differ only one bit from

each neighbor on the constellation diagram. Hence, dislocation of a symbol to a neighbor

region results in a single bit flip in the bit representation of the symbol. Moreover, the

coding can be adjusted in a way such that second and third neighbors can be detected by

counting the number of bit flips in the decoded IQ symbols. Using this property, we can

calculate the amount of displacement in terms of constellation regions by simply checking

the number of bit-flips in the received symbol. Since we obtain I and Q channel components

of each received symbol (M and L points), we can estimate the amount of displacement

in each direction. For instance, if the number of flips in the Q channel of a symbol is

one, received symbol is displaced by one symbol in Q direction. Note that we do not need

the direction of the displacement; hence, using only the number of bit flips is adequate to

obtain the displacement. Similarly, bit flips in I channel component of a symbol is due

to displacement in I direction in the IQ plane. The amount of displacement is obtained

through determining the number of bit flips in both of the received channels.
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The EVM calculation process is activated by switching the transceiver in testing mode.

As explained previously, the transmitter uses a pseudo-random test sequence as input in the

test mode. The same pseudo-random sequence is generated by using the same configuration

of LFSR in the receiver. The generated test sequence is fed directly to XOR blocks. The

other input of the XOR gates comes from de-mapper block of the receiver. The output of the

the XOR block is sent to a look-up table (LUT). We use an LUT to map the displacement

in terms of flips to the actual amount of displacement in the IQ diagram. According to the

constellation model we chose, each constellation point is separated by 1 unit in horizontal

and vertical direction, while nearest diagonals has an error energy of 2. The LUT is filled

with the Euclidean distances of the constellation points. The input to the LUT is the bit

errors, while the output is the square of the error vector magnitude of the received symbol.

The output of the LUT is fed to an accumulator. Therefore, the square of the error vector

magnitude is accumulated to give the total error in the received signal. This accumulated

value is compared to a predetermined threshold level in order to decide if the circuit passes

or fails the EVM test. If the accumulator overflows due to excessive EVM, a fail signal is

sent irregardless of the comparator output.

One way of determining the threshold value is to use the energy of the pseudo-random

sequence generated by LFSR. Since the configuration of the LFSR circuit is known by

the designer, the generated test sequence and its energy are also known. Hence, using

the allowed amount of EVM degradation, it is possible to calculate the threshold level.

Alternatively, one can use the average power of the constellation. Equation 2.2 relates the

average power of the constellation for the nearest horizontal/vertical neighbor distance of

1 unit to the number of symbols, S, in the constellation. Imposing the allowed limit on

EVM degradation on the calculated average constellation power yields the threshold level.
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In order to keep the size of the accumulator at a minimum level and to prevent the capacity

of accumulator to affect the result, we use the overflow bit of the accumulator to set the

fail bit.

Pav =
S − 1

6
(2.2)

1.6. Analytical Model

Since the proposed DFT needs to be incorporated into the design flow, we need to

determine the necessary constellation enhancement ratio (CER) before the analog/RF sub-

system is finalized. In order to enable this up-front DFT, we develop an analytical model

based on the specified EVM limit for the transmitter.

The worst case measurement error for EVMQ happens when all the EVM is due to

noise only and there is no displacement for the symbols due to other impairments. While

we will later show some simulation results to this point, intuitively this phenomenon can be

explained as follows: impairments such as carrier leakage, filter characteristics, and phase

offset displace the symbols from their original locations while noise generates a band around

it. Due to the original displacement, the probability that the enhanced symbols cross the

decision boundaries becomes higher.

Thus, our formulation juxtaposes the EVM limit on a Gaussian noise model and this

model is used to calculate and compare the EVMQ value with the EVM value to determine

a pessimistic CER.

This formulation is developed for no-translation and no-rotation without loosing the

generality; these terms can be easily incorporated by transforming Ii and Qj in the equa-

tion. Figure 9 illustrates derivation of the analytical model. Suppose that a symbol with
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Fig. 9. Analytic quantized EVM estimation

an ideal location of (Ii, Qj) is sent and we would like to estimate the probability of the re-

ceived symbol falling on the constellation point (Ia, Qb). We can estimate that probability

by integrating a Gaussian function centered at (Ii, Qj) with noise N0 inside the acceptable

region of the point (Ia, Qa). Calculating this probability for all constellation points, weigh-

ing them with the square of the distance from (Ii, Qj) and averaging them with the total

number of points yields the mean square error for the constellation point (Ii, Qj). Finally,

using outer loops of equation 2.3, we calculate the overall mean square error of the system.

Equation 2.3 is derived for square shaped constellation for the sake of simplicity, without

loosing the generality. Where, M represents the size of the constellation, Ia,min and Ia,max

represent the boundary regions of ath point in I axis, Qb,min and Qb,max represents the

boundary regions of bth point in Q axis, N0 represents noise level and EVM0 represents

the total power of the constellation.
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EVM ′Q =

√
S∑

i=1

√
S∑

j=1

√
S∑

a=1

√
S∑

b=1

((Ii − Ia)2 + (Qi −Qb)2) (2.3)

ˆ Ia,max

Ia,min

ˆ Qb,max

Qb,min

N2(Ii, Qi, Ia, Qb, N0)dxdy

EVMQ =
EVM ′Q
EVM0

(2.4)

We use equation 2.3 to calculate the minimum constellation enhancement ratio that

provides the desired accuracy. Equation 2.3 approximates the EVM calculation method as

the number of constellation approach to infinity. However, we do not have to approximate

the standard EVM value very accurately, since it has an inherent uncertainty due to the

randomly applied input. We need to measure EVMQ within the band of uncertainty of

EVM measurements in general.

We take the worst case for CER calculation, where there is only Gaussian noise and

no impairment in the system. Impairments move constellation points close to decision

boundaries and result in a higher symbol error rate, therefore better performance for our

method. Hence presence of impairments yields a lower CER.

To demonstrate that this analytical model correctly determines the necessary constel-

lation enhancement ratio, we compare the results from the analytical model to the actual

value of EVM. Figure 10 shows one example when all of the EVM is caused by noise in the

system (worst case), as we have taken in the analytical model. In this example, the actual

EVM is 10%. Based on the analytical model, we see that a constellation enhancement ratio

of 16 is needed to estimate the EVM within 1% error (within the bounds of uncertainty of

EVM). Simulations also confirm this result. In the next section, we will show that when
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Fig. 10. EVMQ and EVM vs CER

there are impairments in the circuit, the necessary constellation enhancement ratio is less

than what we determined up front. However, we do not believe that it would be good

engineering practice to rely on the badness of the circuit.
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The interesting behavior of the accuracy of EVMQ measurement at CER of 4 can

be explained as follows: as the CER increases, the measured EVM value increases. At

the crossover point, the IQ plane is divided finely enough that only a small number of

symbols cross over, but their effect on EVM is large since once the symbols cross over,

they are mapped onto the next symbol location. When the CER is increased further, the

overestimation reduces and the EVMQ accuracy increases monotonically. Based on this

analytical model, we determine that we need a CER of 16 to effectively measured the EVM

for WLAN systems (max EVM of 5.6%).

Note that the analytical model developed in this section does not take the effect of

gray code based distance estimation method. In this model, we assume that we know

the displacement amount in terms of minimum symbol separation. However, gray code

based distance calculation method does not yield the exact displacement amount. In the

experimental result section, we show that this effect is negligible for the selected CER. In

the next section, we provide the overhead analysis for a CER of 16.

1.7. DFT Overhead

Our proposed DFT technique requires changes to only very small blocks in the digital

subsystem. Nevertheless, we provide a detailed overhead analysis in this section.

In the testing mode, a larger constellation is used for the reasons mentioned in the

previous sections. For that purpose, mapper and de-mapper needs to be modified to support

a larger constellation size. This enhancement is achieved by employing one 5-to-32 decoder

for each I and Q channel and connecting the outputs of the decoder to the select input of

32 ROMs that contain 8 bit gray codes. Hence, I and Q channels are gray coded using the

gray codes in the ROMs. The code read from the RAMs are transferred to the FFT block
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via an encoder. Schematic of gray encoder for test mode is shown in Figure 8(b). Overhead

of the gray coding circuitry is given in Table 1. Another block we use in the transmitter is a

10-bits LFSR. Contribution of both LFSR blocks that are used in receiver and transmitter

is shown in Table 1.

On the receiver side, we use an S/P and four 5 bit buffers, as well as 2 5-bit XOR blocks.

Contribution of these components are given as the other category in Table 1. An 11-bit

accumulator is employed to handle the error magnitude of 320 test symbols, contribution

of this component is not significant. Table block is a 5x5 LUT, that contains 6 bits in each

entry to represent the error value. Note that the maximum amount of detectable distance

is 5, so the largest amount of detectable error is 50 according to our error calculation

scheme. Therefore 6 bits in each entry is adequate to represent the error. The output of

the accumulator is compared to the threshold level of the allowed EVM and fail bit is set if

accumulated error is larger than the threshold level or the overflow bit of the accumulator

is set.

1.8. Experimental Results

Increasing the number of constellation points has shown to be effective in improving

the performance of our proposed method in previous sections. In this section, we provide

simulation and hardware measurement result to validate the viability of our method.

1.8.1. Simulation Results. The simulation setup employed to verify the proposed

method is shown in Figure 11. This figure includes a typical WLAN OFDM system. Dig-

ital subsystem encodes the input bit stream using OFDM coding scheme and the output

signal is converted analog domain through 8 bit digital analog converters (DAC). OFDM

modulated analog signals are then up-converted to frequency ω0. Gain impairment, phase
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w/o DFT [mm2] w DFT [mm2]

Digital & Symbol 1.4 [Perels et al.(2005)] 1.4

RF 17.2 [Maeda et al.(2006)] 17.2

Transmitter/Mapper 0 0.00328

Receiver/Mapper 0 0.00328

Table 0 0.0003

LFSR 0 0.002

Others 0 0.00016

Total 18.6 18.607

Change 0 % 0.0485 %

Table 1. DFT overhead

impairment, carrier leakage and local oscillator phase noise are also injected to generate

impairments for the transmitter. Before the RF signal is fed back to the receiver, we super

impose additive white noise (AWGN) on the signal. Power of the noise is selected so that

BER is 10−3 at the out of the receiver. A similar set-up is used for the receiver. Standard

EVM is calculated using the data obtained at the output of the receiver FFT block. While

quantized EVM is calculated using our proposed method.

Figure 12 compares the EVM result calculated using the standard method and the

proposed method. Lines represent the mean of the calculated values, while error indicators

shows the 99.5% (3σ) confidence intervals of the curves. As shown in [Acar et al.(2008)],

and confirmed through our experiments here, the standard EVM is not a value that can be

calculated with 100% accuracy. There is an uncertainty in EVM due to randomly generated
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Fig. 11. Simulation Set-up (a) Transmitter, (b) Receiver

data. The EVM curve generated using our method works poorly for small constellations;

However, after a certain point it matches the standard EVM curve and remains in the

uncertainty band for increased number constellation points. Hence, there is an optimum

number of constellation points that minimizes the DFT cost while maintaining the required

level of accuracy. In Figure 12(a), results of two methods are compared with the influence

of AWGN noise only. Figure 12(b) confirms the result from the analytical model that, a

CER of 16 is adequate to measure EVM accurately enough in the absence of impairments.
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Fig. 12. Simulation results for various types of impairments. (a) Only noise, (b) 8%

gain impairment, (c) 5 degrees of phase impairment, (d) 5% gain and 3 degrees of phase

impairment.

Introducing impairments exacerbates EVM values, however, constellation size needed to

make our method accurate enough reduces. This is expected since impairments result

in larger mislocations and therefore increases the probability of a symbol falling in the

neighbor constellation region. Since our method relies on symbols falling in wrong regions,

performance of our method reaches the standard method for smaller constellation sizes.

Figures 12(b) and 12(c) show the EVM comparison for 8% gain and 5% phase impairment

respectively. We also incorporated local oscillator phase noise and carrier leakage effect

for these figures. In Figure 12(d), we show the combined effect of the gain and phase

impairments as well as LO phase noise and carrier leakage. Gain and phase impairments

are selected to be 5% and 3 degrees respectively. A typical value of -70 dBc/Hz is used for
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phase noise level and -40dB isolation level is selected between RF and LO signal. These

simulation results also confirm that the necessary CER is 16 to measure the EVM within

an error of 1%.

1.8.2. Hardware Measurement Results. We have used off-the shelf components for the

hardware measurement set-up. Since the degradation in the modulation quality is mainly

due to the analog part of the transmitter, we constructed the IQ modulation part only

using hardware components. The schematic of the transmitter system built for hardware

measurement is shown in Figure 13(a). The base-band input waveform is generated using

Matlab and fed into hardware set-up using an arbitrary wave generator (AWG). The output

of the receiver is measured and digitized by an oscilloscope and converted back to digital

domain. Digital data are processed in Matlab to obtain the original data back and the

measure the EVM. The measurement set-up of this step is exactly the same as the set-up

used in the previous section, except that IQ modulation/demodulation is performed using

hardware components. In all these steps, we have kept the 8-bit resolution limit for the IQ

signals. Figure 13(b) shows the picture of the implemented IQ modulator.

The results obtained from the hardware measurements are shown in Figure 14. The

straight line shows the mean of the standard EVM measurement and superimposed error

bars on this line show its 99.5% (3σ) confidence interval. The EVMQ curve is obtained

using our proposed method. These results show that EVM values that are calculated using

our method match the standard EVM measurement at a CER value of 4 and remain in

the acceptable accuracy level for the increasing number of constellations consistently. The

reason that this hardware set-up requires a lower CER for the same accuracy is that its

EVM is much larger compared to the standard defined EVM.
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Fig. 13. Hardware Set-up. (a) Schematic, (b) Implemented transmitter

1.9. Summary

In this section, we presented the constellation enhancement technique to enable low-

overhead built-in measurement of EVM for OFDM transmitters. EVM measurement re-

quires complex operations that need to be implemented at the tester, placing a burden on

its computational resources.
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Fig. 14. Hardware measurement results

We observe that the transceiver itself is designed to perform fully complementary op-

erations in the base-band, and it includes hardware to perform these complex operations

that otherwise would generate a computational bottleneck. As such, we propose to use the

receiver of an identical device on the load board to enable a low-cost EVM measurement.

Our EVM measurement method relies on the decoded bit pattern. One problem with using

the decoded bit pattern arises from the fact that the receiver fully decodes the bit pattern,

and the resulting information is typically of little use to measure EVM with an acceptable

accuracy. We solve this problem by incorporating a small DFT change in the digital base-

band to code more symbols into the constellation, thereby increasing the resolution and

reducing the error in EVM measurements. We propose an innovative method of measuring

EVM on-chip with very little overhead by exploiting the symbol coding scheme.

49



We show through experimentations conducted using a MATLAB model and hardware

measurements conducted using off-the-shelf transceiver components, that the accuracy of

our technique is within the uncertainty band of EVM with very reasonable area overhead.
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2. Accelerated Statistical Pre-silicon Evaluation/Analysis

Defective Parts Per Million (DPPM) is an important quality metric that indicates the

ratio of defective devices shipped to the customers. It is necessary to estimate and minimize

DPPM in order to meet the desired level of quality. However, DPPM estimation requires

statistical simulations, which are computationally costly if traditional methods are used. In

this work, we propose an efficient DPPM estimation method for analog circuits that greatly

reduces the computational burden. We employ a model based approach to selectively

simulate only consequential samples in DPPM estimation. We include methods to mitigate

the effect of model imperfection and robust model fitting to guarantee a consistent and

efficient estimation. Experimental results show that the proposed method achieves 10x to

25x reduction in the number of simulations for an RF receiver front-end circuit.

2.1. Background

Due to process variations, performance parameters of manufactured devices are prob-

abilistic and can be represented with a joint probability distribution function JPDF (s),

where s is the vector of specification parameters. DPPM can be defined as the integral of

the JPDF using equation (2.5).

DPPM = 106
ˆ
s∈ADPPM

JPDF (s)ds (2.5)

where ADPPM is the region of specification space where instances resulting in DPPM reside.

This equation cannot be evaluated deterministically due to the high dimensionality of the

space and the fact that the exact form of the JPDF is not known.
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The most widely used method for computing statistical parameters such as DPPM is

MC simulations due to its ease of implementation. Monte Carlo formulation of DPPM is

given in (2.6).

DPPMMC =
1

N

∑
i

1(Xiis DE), Xi ∼ JPDF (p) (2.6)

where Xi is sampled from JPDF (s), N is the total number of simulations, and 1(DE) is

the indicator function that returns 1 if its associated condition, DE (Defective Escape),

is true and 0 otherwise. Monte Carlo method yields an unbiased estimate of DPPM and

the variance can be estimated with equation (2.7), which is inversely proportional to
√
N ,

where N is the number of simulations.

var(DPPMMC) = 106
DPPMMC

N
(2.7)

Monte Carlo method enables to estimate DPPM in high dimensional space, but it is

inefficient, because sampled region is typically wide and most of the samples do not fall in

the probable region of the defect escapes. For example, if the defect escape level is on the

order of 10−3(DPPM = 1000), only 1 out of the 1000 simulations contribute to DPPM

in MC simulation. Therefore most of the effort is spent in simulating devices that bear no

useful information. This is not surprising since MC is a general purpose method and can

be used to estimate any statistical parameter at a cost of large number of simulations.

Importance sampling is a generic name for a class of methods that aim at only generating

instances that are relevant in order to improve efficiency. One way of achieving this efficiency

boost is to sample from an alternative distribution such that the probability of sampling

defect escapes is increased. This can be explained trough an example illustrated in Figure

15. p is the original distribution that device instances are sampled, and p∗ is the probability
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Fig. 15. Estimation variance can be reduced by using a more appropriate sampling distri-

bution, such as p’ instead of p. The optimal sampling distribution is p*.

distribution of the defect escapes. The figure shows that only a small fraction of the

generated samples overlap with the defect escape region. Hence, most of the samples do

not contribute to the estimated parameter in this example. Efficiency can be improved

by sampling from an alternative distribution that would increase the chance of generating

defect escape instances, such as from distribution p’. This is due to the fact that the

overlapping region of p’ and p* is larger. Using a different distribution results in bias, but

it can be easily removed through properly weighing the generated instances. Importance

sampling formulation of DPPM is given in (2.8).

DPPMimp = 106
ˆ
∀P

1(DE)

[
JPDF (p)

JPDF ′(p)

]
JPDF ′(p)dp (2.8)

where JPDF ′(p) is the alternative distribution. Equation (2.8) can be interpreted as the

weighted integral over the alternative distribution, as shown in (2.9).
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DPPMimp = 106
ˆ
∀P

1(DE)W (p) JPDF ′(p)dp (2.9)

W (p) =
JPDF (p)

JPDF ′(p)
(2.10)

W(p) is the weighing function that removes the bias. Finally, we put the equation above

into discreet form.

DPPMimp =
106

N

∑
i

1(DE)W (Xi), Xi ∼ JPDF ′(p) (2.11)

Importance sampling estimate is unbiased and its variance is given in (2.12).

var(DPPMimp) =
1

N
E{12(DE)W (p)−DPPM2

imp} (2.12)

It has been shown that importance sampling method can reduce and even eliminate

variation if an appropriate alternative distribution is found [Gentle(2003),Srinivasan(2002)].

This can be shown on the example illustrated in Figure 15. The optimal sampling distribu-

tion in this example that would yield minimum variance is p*, since all sampled instances

fall in the desired region.

In the digital domain, importance sampling is used to determine the fail probability of

various structures, such as SRAMs [Kanj et al.(2006)]. Importance regions are determined

based on the relation between the circuit speed and process parameters. For instance, it

is known that circuits get slower when the gate length is increased. Thus, in order to

estimate the fail probability based on speed, the gate length distribution should be shifted

up. Unfortunately, there is no systemic way of determining the importance sampling region.

This problem is especially though when multiple specifications need to be evaluated at the

54



same time. Aside from the complexity of relations between the specifications and the

process parameters, they may have conflicting requirements for importance regions.

2.2. Methodology

Finding the alternate distributions to generate important samples is a challenging task

in high dimensions. We propose an innovative method to sample from the desired region to

improve efficiency without finding an optimal distribution. We combine the MC simulator

with a model based behavior estimator to form an importance sampler. This method filters

out samples that are not relevant for the statistical parameter that we wish to estimate This

effectively enables us to sample from the desired region without knowing its distribution.

In order to achieve this goal, we first generate a training set of sample devices to form

a model predictor. This predictor need not be extremely accurate since we will use guard-

banding to reduce the impact of inaccuracies. However, it is important that it has a very

small number of outliers. In other words, there should be very few evaluation points with

gross prediction errors, whereas small prediction errors are inconsequential. Once the model

is formed, we generate a large number of MC samples and use the model to predict which

ones of these samples are potential contributors to DPPM. Only these potential contributors

are simulated to estimate the overall DPPM accurately.

A conceptually similar approach of using a model for sample selection has been employed

as a part in a tail probability estimation method [Singhee and Rutenbar(2008),Stratigopou-

los and Mir(2010)]. However, this method is devised for single dimensional tail distribution

fitting, and cannot be used for DPPM estimation. A simple classifier as a statistical block-

ade suffices in [Singhee and Rutenbar(2008), Stratigopoulos and Mir(2010)] since missing

samples that fall into the tail during the fitting phase is not catastrophic as long as these
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Fig. 16. Model Based Filtering Flow

misses do not bias the samples in the tail. For our purpose of model-based filtering, small

model errors are acceptable. Whereas, gross modeling errors result in misprediction.

Note that we do not rely solely on the model response and we do not assume that

the model is working perfectly. Otherwise there would be no reason to use the simulator.

Instead, we take precautions by defining guard regions to eliminate wrong decisions. The

flow of the proposed method is given in Figure 16.

Since we only simulate potential DPPM contributors, we need to assign weights to

filtered samples to remove the bias. We explain the weight selection method through the

algorithm we use to filter important samples, shown in Algorithm 17. These weights are

also used to estimate the variance of our technique. As explained earlier, variance is a

measure of robustness.
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k=0

do {

p=next MC sample

k++

} while [(s=Model(p)) isNot defectEscape]

pimp,j = p

Wimp,j = 1
k

Fig. 17. Filtering and weight assigning algorithm

The variable “k”, indicates the number of MC samples examined until a potential DPPM

contributor is found and simulated. The first sample in the MC set is selected and its

behavior is estimated using the model. The algorithm moves to the next MC sample if

estimated behavior does not potentially result in a defect escape and repeat this procedure

until a sample with desired properties is found. Then, the instance is added to the important

device set and it is assigned 1
k as weight. The algorithm is used repetitively to shrink the

large set MC samples into a much smaller set.

Once the important sample set is obtained, it is simulated and DPPM value is estimated

according to the simulation results using the equation below.

DPPM =
106

M

M∑
j

Wimp,j1(DE) (2.13)

2.3. Model Generation

Sampling from the desired region of the input space relies on the generated model that

maps process level input parameters into performance parameters. This model can be

generated in many ways, such as Response Surface Modeling, Artificial Neural Networks
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(ANN), and Support Vector Regression. In this paper, we chose to use ANN method due to

its ease of implementation. We used neural network toolbox of Matlab [mat(2010)] to fit a

regression model between process level parameters and performance parameters. The most

popular network topology for function estimation is 2 layer feed forward network, where

typically sigmoid and linear function are used as activation functions. However, we have

observed that this architecture does not yield the best results due to multidimensional and

nonlinear nature of the problem. Hence, we employed a 3 layer topology and used radial

basis, sigmoid, and linear function in the hidden layers respectively.

The network is trained by using a sample set of representative device instances. We

generate a sample set of devices in process space (ptrain) using MC sampling method and

simulate them to get their corresponding response (strain). Then, the network is trained

to achieve a good fit between the input (ptrain) and output parameters (strain) by assign-

ing appropriate weights. We used one of the most widely used methods in feed forward

topology, the gradient descend method, to assign the network weights. Training, testing

and verification sets are assigned to have 90%, 5%, and 5% of the total training sample

population, where samples are randomly assigned to these groups. Three layer approach

successfully models high dimensional system even for nonlinear performance parameters.

In order to ensure a good fit, we use multiple training sessions and use the network that

provides the best fit.

2.4. Adaptive Guard-banding and Compensating for Model Error

Although the generated ANN model produces fairly accurate estimates, error in estima-

tion is inevitable. A compensation mechanism to suppress the impact of model estimation

error is necessary to prevent bias in DPPM estimation. We will achieve this goal through
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Fig. 18. Model error results in mispredicted circuit behavior. Mispredicted samples are

shown in region A and B

adaptive guard-banding. First, let us explain the need for guard-banding. Suppose that for

simplicity, our goal is to estimate the fail probability of one specification using our tech-

nique. Figure 18 shows the fitting plot between the estimated parameter and the actual

parameter. The specification limits are given in dotted lines. Out of the four quadrants

shown, two quadrants contribute to error, which are shown by regions A and B. B is the

region where good devices are predicted as bad due to the modeling error. This type of er-

ror does not have an impact on DPPM estimation, since samples that are predicted as fails

are simulated. As a result, at the end of the simulation, we will find the actual outcome of

these samples. Therefore, the only effect is increasing the number of simulations. However,

region A type errors are influential. Since devices falling in this region are predicted as

good circuit and not simulated, they contribute to error in computing the fail probability.

Therefore, the main concern in model error compensation is to reduce the number of devices

falling in region A.
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In order to avoid region A type errors, we introduce guard bands to reduce the proba-

bility of a wrong decision. In order to identify a sample as a defect escape candidate, its

model response has to pass the tests that are in the measurement list and fail any of the

tests that are not measured. Decision process is illustrated in Figure 19, where Figure 19(a)

shows the distribution of a specification that is included in compacted list and Figure 19(b)

shows a distribution of a specification that is not measured. Dashed vertical lines show

the acceptable limit of the specifications. Important samples that potentially contribute to

DPPM ideally pass according to the measured specifications and fail at least one of the un-

measured specifications. However, some of the instances may be misclassified if the model

is not perfect. Influential ones are that fall close to the specification limits, since they can

easily move to the wrong region if the model makes an error.

It is important to note that guard bands are imposed in opposing directions for spec-

ifications that are included in the test list and specifications that are not included in the

test list. Since our goal is to reduce the chances of missing a sample that passes the tests

in the list but fails the unmeasured specifications. Guard bands for measured specifications

extend the specification limit while guard bands for unmeasured specification tighten the

specification limits.

Guard-banding invariably will increase the number of inconsequential samples that need

to be simulated. As a result, it will decrease the efficiency of the proposed technique. In

this work, we use an adaptive guard banding approach. The amount of guard band is

determined based on the modeling error, which we can estimate from the training set. We

use the RMS modeling error for samples that fall near the specification limits to impose

the guard bands. Guard band limits are illustrated with dotted vertical lines in Figure
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Fig. 19. Introducing guard band prevents the model from making wrong decisions.

19, where gi is the guard band coefficient setting the extent of the band and σε(i) is the

standard deviation of the residual error, defined in equation (2.14), for the ithspecification.

σ2ε =
1

NT

∑
i

(ŝi − si)2 (2.14)

2.5. Robust Model Generation

The neural network model predicts performance parameters of the training samples with

a high success rate. However, since the training set size is typically small, the generated

model may not be very successful in generalization, since the space that the training set
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covers may not be adequate to generate a robust fit. For instance, if a sample resides at a

point that is not covered by the training set samples in the input space, the model may fail

to correctly predict the result. Figure 20(a) shows the response of the ANN, whose fitting

parameter was 99.9% for the training set, but has greatly degraded to 90% when applied

on a large disjoint set of verification samples. The figure indicates that the ANN has a poor

performance in generalization.

We improve the robustness of the generated model by training with samples that are

generated from a wider input space. Process level parameters are typically assumed to be

Gaussian, hence we sample from artificially widened Gaussian distribution. This enables

us to cover a wider space and therefore robust estimation. Figure 20(b) shows the response

of the ANN that is trained with widely sampled set. The prediction performance is greatly

improved on the same large disjoint verification set.

2.6. Results

We apply the proposed method to an RF receiver front-end circuit, which consists of

a source degenerated cascode LNA (Low Noise Amplifier) and a double balanced Gilbert

mixer. The schematic of the circuit is given in Figure 21. Process variation is injected

in length and threshold voltage of the active devices and to passive components. Injected

process variation is 10% for active devices and 15% for passive devices. Specification pa-

rameters of the circuit are input and output matching (s11and s22), gain (s21), bandwidth,

center frequency, noise figure, power consumption, 1dB compression point, 3rdand 2nd or

order input referred intercept point.

Performance of the proposed method is evaluated and compared with the Monte Carlo

method and a re-sampling based method [Stratigopoulos et al.(2009b)]. 100k device in-
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Fig. 20. Input space needs to be properly sampled to achieve a good fit. In (a), the model

response is poor due to limited size of the training set. However, goodness of fit can be

improved by sampling from wider distribution for the same size of training instances.

stances are generated and simulated in the Monte Carlo approach. For our method, we

first simulate 5k samples, which is used for training, and simulate only filtered important
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Fig. 21. Experimental circuit: LNA-Mixer

DPPM DPPM-σ

MC Proposed *[] MC Proposed *[]

TL #1 1290 1220 2880 114 110 170

TL #2 3030 3030 8820 174 174 300

TL #3 3840 3140 4370 196 177 208

TL #4 1670 1640 1660 130 128 129

TL #5 5430 5390 5386 233 232 714

TL #6 2880 2760 4090 170 166 202

*[]= [Stratigopoulos et al.(2009b)]

Table 2. Estimation result and their corresponding standard deviation (TL=Test List)
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samples. For fair comparison, we used the same data set that is used for Monte Carlo

simulation as initial sample set. Simulations of method in [Stratigopoulos et al.(2009b)] is

done by using 5k instances for training and regenerating 100k instances using the training

information. Since we target DPPM estimation in this work, we compare DPPM estima-

tion performance of the three methods. DPPM depends on the selected subset of tests.

We randomly generated 7 test list selecting from the 10 specifications of the circuit. Sim-

ulation results are shown in Table 2. Evaluation results of estimated DPPM values and

their corresponding standard deviation are shown for 6 different test lists in separate row.

Results show that the proposed method is able to yield very close results compared to the

Monte Carlo method, which we use as the baseline of evaluating our method. Compared

to the MC method estimated level is acceptable and has an acceptable error. The variance

of the proposed technique is either smaller or equal to the variance of the baseline MC

simulation. The results of [Stratigopoulos et al.(2009b)] indicates that the method yields

good estimates for some of the test lists but not for all of them, therefore is not consistent.

Table 3 shows the computation time improvement of our technique compared with the

baseline Monte-Carlo method. Number of required simulations after filtering are listed in

the 2nd and 3rd column in Table 3 for MC and the proposed method. Results show that

10x to 25x reduction in number of simulations is achieved compared with MC method.

Total simulation time, including the training time is listed in the 4th and 5th column of the

table. Achieved overall simulation time reduction is approximately 18 fold according to the

results. Note that the 100k MC simulations have a DPPM variation on the order of 102. In

order to achieve higher accuracy, several million simulations may be necessary. Also note

that the majority of simulation time for our technique is the training phase. For instance,

for 1 million MC samples, we can still use the ANN trained by 5k samples, and the number
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# of simulations Total Simulation Time

MC Proposed MC [Hr] Proposed [Hr]

TL #1 100k 424 1100 60

TL #2 100k 743 1100 63

TL #3 100k 958 1100 66

TL #4 100k 216 1100 57

TL #5 100k 574 1100 61

TL #6 100k 521 1100 61

(TL=Test List)

Table 3. The number of required simulations, and total simulation time for each method.

of required simulations will scale up by 10, which would still be less than 1k. As a result,

total computation time savings from our technique would be nearly 200x.

2.7. Summary

We presented an efficient methodology to estimate DPPM in considerably shorter time.

A model based approach is employed to successfully select only the information containing

device samples for simulation. In this two step approach, we first selected potential DPPM

contributors through a model based filter and then simulated the filtered important samples.

We also addressed the issue of errors in sample selection due to model imperfection and

robust training. Our proposed method outperformed the Monte Carlo method by 10x-25x

for the experimental circuit used in this work.

The proposed work is versatile in the sense that it is not circuit specific. The method is

very effective in reducing the simulation time because contrary to the generic Monte Carlo
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method, our technique is focused on a particular statistical parameter. The idea can be

easily generalized to estimate statistical parameters other than DPPM.

The method is compatible with the widely adopted MC method, it requires only inser-

tion of the filtering step without changing the simulation setup.
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3. Defect Oriented Test Selection

Analog fault modeling (AFM) provides a quantitative measure of quality and insight

into defective device behavior. However, the high computational burden typically associated

with fault simulation makes it unappealing for industrial applications. We propose an

efficient methodology to reduce computational burden of the AFM method by exploiting

the hierarchical nature of process variation. We apply the proposed methodology on an

industrial SerDes TX Driver circuit and achieve 98% simulation time reduction. We quantify

defect impact with a defect severity measure

3.1. Analog Fault Modeling Approach

We focus on structural defects and use resistive opens and shorts which are commonly

used defect models. The inclusion of frequency related defect models as discussed in [Acar

and Ozev(2008)] was deemed unnecessary for this evaluation. Since defect size can vary, we

investigate multiple resistance values for each defect location to avoid incorrect conclusions

on defect coverage.

3.1.1. Defect Oriented Simulation Flow. Defect oriented simulation can be separated

into four steps: defect list generation, defect injection, simulation, and defect assessment.

1. Defect list is generated examining the schematic or the layout of the circuit. This

list includes possible defects generated during manufacturing process due to various

defect mechanisms, such as extra metal deposition.

2. Assuming single defect model, defects are injected to the circuit one at a time.

3. Defective circuits are simulated.
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4. Performance parameters are analyzed for specification or test result violations and a

coverage table is generated.

For this study we generated the defect list via the schematic method. Generating a defect

list via a layout analysis [Meixner and Maly(1991)] results in the most accurate defect list

and offers a ranking of defects based process defect statistics. However as it is an established

technique we wanted to focus on the simulation challenges of including process variation.

In addition for test coverage analysis waiting for a layout does not enable improvement of

test coverage with early feedback. The results from performing AFM at the schematic level

can be used to improve defect robustness.

3.1.2. Process Variation Model. Although circuits are designed to tolerate process vari-

ation, when combined with defects, process variation can result in unpredictable conse-

quences. Therefore, it is necessary to incorporate the effect of process variation.

Process variation consists of several layers. We group these layers into high-level and

low-level variation such that we separate correlated and uncorrelated variation. We define

high level variation as the overall effect of lot-to-lot, wafer-to-wafer, and die-to-die variation.

Low-level variation is defined as the effect of WID (aka mismatch) variation. High-level

variation is typically higher and varies parameters (e.g. transistor Vt) of the same nature at

the same rate; hence, it is common mode variation. Low-level variation can be considered

as independent variation.

Splitting the variation enables us to conduct analysis in two consecutive steps. First,

the circuit is subjected to high-level variation through sampling device parameters from the

statistical distribution model of high level variation. In this work, a skew based statistical

model is employed. Conceptual representation of the model is provided in Figure 22. The

figure shows fast and slow corners of the silicon for important process level parameters.
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Fig. 22. Skews Model for Process Variation

High level variation is represented with a number of skew points that bound the most

likely region of the distribution. In the second step, Monte Carlo simulation on selected

transistors is conducted for each skew point to simulate for the effect of WID variation.

Considering that there may be many possible defects and simulating for each defective

circuit for process variation requires sampling a large number of device instances, it is

not surprising that defect oriented approach is computationally expensive. In this work, we

show how we can mitigate the computation burden and reduce simulation time substantially

by exploiting several observations. These will be described in the next subsection.

3.2. Computationally Efficient Defect Simulation Strategy

Simulation process of our approach consists of three consecutive steps;

1. Simulating the typical behavior of defective circuits

2. Simulating high level variation for each defective circuit

3. Simulating low level variation for each defective circuit
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The third step is computationally the most expensive. Therefore, skipping this step reduces

the simulation time appreciably. To this end, we make use of four observations.

• Impact of high level variation differs for fault-free and faulty devices. Process variation

for defective devices cannot be predicted from the fault free simulation results. We

illustrate this observation through a sample defect. Figure 23 shows the response of

a short defect we have analyzed. X-axis shows the resistance values of the defect

models ranging from 1 to 5k ohms. Y-axis shows the response in terms of one sample

performance parameters. Red dashed lines indicate the range of fault free response in

presence of process variation. Vertical blue bars show the range of defective response

in presence of process variation for six different defect models. Analysis of several

defect responses reveals that response variation depends on the defect model and it

cannot be estimated from fault free response. Therefore, it is not possible to skip the

second step of simulations.

• Hierarchical process model reduces computational burden. Process variation is typi-

cally emulated by sampling from a parametric distribution and this approach requires

a large number of device instances to be sampled. Since skew parameters are much

smaller in number, an exhaustive evaluation of the high level process space is possi-

ble by separating the WID variation from high level variation. The total number of

simulated skews is 7.

• The effect of WID variation is similar for faulty and fault free circuits. Although

high-level variation differs for fault-free circuits and faulty circuits, WID variation

results in similar tolerance range for both fault free and faulty circuits (see Figure

24).
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Fig. 23. Performance parameters in presence of a short between the output node and

ground

Therefore, within die variation level obtained for fault-free circuits can often be used as

a guide to estimate WID variation for defective circuits. In cases where WID variation can

be estimated with high confidence, mismatch simulation can be avoided. Therefore, this

observation enables us to reduce to number of 3rd step simulations.

• Analysis of the circuit architecture enables further reduction in simulation time. Defect

extraction effort and simulation time can be significantly reduced by isolating sub-blocks

from the circuit and simulating them.
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Fig. 24. WID impact: short between output node and ground

3.3. Case Study: PCI-Express TX Driver

We demonstrate our feasible AFM method on a PCI- Express TX analog front-end

circuit in a 65nm process.

3.3.1. Circuit Background:PCI-Express TX Driver Circuit. We chose to analyze the

analog driver circuit, which is the outmost circuit interfacing the channel. The driver

circuit is a 5 bit source series terminated digital to analog converter [Menolfi et al.(2007)].

High level diagram of the driver is illustrated in Figure 25. Each incoming bit is connected

to a set of identical cell circuits. Each bit is connected to 2n cells, where n is the significance

number of the bits. The driver generates signal levels proportional to the number of the

active cells. Note this is design for a 65nm process.
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Fig. 25. High-level representation of the Tx driver

3.3.2. Simulation Setup. High level representation of the simulation setup is shown in

Figure 26. We included the test environment model to obtain realistic responses. Pseudo

random input is applied at the input, coded according to the PCI express standard. We

evaluated the TX Driver performance with respect to three commonly used test parameters

for high speed links: eye height, eye width, and eye offset [Mak et al.(2004)]. Eye height

and width measure the vertical and horizontal opening of the eye diagram, while eye offset

measures vertical shift of the eye. Eye height is typically determined via voltage margining

[Meixner et al.(2008)] method by introducing a common mode shift until the signal becomes

undetectable. Similarly, eye width is measured through time margining; introducing a shift

in time domain. Eye offset can be determined by computing the average integral of the

differential input.

3.4. Defect List Generation and Defect Equality

Defect list is generated by analyzing the circuit to find possible defect locations. We

exploit the modularity of the driver to reduce the defect list extraction effort. Since all

cells are identical, examining only one cell suffices to generate the complete defect list. The
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Fig. 26. Simulation setup

generated defect list can be duplicated for the other cell circuits in the driver. Also, the cell

circuit has a symmetric structure enabling further effort saving through examining only

one half of the cell circuit. However, identical defects in various building blocks do not

necessarily result in identical behavior.

Even though all cells are identical, their response may differ due to differing input bit

patterns. We group the cells with identical inputs. Simulation for each group is necessary

to obtain an accurate overall response. For this design, cells are organized into 4 groups

depending on input bits connected. A further reduction can be obtained through symmetric

architecture of the cells. The overall simulation savings using architectural information are

discussed in the results section.

A defect list of 17 shorts and 15 opens is generated through examining the cell schematic

using practical heuristics for opens and shorts as follows:

• All nodes can be shorted to either VCC or Vss

• For all Transistors Gate to Drain, Gate to Source and Drain to source shorts included

• Opens introduced at all likely junctions
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3.5. Defect Injection

Defect-oriented simulation requires knowledge on the circuit level model of the defects.

Shorts and Opens are both modeled with resistors. Traditionally, short defects are assigned

1 ohm and open defects are assigned a large 1M ohms. However, depending on the defect

mechanism and the defect size, defect models can assume a wide range of resistance values.

In this work, a realistic range of defect resistances for the 65nm process was chosen for

simulation as follows:

• Shorts: 1, 100, 1K, 2k, 5K Ohms

• Opens: 1k, 2K, 5K, 10K, 100K, Infinity ohms.

3.6. Simulation Flow

Figure 27 shows the simulation flow. We start by simulating the fault-free circuit which

yields the fault-free response in the presence of high-level and low-level process variation.

These results serve as a reference to assess defective responses.

Defective circuits go through a similar flow; however, we apply a pruning method to

reduce simulation time. First two steps of the simulation are necessary for all defects. The

third step may be dropped in cases where WID variation of a defective device is guaranteed

not to change the pass/fail criteria. The proposed pruning algorithm decides whether a

defective device needs to be simulated for WID variation.

3.7. Pruning Algorithm

Once we obtain the typical response and high-level variation response of defective cir-

cuits through first two simulation steps, we can estimate worst case response of WID varia-
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Fig. 27. Simulation Flow

tion utilizing WID variation results obtained for the fault-free circuit. Worst case variation

limits are defined using the equations listed below.

ppi,min = min(ppi,skew{j} − 6 · std(ppi,FF,WID)) (2.15)

ppi,max = max(ppi,skew{j} + 6 · std(ppi,FF,WID)) (2.16)

speci,min < ppi,min < ppi,max < speci,max (2.17)

ppi,skewj is the ith performance parameter for jth skew, where j is the skew index.

Std(ppFF,WID) is the standard deviation of the response of ith performance parameter

for WID variation. Since WID variation does not change considerably for fault-free and

defective circuits (observation #3), we use fault-free WID variation amount as a guide

to estimate the worst case scenario for defective responses. To increase the confidence of
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the approach, we chose 6σ window. Equations (2.15) and (2.16) yield a minimum and a

maximum worst case point for the performance parameter of defective circuit.

We define a defect as critical if it does not satisfy Equation (2.17) for any of the defect

models. Critical defect concept can be explained via Figure 28 which illustrates the response

obtained for a critical defect for 3 defect models. Red dashed lines show the acceptable

region confined by minimum and maximum specification limits. Vertical lines show the

worst case response range, where solid circles at the bottom and the top of the lines are

ppi,min and ppi,max points respectively. According to our pruning strategy, if any of the

behaviors fall outside of the acceptable region, a defect is considered as critical. In Figure

(28), defective response violates the criteria given in Equation (2.17) for the first two defect

resistance values; hence it is identified as critical.

This algorithm identifies the defects that are susceptible to WID variation. For example,

the response range for the second defect model in Figure 28 intersects with one of the

specification limits. Hence, there may be a set of device instances for this particular defect,

whose performance parameters fall very close to the boundary. These instances can easily
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be pushed to the other side to the limit by WID variation. Pruning algorithm guarantees

to capture those cases in the specified defect resistance range.

3.8. Fault Coverage Assessment

Fault coverage assessment and pruning algorithm requires an acceptable region defini-

tion of the performance parameters. These specifications are given by the designer. For the

circuit in this study, the specifications are as follows:

• Eye Height (min): 80mV

• Eye Width (min): 118ps

• Offset: +/- 200mV

Depending on the fault location and the defect size, each fault may not result in a speci-

fication violation. Our goal is to compute the probability of specification of violation for

each fault and the probability of detecting this violation by one of the three tests defined

above. We use these two measures to calculate fault coverage. Fault coverage is defined

below as:
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FPFi = Pr

 device with fault Fi

fails at least one spec



DP
Tj
Fi

= Pr

 device with fault

Fi fails test Tj



FaultCoverage
Tj
Fi

= Pr


device with fault Fi

fails test Tjand at

least one specification


FaultCoverage

Tj
Fi

= 100
DP

Tj
Fi

FPFi

(2.18)

The above equation is valid if the test (Tj) set consists of direct specification based

tests.

3.9. Analysis of Design Robustness with Respect to Defects

The impact of defects on performance may be substantially different; some defects de-

grade the performance severely and deserve more attention. A priori knowledge of such

sensitive defect locations can be used by designers to build defect-robust circuits. For in-

stance, if the drain of a transistor is sensitive to an open defect, placing multiple connectors

(vias) at the drain will make the design more robust against this defect.

In order to assess the impact level of a defect, we define the defect severity (DS) metric

as described by Equation (2.19).

DS(R) =


ppi,typ(R)−ppFF,typ

specmax−ppFF,typ
, if ppi,typ > ppFF,typ

ppi,typ(R)−ppFF,typ

ppFF,typ−specmin
, else

(2.19)
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Fig. 29. Normalized defect severity indicates the defect impact

where, ppi,typ is the ith performance parameter for of the typical skew and ppFF,typ is

performance parameter of the fault-free response for typical skew. This formulation defines

the deviation of the response from the nominal in terms of allowed deviation. Defect

severity metric is illustrated in Figure 29. The vertical dashed line shows the deviation of a

performance parameter for a defect with a particular resistance model. DS metric is simply

the ratio of the length of the vertical dashed line to the length of the vertical solid line for

this particular example. DS is a function of defect resistance value.

We define another metric, DSS (Defect Severity Score), to estimate the severity condi-

tioned on defect resistance distribution in Equation (2.19). This metric incorporates the

statistical distribution of defect resistance value.

DSS =

ˆ ∞
0

DS(R)pdf(R)dR (2.20)

where Pdf(R) is the probability distribution function of defect resistance distribution. DSS

indicates the severity given a particular defect takes place in the device. However, the

probability of that particular defect may be low, which would obviate the attempt to alter

the design to make circuit robust for that particular defect. Or the probability may be high
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Time [Hr]

Sim. Step #1, Typical 12

Sim. Step #2, Process skew 96

Sim. Step #3, WID 1296

Table 4. Simulation time

which would make it important to alter the design for improved robust operation. Expected

value of DSS can be estimated by incorporating probabilities of the defect occurrences

through weighing DSSs with defect occurrence probabilities. Expected defect severity score

(EDSS) metric is defined in Equation (2.20).

EDSSk = Pr (Defectk)DSSk (2.21)

where, k is the defect index and Pr(Defectk) is the probability of occurrence of kth defect.

Ordering the defects with respect to EDSS enables us to assess the realistic impact of the

defects and devote resources such as redesign effort and die area more efficiently.

3.10. Results

The proposed simulation flow was applied to the PCI express driver circuit. Simulations

were run on 3GHz Quad core machines using multiple threads. We report simulation time

in terms of equivalent CPU time of a single core machine. Table (4) lists the duration of

each simulation step. In the first two steps, all defects are simulated, while in last step only

the 18 defects that are identified as critical in the pruning step are simulated. The most

significant contributor is the WID variation simulation.
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Final

Simulated
No pruning

No defect

equality

Time [Hr] 1404 9468 71010

Saving 85.2% 98%

Table 5. Simulation time savings

Results in Table (5) show that simulation time without pruning is 9468 CPU hours,

while it is 1404 CPU hours with the proposed pruning algorithm, saving 85.2% of the

simulation time.

Defect equality approach enables simulation time reduction as well. 4 out of 15 cells

are simulated due to the identical structure of the cells, and only one half of the defects per

cell are injected thanks to symmetry. Hence, the overall saving of the pruning and defect

equality approach is 98%. Without defect equality, the required simulation time is 71010

(extrapolated) hours.

3.10.1. Fail Probability and Per-Test Fault Coverage. 32 defects for 4 different cells and

2 defects that are common to all cells are simulated for 6 defect models. Out of 130 defect

types, only 18 of them proved to be critical. This suggests that not all defects result in a

specification violation. Defect coverage table is shown in Table (6). The leftmost column

shows in which cell the defects are located. The second column indicates the type of the

defects, the 3rd column shows fail probability, and the rest of the columns show the coverage

of faults for individual performance parameters.

Results show that faults are fully covered by eye height and eye width test and eye

offset test does not improve the coverage. This information enables us to optimize test
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Bit# type FPFi

Fault Coverage

Eye Height [%] Eye Width [%] Eye offset [%]

all short 0.50 80.96 100 66.66

all short 0.50 42.86 100 19.04

2 short 0.33 100 0 0

2 short 0.50 100 0 0

2 short 0.33 100 21.42 0

2 short 0.50 100 0 0

2 short 0.50 100 33.34 0

2 short 0.36 100 0 0

2 short 0.67 100 0 0

2 short 0.50 100 33.34 0

2 open 0.67 100 21.43 0

2 open 0.74 100 12.90 0

2 open 0.26 100 0 0

2 open 0.67 100 21.43 0

3 short 0.14 0 100 0

3 short 0.33 0 100 0

4 short 0.14 0 100 0

4 short 0.17 0 100 0

Table 6. Fail probability and fault coverage table
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process by dropping redundant tests and ordering tests to reduce the expected test time.

For instance, we can drop eye offset test, and scheduling eye height test before eye width

test will reduce the expected test time for fails. This assumes defects are equally likely.

For this case study the analysis is straightforward to conclude by manual observation for

this case study, algorithms can be developed for test optimization when the number of

specifications is much higher.

3.10.2. Analysis of Design Robustness. Based on the fault simulation results, only 18

out of 130 defects result in failure. Therefore, schematic based analysis showed that the

circuit can be considered robust with respect to most of the defects. In order to further

improve robustness, we only need to focus on these 18 sensitive defects.

Robust design techniques can be applied at the layout level by locally laying devices out

and routing wires to reduce the probability of a failure at a potential cost of area. Defect

severity measure enables one to optimize the cost of this effort by prioritizing via defect

impact.

Equations (2.18)-(2.20) can be used to obtain the severity of the defects to improve

the design for defect robust operation. Defect resistance distribution, pdf(R), is considered

uniform for 65nm process based upon previous internal analysis. In this work we assumed

equal occurrence probability for all defects (due to schematic based defect generation).

These two assumptions reduce equations (2.20) and (2.21) to equation (2.19). Hence, we

used only equation (2.19) to evaluate the severity of the defects.

Figure (30) shows defect severity plot of the 18 critical defects. X-axis shows the number

each defect and y-axis shows severity in terms of DS parameter. The first 14 of the bars are

for short defects and the last 4 bars are for open defects. The contribution of each defect
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Fig. 30. Defect severity

resistance model is represented with a different color. Height of the bars indicates which

defect is more important, providing useful information to improve defect robustness.

According to these results, the most influential defect is the 9th, therefore it should be

addressed first. The 1st and the 6th defects are next in the priority list. Defect priority

list enables the layout engineer to devote the limited chip area to important defects more

efficiently.

3.11. Summary

We presented an efficient implementation methodology for AFM technique on an in

industrial SerDes driver circuit using an industry process and its associated process vari-

ation. Results show 98% simulation time reduction compared to the traditional AFM

implementation. Given the trend in VLSI design to rely on IP blocks that would be used

for multiple products, the simulation investment in assessing an IP’s analog fault coverage

is worthwhile. The AFM assessment permitted a realistic assessment of the manufacturing
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tests. The resulting 18 defective circuits had any significant impact and that eye height

and width together provide complete fault coverage. In addition, we suggested improving

design robustness by defining a defect severity measure and assessing it on all 18 defects.

This measurement enabled us to rank their impact and hence, to improve the circuit layout.

There exist several directions for future work. The most immediate is to follow our

case study with actual silicon results. A simple experiment would be to assess the overlap

between eye height and width measurements. Next would be to apply this methodology

to more complex analog circuits e.g. a clock data recovery circuit. Out of the four basic

observations that we utilize to make AFM efficient, the first two are general and apply to

all circuits. Utilization of last two observations which employ circuit specific information

(symmetry and WID variation) while not necessary, will significantly help to boost the

efficiency as demonstrated in this paper. As analog circuits often have multiple identical

elements and differential circuits are required in SerDes like devices it is not unrealistic to

presume these can be used to advantage. Finally the focus of this work has been on analog

fault coverage so another direction to apply this work is to the much harder problem of

analog yield prediction.
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CHAPTER 3

Post-Silicon Test Strategies: High Volume Test Optimization

1. Per-device Adaptive Test for Analog/RF Circuits

We present an adaptive test flow for mixed-signal circuits that aims at optimizing the

test set no a per-device basis so that more test resources can be devoted to marginal devices

whereas devices that are not marginal are passed with less testing. Cumulative statistics

of the process are monitored using a differential entropy based approach and updated

only when necessary. Thus, process shift is captured and continuously incorporated into

the analysis. We also include provisions to identify potentially defective devices and test

them more extensively since these devices do not conform to learned collective information.

We conduct experiments on an LNA circuit in simulations and apply our techniques to

production data of two distinct industrial circuits. Both the simulation results and the

results on large-scale production data show that adaptive test provides the best trade-off

between test time and test quality as measured in terms of defective parts per million.

1.1. Methodology

In [Yilmaz and Ozev(2008),Yilmaz and Ozev(2009a)] we have shown that the perfor-

mance limitation of static compaction methods can be removed through adaptive testing,

where information obtained during the test phase can be incorporated and used to predict

the behavior of each individual device under test (DUT). If measurement results of con-

ducted tests can give an insight about the DUT, we can adapt testing process to the DUT

and extract the most information in fewer executed tests. In [Yilmaz and Ozev(2009a)]

we have employed a simple correlator that relates the value of a measured specification

to the pass probability of thus-far unmeasured specifications. This correlation is used to
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update the pass probability of each unmeasured specification and decide which tests can

be safely skipped. In this work, we develop several new methodologies to better estimate

the pass probability of unmeasured specifications. Moreover, we provide mechanisms to

identify potentially defective devices and subject them to more exhaustive testing.

1.2. Adaptive Test Problem Formulation

First, we formulate the adaptive test problem. The relation between circuit parameters

and specification parameters can be represented using a set of equations, as shown in

equation(3.1).

s1 = f1(x1, x2, . . . , xN ) (3.1)

s2 = f2(x1, x2, . . . , xN )

...

sM = fM (x1, x2, . . . , xN )

where, fi(x)′s are system functions that relate circuit parameters, such as resistance, ca-

pacitance, width/length denoted with x to specification domain parameters, si. Each spec-

ification has an acceptable region in order to identify defective devices before shipping.

Measurement results (si) of ithtest must satisfy the condition given in equation (3.2), where

spec−i and spec
+
i are lower and upper specification limits respectively.

spec−i < si < spec+i (3.2)

Since circuit parameters vary due to the process variation, input parameters of the system

function are probabilistic.
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Therefore, output parameters are also probabilistic. Given the distribution of the input

parameters, it is possible to obtain the joint distribution of the specification parameters

using the system transfer function. Once we obtain the joint probability distribution of

specification parameters, we can compute pass probability of each DUT using equation

given in equation (3.3).

p(pass) =

˙ spec+i

spec−i

pdf(s)ds (3.3)

If we do not have information about the DUT, the best we can do is to predict its pass-

ing/failing probability using cumulative information. However, after each test, information

is revealed about the behavior of the DUT. Conducting a test on the DUT yields one of the

specification parameters and therefore reduces the degree of integration. If there is a cor-

relation between the measured specification parameter and unmeasured ones, probability

distribution function is altered resulting in a change in passing probability. Updating the

joint distribution of specification parameters can be viewed as a learning process. Hence,

we learn more about the DUT after each measurement.

The objective of adaptive testing is to use this information to adapt to the behavior of

the DUT and skip tests that are guaranteed to pass with high confidence. If there is corre-

lation between specifications, after several measurements, pass probability of unmeasured

specifications should either reduce or increase. Hence, we can skip the tests that we are

confident will pass without jeopardizing test quality while reducing test time.

In reality, however, most of the above mentioned model parameters such as system

transfer function, distribution profiles of circuit components and therefore joint distribution

of specification parameters are not known. However the JPDF can still be generated using a

training set and kernel based estimation methods [Stratigopoulos et al.(2009b),Scott(2008)].
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1.3. Background: Kernel Based Estimation

In this work, we employ a kernel based probability distribution estimation approach

for our adaptive testing technique. Kernel based estimation enables us to capture the cor-

relations between specification parameters and update the JPDF after each measurement.

Moreover, generated PDF provides an inherent mechanism to decide which tests to conduct.

In this section, preliminary information related to kernel based estimation is provided.

Kernel function is defined in equation (3.4). Among several well known kernels, such as

Epanechnikov, Gaussian, and Bi-weigh, we chose to use Gaussian distribution as kernel in

order to benefit from the large literature devoted to its analysis. For our purpose, selection

of a kernel was not a critical concern; we obtained similar results with different kernels.

Equation (3.5) is the PDF function estimated using kernels, where Si is a vector containing

specification parameters of ithdevice in the training set, h is the kernel width, wi is kernel

weight, n is the size of training set and M is the number of specifications.

∞̂

−∞

K(x)dx = 1 (3.4)

ˆpdf(s) =
1

n
∏
hj

n∑
i=1

wi

M∏
j

K

(
sj − Si,j
hj

)
(3.5)

Kernel based PDF estimation technique simply superimposes kernels (K(x)) on each

observation in training set (Si). It can be viewed as convolution of the training set data

with the kernel. Parameter h sets the width of the kernel, hence we can adjust the width

in order to achieve the best fit. Equation (3.6) specifies the optimum width for Gaussian

kernel in order to minimize the mean integrated squared error (MISE), where σj is standard

deviation of the jth specification parameters estimated using standard deviation estimator,

and d is the number of dimensions (non measured parameters).
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hj =

(
4

d+ 2

) 1
d+4

σjn
− 1

d+4 (3.6)

1.4. Kernel Based Adaptive Test Approach

The basic principle of our approach is to incorporate on-line measurement data in con-

junction with the collective data in order to achieve the best test quality versus test time

trade-off possible. For that purpose, we first need to obtain the cumulative information of

the device ensemble. We collect this information in the static phase of our method through

exhaustive testing of a training set of samples. Training sample set is representative of the

devices produced with the same process, hence, it is the characterization data of the pro-

cess. We represent measurement results of training sample set with Si, where S is a vector

of specification parameters, and i is the index of the device in the training set sample.

The adaptive test method presented in this work starts with an initial, ordered test list

and adaptively selects which tests to conduct. Selection of the initial test list, {Tj}Mj=1,

is explained in section 1.6. Generation of this pre-ordered test list is performed in static

phase.

Figure 31 shows the flow of our proposed adaptive test method. Static operations that

are mentioned above are illustrated at the upper part of the diagram, while the adaptive

part is located below the dashed lines of the diagram. The adaptive testing process runs for

each device, Dk, in the production line. When the method is executed, for each device (Dk),

the first test, T1, in the test list is conducted and the specification parameter for that test

is is recorded (sj). Dk’s measurement response is compared to specification limits and the

DUT is identified as a fail if specification limits are violated. If the specification parameter

is in the acceptable limits then the algorithm proceeds with update procedure, where joint
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Fig. 31. Adaptive testing flow diagram. The flow adapts test procedure per-device de-

pending on the particular characteristics of the DUT.

PDF ( ˆpdf(s)) of unmeasured specifications is updated using the measured parameter value.

In the following step, the next test is selected and the JPDF is checked if the failure

probability of the related specification parameter is greater than a threshold value, pFail.

If the probability of failure of test Tj is less than that threshold, it is skipped and this

procedure repeats until a test that is more likely to fail than that threshold value is found.

If such a test is determined, the algorithm proceeds to the measurement step, and this

procedure is continued until the test list is exhausted or any of the tests fail. In order to

identify a device as a good device, either test list must be exhausted or failing probabilities

of all unmeasured tests be less than the threshold of failing probability (pFail).
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1.4.1. Joint PDF Update. Estimate of the JPDF of the unmeasured specifications can be

obtained using equation (3.5). In the update step, measurements results of the conducted

test is used to update the JPDF. Suppose that the analytical form of JPDF is known,

then the only thing we need to do would be to plug the measurement result into JPDF

and integrate with one less dimension in order to get the fail probability. However, the

analytical form of the JPDF is not known in a real life scenario. Hence, we approximate

the conditional JPDF through properly adjusting weighing coefficients of kernels in the

JPDF estimation equation (3.5). We penalize the kernels proportional to their distance

from the measured value by reducing their weighing coefficient. This enables us to achieve

localization around the measurement point and therefore adapt to the behavior of the

DUT. Weight penalization is performed using the kernel function, however, its window

width is reduced such that information in the vicinity of the measurement result is treated

as valuable. Equations (3.7) and (3.8) show how penalization is applied in the estimator

function.

ˆpdf(si) =
1

(
∑
w′i)
∏
hj

∑
i

w′i
∏
sj∈T

K

(
sj − Si,j

hj

)
(3.7)

w′i =

 ∏
mj∈T ′

K

(
mj − Si,j
αhj

)wi (3.8)

where, w′i is updated weight of ith kernel, T ′ is the set of conducted tests, and α is kernel

penalization coefficient. Once the penalized weights (w′i) are calculated, they are normalized

such that they sum up to n. A simple example for JPDF update is shown in Figure 32(a).

In this example, the large distribution located in the middle of the plot is initial JPDF,

indicating the probability of occurrence. After measuring one of the parameters, which

is 1 in this example, PDF of this function should ideally reduce to a one dimensional
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distribution defined in unmeasured specification parameter space. Due to the limitations of

finite sample size, that is not practical. Hence, we use our penalization method to estimate

the reduced dimensional JPDF employing the information local to the measurement value.

Reducing window width in measurement space enables us to localize to the information in

the vicinity of DUT. In this figure, we normalized PDFs with different coefficients in order

to fit them in the same frame.

A more practical example of the update procedure can be demonstrated on practical

data. Figure 32(b) shows how the JPDF is updated for one of the specification parameters

of one experimental circuit (LNA) we employ in results section. Initially, the distribution of

the JPDF in the specified dimension is wider and corresponds to the cumulative information

of all device ensemble. However, as we keep updating the JPDF with measurement results,

the PDF of specified parameter narrows. Figure 33 shows estimated PDFs and actual

values of the same parameter for randomly selected 4 different device instances. This plot

shows that the method successfully localizes to the correct region in the parameter space.

Similarly, PDFs of other unmeasured specifications are estimated and only tests that have

the potential to fail are executed.

This adaptive update procedure yields excellent results when most of the fails are due

to marginal defects and collective statistical information can be relied upon. However,

circuits may contain structural defects that break down the learned correlation information.

Therefore, care must be taken before committing a final pass label on devices when the test

set is not exhaustive.
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Fig. 32. Joint probability distribution (JPDF) is represented using multi-dimensional

kernels. (a) High dimensional distribution is marginalized after incorporating each mea-

surement result, effectively shrinking the number of dimensions. This enables to narrow the

possible region of the DUT in probability space to make more informed decisions about the

DUT. (b) Estimated PDF of parameter Z11 is shown for several update steps for a single

device.
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Fig. 33. Estimated and actual values of Z11 are shown after several update steps for 4

different device instances.

1.5. Identifying Potentially Defective Devices

Structural defects alter the circuit behavior in unpredictable ways and structurally de-

fective devices do not conform to expected statistical distributions. Under this premise, the

only certain way of ensuring that structurally defective devices that fail any specification

are screened out is to apply the exhaustive test set to all the devices. However, this would

result in unreasonable test cost as discussed earlier and can only be acceptable in certain

application domains (e.g. automotive). The irregular behavior of structurally defective

devices however, can be turned into an advantage and incorporated into the adaptive test

flow. Since these devices do not display the expected characteristics, we can use this in-

formation to identify potentially defective devices and subject them to more testing even

if they pass all measured specifications and are determined to pass the unmeasured ones.

In order to enable this process, before finalizing a pass decision on a device, we conduct
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additional levels of screening based on already measured specifications and decide whether

further testing is necessary.

1.5.1. Screening Step #1. Even if the DUT satisfies the necessary conditions in order

to be identified as a good device, two potential pitfalls exist: (a) the circuit may contain

a structural defect, invalidating the correlation mechanisms among the specifications, (b)

due to process shifts (new wafer or lot), the collective statistical information is no longer

representative.

In the first screening step, the measurements obtained from conducted tests are used

to gauge the deviation of the device from the collective mean value or its expected JPDF.

In this step, we remove the assumption that the DUT should have similar statistics as the

cumulative data in order to identify defective devices. Since we cannot use correlations be-

tween the specification parameters, we use cumulative statistics and not the updated JPDF

in this step. Each measurement result is shifted to zero mean and normalized according to

cumulative statistics given in equation (3.9) and then compared to a threshold value, ThS1.

mj − µj
σj

> ThS1 (3.9)

If any of the measurement results exceeds that threshold value, the DUT is marked as

potentially defective and passed to the second screening step. Screening is illustrated in

Figure 34, where the gray region shows the PDF of a specification parameter, and plus signs

represent where the devices in this particular example fall. In the figure, the first screening

step classifies the three devices falling close to the cumulative mean as good, while the

device falling beyond the threshold level is identified as a suspicious device.
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Fig. 34. The devices that fall beyond a pre-determined threshold level are deemed sus-

picious regardless of the specification limits. This enables to spot potential defects and

reduce the chance of misclassification by conducting more tests to the DUT.

Note that this step uses already measured specification parameters; therefore, no addi-

tional test time cost is associated with this step. Flow diagram of the screening steps is

illustrated in Figure 35.

1.5.2. Screening Step #2. If the DUT fails the first screening step, it is passed through

the defect oriented second screening step to increase pass/fail confidence. In this step, we

aim at pruning defective devices that do not correlate with the majority of the devices. If

the DUT is a defective device, then correlation among the specification parameters that we

employ for adaptive testing will no longer be valid, hence tests that are skipped using this

correlation information will also be invalid. Therefore, in order to get more information

about the DUT, we need to conduct some of the skipped tests. However, these tests must be

selected such that identification should be achieved with minimum additional test overhead.

First we sort the initial test list using cumulative statistics such that tight specs are

placed on the top of the list, where the tightness measure is µj
σj
. This operation does not

depend on the input from DUT, so sorting the test list for tightness is performed once,

before the adaptive testing phase starts. Hence, it does not contribute any computational
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Fig. 35. Potentially good devices go through two sanity check steps to prevent defective

escapes. DUT is analyzed statistically for suspicious behavior and tested further to minimize

a risk of misclassification.

overhead in the adaptive phase. This sorted list is reduced by taking the first several tests

and then re-sorted according to the same tightness criteria, however, using adaptive JPDF

statistics this time. Finally, the first few tests in this list are conducted and irregularities

of the new measurement results are checked using equation (3.9). However, a different

threshold level (ThS2) is used in this step. If the threshold is exceeded, all skipped tests

are conducted exhaustively.

1.6. Determination of The Initial Test List

The adaptive method we propose follows a fixed test order throughout the algorithm,

where the initial order is determined according to the statistics of the training sample set.
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The main purpose of ordering the initial test list is to help the adaptive algorithm gain more

information in fewer steps. As a result, a number of tests need to be applied first before

the probabilities obtained from the kernel based estimator can be relied upon. Moreover,

since defective devices and process shifts may alter some of the learned information, tests

with more information content need to be applied before a decision can be made on the

DUT. Thus an initial test list is necessary to apply the kernel based estimator. We use

three criteria to select this initial list.

1.6.1. Covering Test Condition. As in most prior approaches, we use the fall-out data

to select an optimum covering set. However, we update this information with each new

data point encountered in the testing process. Since we force exhaustive testing on devices

identified as potentially defective, we obtain information on the outcome of all tests. Hence

regular updates to the test selection process are possible, where some tests that do not

identify fall-out patterns anymore are dropped and replaced with new ones.

Note that since our objective is to reduce DPPM, we trade-off test time for test quality.

Forcing use of a minimum number of tests puts a lower limit on test time, however, as we

show in the results section, test quality is greatly improved.

1.6.2. Marginality Condition. The second condition we use for test ordering is the

marginality of the specifications. We define marginality as the distance of specification

limits from the specification mean in terms of standard deviation, as we show in Figure

36. Marginality measure is the scaled version of Cpk; Cpk measures the nearest distance in

multiples of 3 standard deviations. If the distance (di/σ) of at least one of the specification

limits is small enough, the specification has a non-negligible failing probability, which may

have not been captured in cover based test selection step due to the limited size of the train-

ing set. Marginal specifications have large normalized variation. Due to the critical role
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Fig. 36. Definition of marginality. Distance of the specification mean to the closest

specification boundary is the measure of marginality. We normalize this distance with

respect to standard deviation of the specification.

of marginal tests in lowering DPPM, we generate a marginal test list, where specification

limits are closer than 3.5σ to the specification mean.

1.6.3. Specification Tightness Condition. The third condition we use to select the initial

test list is the tightness of the specifications. We define specification parameter tightness

as µ
σ , where µ is mean and σ is standard deviation. We chose tightness as a test selection

criterion since it reveals the most information for the adaptive test flow. Moreover, defective

devices may have random specification violations that are neither marginal nor included

in the covering test list. For those devices, we cannot use any predictive test selection

algorithm. Instead, we approach this problem from the opposite angle, and choose first few

of the tightest tests. The tightest tests are typically very unlikely to fail. However, note that

this assumption is valid for fault free devices. Since, we aim at identifying defective devices,

which behave radically different from the fault free devices, selecting tightest tests yield the

most information. As an example, suppose that we have two non-marginal specifications
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(a) (b)

Fig. 37. Tightness of a specification is defined as µσ . Therefore ,distribution in (a) is tighter

than (b). Specifications that are tighter are considered to bear more information.

as shown in Figure 37, where the first specification is tighter than the second one. Under

the assumption that defects generate unpredictable behavior, it would be more appealing

to choose the first specification parameter to test since there is a larger probability for a

defective device to fall further from the expected collective distribution.

1.7. Characterization Data Compaction

Characterization data obtained in training step is n vectors of specification parameters,

where the size of each vector is equal to the number of specification parameters, M. Prob-

ability of failure computations during the adaptive test phase requires calculation of fail

probabilities and updating of these probabilities. Hence, computational complexity of the

method is proportional to the size of the characterization data. In order to mitigate the

computational overhead, we develop a characterization data compaction method.

The basic principle of characterization data compaction step is illustrated in Figure 38

for a simplified compaction problem, where there are only two specifications. Horizontal

axis and vertical axis show the location of the measurement result of the training samples for

the first and the second specification parameter respectively. plus shapes represent sample
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device instances on this scatter-plot. Initially there are 16 training samples in this particular

example. However, we merge some of the instances and assign a weight which is equal to

the number of merged instances. We define a radius, r, and merge the instances that fall in

proximity of that distance. In the figure, shaded circles represent the r neighborhood of the

samples. In this example instances falling in the same circle are merged together. Hence,

16 training samples are merged to yield a total of 5 merged instance in this example.

The merging algorithm starts with labeling all the instances in the training sample set

as compact sample set, TC , candidates. Then, the first instance is transferred from the

candidate list to the list without compaction, since there is no instance yet to merge with.

Then, we check whether the second candidate falls in the proximity of r with the first

instance. If it is in the r proximity of the first instance, then the second instance is merged

and the weight of the merged instance is incremented by one. Proximity of an instance

is computed using equation (3.10), where ‖.‖is L2 norm, sj , µj , and hj are specification

parameter value, mean and kernel width of the jth specification. If the computed value on

the left of the equation is smaller than r then, the instance candidate is merged.

r ≥

√
1

n

∥∥∥∥sj − µjhj

∥∥∥∥2 (3.10)

If the device instance is outside of the radius, then it is appended to the compact sample

set and assigned a weight value of one.

1.8. Training Set Update

Training device instances are typically collected in production ramp-up phase using a

small set of wafers, and this data is used to optimize the test list that is used in high volume

production test. However, collected characterization data may become invalid due to time
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Fig. 38. Training samples that fall close than distance r are combined in order to compact

the training sample set.

variant changes in the process state resulting in a potential increase in the defect escape

level due to outdated information.

In order to detect a potential shift, we need a measure of difference to segregate two

different process states. This is necessary to compare the information content of the avail-

able process state (using characterization data) and on-the-fly measurement data to decide

whether the process has shifted or not. Moreover, we need an efficient re-learning strategy

that will enable to update characterization data once it is deemed invalid. Main challenges

of the re-learning consists of learning as fast as possible to update the characterization

information in a short time, while maintaining the overhead at an affordable level.

We address characterization data invalidation issue in two steps. Firstly, we determine

when the characterization data is outdated by continuously monitoring specification pa-

rameters. We use Kullback-Leibler distance (KL) to detect changes in the process state for

each specification parameter separately. KL distance is a measure to calculate the relative
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entropy of two distributions that shows how different two distributions are from each other.

We use KL distance to measure the difference between the characterization data and a

small sample set of current data to measure the rate of change in the process. Secondly, we

update the characterization data set by appending new data until the KL distance drops

within an acceptable range. We randomly select several devices at a certain rate for char-

acterization and add them to the characterization data set. Devices are selected randomly

to prevent skewing the original characterization set. The rate the devices are randomly

selected is modulated with the number of specification parameters identified to be out-

dated using KL distance. This enables to adaptively adjust re-learning rate and prevents

over-characterization.

1.9. Process Shift Detection and Update

The goal of this step is to achieve a high detection rate at a cost of minimum test

overhead. Process shift can be detected by analyzing specification parameter measurements.

The easiest way of detecting shifts is to analyze parameters with respect to time, i.e using

a moving average filter to estimate mean and higher order moments. However, this method

is not very sensitive and potential shifts may be masked by random variation. Another

option would be to use auto-correlation of the parameters, but auto-correlation function is

limited to capturing linear dependencies only.

In this work, we use a probability domain approach since we are mainly interested in

keeping the JPDF of the process up to date and doing so enables to capture nonlinear

dependencies relatively easily. We generate distributions of specification parameters using

the most recently tested devices using a sliding window approach and compare them to the

distributions obtained using characterization data set.
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Fig. 39. KL-distance is used to measure the difference between two distributions.

KL(p(x),p(x))=0, while KL(p(x),q(x))>0 if p(x) 6= q(x)

There are a couple of parameters in this approach that have influence on the result and

therefore deserve attention. The accuracy of the new distribution depends on two conflicting

criteria that needs to be simultaneously met through appropriately adjusting the sliding

window size. On one hand, a large number of samples (large window) is required to generate

a high dimensional distribution. On the other hand, a small window is preferred to capture

the most recent information about the process. First, we relaxed the large window size

requirement to create a feasible solution by generating a distribution for each parameter

separately instead of generating a multidimensional distribution. This greatly reduces the

number of samples required for detection. Then, to further reduce computations, we used a

histogram based distribution generation approach which generates dependable distributions

using only 30-50 samples.
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Once an up-to-date distribution is generated, it is compared to the distribution gener-

ated using the characterization data through KL distance given in (3.11).

KL(p ‖ q) =
∑
i

pilog2(
pi
qi

) (3.11)

Where, pi and qi are probability distribution p and q in ith bin respectively. Figure 39

illustrates two distributions, p and q, and their corresponding KL distance calculated using

(3.11). KL distance simply indicates how different distribution p is from distribution q. KL

is zero if two distributions are the same or a positive number if they are different.

KL is very sensitive to changes in the parameter distributions and is able to cope with

non-linear dependencies. Figure 40 illustrates how effective KL is in identifying changes

in the process through a simple example. Statistical properties of a Gaussian stochastic

process are altered in time an plotted in Figure 40(a). The process initially has a mean of 2

and variance of 1. The mean of the process is gradually increased up to 5% for the second

10k instances. After an abrupt jump, the mean approaches to the initial mean between

20k to 30k. Finally, variance is gradually increased between 40kth and 50kthsamples. The

corresponding KL distance plot of the process is shown in Figure 40(b). The dashed curve

shows the KL distance of pi(x) with respect to the initial distribution, q(x) = p0(x).

Distribution pi(x) is generated using the most recent 100 samples (xi−99 · · ·xi). Note

that the dashed KL curve starts at 0 deviates from 0 significantly even for small shifts

in the process in the second 10k samples. The jump and the increment in the variation

can also be easily identified by the dashed KL curve. Note that the limited sample size

introduces uncertainty in KL distance calculation, which is observed as noise in the KL

plot. Therefore, we need to identify the region of uncertainty in order to differentiate process

shifts from noise in calculating the KL distance. We generate auxiliary samples (x1t v pi(x))

from distribution p(xi) and compute KL distance of the re-sampled distribution. This re-
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sampling approach enables to reveal the extent of uncertainty in the computed distance

metric. We compute the KL distance of several re-sampled sets in order to estimate the

first two moments of the shift-free statistics, µe and σe. Finally, we use equation KLT,j =

µe,j + 3σe,j as the threshold level to differentiate process shifts from the noise, where j is

the index of the jth specification.

1.10. Updating Characterization Set

Characterization set needs to be updated to avoid degradation in test quality. One

approach is to re-characterize the process periodically at wafer-to-wafer transitions or syn-

chronize characterization to major interruptions in the process. This approach introduces

significant test time penalty and cannot respond to changes within the specified character-

ization points. In order to improve reaction time and to keep characterization cost small,

we employ an adaptive update scheme outlined in Figure 41. We subject randomly selected

devices to the full test suite to continuously monitor the process. We define the rate that

the devices are randomly selected as Random Test Rate (RTR). Randomly tested devices

are used to compute KL distance of the process to the characterization set.
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Fig. 40. (a) A non-stationary stochastic process and (b) KL distance of the process with

respect to its initial probability distribution. The dashed curve reveals the changes in the

process.
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Fig. 41. Devices characteristics are analyzed for potential shifts in the process. Update

is performed if one or more specification parameter statistics are outdated. The rate of

re-learning is set with a RTR parameter to catchup with the changes in the process while

not blowing the test time up.

There may be several sources of changes in the process leading to rapid or slow changes.

Re-characterizing the process at every small change is wasteful leading to a large test time

penalty. The penalty can be minimized if the characterization data is updated continuously

at a rate proportional to the extent the characterization data is outdated. We obtain this

information from the number of specifications identified to be outdated. For instance, if

only one or two specifications are updated re-learning rate is relatively slow. However, if

half of the specifications are outdated, the re-learning rate is much faster to capture up-to-

date characteristics to prevent misclassifications. Re-learning rate is set by modulating the

RTR parameter with the number of outdated specifications. This formulation establishes
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a dynamic re-learning scheme that enables to re-learn only when necessary at a speed

proportional to the outdated information.

RTR =
# of outdated specifications
total # of specifications

(3.12)

1.11. Computational Overhead and Pipe-lining

There are several steps in our proposed technique that require computation power.

However, only the steps that contribute to the on-line computation overhead are crucial.

Hence, we analyze computational cost of on-line phase only. Offline steps are: training set

compaction, initial test list generation, and test list generation for the second screening

step.

On-line steps that contribute to computation overhead are: JPDF update, fail probabil-

ity update/check and screening methods. JPDF update and probability update/check steps

are optimized such that computationally expensive routines moved to offline phase. Only

nC kernel evaluations and two vector multiplications are performed in each adaptive test

loop depicted in Figure 31, where nC is the size of compact training sample set. Computa-

tional overhead of these steps and the first screening step are less than 2 ms. In addition to

2 ms, we have the computation requirement of the second screening phase, which is simply

list re-ordering.

These computational time costs can be avoided through employing pipe-lined test

methodology. In order to remove the processing time overhead out from the critical path,

device testing and processing can be performed simultaneously. Figure 42 illustrates how

testing and processing can be scheduled such that processing is moved out of the critical

path. The leftmost column shows the time, while the other columns contains the schedule.
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Fig. 42. Pipe-lined Time Schedule

The first step is conducted in the first time slot, and no processing is done since the result

of the first test is not available until the end of its time slot. In the second time slot, the

second test is executed and the result obtained from the first step is processed. The rest of

the testing and processing steps are scheduled similarly, hence processing steps do not lie

on the critical path.

Note that even though the first few tests are applied regardless of the outcome of the

kernel based predictor, the precessing does not have to wait until all mandatory tests are

exhausted.

1.12. DPPM Estimation

Adaptive test method identifies potentially good devices before conducting all tests

using a stopping criterion (pFail), which is the failure probability of fault free devices.

The proposed method identifies devices satisfying pFail criterion as good devices and the

result of this is a non-zero defective parts per million (DPPM). We can calculate DPPM

using equation (3.13), where Pr(pass|bad) is the probability of a device being identified as
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good although it is defective. The relation between pFail and DPPM is given in equation

(3.14).

DPPM = Pr(pass|bad) · 106 (3.13)

DPPM = pFail · 106 (3.14)

Discussion given above is valid only if the DUT shares the statistics of the cumulative

data. However, there are two mechanisms that alters the above formulation, which violates

our assumptions. If the characterization data is not a good representative of the DUT in

the statistical sense, then the constructed JPDF is not a good model, which will lead to

mis-classifications. Misrepresentation typically occurs due to process shifts. Proper update

of characterization data is necessary in order to avoid mis-classification errors related to

mis-representation.

Another mechanism that degrades the test quality is random defects, which are caused

due to unpredicted mechanisms. Devices affected from these mechanisms may have a com-

pletely different statistics, which makes them very hard to identify. Equation (3.15) shows

the overall DPPM in presence of mis-representation and random defects. Last two terms

in this equation constitute the DPPM floor.

DPPM ∼= pFail · 106 +DPPMmis (3.15)

+DPPMrandom

Kernel based adaptive test methodology is responsible for controlling the first term of

this equation. Other two terms require additional steps to be controlled. The term related

114



to mis-classification is addressed in the screening steps while the term related to random

defects is addressed through test forcing.

1.13. Results

The proposed adaptive test flow is applied to three experimental circuits. The first

circuit is a low noise amplifier (LNA) that we have designed. In the absence of production

data, we rely on Monte-Carlo simulations to generate the device population. The second

circuit is a diverse mixed-signal circuit with 42 specifications and many building blocks.

We analyze roughly 89k sample devices of production data for the second circuit. This

production data spans multiple wafers and lots and is a good representative set for this

device. The third circuit is a small-scale analog device. We analyze 21k samples that also

span across multiple wafers and lots for the third circuit.

We apply our method to all three circuits based on a small set of initial training data

and use the rest of the samples to calculate test time and DPPM. We also compare our

adaptive flow with static compaction methods published in the literature.

1.13.1. LNA Results. We employed a variable gain LNA shown in Figure 43 to evaluate

the proposed method. In order to model process variation, parametric variation is injected

to the circuit. Process variation injected to circuit parameters is shown in Table 7, where DD

row shows die-to-die variation and MM row shows mismatch. 12 specification parameters

are selected with 4 different gain setups, hence the total test list size is 48. Specification

parameters are gain, bandwidth, center-frequency, input/output impedance, input/output

matching, IIP3, 1dB compression point, power consumption, noise figure, and output offset.

Simulation results for 48 specification parameters are generated for 60k circuits. We

choose training set size to be 2k and used the same training set size for the methods that
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3.5k

Fig. 43. Experimental circuit: LNA

Width

[3σ]

Length

[3σ]

Vth

[3σ]

L

[3σ]

R

[3σ]

DD 1 % 16 % 16 % 14 % 14 %

MM 0.06 % 2 % 2 % 2 % 2 %

Table 7. Process variation table

we compare with for fair comparison. The rest of the mutually exclusive 58k devices are

used for verification. In order to avoid the dependence of test quality on the training sample

set, test quality evaluation is performed several times and average test time and test quality

is reported. We repeated test quality evaluation for mutually exclusive training sample sets,

which is 30 for LNA case.
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Fig. 44. Average test time during testing. Test time remains more or less constant despite

of the adjustments in the test list and characterization data updates.

DPPM Time

Proposed 40 18.5

Cover Based 12.5k 18.4

ILP [Stratigopoulos et al.(2007)] 1k 26

Marginality Based [Chen and Orailoglu(2008)] 9.4k 4

Heuristic [Milor(1998)] 2k 24.3

static SVM [Biswas et al.(2005)] 11.6k 33

Table 8. Comparison of test compaction methods for LNA

Test quality evaluation results of our proposed method and several other methods are

shown in Table 8. Result of each method is presented with a DPPM-time column pair.

In order to show the capability of quality control, we tuned our method to get minimum

possible DPPM level. Results show that DPPM of 40 is achieved for a test time of 18.5

tests, which is the best quality result. We compare results with a heuristic set-cover based

algorithm for which we can adjust test time by forcing a certain amount of tests to be
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Fig. 45. Percentage of skipped tests.

conducted. Hence, test time of the heuristic method can be crudely matched and we can

compare the test quality improvement for the same test time. Compared to cover-based

method, test quality improvement is more than two orders of magnitude for the same test

time.

DPPM and time metrics are generated for 30 runs with mutually exclusive training

samples sets. We observed that the proposed method yields consistent results. In the next

section we show that consistency is achieved on production data also. Figure 44 shows

the average test time as the testing proceeds. The figure shows that the test time of the

proposed methods is not sensitive to the process variation and it asymptotically reaches an

equilibrium as testing progresses.

In this work, we aim at test quality improvement through treating each device according

to its performance and proceed with testing by predicting its behavior. Hence, we drive

the test mechanism according to each DUT and customize tests in order to achieve the

best test-quality to test-time trade-off. Figure 45 shows that device specific test tailoring

is a good method. The figure shows the percentage of test skips for LNA data for each

test. The first few tests are not skipped, since enough information is not obtained for test
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DPPM Time

Proposed 36 22

Cover Based 392 20

ILP [Stratigopoulos et al.(2007)] 800 5

Marginality Based [Chen and Orailoglu(2008)] 135 15.5

Heuristic [Milor(1998)] 590 14.34

static SVM [Biswas et al.(2005)] 735 17.4

Table 9. Comparison of test compaction methods for production data.

skipping. However, after the first few tests, the algorithm starts to skip tests at a very high

rate yielding adaptive test list compaction.

1.13.2. Production Data (Diverse Mixed-Signal Circuit). We also apply the adaptive

test flow to production data. We analyze 89K samples of the experimental circuit, which

has 42 initial specifications. Once again, 2k samples are selected as training set and the

rest of the devices are used to compute test time and DPPM. The process is repeated

with multiple distinctive training sets, although the training sets are always drawn in a

contiguous manner.

We first show the effect of characterization set updating algorithm. Figure 46 illustrates

the KL distance of a randomly selected parameter using the proposed updating scheme

(solid curve) and a non-updated scheme (dashed curve). The distance of the updated

scheme remains below the non-updated scheme and we see a consistent reduction trend.

Relatively small excursion in the solid curve suggest that continuous updating scheme works

and only incremental characterization is required.
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Fig. 46. KL-distance of updated (solid) and non-updated (dashed) curve shows the con-

sistency of the characterization data converging to the up-to-date statistics.

Table 9 shows the test time and DPPM levels for our method and for static compaction

methods published in the literature. The table shows that even though ILP formulation

provides the best test time, the DPPM level is the largest. If test time is the only concern,

such a static compaction technique may suffice. The table also indicates DPPM values com-

pared to our adaptive flow. The proposed method achieves a significant DPPM reduction

compared to the other methods. Compared to the cover based method, which we imple-

mented to represent the traditional test compaction methodology in industry and modified

to be able adjust for a desired test time, 10 fold improvement in test quality is observed for

the same test time.

1.13.3. Production Data (Small-Scale Analog Circuit). We analyze production data of

21K samples of this experimental circuit which has 21 initial specifications. Similar to the
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Fig. 47. Non-updated scheme suffers from invalid characterization data, therefore, is not

dependable. However, the proposed updating scheme keeps characterization data up-to-

date.

setup for the previous two experimental circuits, 2k samples are selected as training set

while the rest of the devices are used to compute DPPM.

Figure 47 shows KL-distance of updated (solid) and non-updated (dashed) schemes for a

randomly selected specification parameter. This particular parameter experiences an early

shift as KL distance starts at a high value and remains more or less at the same level in

the non-updated case. However, the solid curve approaches to zero, indicating that error

in representing process statistics is consistently reduced.

Results for the second production data are shown in Table 10. ILP and marginality

based methods achieve low test times, but DPPM is significantly high. Therefore we reach

to the same conclusion for both production data; static test compaction may achieve a good

test time reduction, however, test quality is typically poor.
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DPPM Time

Proposed 130 10

Cover Based 1.4k 7

ILP [Stratigopoulos et al.(2007)] 1k 3.5

Marginality Based [Chen and Orailoglu(2008)] 1.92k 3

Heuristic [Milor(1998)] 150 6.56

static SVM [Biswas et al.(2005)] 664 17.2

Table 10. Comparison of test compaction methods for production data (analog signal

circuit)

Note that marginality based method achieves a good result for mixed-signal circuit data

set, while Heuristic method achieves a good DPPM result for small-scale analog circuit data

set. This suggests that these methods can yield good results but their performance varies

depending on the circuit and statistical properties of the process; therefore, they may also

result in catastrophic results. In that sense our proposed method is robust and shows

consistent performance improvements.

Adaptability of the proposed method is based on our claim that devices are coming

from a diverse set and per-device based optimization achieves a better test time to test

quality trade-off. We support our claim with test skip histograms as we did for the LNA

circuit. Test skip histograms for mixed-signal data and small-scale analog data is shown in

Figure 48(a) and Figure 48(b) respectively. None of the tests are skipped at the beginning

due to insufficient confidence in passing the devices; however, once the desired confidence
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Fig. 48. Skip histogram for (a) mixed-signal industrial circuit (b) analog industrial circuit

is achieved most of the remaining tests have an almost equal skip rate, indicating that each

test is equally likely to be measured based on the characteristics of the DUT.
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1.14. Summary

Existing test compaction methodologies are not built with test quality control mech-

anism, hence they yield unacceptable levels of test quality degradation. In this work, we

investigate a per-device adapting test list compaction methodology, which utilizes on-line

measurements to tailor an optimized test list. Moreover, we continuously monitor the pro-

cess for potential shifts and update when necessary. Thus, characterization data remains

valid throughout test lifetime. This strategy enables us to devote test resources optimally

to each individual DUT in the sense that marginal devices are devoted more test resources

while devices falling close to nominal are passed with less testing. Each DUT may be sub-

jected to unique sequence depending on its behavior. Hence, a good test quality-test time

trade-off is achieved. Moreover, the inherent quality control mechanism of the proposed

method enables us to achieve a very low DPPM level. In addition to using probability

distributions of specification parameters to decide when to stop testing, we also provide

additional defect screening mechanism, which increases the confidence of pass decision.

Experimental results of simulation data of an LNA circuit and production data of a mixed-

signal circuit and a small-scale analog circuit showed that our proposed method consistently

achieves a low DPPM level, which is at least one order of magnitude lower compared to

traditional static compaction methods.
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2. Adaptive Multi-site Test for Analog/Mixed-signal Circuits

Increasing integration packs more functionality in a single chip necessitating the test-

ing of even more specification parameters. However, there is a tendency to keep test time

budged constrained, which leads test engineers to seek more efficient test strategies. Sta-

tistical test compaction methods offer generic and circuit independent means of achieving

efficient testing. Adaptive test methodologies have been shown to achieve better test quality

versus test time trade-off compared to non-adaptive methods. In this work, we propose a

new adaptive test approach geared for multi-site applications to achieve a significantly bet-

ter test time/test quality trade-off. We employ an innovative compound-device approach

that enables us to exploit device-to-device correlations. Moreover, we use neighbor de-

vice statistics for efficient defect screening. We show that despite the constraints imposed

by multi-site testing, we successfully reap the benefits of adaptive testing in a multi-site

environment.

2.1. Adaptive Test in Multi-Site Environment

We base our method on the adaptive test flow presented in [Yilmaz and Ozev(2010)],

illustrated in Figure 49(a). In the production ramp-up phase, the full test suite is applied

to a set of devices for characterization. This information is used to capture specification-

to-specification dependencies and to generate an initial test list. In the high volume man-

ufacturing phase, each device is tested using the flow shown in the figure. The core of

the flow, shown in Figure 49(b), is an estimation engine that uses measurement results of

the executed tests to predict failure probabilities of non-measured tests. This estimation

engine effectively reduces the collective statistical distribution of an unmeasured parameter

to that of its conditional distribution based on measurements already conducted on the
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device. The conditional probability distribution is guaranteed to be tighter if there is a

statical correlation between the measured and unmeasured parameters [Papoulis and Pil-

lai(2001)]. This can be explained in the following manner. Suppose that X represents an

unmeasured parameter and Y represents a measured parameter. The conditional variance

of X based on an observation Y is given by [Papoulis and Pillai(2001)]:

var(X) = E[var(X|Y )] + var(E[X|Y ]) (3.16)

where, E[.] is expected value operator and var(.) is variance operator. Since both terms

on the right are non-negative, equation (3.16) implies that var(X) ≥ var(E[X|Y ]). Thus,

the conditional variance of X is always smaller than the variance of X unless X and Y are

totally uncorrelated.

Since most parameters of a given DUT or even parameters of neighboring DUTs are

structurally or spatially correlated, information obtained from each measurement is guar-

anteed to help in localizing an unmeasured parameter. This enables us to evaluate the

pass/fail likelihood of the device under test (DUT) and provides a way to differentiate

marginal devices that have the highest failing potential. Marginal devices (devices that

have non-negligible failing probability) are assigned more tests to reduce the chances of

misclassification, while non-marginal devices are passed with less testing to reduce test

time.

This adaptive test approach exploits specification-to-specification correlations to reduce

test time by eliminating unnecessary tests. However, there is typically a lower limit on the

rate of test compaction that can be achieved with statistical methods. This limit depends on

the complexity of the circuit and spec-spec correlations. In order to achieve lower average

test time, parallel (multi-site) test approach is used. This approach scales average test
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Fig. 50. Bulk of the devices require a relatively small number of test, while marginal

devices typically require longer test times. Overall test time increases since all sites must

wait until the device with the longest time is tested. * The first 18 tests are not show due

to the limited space.

time per device linearly with the number of sites used for testing. As mentioned in the

introduction however, a constraint of multi-site testing is that all devices must finish their

testing before each DUT can be removed from the tester. Thus, even if one site contains a

marginal DUT that requires more test time, all sites experience the same longer test time,

effectively increasing the per-device test time before scaling. We illustrate this problem in

Figure 50 by showing the executed tests for an 8-site test configuration using a production

data set.

In this example, the average test time for 8 devices is less than 22 tests, while the device

at site#3 requires 26 tests. Therefore, all sites experience the longest test time, which is the

test time of site#3. Thus, instead of the average 21.4 test time over the 8 DUTs in this case

the per-device test time is increased to 26 and the advantages of adaptive test diminish.

Despite its constraints, multi-site approach also provides new means of improvement. Figure
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53 shows a possible multi-site device testing configuration. In multi-site test, simultaneously

tested devices typically originate from the same wafer and thus are spatially correlated in

terms of their process parameters. This spatial correlation makes the measurement results

of the device parameters highly predictable once their neighbors are tested. This approach

fits very well in the adaptive test methodology. Statistical correlations among the devices

that are tested simultaneously can be used to eliminate redundant tests.

In order to fully exploit the spatial correlations among the sites, we propose two tech-

niques. First, we use a compound-device based approach for statistical modeling such that

the prediction of one parameter includes the information that originates from neighbor-

ing sites. Second, reminiscent of variance reduction techniques from the digital domain

[Daasch et al.(2000),Daasch et al.(2001),Madge et al.(2002b),Daasch et al.(2004),Madge

et al.(2002a)], we use the neighborhood statistics to screen for defects, which helps in re-

laxing the initial test selection conditions.

2.2. Compound Device Approach

In order to extend adaptive test approach to multi-site test and to benefit from cor-

relation between neighbor devices, we propose a compound device approach. Instead of

treating each device individually, we combine all devices that are tested simultaneously

into one compound device. L devices with M specification parameters are represented

in the statistical estimation framework as 1 device with L �M specifications. Hence, the

multi-site test problem is converted to testing of a single compound device. The only differ-

ence is that the compound device has L times more specification parameters and each test

execution returns L test results. This compound device approach is illustrated in Figure

51. Once devices are converted to compound form, they are tested using the same flow
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Fig. 51. Compound device. Simultaneously tested devices are treated as a single big device

that has specification parameters. Where, L is the number of sites and M is the number of

specifications per device.

that is used for individual devices, given in Figure 49. This approach enables us to model

device-to-device correlations as well as specification-specification correlations and fits well

in the test flow.

To show that device-to-device correlations are useful in estimating neighbor device char-

acteristics, we present a parameter estimation example using a set production data. In this

example, three consecutively tested devices are selected. We used the information on two

tested parameters of two tested devices to predict the untested parameter of a third device.

Figure 52 demonstrates prediction of device parameters using neighbor device measure-

ments only. We would like to demonstrate that parameter#1 of a device can be estimated

using measurements from two neighbor devices. Estimation is performed using maximum-

likelihood (ML) criteria on the estimated distributions. The solid curve in the figure shows

the distribution of parameter#1 based on cumulative information. Note that this distribu-

tion captures the common behavior of all devices in the representative characterization set.

We would like to estimate the location of a particular device (device #1) by using mea-

surement information from device#2 and device#3. Measurements from two devices are
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Fig. 52. Estimation of a device parameter using neighbor devices measurements only.

incorporated in the update procedure [Yilmaz and Ozev(2010)] and posterior distributions

are plotted with a dashed and a dotted curve. We note that the initial distribution moves

around the parameter being estimated and becomes narrower. In this demonstrative exam-

ple, the ML estimate of the parameter approaches to the actual value using only neighbor

measurements. Notice that the estimated distribution becomes narrower thanks to device-

to-device correlation of neighbor devices. While the resulting posterior probability region

is still quite wide and further measurements would be necessary before device#1 can be

passed without measuring spec#1, this example clearly illustrates the spatial correlation of

neighbor devices which can be use to make informed decisions.

2.3. Determination of The Initial Test List

In adaptive test, tests are scheduled such that an initial test order is not changed.

A common, fixed test list is used and per-device adaptation is achieved by eliminating
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Fig. 53. Multiple devices are tested in parallel to increase the throughput. Devices being

tested in parallel are typically neighbors on the wafer and are highly correlated

unnecessary tests. Thus, since the initial test list order is used for all devices, it should

capture the collective behavior of all devices. In this work, we determine the initial order

based on the incremental failing device coverage rate of collective data. Tests that have

highest coverage rates are placed on the top of the list. This ordering scheme enables us to

execute tests that have relatively higher potential to fail up front.

Although this ordering method yields a reasonably good initial order, using the same

test order in all sites might not be the most efficient way of using tester resources. As the

example in Figure 52 illustrated, distinct parameters of neighboring devices may yield good

estimation opportunities using spatial correlations. Measurements of the same parameter

are correlated in all sites. Therefore, instead of applying the same test, measuring relatively

uncorrelated parameters might yield more information in less time. Thus, instead of using

the same test order for all sites, we scramble the order of tests in blocks of L, where L is

the number of sites. We circularly rotate the initial test to achieve a different test order for

each site. However, we rotate the initial test list in groups of L, as shown in Figure 54, to

ensure tests that have high coverage rate remain at the top of the list.
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Fig. 54. Initial test list is generated according to the coverage rate. A different order is

assigned to each site by circularly rotating the initial test list in groups of , where is the

number of sites.

2.4. Neighbor Statistics Based Defect Screening

Generally, test compaction based on statistical learning relies on correlations among

specifications and works well for the bulk of the devices. However, there is a small number

defective devices that do not conform to the collective statistics. Defects alter circuit struc-

ture such that defective devices are generally statistically distinct from defect-free devices.

As such, relying entirely on statistical estimation for testing results in poor quality. In our

prior work [Yilmaz and Ozev(2010)], we have addressed this problem by incorporating ad-

ditional tests that do not provide more information about the bulk of the devices but have

the potential of identifying statistical outliers. In multi-site testing, one advantage that we

have is on-the-fly access to parameters of multiple devices which are expected to originate
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Fig. 55. Using neighbor device statistics enable us to use a narrower defect filtering window

due to device-device correlations.

from very similar statistical distributions compared to the more representative characteri-

zation data. We thus use this multi-site information as a defect-screening mechanism so as

to relax the requirement that we impose on the original test list.

We subject the measured parameters of tested devices that have not failed a test and

have been identified as potentially good devices to a screening step. In this step, we

determine whether a potentially good device falls outside of a kσ window in the parameter

space, where k is the screening window parameter. Devices that fall outside this window are

exhaustively tested as opposed to being rejected. Thus, there is no yield loss. The mean and

the standard deviation are determined based on the measurements of neighboring devices.

This simple form of screening step is reminiscent of variance reduction techniques used in

digital parametric testing [Daasch et al.(2000), Daasch et al.(2001),Madge et al.(2002b),

Daasch et al.(2004),Madge et al.(2002a)]. However, we use multiple specifications for this

purpose. Note that parameter k affects the number of the exhaustively tested devices and

it is selected depending on the amount of increased test time that can be afforded.
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We incorporate device-to-device correlations of neighbor devices to achieve a very effec-

tive filter. Figure 55 illustrates distributions generated using neighbor device information

and collective device information. Collective distribution is wider, since it shows the com-

mon statistics of a large number of devices. However, neighbor device set distribution is

much narrower due to high correlation between neighbor devices. Thus, using more descrip-

tive neighbor statistics for defect filtering achieves superior defect screening performance.

In Figure 55, we conceptually show the advantage of using neighbor statistics in screening.

Filled circles show where the most of the devices fall, while the hollow circle represents an

outlier device that is significantly different from the neighbor devices. However, if screened

with collective statistics, the same device falls almost in the middle of the parameter space

and therefore cannot be identified as potentially defective.

2.5. Adapting to Process Shift and Computational Overhead

The statistical decision making mechanism relies on the accuracy of the specification-

specification dependencies. Although a reasonably accurate representation can be captured

in the characterization phase, process statistics are subject to change over time. Thus, it

is necessary to adapt to process shifts and update the correlation information to guarantee

proper operation. One approach to do so would be periodic re-characterization.

We don’t adopt such method due to excessive characterization time overhead. Instead,

we use measurement information obtained from the screening step where a portion of the

devices are exhaustively tested. We use this already existing information to update the

dependency information that is used by the estimation engine. Nominally, only a small

fraction of the devices should be exhaustively tested as the screening window size is selected

to do so. However, an increase in the number screened devices indicates a potential shift
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in the process. We use some of the screened devices that do not fail any specification test

to update the characterization data.

Another concern in the proposed method is the computational overhead. We pipeline

test execution and processing as proposed in [Yilmaz and Ozev(2010)] to take computations

out of the critical path. The execution time of the statistical processing step is less than

1ms on a 2.6GHz computer, which is a fraction of the time that takes to conduct most

tests. Therefore, test execution and test elimination processes are performed simultaneously

without affecting each other.

2.6. Results

We use 2 sets of production data to evaluate the performance of our proposed method.

The data consists of measurement results of the tests in the full test suite. The first data

set has 42 specification parameters for a large scale mixed-signal circuit of ~89k devices.

The second data set is of a large scale circuit with 264 specifications and ~900k devices.

Throughout the analysis, we use disjoint training sets of 2000 devices for characterization

and we use the rest of the devices of the same data set for verification. Performance results

reported in this section are the average of 10 runs with disjoint characterization data sets.

Reported test times are in terms of the average number of applied tests, while DPPM level

is extrapolated from the estimated defect escape level to reflect the escape level per million

devices.

Table 11 shows the performance results on the first data set for 1, 2, 4, and 8-site test

configurations. Approximately same DPPM level is obtained for all test configurations and

almost linear scaling is achieved in test time. Slight deviation from linear time scaling can

be attributed to the constraints imposed by multi-site testing.
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Data-Set#1 1-site 2-site 4-site 8-site

Time 12.1 13.9/2 14.5/4 15.4/8

DPPM 105 90 112 86

Table 11. Test time and DPPM results for 4 different multi-site configurations. Almost

linear time scaling is achieved with respect to the number of parallel sites.

We compare our proposed method with the previous work in Figure 56 on a DPPM

versus test-time plane. This plot shows the performance of the previous work pictorially

and enables us to understand in which DPPM vs test-time trade-off region the methods fall.

Most of the previously proposed test compaction methods lack a quality control mechanism;

they occupy a single point on the plot. In order to show the trade-off between DPPM and

test time, we plot the results of the cover based method, in which the test list is generated by

selecting highest incremental covering tests using a greedy algorithm. DPPM performance

of the cover based method is plotted in Figure 56 using several different size test lists. Since

our proposed method is geared towards achieving a low DPPM level, our method appears

in the lower part of the trade-off plot.

Results for the second data set is shown in Table 12. Similar to the results obtained for

the first data set, a linear scaling is observed in terms of time while DPPM level remains

constant. Graphical comparison of our method is shown in Figure 57. Cover based method

again serves as a reference line in the trade-off plot. Our proposed method is significantly

below the reference line and achieves a very low DPPM level.
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Fig. 56. The proposed method and previous work is compared. The curve of cover based

method serves as a guide to DPPM vs time trade-off. Achieving lower DPPM requires longer

test time and visa verse. * Test time of multi-site test schemes are scaled up (multiplied)

by the number of sites for fair comparison.

2.7. Summary

Adaptive test elimination framework enables us to maintain a very low DPPM level

and efficient utilization of test resources to reduce test time by tailoring the test flow to the

statistical characteristics of the DUTs. To achieve significantly more reduction in test time,
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Fig. 57. Cover based method can be used as a reference for performance comparison. This

figure shows the performance of previous work on DPPM vs time trade-off plane. * Test

time of multi-site test schemes are scaled up (multiplied) by the number of sites for fair

comparison.
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Time 1-site 2-site 4-site 8-site

Time 62 61/2 62/4 63/8

DPPM 206 220 180 185

Table 12. Test time and DPPM results for 1, 2, 4, and 8-site configurations for data set-2.

Almost linear time scaling is achieved with respect to the number of parallel sites.

multi-site testing is desirable. However, in a multi-site scenario, the advantages of adaptive

test in terms of test time compaction diminish since all sites must wait for the site that takes

the longest test time. On the flip side, multi-site testing provides more information on each

DUT since parameters of neighboring DUTs are spatially correlated. In this work, we take

advantage of these neighborhood-based correlations to alleviate some of the challenges posed

by multi-site restrictions on adaptive test. The proposed compound device approach enables

us to incorporate device-to-device correlations of parallel neighbor devices. Moreover, we

employ a neighbor statistics based defect screening mechanism to prune potential DPPM

contributors. This neighbor-based defect screening helps us eliminate required tests that

have been selected for defect screening. Using these two techniques, we achieve linear test

time scaling with multi-site testing with respect to the number of sites in an adaptive test

framework, while still providing the best test quality compared with prior work.
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3. Adaptive Quality Binning for Analog Circuits

Per-device information based adaptive test selection enables us to greatly reduce test

time while maintaining test quality level. Adaptive test selection mechanism described in

previous sections target a fixed quality level and performs optimization according to that

criteria. However, depending on the demand of customer, desired device quality level may

vary.

Process variation creates a diversity in performance and quality of devices. The ones

with higher quality are of higher value while the rest can be sold for a lower price. Separating

manufactured devices according to their quality is defined as quality binning method and

a very efficient way of lowering per-device cost. On one hand, devices of below average

quality are not thrown away reducing per-device cost. On the other hand, above average

devices are sold for higher prices.

Quality binned devices share the same design and typically go through same manufac-

turing and even the same test process. After the testing step, they are binned according to

different sets of performance criteria. The bin a device falls depends on the manufacturing

process and typically does not match the amount requested by the customers because of

uncertainty of the process and arbitrary amounts of purchased devices.

3.1. Methodology

In our previous studies [Yilmaz and Ozev(2008),Yilmaz and Ozev(2009b),Yilmaz and

Ozev(2009a),Yilmaz and Ozev(2010),Yilmaz et al.(2011)], we showed that there is a direct

relation between DPPM and test time. Applying more tests reduces the expected number

of defective escapes and therefore DPPM. The goal of this work is not only to minimize

test time with a DPPM constraint as in the previous sections, but we speed-bin devices
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such that the overall test time is minimized while the percentage of devices binned in each

DPPM bin matches the demand. Problem formulation of this section can be summarized

using the equations below:

objective : min E[t] (3.17)

constraints : P (DPPMi ≤ DPPM < DPPMi+1) = Pi (3.18)∑
Pi = 1

where, E[.] is expected value operator, t and DPPM are random variables that represent

test time and scaled defective escape probability, DPPMi are speed-bin limits and Pi is

the proportion of the devices falling in the ith bin.

It is necessary to capture the relation between DPPM and test time in order to solve this

problem. We use a conceptual figure to explain the main idea of the method. The relation

between DPPM and time is illustrated in Figure (58) with a region instead of a curve to

represent the statistical nature of the parameters. Note that uncertainty with respect to

DPPM and time reduces as we apply more tests. This is intuitive because executing more

tests enhance the confidence reducing the uncertainty to zero as the number of the executed

tests approach to the maximum number of tests.

The mathematical tools presented in previous sections have been used to estimate

the probability distribution of unmeasured specification parameters using measured spec-

ification parameters, P (Si|S). Where, Si is the predicted specification parameter set

and S is available specification parameter set. In this work, would like to incorporate

DPPM and test time estimation into analysis. Therefore, we would like to estimate

P (Si, Di, timei|S,D, time), where D is used as a shorthand notation of DPPM and sub-

script “i” is the index of the ith DPPM bin specification. Once we establish the mechanism

142



time

D
P

P
M

D
P

P
M

D
P

P
M

sup(time )1

sup(time )2

2
D

P
P

M
N

1

Fig. 58. Defective escapes per million (DPPM) and the number of executed tests are

highly dependent. The dependency can be represented statistically.

to estimate this distribution the expected time for a particular DPPM level can be estimated

and a decision rule can be obtained for binning to yield minimum test time. This process

is illustrated in Figure (58). Joint distribution is sliced at the desired DPPM levels to esti-

mate test time distributions. The main idea in this work is to estimate these distributions

and put devices in bin#i if a device fall in the lowest Pi of its P (timei) distribution.

We use equation (3.19) to estimate the expected test time.

P (ti|Si, Di, S,D, t) =
P (Si, Di, ti|S,D, t)P (S,D, t)

P (Si, Di, S,D, t)
(3.19)

Integrating the equation with respect to Si and Di yields the distribution of test time:
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P (ti) =
´

P (Si, Di, ti|S,D, t)dP (Si, Di)

Statistical binning process is illustrated in Figure 59 in more detail. Once a measurement

set becomes available, it can be used to estimate test time distribution of a device for bin#i

(DPPMi). However, we execute the decision only at critical points where a decision is

necessary, where the decision points are DPPM bin boundaries.

During the initial phase of testing a device, uncertainty is large and a number of tests

are required to reach the first quality bin boundary DPPMB, where B is the total number

of bins. At this point we need to decide whether we should put the devices in the lowest

quality bin and stop testing or if we should put the device in another bin (DPPMi) and

continue testing until DPPMi us maintained. The algorithm of the process is listed in

Figure (60). Decision mechanism is executed when DUT reaches a DPPM boundary. At

DPPMj , if the device under test falls in Pi of the lower tail of the estimated P (ti), where
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Fig. 60. Adaptive qualitybinning test flow

i > j, the DUT is put in bin#i and continued to be tested. Otherwise, the device remains

in bin#j and testing is stopped.

3.2. Training Det Dize Related Stability

Although the method discussed above is mathematically sound, it is based on the asymp-

totic properties of estimation and may not be stable for small training sets. The equations

used to estimate P (ti) assume an infinite learning set and therefore may not yield the best

results for limited training sets. The importance of decision stability can be best explained

through an intuitive example. Suppose that the binning algorithms has reached a decision

point j at timej and decides to put the DUT to bin#i (DPPM(DUT ) < DPPMi). We
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the estimated parameter cannot be guaranteed to be monotonically non-increasing due to

the limited size of learning data set.

not only want the decision to be estimated but also to be a stable decision within the

neighborhood of decision point j. That is, if the decision at point j-1 or at j+1 is different,

or alternates frequently, it is not stable. We define stable decision as decision remains at a

specific bin and does not change very frequently.

We demonstrate the stability issue using Figure 61. Estimated DPPM parameters is

shown with respect to time. The figure shows that estimated DPPM value of some devices

change more rapidly than the others. This can be attributed to poor characterization due to

limited training set size and excursions in some measurement parameters that de-stabilize

the estimation mechanism.
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To improve the stability of the algorithm, we add an additional constraint. Although

decision is performed at bin boundaries, we generate a bin estimation Bk at every test,

where k is test index. In order to finalize a decision we require 5 consequent classifications

of the same kind.

3.3. Results

We evaluate the performance of the proposed method and compare it with other work

using two sets of production data. The data is collected from production line through

exhaustively applying the whole test suite. The first data set has 42 specification parameters

of a large scale mixed-signal circuit of 89k devices. The second data set has 264 specification

parameters and 900k devices and large scale analog circuit.

Quality binning simulations are performed using training set size of 2000 devices and

repeated 10 times to obtain a stable estimate of the performance. The methods that are

used for comparison are subjected to the same averaging process. Test time of the individual

tests are assumed to be unity. Hence, test times reported below correspond to the number

of applied tests.

We demonstrate the performance of the proposed method using two sets of constraints

listed in Table 13. The purpose of using two sets is to show that device binning can be

controlled using our method.

3.3.1. Data Set#1. Figure 62 splitting performance for the first data set using 5 runs

with disjoint training sets of devices. Figure 62(a) and (b) show results for the first and

second constraint respectively. Blue dashed lines show the ideal splitting level, while red

lines represent simulation results. Split percentages almost overlap with the ideal splitting

conditions. Therefore conditions are satisfied.
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DPPM Constraint
Percentage

Constraint Set#1

Percentage

Constraint Set#2

500<DPPM<1000 85% 70%

0<DPPM<500 15% 20%

DPPM=0 5% 10%

Table 13. Binning constraints

Fluctuation of the red curve is due to the limited size of the training set size and

potential shifts in the process. Under represented or invalidated statistical characterization

data may result in inaccurate splitting ratios.

In the figures above, we showed that the constraints are met with acceptable perfor-

mance variations. Now, we show test time reduction performance of the quality binning

method. Figure 63 shows the results and performance of the state of the art methods on

the same plot. Isolated marked points show performance of the other methods. Since most

of these methods do not have a DPPM control mechanism, they occupy a single point on

the plot. We used a test covering based method [Yilmaz et al.(2011)] to show the relation

of DPPM-test time, illustrated using the solid blue curve. Data points of this curve are

obtained by changing the size of a test list generated using incremental coverage criteria.

This helps to understand the dependency between DPPM and test time.

Performance for the first constraint set is shown with the vertical dashed red line that

has three markers. Vertical location of the markers correspond to the binning criteria.

Split rate of each condition is marked next to the markers. Horizontal location of the

markers indicate test time performance. For comparison. traditional cover based method is
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Fig. 62. Binning percentages for data set-1. Splitting ratios almost overlap with the target

levels

evaluated with the same condition set (#1) and results are plotted using a blue dashed curve

on the same figure. The figure shows that the proposed method reduces quality-binning

time to 50% compared to the traditional method.

3.3.2. Data Set#2. Splitting performance is evaluated and illustrated in Figure 64 for

the second data set. The results show that splitting performance is satisfactory despite of

the fluctuations in performance.
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Fig. 63. Vertical dashed lines show the results for binning simulation. Each marker on

the vertical lines correspond to a binning criterion. Split ratio of the bins are shown next

to the marked point.

Test time performance of the second data set is illustrated in Figure 65. Our proposed

method achieves more than 60% test reduction for both of the constraint sets.

4. Multidimensional Outlier Detection

Outlier devices behave differently from the majority of the devices and are considered to

be potentially defective. Identifying outliers has many applications in test, including defect
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Fig. 64. Binning percentages for data set-1. Splitting ratios almost overlap with the target

levels

filters for alternate test, and setting pass/fail limits for automotive domain. In previous

work, outliers have been identified using single dimensional and/or static methods which

does not exploit information efficiently. In this work, we propose an adaptive multidi-

mensional outlier analysis method that combines the information of multiple measurement

parameters and judiciously selects only information rich parameters to maximize detection
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Fig. 65. More than 60% test compaction is achieved for the given constraint sets.

probability. Furthermore, the proposed method continuously updates to track process shift

to enable adaptation to the evolving processes.
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The proposed method can be integrated within an existing test framework to improve

test quality with little or no additional test time cost. In this context, we integrate our

technique with an adaptive test framework and show that the method improves test quality.

4.1. Background

Outlier is typically defined as an observable deviation from the typical behavior. This

observable change can be attributed to physical defects or an unpredictable deviation of the

process altering the behavior of the affected device. Outlier concept can be best explained

through an illustration. Figure 66(a) shows a scatter plot of two parameters for several

identical devices. Circles represent defect free devices, cross signs represent defective de-

vices, and the dashed square shows specification boundaries. Note that if only specification

boundaries are used in the analysis, only the leftmost defective circuit is detected. However,

there are several more devices that behave significantly different from the typical circuits

(shown with cross signs). All of these suspicious devices needs to be identified.

However, identification of outliers is not trivial. Process variations introduce uncertainty

into the identification process, masking the deviation of some defects. For example, circled

defective devices can be relatively easily detected in Figure 66(a), however, uncircled ones

are very close to typically behaving devices, therefore, are hard to detect. Several methods

have been proposed to achieve a good outlier identification rate.

4.1.1. Outlier Analysis. The most easily implemented and the least effective outlier

analysis method is one dimensional approach, where device parameters are analyzed sepa-

rately. Figure 66(b) shows a typical 1-D outlier analysis method for parameter Y in Figure

66(a). First, the defect free distribution of the devices is generated, which is represented

with a Gaussian curve in the figure. Then, outlier boundaries are generated to separate
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Fig. 66. Outliers can be detected using multiple dimensional analysis. Outliers can be

detected easier in (a) 2D than in (b) 1D

the region of defect free devices from the region of potentially defective devices. Direct and

indirect measurement parameters can be used in this analysis.

However, 1-D approach is limiting and inefficient in outlier identification. For example,

consider the potential defect encircled with a triangle in Figure 66(a). It cannot be detected

neither in X dimension nor in Y dimension with 1-D approach. But, it can be much easily

detected using a 2-D approach as shown in the 2-D scatter plot. Therefore, performing

outlier analysis in higher dimensions would conceivably improve the identification success.

In [Yilmaz and Ozev(2009b)] we presented a low cost 2-D approach to improve outlier

identification rate. However, this approach cannot be generalized to N-dimensions due to
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the difficulty in representing outlier decision boundaries in multiple dimensions. A nonlinear

boundary generation method is proposed in [Stratigopoulos and Makris(2005)] using neural

networks, but its is not suitable to be used in high dimensional spaces.

4.1.2. Multi-D Outlier Analysis. Multi dimensional outlier analysis methods are pro-

posed in [Cerioli(2009), Filzmoser et al.(2005), Papadimitriou et al.(2003), Pena and Pri-

eto(2001)]. But, they either use parametric models to model parameter distributions or

employ cluster-based [Jiang et al.(2001)] representation of instances. These approaches

cannot be used to represent complex distributions of analog/mixed-signal circuit responses

or computationally costly to use with a large number of dimensions.

A more sophisticated nonparametric approach is proposed in [Stratigopoulos

et al.(2009a)] to pre-filter outliers for accurate model generation. However, updating statis-

tics adaptively and uncertainty reduction are not considered in this outlier analysis methods.

As we will show in the results section, these two issues are very important in outlier

detection.

4.2. Proposed Approach To Analyze Outliers

We use a similar concept used in multi-D outlier methods [Cerioli(2009)] to shrink the

number of dimensions. We first explain a simpler approach where device parameters are

assumed to have Gaussian distribution and then explain how we extend the method with

nonparametric models.

Suppose that device parameters are Gaussian with mean vector µ, and covariance matrix

C. Then, Mahalanobis distance is defined as;

MD2(si) = (si − µi)TC−1(si − µi) (3.20)
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Fig. 67. Profile of the distribution of D{j}(si) can be modeled parametrically

where si is measurement parameter vector of ith device, and (.)T is transpose function.

This transformation effectively enables to transform multidimensional parameters into a

one dimensional distance parameter greatly simplifying analysis.

Unfortunately device response distributions are much more complex due to the non-

linear nature of circuits with respect to their inputs. Hence, Gaussian assumptions are

not typically satisfied. Instead, we employ a nonparametric modeling method and define

distance measure as a natural extension of this model.

We employ a kernel based non-parametric method to represent joint probability distri-

bution function of device parameters. A more detailed explanation of the method can be

found in [Yilmaz and Ozev(2010), Scott(2008)]. Distribution of the model is generated by

placing a kernel function in the high dimensional space for a sample characterization set of

defect-free devices. Distribution is constructed using equation (3.21).
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pdf(si) =
1

N

N∑
k

M∏
j

Kj(
si,j − µk,j

hj
) (3.21)

where N is the size of the characterization set, M is the total number of dimensions, sk,j

is the measurement of jth parameter of ith device, Kj is the smoothing kernel for jth

parameter, while µk,j and hj are mean and kernel width parameters for jth parameter

respectively. This equation enables to fit a smooth multidimensional function to represent

the parameter distribution of even nonlinear analog devices. Now we define a distance

measure that effectively shrinks the number of dimensions to one. The order of summation

and product in (3.21) can be interchanged if the multidimensional kernels instances are

sufficiently localized, or uncorrelated. This leads us to the following distance measures

obtained through logarithmic transformation.

Dj(si) = −log

{
1

N

N∑
k

Kj(
si,j − µk,j

hj
)

}
(3.22)

D{j}(si) =
∑
{j}

Dj(si) (3.23)

Dj is the distance of device parameter vector si in jth dimension. D{j}combines the dis-

tances defined by Dj in parameter set {j} and yields a scalar number that is the distance

of si from the nominal. This scalar number summarizes the deviation of a device from the

nominal and enables to easily incorporate information of multiple dimensions into outlier

analysis. Note that, D{j}(si) reduces to Mahalanobis distance (with identity covariance

matrix) when N=1, the distribution of device parameters is Gaussian.

Outliers can be detected by analyzing the location of devices in one dimensional distance

(D{j}) space. For the simpler case, where device parameter distribution can be assumed

to be Gaussian, D{j} has χ2 (Chi-Square) distribution. As a result, D{j} is the overall
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Fig. 68. Not all parameters bear information. Using only information containing param-

eters enables to achieve a better detection rate

normalized distance of devices from the nominal. Outliers can be identified by assigning

a boundary at a high quantile and identifying devices as outliers if they fall beyond that

level.

For the nonparametric model employed in this work, it is hard to derive the statisti-

cal distribution D{j}. Despite the complexity of the model, D{j} closely resembles a χ2

distribution. Hence χ2 distribution can still be used in our model. Illustration in Figure

67 shows how well the fitted distribution matches the experimental data. In the figure,

blue bars represent the histogram of distance parameter while the red curve is the fitted

a parametric model. Note that we are especially interested in fitting the right tail of the

distribution and a good fit is achieved using the parametric model.

Then we select a point using the fitted model using a high quantile (inverse of cumulative

distribution function), such as 99.9%, on the distance space to separate outlier region from
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the outlier-free region. The separation of regions is shown in Figure 67 using a broken

arrow. Quantile level can be used to set the trade-off between yield loss versus detection

rate, where yield loss is approximately (100− quantile)%.

4.3. Uncertainty Reduction

Using combined information of multi dimensional data yields more information and

enables us to make a better informed decision. However, this does not necessarily mean

that all measurement results have to be used to maximize information. On the contrary,

the measured parameter set needs to be carefully selected. For example, a defect may affect

only a subset of specification parameters while leaving the others unchanged. Utilizing the

information of only altered parameters would be sufficient in the analysis. If all parameters

are used, uncertainty introduced by unaltered, information-poor parameters may result

in an incorrect decision. This can be best explained with an example. Figure 68 shows

scatter plot of a conceptual example in three dimensions for specification parameters X,

Y, and Z, where hollow circles represent defect free devices, and cross sign represents a

defect. Projection of the data on XZ plane and YZ plane are generated to show individual

contribution of parameters. In this example, projection on XZ plane shows that X and Z

parameters bear enough information to deem the defect as an outlier. Now suppose that

we would like to incorporate Y parameter into the analysis. The projection of data on

YZ-plane shows that the defective device is located very close to the mean in Y dimension

and is almost indistinguishable from defect free devices. Therefore if Y parameter is used,

no new information is obtained, while additional uncertainty is introduced.

To eliminate uncertainty induced by such parameters, we need to decide which subset

of parameters to use in outlier analysis. We derive equations of a simplified model to
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gain a better understanding of the problem. Suppose that device parameters, si, can be

represented with the model given in Equation (3.24).

si,j − µj = xi,j + w (3.24)

where si,j is the ith specification parameter of the jth device, w is uncertainty introduced

by process variation and measurement system, µj is the nominal value, while xi,j is the

deviation imposed on ith device by the defect in the jthdevice parameter. Uncertainty

term, w, is assumed to be independent and identically distributed for all device parameters

(w = wi,j). In order a defect to be observable, it should manifest itself as a significant change

to be distinguishable in the presence of uncertainty. We define a measure to describe the

concept more clearly.

DUM{j}(si) =

∑
{j}E[x2j ]

L · E[w2]
(3.25)

where DUM is detection utility metric of the distance measure, L is the size of test list {j},

and E[.] is the expected value operator. In this equation, DUM represents the information

content and is desired to be large. In order to obtain a large DUM, the subset of test set,

{j}, to be used in outlier analysis should be carefully selected to maximize DUM.

We use a heuristic approach, shown in Algorithm 3.1, to select the information contain-

ing measurement set jopt(si) from all measurements {j′}M ′1 , where M ′ is the total number

of available measurement parameters. We first select a test j such that it yields the max-

imum distance parameter (Dj(si)) according to the equation (3.22) and append it to test

set {j}. Then, we calculate the DUM of test set {j} using equation (3.25), where E[w2] is

calculated using cumulative statistics and E[x2j ] is simply Dj . We keep adding tests to {j}
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Algorithm 3.1 Uncertainty Optimized Test List
{j}opt ← {}; maxDUM = 0

while 1 do

m← argmaxn(DUM
n:n∈{j′}M′1 −{j}opt

(si))

if DUM{j}opt+{m}(si) < maxDUM then

return {j}opt

else

{j}opt ← {j}opt + {m}

end if

maxDUM ← DUM{j}opt(si)

end while

using until the computed DUM stops to increasing. The generated test set is used as the

most informative test set for the device under test.

4.4. Integrating Outlier Analysis Into a Test Flow

Figure 69 shows the flow of a test approach that uses the proposed adaptive outlier

analysis technique. A typical test flow includes an initial test list generation step, and a

Test Engine (testing/evaluation) step. These steps are illustrated in the gray region in the

Figure 69. The proposed method, shown with the yellow region in the figure requires two

modifications in the test system: placing an outlier analysis step and an statistics-update

step after the test engine (pass/fail evaluation step), and appending a set of tests into the

initial test list. Note that the test engine can be any testing method, such as set cover,

alternate test or even IDDQ testing. In this work, we use an adaptive test method [Yilmaz

and Ozev(2010)] as the test engine and embed the proposed method in the flow as suggested.
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Fig. 69. Adaptive outlier analysis flow

4.5. Determination of Initial Test List

Achieving the most information and therefore maximum DUM depends on the available

measurement parameter set, which strongly depends on the initial test list. We propose

a method to generate a subset of most informative tests in order to increase the chances

of detecting outliers. The generated test list can be simply appended to the initial test

list that is generated by the host test system. In our work, we simply replace heuristically

generated parts of the initial test list with the proposed method.

First we analyze a sample set of devices, {ti} , to learn the statistics of the system.

We guarantee to use defect free devices in the analysis by filtering out potentially defective
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devices very aggressively. We use robust estimators median and MAD (maximum absolute

deviation) to accept only 4σ neighborhood of the parameters, yielding {t′i}. Once the po-

tential defects are aggressively filtered from the training set, we use it to compute statistics

such as E[w2] and parametric distribution of distance parameter (Dj(ti)), which are sensi-

tive to defects. Then we compute the most informative test list for each device in {ti} and

compute their quantile according to the parametric distribution generated using {t′i}. The

devices that exceed a certain level of threshold distance are identified as outliers and put

into a set {ti}out. Now, we determine a common test set to each device in {ti}out that can

successfully identify all of them.

We use a heuristic approach and incrementally add a test that achieves the most outlier

coverage. The procedure is listed in Algorithm 3.2. The algorithm stops when all devices

in {ti}out are identified and yield the best common detection test list, {j}BD.

Adapting capability of the outlier analysis requires minute changes in the test engine,

such as appending a few more tests to increase detection probability. But, it is important

to keep these changes at an acceptable level especially if the number of applied tests is an

important concern for the test engine. In this work, we replaced intuitively generated test

list in [Yilmaz and Ozev(2010)] with our initial test list generation method and the size

of initial test list remained more or less the same. Therefore, test time overhead is almost

zero.

4.6. Adaptive Outlier Detection

Outlier analysis step is the successor of the Test Engine step, shown in Figure 69. In

Figure 70, we show a more detailed diagram of outlier detection process. Test engine

conducts some tests and decides whether the DUT (device under test) passes or fails.
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Algorithm 3.2 Generate best detecting test list
{t′i} ← Filter{ti}

E[w2],Dj({t′i})),PDF (χ2)← Estimate Using {t′i}

Th = Quantile(χ2, 99.9%)

{ti}out ← {}

for all ti ∈ {ti} do

if χ2(ti) > Th then

{ti}out ← {ti}out + ti

end if

end for

{j}BD ← {}

for all i ∈ {i}M1 do

detectRatebest ← 0

for all j ∈ {j}M1 − {j}BD do

if DetectRate({ti}out,{j}BD)>detectRatebest then

jbest ← j

detectRatebest ← DetectRate({ti}out,{j}BD)

end if

end for

{j}BD ← {j}BD + jbest

if DetectRate({ti}out,{j}BD) = 100% then

return {j}BD

end if

end for
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Outlier analysis step, uses the measurement results obtained in the previous step {j′} to

identify whether the DUT is an outlier or not.

First the most informative test list {j}opt(si) is determined using the algorithm provided

in section 3.1. Then the distance of the device (D{j}(si)) is computed using equation (3.23)

and compared to a threshold level that corresponds to a high quantile level, such as 99.9%.

If the distance of the DUT exceeds the threshold value, it is subjected to exhaustive testing.

Otherwise, outlier analysis stops and the control is passed to the test engine to continue

with the next device. Exhaustively tested potential outlier devices also enables us to update

process statistics on-the-fly and therefore adapt to the process shift.

4.7. Updating/Adapting to Process Shift

Adaptive update of statistics are performed periodically every several thousand devices

due to the computational overhead of the update process. We chose this period to be 10k in

our analysis. Potential outliers that have been determined during the test flow are analyzed
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to update the process statistics. Instead of re-characterizing the process by exhaustively

testing a large number of devices, we utilize already measured device information. Process

shift results in a change in process statistics. This shift manifests itself as identification of

more potential outlier devices. Therefore we use some of the potentially defective devices

obtained in the outlier analysis step to update representative set of kernels and the rest to

update the best detection test list. Some of the devices may be wrongly classified as outlier

devices due to outdated process statistics information.

We employ a compaction mechanism to classify these devices into two groups. The

compaction algorithm simply combines aggregated device instances in the multidimensional

parameter space. If a group of devices are in proximity of a certain radius they are joined

into a device group. Since we would like to determine which potentially defective devices

are actually defective and which are a result of a process shift, we apply the compaction

algorithm on the outlier devices and determine if they combine or remain individual. Com-

bination of the devices implies that some outliers are in close proximity. According to the

definition of outliers, they should behave differently from the majority of the devices and

we expect them to be rather scattered instead of being concentrated. Hence, devices that

combine indicate a possible process shift. We select devices that combine in groups of 10

or larger to update the training set list. This enables to adapt the model of the outlier

detection method to the changing process conditions. The devices that do not combine,

however, are used to update the best detection test list.

4.8. Results

We apply the proposed method to three different sets of industrial data of large scale

mixed-signal circuits. The first data set has 42 specification parameters for a large scale
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mixed-signal circuit of ~89k devices. The second data set has 21 specifications of a small

scale analog circuit of ~21k devices. The third data set is of a large scale circuit with 264

specifications and ~900k devices. Throughout the analysis we use disjoint training sets of

2000 devices for characterization.

4.8.1. Outlier Analysis Efficiency. First we illustrate the performance of the method in

two dimensions to see how well outliers are identified visually. In Figure 71(a) a 2D scatter

plot of parameter #15 and parameter #47 are shown for the third data set. Red circles

represent the devices identified as outliers. The figure shows that the proposed method is

capable of identifying devices behaving even slightly different from the majority. Figure

71(b) is another 2D illustration for randomly picked device parameters for the same data

set. Identification capability is visually verified in this figure.

We showed that information in multiple dimensions can be extracted through an appro-

priate transformation of multiple dimensioned data to a single dimensional distance metric.

However, in section 3.1 we argued that only information rich parameters should be used to

maximize DUM and therefore detection probability. Furthermore, shifting process statis-

tics needs to be tracked. Now we show how these two can substantially improve outlier

identification capability. We compare the results of our method with a multi dimensional

method [Stratigopoulos et al.(2009a)]. Algorithm based on [Stratigopoulos et al.(2009a)]

is integrated into a cover based test engine and the distance measure defined in equation

(3.23) is used for comparison. First we show the effect of uncertainty reduction in outlier

detection. In Figure 72(a), we compare the distance metric for the case where all available

information is used (method based on [Stratigopoulos et al.(2009a)]) and where only in-

formation containing parameters are used in outlier analysis. A section of distance metric

for device instances with index of 720 to 820 are shown to prove our point. The red curve
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Fig. 71. 2D visualization of parameters illustrate the operation of the method

shows the distance metric(D{j}(sk)) for device k with no uncertainty aware optimization,

and blue curve shows distance metric of the same device set with uncertainty aware test set

selection. The spikes in the figure indicate outliers and therefore potential defective circuit.
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Fig. 72. (a) Device distance, is more significant when uncertainty aware test selection is

performed. (b) Adapting to the process is necessary to guarantee consistent and reliable

outlier identification.

Note that spikes of the red curve are very close to the minimum detection level and can-

not be distinguished clearly. However, blue spikes are clearly observable. This discussion
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suggests that using information of multiple dimensioned data may not provide the most

information if uncertainty aware analysis is not performed.

Now we turn our attention to the effect of tracking the process shift. The effect of

process shift in distance parameter is illustrated in Figure (b). The plot is generated after

simulating ~48k devices. The blue curve is the results of our method and the red curve is

the results of the method based on [Stratigopoulos et al.(2009a)], where process shift is not

tracked. The figure shows that statistics of the static method is shifted upward and standard

deviation is increased. Therefore, sensitivity of the method is diminished. Although the

method works well initially (shown in Figure 72(a)), process shift invalidates the process

information (show in Figure 72(b)). Furthermore, results are not reliable anymore since

decisions are based on outdated information. Comparatively, the standard deviation of our

method is steady thanks to the update process. Note how the spikes of blue curve in figure

(72)(b) are distinguishable and therefore detectable.

4.8.2. Test Time/DPPM Comparison. So far, we have discussed the success of the pro-

posed method in identifying outliers. But how is it useful in production line? First of all, it

can be used to eliminate outlier devices to guarantee reliable operation in application areas

where reliability is important. Another application area of the method is attaching it to

existing test framework in production line to boost test quality. In this work, we integrate

the proposed method to an adaptive test framework in order to improve defect coverage.

In this work we demonstrate adaptive multidimensional outlier analysis in a test op-

timization framework, where the number of applied tests is reduced by skipping some of

them on-the-fly by the test engine. Therefore, measurement data analyzed by our method

includes only a subset all specification parameters and measured parameters differ from

device to device.

170



0 20 40 60 80 100
10

12

14

16

18

20

device index [x1000]

T
e

st
 T

im
e

Fig. 73. Test time with respect to testing progress for the second data set

We show averaged test time with respect to the progress in testing in Figure 73. Note

that test time does not increase as testing progresses and is stable.

Table 14 compares DPPM/Test Time performance for the first circuit. Test times

are given in terms of the average number of tests executed. Achieved DPPM level is

lower compared to the adaptive method [Yilmaz and Ozev(2010)] and significantly lower

compared to the other static methods. Note that integrating our method into [Yilmaz and

Ozev(2010)] yields even lower DPPM while reducing the required test time almost to half.

Table 15 shows performance results for the 2nd circuit. The achieved DPPM result is

one third of the best of the other methods for comparable test time. Embedding our method

into [Yilmaz and Ozev(2010)] resulted only %5 increase in test time, but this enabled to

reduce DPPM by 3 folds.

In Table 16, we show the improvement of test quality when the proposed method is used

for the 3rd data set. Test engine is set to minimize DPPM level. Test set is reduced from
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DPPM Time

Proposed 36 11

[Yilmaz and Ozev(2010)] 43 20

Cover Based 392 20

ILP [Stratigopoulos et al.(2007)] 800 5

Marginality Based [Chen and Orailoglu(2008)] 135 15.5

Heuristic [Milor(1998)] 590 14.34

static SVM [Biswas et al.(2005)] 735 17.4

Table 14. DPPM and test time results for data set-1

DPPM Time

Proposed 47 7.33

[Yilmaz and Ozev(2010)] 164 7

Cover Based 1.4k 7

ILP [Stratigopoulos et al.(2007)] 1k 3.5

Marginality Based [Chen and Orailoglu(2008)] 1.9k 3

Heuristic [Milor(1998)] 150 6.56

static SVM [Biswas et al.(2005)] 664 17.2

Table 15. DPPM and test time results for data set-2

264 tests to 80 tests, whereas DPPM is nearly 100. Compared to static methods, adaptive

test and outlier analysis have a significant advantage in terms of DPPM. Outlier analysis
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DPPM Time

Proposed 105 80

[Yilmaz and Ozev(2010)] 107 81.2

Cover Based 621 82

ILP [Stratigopoulos et al.(2007)] 3.8k 9.2

Marginality Based [Chen and Orailoglu(2008)] 4.3k 10.9

Heuristic [Milor(1998)] 1.87k 142

static SVM [Biswas et al.(2005)] 1.56k 47.6

Table 16. DPPM and test time results for data set-3

does not provide a significant improvement over our previous work for this case. This can

be attributed to the lack of correlation of the outliers to defective instances.

Results show that integrating the proposed method into an existing test engine can

yield significant improvements.

4.9. Summary

This work presents an adaptive multidimensional outlier analysis technique that enables

extraction of information from multi-variate measurement parameter space and selects only

information containing parameters through uncertainty aware selection. Uncertainty aware

optimized test selection gives rise to high DUM (Detection Unit Metric) and therefore

high detection probability. Moreover, continuously updating characterization information

enables us to track process shifts and adapt with respect to them.

Flexibility of the method makes it suitable for industry applications, since it can be

integrated to existing test frameworks to achieve very low DPPM levels while reducing the
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test time considerably. In fact both test time and test quality can be improved significantly

simultaneously as we have observed in the results.
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5. Efficient Process Shift Detection and Test Re-Alignment

Efficiency of test compaction is very important for production test time minimization.

Poor test compaction methods either result in long test time or low test quality for analog

and mixed-signal circuits. One of the most important factors in test compaction quality is

accuracy of the representation of process statistics. Accurate representation is challenging

since process characteristics are not stationary; thus, they need to be updated to maintain

a reliable test quality level over the complete production run. Previous work in test com-

paction either does not take process shift into account or uses simplistic updating methods

to avoid the cost of process re-learning.

In this work, we propose an efficient re-learning method that tracks changes in the

process state and generates a compact test list using re-learned information. We model

the mechanics of the process shift with a transformation function. We use information

from a characterized wafer to predict the characteristics of a given wafer under test (WUT)

using a very small number of samples. Fitting the transformation function enables us to

map outdated process information to the up-to-date process information of the WUT. We

demonstrate the performance our method and compare it with previously published work

using large scale production data of two distinct mixed-signal circuits. We show that our

method maintains superior DPPM levels over large numbers of wafers and lots.

5.1. Motivation

Process characteristics of manufactured devices change over time. These changes may

be due to intentional adjustments to tweak the process or due to difficulties in providing

precisely controlled production steps.
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Fig. 74. Process shift makes specification parameter\#248 move toward the lower speci-

fication limit, increasing probability of failure.

We illustrate this scenario using production data of a large scale analog circuit. Figure

74 shows the probability distribution function (PDF) of a specification parameter (spec#

248) generated using information collected from two separate wafers from the same lot.

The dashed curve shows the PDF of the parameter from the first wafer, while the solid

curve shows the PDF of the same parameter from the second wafer. The figure shows

that PDF of the same parameter shifts towards the lower (left) specification boundary.

Initially, this parameter has a negligible probability of failure and is not included in the

compacted test list. However, the shift makes it a critical parameter and necessitates it

to be included in production test list to avoid potential misclassifications. This example

shows that a parameter that is initially not critical becomes critical after a wafer transition.

Such information would be missed in a lot-to-lot based update frequency. Thus, a better

tracking and update approach is needed to maintain high test quality.
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Updating characterization data is particularly challenging because capturing

specification-to-specification dependencies for effective test compaction requires a signifi-

cant re-learning effort, typically requiring full test of thousands of devices. Throwing away

outdated information and collecting new data from scratch is not the most efficient way of

re-learning a process. Considering that the process technology remains the same, shifted

process statistics cannot be independent of the outdated (available) information. Process

re-learning can be performed in a much more efficient way if state-to-state process correla-

tions are used.

In the following analysis, we illustrate that wafer-to-wafer changes do not require a

full re-learning step. In (3.26), (3.27), and (3.28), we define a well known metric, CPK,

difference CPK (DCPK) and a utility metric in terms of the CPK metric.

CPKk:Wi = min

(
(µk−spec−)

3σk
,
(spec+−µk)

3σk

)
(3.26)

DCPKk : Wi =
|CPKk : wi − CPKk : w0|

CPKk : w0
(3.27)

CMi[%] = 100 ·
∑
k

DCPKk : wi (3.28)

where µk and σk are the mean and the standard deviation values of the kth parameter on

wafer number i. Equation (3.28) normalizes the changes in CPKs and (3.28) sums them to

yield an overall measure for all parameters on the same wafer. Normalization enables us to

assign all CPKs a common meaning and to compare them with each other. Normalization

equation (3.27) emphasizes the critical specifications that may lead to a wrong decision

in production test. A DCPK value close to 0 indicates that even if there is a shift, it has

negligible effect on the decision mechanism. On the other hand, a DCPK value approaching
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Fig. 75. Wafer-to-wafer process statistics are typically correlated. For most transitions

there is only a little change

to 1 indicates a significant change that needs to be taken into account in the test compaction

phase.

Parameter CM (given in Equation (3.28)) represents the overall change of the process

state in terms of DCPK values. As an example, the CM values of a production data set

are plotted for the first 100 wafers in Figure 75 across several lots. The figure shows that

most of the time there is little change in CM, indicating that wafer-to-wafer information

can be highly correlated.

The main challenge of efficient re-learning is to determine how frequent re-learning

should be performed and what is the most efficient re-learning strategy. In [Benner and

Boroffice(2001)], the authors propose a lot-to-lot re-learning. However, this strategy does

not guarantee to capture potential shifts within a lot and is dangerous as it may lead to

misclassifications. Note that Figure 75 shows that within-lot variation can also be sig-

nificant. Therefore, the update period should be short enough to capture these changes.

In [Gotkhindikar et al.(2011)], a continuous update and test ordering mechanism is adopted
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to monitor pass/fail statistics of the executed tests. However, this method has a limited test

compaction potential and achieves good results for low yield processes. We re-learn at all

wafers to avoid test quality degradation and collect sufficient data to capture specification

dependencies to achieve a high compaction rate.

5.2. Methodology

Accuracy of the characterization data is of crucial importance for reliable and high

quality test compaction since a large training data set is required to capture less proba-

ble failure patterns. Full re-characterization is performed in previous work [Benner and

Boroffice(2001)] to maintain a reliable and up-to-date characterization data. However,

this strategy is not efficient because the correlation between the process states is ignored.

We use wafer-to-wafer correlations to capture this information and to minimize the re-

characterization overhead.

In this section, we concentrate on specification parameter domain process tracking.

Process state can be represented as a stochastic process with spatial and temporal depen-

dencies, Γi(x, y), where the temporal dependency corresponds to wafer to wafer correlation.

Within this representation, i is the wafer index, while x and y are coordinate parameters

on the wafer. Equation (3.29) shows the formulation of process shift with this statistical

framework.

Γ0(x, y)
T0,i

−→
Γi(x, y) (3.29)

where T0,i is a function that represents the state transition of the process. Even if the process

Γ0 is fully characterized, it shifts to Γi through T0,i. Instead of re-characterizing the new
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Fig. 76. Process state is re-learned at every wafer transition. The new wafer is sampled

until a consistent transformation relation (T) is fitted between old process state and the

new process state. Then, test list is generated using updated process statistics.

process state, we model the transition function (T0,i) and map the available characterization

data (Γ0) to obtain the up-to-date process state (Γi) using the generated model.

We model the transition function using an affine transformation defined in multiple

sub-regions of the wafer. Modeling using affine transformations enable us to use a very

small number of samples for model fitting. Dividing the wafer into sub regions and fitting a

transition function for each region enables us to approximate arbitrarily complex transition

relationships.
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Fig. 77. Wafers are virtually divided into sub-regions and transformation functions are

fitted to relate the devices in these sub-region.

Once an up-to-date process state is generated, we update the test list in order to classify

devices correctly. Test list is re-generated for each wafer to achieve wafer level test com-

paction adaptation. Note that once a test list is determined, it is applied to all devices until

the next update step. This enables us to use multi-site testing easily to achieve further test

time reduction. Also note that this data collection and update process can be applied to

multiple wafers in parallel.
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5.3. Modeling Approach

The transition function that we try to model can be a complex and nonlinear function

in general. However, we simplify the model by linearizing it using a power series expansion

around multiple spatial locations on the wafer. This enables us to model functions with

arbitrary precision as long as the wafer is sufficiently partitioned. Thus, the complexity of

the transition function is reduced. Power series expansion equation for our model is given

in equation (3.30).

Γi(x0, y0) = α0 + α1Γ0(x0, y0) + α2Γ
2
0(x0, y0) + · · · (3.30)

where the transition function is linearized around (x0, y0) on the wafer. Note that we only

use the first two terms for modeling. Therefore, we only need to estimate α0 and α1. We

estimate these coefficients by testing a small number of samples form Wi. The update/re-

learning procedure can be formulated as estimating the statistics of Γi (Process statistics of

the ith wafer) using minimum number of samples while maintaining a certain fitting quality

level. We thus effectively transform the problem of fitting a complex function (T0,i) to the

problem of fitting the smallest linear transformation function set possible.

We attack this problem in two steps. We first divide the characterization wafer and

wafer under test (WUT) in sub-regions. Then, we generate a transition model from W0 to

Wi by sampling a few initial points. We verify the generated model using another small

set of samples. The regions that are not modeled adequately are divided into sub regions

and this modeling/verification procedure is applied until all sub-regions are modeled with

an acceptable accuracy. The flow of the model fitting procedure is shown in Figure 76.
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Fig. 78. Wafers are partitioned and a transformation function is fitted for each partition

separately. Sub-partitions are re-partitioned to approximate complex transformation func-

tions. Two partitions are used in (a) and transformation function of partition R2 is not

verified (shaded). R2 is partitioned into two in (b) to achieve a better approximation.

We start partitioning by selecting two random devices on the characterization wafer,

which we call pole devices, and group the other devices on the wafer into two groups based

on the spatial distance from these pole devices using equation is given in (3.32).

Dl,j =
∥∥dXYl − dXYj

∥∥ (3.31)

dl : Rj ←
argmax

j

1

Dl,j
>

1

Dl,k
, k 6= j (3.32)

where the lth device (dl) on the wafer is assigned to jth region if it is spatially closest to

the jth pole according to L2 distance metric. dXY indicates device location on the WUT.

183



Once the partitions are selected, several additional devices are characterized on the

WUT in all regions. These samples are used to generate a linear transformation from

W0 : R1 to Wi : R1 and W0 : R2 to Wi : R2 using least squares regression approach.

At least two samples are required from each region to be able fit a linear transformation

equation. We take an oversampling approach to reduce the error due to the measurement

errors and non-systematic process variation. We use 5 samples instead of 2.

Then, we select another 5 samples from the WUT and generate a model for verification.

If the generated models produce statistically similar estimations, the generated model is

used (verification succeeds). Otherwise, the region is subdivided into two sub-regions and

model generation/verification process is applied until all sub-regions are modeled with an

acceptable accuracy.

If the wafer-to-wafer transition is linear (or sufficiently linear) in all specification pa-

rameters, the model is generated using as low as 20 samples. However, if at least one of

the parameters have more complex transformation relationship, more samples are required.

Partitioning enables to narrow the neighborhood of localization in the parameter space.

5.4. Verification

Model verification is performed in the specification parameter domain. We use the gen-

erated transformation model T0,i and verification model T V0,i to estimate device performances

on the WUT using equations:

ŝl,k : Wi = T0,i,k(sl,k : W0)

v̂l,k : Wi = T V0,i,k(sl,k : W0)
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where, sl,k : Wi represents kth specification of lth device on the ith wafer, ŝ and v̂ represent

generated estimation and verification parameters. We test whether ŝ and v̂ are statistically

different from each using Kolmogorov-Smirnoff (KS) test. The KS test checks if the hy-

pothesis of the distributions of the to estimations are same is correct or not. We use 95%

significance level to reject the hypothesis test.

Note that ŝ and v̂ are not assumed to have any parametric distribution. Neither the

transformation model nor the hypothesis testing imposes any restrictions the representation

of the specification mode. This is very important to be able to capture complex and

nonparametric analog parameters.

5.5. Neighborhood Based Pruning

Devices that pass all the applied test are identified as potentially good devices and are

subjected to a sanity check step before the final classification. The available measurement

information is used to perform a final check in order to minimize the risk of a potential

misclassification. We use neighborhood information to identify suspicious devices by using

spatial dependency of process variation to reduce the uncertainty level.

In the pruning step, devices are tested with respect to the statistics of the process using

a 6σ window. Devices that reside inside this window are accepted, while the others are

subjected to full test. We use local information to generate a 6σ window for each test by

computing the window by using spatially nearest 8 devices. Neighbor devices experience

smaller variation and enable to achieve a much narrower acceptance window and therefore

a finer filtering mechanism due spatial dependency of process variation.
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5.6. Test Compaction

The proposed process shift tracking methodology is a general purpose method and can

be integrated into any test engine. We demonstrate the update mechanism by integrating

it into the well known set-cover test method for the simplicity of analysis. However, we use

a modified version of the set-cover method that is resilient to misrepresentation of process

statistics due to the limited size of the characterization data set.

Set-cover problem is formulated in Eq (3.33).

Goal : tmin = min |t| (3.33)

Constraint : Ai,jt > 1

where, A1 is the fallout matrix of size n×m (n is the number of failing devices and m is the

total number of tests), t is test vector, 1 is a unity vector same size as t, and |.| is cardinality

function. Entries of Ai,j matrix is set to 1 if ith device fails jth test and 0 if otherwise. The

goal of the problem is to find a minimum size test list tmin that identifies all failing devices

in the training set. The accuracy of the set-cover method depends on the representativeness

of matrix A. Large and up-to-date data required to obtain a representative A matrix. This

makes the set-cover method sensitive to training set size which is typically limited due to

high characterization cost.

The set-cover method uses characterization data as if matrix A represents fail patterns

perfectly. However, fail patterns are probabilistic due to process variation and various

uncertainties in measurements. Matrix A is a realization of the probabilistic system with a

limited sample size. Failing to recognize this probabilistic nature in test compaction may

lead to unwanted test escapes.
1Ai,j is a binary matrix that contains pass/fail information of jth test of the ith device.
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This concept can be explained through a simple example. Suppose that test#1 is ideally

90% correlated with test#2, so test#1 statistically covers test#2 90% of the time. However,

according to a particular training data set, all devices that fail test#1 also fail test#2 (100%

correlation is estimated) and set-cover method drops test#2 due to its perfect correlation

with test#1. However, they are not perfectly correlated and this wrong judgment may

result in %10 escape rate since test#2 is not applied.

In order to mitigate the effect of such errors, we use 2-detect approach in test selection.

This helps to generate a robust test list by selecting backup tests to cover the fail matrix.

Therefore the constraint of our method becomes:

Constraint : Ai,jt > 2

5.7. Results

We apply our proposed method to production data of a large-scale analog circuit and

a mixed signal circuit. The first data set consists of exhaustive measurement results of

264 specification parameters of ~900k devices, while the second data set has 365 mea-

surement results of 1600k devices. The data is collected across tens of lots and hundreds

of wafers. First, we discuss the process transformation concept we introduced in section

5.3 and demonstrate it using production data. Then, we integrate the re-learning mecha-

nism with the set-cover based test selection method presented in section 5.6 to show the

performance of our proposed method.

5.7.1. Modeling Results. Figure 79 illustrates the performance of the proposed process

state transformation method. In Figure 79(a), measurement results of devices from two dif-

ferent wafers are scatter plotted to show wafer-to-wafer dependencies. Horizontal axis show
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the performance of the devices on wafer#0, while the vertical axis show the performance

on wafer#1. Histograms plotted at the side and the bottom of the figure show PDFs of the

parameter. The dashed diagonal line is an ideal line along which devices should align when

there is no shift. The geometric location of the devices indicate that device performances

of two different wafers are correlated, while the correlation is not perfect. This observation

supports our claim on the state-to-state correlation of the process states. As expected,

there is a dependency that enables us to make prediction whereas there is a certain amount

of uncertainty that imposes a lower limit on the accuracy we can achieve. Note that the

plotted device ensemble does not overlap with the dashed ideal line, indicating a process

shift. The bulk of the devices reside above the dashed line. The effect of the shift is also

observable in the PDFs plotted along the horizontal and vertical axis.

We apply our modeling approach to model the transformation from wafer#0 to wafer#1.

The model is generated and verified by using 30 samples and 3 regions. Then, device

set in wafer#0 is transformed through the fitted function. We show the goodness of the

estimate in Figure 79(b) by a scatter plot of the estimated results with respect to the actual

parameters of wafer#1. Note that the devices are located around the 45 degree dashed line

indicating a good fit. The residual error arises mainly from the random variation that

cannot be predicted. An important observation here is that the absolute error mode in the

prediction is less important than having the samples equally spaced around the 45 degree

line since that impacts the distribution statistics. The PDF juxtaposition on the samples

show significant improvement from (a) to (b). This example shows that a small number of

devices can be used to predict systematic dependencies among wafers and predict statistics

of the wafer of interest.
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5.7.2. Production Data. Process re-learning is performed after every wafer transition

to minimize the risk of missing fast process changes. Therefore, the re-learning process

requires a certain amount of time that should be at a reasonable level. In Figure 80, we

show the number of samples used for the proposed re-learning method for the first data set

for the first 100 wafers. Horizontal axis shows wafer indexes and vertical axis shows the

number of samples including the verification samples. For most of the wafers, a sample size

as small as 20 is sufficient, while a few wafers require around 200 samples. On the average,

40 samples are used in the re-learning process.

We integrate the proposed re-learning algorithm with the set-cover based method de-

scribed in section 5.6 and report DPPM and test time performance in Figure 81. Reported

DPPM is calculated by projecting the number of defect escapes to represent parts per mil-

lion, while time reduction is calculated by averaging the number of eliminated tests and

dividing by the overall number of tests. A cover-based method is implemented to serve as

the baseline for comparison purposes. Test list for the cover-based method is ordered off-line

(static) with respect to the coverage rate of the tests and trimmed to obtain different size

test lists. We used these different sized test lists to reveal the trade-off on the DPPM-test

time plot. The family of points obtained using the cover-based method are marked using

rectangle symbols on the plot and connected by interpolation. The goal of test compaction

methods is to achieve a small test time and low DPPM level. We compare the performance

of some of the key works in this field using this baseline performance plot and the proposed

method.

Test list generated using a continuous process shift adaptation method [Gotkhindikar

et al.(2011)] is trimmed using a drop rate factor to achieve a family of test lists and therefore
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a set of trade-off points on the plot. This method achieves good test compression for low

yield processes and therefore not very convenient for high yield processes.

The set-cover method does not adapt to process shifts and uses the initial training set

of devices for test compaction. The set-cover method yields a lower test time; however,

DPPM level is significantly high. The results of lot-to-lot learning [Benner and Borof-

fice(2001)] method also show high DPPM level, comparable to the cover based method.

Our method achieves more than ten-fold DPPM reduction over the static set-cover method

and is significantly below any of the trade-off curves generated.

The improvement can be attributed to re-learning method that enables to generate a

test list adaptively for each wafer and pruning check step.

We also compare the proposed method with an adaptive test method [Yilmaz

et al.(2011)]. This method achieves the lowest DPPM level for all data sets due to its

per-device adaptation method. It can be applied for tester platforms that support device

specific test tailoring, which is typically supported by high end platforms. Our method im-

poses much less burden on the tester and can be implemented on low end testers. Moreover,

since our method applies a fixed test list to all devices on the WUT, it can be easily adopted

to multi-site test which enables linear test time reduction with respect to the number of

sites.

Table 17 summarizes the differences of the proposed method, [Yilmaz and Ozev(2010)],

set-cover based method, and the per-device adaptive method in [Yilmaz et al.(2011)]. Ex-

ecuting the same test order for all devices enables input sharing. Test time reduction rate

for multi-site test is linear with respect to the number of parallel sites. The computational

burden of the proposed method is negligible. On the average, processing time of the re-

learning step is less than 2ms per device on a quad-core 2.3GHz Intel machine. This time
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proposed [Yilmaz and Ozev(2010)] set-cover

Requires

Different

Test

Inputs

no yes no

Static

Compaction
yes no yes

Process

shift

adaptation

very good acceptable not available

Test

reduction

factor for

M-site

test

M <M M

Computational

burden
negligible modest no-burden

Table 17. Summary of the main features

is negligible compared to the average test time of a device, which is typically in the order

of seconds.
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5.8. Summary

We present an efficient process state tracking method that enables us to update process

information during production test using a very small number of samples. Using the up-

dated information, we can select a compact test list tailored with respect to the statistics

of the wafer under test. As a result, we achieve a reliable and consistent test quality level

over the production life-time. We model a transformation function relating a known state

of a process to an unknown state using an affine transformation defined in sub-regions of

the wafer. A simple transformation model enables us to generate a fitting function using a

small number of samples, while sub-dividing the wafer into regions enables us to approx-

imate the transformation functions of arbitrary complexity. We integrated the proposed

process tracking method with a set cover based method and a neighborhood based pruning

step to show its potential in product test environment. The results show that our method

achieves several folds improvement in test time/DPPM trade-off over the previous work.
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Fig. 79. Scatter-plot of the same parameter of two different wafers shows a systematic

shift in (a). The proposed modeling approach successfully approximates the distribution of

the parameter of the new wafer. Scatter-plot and ideal 45 degree line overlap in (b).
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